WO2023066225A1 - 一种zsm-5分子筛催化剂及其制备方法和应用 - Google Patents

一种zsm-5分子筛催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023066225A1
WO2023066225A1 PCT/CN2022/125833 CN2022125833W WO2023066225A1 WO 2023066225 A1 WO2023066225 A1 WO 2023066225A1 CN 2022125833 W CN2022125833 W CN 2022125833W WO 2023066225 A1 WO2023066225 A1 WO 2023066225A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
aluminum
molecular sieve
zsm
hours
Prior art date
Application number
PCT/CN2022/125833
Other languages
English (en)
French (fr)
Inventor
滕加伟
任丽萍
赵国良
史静
谢在库
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Publication of WO2023066225A1 publication Critical patent/WO2023066225A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to the field of catalytic cracking, in particular to a ZSM-5 molecular sieve catalyst, a preparation method thereof, and an application in olefin catalytic cracking to increase the production of propylene and ethylene.
  • Propylene and ethylene are important basic raw materials for the petrochemical industry. Driven by the rapid growth of demand for polyolefins and their derivatives, the demand for propylene and ethylene has continued to be strong and has grown at a relatively rapid rate in recent years. Therefore, it is considered to have great potential. products with market potential. Mixed carbon four and above olefins are by-products of FCC units in ethylene plants and refineries. Usually they can only be used as low value-added products such as liquefied gas fuels, and they can be further processed into propylene and ethylene. Make full use of this considerable amount of precious Olefin resources undoubtedly play a significant role in promoting the development of economy and technology.
  • Olefin catalytic cracking technology can convert raw materials containing olefins into ethylene and propylene. With the continuous innovation and development of development technology, the technology of olefin catalytic cracking to increase the production of propylene and ethylene has achieved remarkable results, greatly improving production efficiency. For the development of the petrochemical industry It has a very far-reaching impact and will help promote the innovation and development of subsequent petrochemical production technologies. Catalysts are the core technology in the catalytic cracking reaction of olefins. Many scholars have carried out extensive research using various preparation methods. properties, and reduce the formation of by-products and carbon deposits, modifying elements, loading and modification methods will directly affect the catalytic performance and product distribution.
  • the catalyst used for olefin cracking the active components are molecular sieves such as hydrogen ZSM-5, ZSM-11 or SAPO-34, and the inert gas is used as a heat carrier and diluent, which is of great benefit to the improvement of various indicators of this reaction.
  • the presence of water in the reaction is unfavorable for the long-term use of the catalyst.
  • acidic molecular sieve catalysts will undergo severe skeleton dealumination under high-temperature hydrothermal conditions, which will lead to a rapid decrease in the acid density of the catalyst and cause an irreversible loss of catalyst activity.
  • EP0109059A1 discloses a method for cracking C 4 -C 12 olefins to produce propylene, wherein ZSM-5 or ZSM-11 molecular sieves are used as catalysts.
  • US6307117 discloses a method for producing propylene and ethylene by cracking C 4 -C 12 olefins, wherein the active component of the catalyst used is ZSM-5 molecular sieve containing aprotic acid and group IB metal.
  • the olefin cracking catalysts reported in the above literatures all have defects such as poor product selectivity, poor catalyst stability, easy coking and deactivation, and inability to meet long-term operation, etc., so it is difficult to realize industrialization.
  • the technical problem to be solved by the present invention is to provide a ZSM-5 molecular sieve catalyst and a preparation method thereof, and The catalyst is used in the catalytic cracking of olefins to increase the production of propylene and ethylene.
  • the catalyst of the invention When the catalyst of the invention is used in the reaction of olefin catalytic cracking to produce propylene and ethylene, it has the characteristics of low reaction hydrogen transfer index, high stability, high conversion rate of raw material olefin, and high selectivity of product propylene and ethylene.
  • the first aspect of the present invention provides a ZSM-5 molecular sieve catalyst, wherein the ratio of the amount of skeleton aluminum located at the intersection of the straight channel and the sinusoidal channel to the amount of framework aluminum in the straight channel and the sinusoidal channel is 1.4:1 to 10:1 , and the silicon-aluminum molar ratio SiO 2 /Al 2 O 3 of the ZSM-5 molecular sieve is 80-1500.
  • the ratio of the amount of skeleton aluminum located at the intersection of the straight channel and the sinusoidal channel to the amount of framework aluminum in the straight channel and the sinusoidal channel is preferably 1.4:1 to 4:1, more preferably 1.5 :1 ⁇ 3:1.
  • the amount of skeleton aluminum located at the intersection of the straight channel and the sinusoidal channel is within the ratio range of the amount of skeleton aluminum in the straight channel and the sinusoidal channel, and the non-limiting specific point value can be 1.4: 1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1, 2.0:1, 2.1:1, 2.2:1, 2.3:1, 2.4:1, 2.5:1, 2.6:1, 2.7:1, 2.8:1, 2.9:1, 3.0:1, 3.2:1, 3.5:1, 4.0:1, etc.
  • the silicon-aluminum molar ratio SiO 2 /Al 2 O 3 of the ZSM-5 molecular sieve is preferably 80-1000, more preferably 96-1000, still more preferably 150-1000, and furthermore More preferably, it is 200-1000, and still more preferably, it is 250-1000.
  • the micropore volume preferably accounts for 70% to 92% of the total pore volume, more preferably 75% to 90%, and even more preferably 80% to 90%.
  • the ratio of the micropore volume to the total pore volume can be 70%, 72%, 73%, 74%, 76%, 78%, 80%, 82%, 84%. , 86%, 88%, 90%, 92% and so on.
  • the total pore volume of the catalyst is preferably 0.01-1.2 mL/g, more preferably 0.1-0.8 mL/g.
  • the ZSM-5 molecular sieve catalyst preferably includes the following components in parts by weight:
  • alkaline earth metal elements preferably 0.5-5.0 parts.
  • the silicon-aluminum molar ratio SiO 2 /Al 2 O 3 of the hydrogen type ZSM-5 molecular sieve is preferably 80-1500, more preferably 80-1000, still more preferably 96-1000, and still more preferably 150-1000. 1000, still more preferably 200-1000, still more preferably 250-1000.
  • the rare earth element is preferably selected from at least one of La, Ce, Pr and Nd.
  • the alkaline earth metal element is preferably selected from at least one of Mg, Ca, Sr and Ba.
  • the mass content of the binder of the ZSM-5 molecular sieve catalyst based on the mass of the catalyst is preferably less than 5%, more preferably less than 2%, and even more preferably less than 0.5%.
  • the ZSM-5 molecular sieve catalyst is preferably a binder-free ZSM-5 molecular sieve catalyst.
  • the ZSM-5 molecular sieve catalyst is preferably an olefin catalytic cracking catalyst.
