WO2023067863A1 - 膜付き枠部の製造方法及び保護キャップの製造方法 - Google Patents

膜付き枠部の製造方法及び保護キャップの製造方法 Download PDF

Info

Publication number
WO2023067863A1
WO2023067863A1 PCT/JP2022/028398 JP2022028398W WO2023067863A1 WO 2023067863 A1 WO2023067863 A1 WO 2023067863A1 JP 2022028398 W JP2022028398 W JP 2022028398W WO 2023067863 A1 WO2023067863 A1 WO 2023067863A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
frame
target
manufacturing
end surface
Prior art date
Application number
PCT/JP2022/028398
Other languages
English (en)
French (fr)
Inventor
亮太 間嶌
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023067863A1 publication Critical patent/WO2023067863A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals

Definitions

  • the present invention relates to a method for manufacturing a frame with a film and a method for manufacturing a protective cap.
  • Electronic devices equipped with electronic components such as LEDs have come to be used in various fields such as lighting and communication for reasons such as long life and energy saving.
  • the substrate on which the electronic components are mounted may be covered with a protective cap so that the electronic components are housed inside.
  • a protective cap includes a frame portion (second member in the document) surrounding an electronic component, and a lid portion (a cover member in the document) covering one end opening of the frame portion. ) and
  • the manufacturing process of this type of electronic device includes a process of bonding a base material on which electronic components are mounted and a protective cap.
  • the manufacturing process of this type of protective cap includes a process of joining the frame and the lid.
  • a film is formed on one end face of the frame of the protective cap (the end face opposite to the end face where the lid is joined) for the purpose of improving the bondability between the substrate and the protective cap. may occur.
  • This film is generally formed on one end face of the frame before joining the frame and lid in the manufacturing process of the protective cap. That is, in this case, in the manufacturing process of the protective cap, the film-attached frame portion having the film formed on one end face and the lid portion are joined.
  • the film-attached frame may warp due to the internal stress of the film, resulting in a distorted shape of the film-attached frame. If the film-attached frame is warped in this way, the connection failure between the film-attached frame and the lid is likely to occur. As a result, there is a possibility that the cover may be separated from the frame. If such separation between the frame portion and the lid portion occurs in the electronic device, the airtightness of the housing space for the electronic components is lowered, which may lead to deterioration of the electronic components.
  • An object of the present invention is to reliably suppress warping of a film-attached frame having a film formed on one end face.
  • the present invention which was devised to solve the above problems, is a method for manufacturing a film-covered frame comprising a glass frame having a through portion and a film formed on one end face of the frame. and a film forming step of forming a film on one end face of the frame by sputtering a target in the chamber.
  • the internal pressure is 0.1 to 1.0 Pa.
  • the lower limit of the pressure in the chamber during film formation By defining the lower limit of the pressure in the chamber during film formation in this way, the energy of the particles sputtered from the target colliding with one end face of the frame is suppressed. Therefore, the internal stress of the film formed on the one end face of the frame is suppressed, and it is possible to reliably prevent the frame with the film from warping. Furthermore, by specifying the upper limit of the pressure in the chamber during film formation in this way, it is possible to reduce the deterioration of the film characteristics due to impurities in the chamber entering the film.
  • the distance between the target and the frame is preferably 50 to 200 mm.
  • oxygen gas is introduced into the chamber during film formation to react with the particles sputtered from the target, and the oxide obtained by the reaction is used as a frame. It is preferable to form a film on the part.
  • the film When the film is oxidized after film formation, oxygen is subsequently introduced into the film. As a result, the density of the film increases, the internal stress increases, and the frame with the film may warp. Therefore, as in the above configuration, it is preferable to form a film by forming an oxide that has been oxidized in advance on the frame. In this way, the film is less likely to be oxidized with the introduction of oxygen after the film is formed, and it is possible to more reliably prevent the film-attached frame from warping.
  • the film is formed using atoms having an atomic radius of 0.230 nm or less in the film forming process.
  • the atomic radius in the present invention refers to the radius of a single atom.
  • the present invention which was devised to solve the above problems, is a method for manufacturing a film-covered frame comprising a glass frame having a through portion and a film formed on one end surface of the frame. and a film forming step of forming a film on one end surface of the frame by sputtering a target in a chamber, wherein the target and the frame are formed in the film forming step.
  • the distance between is 50 to 200 mm.
  • the present invention which was devised to solve the above problems, is a method for manufacturing a film-attached frame comprising a glass frame having a through portion and a film formed on one end face of the frame. and a film forming step of forming a film on one end face of the frame by sputtering a target in the chamber. oxygen gas is introduced into the target to react with particles sputtered from the target, and an oxide obtained by the reaction is deposited on the frame.
