WO2023067858A1 - ロータの製造方法、ロータ及び回転電機 - Google Patents

ロータの製造方法、ロータ及び回転電機 Download PDF

Info

Publication number
WO2023067858A1
WO2023067858A1 PCT/JP2022/027169 JP2022027169W WO2023067858A1 WO 2023067858 A1 WO2023067858 A1 WO 2023067858A1 JP 2022027169 W JP2022027169 W JP 2022027169W WO 2023067858 A1 WO2023067858 A1 WO 2023067858A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotor shaft
permanent magnet
resin
magnet
Prior art date
Application number
PCT/JP2022/027169
Other languages
English (en)
French (fr)
Inventor
洋平 亀田
由計 峯田
壮一 中山
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to CN202280068708.3A priority Critical patent/CN118104112A/zh
Priority to JP2023554263A priority patent/JPWO2023067858A1/ja
Publication of WO2023067858A1 publication Critical patent/WO2023067858A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • H02K1/2733Annular magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the present disclosure relates to rotating electric machines, and more particularly to rotors and manufacturing methods thereof.
  • a permanent magnet is fixed to the outer surface of a rotor shaft (rotor shaft) by a fixing means, and then the permanent magnet is fixed to a cylinder together with the rotor shaft. It is press-fitted into a shaped bind ring (magnet reinforcing tube).
  • the magnet reinforcing tube covers the entire outer surface of the permanent magnet and clamps the permanent magnet to the rotor shaft.
  • the present disclosure aims to obtain a method for manufacturing a rotor, a rotor, and a rotating electric machine that can prevent a reduction in strength due to damage to the magnet reinforcing tube.
  • a rotor manufacturing method includes: a rotor shaft; permanent magnets held on the outer periphery of the rotor shaft via resin; and a cylindrical magnet reinforcing tube covering the permanent magnets from the outer periphery side. , wherein the liquid resin is filled between the rotor shaft and the permanent magnets, the permanent magnets are split by the filling pressure of the resin, and the magnet reinforcing tubes are expanded. Diameter.
  • a rotor shaft, permanent magnets held on the outer circumference of the rotor shaft via resin, a magnet reinforcing tube formed in a cylindrical shape and covering the permanent magnets from the outer circumference side is filled with liquid resin between the rotor shaft and the permanent magnets.
  • the filling pressure of this resin splits the permanent magnet and expands the diameter of the magnet reinforcing tube.
  • a compressive stress can be applied to the permanent magnet between the magnet reinforcing pipe and the resin without damaging the magnet reinforcing pipe, and sufficient fixing strength of the permanent magnet can be obtained. Therefore, it is possible to prevent a decrease in strength due to damage to the magnet reinforcing tube.
  • a rotor manufacturing method of a second aspect is characterized in that, in the first aspect, grooves extending in the axial direction are formed in the outer circumference of the rotor shaft, and the liquid-state magnetic flux is passed between the rotor shaft and the permanent magnets through the grooves. Fill with resin.
  • liquid resin is filled between the rotor shaft and the permanent magnets through the grooves formed on the outer periphery of the rotor shaft. can be set smaller. As a result, there is no need for a positioning jig for ensuring coaxiality between the rotor shaft and the permanent magnets.
  • a rotor manufacturing method is characterized in that, in the first aspect, a flange-shaped flange is formed on a part of the outer circumference of the rotor shaft, and the outer peripheral surface of the flange corresponds to the inner peripheral surface of the permanent magnet. By engaging them, a gap is formed between the rotor shaft and the permanent magnet, and the gap is filled with the liquid resin.
  • the outer peripheral surface of the flange formed on a part of the outer periphery of the rotor shaft is engaged with the inner peripheral surface of the permanent magnet, so that the liquid is supplied between the rotor shaft and the permanent magnet. to form a gap for filling with resin.
  • This aspect also eliminates the need for a positioning jig for ensuring coaxiality between the rotor shaft and the permanent magnets.
  • a rotor manufacturing method is characterized in that, in the first aspect, a pair of disk-shaped end rings are arranged on both sides of the permanent magnet in the axial direction, and the rotor shaft passes through the center of the pair of end rings. and by engaging the outer peripheral surfaces of the pair of end rings with the inner peripheral surface of the magnet reinforcing tube, a gap is formed between the rotor shaft and the permanent magnet, and at least one of the pair of end links is provided with a gap. The gap is filled with the liquid resin through the formed resin filling hole.
  • a gap for filling liquid resin is formed between the rotor shaft and the permanent magnets. can do.
  • the gap can be filled with liquid resin through a resin filling hole formed in at least one of the pair of end rings.
  • a rotor manufacturing method is characterized in that, in the first aspect, a pair of disk-shaped end rings are arranged on both sides of the permanent magnet in the axial direction, and the rotor shaft passes through the center of the pair of end rings.
  • a gap is formed between the rotor shaft and the permanent magnet by engaging the outer peripheral surfaces of the pair of end rings with the inner peripheral surface of the magnet reinforcing tube, thereby forming a resin filling flow formed in the rotor shaft. The gap is filled with the liquid resin through the passage.
  • the pair of end rings satisfies coaxiality between the rotor shaft and the permanent magnets, while forming a gap for filling liquid resin between the rotor shaft and the permanent magnets. can do.
  • liquid resin can be filled into the gap through a resin filling channel formed in the rotor shaft.
  • the permanent magnet can be split as set by the cut formed in the inner peripheral surface of the permanent magnet.
  • a rotor according to a seventh aspect includes a rotor shaft, permanent magnets held on the outer circumference of the rotor shaft via resin, and a magnet reinforcing tube formed in a cylindrical shape and covering the permanent magnets from the outer circumference side.
  • a crack is formed in the permanent magnet in a radial direction, and the crack is filled with the resin.
  • the permanent magnets are held on the outer circumference of the rotor shaft via resin, and the permanent magnets are covered from the outer circumference side by the magnet reinforcing tube formed in a cylindrical shape.
  • a crack is formed in the permanent magnet in the radial direction, and the crack is filled with the resin. Since this rotor can be manufactured by the rotor manufacturing method of the first aspect, the same actions and effects as those of the first aspect can be obtained.
  • a groove extending in the axial direction is formed on the outer circumference of the rotor shaft, and the groove is filled with the resin.
  • the grooves formed on the outer circumference of the rotor shaft are filled with the resin. Since this rotor can be manufactured by the rotor manufacturing method of the second aspect, the same actions and effects as those of the second aspect can be obtained.
  • the outer peripheral surface of a flange portion formed on a part of the outer periphery of the rotor shaft is engaged with the inner peripheral surface of the permanent magnet, A gap formed between the rotor shaft and the permanent magnet is filled with the resin.
  • the outer peripheral surface of the flange formed on a part of the outer periphery of the rotor shaft and the inner peripheral surface of the permanent magnet are engaged with each other, and the rotor shaft and the permanent magnet are formed between the rotor shaft and the permanent magnet.
  • the gap is filled with resin. Since this rotor can be manufactured by the rotor manufacturing method of the third aspect, the same actions and effects as those of the third aspect can be obtained.
  • the rotors are arranged on both sides of the permanent magnet in the axial direction, the rotor shaft penetrates through the center of each rotor, and the outer peripheral surface of each rotor is the inner peripheral surface of the magnet reinforcing tube.
  • a gap formed between the rotor shaft and the permanent magnet and a resin filling hole formed in at least one of the pair of end links are filled with the resin. ing.
  • the rotor shaft passes through the centers of the pair of end rings arranged on both sides in the axial direction with respect to the permanent magnet, and the outer peripheral surfaces of the pair of end rings are engaged with the inner peripheral surface of the magnet reinforcing tube. ing.
  • a gap formed between the rotor shaft and the permanent magnet and a resin filling hole formed in at least one of the pair of end links are filled with resin. Since this rotor can be manufactured by the rotor manufacturing method of the fourth aspect, the same actions and effects as those of the fourth aspect can be obtained.
