WO2023067679A1 - 発電システム - Google Patents
発電システム Download PDFInfo
- Publication number
- WO2023067679A1 WO2023067679A1 PCT/JP2021/038538 JP2021038538W WO2023067679A1 WO 2023067679 A1 WO2023067679 A1 WO 2023067679A1 JP 2021038538 W JP2021038538 W JP 2021038538W WO 2023067679 A1 WO2023067679 A1 WO 2023067679A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power generation
- fluid
- housing
- generation system
- height position
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 173
- 239000012530 fluid Substances 0.000 claims abstract description 202
- 230000004308 accommodation Effects 0.000 claims abstract description 15
- 238000005381 potential energy Methods 0.000 claims abstract description 14
- 238000007667 floating Methods 0.000 claims description 77
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 36
- 230000007423 decrease Effects 0.000 claims description 19
- 229920000642 polymer Polymers 0.000 claims description 8
- 238000005187 foaming Methods 0.000 claims 1
- 239000013535 sea water Substances 0.000 description 29
- 238000012423 maintenance Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 230000005587 bubbling Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000009434 installation Methods 0.000 description 7
- 230000000452 restraining effect Effects 0.000 description 5
- 238000013016 damping Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 238000004873 anchoring Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241001503991 Consolida Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/12—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
- F03B13/14—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
- F03B13/141—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
- F03B13/144—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which lifts water above sea level
- F03B13/145—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which lifts water above sea level for immediate use in an energy converter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/06—Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/12—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
- F03B13/14—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/12—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
- F03B13/14—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
- F03B13/16—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
- F03B13/20—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" wherein both members, i.e. wom and rem are movable relative to the sea bed or shore
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/93—Mounting on supporting structures or systems on a structure floating on a liquid surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/95—Mounting on supporting structures or systems offshore
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/96—Preventing, counteracting or reducing vibration or noise
- F05B2260/964—Preventing, counteracting or reducing vibration or noise by damping means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Definitions
- the present invention relates to power generation systems.
- Such a power generator includes a generator-motor that is driven as a generator during power generation operation and is driven as a motor during pumping operation, and a pump-turbine connected by a drive shaft of the generator-motor.
- a generator-motor that is driven as a generator during power generation operation and is driven as a motor during pumping operation
- a pump-turbine connected by a drive shaft of the generator-motor.
- water flowing from the upper pond to the lower pond rotates the pump-turbine to drive the electric motor to generate power.
- the water in the lower pond is pumped up to the upper pond by receiving the power and driving the generator-motor to rotate the pump-turbine.
- the present invention has been made in view of the above facts, and aims to provide a power generation system that enables power generation at low cost.
- the power generation system is a power generation system that generates power using the potential energy of a fluid raised to a predetermined height by wave force.
- a floating body having a hollow portion; and delivery means for delivering the fluid toward the predetermined height position based on the wave force received by the floating body, wherein the fluid is accommodated in the hollow portion of the floating body. and power generation means for generating power using the potential energy of the fluid raised to the predetermined height position.
- the power generation system according to claim 2 is the power generation system according to claim 1, wherein the lower part of the floating body protrudes so that the cross-sectional area in the horizontal direction decreases as it goes downward.
- the power generation system according to claim 3 is the power generation system according to claim 1 or 2, further comprising system-side housing means for housing the floating body, the sending means, and the power generation means, wherein the system-side housing means has an intake opening for taking in waves inside the system-side accommodation means, and a part of the floating body on the intake opening side is inclined toward the intake opening side are doing.
- the power generation system according to claim 4 is the power generation system according to any one of claims 1 to 3, wherein the first supply flow supplies the fluid delivered by the delivery means to the predetermined height position. a channel, wherein the first supply channel reduces frictional resistance between the fluid supplied to the predetermined height position and the first supply channel, and moves the fluid to the predetermined height; It is configured to suppress bubbling of the fluid when it is supplied to the bottom position.
- the power generation system according to claim 5 is the power generation system according to any one of claims 1 to 4, wherein the upper storage means is provided at the predetermined height position, and the delivery means delivers and lower storage means provided below the upper storage means for storing the fluid supplied from the upper storage means. , wherein the power generation means generates power using the fluid supplied from the upper storage means to the lower storage means.
- the power generation system according to claim 6 is the power generation system according to any one of claims 1 to 5, wherein the first supply flow supplies the fluid delivered by the delivery means to the predetermined height position. and a second supply channel for returning the fluid at the predetermined height position to the delivery means, wherein the channel diameter of the second supply channel is larger than the channel diameter of the first supply channel. big.
- the power generation system according to claim 7 is the power generation system according to any one of claims 1 to 6, wherein the delivery means is a corrugated tube in which the fluid is stored, the corrugated tube whose volume increases or decreases according to the vertical movement of the body; and a delivery channel communicating with the corrugated tube, the delivery channel for delivering the fluid based on the increase or decrease in the volume of the corrugated tube. , provided.
- the power generation system according to claim 8 is the power generation system according to any one of claims 1 to 7, wherein the sending means moves the fluid when the floating body moves upward based on wave force.
- the power generation system according to claim 9 is the power generation system according to any one of claims 1 to 8, wherein the upper storage means provided at the predetermined height position, wherein the delivery means delivers and a maintenance means for maintaining the amount of the fluid stored in the upper storage means within a predetermined range.
- the power generation system according to claim 10 is the power generation system according to any one of claims 1 to 9, wherein the fluid is a mixed water containing a chain polymer, and the power generation system comprises: floating in the sea.
- the fluid is sent toward the predetermined height position based on the wave force received by the floating body, and the potential energy of the fluid raised to the predetermined height position is utilized. For example, it is possible to generate power at low cost.
- the lower part of the floating body protrudes so that the cross-sectional area in the horizontal direction becomes smaller as it goes downward.
- the buoyancy can be increased or decreased stepwise, and the fluid can be reliably raised to a predetermined height position, so power can be generated appropriately.
- a portion of the floating body on the intake opening side is inclined toward the intake opening side, so that, for example, the amount of reflection of waves by the floating body is suppressed. Therefore, it is possible to improve the utilization efficiency of waves and improve the power generation efficiency.
- the first supply channel reduces the frictional resistance between the fluid supplied to the predetermined height position and the first supply channel, By being configured to suppress bubbling of the fluid when supplying it to the height position, for example, the fluid can be appropriately raised to a predetermined height position, so it is possible to appropriately generate power. Become.
- the fluid can be reliably taken in to the sending means side. , the fluid can be reliably raised to a predetermined height position, and power can be appropriately generated.
- the fluid by sending the fluid based on the increase or decrease in the volume of the corrugated tube, for example, the fluid can be reliably raised to a predetermined height position, so power can be generated appropriately. can be done.
- the fluid Since the wave can be sent out to a predetermined height position it is possible to improve the utilization efficiency of the waves and improve the power generation efficiency.
- the power generation system of claim 9 by maintaining the amount of fluid stored within a predetermined range, it is possible to appropriately operate the power generation system, for example.
- the fluid is a mixed water containing chain polymer, for example, the fluid can be efficiently raised to a predetermined height position, so power generation efficiency can be improved.
- FIG. 4 is a diagram for explaining circulation of circulating fluid;
- FIG. 4 is a diagram for explaining circulation of circulating fluid;
- FIG. 4 is a diagram for explaining circulation of circulating fluid;
- FIG. 4 is a diagram for explaining circulation of circulating fluid;
- FIG. 4 is a diagram for explaining circulation of circulating fluid;
- FIG. 4 is a diagram for explaining circulation of circulating fluid;
- FIG. 4 is a diagram for explaining circulation of circulating fluid;
- FIG. 4 is a diagram for explaining circulation of circulating fluid;
- FIG. 4 is a diagram for explaining circulation of circulating fluid;
- FIG. 4 is a diagram for explaining circulation of circulating fluid;
- FIG. 4 is a diagram for explaining circulation of circulating fluid;
- FIG. 4 is a diagram for explaining circulation of circulating fluid;
- FIG. 4 is a diagram for explaining circulation of circulating fluid;
- FIG. 4 is a diagram for explaining circulation of circulating fluid;
- FIG. 4 is a diagram for explaining circulation of circulating fluid;
- FIG. 4 is a diagram for explaining circulation of circulating fluid; It is a sectional view showing the inside of a power generator. It is a sectional view showing the inside of a power generator. It is a sectional view showing the inside of a power generator. It is a sectional view showing the inside of a power generator. Figures 4A and 4B show various shapes of floats; Fig. 3 shows a delivery device; It is a sectional view showing the inside of other power generators. FIG. 3 shows a sub-delivery device; FIG. 4 is a diagram for explaining circulation of circulating fluid; FIG. 4 is a diagram for explaining circulation of circulating fluid; It is a sectional view showing the inside of a power generator. It is a sectional view showing the inside of a power generator.
- FIG. 4 is a diagram of a housing; It is a perspective view of a housing
- FIG. 11 is a side view of the housing in a floated state; It is a side view of the housing
- Figures 4A and 4B show various shapes of floats; It is a sectional view showing a part of inside of a power generator. It is a front view of a housing
- a power generation system is a system that generates power using the potential energy of a fluid raised to a predetermined height by wave force. .
- a “fluid” is something that has fluidity.
- This "fluid” is a concept that includes, for example, liquids such as water and oil, and semi-solids or solids such as polymer gels. Describe it as being. More specifically, in the embodiments, a case where the "fluid” is an aqueous solution of string-like micelles will be described.
- FIG. 1 is a perspective view of the power generation device
- FIG. 2 is a side view of the power generation device
- FIGS. 3 to 5 are front views of the power generation device
- FIG. 6 is a cross section showing the inside of the power generation device. 7 is an enlarged view of part of FIG. 6, and
- FIG. 8 is a plan view showing the inside of the power generator.
- the XYZ axes are orthogonal to each other, the Z axis indicates the vertical direction, the +Z direction is referred to as the upper side or upper side (plane), and the -Z direction is referred to as the lower side. It will be described as a side or a lower side (bottom surface).
- the X axis indicates the horizontal direction (front-rear direction), the +X direction is referred to as the front or front side, and the -X direction is referred to as the back or back side.
- the Y-axis indicates the horizontal direction (horizontal direction or lateral direction), the +Y direction is referred to as the right side, and the -Y direction is referred to as the left side.
- FIG. 4 and 6 show the power generator 100 floating on the sea, and the sea surface or water surface is shown. In each figure, illustration of the sea surface or the water surface is omitted as appropriate. In addition, the surface of the seawater entering the housing 1 is referred to as the water surface. 5 also partially illustrates the internal structure of the power generation device 100 that can be seen through the front opening 16, and the internal structure is appropriately not illustrated in other drawings. 6 and 7 are illustrations for convenience of explanation. Further, in each cross-sectional view, the circulating fluid F is indicated by hatching. In FIG. 8, the outer shape of the housing 1 is illustrated by a dashed line, and the illustration of the storage tank side housing portion 2 and the like in FIG. there is Moreover, in each drawing, in order to explain each configuration of the power generation device 100, some elements other than those to be explained are not shown as appropriate.
- the power generation device 100 in FIG. 1 is a power generation system that generates power using the potential energy of the circulating fluid F (FIG. 7) raised to a predetermined height by wave force. Note that the shape of the power generation device 100 is symmetrical with respect to the XZ plane passing through the center of the power generation device 100 and has the same shape and size on the left and right sides, unless otherwise specified. Only one side will be described with appropriate reference numerals.
- the power generation device 100 of FIG. 1 is a device that generates power while being floated on the sea. ), and is used while maintaining a state in which waves are coming toward the front side of the power generation device 100 .
- the power generation device 100 includes, for example, the housing 1 of FIG. 1, the storage tank side storage section 2 of FIG. 252 , a third pipe 253 , a first pipe side check valve 261 , a second pipe side check valve 262 , and a float 27 .
- the circulating fluid F is the above-described fluid, specifically, a fluid that is circulated in the power generation device 100 and used for power generation in the power generator 23.
- mixed water containing a chain polymer It is a liquid (specifically, a string-like micelle aqueous solution) consisting of
- the housing 1 in FIGS. 1 to 6 is a system-side housing means for housing the components of the power generation device 100, and specifically, is floated on the sea (that is, floating on the sea). It has a box shape with a hollow portion 10 of FIG.
- the material of the housing 1 is arbitrary, and may be metal, resin, a combination thereof, or any other material.
- a component for increasing buoyancy such as a known float, may be provided at any position, or may be made of a material that increases buoyancy.
- the housing 1 includes, for example, a housing-side front portion 11, a housing-side side surface portion 12, a housing-side rear portion 13, an outer flow path 14, a front-side inclined portion 15, a front-side opening portion 16, and FIGS. an internal front slope 17 , an internal side slope 18 , and an internal bottom 19 .