  • the present invention which was devised to solve the above problems, is a method for manufacturing a film-attached frame comprising a glass frame having a through portion and a film formed on one end surface of the frame. and a film formation step of forming a film on one end surface of the frame by sputtering a target in a chamber, wherein the film is formed on the atomic radius A film is formed using atoms with a diameter of 0.230 nm or less.
  • the present invention invented to solve the above problems, is a method for manufacturing a protective cap comprising a glass frame having a through-hole and a glass lid closing the through-hole.
  • the preparation step of preparing the frame portion with the film manufactured by the method described in (1) to (7) above, and the one end face of the frame portion with the film formed with the film is located on the side opposite to the one end surface. and a bonding step of bonding a lid portion to the other end face so as to close the through portion.
  • the present invention it is possible to reliably suppress warping of the film-coated frame having a film formed on one end face by sputtering.
  • FIG. 3 is a cross-sectional view showing a film forming process included in the preparation process of the film-attached frame portion of FIG. 2 ;
  • FIG. 1 illustrates an electronic device 1 according to one embodiment of the invention.
  • the electronic device 1 includes an electronic component 2, a base material 3 on which the electronic component 2 is mounted, and a protective cap 4 joined to the base material 3 so as to accommodate the electronic component 2 inside. I have.
  • the side of the substrate 3 is taken as the bottom and the side of the protective cap 4 is taken as the top, but the vertical direction is not limited to this.
  • the base material 3 and the protective cap 4 (frame portion 5) can be joined by any method such as laser joining, solder welding, glass frit joining, or the like.
  • the electronic component 2 is not particularly limited, but examples include optical devices such as laser modules, LEDs, optical sensors, imaging elements, and optical switches.
  • the electronic component 2 is an ultraviolet LED (light emitting element)
  • the electronic device 1 is a light emitting device.
  • the base material 3 is made of, for example, metal, metal oxide ceramics, LTCC or metal nitride ceramics.
  • metals include copper and metallic silicon.
  • metal oxide ceramics include aluminum oxide.
  • LTCC include sintered composite powder containing crystallizable glass and refractory filler.
  • metal nitride ceramics include aluminum nitride.
  • the base material 3 is made of aluminum nitride.
  • the base material 3 is a plate-like body in which both the upper surface 3a and the lower surface 3b are flat.
  • the substrate 3 may be provided with a concave portion in a portion of the upper surface 3a where the electronic component 2 is mounted.
  • the protective cap 4 includes a glass frame portion 5 having a through portion (through hole) H, and a glass lid portion 6 joined to an upper end surface 5a of the frame portion 5 so as to close the through portion H. .
  • the frame part 5 and the lid part 6 can be joined by any method such as laser joining or glass frit joining.
  • the film 7 is formed on the lower end face 5b of the frame portion 5.
  • films 8 and 9 are formed on the upper surface 6a and the lower surface 6b of the lid portion 6, respectively.
  • various functional films can be used as the films 7, 8, and 9, they are antireflection films (AR films) in this embodiment.
  • the antireflection film is composed of, for example, a dielectric multilayer film in which a low refractive index layer with a relatively low refractive index and a high refractive index layer with a relatively high refractive index are alternately laminated.
  • the films 7, 8, 9 can be formed by sputtering, for example.
  • the thicknesses of the films 7, 8, 9 are 10 to 500 nm, 20 to 500 nm, and 20 to 500 nm in order to avoid damage due to the mismatch of thermal expansion coefficients between the films and the base material 3 or the lid portion 6 while maintaining the strength of the films. It is preferably 400 nm, especially 120-230 nm.
  • the frame portion 5 is a cylindrical body having a through portion H extending in the thickness direction (vertical direction) at the center.
  • the frame portion 5 surrounds the electronic component 2 accommodated in the space corresponding to the through portion H. As shown in FIG.
  • the frame portion 5 is configured as a square tube, but it may be in another tubular shape such as a cylinder.
  • the inner wall surface 5c of the frame portion 5 is a non-inclined surface (vertical surface), but is not limited to this.
  • the inner wall surface 5c of the frame 5 shifts from the inside to the outside as it goes from the lower end surface 5b side to the upper end surface 5a side of the frame portion 5. It may be composed of an inclined surface that
  • the through portion H can be formed by subjecting the base material of the frame portion 5 to etching, laser processing, sandblasting, or the like.
  • the thickness (vertical dimension) of the frame portion 5 is preferably larger than the electronic component 2, preferably 0.01 to 1 mm larger than the electronic component 2, more preferably 0.05 to 0.5 mm larger, Most preferably 0.1-0.2 mm larger.
  • the lid portion 6 is a plate-like body in which both the upper surface 6a and the lower surface 6b are flat. Note that the lid portion 6 may have a curved shape in which the upper surface 6a side is convex.
  • the thickness (vertical dimension) of the lid portion 6 is preferably 0.1 to 1.0 mm, 0.2 to 0.8 mm, particularly 0.3 to 0.6 mm.
  • the glass constituting the frame portion 5 and the lid portion 6 is not particularly limited . O+Na 2 O+K 2 O 0-25%, MgO+CaO+SrO+BaO 0-25%.
  • the method for manufacturing the electronic device 1 includes a film-covered frame preparation step S1 for preparing the film-covered frame 5 having the film 7 formed on the lower end surface 5b, and a film-covered frame portion preparation step S1 for preparing the film-covered frame portion 5 having the film 7 formed on the lower end surface 5b.
  • the film-attached frame portion preparation step that is, the method for manufacturing the film-attached frame portion 5) S1 included in these steps will be described in detail.