  • the rotor is arranged on both sides of the permanent magnet in the axial direction, the rotor shaft penetrates through the center of each rotor, and the outer peripheral surface of each rotor is the inner peripheral surface of the magnet reinforcing tube.
  • a gap formed between the rotor shaft and the permanent magnet and a resin-filled channel formed in the rotor shaft are filled with the resin.
  • the rotor shaft passes through the centers of the pair of end rings arranged on both sides in the axial direction with respect to the permanent magnet, and the outer peripheral surfaces of the pair of end rings are engaged with the inner peripheral surface of the magnet reinforcing tube. ing. A gap formed between the rotor shaft and the permanent magnet and a resin-filled channel formed in the rotor shaft are filled with resin. Since this rotor can be manufactured by the rotor manufacturing method of the fifth aspect, the same actions and effects as those of the fifth aspect can be obtained.
  • a rotating electric machine includes the rotor according to any one of the seventh to eleventh aspects, and a stator for generating a rotating magnetic field with respect to the rotor.
  • the rotor rotates due to the rotating magnetic field generated by the stator. Since this rotor is of any one of the seventh to eleventh aspects, the effects described above can be obtained.
  • FIG. 1 is a cross-sectional view showing the configuration of main parts of a rotary electric machine according to a first embodiment
  • FIG. It is a sectional view showing composition of a rotor concerning a 1st embodiment.
  • FIG. 3 is a cross-sectional view showing a cut surface along line F3-F3 of FIG. 2;
  • FIG. 4 is a cross-sectional view showing a state of a resin filling step in the rotor manufacturing method according to the first embodiment;
  • FIG. 5 is a cross-sectional view showing a cut surface along line F5-F5 in FIG. 4;
  • FIG. 10 is a cross-sectional view showing a state of a resin filling step in the rotor manufacturing method according to the second embodiment;
  • FIG. 7 is a cross-sectional view showing a cut surface along line F7-F7 of FIG. 6;
  • FIG. 5 is a cross-sectional view showing the configuration of a rotor according to a second embodiment;
  • FIG. 11 is a cross-sectional view showing the state of a resin filling step in the rotor manufacturing method according to the third embodiment;
  • FIG. 11 is a cross-sectional view showing the configuration of a rotor according to a third embodiment;
  • FIG. 11 is a cross-sectional view showing a state of a resin filling step in a rotor manufacturing method according to a fourth embodiment;
  • FIG. 12 is a cross-sectional view showing a cut surface along line F12-F12 in FIG. 11;
  • FIG. 11 is a cross-sectional view showing the configuration of a rotor according to a fourth embodiment;
  • FIG. 11 is a cross-sectional view showing a state of a resin filling step in the rotor manufacturing method according to the fifth embodiment;
  • FIG. 15 is a cross-sectional view showing a cut surface along line F15-F15 in FIG. 14;
  • FIG. 11 is a cross-sectional view showing the configuration of a rotor according to a fifth embodiment;
  • FIG. 11 is a cross-sectional view showing the configuration of permanent magnets provided in a rotor according to a sixth embodiment;
  • a rotating electric machine 10 is a surface permanent magnetic (SPM) motor in which permanent magnets 20 are held on the outer circumference of a rotor 12 .
  • This rotating electrical machine 10 includes a rotor 12 , a stator 14 that generates a rotating magnetic field for the rotor 12 , and a case 16 that houses the rotor 12 and stator 14 .
  • FIG. 1 schematically illustrates the stator 14 .
  • the rotor 12 is manufactured by the rotor manufacturing method according to the present embodiment. and a magnet reinforcing tube 22 covering the permanent magnet 20 from the outer peripheral side.
  • the rotor 12 rotates around the axis of the rotor shaft 18 due to the rotating magnetic field generated by the stator 14 .
  • the rotor shaft 18 has a cylindrical shape with a constant diameter over the entire axial direction. An axially intermediate portion of the rotor shaft 18 is embedded in the resin 24 .
  • the resin 24 is, for example, a thermoplastic resin such as PPS (Poly Phenylene Sulfide) or LCP (Liquid Crystal Polymer), or a thermosetting resin such as epoxy resin.
  • the permanent magnet 20 is fixed to the rotor shaft 18 by this resin 24 .
  • the permanent magnet 20 is formed by splitting a cylindrical shape into a plurality of pieces in the circumferential direction, and is arranged coaxially with the rotor shaft 18 . That is, a crack 21 is formed in the permanent magnet 20 in the radial direction, and the crack 21 is filled with the resin 24 . In FIG. 3, four cracks 21 are formed in the permanent magnet 20 as an example. It should be noted that the permanent magnet 20 may be formed by being divided into a plurality of pieces in the circumferential direction. In this case, at least one of the plurality of divided bodies of the permanent magnet 20 is cracked.
  • a magnet reinforcing tube 22 is attached to the outer circumference of the permanent magnet 20 .
  • the magnet reinforcing pipe 22 is made of, for example, Fiber Reinforced Plastics manufactured by hardening a fiber sheet with resin. ; FRP), and is formed in a cylindrical shape longer than the permanent magnet 20 in the axial direction.
  • the inner peripheral surface of the magnet reinforcing tube 22 is in close contact with the outer peripheral surface of the permanent magnet 20 and covers the entire outer peripheral surface of the permanent magnet 20 .
  • the magnet reinforcing tube 22 applies a radially inward compressive stress to the permanent magnet 20 .
  • the material of the magnet reinforcing tube 22 may be metal such as titanium.
  • the magnet reinforcing pipe 22 is fixed to the rotor shaft 18 via resin 24 .
  • the resin 24 is composed of a cylindrical portion 24A interposed between the rotor shaft 18 and the permanent magnet 20, and a pair of flange portions 24B projecting from both ends of the cylindrical portion 24A in the axial direction. .
  • the axial dimension of the resin 24 is set slightly shorter than the axial dimension of the magnet reinforcing tube 22 .
  • the pair of flange portions 24B are arranged on both sides of the permanent magnet 20 in the axial direction, and are in close contact with the permanent magnet 20 in the axial direction.
  • the outer peripheral surfaces of the pair of flange portions 24B are in close contact with the inner peripheral surfaces of both ends of the magnet reinforcing tube 22 in the axial direction.
  • the rotor shaft 18 and the magnet reinforcing tube 22 are sandwiched between a pair of molds 28 and 30 for injection molding, as shown in FIG.
  • the pair of molds 28 and 30 are provided with shaft insertion holes 32 into which both ends of the rotor shaft 18 in the axial direction are inserted, and fitting protrusions 34 that are fitted inside both ends of the magnet reinforcing tube 22 in the axial direction. have.
  • the rotor shaft 18 and the magnet reinforcing tube 22 are arranged coaxially.
  • a cylindrical permanent magnet 20 is coaxially inserted in advance inside a magnet reinforcing tube 22 sandwiched between a pair of molds 28 and 30 . 20 is supported by a pair of molds 28,30.
  • the outer diameter dimension of the permanent magnet 20 inserted inside the magnet reinforcing pipe 22 is set to be equal to the inner diameter dimension of the magnet reinforcing pipe 22 or slightly smaller than the inner diameter dimension of the magnet reinforcing pipe 22 . This prevents the magnet reinforcing tube 22 from being damaged when the permanent magnet 20 is inserted inside the magnet reinforcing tube 22 .
  • a cylindrical gap 26A is formed between the rotor shaft 18 supported by the pair of molds 28 and 30 and the permanent magnet 20.
  • a pair of flange-like gaps 26B communicating with the gap 26A are formed between the pair of molds 28 and 30 and the permanent magnet 20.
  • the cylindrical gap 26A corresponds to the cylindrical portion 24A of the resin 24, and the flange-like gap 26B corresponds to the flange portion 24B of the resin 24.
  • a resin filling gate 36 communicating with one gap 26B is formed in one mold 28, and liquid resin 24 is filled in the gaps 26A and 26B through the resin filling gate 36.
  • the permanent magnet 20 cracks due to the pressure of the high-pressure resin 24 that fills the gaps 26A and 26B.
  • the filling pressure of the high-pressure resin 24 acts on the inner peripheral surface of the magnet reinforcing tube 24, and the diameter of the magnet reinforcing tube 22 is expanded.
  • the rotor 12 is ejected from between the pair of molds 28 and 30 . This completes the rotor 12 shown in FIGS.
  • cracks 21 are formed in the permanent magnets 20 and the cracks 21 are filled with resin 24 as shown in FIG.
  • the rotor 12 rotates due to the rotating magnetic field generated by the stator 14 .
  • the rotor 12 includes a rotor shaft 18, permanent magnets 20 held on the outer circumference of the rotor shaft 18, and a magnet reinforcing tube 22 formed in a cylindrical shape and covering the permanent magnets 20 from the outer circumference side.
  • liquid resin 24 is filled between the rotor shaft 18 and the permanent magnets 20 .