- the housing-side front portion 11 in FIG. 1 is a restraining means, a first outer inclined portion, and is, for example, a partition wall that forms the front side (+X direction) of the housing 1 and separates the inside and the outside.
- the “suppressing means” is a device for suppressing the shaking of the housing 1 due to the wave by submerging at least a part of the housing 1 in water (that is, in the sea) when a wave of a predetermined wave height or higher is received. It is a means.
- the housing-side front portion 11 is curved and inclined toward the rear side ( ⁇ X direction) as it goes upward (+Z direction).
- the wave height is such that it reaches a position higher than the upper end of the front side opening 16 in FIG.
- housing-side front portion 11 is curved and inclined
- the housing-side side surface portion 12 may also be inclined.
- a wave runs up may be interpreted as a concept including, for example, sea water running up due to the force of waves.
- the housing-side side surface portion 12 in FIG. 1 is a restraining means and is a first outer inclined portion, for example, forms both side surfaces (+Y direction, ⁇ Y direction) of the housing 1, and divides the inside and outside. is the wall.
- each of the housing-side side surface portions 12 on both sides is curved and inclined so as to approach each other toward the upper side (+Z direction).
- the wave height is such that it reaches a position higher than the upper end (+Z direction) of the flow channel side wall portion 141 in FIG. .
- the housing-side rear portion 13 in FIG. 1 is, for example, a partition wall that forms the rear side (minus direction) of the housing 1 and separates the inside and the outside.
- the shape of the housing-side rear portion 13 is arbitrary, and may be, for example, an inclined shape similar to the housing-side front portion 11, or may be of another shape. The figure shows the case where it is configured as a shape that
- the outer channel 14 in FIG. 1 is a restraining means.
- the outer flow path 14 is provided on both side surfaces of the housing 1, and as shown in FIG. ⁇ X direction) and has a predetermined wave height or higher (for example, a wave height higher than the height of the channel bottom 142 or the upper end of the channel side wall 141 (+Z direction), 2 m to 3 m etc.), it is constructed so that the wave rides on it.
- the outer channel 14 is, for example, a channel surrounded by a channel side wall portion 141 having a predetermined height, a channel bottom portion 142, and a portion of the housing side side portion 12, as shown in FIGS. be.
- the front-side inclined portion 15 in FIG. 1 is a suppressing means, and is a second outer inclined portion. For example, as shown in FIGS. Also, it is continuous with the outer flow path 14 and is configured to guide the wave to the outer flow path 14 when it receives a wave having a predetermined wave height or more.
- the front-side inclined portion 15 may be formed continuously on the same plane as the front-side (+X direction) surface of the housing-side front portion 11, or may have a step with respect to the front-side surface. It may be provided and formed as a surface other than the surface on the front side. It should be noted that "inducing waves” may be interpreted as a concept including, for example, inducing seawater supplied by waves and inducing waves themselves.
- the front-side opening 16 in FIG. 1 is a take-in opening for taking in waves into the housing 1.
- it is an opening provided in the housing-side front 11, and the hollow portion 10 ( Fig. 6).
- the front opening 16 has a substantially rectangular shape when viewed from the front.
- the front opening 16 is, for example, a distance D1 (FIG. 4) from the sea surface to the upper end (+Z direction) of the front opening 16 when there are no waves when the housing 1 is floating on the sea. is formed so as to be a predetermined distance.
- the float 27 may be set so as to take in a wave having a wave height that causes the float 27 to move up and down appropriately.
- capturing waves may be interpreted as a concept including, for example, capturing seawater supplied by waves and capturing waves themselves.
- (Construction - housing - internal front inclined part) 5, 6 and 8 is a first inner inclined portion extending from the front opening 16 toward the float 27 inside the housing 1, and is located on the front side. This is the first inner inclined portion that is inclined upward (+Z direction) as the distance from the opening 16 increases.
- (Construction - housing - internal side inclined part) 5 and 8 are second inner inclined portions provided on both sides of the inner front inclined portion 17 inside the housing 1, and A second inner sloping portion that is steeply sloping.
- the inner side inclined portion 18, for example, has a gentler inclination than the inner wall portion 18A.
- the inner wall portion 18A is a vertically standing wall provided on the opposite side of the inner front-side inclined portion 17 in each of the inner side-side inclined portions 18 with respect to the left-right direction (Y direction). .
- the inner bottom 19 in FIGS. 5, 6 and 8 is the bottom of the hollow portion 10 of the housing 1 and is flat, for example.
- (Configuration - Reservoir side storage section) 6 and 7 is storage means side storage means for storing an upper storage tank 21 and a lower storage tank 22, etc., and for example, as shown in FIG. It is provided in the upper part (+Z side) of the housing 1 in a state of being swingably suspended from the housing 1 via the hanging part 20 . Since this storage tank side housing part 2 is suspended from the housing 1, even if the housing 1 shakes due to the waves, it will swing independently of the housing 1. , the magnitude of the shaking of the housing 1 can be prevented from being directly transmitted, and the shaking of the storage tank side storage part 2 (more specifically, the upper storage tank 21 and the lower storage tank 22 that are stored) shaking) can be reduced.
- the method of attaching the storage tank side housing portion 2 is not limited to the hanging method, and for example, it can be fixed to the upper part of the housing 1 by any method (such as welding or using a fixing metal fitting). may be provided.
- the storage tank side storage part 2 is, for example, roughly box-shaped with a hollow part, and the objects to be stored (upper storage tank 21, lower storage tank 22, etc.) are directed upward (+Z direction) and laterally. It has a shape that covers from the bottom and is open on the lower side (-Z direction).
- the upper storage tank 21 in FIG. 7 is storage means for storing the circulating fluid F. Specifically, the upper storage means is provided at a predetermined height position, and the circulating fluid sent out by the delivery device 24 is stored. It is an upper storing means for storing the fluid F.
- the position at which the upper storage tank 21 is provided is arbitrary as long as it is higher than the power generation section 23, and may be determined, for example, by conducting various experiments or simulations regarding power generation in the power generation section 23.
- the upper storage tank 21 is provided, for example, by being fixed to the side of the storage tank side housing section 2 .
- the lower storage tank 22 in FIG. 7 is storage means for storing the circulating fluid F. Specifically, it is a lower storage means provided below the upper storage tank 21, and is supplied from the upper storage tank 21. It is a lower storage means for storing the circulating fluid F that has been circulated.
- the position where the lower storage tank 22 is provided is arbitrary as long as it is positioned lower than the power generation unit 23 and the upper storage tank 21, and may be determined, for example, by conducting various experiments or simulations regarding power generation.
- the lower storage tank 22 is provided, for example, by being fixed to the side of the storage tank side housing section 2 .
- the power generation unit 23 in FIG. 7 is a power generation unit that generates power using the potential energy of the circulating fluid F raised to a predetermined height position. It is a power generation means for generating power using the circulating fluid F.
- the power generation unit 23 is, for example, a device that generates power using the energy of the circulating fluid F flowing (descending) in the third pipe 253 under its own weight, and can be configured using a known power generator.
- the power generation unit 23 is provided at a predetermined position of the third pipe 253, for example.
- the delivery device 24 of FIG. 7 is delivery means for delivering the circulating fluid F toward a predetermined height position based on the wave force received by the float 27, and is accommodated in the hollow portion 27A of the float 27. It is a means.
- the delivery device 24 is, for example, first delivery means for delivering the circulating fluid F to a predetermined height position when the float 27 moves upward based on wave force.
- the delivery device 24 for example, raises the circulating fluid F through the first pipe 251 and supplies it to the upper storage tank 21 , and also supplies the circulating fluid F through the second pipe 252 .
- the delivery device 24 comprises, for example, a corrugated tube 241 and a flaring tube 242 .
- the bellows tube 241 in FIG. 7 is a bellows tube in which the circulating fluid F is stored, and the internal volume (that is, the volume of the hollow portion of the bellows tube 241) according to the vertical movement of the float 27 based on the wave force.
- This is a bellows tube in which the The bellows tube 241 has a hollow portion communicating with the hollow portion of the bellows tube 242 , and the circulating fluid F flows between the hollow portions of the bellows tube 241 and the hollow portions of the bellows tube 242 in the delivery device 24 . It is movable.
- the upper end (+Z direction) of the corrugated tube 241 is fixedly connected to the lower end (-Z direction) of the trumpet tube 242, and the lower end (-Z direction) of the corrugated tube 241 is connected to the bottom of the float 27. Fixed.
- the corrugated tube 241 is pushed by the float 27 and shrinks, and the volume of the corrugated tube 241 decreases.
- the bellows tube 241 expands by being pulled by the float 27, and the volume of the bellows tube 241 increases.
- the trumpet tube 242 in FIG. 7 is a delivery channel that communicates with the corrugated tube 241 and is a delivery channel that delivers the circulating fluid F based on an increase or decrease in the volume of the corrugated tube 241 .
- the trumpet pipe 242 is connected to, for example, the first pipe 251 and the second pipe 252 .
- the trumpet tube 242 has, for example, a portion (lower portion in the drawing) in which the flow path diameter is the same in the height direction (Z-axis direction) and a portion in which the flow path diameter decreases toward the upper side (+Z direction).
- the trumpet tube 242 is, for example, fixed to the side of the storage tank side housing section 2 and may be made of metal or resin.
- the first pipe 251 in FIG. 7 is a first supply channel that supplies the circulating fluid F delivered by the delivery device 24 to a predetermined height position.
- the first pipe 251 is provided, for example, by being fixed to the side of the storage tank side housing section 2 (the same applies to the second pipe 252 and the third pipe 253).
- a lower end portion of the first pipe 251 is connected to the delivery device 24, and an upper end portion 251A of the first pipe 251 is provided on the upper storage tank 21 side.
- the upper end portion 251A reduces the frictional resistance between the circulating fluid F supplied to the predetermined height position (that is, the upper storage tank 21) and the first pipe 251, and reduces the circulating fluid F to the predetermined height. It is configured to suppress bubbling of the circulating fluid F when it is supplied to the position.
- the upper end portion 251A includes, for example, a guide plate 251B and an open portion 251C.
- the guide plate 251B is for suppressing bubbling of the circulating fluid F, and is a portion that guides the circulating fluid F to the bottom side of the upper storage tank 21 .
- the circulating fluid F is gently flowed on the guide plate 251B and supplied to the upper storage tank 21, thereby suppressing bubbling.
- the open portion 251C is a portion for reducing the frictional resistance between the circulating fluid F and the first pipe 251, and is an open portion on the upper side (+Z direction) of the guide plate 251B. By providing the open portion 251C, the contact area between the circulating fluid F and the upper end portion 251A can be reduced, thereby reducing the frictional resistance.
- the second pipe 252 in FIG. 7 is a second supply channel that returns the circulating fluid F at a predetermined height position to the delivery device 24 . , and back to the delivery device 24 .
- the lower end of the second pipe 252 is connected to the delivery device 24
- the upper end of the second pipe 252 is connected to the bottom of the lower storage tank 22 .
- a total of two second pipes 252 are provided on both sides of the first pipe 251, for example.
- the flow path diameter of the second pipe 252 is arbitrary, for example, from the viewpoint of appropriately circulating the circulating fluid F, the total flow path diameter of the second pipe 252 is larger than the total flow path diameter of the first pipe 251. is preferred.
- one first pipe 251 and two second pipes 252 are provided for one delivery device 24, but the total flow path diameter of the two second pipes 252 is larger than the channel diameter of one first pipe 251 .
- a third pipe 253 in FIG. 7 is a flow path for supplying the circulating fluid F to the power generation unit 23 .
- the lower end of the third pipe 253 is provided on the lower reservoir 22 side, and the upper end of the third pipe 253 is connected to the bottom of the upper reservoir 21 .
- the first pipe side check valve 261 in FIG. 7 is for preventing backflow by allowing the circulating fluid F to flow in the direction indicated by the arrow in FIG. .
- the second pipe-side check valve 262 is for preventing backflow by allowing the circulating fluid F to flow in the direction indicated by the arrow in FIG.
- the float 27 in FIGS. 6 and 7 is a floating body that floats (floats) in seawater taken into the hollow portion 10 through the front opening 16 inside the housing 1. Specifically, moves up and down based on the force of waves (wave force) taken into the hollow portion 10 through the front opening 16 .
- the float 27 has a hollow portion 27A in which the delivery device 24 and the like are accommodated.
- the float 27 has, for example, a box shape whose upper side (+Z direction) is open. For example, as shown in FIG. It comprises a portion 271 and a second portion 272 .
- the first portion 271 in FIG. 7 is configured so that the float 27 can move upward (+Z direction) or downward ( ⁇ Z direction) (that is, move up and down) with respect to the storage tank side housing portion 2. It is connected to the lower end (-Z direction) of the storage tank side housing portion 2 .