  • the film-coated frame portion preparation step S1 includes a preparation step of preparing the frame portion 5 on which no film is formed, and, as shown in FIG. It includes a film forming step S11 of forming a film by a method.
  • the target 11 is sputtered in the chamber 10 to form the film 7 on the lower end surface 5b of the frame portion 5.
  • the pressure in the chamber 10 during film formation is 0.1 to 1.0 Pa, 0.2 to 0.9 Pa, 0.3 to 0.8 Pa, particularly 0.3 to 0.7 Pa.
  • the pressure in the chamber 10 during film formation is 0.1 to 1.0 Pa, 0.2 to 0.9 Pa, 0.3 to 0.8 Pa, particularly 0.3 to 0.7 Pa.
  • the pressure in the chamber 10 during film formation is 0.1 to 1.0 Pa, 0.2 to 0.9 Pa, 0.3 to 0.8 Pa, particularly 0.3 to 0.7 Pa.
  • the energy with which the particles 12 sputtered from the target 11 collide with the lower end surface 5b of the frame 5 is suppressed. Therefore, the internal stress of the film 7 formed on the lower end surface 5b of the frame portion 5 is suppressed, and the warp of the frame portion 5 with the film can be suppressed.
  • the upper limit of the pressure inside the chamber 10 during film formation it is possible to reduce the contamination of the film by impurities inside the chamber 10 .
  • the distance D between the target 11 and the frame portion 5 is preferably 50-200 mm, 60-180 mm, 70-150 mm, particularly 80-120 mm.
  • the energy with which the particles 12 sputtered from the target 11 collide with the lower end surface 5b of the frame portion 5 is suppressed. Therefore, the internal stress of the film 7 formed on the lower end surface 5b of the frame portion 5 is suppressed, and the warp of the frame portion 5 with the film can be suppressed.
  • the sputtering method if the distance between the target and the object to be film-formed increases, it may become difficult to control the thickness of the film.
  • the film thickness of the film 7 formed on the lower end surface 5b of the frame portion 5 can be easily controlled. Furthermore, by defining the upper limit of the distance D between the target 11 and the frame portion 5 as described above, it is possible to avoid the chamber 10 from becoming larger than necessary.
  • oxygen gas is introduced into the chamber 10 during film formation to react with the particles 12 sputtered from the target 11, and the oxide obtained by the reaction is formed on the lower end surface 5b of the frame portion 5. is preferred. In other words, it is preferable to use the reactive sputtering method in the film forming step S11.
  • the film forming step S11 it is preferable to use atoms having an atomic radius of 0.230 nm or less to form the film 7 .
  • the atomic radius of atoms forming the film 7 is more preferably 0.220 nm or less, still more preferably 0.200 nm or less, and particularly preferably 0.180 nm or less.
  • the internal stress of the film 7 tends to increase as the atomic radius of the atoms forming the film 7 increases. That is, the larger the atomic radius of the atoms forming the film 7, the higher the possibility that the frame with the film will warp. Therefore, it is preferable to define the upper limit of the atomic radius of the atoms forming the film 7 as described above.
  • the atomic radius of atoms forming film 7 can be measured, for example, by an X-ray diffractometer.
  • the film 7 is formed only on the lower end surface 5b of the frame portion 5
  • the film may be formed only on the frame portion 5, or may be formed on both the upper end surface 5a and the lower end surface 5b of the frame portion 5.
  • the film 9 on the lower surface 6b of the lid portion 6 may be formed only on the area excluding the joint portion between the lid portion 6 and the frame portion 5.
  • at least one of the films 8 and 9 on the upper surface 6a and the lower surface 6b of the lid 6 may be omitted.
  • a functional film such as an antireflection film may be formed on the inner wall surface 5c of the frame portion 5.
  • the present invention will be described in detail below based on examples, but the present invention is not limited to these examples.
  • the frame portion before film formation was a 35 mm square rectangular cylinder, and the thickness thereof was 0.2 mm.
  • the warp of the film-attached frame was measured using a laser displacement gauge warp measuring device manufactured by Apollo.
  • the warpage of the frame is large, the bonding failure between the film-attached frame and the lid is likely to occur.
  • Sample no. 1 and 2 are Examples, and Sample No. 3 is a comparative example. Sample no. In any of 1 to 3, the distance between the target and the frame was 80 mm, and the deposition materials (targets) were silicon and hafnium.
  • Sample no. 4 to 5 are examples, and sample No. 6 is a comparative example. Sample no. In any of 4 to 6, the pressure in the chamber during film formation was 0.30 Pa, and the film formation materials (targets) were silicon and hafnium.
  • Sample no. 7 is an example, and sample no. 8 is a comparative example.
  • Sample no. In 7 (Example), a reactive sputtering method was used in which oxygen gas was introduced into the chamber during film formation to react with particles sputtered from the target, and an oxide obtained by the reaction was formed into a film on the frame.
  • Sample no. In 8 (comparative example), a non-reactive sputtering method was used in which particles sputtered from a target were deposited on the frame.
  • Sample no. 7 to 8 the pressure in the chamber during film formation was 0.30 Pa, the distance between the target and the frame was 80 mm, and the film formation materials (targets) were silicon and hafnium.
  • Sample no. 9 is an example, and sample no. 10 is a comparative example.
  • Sample no. In 9 Example, aluminum was used as a film forming material (target).
  • Sample no. In No. 10 comparative example, cesium was used as the film-forming material (target).
  • Sample no. In any of 9 to 10 the pressure in the chamber during film formation was set to 0.30 Pa, and the distance between the target and the frame was set to 80 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