  • the filling pressure of the resin 24 cracks the permanent magnet 20 and enlarges the diameter of the magnet reinforcing tube 22 .
  • the permanent magnet when the permanent magnet is press-fitted into the magnet reinforcing pipe, the magnet reinforcing pipe is scraped, and there is a concern that the desired interference cannot be obtained.
  • the permanent magnet since the permanent magnet is press-fitted into the magnet reinforcing tube, the outer diameter and inner diameter of the permanent magnet and the magnet reinforcing tube must be processed with high accuracy, which complicates the manufacturing process.
  • the permanent magnet 20 since the permanent magnet 20 is not press-fitted into the magnet reinforcing tube 22, it is possible to prevent the magnet reinforcing tube 22 from being scraped, and the outer diameter and inner diameter of the permanent magnet 20 and the magnet reinforcing tube 22 can be adjusted. It eliminates the need for high-precision processing and facilitates manufacturing. In addition, eddy currents are reduced by breaking the permanent magnets 20 . Thereby, the performance of the rotary electric machine 10 can be improved.
  • FIG. 6 shows a cross-sectional view of the state of the resin filling step in the rotor manufacturing method according to the second embodiment of the present disclosure, and FIG. The plane is shown in cross section.
  • FIG. 8 shows a cross-sectional view of the rotor 40 manufactured by the rotor manufacturing method according to the second embodiment of the present disclosure.
  • the outer diameter of the rotor shaft 18 is set equal to or slightly smaller than the inner diameter of the permanent magnets 20 .
  • a groove 42 extending in the axial direction is formed in the outer circumference of the rotor shaft 18 .
  • Liquid resin 24 is filled between the rotor shaft 18 and the permanent magnets 20 through the grooves 42 .
  • the filling pressure of the resin 42 cracks the permanent magnet 20 and enlarges the diameter of the magnet reinforcing tube 22 .
  • the configuration other than the above is the same as that of the first embodiment, and basically the same actions and effects as those of the first embodiment can be obtained.
  • the space between the rotor shaft 18 and the permanent magnets 20 is filled with the liquid resin 24 through the grooves 42 formed on the outer periphery of the rotor shaft 18, the gap between the rotor shaft 18 and the permanent magnets 20 is reduced. can be set small. As a result, a positioning jig for satisfying coaxiality between the rotor shaft 18 and the permanent magnets 20 becomes unnecessary.
  • FIG. 9 shows a cross-sectional view of the state of the resin filling step in the rotor manufacturing method according to the third embodiment of the present disclosure.
  • FIG. 10 shows a cross-sectional view of the rotor 50 manufactured by the rotor manufacturing method according to the third embodiment.
  • a flange portion 52 is formed on a portion of the outer circumference of the rotor shaft 18 .
  • the permanent magnet 20 is arranged coaxially with the rotor shaft 18 and between the rotor shaft 18 and the permanent magnet 20 .
  • a gap 26A for filling the liquid resin 24 is formed.
  • the filling pressure of the high-pressure resin 42 that fills the gap 26A and the flange-like gap 26B cracks the permanent magnet 20 and expands the diameter of the magnet reinforcing tube 22 .
  • the configuration other than the above is the same as that of the first embodiment, and basically the same actions and effects as those of the first embodiment can be obtained.
  • the rotor shaft 18 and the permanent magnets 20 are engaged with the inner peripheral surface of the permanent magnet 20 by engaging the outer peripheral surface of the collar portion 52 formed on a part of the outer periphery of the rotor shaft 18 . Since the cylindrical gap 26A for filling the liquid resin 24 is formed therebetween, a positioning jig for ensuring coaxiality between the rotor shaft 18 and the permanent magnets 20 becomes unnecessary.
  • FIG. 11 shows a cross-sectional view of the state of the resin filling step in the rotor manufacturing method according to the fourth embodiment of the present disclosure, and FIG. The plane is shown in cross section.
  • FIG. 13 shows a cross-sectional view of the configuration of a rotor 60 according to a fourth embodiment of the present disclosure.
  • a pair of disk-shaped end rings 62 are arranged on both sides of the permanent magnet 20 in the axial direction.
  • a through hole 64 through which the rotor shaft 18 passes is formed in the center of the pair of end rings 62 .
  • the outer diameter of the pair of end rings 62 is set equal to or larger than the outer diameter of the permanent magnet 20, and the outer peripheral surfaces of the pair of end rings 62 are engaged with the inner peripheral surface of the magnet reinforcing tube. Thereby, a cylindrical gap 26A is formed between the rotor shaft 18 and the permanent magnet 20. As shown in FIG. At least one (here, only one) of the pair of end links 62 is formed with a resin filling hole 64 communicating with the gap 26A. The gap 26A is filled with the liquid resin 24 through the resin filling hole 64 . The filling pressure of the resin 42 cracks the permanent magnet 20 and expands the diameter of the magnet reinforcing tube 22 .
  • the configuration other than the above is the same as that of the first embodiment, and basically the same actions and effects as those of the first embodiment can be obtained.
  • the rotor shaft 18 and the permanent magnets 20 are coaxially coaxial with each other by the pair of end rings 62, and the liquid resin 24 is filled between the rotor shaft 18 and the permanent magnets 20 in a cylindrical shape.
  • gap 26A can be formed.
  • the gap 26A can be filled with the liquid resin 24 through the resin filling hole 64 formed in one of the pair of end rings 62 .
  • This embodiment also eliminates the need for a positioning jig for ensuring coaxiality between the rotor shaft 18 and the permanent magnets 20 .
  • FIG. 14 shows a cross-sectional view of the state of the resin filling step in the rotor manufacturing method according to the fifth embodiment of the present disclosure, and FIG. The plane is shown in cross section.
  • FIG. 16 shows a cross-sectional view of the configuration of the rotor 70 according to the fifth embodiment of the present disclosure.
  • a pair of disk-shaped end rings 62 are arranged on both sides of the permanent magnet 20 in the axial direction, and a cylindrical gap 26A is formed between the rotor shaft 18 and the permanent magnet 20. is formed.
  • a resin filling channel 72 is formed in the rotor shaft 18 instead of the resin filling hole 64 in the fourth embodiment.
  • the resin-filled passages 72 extend from one axial end face of the rotor shaft 18 toward the other axial end of the rotor shaft 18 , and radially outward of the rotor shaft 18 at a plurality of points in the axial intermediate portion of the rotor shaft 18 . branched.
  • the resin-filled passage 72 is opened at a plurality of locations on the outer peripheral surface of the rotor shaft 18 and at one end surface in the axial direction, and communicates with the gap 26A.
  • One end face of the rotor shaft 18 in the axial direction is abutted against one mold, and the resin charging gate 36 and the resin charging channel 72 are communicated with each other.
  • the gap 26A is filled with the liquid resin 24 through the resin filling channel 72 .
  • the filling pressure of the resin 42 cracks the permanent magnet 20 and expands the diameter of the magnet reinforcing tube 22 .
  • the configuration other than the above is the same as that of the first embodiment, and basically the same actions and effects as those of the first embodiment can be obtained.
  • the rotor shaft 18 and the permanent magnets 20 are coaxially coaxial with each other by the pair of end rings 62, and the liquid resin 24 is filled between the rotor shaft 18 and the permanent magnets 20 in a cylindrical shape.
  • gap 26A can be formed.
  • the gap 26A can be filled with the liquid resin 24 through the resin filling channel 72 formed in the rotor shaft 18 .
  • This embodiment also eliminates the need for a positioning jig for ensuring coaxiality between the rotor shaft 18 and the permanent magnets 20 .
  • FIG. 17 shows a sectional view of the configuration of the permanent magnets 20 provided in the rotor according to the sixth embodiment of the present disclosure.
  • the rotor according to this embodiment has basically the same configuration as the rotor 12, the rotor 40, the rotor 50, the rotor 60, or the rotor 70 described above.
  • a notch (recess) 80 is formed along the axial direction of the permanent magnet 20 as a starting point when the permanent magnet 20 cracks.
  • four notches 80 are formed in the inner peripheral surface of the permanent magnet 20 so as to be arranged at equal intervals in the circumferential direction of the permanent magnet 20 .
  • each cut 80 has a triangular shape with a vertex directed outward in the radial direction of the permanent magnet 20 when viewed from the axial direction of the permanent magnet 20 .
  • the permanent magnets 20 crack starting from the cuts 80 . Thereby, the permanent magnet 20 can be split as set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