- this connection method is arbitrary, for example, as shown in FIG. 7, the upper end (+Z direction) of the first portion 271 is configured to be slightly larger in diameter than the lower end of the reservoir-side accommodating portion 2 .
- a method of interposing a member for example, a spherical sliding member or the like
- the float 27 may be configured to move up and down with respect to the storage tank side storage section 2 , and the first portion 271 does not have to be connected to the storage tank side storage section 2 .
- a second portion 272 in FIG. 7 is a portion protruding from the lower portion ( ⁇ Z direction) of the first portion 271 .
- the cross-sectional area of the second portion 272 is smaller than the cross-sectional area of the first portion 271 .
- the lower portion (-Z direction) of the float 27 projects downward (-Z direction) so that the cross-sectional area in the horizontal direction becomes smaller.
- the buoyancy of the float 27 can be increased or decreased in stages. For example, when the water surface in FIG. 7 rises from the position corresponding to the second portion 272 to the position corresponding to the first portion 271 due to waves, the volume provided under the water surface in the float 27 increases significantly in a short time. , and the buoyancy that the float 27 receives from the seawater greatly increases in a short period of time (that is, increases stepwise). On the other hand, on the contrary, for example, when the water surface in FIG. is greatly reduced in a short period of time, and the buoyant force that the float 27 receives from seawater is greatly reduced in a short period of time (that is, it decreases step by step).
- the float 27 can be appropriately moved up and down by utilizing such a large increase and decrease in buoyancy, and the circulating fluid F can be reliably supplied from the delivery device 24 to the upper storage tank 21 .
- FIG. 9 are diagrams for explaining the circulation of the circulating fluid F.
- FIG. 9 is a diagram for explaining the circulation of the circulating fluid F.
- the float 27 comes close to the storage tank side storage section 2, and since the trumpet tube 242 of the delivery device 24 in FIG. direction) between the bottom of the float 27 and the trumpet tube 242 is reduced, and the bellows tube 241 is pushed by the float 27 and contracted. Then, the volume of the bellows tube 241 is reduced, and the circulating fluid F in the bellows tube 241 is pushed out toward the trumpet tube 242, and as shown in FIG. It is extruded and supplied to the upper storage tank 21 through.
- the circulating fluid F stored in the upper storage tank 21 descends and is supplied to the lower storage tank 22 via the third pipe 253 by the weight of the circulating fluid F itself.
- Electric power is generated in the power generation unit 23 using the circulating fluid F that flows from the upper storage tank 21 of FIG. 7 to the lower storage tank 22 via the third pipe 253 .
- the circulating fluid F is stored in the upper storage tank 21 by wave force even while the power generation unit 23 is generating power. Since the power generation unit 23 can always generate power, the power generation amount can be improved.
- the circulating fluid F is raised to the upper storage tank 21 by using wave power, electric power for operating the device for raising the circulating fluid F becomes unnecessary, and the cost of the electric power is omitted. Therefore, it is possible to generate power at low cost.
- the method of using the generated power is arbitrary, and for example, it may be used by connecting a power distribution wire to the power generation device 100 and distributing the power through the wire.
- the power generation device 100 of FIG. 1 when a high wave (for example, a wave with a predetermined wave height or more, for example, a wave with a wave height of 2 m to 3 m or more) rushes from the front side (+X direction), the high wave run over the housing-side front portion 11 , or the wave runs over the outer flow path 14 via the front-side inclined portion 15 .
- the housing 1 of the power generation device 100 is temporarily submerged partially or entirely in the sea by the waves (more specifically, the force of the waves or the weight of the seawater caused by the waves). (that is, it will sink in the sea). Therefore, part or all of the housing 1 can avoid (or reduce) the wave force received from high waves in the sea. will be suppressed.
- the power generation device 100 floats after being submerged for a certain period of time.
- the hollow portion 10 of the housing 1 since the width of the front opening 16 in the height direction (Z-axis direction) is set to a predetermined width, the hollow portion 10 of the housing 1 has a circulating fluid. Since a wave with a wave height suitable for circulating F is taken in, the circulation of the circulating fluid F will continue appropriately.
- the housing 1 of the power generator 100 in FIG. 6 may shake under the influence of a strong wind.
- the degree of shaking of the portion 2 is reduced, and the degree of shaking of the upper storage tank 21, the lower storage tank 22, etc. accommodated in the storage tank side storage portion 2 is reduced.
- the circulating fluid F is sent toward the upper storage tank 21 at a predetermined height position based on the wave force received by the float 27, and is sent to the upper storage tank 21 at a predetermined height position.
- the circulating fluid F is sent toward the upper storage tank 21 at a predetermined height position based on the wave force received by the float 27, and is sent to the upper storage tank 21 at a predetermined height position.
- the buoyancy is gradually increased. It can be increased or decreased, and the circulating fluid F can be reliably raised to a predetermined height position, so that it is possible to appropriately generate power.
- the upper end portion 251A of the first pipe 251 reduces the frictional resistance between the circulating fluid F supplied to the predetermined height position and the first pipe 251, and allows the circulating fluid F to reach the predetermined height position.
- the circulating fluid F can be appropriately raised to a predetermined height position, so that it is possible to appropriately generate power. Become.
- the circulating fluid F can be reliably taken into the delivery device 24 side. It can be reliably raised to a predetermined height position, and power can be generated appropriately.
- the circulating fluid F can be reliably raised to a predetermined height position, so that it is possible to appropriately generate power. Become.
- the circulating fluid F is a fluid composed of mixed water containing a chain polymer, for example, the circulating fluid F can be efficiently raised to a predetermined height position, so that power generation efficiency can be improved. becomes.
- the suppressing means housing-side front portion 11, housing-side side surface portion 12, outer flow path 14, front-side inclined portion 15
- shaking of the housing 1 due to high waves is suppressed, and power generation is performed appropriately. It is possible to do
- the wave when the front-side inclined portion 15 receives a high wave, the wave can be guided to the outer flow path 14, for example, so that the wave can be guided onto the outer flow path 14. It is possible to reliably submerge the parts in the water, suppress the shaking of the housing 1 due to high waves, and appropriately generate power.
- the storage tank side housing portion 2 is suspended from the housing 1 inside the housing 1, for example, the magnitude of shaking of the housing 1 due to high waves is directly transmitted to the storage tank side housing portion 2. Since it is possible to prevent the transmission, it is possible to reduce the magnitude of the shaking of the storage tank side housing portion 2 .
- the depth of water inside the housing 1 becomes shallower as it moves away from the front side opening 16, so that the wave height inside the housing 1 can be increased. It is possible to increase power and appropriately generate power.
- the inner side inclined portion 18 for example, the amount of reflection of waves inside the housing 1 can be suppressed, so it is possible to improve the utilization efficiency of waves and improve the power generation efficiency. becomes.
- the “drainage adjustment means” is means for adjusting the drainage time for the waves taken into the system side accommodation means, and is means provided inside the system side accommodation means.
- a drainage adjuster 31 and an installation base 32 may be provided on the inner bottom 19.
- the drainage adjustment unit 31 is drainage adjustment means, and can be configured using, for example, a rectangular elastic rubber plate or the like.
- the width of the drainage adjustment portion 31 is arbitrary, for example, it may be set to a width slightly shorter than the distance between the inner wall portions 18A on both sides in the horizontal direction (Y-axis direction) of FIG.
- the width may be set to be the same as the width of the front-side inclined portion 17 , or may be set to be narrower than the width of the internal front-side inclined portion 17 .
- the end on the front side (+X direction) is fixed to the installation table 32, and as shown in FIG. energized.
- the end of the drainage adjustment unit 31 on the side opposite to the side fixed to the installation table 32 (hereinafter referred to as the “non-fixed end”) is oriented toward the rear side (-X direction). energized.
- the installation table 32 in FIG. 14 is a table for installing the drainage adjustment unit 31.
- the seawater is retained inside the housing 1 for a time sufficient to sufficiently send out the circulating fluid F toward a predetermined height position. Therefore, the circulating fluid F can be appropriately raised to a predetermined height position, and power generation can be appropriately performed.
- FIG. 16 is a cross-sectional view showing the inside of the power generator. You may provide the buffer material 33 with respect to the electric power generating apparatus 100 of the said embodiment.
- the cushioning material 33 is a member for softening the impact on the float 27 . By providing the cushioning material 33 below the float 27 (-Z direction), it is possible to prevent the float 27 from directly hitting the inner bottom 19 when it moves downward (-Z direction).
- FIG. 17 is a cross-sectional view showing the inside of the power generator
- FIG. 18 is a diagram showing various shapes of floats.
- a float 2711 of FIG. 18 may be used instead of the float 27 of the power generator 100 of the above embodiment.
- Float 2711 is similar to float 27 except where noted.
- a front portion 2711A of the float 2711 (that is, a part of the float 2711 on the front side) is inclined toward the front opening 16 as shown in FIG. With this configuration, the amount of reflection at the front portion 2711A of the waves taken in from the front side opening 16 can be suppressed, so that the float 2711 can be moved up and down appropriately.
- the front portion 2711A which is a portion of the float 2711 on the front side opening 16 side, is inclined toward the front side opening 16 side. Since the amount can be suppressed, it is possible to improve the utilization efficiency of waves and improve the power generation efficiency.
- the front portion 2711A of the float 2711 may have a straight shape or a curved shape when viewed from the side.
- a curved shape in particular, it may be configured so that it goes upward (+Z direction) as it goes from the float 2711 toward the front opening 16 side.
- each of these figures illustrates the outer shape of the float when viewed from the front side (that is, from the front side opening 16 side).
- FIG. 19 is a diagram showing a delivery device.
- (a) is a side view of the delivery device 24A, showing each check valve inside the trumpet tube 242A for convenience, and (b) is a rear view.
- a delivery device 24A may be used instead of the delivery device 24.
- the delivery device 24A is provided with a plurality of bellows tubes 241A for one trumpet tube 242A.
- FIG. 20 is a cross-sectional view showing the inside of another power generation device
- FIG. 21 is a view showing a sub-delivery device
- FIGS. 22 and 23 are views for explaining circulation of circulating fluid.
- 7 of the power generator 100 of the above-described embodiment may be replaced with the components shown in FIG. 20 to configure another power generator.
- other power generators are configured in the same manner as the power generator 100 unless otherwise specified.
- Other generators generally circulate from the delivery device to the upper reservoir 41 when the float 48 moves both upward (+Z direction) and downward ( ⁇ Z direction). It is configured to supply a fluid F.
- Other power generators are the storage tank side storage section 4, upper storage tank 41, lower storage tank 42, power generation section 43, main delivery device 44, sub delivery device 45, main side first pipe 461A (first supply channel), secondary side first pipe 461B (first supply channel), primary side second pipe 462A (second supply channel), secondary side second pipe 462B (second supply channel), third pipe 463 , with a check valve 47 .
- main delivery device 44 sub delivery device 45, main side first pipe 461A (first supply channel), secondary side first pipe 461B (first supply channel), primary side second pipe 462A (second supply channel), secondary side second pipe 462B (second supply channel), third pipe 463 , with a check valve 47 .
- two sub-sending devices 45 are provided on both sides of the main sending device 44, only one of them will be described with reference numerals.
- the main delivery device 44 of FIG. 20 is delivery means for delivering the circulating fluid F toward a predetermined height position based on the wave force received by the float 48, and is contained in the hollow portion of the float 48. It is a means.
- the main delivery device 44 is, for example, first delivery means for delivering the circulating fluid F to a predetermined height position when the float 48 moves upward based on wave force.
- the main delivery device 44 includes, for example, a corrugated tube 441 and a trumpet tube 242, and is configured similarly to the delivery device 24 of the embodiment.
- the auxiliary delivery device 45 of FIG. 20 is delivery means for delivering the circulating fluid F toward a predetermined height position based on the wave force received by the float 48, and is accommodated in the hollow portion of the float 48. It is a means.
- the secondary delivery device 45 is, for example, second delivery means for delivering the circulating fluid F to a predetermined height position when the float 48 moves downward based on wave force.
- the auxiliary delivery device 45 for example, raises the circulating fluid F through the first auxiliary pipe 461B and supplies it to the upper storage tank 41, and also supplies the circulating fluid F through the second auxiliary pipe 462B. It is.
- the secondary delivery device 45 includes, for example, a corrugated tube 451 and a connecting member 452 .
- the corrugated tube 451 in FIG. 20 is a corrugated tube in which the circulating fluid is stored, and the volume (that is, the volume of the hollow portion of the corrugated tube 241) increases or decreases according to the vertical movement of the float 48 based on the wave force. is.
- the upper end (+Z direction) of the bellows tube 451 is fixed to the upper part 452A of the connection member 452 in FIG. 21, and the lower end (-Z direction) of the bellows tube 451 is connected to the communication part 460 in FIG. has been fixed.