貫通部Hを有するガラス製の枠部5と、枠部5の一端面5bに形成された膜7とを有する膜付き枠部の製造方法であって、枠部5を準備する準備工程と、チャンバー10内でターゲット11をスパッタすることにより、枠部5の一端面5bに膜7を成膜する成膜工程S11とを含む。成膜工程S11では、成膜時のチャンバー10内の圧力が、0.1~1.0Paである。

Description

膜付き枠部の製造方法及び保護キャップの製造方法
 本発明は、膜付き枠部の製造方法及び保護キャップの製造方法に関する。
 LEDなどの電子部品を備えた電子装置は、長寿命や省エネルギーなどの理由から、照明や通信などの種々の分野で利用されるに至っている。
 この種の電子装置では、電子部品を保護するために、電子部品が搭載された基材に、電子部品が内部に収容されるように保護キャップを被せる場合がある。
 例えば特許文献1に開示されているように、保護キャップは、電子部品の周囲を取り囲む枠部(同文献では第2の部材)と、枠部の一端開口を覆う蓋部(同文献ではカバー部材)とを備えている。
国際公開第2015/190242号
 この種の電子装置の製造工程には、電子部品が搭載された基材と、保護キャップとを接合する工程が含まれる。また、この種の保護キャップの製造工程には、枠部と、蓋部とを接合する工程が含まれる。
 電子装置の製造工程では、基材と保護キャップとの接合性を高める等の目的から、保護キャップの枠部の一端面(蓋部が接合された端面と反対側の端面)に膜が形成される場合がある。
 この膜は、保護キャップの製造工程において、枠部と蓋部とを接合する前に、枠部の一端面に形成されるのが一般的である。つまり、この場合には、保護キャップの製造工程では、一端面に膜が形成された膜付き枠部と、蓋部とが接合される。しかしながら、膜付き枠部には、膜の内部応力によって反りが生じ、膜付き枠部が歪な形状になる場合がある。このように膜付き枠部に反りが生じていると、膜付き枠部と蓋部との接合不良が生じやすくなる。その結果、蓋部が枠部から剥離する事態が生じるおそれがある。そして、このような枠部と蓋部との剥離が電子装置の状態で生じると、電子部品の収容空間の気密性が低下し、電子部品が劣化するという問題が生じ得る。
 本発明は、一端面に膜が形成された膜付き枠部の反りを確実に抑制することを課題とする。
(1) 上記の課題を解決するために創案された本発明は、貫通部を有するガラス製の枠部と、枠部の一端面に形成された膜とを備える膜付き枠部の製造方法であって、枠部を準備する準備工程と、チャンバー内でターゲットをスパッタすることにより、枠部の一端面に膜を成膜する成膜工程とを含み、成膜工程では、成膜時のチャンバー内の圧力が、0.1~1.0Paであることを特徴とする。
 このように成膜時のチャンバー内の圧力の下限を規定することで、ターゲットからスパッタした粒子が枠部の一端面に衝突するエネルギーが抑制される。そのため、枠部の一端面に形成された膜の内部応力が抑制され、膜付き枠部が反る事態を確実に抑制できる。さらに、このように成膜時のチャンバー内の圧力の上限を規定することで、チャンバー内の不純物が成膜に混入し、膜の特性が悪化することを低減できる。
(2) 上記(1)の構成において、成膜工程では、ターゲットと枠部との間の距離が、50~200mmであることが好ましい。
 このようにターゲットと枠部との間の距離を長くすることで、ターゲットからスパッタした粒子が枠部の一端面に衝突するエネルギーが抑制される。そのため、枠部の一端面に形成された膜の内部応力が抑制され、膜付き枠部が反る事態をより確実に抑制できる。
(3) 上記(1)又は(2)の構成において、成膜工程では、成膜時にチャンバー内に酸素ガスを導入してターゲットからスパッタした粒子と反応させ、その反応により得られる酸化物を枠部に成膜することが好ましい。
 成膜後に膜が酸化すると、膜に酸素が事後的に導入されることになる。そのため、膜の密度が上昇して内部応力が高くなり、膜付き枠部が反るおそれがある。そこで、上記の構成のように、予め酸化された酸化物を枠部に成膜して膜を形成することが好ましい。このようにすれば、成膜後に膜が酸素の導入を伴いながら酸化する事態が生じにくく、膜付き枠部が反る事態をより確実に抑制できる。
(4) 上記(1)~(3)の構成において、成膜工程では、膜を原子半径が0.230nm以下の原子を用いて成膜することが好ましい。
 膜を形成する原子の原子半径が大きいほど、膜の内部応力が高くなる傾向がある。つまり、膜を形成する原子の原子半径が大きいほど、膜付き枠部に反りが生じる可能性が高くなる。そこで、上記の構成のように、膜を形成する原子の原子半径を規定することが好ましい。なお、本発明における原子半径とは、単原子における半径を指す。
(5) 上記の課題を解決するために創案された本発明は、貫通部を有するガラス製の枠部と、枠部の一端面に形成された膜とを備える膜付き枠部の製造方法であって、枠部を準備する準備工程と、チャンバー内でターゲットをスパッタすることにより、枠部の一端面に膜を成膜する成膜工程とを含み、成膜工程では、ターゲットと枠部との間の距離が、50~200mmであることを特徴とする。
 このようにすれば、既に述べた対応する構成と同様の作用効果を享受できる。
(6) 上記の課題を解決するために創案された本発明は、貫通部を有するガラス製の枠部と、枠部の一端面に形成された膜とを備える膜付き枠部の製造方法であって、枠部を準備する準備工程と、チャンバー内でターゲットをスパッタすることにより、枠部の一端面に膜を成膜する成膜工程とを含み、成膜工程では、成膜時にチャンバー内に酸素ガスを導入してターゲットからスパッタした粒子と反応させ、その反応により得られる酸化物を枠部に成膜することを特徴とする。
 このようにすれば、既に述べた対応する構成と同様の作用効果を享受できる。
(7) 上記の課題を解決するために創案された本発明は、貫通部を有するガラス製の枠部と、枠部の一端面に形成された膜とを備える膜付き枠部の製造方法であって、枠部を準備する準備工程と、チャンバー内でターゲットをスパッタすることにより、枠部の一端面に膜を成膜する成膜工程とを含み、成膜工程では、前記膜を原子半径が0.230nm以下の原子を用いて成膜することを特徴とする。
 このようにすれば、既に述べた対応する構成と同様の作用効果を享受できる。
(8) 上記の課題を解決するために創案された本発明は、貫通部を有するガラス製の枠部と、貫通部を閉塞するガラス製の蓋部とを備える保護キャップの製造方法であって、枠部として、上記(1)~(7)に記載の方法で製造された膜付き枠部を準備する準備工程と、膜付き枠部の膜が形成された一端面の反対側に位置する他端面に、貫通部を閉塞するように蓋部を接合する接合工程とを備えることを特徴とする。
 このようにすれば、膜付き枠部の反りが抑制されるため、膜付き枠部と蓋部とを確実に接合できる。つまり、高い気密性を維持できる保護キャップを提供できる。