磁石補強管の傷つきによる強度低下を防止する。 本ロータの製造方法では、ロータ軸(18)と、ロータ軸(18)の外周に樹脂(24)を介して保持された永久磁石(20)と、円筒状に形成されて永久磁石(20)を外周側から覆った磁石補強管(22)と、を備えたロータ(10)を製造するに際し、ロータ軸(18)と永久磁石(20)との間に液状の樹脂(24)を充填し、当該樹脂(24)の充填圧により永久磁石(20)を割り且つ磁石補強管(22)を拡径する。

Description

ロータの製造方法、ロータ及び回転電機
 本開示は、回転電機に関し、特にロータ及びその製造方法に関する。
 特開2005-312250号公報に記載された永久磁石式回転電機の磁石固定方法では、固定手段により回転子シャフト(ロータ軸)の外表面に永久磁石を固定した後、ロータ軸とともに永久磁石を円筒状のバインドリング(磁石補強管)に圧入する。この磁石補強管によって永久磁石の外表面全体を覆い且つ永久磁石を締め付けてロータ軸に固定する。これにより、高速回転時の遠心力強度に対して十分な永久磁石の固定強度が得られ、永久磁石の破片が飛散するのを防止することができる。
 上記の先行技術では、磁石補強管に永久磁石を圧入する際に、磁石補強管に傷がつき、磁石補強管の強度が低下することが懸念される。
 本開示は上記事実を考慮し、磁石補強管の傷つきによる強度低下を防止することができるロータの製造方法、ロータ及び回転電機を得ることを目的とする。
 第1の態様のロータの製造方法は、ロータ軸と、前記ロータ軸の外周に樹脂を介して保持された永久磁石と、円筒状に形成されて前記永久磁石を外周側から覆った磁石補強管と、を備えたロータの製造方法であって、前記ロータ軸と前記永久磁石との間に液状の前記樹脂を充填し、当該樹脂の充填圧により前記永久磁石を割り且つ前記磁石補強管を拡径する。
 第1の態様のロータの製造方法では、ロータ軸と、ロータ軸の外周に樹脂を介して保持された永久磁石と、円筒状に形成されて永久磁石を外周側から覆った磁石補強管と、を備えたロータを製造するに際し、ロータ軸と前記永久磁石との間に液状の樹脂を充填する。この樹脂の充填圧により永久磁石を割り且つ磁石補強管を拡径する。これにより、磁石補強管に傷をつけることなく、磁石補強管と樹脂との間で永久磁石に対して圧縮応力を付与することができ、永久磁石の十分な固定強度を得ることができる。よって、磁石補強管の傷つきによる強度低下を防止することができる。
 第2の態様のロータの製造方法は、第1の態様において、前記ロータ軸の外周に、軸線方向に延びる溝を形成し、当該溝を通して前記ロータ軸と前記永久磁石との間に液状の前記樹脂を充填する。
 第2の態様のロータの製造方法では、ロータ軸の外周に形成した溝を通してロータ軸と永久磁石との間に液状の樹脂を充填するので、ロータ軸と永久磁石との間の隙間(クリアランス)を小さく設定することができる。その結果、ロータ軸と永久磁石との同軸度を満たすための位置決め用治具が不要になる。
 第3の態様のロータの製造方法は、第1の態様において、前記ロータ軸の外周の一部に鍔状の鍔部を形成し、当該鍔部の外周面を前記永久磁石の内周面と係合させることにより前記ロータ軸と前記永久磁石との間に隙間を形成し、当該隙間に液状の前記樹脂を充填する。
 第3の態様のロータの製造方法では、ロータ軸の外周の一部に形成した鍔部の外周面を永久磁石の内周面と係合させることにより、ロータ軸と永久磁石との間に液状の樹脂を充填するための隙間を形成する。この態様においても、ロータ軸と永久磁石との同軸度を満たすための位置決め用治具が不要になる。
 第4の態様のロータの製造方法は、第1の態様において、前記永久磁石に対する軸線方向両側に一対の円板状のエンドリングを配置し、前記一対のエンドリングの中心に前記ロータ軸を貫通させると共に前記一対のエンドリングの外周面を前記磁石補強管の内周面と係合させることにより前記ロータ軸と前記永久磁石との間に隙間を形成し、前記一対のエンドリンクの少なくとも一方に形成した樹脂充填孔を通して前記隙間に液状の前記樹脂を充填する。
 第4の態様のロータの製造方法では、上記一対のエンドリングによりロータ軸と永久磁石との同軸度を満たしつつ、ロータ軸と永久磁石との間に液状の樹脂を充填するための隙間を形成することができる。加えて、一対のエンドリングの少なくとも一方に形成される樹脂充填孔を通して上記の隙間に液状の樹脂を充填することができる。この態様においても、ロータ軸と永久磁石との同軸度を満たすための位置決め用治具が不要になる。
 第5の態様のロータの製造方法は、第1の態様において、前記永久磁石に対する軸線方向両側に一対の円板状のエンドリングを配置し、前記一対のエンドリングの中心に前記ロータ軸を貫通させると共に前記一対のエンドリングの外周面を前記磁石補強管の内周面と係合させることにより前記ロータ軸と前記永久磁石との間に隙間を形成し、前記ロータ軸に形成した樹脂充填流路を通して前記隙間に液状の前記樹脂を充填する。
 第5の態様のロータの製造方法では、上記一対のエンドリングによりロータ軸と永久磁石との同軸度を満たしつつ、ロータ軸と永久磁石との間に液状の樹脂を充填するための隙間を形成することができる。加えて、ロータ軸に形成される樹脂充填流路を通して上記の隙間に液状の樹脂を充填することができる。この態様においても、ロータ軸と永久磁石との同軸度を満たすための位置決め用治具が不要になる。
 第6の態様のロータの製造方法は、第1の態様~第5の態様において、前記永久磁石が割れる際の起点となる切込みを前記永久磁石の内周面に形成する。
 第6の態様では、永久磁石の内周面に形成される切込みによって、永久磁石を設定通りに割ることができる。
 第7の態様のロータは、ロータ軸と、前記ロータ軸の外周に樹脂を介して保持された永久磁石と、円筒状に形成されて前記永久磁石を外周側から覆った磁石補強管と、を備え、前記永久磁石に径方向にわたって亀裂が形成されており、当該亀裂が前記樹脂で埋まっている。
 第7の態様のロータでは、ロータ軸の外周に樹脂を介して永久磁石が保持されており、円筒状に形成された磁石補強管によって永久磁石が外周側から覆われている。この永久磁石には、径方向にわたって亀裂が形成されており、当該亀裂が前記樹脂で埋まっている。このロータは、第1の態様のロータの製造方法によって製造することができるので、第1の態様と同様の作用及び効果が得られる。
 第8の態様のロータは、第7の態様において、前記ロータ軸の外周に軸線方向に延びる溝が形成され、当該溝が前記樹脂で埋まっている。
 第8の態様のロータでは、ロータ軸の外周に形成された溝が前記樹脂で埋まっている。このロータは、第2の態様のロータの製造方法によって製造することができるので、第2の態様と同様の作用及び効果が得られる。
 第9の態様のロータは、第7の態様において、前記ロータ軸の外周の一部に鍔状に形成された鍔部の外周面と前記永久磁石の内周面とが係合しており、前記ロータ軸と前記永久磁石との間に形成された隙間が前記樹脂で埋まっている。
 第9の態様のロータでは、ロータ軸の外周の一部に形成された鍔部の外周面と永久磁石の内周面とが係合しており、ロータ軸と永久磁石との間に形成された隙間が樹脂で埋まっている。このロータは、第3の態様のロータの製造方法によって製造することができるので、第3の態様と同様の作用及び効果が得られる。
 第10の態様のロータは、第7の態様において、前記永久磁石に対する軸線方向両側に配置され、各々の中心に前記ロータ軸が貫通すると共に、各々の外周面が前記磁石補強管の内周面と係合した一対の円板状のエンドリングを備え、前記ロータ軸と前記永久磁石との間に形成された隙間及び前記一対のエンドリンクの少なくとも一方に形成した樹脂充填孔が前記樹脂で埋まっている。
 第10の態様のロータでは、永久磁石に対する軸線方向両側に配置された一対のエンドリングの中心をロータ軸が貫通し、一対のエンドリングの外周面が磁石補強管の内周面と係合している。そして、ロータ軸と永久磁石との間に形成された隙間及び一対のエンドリンクの少なくとも一方に形成された樹脂充填孔が樹脂で埋まっている。このロータは、第4の態様のロータの製造方法によって製造することができるので、第4の態様と同様の作用及び効果が得られる。
 第11の態様のロータは、第7の態様において、前記永久磁石に対する軸線方向両側に配置され、各々の中心に前記ロータ軸が貫通すると共に、各々の外周面が前記磁石補強管の内周面と係合した一対の円板状のエンドリングを備え、前記ロータ軸と前記永久磁石との間に形成された隙間及び前記ロータ軸に形成された樹脂充填流路が前記樹脂で埋まっている。