- the communicating portion 460 is a portion communicating with the inside (that is, hollow portion) of the bellows tube 451, the first secondary pipe 461B, and the second secondary pipe 462B. It is the part that is fixed. That is, the circulating fluid F can move through the communicating portion 460 between the inside of the bellows tube 451, the first secondary pipe 461B, and the second secondary pipe 462B. It should be noted that this communication section 460 may be interpreted as a component of the sub-delivery device 45 .
- a connection member 452 in FIG. 20 is a member that connects the upper end (+Z direction) of the bellows tube 451 to the float 48, and is an L-shaped member as shown in FIG. 21(b).
- a lower end ( ⁇ Z direction) of the connecting member 452 is fixed to the bottom of the float 48 . Since the bellows tube 451 is connected via the connection member 452, when the float 48 moves upward (+Z direction), the bellows tube 451 is pulled by the upper portion 452A of the connection member 452 and spreads. The volume of tube 451 increases. On the other hand, when the float 48 moves downward ( ⁇ Z direction), the corrugated tube 451 is pushed by the upper portion 452A of the connecting member 452 and shrinks, increasing the volume of the corrugated tube 451 .
- a main side first pipe 461A in FIG. 20 is configured in the same manner as the first pipe 251 in FIG.
- the sub-side first pipe 461B in FIG. 20 is a first supply channel that supplies the circulating fluid F sent by the sub-sending device 45 to a predetermined height position. It is provided.
- the lower end of the auxiliary first pipe 461B is connected to the bellows pipe 451 of the auxiliary delivery device 45 via the communicating portion 460, and the upper end of the auxiliary first pipe 461B is connected to the upper storage tank 21 side. is provided.
- the main side second pipe 462A in FIG. 20 is configured similarly to the second pipe 252 in FIG.
- the sub-side second pipe 462B in FIG. 20 is a second supply channel that returns the circulating fluid F at a predetermined height position to the sub-sending device 45.
- the circulating fluid F in the upper storage tank 41 is It is a flow path that returns to the sub-delivery device 45 via the storage tank 42 .
- the lower end of the secondary side pipe 462B is connected to the bellows tube 451 of the secondary delivery device 45 via the communicating portion 460, and the upper end of the secondary side pipe 462B is connected to the bottom of the lower storage tank 42. It is connected to the.
- the channel diameter of the secondary side second pipe 462B may be configured to be larger than the channel diameter of the secondary side first pipe 461B, for example.
- the float 48 moves upward (+Z direction) as shown in FIG. is supplied to the upper storage tank 41.
- the circulating fluid F stored in the upper storage tank 41 is supplied to the lower storage tank 42 via the third pipe 463 by the weight of the circulating fluid F itself.
- the energy of the circulating fluid F is used to generate electricity by the power generation unit 43 .
- the float 48 comes closer to the storage tank side accommodating portion 4, and the distance between the upper portion 452A of the connecting member 452 in FIG. 21 and the communicating portion 460 increases in the height direction (Z-axis direction).
- the corrugated tube 451 is pulled by the upper portion 452A of the connecting member 452 and spreads. Since the volume of the corrugated tube 451 increases and the circulating fluid F in the communicating portion 460 is taken into the corrugated tube 451, the circulating fluid F flows from the lower storage tank 42 through the second secondary pipe 462B. It will be supplied to the delivery device 45 .
- the float 48 moves away from the storage tank side housing portion 4, and the distance between the upper portion 452A of the connecting member 452 and the communicating portion 460 in FIG.
- the pipe 451 is pushed by the upper portion 452A of the connecting member 452 and contracted.
- the volume of the bellows tube 451 is reduced, and the circulating fluid F in the bellows tube 451 is pushed out to the communicating portion 460 side, and the circulating fluid F flows from the sub-delivery device 45 to the upper part through the sub-side first pipe 461B. It is supplied to the storage tank 41 .
- the circulating fluid F is kept at a predetermined height. Since it is possible to send out to the position, it is possible to improve the utilization efficiency of the wave and improve the power generation efficiency.
- FIG. 24 is cross-sectional views showing the inside of the power generator.
- a housing 511 of FIG. 24 may be used instead of the housing 1 of the power generation device 100 of the above embodiment.
- Housing 511 includes front opening 512 , seawater reservoir 513 , drain opening 514 , and internal front ramp 515 .
- the front side opening 512 has the same configuration as that of the embodiment with the same name.
- the seawater storage part 513 is a part that stores seawater in the housing 511 .
- the drain openings 514 are a plurality of openings for draining at least part of the seawater stored in the seawater storage part 513 to the outside of the housing 511 .
- the inner front side inclined portion 515 is a first inner side inclined portion extending from the front side opening 512 toward the float 27 inside the housing 511, and is upward (+Z direction).
- part of the seawater in the seawater reservoir 513 is drained through the drain opening 514, and the water surface inside the housing 511 descends as shown in FIG. In this case, the float 27 moves downward (-Z direction) by its own weight.
- FIG. 28 is a cross-sectional view showing the inside of the power generator. You may provide a maintenance means with respect to the electric power generating apparatus 100 of the said embodiment.
- the “maintenance means” is means for maintaining the amount of fluid stored in the upper storage means within a predetermined range.
- a first maintenance section 521 and a second maintenance section 522 may be provided.
- the first maintenance unit 521 is a maintenance means, specifically a first maintenance means for maintaining the circulating fluid F in the upper storage tank 21 at or above the lower limit storage amount. Secondly, the end of the third pipe 253 on the side of the upper storage tank 21 is closed.
- the configuration of the first maintenance section 521 is arbitrary, for example, it may be configured to include a float 521A, a plug 521B, and a weight 521C.
- the inside of the third pipe 253 can be always filled with the circulating fluid F, so that the air is supplied to the power generation portion 23 and the malfunction of the power generation portion 23 is prevented. You can prevent it from happening.
- the second maintenance unit 522 is a maintenance means, specifically a second maintenance means for maintaining the circulating fluid F in the upper storage tank 21 below the upper limit storage amount, for example, when the upper limit storage amount is exceeded , the circulating fluid F exceeding the upper limit storage amount in the upper storage tank 21 is supplied to the lower storage tank 22 .
- the configuration of the second maintenance section 522 is arbitrary, it may be configured, for example, by using a pipe or the like having an open top end (+Z direction) and bottom end ( ⁇ Z direction). 28 shows a case where the lower end ( ⁇ Z direction) of the second maintaining portion 522 is provided in the water of the circulating fluid F in the lower storage tank 22, but the lower end is located on the water surface. It may be configured to be provided on the upper side (+Z direction).
- FIG. 29 is a side view of the power generator. Guiding means may be provided for the power generator 100 of the above embodiment.
- the 'guiding means' is means for guiding the system-side accommodation means to the front side of the system-side accommodation means when the system-side accommodation means floats after submerging.
- a total of six floats 531 may be provided, three on each side (+Y direction, ⁇ Y direction) of the housing 1 in FIG.
- the float 531 is a guide means, and has, for example, an elliptical shape when viewed from the side, and the long sides of the ellipse are inclined along oblique directions.
- the housing 1 When a high wave rushes toward the front side (+X direction) of the housing 1, the housing 1 is submerged under the sea surface as described in the embodiment. It is assumed to move to the back side (-X direction) in the sea. In such a case, since the float 531 is provided obliquely, when the housing 1 rises from the sea, it can be guided (that is, move) toward the front side (+Z direction). It is possible to prevent the power generator from being washed away by high waves.
- any combination of the illustrated guiding means may be provided. It should be noted that the number and installation positions of the guide means provided in the housing 1 may be changed arbitrarily.
- FIG. 30 is a cross-sectional view showing part of the inside of the power generator.
- a relatively large housing 1A of FIG. 30 is used, and a plurality of sets of the components of FIG. 3 sets, etc.) may be provided.
- FIG. 31 is a perspective view of the housing, and FIG. 32 is a plan view showing the inside of the housing.
- a housing 541 of FIG. 31 may be used instead of the housing 1 of the power generator 100 of the above embodiment.
- the front side (+X direction) of the housing 541 is arcuate in plan view, and includes a front side opening 542 and a take-in plate 543, for example.
- the front side opening 542 has the same structure as that of the embodiment with the same name.
- a take-in plate 543 in FIGS. 31 and 32 is a take-in plate provided in the front opening 542 and is a plate member for applying waves and taking the waves into the housing 541 .
- the intake plate 543 is provided, for example, along the X-axis direction near the center of the front side opening 542 with reference to the left-right direction (Y-axis direction).
- the length of the intake plate 543 in the height direction (Z-axis direction) may be set equal to or slightly shorter than the length of the front opening 542 in the height direction.
- the wave between the arrow A11 and the arrow A13 that is, one end 544 in the left-right direction (Y-axis direction) of the front-side opening 542 and the intake plate 543 , ie, as many waves as correspond to between arrows A12 and A13.
- the capturing plate 543 for applying a wave and capturing the wave into the housing 541 for example, the wave can be sufficiently captured inside the housing 541. , it is possible to generate power appropriately.
- FIGS. 36 to 39 are perspective views of the housing.
- the housings shown in the respective figures may be used. Only the characteristic parts of each housing will be described below, and the parts whose description is omitted are assumed to be configured in the same manner as the housing 1 .
- a housing 551 in FIG. 33 includes a projecting portion 552 .
- the protruding portion 552 is a portion that accommodates the components shown in FIG. 7, and is a portion that protrudes upward (+Z direction), for example.
- a housing 561 in FIG. 34 is a housing having a damping structure that absorbs vibrations of the housing 561 caused by waves.
- the projecting portion 562 of the housing 561 by stacking a plurality of portions divided in the height direction (Z-axis direction), the stacked portions are mutually stacked in the horizontal direction. configured to swing independently of each other.
- the connecting portion 563 is the boundary of each portion, and the upper and lower portions of this boundary are configured to swing independently of each other in the horizontal direction. Then, each portion is connected using a vibration control damper for absorbing each vibration of each portion. In this way, a damping structure may be realized.
- the vibration control structure of the housing 561 may be realized using any technique used for the vibration control structure of the building. That is, a vibration damping structure may be realized by providing a vibration damping device in the housing 561 without using a laminated structure.
- a vibration damping structure may be realized by providing a vibration damping device in the housing 561 without using a laminated structure.
- the upper storage tank 21 (see FIG. 7) is divided into a plurality of protrusions 562 in FIG.
- the lower reservoir 22 (see FIG. 7) is fixed to one of the divided portions of the projecting portion 562 (that is, the upper reservoir 21 is It may be fixed to a portion other than the fixed portion).
- housings 571 and 572 of (a) and (b) are housings adopting a shape corresponding to the shape of the bottom of a general ship, and housing 573 of (c) is a so-called flow It is a housing that adopts a shape that corresponds to a linear shape.
- the housings 574 and 575 in FIGS. 36 and 37 are housings that employ a relatively low main body portion and protruding portions 574A and 575A that protrude from the main body portion. It should be noted that the projecting portions 574A and 575A are portions that accommodate the components shown in FIG.
- a housing 576 in FIG. 38 is a housing provided with a wall portion 576A in FIG. 38 in the housing 574 in FIG.
- the wall portion 576A is, for example, a member for forming a flow path for seawater run over by high waves with respect to the upper surface (+Z direction) of the main body portion (the portion where the wall portion 576A is provided) of the housing 576. be.
- the housing 577 of FIG. 39 is the housing 574 of FIG. 36 provided with a cavity 577Z of FIG. It is a housing divided into a first portion 577A and a second portion 577B.
- the first portion 577A is a portion that accommodates the upper storage tank 21 of FIG.
- the second portion 577B is a portion that accommodates the lower storage tank 22 and the like in FIG.
- a plurality of pillar members 577C may be used to support the first portion 577A.
- the first pipe 251 and the second pipe 252 may be exposed.
- FIG. 40 is a side view of the enclosure in a floated state; Note that FIG. 40 omits illustration of the detailed shape of the housing 1 (elements related to the outer flow path 14, etc.) (the same applies to FIGS. 41 to 44, which will be described later).
- a stopping means may be provided for the housing 1 of the power generator 100 of the above embodiment.
- the "retaining means” is means for retaining the system-side housing means at a predetermined position.
- the housing 1 may be provided with the stop portion 611 shown in (a) of FIG.
- the retaining part 611 is a retaining means, for example, it is suspended from the housing 1 using an arbitrary linear body such as a rope or a chain, and has a shape having a certain extent (for example, 3 m to 5 m It can be configured using a flat plate member or the like having a circular shape having a diameter of approx.
- the retaining portion 611 increases the resistance of the seawater during movement of the housing 1, so that the housing 1 can be retained.
- the installation position of the anchoring part 611 is arbitrary. For example, as shown in FIG. .