  • the second aspect of the present invention provides the preparation method of above-mentioned ZSM-5 molecular sieve catalyst, comprises the steps:
  • step (2) mixing and kneading the former molecular sieve powder obtained in step (1) with a binder, and drying to obtain a catalyst precursor;
  • step (4) may also be included: the ZSM-5 molecular sieve obtained in step (3) is loaded with rare earth metals and/or alkaline earth metals to obtain a metal-containing ZSM-5 molecular sieve catalyst.
  • the preparation method of ZSM-5 molecular sieve former powder described in step (1) preferably comprises:
  • step (1.2) Mix the second aluminum source, the second template agent, the second alkali source and the mixture obtained after the crystallization in step (1.1), and undergo the second hydrothermal crystallization to obtain the ZSM-5 molecular sieve raw powder.
  • the first templating agent described in step (1.1) is preferably at least one of tetrapropylammonium bromide, tetrapropylammonium hydroxide, tetraethylammonium chloride and ammoniacal liquor;
  • the aluminum source is preferably at least one of aluminum nitrate, aluminum sulfate and aluminum phosphate;
  • the silicon source is preferably at least one of water glass, tetraethyl orthosilicate and silica sol;
  • the first alkali source is preferably hydrogen at least one of sodium oxide and potassium hydroxide.
  • the first hydrothermal crystallization may be performed under autogenous pressure generated in a stainless steel autoclave.
  • the water is preferably deionized water.
  • the conditions for the first hydrothermal crystallization are preferably as follows: the crystallization temperature is 80-150° C., and the crystallization time is 2-10 h.
  • the first templating agent is counted as NH 4 +
  • the first aluminum source is counted as Al 2 O 3
  • the silicon source is counted as SiO 2
  • the first alkali source is counted as OH-
  • water is counted as H 2 O
  • the second aluminum source in step (1.2) is preferably at least one of aluminum potassium sulfate and sodium metaaluminate.
  • the potassium aluminum sulfate may be a hydrate, such as potassium aluminum sulfate dodecahydrate.
  • the second templating agent is preferably at least one of n-butylamine, hexamethylenediamine and pyridine.
  • the second alkali source is preferably at least one of sodium hydroxide and potassium hydroxide.
  • the silicon source in the step (1.1) and the second aluminum source in the step (1.2) and the first aluminum source in the step (1.1) add the total amount, according to SiO 2 /Al 2 O 3
  • the molar ratio is preferably 80 ⁇ 1500, more preferably 80 ⁇ 1000.
  • the second aluminum source in the step (1.2) is in Al 2 O
  • the total mass Preferably it is 30% or more, and more preferably 40% or more.
  • the molar ratio of the second template agent and the second aluminum source in step (1.2) is preferably 200-500:1 based on NH 4 + /Al 2 O 3 .
  • the second alkali source is used to control the pH value of the system, preferably 8-10.
  • the conditions for the second hydrothermal crystallization are preferably as follows: the crystallization temperature is 120-200° C., and the crystallization time is 10-100 h.
  • the second hydrothermal crystallization may be performed under autogenous pressure generated in a stainless steel autoclave.
  • the product obtained after the second hydrothermal crystallization can be washed, dried and calcined to obtain ZSM-5 molecular sieve raw powder.
  • the washing can be done with deionized water.
  • the drying conditions are preferably as follows: the drying temperature is 80-100° C., and the drying time is 10-20 hours.
  • the calcination conditions are preferably as follows: the calcination temperature is 500-650° C., and the calcination time is 8-15 hours.
  • the binder is preferably a silicon compound or a silicon compound and an aluminum compound.
  • the aluminum compound is preferably selected from at least one of alumina and aluminum sol, and the silicon compound is preferably selected from at least one of white carbon black and silica sol.
  • the silicon compound is counted as silicon dioxide, the aluminum compound is counted as alumina, and the silicon compound can be used in an amount of 10% to 100% by mass, or 50% to 100% by mass.
  • the added amount of the binder, based on the sum of the mass of alumina and silica preferably accounts for 8% to 45% of the total mass of the molecular sieve powder and the binder, more preferably 10% to 40%.
  • step (2) can adopt conventional molding methods, such as extrusion molding and the like.
  • step (2) according to the molding requirements, an appropriate amount of water can be added.
  • the drying conditions are preferably as follows: the drying temperature is 80-120° C., and the drying time is 5-10 hours.
  • the third template agent described in step (3) is preferably ammoniacal liquor, ethylamine, ethylenediamine, triethylamine, n-butylamine, hexamethylenediamine, tetrapropylammonium bromide and tetrapropylhydrogen at least one of ammonium oxides.
  • the third hydrothermal crystallization is preferably to place the catalyst precursor obtained in step (2) in the steam containing the third template for crystallization, and the mass ratio of the third template to the catalyst precursor is preferably 1 to 3: 1. Preferably crystallize at 130-200°C for 20-100 hours.
  • the third hydrothermal crystallization preferably adopts the gas-solid crystallization method, that is, the catalyst precursor is placed on the middle mesh of the crystallization kettle, the aqueous solution containing the third template is placed under the middle mesh, and the crystallization Under certain conditions, the lower aqueous solution containing the third template agent is formed into steam to perform crystal transformation treatment on the catalyst precursor.
  • the third hydrothermal crystallization may be performed under autogenous pressure generated in a stainless steel autoclave.
  • the mass ratio of the third template agent to water in the aqueous solution of the third template agent is preferably 1 ⁇ 2:1.
  • the product obtained after the third hydrothermal crystallization can be washed, dried and roasted.
  • the drying strip is preferably as follows: the drying temperature is 80-100° C., and the drying time is 10-20 hours.
  • the calcination conditions are preferably as follows: the calcination temperature is 450-600° C., and the calcination time is 5-10 hours.
  • the ammonium exchange in step (3) is preferably to place the product obtained after crystallization of the catalyst precursor in an aqueous ammonium salt solution for ammonium exchange, washing and drying.
  • the ammonium salt is preferably selected from one or more of ammonium chloride, ammonium nitrate and ammonium sulfate.
  • the mass content of the ammonium salt in the ammonium salt aqueous solution is preferably 5%-10%.
  • the temperature of the ammonium exchange is preferably 80-90°C; the number of ammonium exchanges can be 3-6 times.
  • the product obtained after the ammonium exchange is roasted; the roasting conditions are preferably as follows: the roasting temperature is 500-600° C., and the roasting time is 4-8 hours.
  • step (4) is an optional step, which is determined according to the composition of the catalyst.
  • the loading method of rare earth metal and/or alkaline earth metal can adopt impregnation method.
  • the catalyst contains rare earth metals and alkaline earth metals, and the loading process is as follows: first obtain the ZSM-5 molecular sieve loaded with rare earth metals, and then obtain the ZSM-5 molecular sieve loaded with rare earth metals and alkaline earth metals, that is, the ZSM-5 molecular sieve containing Metallic ZSM-5 molecular sieve catalyst.
  • the impregnation method is preferably an equal-volume impregnation method.