 第11の態様のロータでは、永久磁石に対する軸線方向両側に配置された一対のエンドリングの中心をロータ軸が貫通し、一対のエンドリングの外周面が磁石補強管の内周面と係合している。そして、ロータ軸と永久磁石との間に形成された隙間及びロータ軸に形成された樹脂充填流路が樹脂で埋まっている。このロータは、第5の態様のロータの製造方法によって製造することができるので、第5の態様と同様の作用及び効果が得られる。
 第12の態様の回転電機は、第7の態様~第11の態様の何れか1つの態様に記載のロータと、前記ロータに対して回転磁界を発生させるステータと、を備える。
 第12の態様の回転電機では、ステータが発生させる回転磁界により、ロータが回転する。このロータは、第7の態様~第11の態様の何れか1つの態様のものであるため、前述した効果が得られる。
 以上説明したように、本開示に係るロータの製造方法、ロータ及び回転電機では、磁石補強管の傷つきによる強度低下を防止することができる。
第1実施形態に係る回転電機の主要部の構成を示す断面図である。 第1実施形態に係るロータの構成を示す断面図である。 図2のF3-F3線に沿った切断面を示す断面図である。 第1実施形態に係るロータの製造方法における樹脂充填工程の状況を示す断面図である。 図4のF5-F5線に沿った切断面を示す断面図である。 第2実施形態に係るロータの製造方法における樹脂充填工程の状況を示す断面図である。 図6のF7-F7線に沿った切断面を示す断面図である。 第2実施形態に係るロータの構成を示す断面図である。 第3実施形態に係るロータの製造方法における樹脂充填工程の状況を示す断面図である。 第3実施形態に係るロータの構成を示す断面図である。 第4実施形態に係るロータの製造方法における樹脂充填工程の状況を示す断面図である。 図11のF12-F12線に沿った切断面を示す断面図である。 第4実施形態に係るロータの構成を示す断面図である。 第5実施形態に係るロータの製造方法における樹脂充填工程の状況を示す断面図である。 図14のF15-F15線に沿った切断面を示す断面図である。 第5実施形態に係るロータの構成を示す断面図である。 第6実施形態に係るロータに設けられる永久磁石の構成を示す断面図である。
 <第1の実施形態>
 以下、図1~図5を参照して本開示の第1実施形態に係る回転電機10、ロータ12及びロータの製造方法について説明する。図1に示されるように、本実施形態に係る回転電機10は、ロータ12の外周に永久磁石20が保持された表面磁石型(Surface Permanent Magnetic;SPM)モータである。この回転電機10は、ロータ12と、ロータ12に対して回転磁界を発生させるステータ14と、ロータ12及びステータ14を収容するケース16とを備えている。なお図1では、ステータ14を概略的に記載している。
 図1~図3に示されるように、ロータ12は、本実施形態に係るロータの製造方法によって製造されたものであり、ロータ軸18と、ロータ軸18の外周に樹脂(樹脂部)24を介して保持された永久磁石20と、永久磁石20を外周側から覆った磁石補強管22とを備えている。このロータ12は、ステータ14が発生させる回転磁界により、ロータ軸18の軸線回りに回転する。
 ロータ軸18は、一例として軸線方向の全域にわたって直径が一定な円柱状をなしている。ロータ軸18の軸線方向中間部は樹脂24に埋まっている。樹脂24は、例えばPPS(Poly Phenylene Sulfide)、LCP(Liquid Crystal Polymer)等の熱可塑性樹脂、又はエポキシ樹脂等の熱硬化性樹脂である。この樹脂24によって永久磁石20がロータ軸18に固定されている。
 永久磁石20は、円筒状に成形されたものが周方向に複数個に割れたものであり、ロータ軸18と同軸的に配置されている。つまり、この永久磁石20には、径方向にわたって亀裂21が形成されており、当該亀裂21が樹脂24で埋まっている。図3では一例として永久磁石20に4つの亀裂21が形成されている。なお、永久磁石20は周方向に複数個に分割されて成形されたものでもよい。その場合、複数個に分割された永久磁石20の分割体のうち少なくとも一つには割れが生じる構成になる。
 永久磁石20の外周には、磁石補強管22が装着されている。磁石補強管22は、例えば繊維シートが樹脂で固められて製造された繊維強化樹脂(Fiber Reinforced Plastics
;FRP)製のパイプであり、永久磁石20よりも軸線方向に長尺な円筒状に形成されている。磁石補強管22は、内周面が永久磁石20の外周面に密着しており、永久磁石20の外周面の全体を覆っている。この磁石補強管22は、永久磁石20に対して径方向内側への圧縮応力を付与している。なお、磁石補強管22の材料は、チタン等の金属であってもよい。
 上記の磁石補強管22は、樹脂24を介してロータ軸18に固定されている。樹脂24は、ロータ軸18と永久磁石20との間に円筒状に介在した円筒部24Aと、円筒部24Aの軸線方向両端部からフランジ状に張り出した一対のフランジ部24Bとによって構成されている。樹脂24の軸線方向寸法は、磁石補強管22の軸線方向寸法より若干短く設定されている。一対のフランジ部24Bは、永久磁石20に対して軸線方向両側に配置されており、永久磁石20に対して軸線方向に密着している。一対のフランジ部24Bの外周面は、磁石補強管22の軸線方向両端部の内周面に密着している。
 上記構成のロータ12を製造する際には、図4に示されるように、射出成型用の一対の金型28、30の間にロータ軸18、磁石補強管22が挟まれる。一対の金型28、30には、ロータ軸18の軸線方向両端部が挿入される軸挿入孔32と、磁石補強管22の軸線方向両端部の内側に嵌合する嵌合凸部34とを有している。これにより、ロータ軸18と磁石補強管22とが同軸上に配置される。
 一対の金型28、30の間に挟まれる磁石補強管22の内側には、円筒状に成形された永久磁石20が事前に同軸的に挿入されており、磁石補強管22を介して永久磁石20が一対の金型28、30に支持される。磁石補強管22の内側に挿入される永久磁石20の外径寸法は、磁石補強管22の内径寸法と同等か又は磁石補強管22の内径寸法よりも若干小さく設定される。これにより、磁石補強管22の内側に永久磁石20を挿入する際に、磁石補強管22に傷がつくことが防止される。
 図5に示されるように、一対の金型28、30に支持されたロータ軸18と永久磁石20との間には、円筒状の隙間26Aが形成される。また、一対の金型28、30と永久磁石20との間には、上記の隙間26Aに連通する一対のフランジ状の隙間26Bが形成される。円筒状の隙間26Aは樹脂24の円筒部24Aに対応し、フランジ状の隙間26Bは樹脂24のフランジ部24Bに対応する。
 一方の金型28には、一方の隙間26Bに連通する樹脂充填ゲート36が形成されており、当該樹脂充填ゲート36を通して上記の隙間26A、26Bに液状の樹脂24が充填される。この際には、隙間26A、26Bに充填される高圧の樹脂24の充填圧により、永久磁石20が割れる。その結果、高圧の樹脂24の充填圧が磁石補強管24の内周面に作用し、磁石補強管22が拡径される。その後、樹脂24が硬化されてから、ロータ12が一対の金型28、30の間から排出される。これにより、図2及び図3に示されるロータ12が完成する。完成したロータ12では、図3に示されるように、永久磁石20に亀裂21が形成されており、当該亀裂21が樹脂24で埋まっている。
 上記構成の回転電機10では、ステータ14が発生させる回転磁界により、ロータ12が回転する。ロータ12は、ロータ軸18と、ロータ軸18の外周に保持された永久磁石20と、円筒状に形成されて永久磁石20を外周側から覆った磁石補強管22とを備えている。このロータ12を製造する際には、ロータ軸18と永久磁石20との間に液状の樹脂24を充填する。この樹脂24の充填圧により永久磁石20を割り、磁石補強管22を拡径する。これにより、磁石補強管22に傷をつけることなく、磁石補強管22と樹脂24との間で永久磁石20に対して圧縮応力を付与することができ、永久磁石20の十分な固定強度を得ることができる。よって、磁石補強管22の傷つきによる強度低下を防止することができる。その結果、高速回転時の遠心力に耐え得るロータ12を提供することが可能となり、ロータ12の品質向上に寄与する。