- the housing 1 may be provided with the retaining portions 612 and 613 shown in (b) of FIG.
- the retaining portion 612 is a retaining means, and for example, is basically the same as the retaining portion 611 described above, with a partly different shape.
- the retaining part 613 is retaining means, for example, a weight. It should be noted that the retaining portions 611 to 613 shown in these figures may be combined arbitrarily with respect to the housing 1, or the number of the portions to be provided may be arbitrarily changed. Since the retaining portions 611 to 613 provide resistance when the housing 1 moves, they also exhibit a function of preventing the housing 1 from shaking.
- a restraining floating body may be connected to the housing 1 of the power generator 100 of the above embodiment.
- the "suppressing floating body” is for suppressing the shaking of the system side containing means by waves, and the suppressing floating body floats at a position away from the system side containing means. It is connected to the containing means on or under water.
- the floating object 622 in FIG. 41 may be used.
- the floating object 622 is a floating object for suppression, for example, any object that floats on the surface of the sea. (assuming that they are not shown) or other shapes of floats may be used.
- the floating object 622 and the housing 1 are connected to each other using a connecting member 623 provided in the sea.
- the connecting member 623 is, for example, a relatively rigid member such as a member made of wood or metal, from the viewpoint of forming a set of floating objects including the floating object 622, the housing 1, and the connecting member 623. is preferably used.
- the total length from the floating object 622 to the housing 1 is half the length (for example, about 30 m) or more of the wave wavelength (for example, about 60 m). It is preferable to configure
- the floating object 622, the housing 1, and the connecting member 623 float as a unit, so it is possible to suppress the shaking of the housing 1 due to waves. Moreover, since the connecting member 623 is provided in the sea, the connecting member 623 is made difficult to see from the sea side, and the scenery can be maintained.
- the floating object 622 and the connecting member 623 may also be interpreted as a configuration of the power generation device 100 of the embodiment (that is, a component of the power generation system) (a stopping portion 621, a floating object 631, and a connecting member, which will be described later). The same is true for member 632).
- a retaining portion 621 may optionally be provided to the housing 1 of FIG.
- the anchoring part 621 is the anchoring means described above, and is, for example, a weight placed on the seabed.
- the retaining portion 621 may be fixed to the housing 1 using an arbitrary linear body 624 such as a rope or chain, for example.
- the retaining part 621 may also be connected to and fixed to the floating object 622 .
- the retaining portion 621 may be connected and fixed to both the housing 1 and the floating object 622 .
- the linear body 624 is passed through a ring-shaped connecting portion 621A provided in the retaining portion 621, and both ends of the linear body 624 are connected to the housing 1 and the floating object. 622 and may be fixed. It is assumed that the linear body 624 is inserted through the hole of the ring of the connecting portion 621A and is movable toward the housing 1 side or the floating object 622 side.
- the floating object 631 in FIG. 43 may be used.
- the floating object 631 is a suppressing floating object and has, for example, the same structure as the floating object 622 in FIG.
- connection member 632 has, for example, the same configuration as the connection member 623 in FIG.
- the floating object 631, the housing 1, and the connecting member 632 float as a unit, so it is possible to suppress the shaking of the housing 1 due to waves. Further, since the connecting member 632 is provided on the sea, the maintenance of the connecting member 632 itself is facilitated. It becomes easy for workers to come and go, and it is possible to improve the maintainability of the power generation system.
- FIG. 44 is a side view of the housing etc. in a floating state.
- a suppressing extension may be provided on the housing 1 of the power generator 100 of the above-described embodiment.
- the "extension for suppression” is for suppressing shaking of the system-side accommodation means due to waves, and extends from the system-side accommodation means along the water surface in the vicinity of the water surface.
- the restraining object 641 in FIG. 44 may be provided for the housing 1.
- the suppressing object 641 is an extending object for suppressing, for example, a flat plate shape extending from the outer surface (front, side, or rear) of the housing 1 to the sea surface (that is, along the water surface), For example, it has a flat plate shape.
- the width of the suppression object 641 (the width in the direction from the front side to the back side of the paper surface of FIG. 44) may be equal to or slightly narrower than the width of the housing 1 in the left-right direction (the Y-axis direction in FIG. 1).
- the length (X-axis direction) of the suppressing object 641 is such that the total length of the housing 1 and the suppressing object 641 is half the wavelength of the wave (for example, about 60 m). It is preferable that the length (for example, about 30 m) or more be formed.
- the shape of the suppressing object 641 is not limited to a flat plate shape, and may be configured by arranging a plurality of bar-like objects in the direction from the front side to the back side of the paper surface of FIG. 44 .
- the suppressing object 641 may be made of a material that has a relatively large buoyancy against its own weight when submerged in the sea.
- the suppressing object 641 and the housing 1 float as a unit. becomes possible.
- each element may be arbitrarily changed as long as the function of each element can be exhibited.
- the external shapes of the reservoir-side accommodating portion 2 and the float 27 in FIG. 7 may be circular or polygonal in plan view.
- entry prevention means may be provided to prevent objects such as fish and garbage from entering the front opening 16 of the housing 1 .
- a net or the like may be used as the intrusion prevention means.
- a lid may be provided for each storage tank in FIG. 7 to prevent the circulating fluid F from spilling.
- the lower end (-Z direction) of the third pipe 253 in FIG. 7 may be provided in the circulating fluid F of the lower storage tank 22 as shown in the figure, or alternatively, It may be configured to be provided above the water surface of the circulating fluid F (+Z direction).
- power plant 100 other power plants, and configurations having features associated with power plant 100 or other power plants may be interpreted as a "power generation system.”
- the power generation system can be used at any place as long as it is a place where waves are generated. may be used.
- a plurality of sets of the third pipe 253 and the power generation unit 23 may be provided between the upper storage tank 21 and the lower storage tank 22 in FIG.
- the number of the second pipes 252 in FIG. 7 is arbitrary, and for example, only one pipe may be provided for the delivery device 24, or three or more pipes may be provided.
- a combination in which one or more (for example, two) delivery devices 24 are provided for one float 27 (hereinafter referred to as a "float and delivery device set") is You may provide more than one inside.
- the specific method of providing this "float and delivery device set" is arbitrary, but for example, a plurality of sets may be arranged from the front side (+X direction) to the back side (-X direction), or , may be arranged along the lateral direction (Y-axis direction), or a combination thereof may be arranged.
- “sets of floats and delivery devices” may be provided in one housing 1 .
- the shape and size of the housing 1 here may be arbitrarily determined according to the number of "sets of floats and delivery devices".
- the features described in the embodiments or the features described in the modifications may be arbitrarily selected and combined or omitted.
- the outer channel 14 may be omitted. 5 and 8, the inner front inclined portion 17 or the inner side inclined portion 18 may be omitted.
- the upper storage tank 21 and the like may be provided directly inside the housing 1 by omitting the storage tank side accommodating portion 2 of FIG. 7 .
- the lower storage tank 22 in FIG. 7 may be omitted, and the circulating fluid F in the upper storage tank 21 may be directly supplied to the delivery device 24 .
- Figure 45 shows various shapes of floats. 45(a) to (f) show variations in the shape of the float, and more specifically, show the shape of the float when viewed from the side. That is, when the float in FIG. 45 is installed inside the housing of the power generator, the front side opening is provided in either the left direction or the right direction of the drawing in FIG. 45 .
- the float 27 or the like in FIG. 6 may be configured as a float in the shape of FIG.
- FIG. 46 is a cross-sectional view showing part of the inside of the power generator.
- a relatively large housing 1B shown in FIG. 46 may be used, and a plurality of floats may be provided for the housing 1B.
- the front side opening (not shown) of the housing 1B is provided on the right side of the drawing (ie, the right side of the drawing in FIG. 46 is the front side).
- the housing 1B is provided with an internal front inclined portion having the same configuration as the internal front inclined portion 17 of FIG. Then, based on the results of experiments or simulations to confirm that it moves up and down appropriately for power generation under wave force, the shape of each float is determined. They may be arranged side by side from the front side to the back side.
- FIG. 7 components other than the float 27 in FIG. , delivery device 24, etc. are also provided.
- FIG. 47 is a front view of the housing.
- a housing 1C of FIG. 47 may be adopted instead of the housing 1 of the power generation device 100 of the above embodiment.
- This housing 1C comprises a first portion 11C and a second portion 12C.
- the first portion 11C has an inclined side surface, so that, for example, the cross-sectional area in the horizontal direction decreases as it moves upward (+Z direction).
- 12 C of 2nd parts are parts provided in the upper part of 11 C of 1st parts, For example, it is a part with the same cross-sectional area in each height position.
- the power generation system of Supplementary Note 1 is a power generation system that generates power using the potential energy of a fluid raised to a predetermined height by wave force, and includes a floating body having a hollow portion and wave power received by the floating body. Based on, the delivery means for delivering the fluid toward the predetermined height position, the delivery means accommodated in the hollow portion of the floating body, and the delivery means raised to the predetermined height position and a power generation means for generating power using the potential energy of the fluid.
- the power generation system of Appendix 2 is the power generation system of Appendix 1, wherein the lower portion of the floating body protrudes so that the horizontal cross-sectional area decreases toward the bottom.
- the power generation system of Supplementary Note 3 is the power generation system according to Supplementary Note 1 or 2, further comprising system-side accommodation means for accommodating the floating body, the delivery means, and the power generation means, wherein the system-side accommodation means is the system
- the side accommodation means has an intake opening for taking in waves, and a part of the floating body on the intake opening side is inclined toward the intake opening side.
- the power generation system according to Appendix 4 is the power generation system according to any one of Appendixes 1 to 3, further comprising a first supply channel for supplying the fluid delivered by the delivery means to the predetermined height position. and the first supply channel reduces frictional resistance between the fluid supplied to the predetermined height position and the first supply channel, and supplies the fluid to the predetermined height position. It is configured to suppress bubbling of the fluid when
- the power generation system of Appendix 5 is the power generation system according to any one of Appendixes 1 to 4, wherein the upper storage means is provided at the predetermined height position, and the fluid delivered by the delivery means and a lower storage means provided below the upper storage means for storing the fluid supplied from the upper storage means, The power generation means generates power using the fluid supplied from the upper storage means to the lower storage means.
- the power generation system according to Appendix 6 is the power generation system according to any one of Appendixes 1 to 5, wherein a first supply channel for supplying the fluid delivered by the delivery means to the predetermined height position; a second supply channel for returning the fluid at a predetermined height position to the sending means, wherein the channel diameter of the second supply channel is larger than the channel diameter of the first supply channel.
- the power generation system of Appendix 7 is the power generation system according to any one of Appendixes 1 to 6, wherein the delivery means is a corrugated tube in which the fluid is stored, and the floating body moves up and down based on wave force. and a delivery channel communicating with the corrugated tube, the delivery channel delivering the fluid based on the increase or decrease in volume of the corrugated tube.
- the power generation system according to Supplementary Note 8 is the power generation system according to any one of Supplementary Notes 1 to 7, wherein the sending means moves the fluid to the predetermined height when the floating body moves upward based on wave force. and a second delivery means for delivering the fluid to the predetermined height position when the floating body moves downward due to wave force.
- the power generation system of Appendix 9 is the power generation system according to any one of Appendixes 1 to 8, wherein the upper storage means is provided at the predetermined height position, and the fluid delivered by the delivery means and maintaining means for maintaining the amount of the fluid stored in the upper storage means within a predetermined range.
- the power generation system of Appendix 10 is the power generation system according to any one of Appendixes 1 to 9, wherein the fluid is a mixed water containing a chain polymer, and the power generation system floats on the sea.
- the lower part of the floating body protrudes so that the horizontal cross-sectional area decreases as it goes downward, so that, for example, the position of the water surface with respect to the floating body changes due to waves.
- the buoyancy can be increased or decreased step by step, and the fluid can be reliably raised to a predetermined height position, so that it is possible to appropriately generate power.
- a part of the floating body on the intake opening side is inclined toward the intake opening side, so that, for example, the amount of reflection of waves by the floating body can be suppressed. Therefore, it is possible to improve the utilization efficiency of waves and improve the power generation efficiency.
- the first supply channel reduces frictional resistance between the fluid supplied to the predetermined height position and the first supply channel, and allows the fluid to reach the predetermined height.
- the fluid By being configured to suppress bubbling of the fluid when supplied to the height position, for example, the fluid can be appropriately raised to a predetermined height position, so it is possible to appropriately generate power. .
- the channel diameter of the second supply channel is larger than the channel diameter of the first supply channel. For example, since the fluid can be reliably raised to a predetermined height position, it is possible to appropriately generate power.
- the fluid by sending the fluid based on the increase or decrease in the volume of the corrugated tube, for example, the fluid can be reliably raised to a predetermined height position, so that power can be generated appropriately. becomes possible.