 本発明によれば、スパッタにより、一端面に膜が形成された膜付き枠部の反りを確実に抑制できる。
本実施形態に係る電子装置を示す断面図である。 本実施形態に係る電子装置の製造方法を示すフロー図である。 図2の膜付き枠部の準備工程に含まれる成膜工程を示す断面図である。
 図1は、本発明の一実施形態に係る電子装置1を例示している。
 本実施形態に係る電子装置1は、電子部品2と、電子部品2が搭載された基材3と、電子部品2を内部に収容するように、基材3に接合された保護キャップ4とを備えている。なお、以下の説明では、便宜上、基材3側を下、保護キャップ4側を上として説明するが、上下方向はこれに限定されない。
 基材3と保護キャップ4(枠部5)とは、レーザ接合、はんだ溶接、ガラスフリット接合などの任意の方法で接合できる。
 電子部品2は、特に限定されるものではないが、例えば、レーザモジュール、LED、光センサ、撮像素子、光スイッチ等の光学デバイスが挙げられる。本実施形態では、電子部品2は紫外線LED(発光素子)であり、電子装置1は発光装置である。
 基材3は、例えば、金属、金属酸化物セラミックス、LTCC又は金属窒化物セラミックスから構成される。金属としては、例えば銅、金属シリコンなどが挙げられる。金属酸化物セラミックスとしては、例えば酸化アルミニウムなどが挙げられる。LTCCとしては、例えば結晶性ガラスと耐火性フィラーを含む複合粉末を焼結させたものなどが挙げられる。金属窒化物セラミックスとしては、例えば窒化アルミニウムなどが挙げられる。本実施形態では、基材3は、窒化アルミニウムから構成されている。
 本実施形態では、基材3は、上面3a及び下面3bがともに平面から構成される板状体である。なお、基材3は、上面3aのうち、電子部品2が搭載される部分に凹部が設けられていてもよい。
 保護キャップ4は、貫通部(貫通孔)Hを有するガラス製の枠部5と、貫通部Hを閉塞するように枠部5の上端面5aに接合されたガラス製の蓋部6とを備える。
 枠部5と蓋部6とは、レーザ接合、ガラスフリット接合などの任意の方法で接合できる。
 本実施形態では、枠部5の下端面5bには、膜7が形成されている。同様に、蓋部6の上面6a及び下面6bにも、膜8、9が形成されている。膜7、8、9としては、各種機能膜を用いることができるが、本実施形態では反射防止膜(AR膜)である。反射防止膜は、例えば、相対的に屈折率が低い低屈折率層と相対的に屈折率が高い高屈折率層とが交互に積層された誘電体多層膜から構成される。膜7、8、9は、例えば、スパッタリング法により形成できる。膜7、8、9の厚みは、膜の強度を維持しつつ、膜と基材3または蓋部6との熱膨張係数の不整合の影響による破損を回避するため、10~500nm、20~400nm、特に120~230nmであることが好ましい。
 枠部5は、中心に厚み方向(上下方向)に延びる貫通部Hを有する筒状体である。枠部5は、貫通部Hに対応する空間に収容された電子部品2の周囲を取り囲む。
 本実施形態では、枠部5は、四角筒で構成されているが、円筒などの他の筒状形状であってもよい。
 本実施形態では、枠部5の内壁面5cは、非傾斜面(垂直面)であるが、これに限定されない。枠部5の内壁面5cは、蓋部6を通じた光(紫外線)の取り出し効率を向上させるために、枠部5の下端面5b側から上端面5a側に向かうに連れて内側から外側に移行する傾斜面で構成されていてもよい。
 貫通部Hは、枠部5の元材に、エッチング加工、レーザ加工、サンドブラスト加工などを施すことにより形成することができる。
 枠部5の厚み(上下方向寸法)は、電子部品2よりも大きいことが好ましく、電子部品2よりも0.01~1mm大きいことが好ましく、0.05~0.5mm大きいことがより好ましく、0.1~0.2mm大きいことが最も好ましい。
 本実施形態では、蓋部6は、上面6a及び下面6bがともに平面から構成される板状体である。なお、蓋部6は、上面6a側が凸となる曲面状であってもよい。
 蓋部6の厚み(上下方向寸法)は、0.1~1.0mm、0.2~0.8mm、特に0.3~0.6mmであることが好ましい。
 枠部5及び蓋部6を構成するガラスは、特に限定されるものではないが、例えば、質量%で、SiO2 50~80%、Al23+B23 1~45%、Li2O+Na2O+K2O 0~25%、MgO+CaO+SrO+BaO 0~25%を含有する。
 次に、以上のように構成された電子装置1の製造方法を説明する。
 図2に示すように、電子装置1の製造方法は、下端面5bに膜7が形成された膜付き枠部5を準備する膜付き枠部準備工程S1と、上面6a及び下面6bにそれぞれ膜8、9が形成された膜付き蓋部6を準備する膜付き蓋部準備工程S2と、膜付き枠部5と膜付き蓋部6とを接合して保護キャップ4を得る第一接合工程S3と、電子部品2が搭載された基材3を準備する電子部品付き基材準備工程S4と、電子部品付き基材3と保護キャップ4とを接合して電子装置1を得る第二接合工程S5とを含む。以下、これら工程の中に含まれる膜付き枠部準備工程(つまり、膜付き枠部5の製造方法)S1について詳細に説明する。
 膜付き枠部準備工程S1は、膜が形成されていない枠部5を準備する準備工程と、図3に示すように、準備工程で準備された枠部5の下端面5bに膜7をスパッタリング法により成膜する成膜工程S11を含む。
 成膜工程S11では、チャンバー10内でターゲット11をスパッタすることにより、枠部5の下端面5bに膜7を成膜する。
 成膜工程S11では、成膜時のチャンバー10内の圧力は、0.1~1.0Pa、0.2~0.9Pa、0.3~0.8Pa、特に0.3~0.7Paであることが好ましい。
 成膜時のチャンバー10内の圧力の下限を上記のように規定することで、ターゲット11からスパッタした粒子12が枠部5の下端面5bに衝突するエネルギーが抑制される。そのため、枠部5の下端面5bに形成された膜7の内部応力が抑制され、膜付き枠部5が反る事態を抑制できる。一方、成膜時のチャンバー10内の圧力の上限を上記のように規定することで、チャンバー10内の不純物が成膜に混入することを低減できる。
 成膜工程S11では、ターゲット11と枠部5との間の距離Dは、50~200mm、60~180mm、70~150mm、特に80~120mmであることが好ましい。
 ターゲット11と枠部5との間の距離Dの下限を上記のように規定することで、ターゲット11からスパッタした粒子12が枠部5の下端面5bに衝突するエネルギーが抑制される。そのため、枠部5の下端面5bに形成された膜7の内部応力が抑制され、膜付き枠部5が反る事態を抑制できる。一方、スパッタリング法において、ターゲットと成膜対象物の距離が大きくなると、膜の厚みの制御が困難になるおそれがある。そのため、ターゲット11と枠部5との間の距離Dの上限を上記のように規定することで、枠部5の下端面5bに形成される膜7の膜厚の制御が容易になる。さらに、ターゲット11と枠部5との間の距離Dの上限を上記のように規定することで、チャンバー10が、必要以上に大きくなることを回避できる。