 また、背景技術の欄で説明した先行技術では、永久磁石を磁石補強管に圧入する際に磁石補強管が削れてしまい、狙いの締め代にならないことが懸念される。また、永久磁石を磁石補強管に圧入するために、永久磁石及び磁石補強管の外径および内径を高精度に加工する必要があり、製造が煩雑になる。この点、本実施形態では、永久磁石20を磁石補強管22に圧入する構成ではないため、磁石補強管22が削れることを防止できると共に、永久磁石20及び磁石補強管22の外径および内径を高精度に加工する必要がなくなり、製造が容易になる。また、永久磁石20が割れることで、渦電流が低減する。これにより、回転電機10の性能を向上させることができる。
 次に、本開示の他の実施形態について説明する。なお、説明済みの実施形態と基本的に同様の構成及び作用については、説明済みの実施形態と同符号を付与し、その説明を省略する。
 <第2の実施形態>
 図6には、本開示の第2実施形態に係るロータの製造方法における樹脂充填工程の状況が断面図にて示されており、図7には、図6のF7-F7線に沿った切断面が断面図にて示されている。図8には、本開示の第2実施形態に係るロータの製造方法により製造されたロータ40が断面図にて示されている。この実施形態では、ロータ軸18の外径寸法は、永久磁石20の内径寸法と同等又は永久磁石20の内径寸法より若干小さく設定されている。ロータ軸18の外周には、軸線方向に延びる溝42が形成されている。当該溝42を通してロータ軸18と永久磁石20との間に液状の樹脂24を充填する。この樹脂42の充填圧により永久磁石20を割り、磁石補強管22を拡径する。
 この実施形態では、上記以外の構成は第1実施形態と同様とされており、第1実施形態と基本的に同様の作用及び効果が得られる。しかも、この実施形態では、ロータ軸18の外周に形成された溝42を通してロータ軸18と永久磁石20との間に液状の樹脂24が充填されるので、ロータ軸18と永久磁石20との間の隙間(クリアランス)を小さく設定することができる。その結果、ロータ軸18と永久磁石20との同軸度を満たすための位置決め用治具が不要になる。
 <第3の実施形態>
 図9には、本開示の第3実施形態に係るロータの製造方法における樹脂充填工程の状況が断面図にて示されている。図10には、第3実施形態に係るロータの製造方法により製造されたロータ50が断面図にて示されている。この実施形態では、ロータ軸18の外周の一部に鍔状の鍔部52が形成される。この鍔部52の外周面が永久磁石20の内周面と係合(接触)することにより、永久磁石20がロータ軸18と同軸上に配置され、ロータ軸18と永久磁石20との間に液状の樹脂24を充填するための隙間26Aが形成される。この隙間26A及びフランジ状の隙間26Bに充填する高圧の樹脂42の充填圧により、永久磁石20を割り、磁石補強管22を拡径する。
 この実施形態では、上記以外の構成は第1実施形態と同様とされており、第1実施形態と基本的に同様の作用及び効果が得られる。しかも、この実施形態では、ロータ軸18の外周の一部に形成された鍔部52の外周面が永久磁石20の内周面と係合されることにより、ロータ軸18と永久磁石20との間に液状の樹脂24を充填するための円筒状の隙間26Aが形成されるので、ロータ軸18と永久磁石20との同軸度を満たすための位置決め用治具が不要になる。
 <第4の実施形態>
 図11には、本開示の第4実施形態に係るロータの製造方法における樹脂充填工程の状況が断面図にて示されており、図12には、図11のF12-F12線に沿った切断面が断面図にて示されている。図13には、本開示の第4実施形態に係るロータ60の構成が断面図にて示されている。この実施形態では、永久磁石20に対する軸線方向両側に一対の円板状のエンドリング62が配置される。一対のエンドリング62の中心には、ロータ軸18が貫通する貫通孔64が形成される。一対のエンドリング62の外径寸法は、永久磁石20の外径寸法と同等以上に設定され、一対のエンドリング62の外周面は、磁石補強管の内周面と係合させる。これにより、ロータ軸18と永久磁石20との間に円筒状の隙間26Aが形成される。一対のエンドリンク62の少なくとも一方(ここでは一方のみ)には、隙間26Aに連通する樹脂充填孔64が形成される。この樹脂充填孔64を通して隙間26Aに液状の樹脂24が充填される。この樹脂42の充填圧により、永久磁石20を割り、磁石補強管22を拡径する。
 この実施形態では、上記以外の構成は第1実施形態と同様とされており、第1実施形態と基本的に同様の作用及び効果が得られる。しかも、この実施形態では、一対のエンドリング62によりロータ軸18と永久磁石20との同軸度を満たしつつ、ロータ軸18と永久磁石20との間に液状の樹脂24を充填するための円筒状の隙間26Aを形成することができる。加えて、一対のエンドリング62の一方に形成された樹脂充填孔64を通して隙間26Aに液状の樹脂24を充填することができる。この実施形態においても、ロータ軸18と永久磁石20との同軸度を満たすための位置決め用治具が不要になる。
 <第5の実施形態>
 図14には、本開示の第5実施形態に係るロータの製造方法における樹脂充填工程の状況が断面図にて示されており、図15には、図14のF15-F15線に沿った切断面が断面図にて示されている。図16には、本開示の第5実施形態に係るロータ70の構成が断面図にて示されている。この実施形態では、第4実施形態と同様に、永久磁石20に対する軸線方向両側に一対の円板状のエンドリング62が配置され、ロータ軸18と永久磁石20との間に円筒状の隙間26Aが形成される。
 ロータ軸18には、第4実施形態における樹脂充填孔64の代わりに、樹脂充填流路72が形成される。樹脂充填流路72は、ロータ軸18の軸線方向一端面からロータ軸18の軸線方向他端部側へ延びると共に、ロータ軸18の軸線方向中間部の複数個所においてロータ軸18の径方向外側へ分岐している。この樹脂充填流路72は、ロータ軸18の外周面の複数個所及び軸線方向一端面で開口しており、隙間26Aに連通している。ロータ軸18の軸線方向一端面は、一方の金型に突き当てられ、樹脂充填ゲート36と樹脂充填流路72とが互いに連通される。この樹脂充填流路72を通して隙間26Aに液状の樹脂24が充填される。この樹脂42の充填圧により、永久磁石20を割り、磁石補強管22を拡径する。
 この実施形態では、上記以外の構成は第1実施形態と同様とされており、第1実施形態と基本的に同様の作用及び効果が得られる。しかも、この実施形態では、一対のエンドリング62によりロータ軸18と永久磁石20との同軸度を満たしつつ、ロータ軸18と永久磁石20との間に液状の樹脂24を充填するための円筒状の隙間26Aを形成することができる。加えて、ロータ軸18に形成される樹脂充填流路72を通して隙間26Aに液状の樹脂24を充填することができる。この実施形態においても、ロータ軸18と永久磁石20との同軸度を満たすための位置決め用治具が不要になる。
 <第6の実施形態>
 図17には、本開示の第6実施形態に係るロータに設けられる永久磁石20の構成が断面図にて示されている。この実施形態に係るロータは、前述したロータ12、ロータ40、ロータ50、ロータ60、又はロータ70と基本的に同様の構成とされているが、ロータ軸18と永久磁石20との間に樹脂24が充填される前の永久磁石20の内周面には、永久磁石20が割れる際の起点となる切込み(凹部)80が永久磁石20の軸線方向に沿って形成されている。図17では、一例として永久磁石20の内周面には、4つの切込み80が永久磁石20の周方向に等間隔に並んで形成されている。各切込み80は、一例として永久磁石20の軸線方向から見て永久磁石20の径方向外側へ頂点を向けた三角形状をなしている。ロータ軸18と永久磁石20との間に樹脂24が充填されると、各切込み80を起点として永久磁石20が割れる。これにより、永久磁石20を設定通りに割ることができる。
 以上、幾つかの実施形態を挙げて本開示について説明したが、本開示はその要旨を逸脱しない範囲で種々変更して実施できる。また、本開示の権利範囲が前記各実施形態に限定されないことは勿論である。
 また、2021年10月19日に出願された日本国特許出願2021-171115号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個別に記載された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (12)