  • Molecular sieves are impregnated in an equal-volume solution containing rare earth metal salts or alkaline earth metal salts for 3 to 10 hours, dried at 60 to 100°C for 10 to 20 hours, and then calcined at 450 to 600°C for 8 to 20 hours. 10h that is.
  • the weight concentration of the rare earth metal is preferably 0.2%-5%.
  • the rare earth element is preferably at least one selected from La, Ce, Pr and Nd; in the alkaline earth metal salt solution, the weight concentration of the alkaline earth metal is preferably 0.2%-5%.
  • the alkaline earth metal element is preferably at least one selected from Mg, Ca, Sr and Ba.
  • the third aspect of the present invention provides an application of the above-mentioned ZSM-5 molecular sieve catalyst in the production of propylene and ethylene by catalytic cracking of olefins or a method for producing propylene and ethylene by using the above-mentioned ZSM-5 molecular sieve catalyst in the catalytic cracking of olefins.
  • the process of producing propylene and ethylene by catalytic cracking of olefins can be as follows: olefin raw materials are contacted with the above-mentioned ZSM-5 molecular sieve catalyst for reaction to obtain propylene and ethylene products.
  • the reaction temperature is 400-600°C, more preferably 420-580°C
  • the reaction pressure is 0-0.3MPa, more preferably Preferably it is 0.01 to 0.2 MPa
  • the weight space velocity is 1 to 50 h -1 , more preferably 2 to 40 h -1 .
  • the raw material passes through the catalyst bed to generate propylene and ethylene
  • the reaction hydrogen transfer index is preferably lower than 9.6%, more preferably lower than 7%; the reaction hydrogen transfer index here is the yield of propane and propylene in the product mass ratio.
  • Ordinary low-silicon aluminum has more acid centers than ZSM-5 molecular sieve, which leads to more side reactions after being used in the reaction, low product selectivity, and by-products block the pores of the molecular sieve, thereby reducing the activity of the catalyst and eventually leading to catalyst deactivation.
  • ZSM-5 molecular sieve with high silicon-aluminum ratio has fewer active centers and uneven activity distribution, resulting in low reaction activity and poor catalyst stability.
  • the inventors have found through research that in the ZSM-5 molecular sieve catalyst, the amount of skeleton aluminum at the intersection of straight channels and sinusoidal channels is significantly higher than the amount of skeleton aluminum inside the straight channels and sinusoidal channels and has a higher silicon-aluminum ratio. When cracking propylene and ethylene, it has good activity and selectivity, and the stability has been further increased. In addition, an appropriate proportion of micropore volume contributes to the increase of performance.
  • the present invention has the following technical effects:
  • the ZSM-5 molecular sieve catalyst of the present invention has the skeleton aluminum content at the intersection of the straight channel and the sinusoidal channel, which is significantly higher than the skeleton aluminum content inside the straight channel and the sinusoidal channel, and has the characteristics of a higher silicon-aluminum ratio, so that the active center of the catalyst can be utilized
  • the efficiency is greatly improved, so that the products and intermediates generated at the intersecting channels are easier to diffuse, the occurrence of side reactions and the formation of carbon deposits are significantly reduced, the hydrogen transfer index of the reaction is greatly reduced, and the catalyst activity and product selectivity are significantly improved.
  • Stable Sex also grows further.
  • the prepared molecular sieve catalyst has a composite channel structure, which is treated by crystal transformation , so that the obtained catalyst basically does not contain binder, and the amount of skeleton aluminum located at the intersection of straight channels and sinusoidal channels is significantly higher than the amount of framework aluminum inside the straight channels and sinusoidal channels, the silicon-alumina ratio is high, which makes the catalyst activity and The selectivity of the product is obviously improved, and the stability is further increased. Proper pore volume ratio of micropores further increases the performance.
  • the method for producing ethylene and propylene by olefin catalytic cracking of the present invention effectively overcomes the shortcomings of high reaction hydrogen transfer index, poor catalyst activity, and low selectivity of propylene and ethylene in the prior art.
  • the reaction hydrogen transfer index can be reduced Reduced to below 9.6%, more preferably below 7%, the conversion rate of raw material olefins is above 71%, the selectivity of target product propylene and ethylene exceeds 68%, preferably exceeds 80%, when the reaction is carried out after 75h, the activity and selectivity of the catalyst The property has not changed significantly and has good stability.
  • Fig. 1 is the skeleton aluminum 27Al NMR spectrum of the catalyst obtained in Example 1, wherein in Fig. 1, line 1 is the skeleton aluminum species at the intersection of the straight channel and the sinusoidal channel, and line 2 is the skeleton aluminum species in the straight channel and the sinusoidal channel ; Line 3 is the original curve before peak splitting;
  • Fig. 2 is the XRD figure of embodiment 1 gained catalyst
  • Figure 3 is the skeleton aluminum 27Al nuclear magnetic spectrum of the catalyst obtained in Comparative Example 5, wherein in Figure 3, line 1 is the skeleton aluminum species at the intersection of straight channels and sinusoidal channels, and line 2 is the skeleton aluminum species in straight channels and sinusoidal channels ; Line 3 is the original curve before peak splitting;
  • Figure 4 is the XRD pattern of the catalyst obtained in Comparative Example 5.
  • the mensuration of pore volume is to carry out on TriStar 3000 type physical adsorption instrument. After vacuum treatment at 300°C for 3 hours, the sample was put into the tester and liquid nitrogen was added for testing. The sample pore distribution was calculated using the Barret-Joyner-Halenda (BJH) model.
  • BJH Barret-Joyner-Halenda
  • the instrument used for 27 Al nuclear magnetic characterization is Bruker's DSX 300 nuclear magnetic resonance instrument, and the chemical shift of 27 Al refers to Al(H 2 O) 6 3+ in saturated aluminum chloride solution, and the nuclear magnetic spectrum is obtained in the magic Obtained under the condition of angular rotation speed 4kHz.
  • the skeleton aluminum located at the intersection of the straight channel and the sinusoidal channel in the catalyst corresponds to the spectral peak with a chemical shift near 54ppm (for example, the range of 54 ⁇ 0.2ppm) in the 27 Al nuclear magnetic spectrum
  • the skeleton aluminum located in the straight channel and the sinusoidal channel Corresponding to the peak in the 27Al nuclear magnetic spectrum with a chemical shift near 56ppm (for example, in the range of 56 ⁇ 0.6ppm).
  • the ratio of the amount of skeleton aluminum located at the intersection of the straight channel and the sinusoidal channel to the amount of framework aluminum located in the straight channel and the sinusoidal channel is the ratio of the corresponding area after the peaks are divided according to the peaks near 54ppm and 56ppm in the 27 Al nuclear magnetic spectrum.
  • XRD analysis is carried out on Rigaku D/MAX-1400X polycrystalline X-ray diffractometer, graphite monochromator, Cu K ⁇ ray, tube voltage 40kV, tube current 40mA, scanning speed 15° ⁇ min -1 , scanning The range 2 ⁇ is 5-50°.