 成膜工程S11では、成膜時にチャンバー10内に酸素ガスを導入してターゲット11からスパッタした粒子12と反応させ、その反応により得られる酸化物を枠部5の下端面5bに成膜することが好ましい。つまり、成膜工程S11では、反応性スパッタリング法を用いることが好ましい。
 成膜後に膜7が酸化すると、膜7に酸素が事後的に導入されることになる。つまり、これにより膜7の密度が上昇して内部応力が高くなり、膜付き枠部5が反るおそれがある。そのため、反応性スパッタリング法を用いて、予め酸化された酸化物を枠部5の下端面5bに成膜することが好ましい。このようにすれば、成膜後に膜7が酸素の導入を伴いながら酸化する事態が生じにくく、膜付き枠部5が反る事態を抑制できる。
 成膜工程S11では、膜7を形成する原子の原子半径が、0.230nm以下の原子を用いて成膜することが好ましい。膜7を形成する原子の原子半径は、より好ましくは0.220nm以下、さらに好ましくは0.200nm以下、特に好ましくは0.180nm以下である。
 膜7を形成する原子の原子半径が大きいほど、膜7の内部応力が高くなる傾向がある。つまり、膜7を形成する原子の原子半径が大きいほど、膜付き枠部に反りが生じる可能性が高くなる。そのため、上記のように、膜7を形成する原子の原子半径の上限を規定することが好ましい。膜7を形成する原子の原子半径は、例えば、X線回折装置によって測定できる。膜7を形成する原子の原子半径は、例えば成膜材料を変更することにより調整できる。膜7を形成する原子の原子半径が0.230nm以下になる成膜材料(ターゲット)としては、例えば、ケイ素、ハフニウム、ニオブなどが挙げられる。
 そして、以上のように製造された膜付き枠部5であれば、膜付き枠部5の反りが抑制されるため、第一接合工程S3において、膜付き枠部5と蓋部6とを確実に接合できる。つまり、高い気密性を維持できる保護キャップ4を提供できる。したがって、このような保護キャップ4を用いれば、信頼性の高い電子装置1を製造することが可能となる。
 なお、本発明は、上記の実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 上記の実施形態では、枠部5の下端面5bのみに膜7を形成する場合を説明したが、上記した条件を満たす方法で成膜される膜7であれば、枠部5の上端面5aのみに膜を形成してもよいし、枠部5の上端面5a及び下端面5bの両方に膜を形成してもよい。
 上記の実施形態において、蓋部6の下面6bの膜9は、蓋部6と枠部5との接合部を除いた領域のみに形成するようにしてもよい。あるいは、蓋部6の上面6a及び下面6bの膜8、9は、少なくとも一方を省略してもよい。
 上記の実施形態において、枠部5の内壁面5cに、反射防止膜などの機能膜を形成してもよい。
 以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されない。なお、実施例及び比較例ともに、成膜前の枠部を35mm角の四角筒とし、その厚みを0.2mmとした。また、膜付き枠部の反りは、アポロ社製レーザ変位計式反り測定器を用いて測定した。なお、このような膜付き枠部の場合、枠部の反りが大きいと、膜付き枠部と蓋部との接合不良が生じやすくなる。
(1)チャンバー内の圧力
 成膜時のチャンバー内の圧力を変化させた場合に、成膜後の膜付き枠部の反りがどのように変化するかを測定した。その結果を表1に示す。試料No.1~2が実施例であり、試料No.3が比較例である。試料No.1~3のいずれにおいても、ターゲットと枠部との間の距離は80mmとし、成膜材料(ターゲット)はケイ素とハフニウムとした。
Figure JPOXMLDOC01-appb-T000001
 表1から、成膜時のチャンバー内の圧力が0.05Pa超になると、膜付き枠部の反りが減少していることが確認できる。
(2)ターゲットと枠部との間の距離
 成膜時のターゲットと枠部との間の距離を変化させた場合に、成膜後の膜付き枠部の反りがどのように変化するかを測定した。その結果を表2に示す。試料No.4~5が実施例であり、試料No.6が比較例である。試料No.4~6のいずれにおいても、成膜時のチャンバー内の圧力は0.30Paとし、成膜材料(ターゲット)はケイ素とハフニウムとした。
Figure JPOXMLDOC01-appb-T000002
 表2から、成膜時のターゲットと枠部との間の距離が40mm超になると、膜付き枠部の反りが減少していることが確認できる。
(3)成膜方法
 成膜方法を変化させた場合に、成膜後の膜付き枠部の反りがどのように変化するかを測定した。その結果を表3に示す。試料No.7が実施例であり、試料No.8が比較例である。試料No.7(実施例)では、成膜時にチャンバー内に酸素ガスを導入してターゲットからスパッタした粒子と反応させ、その反応により得られる酸化物を枠部に成膜する反応性スパッタリング法を用いた。試料No.8(比較例)では、ターゲットからスパッタした粒子を枠部に成膜する非反応性スパッタリング法を用いた。試料No.7~8のいずれにおいても、成膜時のチャンバー内の圧力は0.30Paとし、ターゲットと枠部との間の距離は80mmとし、成膜材料(ターゲット)はケイ素とハフニウムとした。
Figure JPOXMLDOC01-appb-T000003
 表3から、反応性スパッタリング法を用いた方が、膜付き枠部の反りが減少していることが確認できる。
(4)成膜材料
 成膜材料の変更によって、膜付き枠部に形成される膜を形成する原子の原子半径が異なるもので成膜した場合に、成膜後の膜付き枠部の反りがどのように変化するかを測定した。その結果を表4に示す。試料No.9が実施例であり、試料No.10が比較例である。試料No.9(実施例)では、成膜材料(ターゲット)としてアルミニウムを用いた。試料No.10(比較例)では、成膜材料(ターゲット)としてセシウムを用いた。試料No.9~10のいずれにおいても、成膜時のチャンバー内の圧力は0.30Paとし、ターゲットと枠部との間の距離は80mmとした。
Figure JPOXMLDOC01-appb-T000004
 表4から、膜を形成する原子の原子半径が0.265nm未満になると、膜付き枠部の反りが減少していることが確認できる。
1   電子装置
2   電子部品
3   基材
4   保護キャップ
5   枠部
6   蓋部
7   膜
8   膜
9   膜
10  チャンバー
11  ターゲット
12  スパッタ粒子
D   距離
H   貫通部
S1  膜付き枠部準備工程
S2  膜付き蓋部準備工程
S3  第一接合工程(膜付き枠部と蓋付き枠部との接合)
S4  電子部品付き基材準備工程
S5  第二接合工程(電子部品付き基材と保護キャップとの接合)
S11 成膜工程