  1.  ロータ軸と、前記ロータ軸の外周に樹脂を介して保持された永久磁石と、円筒状に形成されて前記永久磁石を外周側から覆った磁石補強管と、を備えたロータの製造方法であって、
     前記ロータ軸と前記永久磁石との間に液状の前記樹脂を充填し、当該樹脂の充填圧により前記永久磁石を割り且つ前記磁石補強管を拡径するロータの製造方法。
  2.  前記ロータ軸の外周に、軸線方向に延びる溝を形成し、当該溝を通して前記ロータ軸と前記永久磁石との間に液状の前記樹脂を充填する請求項1に記載のロータの製造方法。
  3.  前記ロータ軸の外周の一部に鍔状の鍔部を形成し、当該鍔部の外周面を前記永久磁石の内周面と係合させることにより前記ロータ軸と前記永久磁石との間に隙間を形成し、当該隙間に液状の前記樹脂を充填する請求項1に記載のロータの製造方法。
  4.  前記永久磁石に対する軸線方向両側に一対の円板状のエンドリングを配置し、前記一対のエンドリングの中心に前記ロータ軸を貫通させると共に前記一対のエンドリングの外周面を前記磁石補強管の内周面と係合させることにより前記ロータ軸と前記永久磁石との間に隙間を形成し、前記一対のエンドリンクの少なくとも一方に形成した樹脂充填孔を通して前記隙間に液状の前記樹脂を充填する請求項1に記載のロータの製造方法。
  5.  前記永久磁石に対する軸線方向両側に一対の円板状のエンドリングを配置し、前記一対のエンドリングの中心に前記ロータ軸を貫通させると共に前記一対のエンドリングの外周面を前記磁石補強管の内周面と係合させることにより前記ロータ軸と前記永久磁石との間に隙間を形成し、前記ロータ軸に形成した樹脂充填流路を通して前記隙間に液状の前記樹脂を充填する請求項1に記載のロータの製造方法。
  6.  前記永久磁石が割れる際の起点となる切込みを前記永久磁石の内周面に形成する請求項1~請求項5の何れか1項に記載のロータの製造方法。
  7.  ロータ軸と、
     前記ロータ軸の外周に樹脂を介して保持された永久磁石と、
     円筒状に形成されて前記永久磁石を外周側から覆った磁石補強管と、
     を備え、
     前記永久磁石に径方向にわたって亀裂が形成されており、当該亀裂が前記樹脂で埋まっているロータ。
  8.  前記ロータ軸の外周に軸線方向に延びる溝が形成され、当該溝が前記樹脂で埋まっている請求項7に記載のロータ。
  9.  前記ロータ軸の外周の一部に鍔状に形成された鍔部の外周面と前記永久磁石の内周面とが係合しており、前記ロータ軸と前記永久磁石との間に形成された隙間が前記樹脂で埋まっている請求項7に記載のロータ。
  10.  前記永久磁石に対する軸線方向両側に配置され、各々の中心に前記ロータ軸が貫通すると共に、各々の外周面が前記磁石補強管の内周面と係合した一対の円板状のエンドリングを備え、
     前記ロータ軸と前記永久磁石との間に形成された隙間及び前記一対のエンドリンクの少なくとも一方に形成した樹脂充填孔が前記樹脂で埋まっている請求項7に記載のロータ。
  11.  前記永久磁石に対する軸線方向両側に配置され、各々の中心に前記ロータ軸が貫通すると共に、各々の外周面が前記磁石補強管の内周面と係合した一対の円板状のエンドリングを備え、
     前記ロータ軸と前記永久磁石との間に形成された隙間及び前記ロータ軸に形成された樹脂充填流路が前記樹脂で埋まっている請求項7に記載のロータ。
  12.  請求項7~請求項11の何れか1項に記載のロータと、
     前記ロータに対して回転磁界を発生させるステータと、
     を備えた回転電機。
PCT/JP2022/027169 2021-10-19 2022-07-08 ロータの製造方法、ロータ及び回転電機 WO2023067858A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280068708.3A CN118104112A (zh) 2021-10-19 2022-07-08 转子的制造方法、转子以及旋转电机
JP2023554263A JPWO2023067858A1 (ja) 2021-10-19 2022-07-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-171115 2021-10-19
JP2021171115 2021-10-19