  • the silicon-aluminum molar ratio SiO 2 /Al 2 O 3 is calculated by analyzing the elemental composition of the solid sample with a Magix X fluorescence spectrometer of the Netherlands Philips company, the operating voltage is 40kV, and the operating current is 40mA.
  • At least one of carbon four to carbon six olefins is used as a raw material to generate ethylene and propylene by catalytic cracking, wherein the hydrogen transfer index is the yield mass ratio of propane and propylene in the product;
  • Feedstock olefin conversion rate (%) (1-quality of olefins in product/mass of olefins in feedstock) ⁇ 100%;
  • Diene selectivity (%) mass of propylene and ethylene produced in the product and/(mass of olefin in raw material-mass of olefin remaining after reaction) ⁇ 100%.
  • Tetrapropylammonium bromide is used as the first template, aluminum nitrate is the first aluminum source, silica sol is the silicon source, sodium hydroxide is the first alkali source, tetrapropylammonium bromide is calculated as NH 4 + , aluminum nitrate
  • the molar ratio of SiO 2 /Al 2 O 3 is 300, and the second aluminum source potassium aluminum sulfate dodecahydrate after removing the first aluminum source is added,
  • the second template agent and the second aluminum source are added with the second template agent n-butylamine at a ratio of NH 4 + /Al 2 O 3 molar ratio of 200:1, fully mixed with the above crystallization solution, and then hydrogenated with the second alkali source Adjust the pH to 10 with sodium, then transfer to a stainless steel autoclave for the second hydrothermal crystallization, and crystallize at 120°C for 100h.
  • the synthesized product was washed with water, dried at 90°C for 15 hours, and calcined at 600°C for 10 hours to obtain ZSM-5 molecular sieve powder.
  • ethylamine Take ethylamine as the third template agent, add the mixture of 30 grams of ethylamine and 30 grams of distilled water in advance in the reaction kettle, place 20 grams of the above-mentioned strip catalyst precursors prepared above the porous stainless steel mesh in the reaction kettle and seal at 130
  • the gas-solid phase hydrothermal crystallization was carried out at °C for 100 h. After the product was taken out, it was washed with distilled water, dried at 90°C for 15h, and then calcined at 550°C for 10h in an air atmosphere.
  • ammonium was exchanged in 5wt% ammonium nitrate solution at 90°C for 3 times, and after drying, it was roasted in a muffle furnace at 500°C for 4 hours to obtain hydrogen ZSM-5 molecular sieve.
  • the obtained hydrogen-form ZSM-5 molecular sieve solid was immersed in 20 g of praseodymium nitrate solution with a mass content of 1% of Pr for 10 hours, dried at 100° C. for 10 hours, and calcined at 550° C. for 8 hours.
  • the total pore volume of the catalyst is 0.3mL/g, and the micropore pore volume accounts for 86% of the total pore volume.
  • the ratio of the amount of skeleton aluminum located at the intersection of straight and sinusoidal tunnels to the amount of skeleton aluminum in straight and sinusoidal tunnels is 2:1.
  • the SiO 2 /Al 2 O 3 molar ratio of the catalyst is 282.
  • Fig. 2 is the XRD pattern of the catalyst obtained in Example 1, illustrating that the catalyst is a ZSM-5 molecular sieve catalyst, and the binder content is lower than 0.2%.
  • the prepared catalyst was evaluated for the reaction activity of olefin catalytic cracking to produce propylene and ethylene.
  • the technological conditions used in the investigation are: 5 grams of catalyst, 500°C reaction temperature, 0.02MPa reaction pressure, and 20h -1 weight space velocity.
  • the reaction results are: the conversion rate of carbon tetraolefins is 75%, the hydrogen transfer index is 6.5%, and the selectivity of propylene and ethylene is 80.8%. Catalyst reacted for 80h, the catalyst activity and selectivity did not change significantly, and had good stability.
  • Tetrapropylammonium hydroxide is used as the first template agent, aluminum nitrate is used as the first aluminum source, tetraethyl orthosilicate is used as the silicon source, sodium hydroxide is used as the first alkali source, tetrapropylammonium hydroxide is calculated as NH 4 + , aluminum nitrate in terms of Al 2 O 3 , tetraethyl orthosilicate in terms of SiO 2 , sodium hydroxide in terms of OH - , and water in terms of H 2 O.
  • the molar ratio of SiO 2 /Al 2 O 3 is 1000, add the second aluminum source sodium metaaluminate after removing the first aluminum source, and the second
  • the template agent and the second aluminum source are added into the second template agent pyridine at a ratio of NH 4 + /Al 2 O 3 molar ratio of 300:1, fully mixed with the above crystallization solution, and the pH is adjusted with the second alkali source sodium hydroxide to 8.
  • the synthesized product was washed with water, dried at 80°C for 20 hours, and calcined at 500°C for 15 hours to obtain ZSM-5 molecular sieve powder.
  • hexamethylenediamine As the third template, add a mixture of 60 grams of hexamethylenediamine and 30 grams of distilled water in advance in the reactor, and place 20 grams of the strip-shaped catalyst precursor prepared above in the reactor and seal it above the porous stainless steel mesh Afterwards, crystallization was carried out at 150° C. for 80 h. After the product was taken out, it was washed with distilled water, dried at 100°C for 10 hours, and calcined at 600°C for 5 hours in an air atmosphere.
  • the obtained hydrogen-form ZSM-5 molecular sieve solid was immersed in 20 g of neodymium nitrate solution with a Nd mass content of 2% for 5 hours, dried at 60°C for 20 hours, and calcined at 600°C for 8 hours.
  • the above solid was immersed in 20 grams of calcium nitrate solution with a Ca weight content of 0.8% for 10 hours, dried at 100°C, and calcined at 500°C for 10 hours to obtain the catalyst.
  • the XRD pattern of the obtained catalyst is similar to that shown in Figure 2, indicating that the catalyst is a ZSM-5 molecular sieve catalyst, and the binder content is lower than 0.2%.
  • the total pore volume of the catalyst is 0.4mL/g, and the micropore pore volume accounts for 90% of the total pore volume.
  • the ratio of the amount of skeleton aluminum located at the intersection of straight and sinusoidal channels to the amount of skeleton aluminum in straight and sinusoidal channels is 1.5:1.
  • the SiO 2 /Al 2 O 3 molar ratio of the catalyst is 925.
  • the catalyst evaluation method is the same as in Example 1, and the reaction results are as follows: the conversion rate of carbon tetraolefins is 73%, the hydrogen transfer index is 4.8%, and the selectivity of propylene and ethylene is 85.6%. The catalyst reacted for 78 hours, and the activity and selectivity of the catalyst did not change significantly, showing good stability.