- the fluid Since the wave can be sent to the height position of , it is possible to improve the efficiency of wave utilization and the efficiency of power generation.
- the fluid is a mixed water containing a chain polymer, so for example, the fluid can be efficiently raised to a predetermined height position, so power generation efficiency can be improved. can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
まず、実施の形態の基本的概念について説明する。実施の形態は、発電システムに関する。本発明に係る発電システムは、波力によって所定の高さ位置まで上げられた流体の位置エネルギーを利用して発電するシステムであり、例えば、流体を循環させて発電する循環型揚水発電システムである。
次に、実施の形態の具体的内容について説明する。
最初に、実施の形態に係る発電装置の構成について説明する。図1は、発電装置の斜視図であり、図2は、発電装置の側面図であり、図3~図5は、発電装置の正面図であり、図6は、発電装置の内部を示す断面図であり、図7は、図6の一部の拡大図であり、図8は、発電装置の内部を示す平面図である。
図1~図6の筐体1は、発電装置100の構成要素を収容するシステム側収容手段であり、具体的には、海に浮かべられる(つまり、海に浮遊する)ものであり、例えば、図6の中空部10を有する箱形状のものである。筐体1の材質は任意であり、金属製としてもよいし、樹脂製としてもよいし、これらの組み合わせとしてもよいし、他の任意の材料であることとしてもよい。また、筐体1は海に浮かべられるので、公知の浮き等の浮力を増大させるための構成要素を任意に位置に設けたり、あるいは、浮力を増大させる材料によって形成したりしてもよい。
図1の筐体側正面部11は、抑制手段であって、第1外側傾斜部であり、例えば、筐体1における正面側(+X方向)を形成し、内外を区画する区画壁である。「抑制手段」とは、所定波高以上の波を受けた場合に筐体1の少なくとも一部を水中(つまり、海中)に潜らせることにより、当該波による筐体1の揺れを抑制するための手段である。
図1の筐体側側面部12は、抑制手段であって、第1外側傾斜部であり、例えば、筐体1における両側面側(+Y方向、-Y方向)を形成し、内外を区画する区画壁である。両側の筐体側側面部12各々は、例えば、図4に示すように、上側(+Z方向)に向かうにつれて相互に近づくように湾曲して傾斜しており、つまり、所定波高以上(一例としては、図4の流路側壁部141上端部(+Z方向)よりも高い位置に到達する程度の波高であり、2m~3m以上等)の波を受けた場合に当該波が乗り上げるように傾斜している。
図1の筐体側背面部13は、例えば、筐体1における背面側(-方向)を形成し、内外を区画する区画壁である。この筐体側背面部13の形状は任意であり、例えば、筐体側正面部11と同様に傾斜した形状としてもよし、あるいは、その他の形状としてもよいが、本実施の形態では、僅かに傾斜している形状として構成されている場合が図示されている。
図1の外側流路14は、抑制手段である。外側流路14は、例えば、図4に示すように、筐体1の両側面に設けられており、また、図2に示すように、筐体1における正面側(+X方向)と背面側(-X方向)との間において延在しており、所定波高以上(一例としては、流路底部142又は流路側壁部141上端部(+Z方向)の高さよりも高い波高であり、2m~3m以上等)の波を受けた場合に当該波が乗り上げるように構成されている。外側流路14は、例えば、図2~図4に示すように、所定高さの流路側壁部141、流路底部142、及び筐体側側面部12の一部によって取り囲まれている流路である。
図1の正面側傾斜部15は、抑制手段であって、第2外側傾斜部であり、例えば、図1~図4に示すように、筐体1の正面側(+X方向)に設けられており、また、外側流路14に連続しており、所定波高以上の波を受けた場合に当該波を外側流路14へ誘導するように構成されている。なお、正面側傾斜部15は、筐体側正面部11における正面側(+X方向)面と同一面上に連続して形成してもよいし、あるいは、当該正面側の面に対して段差を設けて当該正面側の面とは他の面として形成してもよい。なお、「波を誘導する」とは、例えば、波によって供給される海水を誘導すること、及び波自体を誘導することを含む概念であるものと解釈してもよい。
図1の正面側開口部16は、筐体1の内部に波を取り込むための取込開口部であり、例えば、筐体側正面部11に設けられている開口であり、また、中空部10(図6)に連通している開口である。正面側開口部16は、例えば、図4に示すように、正面視で略矩形となっている。正面側開口部16は、例えば、筐体1が海に浮かべられた状態において、波が立っていない場合の海面から正面側開口部16の上端部(+Z方向)までの距離D1(図4)が所定距離となるように形成されている。
図5、図6及び図8の内部正面側傾斜部17は、筐体1の内部において正面側開口部16からフロート27へ向けて延在している第1内側傾斜部であって、正面側開口部16から離れるに従って上方(+Z方向)に位置するように傾斜している第1内側傾斜部である。
図5及び図8の内部側面側傾斜部18は、筐体1の内部において内部正面側傾斜部17の両側に設けられている第2内側傾斜部であって、内部側面側傾斜部18よりも急な傾斜となっている第2内側傾斜部である。内部側面側傾斜部18は、例えば、内壁部18Aよりも緩やかな傾斜になっている。なお、内壁部18Aは、左右方向(Y方向)を基準にして、各内部側面側傾斜部18における内部正面側傾斜部17の反対側に設けられている垂直に立設している壁である。
図5、図6及び図8の内部底部19は、筐体1の中空部10における底であり、例えば、平坦になっている。
図6及び図7の貯留槽側収容部2は、上部貯留槽21及び下部貯留槽22等を収容する貯留手段側収容手段であり、例えば、図6に示すように、筐体1の内部において当該筐体1の上部(+Z側)に、吊下部20を介して筐体1に対して揺動可能に吊り下げられた状態で設けられている。この貯留槽側収容部2は、筐体1に吊り下げられているので、波を受けて筐体1が揺れた場合であっても、当該筐体1とは独立して揺れることになるので、筐体1の揺れの大きさが直接伝達されることを防止することができ、貯留槽側収容部2の揺れ(詳細には、収容されている上部貯留槽21及び下部貯留槽22等の揺れ)の大きさを軽減することが可能となる。
図7の上部貯留槽21は、循環流体Fを貯留する貯留手段であり、具体的には、所定の高さ位置に設けられている上部貯留手段であって、送出装置24によって送出された循環流体Fを貯留する上部貯留手段である。上部貯留槽21が設けられる位置は、発電部23よりも高い位置である限りにおいて任意であり、例えば、発電部23での発電に関する各種実験又はシミュレーション等を行って定めてもよい。上部貯留槽21は、例えば、貯留槽側収容部2側に固定されて設けられている。
図7の下部貯留槽22は、循環流体Fを貯留する貯留手段であり、具体的には、上部貯留槽21よりも下方に設けられている下部貯留手段であって、上部貯留槽21から供給された循環流体Fを貯留する下部貯留手段である。下部貯留槽22が設けられる位置は、発電部23及び上部貯留槽21よりも低い位置である限りにおいて任意であり、例えば、発電に関する各種実験又はシミュレーション等を行って定めてもよい。下部貯留槽22は、例えば、貯留槽側収容部2側に固定されて設けられている。
図7の発電部23は、所定の高さ位置まで上げられた循環流体Fの位置エネルギーを利用して発電する発電手段であり、具体的には、上部貯留槽21から下部貯留槽22に供給される循環流体Fを利用して発電する発電手段である。発電部23は、例えば、第3配管253を自重で流動する(下降する)循環流体Fのエネルギーを利用して発電する装置であり、公知の発電機を用いて構成することができる。発電部23は、例えば、第3配管253の所定位置に設けられている。
図7の送出装置24は、フロート27が受ける波力に基づいて、循環流体Fを所定の高さ位置へ向けて送出する送出手段であって、フロート27の中空部27Aに収容されている送出手段である。送出装置24は、例えば、フロート27が波力に基づいて上方に移動する場合に循環流体Fを所定の高さ位置へ送出する第1送出手段である。送出装置24は、例えば、第1配管251を介して循環流体Fを上昇させて上部貯留槽21に供給し、また、第2配管252を介して循環流体Fが供給されるものである。送出装置24は、例えば、蛇腹管241、及びラッパ管242を備える。
図7の蛇腹管241は、内部に循環流体Fが貯留される蛇腹管であって、波力に基づくフロート27の上下動に応じて内部の容積(つまり、蛇腹管241の中空部の容積)が増減する蛇腹管である。蛇腹管241は、ラッパ管242の中空部に連通している中空部を有しており、循環流体Fは送出装置24内において蛇腹管241の中空部及びラッパ管242の中空部の相互間で移動可能となっている。
図7のラッパ管242は、蛇腹管241に連通している送出流路であって、蛇腹管241の容積の増減に基づいて循環流体Fを送出する送出流路である。ラッパ管242は、例えば、第1配管251及び第2配管252が接続されている。ラッパ管242は、例えば、高さ方向(Z軸方向)において流路径が同一となる部分(図面下側部分)と、上側(+Z方向)に向かうにつれて流路径が縮小する部分とを有している。ラッパ管242は、例えば、貯留槽側収容部2側に固定されて設けられており、金属製又は樹脂製としてもよい。
図7の第1配管251は、送出装置24によって送出された循環流体Fを所定の高さ位置に供給する第1供給流路である。第1配管251は、例えば、貯留槽側収容部2側に固定されて設けられている(第2配管252及び第3配管253も同様である)。第1配管251の下端部は、送出装置24に接続されており、また、第1配管251の上端部251Aは、上部貯留槽21側に設けられている。
図7の第2配管252は、所定の高さ位置の循環流体Fを送出装置24に戻す第2供給流路であり、具体的には、上部貯留槽21の循環流体Fを下部貯留槽22を介して送出装置24に戻す流路である。第2配管252の下端部は、送出装置24に接続されており、また、第2配管252の上端部は、下部貯留槽22の底に接続されている。
図7の第3配管253は、循環流体Fを発電部23に供給するための流路である。第3配管253の下端部は、下部貯留槽22側に設けられており、また、第3配管253の上端部は、上部貯留槽21の底に接続されている。
図7の第1配管側逆止弁261は、循環流体Fを図7の矢印が示す方向(送出装置24から上部貯留槽21に向かう方向)へ流動させ、逆流を防止するためのものである。第2配管側逆止弁262は、循環流体Fを図7の矢印が示す方向(下部貯留槽22から送出装置24に向かう方向)へ流動させ、逆流を防止するためのものである。
図6及び図7のフロート27は、筐体1の内部で正面側開口部16を介して中空部10に取り込まれた海水に浮かんでいる(浮遊している)浮遊体であり、具体的には、正面側開口部16を介して中空部10に取り込まれた波の力(波力)に基づいて上下動するものである。フロート27は、送出装置24等が収容されている中空部27Aを有している。
次に、発電装置100内での循環流体Fの循環について説明する。図9~図13は、循環流体Fの循環について説明するための図である。
次に、発電装置100での発電について説明する。図7の上部貯留槽21から下部貯留槽22に第3配管253を介して供給されて流動する循環流体Fを利用して、発電部23で発電を行う。特に、発電部23で発電している際中も循環流体Fが波力によって上部貯留槽21に貯留されることになるので、例えば、上部貯留槽21に循環流体Fが貯留されている状態を維持して、発電部23で常時発電することができるので、発電量を向上させることが可能となる。また、波力を用いて循環流体Fを上部貯留槽21へ上げていることにより、当該循環流体Fをあげるための装置を動作させるための電力が不要となり、当該電力のコスト(費用)を省略できるので、低コストで発電することが可能となる。この発電した電力の利用手法は任意であり、例えば、発電装置100に対して配電用の電線を接続して、当該電線を介して配電することにより利用してもよい。
次に、発電装置100が台風等の影響で高波を受ける場合について説明する。
次に、発電装置100が台風等の影響で強風を受ける場合について説明する。
本実施の形態によれば、フロート27が受ける波力に基づいて循環流体Fを所定の高さ位置である上部貯留槽21へ向けて送出し、所定の高さ位置である上部貯留槽21まで上げられた循環流体Fの位置エネルギーを利用して発電することにより、例えば、低コストで発電することが可能となる。
以上、本発明に係る実施の形態について説明したが、本発明の具体的な構成及び手段は、請求の範囲に記載した各発明の技術的思想の範囲内において、任意に改変及び改良することができる。
まず、発明が解決しようとする課題や発明の効果は、上述の内容に限定されるものではなく、発明の実施環境や構成の詳細に応じて異なる可能性があり、上述した課題の一部のみを解決したり、上述した効果の一部のみを奏したりすることがある。また、明示的に記載されている課題以外の、本願の記載事項から導かれる課題を、本願の課題であるものと解釈してもよい。
また、上述した構成は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各部の分散や統合の具体的形態は図示のものに限られず、その全部または一部を、任意の単位で機能的または物理的に分散又は統合して構成できる。
図14~図15は、発電装置の内部を示す断面図である。上記実施の形態の発電装置100に対して、排水調整手段を設けてもよい。「排水調整手段」とは、システム側収容手段の内部に取り込まれた波に関する排水時間を調整するための手段であって、システム側収容手段の内部に設けられている手段である。
図16は、発電装置の内部を示す断面図である。上記実施の形態の発電装置100に対して、緩衝材33を設けてもよい。緩衝材33は、フロート27への衝撃を和らげるための部材である。緩衝材33をフロート27の下側(-Z方向)に設けることにより、フロート27が大目に下側(-Z方向)に移動した場合に、内部底部19に直接当たることを防止できる。