Publications (1)

Publication Number Publication Date
WO2023067858A1 true WO2023067858A1 (ja) 2023-04-27

Family

ID=86058996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027169 WO2023067858A1 (ja) 2021-10-19 2022-07-08 ロータの製造方法、ロータ及び回転電機

Country Status (3)

Country Link
JP (1) JPWO2023067858A1 (ja)
CN (1) CN118104112A (ja)
WO (1) WO2023067858A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832242Y1 (ja) * 1970-02-13 1973-10-02
JPH0491644A (ja) * 1990-08-06 1992-03-25 Hitachi Ltd 超高速回転電機の永久磁石回転子、永久磁石回転子のバランス調整法
JPH11146609A (ja) * 1997-11-07 1999-05-28 Hitachi Ltd 永久磁石回転子の製造法
JP2005312250A (ja) 2004-04-26 2005-11-04 Meidensha Corp 永久磁石式回転電機の磁石固定方法
JP2009284720A (ja) * 2008-05-26 2009-12-03 Yaskawa Electric Corp 永久磁石形同期電動機
JP2010183791A (ja) * 2009-02-09 2010-08-19 Nissan Motor Co Ltd 分割永久磁石の製造方法とその分割永久磁石を用いた電動機
JP2013116002A (ja) * 2011-11-30 2013-06-10 Mitsui High Tec Inc 回転子に使用する永久磁石の分断方法
JP2017055659A (ja) * 2016-12-22 2017-03-16 ファナック株式会社 回転電機の回転軸部に固定される回転子部材、回転子、回転電機、および回転子を分解する方法
JP2021171115A (ja) 2020-04-20 2021-11-01 株式会社ニューギン 遊技機

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832242Y1 (ja) * 1970-02-13 1973-10-02
JPH0491644A (ja) * 1990-08-06 1992-03-25 Hitachi Ltd 超高速回転電機の永久磁石回転子、永久磁石回転子のバランス調整法
JPH11146609A (ja) * 1997-11-07 1999-05-28 Hitachi Ltd 永久磁石回転子の製造法
JP2005312250A (ja) 2004-04-26 2005-11-04 Meidensha Corp 永久磁石式回転電機の磁石固定方法
JP2009284720A (ja) * 2008-05-26 2009-12-03 Yaskawa Electric Corp 永久磁石形同期電動機
JP2010183791A (ja) * 2009-02-09 2010-08-19 Nissan Motor Co Ltd 分割永久磁石の製造方法とその分割永久磁石を用いた電動機
JP2013116002A (ja) * 2011-11-30 2013-06-10 Mitsui High Tec Inc 回転子に使用する永久磁石の分断方法
JP2017055659A (ja) * 2016-12-22 2017-03-16 ファナック株式会社 回転電機の回転軸部に固定される回転子部材、回転子、回転電機、および回転子を分解する方法
JP2021171115A (ja) 2020-04-20 2021-11-01 株式会社ニューギン 遊技機

Also Published As

Publication number Publication date
JPWO2023067858A1 (ja) 2023-04-27
CN118104112A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
US9484790B2 (en) Rotor for electric rotating machine and method of manufacturing the same
US11489385B2 (en) Rotor, rotary electric machine, and method for manufacturing rotor
US20080024018A1 (en) Rotor for an electric rotary machine, and a method of manufacture
WO2015151362A1 (ja) 籠型モータの回転子および籠型モータ
JP2002186206A (ja) 永久磁石を有する同期機のロータの製作法及び該方法で製作されたロータ
JP4968928B2 (ja) 永久磁石モータ及びその製造方法
US20170214282A1 (en) Rotor of electric motor and its manufacturing method
WO2018179806A1 (ja) 回転電機の回転子の製造方法
JP6026000B2 (ja) 電動機の回転子、電動機、及び空気調和機
JP6557154B2 (ja) 電動機の回転子、および回転子の製造方法
JP2004112856A (ja) 回転電機の冷却構造及びその製造方法
KR20110072678A (ko) 모터의 회전자
WO2023067858A1 (ja) ロータの製造方法、ロータ及び回転電機
JP5386885B2 (ja) 永久磁石式回転機の回転子構造
JP7404800B2 (ja) ロータの製造方法
JP2013116002A (ja) 回転子に使用する永久磁石の分断方法
US20200185989A1 (en) Rotor of synchronous motor with reinforcement member for pressing magnet
CN110268600B (zh) 转子及旋转电机
JP2019110679A (ja) 回転電機のロータ、回転電機、送風機
KR102349405B1 (ko) 본드 자석을 이용한 회전자 및 그를 포함하는 모터
JP6537713B2 (ja) 電動機及び空気調和機
JP7448027B2 (ja) モーターロータ及びモーターロータの製造方法
WO2024029254A1 (ja) 回転電機用ロータ製造方法及び回転電機用ロータ製造装置
US20230246496A1 (en) Rotor and rotating electric machine
JP2024007078A (ja) 回転電機用ロータの製造方法及び回転電機用ロータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883170

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554263

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022883170

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022883170

Country of ref document: EP

Effective date: 20240415