  • Tetrapropylammonium bromide is used as the first template, aluminum nitrate is the first aluminum source, silica sol is the silicon source, sodium hydroxide is the first alkali source, tetrapropylammonium bromide is calculated as NH 4 + , aluminum nitrate
  • the molar ratio of SiO 2 /Al 2 O 3 is 300, and the second aluminum source potassium aluminum sulfate dodecahydrate after removing the first aluminum source is added,
  • the second template agent and the second aluminum source are added with the second template agent n-butylamine at a ratio of NH 4 + /Al 2 O 3 molar ratio of 200:1, fully mixed with the above crystallization solution, and then hydrogenated with the second alkali source Adjust the pH to 10 with sodium, then transfer to a stainless steel autoclave for the second hydrothermal crystallization, and crystallize at 120°C for 100h.
  • the synthesized product was washed with water, dried at 90°C for 15 hours, and calcined at 600°C for 10 hours to obtain ZSM-5 molecular sieve powder.
  • ethylamine Take ethylamine as the third template agent, add the mixture of 30 grams of ethylamine and 30 grams of distilled water in advance in the reaction kettle, place 20 grams of the above-mentioned strip catalyst precursors prepared above the porous stainless steel mesh in the reaction kettle and seal at 130
  • the gas-solid phase hydrothermal crystallization was carried out at °C for 100 h. After the product was taken out, it was washed with distilled water, dried at 90°C for 15h, and then calcined at 550°C for 10h in an air atmosphere.
  • the XRD pattern of the obtained catalyst is similar to that shown in Figure 2, indicating that the catalyst is a ZSM-5 molecular sieve catalyst, and the binder content is lower than 0.2%.
  • the total pore volume of the catalyst is 0.5mL/g, and the micropore pore volume accounts for 87% of the total pore volume.
  • the ratio of the amount of skeleton aluminum located at the intersection of straight and sinusoidal channels to the amount of skeleton aluminum in straight and sinusoidal channels is 2:1.
  • the SiO 2 /Al 2 O 3 molar ratio of the catalyst is 280.
  • the catalyst evaluation method is the same as in Example 1, and the reaction results are as follows: the conversion rate of carbon tetraolefins is 76%, the hydrogen transfer index is 9.6%, and the selectivity of propylene and ethylene is 68.2%. Catalyst reacted for 82 hours, and the activity and selectivity of the catalyst did not change significantly, showing good stability.
  • Tetrapropylammonium bromide is used as the first template, aluminum nitrate is the first aluminum source, silica sol is the silicon source, sodium hydroxide is the first alkali source, tetrapropylammonium bromide is calculated as NH 4 + , aluminum nitrate
  • the molar ratio of SiO 2 /Al 2 O 3 is 300, and the second aluminum source potassium aluminum sulfate dodecahydrate after removing the first aluminum source is added,
  • the second template agent and the second aluminum source are added with the second template agent n-butylamine at a ratio of NH 4 + /Al 2 O 3 molar ratio of 200:1, fully mixed with the above crystallization solution, and then hydrogenated with the second alkali source Adjust the pH to 10 with sodium, then transfer to a stainless steel autoclave for the second hydrothermal crystallization, and crystallize at 120°C for 100h.
  • the synthesized product was washed with water, dried at 90°C for 15 hours, and calcined at 600°C for 10 hours to obtain ZSM-5 molecular sieve powder.
  • ethylamine Take ethylamine as the third template agent, add the mixture of 30 grams of ethylamine and 30 grams of distilled water in advance in the reaction kettle, place 20 grams of the above-mentioned strip catalyst precursors prepared above the porous stainless steel mesh in the reaction kettle and seal at 130
  • the gas-solid phase hydrothermal crystallization was carried out at °C for 100 h. After the product was taken out, it was washed with distilled water, dried at 90°C for 15h, and then calcined at 550°C for 10h in an air atmosphere.
  • ammonium was exchanged in 5wt% ammonium nitrate solution at 90°C for 3 times, and after drying, it was roasted in a muffle furnace at 500°C for 4 hours to obtain hydrogen ZSM-5 molecular sieve.
  • the obtained hydrogen-type ZSM-5 molecular sieve solid was immersed in 20 g of Pr praseodymium nitrate solution with a weight content of 1% for 10 hours, dried at 100° C. for 10 hours, and calcined at 550° C. for 8 hours. That is the catalyst.
  • the XRD pattern of the obtained catalyst is similar to that shown in Figure 2, indicating that the catalyst is a ZSM-5 molecular sieve catalyst, and the binder content is lower than 0.2%.
  • the total pore volume of the catalyst is 0.4mL/g, and the micropore pore volume accounts for 86% of the total pore volume.
  • the ratio of the amount of skeleton aluminum located at the intersection of straight and sinusoidal channels to the amount of skeleton aluminum in straight and sinusoidal channels is 2:1.
  • the SiO 2 /Al 2 O 3 molar ratio of the catalyst is 285.
  • the catalyst evaluation method is the same as in Example 1, and the reaction results are as follows: the conversion rate of carbon tetraolefins is 77.3%, the hydrogen transfer index is 8.8%, and the selectivity of propylene and ethylene is 70.2%. The catalyst reacted for 76 hours, and the activity and selectivity of the catalyst did not change significantly, showing good stability.
  • Tetrapropylammonium bromide is used as the first template, aluminum nitrate is the first aluminum source, silica sol is the silicon source, sodium hydroxide is the first alkali source, tetrapropylammonium bromide is calculated as NH 4 + , aluminum nitrate
  • the molar ratio of SiO 2 /Al 2 O 3 is 300, and the second aluminum source potassium aluminum sulfate dodecahydrate after removing the first aluminum source is added,
  • the second template agent and the second aluminum source are added with the second template agent n-butylamine at a ratio of NH 4 + /Al 2 O 3 molar ratio of 200:1, fully mixed with the above crystallization solution, and then hydrogenated with the second alkali source Adjust the pH to 10 with sodium, then transfer to a stainless steel autoclave for the second hydrothermal crystallization, and crystallize at 120°C for 100h.
  • the synthesized product was washed with water, dried at 90°C for 15 hours, and calcined at 600°C for 10 hours to obtain ZSM-5 molecular sieve powder.
  • ethylamine Take ethylamine as the third template agent, add the mixture of 30 grams of ethylamine and 30 grams of distilled water in advance in the reaction kettle, place 20 grams of the above-mentioned strip catalyst precursors prepared above the porous stainless steel mesh in the reaction kettle and seal at 130
  • the gas-solid phase hydrothermal crystallization was carried out at °C for 100 h. After the product was taken out, it was washed with distilled water, dried at 90°C for 15h, and then calcined at 550°C for 10h in an air atmosphere.
  • ammonium was exchanged in 5wt% ammonium nitrate solution at 90°C for 3 times, and after drying, it was roasted in a muffle furnace at 500°C for 4 hours to obtain hydrogen ZSM-5 molecular sieve.