図17は、発電装置の内部を示す断面図であり、図18は、フロートの様々な形状を示す図である。上記実施の形態の発電装置100のフロート27の代わりに、図18のフロート2711を用いてもよい。フロート2711は、特記する場合を除いて、フロート27と同様である。フロート2711における正面部2711A(つまり、フロート2711における正面側の一部)は、図17に示すように、正面側開口部16側に向かって傾斜している。このように構成することにより、正面側開口部16から取り込まれる波に関して、正面部2711Aでの反射量を抑えることができるので、フロート2711を適切に上下動させることが可能となる。
図19は、送出装置を示す図である。図19において、(a)は、送出装置24Aの側面図であって、便宜上、ラッパ管242Aの内部の各逆止弁が図示されており、(b)は背面図である。実施の形態の発電装置100において、送出装置24の代わりに、送出装置24Aを用いてもよい。送出装置24Aは、1個のラッパ管242Aに対して、複数の蛇腹管241Aが設けられているものである。
図20は、他の発電装置の内部を示す断面図であり、図21は、副送出装置を示す図であり、図22~図23は、循環流体の循環について説明するための図である。上記実施の形態の発電装置100の図7の構成要素を図20の構成要素に置き換えて、他の発電装置を構成してもよい。なお、他の発電装置は、特記する場合を除いて、発電装置100と同様に構成されていることとする。他の発電装置は、概略的には、フロート48が上側(+Z方向)に移動する場合及び下側(-Z方向)に移動する場合の両方の場合において、送出装置から上部貯留槽41へ循環流体Fを供給するように構成されている。
図20の貯留槽側収容部4、上部貯留槽41、下部貯留槽42、発電部43、第3配管463、及びフロート48は、実施の形態の同一名称の構成と同様である。
図20の主送出装置44は、フロート48が受ける波力に基づいて、循環流体Fを所定の高さ位置へ向けて送出する送出手段であって、フロート48の中空部に収容されている送出手段である。主送出装置44は、例えば、フロート48が波力に基づいて上方に移動する場合に循環流体Fを所定の高さ位置へ送出する第1送出手段である。
図20の副送出装置45は、フロート48が受ける波力に基づいて、循環流体Fを所定の高さ位置へ向けて送出する送出手段であって、フロート48の中空部に収容されている送出手段である。副送出装置45は、例えば、フロート48が波力に基づいて下方に移動する場合に循環流体Fを所定の高さ位置へ送出する第2送出手段である。副送出装置45は、例えば、副側第1配管461Bを介して循環流体Fを上昇させて上部貯留槽41に供給し、また、副側第2配管462Bを介して循環流体Fが供給されるものである。副送出装置45は、例えば、蛇腹管451、及び接続部材452を備える。
図20の蛇腹管451は、循環流体が貯留される蛇腹管であって、波力に基づくフロート48の上下動に応じて容積(つまり、蛇腹管241の中空部の容積)が増減する蛇腹管である。
図20の接続部材452は、蛇腹管451の上端部(+Z方向)をフロート48に接続する部材であり、図21(b)に示すように、L字形状となっている部材である。接続部材452の下端部(-Z方向)は、フロート48の底に固定されている。そして、蛇腹管451が接続部材452を介して接続されているので、フロート48が上側(+Z方向)に移動した場合、蛇腹管451は接続部材452の上部452Aに引っ張られることにより広がり、当該蛇腹管451の容積は増大する。一方、フロート48が下側(-Z方向)に移動した場合、蛇腹管451は接続部材452の上部452Aに押されることにより縮んで当該蛇腹管451の容積は増大する。
図20の主側第1配管461Aは、図7の第1配管251と同様に構成されている。図20の副側第1配管461Bは、副送出装置45によって送出された循環流体Fを所定の高さ位置に供給する第1供給流路であり、例えば、貯留槽側収容部4側に固定されて設けられている。副側第1配管461Bの下端部は、連通部460を介して副送出装置45の蛇腹管451に接続されており、また、副側第1配管461Bの上端部は、上部貯留槽21側に設けられている。
図20の主側第2配管462Aは、図7の第2配管252と同様に構成されている。図20の副側第2配管462Bは、所定の高さ位置の循環流体Fを副送出装置45に戻す第2供給流路であり、具体的には、上部貯留槽41の循環流体Fを下部貯留槽42を介して副送出装置45に戻す流路である。副側第2配管462Bの下端部は、連通部460を介して副送出装置45の蛇腹管451に接続されており、また、副側第2配管462Bの上端部は、下部貯留槽42の底に接続されている。副側第2配管462Bの流路径は、例えば、副側第1配管461Bの流路径よりも大きくなるように構成してもよい。
図20の逆止弁47は、循環流体Fを図20の矢印が示す方向(下部貯留槽42から副送出装置45に向かう方向、及び副送出装置45から上部貯留槽41に向かう方向)へ流動させ、逆流を防止するためのものである。
次に、他の発電装置内での循環流体Fの循環について説明する。
図24~図27は、発電装置の内部を示す断面図である。上記実施の形態の発電装置100の筐体1の代わりに、図24の筐体511を用いてもよい。筐体511は、正面側開口部512、海水貯留部513、排水開口部514、及び内部正面側傾斜部515を備える。
図28は、発電装置の内部を示す断面図である。上記実施の形態の発電装置100に対して、維持手段を設けてもよい。「維持手段」とは、上部貯留手段における流体の貯留量を所定範囲内の貯留量に維持する手段である。
図29は、発電装置の側面図である。上記実施の形態の発電装置100に対して、誘導手段を設けてもよい。「誘導手段」とは、システム側収容手段が潜った後に浮上する場合に、システム側収容手段を当該システム側収容手段の正面側へ誘導する手段である。
図30は、発電装置の内部の一部を示す断面図である。上記実施の形態の発電装置100の筐体1の代わりに、比較的大きなサイズの図30の筐体1Aを用いて、当該筐体1Aに対して、図7の構成要素を複数セット(例えば、3セット等)設けてもよい。
図31は、筐体の斜視図であり、図32は、筐体の内部を示す平面図である。上記実施の形態の発電装置100の筐体1の代わりに、図31の筐体541を用いてもよい。
図33~図34は、発電装置の内部を示す断面図であり、図35は、筐体の図であり、図36~図39は、筐体の斜視図である。上記実施の形態の発電装置100の筐体1の代わりに、各図の筐体を用いてもよい。各筐体について、特徴的な部分のみ以下説明し、説明を省略する部分については、筐体1と同様に構成されていることとする。
図40は、浮かべられた状態の筐体の側面図である。なお、図40では、筐体1の詳細形状(外側流路14に関する要素等)の図示は省略されている(後述の図41~図44も同様である)。上記実施の形態の発電装置100の筐体1に対して、停留手段を設けてもよい。「停留手段」とは、システム側収容手段を所定位置に停留させるための手段である。
図41~図43は、浮かべられた状態の筐体等の側面図である。上記実施の形態の発電装置100の筐体1に対して、抑制用浮遊体を連結して用いてもよい。「抑制用浮遊体」とは、波によるシステム側収容手段の揺れを抑制するためのものであり、抑制用浮遊体は、システム側収容手段から離れた位置で浮遊しており、例えば、システム側収容手段に対して水上又は水中を介して連結されるものである。
図44は、浮かべられた状態の筐体等の側面図である。上記実施の形態の発電装置100の筐体1に対して、抑制用延在物を設けてもよい。「抑制用延在物」とは、波によるシステム側収容手段の揺れを抑制するためのものであり、水面近傍で当該水面に沿ってシステム側収容手段から延在しているものである。
また、各要素の機能を発揮し得る限りにおいて、各要素の形状を任意に変更してもよい。例えば、図7の貯留槽側収容部2及びフロート27の外形を、平面視において円形となる形状としてもよいし、あるいは、多角形となる形状としてもよい。
また、筐体1の正面側開口部16に対して、魚、ゴミ等の対象物が入り込むのを防止するための進入防止手段を設けてもよい。進入防止手段としては、例えば、網等を用いてもよい。
また、発電装置100、他の発電装置、発電装置100又は他の発電装置に関連する特徴を有する構成を「発電システム」と解釈してもよい。
また、発電システムの利用場所は、波が生じる場所である限りにおいて任意であり、例えば、自然に波が生じる海、又は湖、あるいは、人工の波が生じる人口池、あるいは、プール等で発電システムを利用してもよい。
また、例えば、図7の上部貯留槽21及び下部貯留槽22の間に第3配管253及び発電部23を複数セット設けてもよい。
また、実施の形態で説明した各特徴又は変形例で説明した各特徴に関して、任意に選択して組み合わせたり、あるいは、省略したりしてもよい。例えば、図1の筐体1において、外側流路14を省略してもよい。また、図5及び図8の内部正面側傾斜部17又は内部側面側傾斜部18を省略してもよい。また、例えば、図7の貯留槽側収容部2を省略して、上部貯留槽21等を筐体1の内部に直接設けてもよい。また、例えば、図7の下部貯留槽22を省略して、上部貯留槽21の循環流体Fが送出装置24に対して直接供給されるように構成してもよい。
図45は、フロートの様々な形状を示す図である。なお、図45の(a)~(f)については、フロートの形状のバリエーションが図示されており、具体的には、フロートを側面から見た状態の形状が図示されている。すなわち、図45のフロートを発電装置の筐体の内部に設置した場合、図45の図面左方向又は図面右方向の何れかの方向に正面側開口部が設けられることになる。図6のフロート27等を、図45の形状のフロートとして構成してもよい。
図46は、発電装置の内部の一部を示す断面図である。上記実施の形態の発電装置100の筐体1の代わりに、比較的大きなサイズの図46の筐体1Bを用いて、当該筐体1Bに対して、複数のフロートを設けてもよい。図46においては、図面右側に筐体1Bの正面側開口部(不図示)が設けられていることとする(すなわち、図46の図面右側が正面側であることとする)。また、図46では不図示であるが、筐体1Bには、図6の内部正面側傾斜部17と同様な構成の内部正面側傾斜部が設けられていることとする。そして、波力を受けて発電のために適切に上下動することを確認する実験又はシミュレーションを行った結果に基づいて、各フロートの形状を決定し、例えば、図46のフロート701~705を、正面側から背面側に向けて並べて設けてもよい。
図47は、筐体の正面図である。上記実施の形態の発電装置100の筐体1の代わりに、図47の筐体1Cを採用してもよい。この筐体1Cは、第1部分11C及び第2部分12Cを備えている。第1部分11Cは、側面が傾斜していることにより、例えば、上側(+Z方向)に移動するにつれて、水平方向における断面積が小さくなる部分である。第2部分12Cは、第1部分11Cの上部に設けられている部分であり、例えば、各高さ位置での断面積が同じになっている部分である。
付記1の発電システムは、波力によって所定の高さ位置まで上げられた流体の位置エネルギーを利用して発電する発電システムであって、中空部を有する浮遊体と、前記浮遊体が受ける波力に基づいて、前記流体を前記所定の高さ位置へ向けて送出する送出手段であって、前記浮遊体の前記中空部に収容されている前記送出手段と、前記所定の高さ位置まで上げられた前記流体の位置エネルギーを利用して発電する発電手段と、を備える。
付記1に記載の発電システムによれば、浮遊体が受ける波力に基づいて流体を所定の高さ位置へ向けて送出し、所定の高さ位置まで上げられた流体の位置エネルギーを利用して発電することにより、例えば、低コストで発電することが可能となる。
1A 筐体
1B 筐体
1C 筐体
2 貯留槽側収容部
4 貯留槽側収容部
10 中空部
11 筐体側正面部
11C 第1部分
12 筐体側側面部
12C 第2部分
13 筐体側背面部
14 外側流路
15 正面側傾斜部
16 正面側開口部
17 内部正面側傾斜部
18 内部側面側傾斜部
18A 内壁部
19 内部底部
20 吊下部
21 上部貯留槽
22 下部貯留槽
23 発電部
24 送出装置
24A 送出装置
27 フロート
31 排水調整部
32 設置台
33 緩衝材
41 上部貯留槽
42 下部貯留槽
43 発電部
44 主送出装置
45 副送出装置
47 逆止弁
48 フロート
100 発電装置
141 流路側壁部
142 流路底部
241 蛇腹管
242 ラッパ管
251 第1配管
251A 上端部
251B ガイド板
251C 開放部
252 第2配管
253 第3配管
261 第1配管側逆止弁
262 第2配管側逆止弁
27A 中空部
271 第1部分
272 第2部分
241A 蛇腹管
242A ラッパ管
441 蛇腹管
442 ラッパ管
451 蛇腹管
452 接続部材
452A 上部
460 連通部
461A 主側第1配管
462A 主側第2配管
461B 副側第1配管
462B 副側第2配管
463 第3配管
511 筐体
512 正面側開口部
513 海水貯留部
514 排水開口部
515 内部正面側傾斜部
521 第1維持部
521A 浮き
521B 栓
521C 重り
522 第2維持部
531 浮き
532 フィン
533 フィン
541 筐体
542 正面側開口部
543 取込板
544 端部
551 筐体
552 突出部
561 筐体
562 突出部
563 接続部
571 筐体
572 筐体
573 筐体
574 筐体
574A 突出部
575 筐体
574A 突出部
576 筐体
576A 壁部
577 筐体
577A 第1部分
577B 第2部分
577C 柱材
577Z 空洞
611 停留部
612 停留部
613 停留部
621 停留部
622 浮遊物体
623 連結部材
624 線状体
621A 接続部
631 浮遊物体
632 連結部材
641 抑制物体
701 フロート
702 フロート
703 フロート
704 フロート
705 フロート
711 線
712 線
2711 フロート
2711A 正面部
A11 矢印
A12 矢印
A13 矢印
D1 距離
F 循環流体
Claims (10)
- 波力によって所定の高さ位置まで上げられた流体の位置エネルギーを利用して発電する発電システムであって、
中空部を有する浮遊体と、
前記浮遊体が受ける波力に基づいて、前記流体を前記所定の高さ位置へ向けて送出する送出手段であって、前記浮遊体の前記中空部に収容されている前記送出手段と、
前記所定の高さ位置まで上げられた前記流体の位置エネルギーを利用して発電する発電手段と、
を備える発電システム。 - 前記浮遊体の下部は、下方に向かうにつれて水平方向の断面積が小さくなるように突出している、
請求項1に記載の発電システム。 - 前記浮遊体、前記送出手段、及び前記発電手段を収容するシステム側収容手段、を備え、
前記システム側収容手段は、当該システム側収容手段の内部に波を取り込むための取込開口部を有しており、