Claims (8)

  1.  貫通部を有するガラス製の枠部と、前記枠部の一端面に形成された膜とを備える膜付き枠部の製造方法であって、
     前記枠部を準備する準備工程と、
     チャンバー内でターゲットをスパッタすることにより、前記枠部の前記一端面に前記膜を成膜する成膜工程とを含み、
     前記成膜工程では、成膜時の前記チャンバー内の圧力が、0.1~1.0Paであることを特徴とする膜付き枠部の製造方法。
  2.  前記成膜工程では、前記ターゲットと前記枠部との間の距離が、50~200mmである請求項1に記載の膜付き枠部の製造方法。
  3.  前記成膜工程では、成膜時に前記チャンバー内に酸素ガスを導入して前記ターゲットからスパッタした粒子と反応させ、その反応により得られる酸化物を前記枠部に成膜する請求項1又は2に記載の膜付き枠部の製造方法。
  4.  前記成膜工程では、前記膜を原子半径が0.230nm以下の原子を用いて成膜する請求項1~3のいずれか1項に記載の膜付き枠部の製造方法。
  5.  貫通部を有するガラス製の枠部と、前記枠部の一端面に形成された膜とを備える膜付き枠部の製造方法であって、
     前記枠部を準備する準備工程と、
     チャンバー内でターゲットをスパッタすることにより、前記枠部の前記一端面に前記膜を成膜する成膜工程とを含み、
     前記成膜工程では、前記ターゲットと前記枠部との間の距離が、50~200mmであることを特徴とする膜付き枠部の製造方法。
  6.  貫通部を有するガラス製の枠部と、前記枠部の一端面に形成された膜とを備える膜付き枠部の製造方法であって、
     前記枠部を準備する準備工程と、
     チャンバー内でターゲットをスパッタすることにより、前記枠部の前記一端面に前記膜を成膜する成膜工程とを含み、
     前記成膜工程では、成膜時に前記チャンバー内に酸素ガスを導入して前記ターゲットからスパッタした粒子と反応させ、その反応により得られる酸化物を前記枠部に成膜することを特徴とする膜付き枠部の製造方法。
  7.  貫通部を有するガラス製の枠部と、前記枠部の一端面に形成された膜とを備える膜付き枠部の製造方法であって、
     前記枠部を準備する準備工程と、
     チャンバー内でターゲットをスパッタすることにより、前記枠部の前記一端面に前記膜を成膜する成膜工程とを含み、
     前記成膜工程では、前記膜を原子半径が0.230nm以下の原子を用いて成膜することを特徴とする膜付き枠部の製造方法。
  8.  貫通部を有するガラス製の枠部と、前記貫通部を閉塞するガラス製の蓋部とを備える保護キャップの製造方法であって、
     前記枠部として、請求項1~7のいずれか1項に記載の方法で製造された前記膜付き枠部を準備する準備工程と、
     前記膜付き枠部の前記膜が形成された前記一端面の反対側に位置する他端面に、前記貫通部を閉塞するように前記蓋部を接合する接合工程とを備える保護キャップの製造方法。
PCT/JP2022/028398 2021-10-22 2022-07-21 膜付き枠部の製造方法及び保護キャップの製造方法 WO2023067863A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-173285 2021-10-22
JP2021173285A JP2023063035A (ja) 2021-10-22 2021-10-22 膜付き枠部の製造方法及び保護キャップの製造方法