  • the obtained hydrogen-type ZSM-5 molecular sieve solid was immersed in 20 grams of magnesium nitrate solution with a Mg mass content of 2% for 8 hours, dried at 100°C for 10 hours, and calcined at 550°C for 8 hours to obtain the catalyst.
  • the XRD pattern of the obtained catalyst is similar to that shown in Figure 2, indicating that the catalyst is a ZSM-5 molecular sieve catalyst, and the binder content is lower than 0.2%.
  • the total pore volume of the catalyst is 0.6mL/g, and the micropore pore volume accounts for 83% of the total pore volume.
  • the ratio of the amount of skeleton aluminum located at the intersection of straight and sinusoidal channels to the amount of skeleton aluminum in straight and sinusoidal channels is 1.8:1.
  • the SiO 2 /Al 2 O 3 molar ratio of the catalyst is 282.
  • the catalyst evaluation method is the same as in Example 1, and the reaction results are as follows: the conversion rate of carbon tetraolefins is 75.8%, the hydrogen transfer index is 9.3%, and the selectivity of propylene and ethylene is 69.5%. The catalyst reacted for 75 hours, and the activity and selectivity of the catalyst did not change significantly, showing good stability.
  • Tetrapropylammonium bromide is used as the first template, aluminum sulfate is the first aluminum source, silica sol is the silicon source, sodium hydroxide is the first alkali source, tetrapropylammonium bromide is calculated as NH 4 + , aluminum sulfate
  • the total amount of the silicon source, the first aluminum source and the second aluminum source according to the ratio of SiO 2 /Al 2 O 3 molar ratio of 100, add the second aluminum source potassium aluminum sulfate after removing the first aluminum source, and the second template Add the second template agent n-butylamine to the second aluminum source at a molar ratio of NH 4 + /Al 2 O 3 of 500:1, mix well with the above crystallization solution, and adjust the pH with the second alkali source sodium hydroxide 10, and then transferred to a stainless steel autoclave for the second hydrothermal crystallization at 150 ° C for 40 h.
  • the synthesized product was washed with water, dried at 90°C for 15 hours, and calcined at 600°C for 10 hours to obtain ZSM-5 molecular sieve powder.
  • hexamethylenediamine As the third template, add 60 grams of hexamethylenediamine and a mixture of 30 grams of distilled water in advance in the reactor, and place 30 grams of the above-mentioned strip-shaped catalyst precursor in the reactor and seal it above the porous stainless steel mesh Afterwards, crystallization was performed at 200° C. for 20 h. After the product was taken out, it was washed with distilled water, dried at 100°C for 10h, and then baked at 450°C for 10h in an air atmosphere.
  • ammonium was exchanged in 5% ammonium sulfate solution at 90°C for 6 times, and after drying, it was roasted in a muffle furnace at 600°C for 4 hours to obtain hydrogen ZSM-5 molecular sieve.
  • the obtained hydrogen-type ZSM-5 molecular sieve solid was immersed in 20 g of neodymium nitrate solution with a mass content of 0.2% Ce for 3 hours, dried at 100°C for 10 hours, and calcined at 450°C for 10 hours.
  • the above solid was placed in 20 g of magnesium nitrate solution with a weight content of 0.2% Mg for 10 hours, dried at 100°C, and calcined at 500°C for 10 hours to obtain the catalyst.
  • the XRD pattern of the obtained catalyst is similar to that shown in Figure 2, indicating that the catalyst is a ZSM-5 molecular sieve catalyst, and the binder content is lower than 0.2%.
  • the total pore volume of the catalyst is 0.8mL/g, and the micropore pore volume accounts for 90% of the total pore volume.
  • the ratio of the amount of skeleton aluminum located at the intersection of straight and sinusoidal channels to the amount of skeleton aluminum in straight and sinusoidal channels is 3:1.
  • the SiO 2 /Al 2 O 3 molar ratio of the catalyst is 98.
  • the catalyst evaluation method is the same as in Example 1, and the reaction results are as follows: the conversion rate of carbon tetraolefins is 76.3%, the hydrogen transfer index is 5.3%, and the selectivity of propylene and ethylene is 84.5%. The catalyst reacted for 77 hours, and the activity and selectivity of the catalyst did not change significantly, showing good stability.
  • Tetraethylammonium chloride is used as the first template agent, aluminum phosphate is the first aluminum source, water glass is the silicon source, sodium hydroxide is the first alkali source, tetraethylammonium chloride is calculated as NH 4 + , aluminum phosphate
  • the second aluminum source sodium metaaluminate after removing the first aluminum source, and the second
  • the template agent and the second aluminum source are added with the second template agent hexamethylenediamine at a ratio of NH 4 + /Al 2 O 3 molar ratio of 200:1, fully mixed with the above crystallization solution, and adjusted with the second alkali source sodium hydroxide
  • the pH was 10, and then transferred to a stainless steel autoclave for the second hydrothermal crystallization at 120°C for 100h.
  • the synthesized product was washed with water, dried at 100°C for 10 hours, and calcined at 650°C for 8 hours to obtain ZSM-5 molecular sieve powder.
  • triethylamine Take triethylamine as the third template agent, pre-add the mixture of 50g triethylamine and 50g distilled water in the reactor, place the above-mentioned strip catalyst precursor of 50g above the porous stainless steel mesh in the reactor and seal it at 130 The crystallization was carried out at °C for 100 h. After the product was taken out, it was washed with distilled water, dried at 80°C for 20h, and then baked at 500°C for 8h in an air atmosphere.
  • the obtained hydrogen-form ZSM-5 molecular sieve solid was immersed in 20 g of La lanthanum nitrate solution with a mass content of 5% for 10 h, dried at 100° C. for 12 h, and calcined at 500° C. for 10 h.
  • the above solid was immersed in 20 grams of barium nitrate solution with a mass content of 0.5% Ba for 10 hours, dried at 100° C., and calcined at 500° C. for 10 hours to obtain the catalyst.
  • the XRD pattern of the obtained catalyst is similar to that shown in Figure 2, indicating that the catalyst is a ZSM-5 molecular sieve catalyst, and the binder content is lower than 0.2%.
  • the total pore volume of the catalyst is 0.1mL/g, and the micropore pore volume accounts for 70% of the total pore volume.
  • the ratio of the amount of skeleton aluminum located at the intersection of straight and sinusoidal channels to the amount of skeleton aluminum in straight and sinusoidal channels is 2:1.
  • the catalyst has a SiO 2 /Al 2 O 3 molar ratio of 96.
  • the catalyst evaluation method is the same as in Example 1, and the reaction results are as follows: the conversion rate of carbon tetraolefins is 71%, the hydrogen transfer index is 5.6%, and the selectivity of propylene and ethylene is 80.3%. The catalyst reacted for 78 hours, and the activity and selectivity of the catalyst did not change significantly, showing good stability.