前記浮遊体における前記取込開口部側の一部は、当該取込開口部側に向かって傾斜している、
請求項1又は2に記載の発電システム。 - 前記送出手段によって送出された前記流体を前記所定の高さ位置に供給する第1供給流路、を備え、
前記第1供給流路は、前記所定の高さ位置に供給される前記流体と前記第1供給流路との間の摩擦抵抗を軽減し、且つ前記流体を前記所定の高さ位置に供給する場合の前記流体の泡立ちを抑制するように構成されている、
請求項1から3の何れか一項に記載の発電システム。 - 前記所定の高さ位置に設けられている上部貯留手段であって、前記送出手段によって送出された前記流体を貯留する前記上部貯留手段と、
前記上部貯留手段よりも下方に設けられている下部貯留手段であって、前記上部貯留手段から供給された前記流体を貯留する前記下部貯留手段と、を備え、
前記発電手段は、前記上部貯留手段から前記下部貯留手段に供給される前記流体を利用して発電する、
請求項1から4の何れか一項に記載の発電システム。 - 前記送出手段によって送出された前記流体を前記所定の高さ位置に供給する第1供給流路と、
前記所定の高さ位置の前記流体を前記送出手段に戻す第2供給流路と、を備え、
前記第2供給流路の流路径は、前記第1供給流路の流路径よりも大きい、
請求項1から5の何れか一項に記載の発電システム。 - 前記送出手段は、
前記流体が貯留される蛇腹管であって、波力に基づく前記浮遊体の上下動に応じて容積が増減する前記蛇腹管と、
前記蛇腹管に連通している送出流路であって、前記蛇腹管の容積の増減に基づいて前記流体を送出する送出流路と、を備える、
請求項1から6の何れか一項に記載の発電システム。 - 前記送出手段は、
前記浮遊体が波力に基づいて上方に移動する場合に前記流体を前記所定の高さ位置へ送出する第1送出手段と、
前記浮遊体が波力に基づいて下方に移動する場合に前記流体を前記所定の高さ位置へ送出する第2送出手段と、を備える、
請求項1から7の何れか一項に記載の発電システム。 - 前記所定の高さ位置に設けられている上部貯留手段であって、前記送出手段によって送出された前記流体を貯留する前記上部貯留手段と、
前記上部貯留手段における前記流体の貯留量を所定範囲内の貯留量に維持する維持手段、を備える、
請求項1から8の何れか一項に記載の発電システム。 - 前記流体は、鎖状高分子を含む混合水から成る流体であり、
前記発電システムは、海に浮かんでいる、
請求項1から9の何れか一項に記載の発電システム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021562925A JP7162314B1 (ja) | 2021-10-19 | 2021-10-19 | 発電システム |
AU2021469463A AU2021469463A1 (en) | 2021-10-19 | 2021-10-19 | Power generation system |
EP21961332.0A EP4421309A1 (en) | 2021-10-19 | 2021-10-19 | Power generation system |
PCT/JP2021/038538 WO2023067679A1 (ja) | 2021-10-19 | 2021-10-19 | 発電システム |
US18/640,319 US20240263606A1 (en) | 2021-10-19 | 2024-04-19 | Power Generation System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/038538 WO2023067679A1 (ja) | 2021-10-19 | 2021-10-19 | 発電システム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/640,319 Continuation-In-Part US20240263606A1 (en) | 2021-10-19 | 2024-04-19 | Power Generation System |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023067679A1 true WO2023067679A1 (ja) | 2023-04-27 |
Family
ID=83806034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/038538 WO2023067679A1 (ja) | 2021-10-19 | 2021-10-19 | 発電システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240263606A1 (ja) |
EP (1) | EP4421309A1 (ja) |
JP (1) | JP7162314B1 (ja) |
AU (1) | AU2021469463A1 (ja) |
WO (1) | WO2023067679A1 (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62502764A (ja) * | 1985-04-23 | 1987-10-22 | トンプソン,ランドール,ジユニア | 流体液面の上下動からエネルギ−を生成する装置 |
JPS6419076U (ja) * | 1987-07-24 | 1989-01-31 | ||
JPH02252976A (ja) * | 1989-03-25 | 1990-10-11 | Kazuo Murazaki | 潮位発電装置 |
JPH11223174A (ja) * | 1998-02-06 | 1999-08-17 | Shiki Densetsu:Kk | 波動ポンプによる発電システム、及び揚水システム |
JP2003166461A (ja) | 2001-11-30 | 2003-06-13 | Toshiba Eng Co Ltd | 揚水発電設備のガイドベーン制御方法、及び、ガイドベーン制御装置 |
JP2009511783A (ja) * | 2005-10-10 | 2009-03-19 | トライデント エナジー リミテッド | 波浪エネルギー変換設備用フロート |
JP3153338U (ja) * | 2009-06-08 | 2009-09-03 | 定義 松倉 | 波力、風力、太陽光、雨の自然エネルギーの貯蔵システムの発電装置 |
JP2013515903A (ja) * | 2009-12-23 | 2013-05-09 | ハッサヴァリ,ネーダー | 発電プラント設備 |
JP2015014230A (ja) * | 2013-07-04 | 2015-01-22 | 三井造船株式会社 | 波力発電システム |
JP2017141799A (ja) * | 2016-02-12 | 2017-08-17 | 清水建設株式会社 | 発電システム |
JP2018066367A (ja) * | 2016-10-21 | 2018-04-26 | 浩平 速水 | 発電システム |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0323384A (ja) * | 1989-06-20 | 1991-01-31 | Katsuyuki Kawaguchi | 浮体式波動ポンプ |
JP2522175Y2 (ja) * | 1990-09-25 | 1997-01-08 | 黒石鉄工株式会社 | 波動振動式発電発光フロート |
US7184363B2 (en) * | 2004-02-02 | 2007-02-27 | Northrop Grumman Corporation | Buoyant container with wave generated power production |
-
2021
- 2021-10-19 JP JP2021562925A patent/JP7162314B1/ja active Active
- 2021-10-19 WO PCT/JP2021/038538 patent/WO2023067679A1/ja active Application Filing
- 2021-10-19 AU AU2021469463A patent/AU2021469463A1/en active Pending
- 2021-10-19 EP EP21961332.0A patent/EP4421309A1/en active Pending
-
2024
- 2024-04-19 US US18/640,319 patent/US20240263606A1/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62502764A (ja) * | 1985-04-23 | 1987-10-22 | トンプソン,ランドール,ジユニア | 流体液面の上下動からエネルギ−を生成する装置 |
JPS6419076U (ja) * | 1987-07-24 | 1989-01-31 | ||
JPH02252976A (ja) * | 1989-03-25 | 1990-10-11 | Kazuo Murazaki | 潮位発電装置 |
JPH11223174A (ja) * | 1998-02-06 | 1999-08-17 | Shiki Densetsu:Kk | 波動ポンプによる発電システム、及び揚水システム |
JP2003166461A (ja) | 2001-11-30 | 2003-06-13 | Toshiba Eng Co Ltd | 揚水発電設備のガイドベーン制御方法、及び、ガイドベーン制御装置 |
JP2009511783A (ja) * | 2005-10-10 | 2009-03-19 | トライデント エナジー リミテッド | 波浪エネルギー変換設備用フロート |
JP3153338U (ja) * | 2009-06-08 | 2009-09-03 | 定義 松倉 | 波力、風力、太陽光、雨の自然エネルギーの貯蔵システムの発電装置 |
JP2013515903A (ja) * | 2009-12-23 | 2013-05-09 | ハッサヴァリ,ネーダー | 発電プラント設備 |
JP2015014230A (ja) * | 2013-07-04 | 2015-01-22 | 三井造船株式会社 | 波力発電システム |
JP2017141799A (ja) * | 2016-02-12 | 2017-08-17 | 清水建設株式会社 | 発電システム |
JP2018066367A (ja) * | 2016-10-21 | 2018-04-26 | 浩平 速水 | 発電システム |
Also Published As
Publication number | Publication date |
---|---|
EP4421309A1 (en) | 2024-08-28 |
JP7162314B1 (ja) | 2022-10-28 |
US20240263606A1 (en) | 2024-08-08 |
JPWO2023067679A1 (ja) | 2023-04-27 |
AU2021469463A1 (en) | 2024-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101521882B1 (ko) | 장력 계류 시스템 | |
US10136562B2 (en) | Underwater data center | |
JP4070236B2 (ja) | 浮遊構造物用波減衰装置 | |
US7468563B2 (en) | Ocean wave air piston | |
KR101596155B1 (ko) | 부유식 조류발전 장치 | |
KR102107994B1 (ko) | 해상 풍력발전 부유체 | |
KR101671065B1 (ko) | 부유식 해상풍력발전장치 | |
WO2023067679A1 (ja) | 発電システム | |
JP7162313B1 (ja) | 発電システム | |
KR101631761B1 (ko) | 부유식 해상풍력발전장치 | |
KR102284699B1 (ko) | 해상 태양광 발전장치의 가드 펜스 | |
KR102027506B1 (ko) | 발전장치 | |
JP6709548B2 (ja) | 発電システム | |
KR20160023343A (ko) | 부유식 해양 구조물 | |
KR101280522B1 (ko) | 공진을 이용한 양력면형 조류발전기 | |
JP2014037781A (ja) | 波力発電システム及びその構築方法 | |
JP6779481B2 (ja) | 発電システム | |
JP2016033346A (ja) | 波力発電装置 | |
JP7300590B2 (ja) | 発電システム | |
JP6929221B2 (ja) | 振動運動を受ける構造体のための装置および方法 | |
KR101642613B1 (ko) | 부유식 해상 구조물 | |
KR101561410B1 (ko) | 심해발전용 부력시스템 | |
JP6998021B2 (ja) | 発電システム | |
US20190390645A1 (en) | Tidal power generator | |
JP2022176047A (ja) | 水中空気浮力発電システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2021562925 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21961332 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: AU2021469463 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12024550920 Country of ref document: PH |
|
ENP | Entry into the national phase |
Ref document number: 2021469463 Country of ref document: AU Date of ref document: 20211019 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021961332 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021961332 Country of ref document: EP Effective date: 20240521 |