Publications (1)

Publication Number Publication Date
WO2023067863A1 true WO2023067863A1 (ja) 2023-04-27

Family

ID=86059010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028398 WO2023067863A1 (ja) 2021-10-22 2022-07-21 膜付き枠部の製造方法及び保護キャップの製造方法

Country Status (3)

Country Link
JP (1) JP2023063035A (ja)
TW (1) TW202318484A (ja)
WO (1) WO2023067863A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375361A (ja) * 1989-08-16 1991-03-29 Raimuzu:Kk スパッタリング成膜方法
JPH05140740A (ja) * 1991-11-19 1993-06-08 Limes:Kk 薄膜の形成方法
JP2017147406A (ja) * 2016-02-19 2017-08-24 日機装株式会社 発光装置
JP2018006693A (ja) * 2016-07-08 2018-01-11 エヌイーシー ショット コンポーネンツ株式会社 ガラスリッドおよびそれを利用したduv−led装置
JP2018031031A (ja) * 2016-08-22 2018-03-01 株式会社アルバック 成膜方法
JP2021114578A (ja) * 2020-01-21 2021-08-05 日本電気硝子株式会社 保護キャップ、保護キャップ用の枠体、発光装置及び発光装置アレイ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375361A (ja) * 1989-08-16 1991-03-29 Raimuzu:Kk スパッタリング成膜方法
JPH05140740A (ja) * 1991-11-19 1993-06-08 Limes:Kk 薄膜の形成方法
JP2017147406A (ja) * 2016-02-19 2017-08-24 日機装株式会社 発光装置
JP2018006693A (ja) * 2016-07-08 2018-01-11 エヌイーシー ショット コンポーネンツ株式会社 ガラスリッドおよびそれを利用したduv−led装置
JP2018031031A (ja) * 2016-08-22 2018-03-01 株式会社アルバック 成膜方法
JP2021114578A (ja) * 2020-01-21 2021-08-05 日本電気硝子株式会社 保護キャップ、保護キャップ用の枠体、発光装置及び発光装置アレイ

Also Published As

Publication number Publication date
TW202318484A (zh) 2023-05-01
JP2023063035A (ja) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2016204208A1 (ja) モジュールおよびその製造方法
US10351477B2 (en) Method for producing a metal-ceramic substrate
JP5227197B2 (ja) フォーカスリング及びプラズマ処理装置
EP1295335B1 (en) Miniature microdevice package and process for making same
US20020043706A1 (en) Miniature Microdevice Package and Process for Making Thereof
JP2009505041A (ja) 光学式の干渉応用圧力センサ
US9859179B2 (en) Lid body, package, and electronic apparatus
WO2023067863A1 (ja) 膜付き枠部の製造方法及び保護キャップの製造方法
JP4788544B2 (ja) 多層セラミック基板およびその製造方法
WO2019003535A1 (ja) 透明封止部材及びその製造方法
JP7108704B2 (ja) セラミック素地
WO2020012974A1 (ja) パッケージ、パッケージ製造方法、接合材付き蓋体、および接合材付き蓋体の製造方法
US10396002B2 (en) Electronic component storage substrate and housing package
JP2021034612A (ja) 電子部品パッケージおよび電子装置
JP2021533565A (ja) 気密封止パッケージ
JP2008131011A (ja) 発光素子収納用パッケージとその製造方法
JP4710149B2 (ja) 電子部品パッケージおよびその製造方法
JP4446430B2 (ja) 高圧放電灯用発光容器
KR20170098462A (ko) 패키지 및 그의 제조방법
US20210340007A1 (en) Mems hermetic seal apparatus and methods
JP6510338B2 (ja) 光学装置用蓋体および光学装置
JPH06151642A (ja) Icパッケージ
JP7138026B2 (ja) 光学装置用蓋体および光学装置用蓋体の製造方法
JP4280096B2 (ja) フィルタ部材およびこれを用いた固体撮像素子収納用パッケージ
JP7039450B2 (ja) 光学装置用パッケージおよび光学装置ならびに光学装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883175

Country of ref document: EP

Kind code of ref document: A1