  • Ammonia water is used as the first template agent, aluminum nitrate is the first aluminum source, tetraethyl orthosilicate is the silicon source, sodium hydroxide is the first alkali source, ammonia water is calculated as NH4 + , aluminum nitrate is calculated as Al2O3 ,
  • the molar ratio of SiO 2 /Al 2 O 3 is 500
  • the second aluminum source potassium aluminum sulfate after removing the first aluminum source is added
  • the second template Add the second template agent pyridine to the second aluminum source at a molar ratio of NH 4 + /Al 2 O 3 of 400:1, mix well with the above crystallization solution, and adjust the pH to 8 with the second alkali source sodium hydroxide , and then transferred to a stainless steel autoclave for the second hydrothermal crystallization at 180°C for 20h.
  • the synthesized product was washed with water, dried at 90°C for 15 hours, and calcined at 600°C for 10 hours to obtain ZSM-5 molecular sieve powder.
  • hexamethylenediamine As the third template, add 50 grams of hexamethylenediamine and 30 grams of distilled water in advance in the reaction kettle, and place 20 grams of the strip-shaped catalyst precursor prepared above in the reaction kettle for sealing above the porous stainless steel mesh Afterwards, crystallization was performed at 150° C. for 80 h. After the product was taken out, it was washed with distilled water, dried at 100°C for 10 hours, and then baked at 600°C for 5 hours in an air atmosphere.
  • the obtained hydrogen-form ZSM-5 molecular sieve solid was immersed in 20 g of praseodymium nitrate solution with a mass content of 1% of Pr for 5 hours, dried at 60° C. for 20 hours, and calcined at 600° C. for 8 hours.
  • the above solid is placed in 20 grams of strontium nitrate solution with a Sr weight content of 0.3% for 10 hours, dried at 100° C., and calcined at 500° C. for 10 hours to obtain the catalyst.
  • the XRD pattern of the obtained catalyst is similar to that shown in Figure 2, indicating that the catalyst is a ZSM-5 molecular sieve catalyst, and the binder content is lower than 0.2%.
  • the total pore volume of the catalyst is 0.6mL/g, and the micropore pore volume accounts for 83% of the total pore volume.
  • the ratio of the amount of skeleton aluminum located at the intersection of straight and sinusoidal channels to the amount of skeleton aluminum in straight and sinusoidal channels is 1.8:1.
  • the SiO 2 /Al 2 O 3 molar ratio of the catalyst is 488.
  • the catalyst evaluation method is the same as in Example 1, and the reaction results are as follows: the conversion rate of carbon tetraolefins is 76.5%, the hydrogen transfer index is 5.1%, and the selectivity of propylene and ethylene is 83.9%. Catalyst reacted for 80h, the catalyst activity and selectivity did not change significantly, and had good stability.
  • Adopt the catalyzer of embodiment 8 take the pentene (nitrogen and pentene volume ratio 1: 1) that is diluted with nitrogen as raw material, the prepared catalyst has been carried out olefin catalytic cracking to produce propylene and ethylene reactivity evaluation, the process condition used for investigation is : The catalyst is loaded with 5 grams, the reaction temperature is 580°C, the reaction pressure is 0.3MPa, and the weight space velocity is 40h -1 . The reaction results are as follows: the conversion rate of carbon pentaolefins is 80%, the hydrogen transfer index is 5.3%, the selectivity of propylene and ethylene is 82.8%, and the catalyst has been reacted for 78 hours. The activity and selectivity of the catalyst have not changed significantly, and the catalyst has good stability.
  • Adopt the catalyzer of embodiment 8 take the hexene (nitrogen and hexene volume ratio 1: 1) diluted with nitrogen as raw material, the prepared catalyst has been carried out olefin catalytic cracking to produce propylene and ethylene reactivity evaluation, and the technological condition used for investigation is: The catalyst is packed in 5 grams, the reaction temperature is 420°C, the reaction pressure is 0.01MPa, and the weight space velocity is 2h -1 . The reaction results are: the conversion rate of carbon hexaene is 72%, the hydrogen transfer index is 6.8%, and the selectivity of propylene and ethylene is 80.3%. The catalyst reacted for 76 hours, and the activity and selectivity of the catalyst did not change significantly, showing good stability.
  • Tetrapropylammonium bromide is used as template, aluminum nitrate is used as aluminum source, silica sol is used as silicon source, sodium hydroxide is used as alkali source, tetrapropylammonium bromide is calculated as NH 4 + , aluminum nitrate is calculated as Al 2 O 3
  • the synthesized product was washed with water, dried at 90°C for 15 hours, and calcined at 600°C for 10 hours to obtain ZSM-5 molecular sieve powder.
  • ethylamine Take ethylamine as the third template agent, add the mixture of 30 grams of ethylamine and 30 grams of distilled water in advance in the reaction kettle, place 20 grams of the above-mentioned strip catalyst precursors prepared above the porous stainless steel mesh in the reaction kettle and seal it at 130
  • the gas-solid phase hydrothermal crystallization was carried out at °C for 100 h. After the product was taken out, it was washed with distilled water, dried at 90°C for 15h, and then calcined at 550°C for 10h in an air atmosphere.
  • ammonium was exchanged in 5wt% ammonium nitrate solution at 90°C for 3 times, and after drying, it was roasted in a muffle furnace at 500°C for 4 hours to obtain hydrogen ZSM-5 molecular sieve.
  • the obtained hydrogen-form ZSM-5 molecular sieve solid was immersed in 20 g of praseodymium nitrate solution with a mass content of 1% of Pr for 10 hours, dried at 100° C. for 10 hours, and calcined at 550° C. for 8 hours.
  • the total pore volume of the catalyst is 0.6mL/g, and the micropore pore volume accounts for 68% of the total pore volume.
  • the ratio of the amount of skeleton aluminum located at the intersection of straight and sinusoidal channels to the amount of skeleton aluminum in straight and sinusoidal channels is 1:1.
  • XRD is similar to Fig. 2, the binder content in this catalyst is less than 0.2%.
  • the catalyst evaluation method was the same as in Example 1, and the reaction results were as follows: carbon tetraolefin conversion rate 76%, hydrogen transfer index 9.2%, propylene and ethylene selectivity 69.3%, catalyst reaction 65h, catalyst activity and selectivity began to decline.
  • Tetrapropylammonium bromide is used as the first template, aluminum nitrate is the first aluminum source, silica sol is the silicon source, sodium hydroxide is the first alkali source, tetrapropylammonium bromide is calculated as NH 4 + , aluminum nitrate
  • the molar ratio of SiO 2 /Al 2 O 3 is 300, adding the second aluminum source aluminum nitrate after removing the first aluminum source, and the second templating agent Add the second templating agent n-butylamine with the aluminum source at a ratio of NH 4 + /Al 2 O 3 molar ratio of 200:1, fully mix with the above crystallization solution, adjust the pH to 10 with the second alkali source sodium hydroxide, It was then transferred to a stainless steel autoclave for the second hydrothermal crystallization at 120° C. for 100 h. The synthesized product was washed with water, dried at 90°C for 15 hours, and calcined at 600°C for 10 hours to obtain ZSM-5 molecular sieve powder.
  • ethylamine Take ethylamine as the third template agent, add the mixture of 30 grams of ethylamine and 30 grams of distilled water in advance in the reaction kettle, place 20 grams of the above-mentioned strip catalyst precursors prepared above the porous stainless steel mesh in the reaction kettle and seal it at 130
  • the gas-solid phase hydrothermal crystallization was carried out at °C for 100 h. After the product was taken out, it was washed with distilled water, dried at 90°C for 15h, and then calcined at 550°C for 10h in an air atmosphere.
  • ammonium was exchanged in 5wt% ammonium nitrate solution at 90°C for 3 times, and after drying, it was roasted in a muffle furnace at 500°C for 4 hours to obtain hydrogen ZSM-5 molecular sieve.
  • the obtained hydrogen-type ZSM-5 molecular sieve solid was immersed in 20 g of Pr praseodymium nitrate solution with a weight content of 1% for 10 hours, dried at 100° C. for 10 hours, and calcined at 550° C. for 8 hours.
  • the total pore volume of the catalyst is 0.8mL/g, and the micropore pore volume accounts for 77% of the total pore volume.
  • the ratio of the amount of skeleton aluminum located at the intersection of straight and sinusoidal channels to the amount of skeleton aluminum in straight and sinusoidal channels is 0.8:1.
  • the SiO 2 /Al 2 O 3 molar ratio of the catalyst is 280.
  • XRD is similar to Fig. 2, the binder content in this catalyst is less than 0.2%.
  • Catalyst evaluation method is the same as that of Example 1, and the reaction results are: carbon tetraolefin conversion rate 72%, hydrogen transfer index 7.3%, selectivity of propylene and ethylene is 75.5%, catalyst reaction 70h, catalyst activity and selectivity begin to decline.
  • Tetrapropylammonium bromide is used as the first template, aluminum nitrate is the first aluminum source, silica sol is the silicon source, sodium hydroxide is the first alkali source, tetrapropylammonium bromide is calculated as NH 4 + , aluminum nitrate
  • the molar ratio of SiO 2 /Al 2 O 3 is 300, and the second aluminum source potassium aluminum sulfate dodecahydrate after removing the first aluminum source is added, Add the template agent tetrapropylammonium bromide with the second aluminum source at a ratio of NH 4 + /Al 2 O 3 molar ratio of 200:1, fully mix with the above crystallization solution, and adjust the pH with the second alkali source sodium hydroxide 10, and then transferred to a stainless steel autoclave for the second hydrothermal crystallization at 120 ° C for 100 h. The synthesized product was washed with water, dried at 90°C for 15 hours, and calcined at 600°C for 10 hours to obtain ZSM-5 molecular sieve powder.
  • ethylamine Take ethylamine as the third template agent, add the mixture of 30 grams of ethylamine and 30 grams of distilled water in advance in the reaction kettle, place 20 grams of the above-mentioned strip catalyst precursors prepared above the porous stainless steel mesh in the reaction kettle and seal at 130
  • the gas-solid phase hydrothermal crystallization was carried out at °C for 100 h. After the product was taken out, it was washed with distilled water, dried at 90°C for 15h, and then calcined at 550°C for 10h in an air atmosphere.
  • ammonium was exchanged in 5wt% ammonium nitrate solution at 90°C for 3 times, and after drying, it was roasted in a muffle furnace at 500°C for 4 hours to obtain hydrogen ZSM-5 molecular sieve.
  • the obtained hydrogen-type ZSM-5 molecular sieve solid was immersed in 20 g of Pr praseodymium nitrate solution with a weight content of 1% for 10 hours, dried at 100° C. for 10 hours, and calcined at 550° C. for 8 hours.
  • the above solid was immersed in 20 grams of magnesium nitrate solution with a Mg weight content of 2% for 8 hours, dried at 100° C. for 10 hours, and calcined at 550° C. for 8 hours to obtain the catalyst.
  • the XRD pattern of the obtained catalyst is similar to that in Figure 2, indicating that the catalyst is a ZSM-5 molecular sieve catalyst.
  • the total pore volume of the catalyst is 0.28mL/g, and the micropore pore volume accounts for 73% of the total pore volume.
  • the ratio of the amount of skeleton aluminum located at the intersection of straight and sinusoidal channels to the amount of skeleton aluminum in straight and sinusoidal channels is 1.2:1.
  • the SiO 2 /Al 2 O 3 molar ratio of the catalyst is 285.
  • XRD is similar to Fig. 2, the binder content in this catalyst is less than 0.2%.
  • the catalyst evaluation method is the same as in Example 1, and the reaction results are as follows: the carbon tetraolefin conversion rate is 69.8%, the hydrogen transfer index is 7.2%, the selectivity of propylene and ethylene is 71.8%, and the catalyst reacts for 72 hours, and the catalyst activity and selectivity begin to decline.
  • Tetrapropylammonium bromide is used as the first template, aluminum nitrate is the first aluminum source, silica sol is the silicon source, sodium hydroxide is the first alkali source, tetrapropylammonium bromide is calculated as NH 4 + , aluminum nitrate
  • the second aluminum source potassium aluminum sulfate dodecahydrate after removing the first aluminum source
  • the second template agent and the second aluminum source are added with the second template agent n-butylamine at a ratio of NH 4 + /Al 2 O 3 molar ratio of 200:1, fully mixed with the above crystallization solution, and then hydrogenated with the second alkali source Adjust the pH to 10 with sodium, then transfer to a stainless steel autoclave for the second hydrothermal crystallization, and crystallize at 120°C for 100h.
  • the synthesized product was washed with water, dried at 90°C for 15 hours, and calcined at 600°C for 10 hours to obtain ZSM-5 molecular sieve powder.
  • ethylamine Take ethylamine as the third template agent, add the mixture of 30 grams of ethylamine and 30 grams of distilled water in advance in the reaction kettle, place 20 grams of the above-mentioned strip catalyst precursors prepared above the porous stainless steel mesh in the reaction kettle and seal at 130
  • the gas-solid phase hydrothermal crystallization was carried out at °C for 100 h. After the product was taken out, it was washed with distilled water, dried at 90°C for 15h, and then calcined at 550°C for 10h in an air atmosphere.
  • ammonium was exchanged in 5wt% ammonium nitrate solution at 90°C for 3 times, and after drying, it was roasted in a muffle furnace at 500°C for 4 hours to obtain hydrogen ZSM-5 molecular sieve.
  • the obtained hydrogen-form ZSM-5 molecular sieve solid was immersed in 20 g of praseodymium nitrate solution with a mass content of 1% of Pr for 10 hours, dried at 100° C. for 10 hours, and calcined at 550° C. for 8 hours.
  • the above solid was immersed in 20 grams of magnesium nitrate solution with a Mg weight content of 2% for 8 hours, dried at 100° C. for 10 hours, and calcined at 550° C. for 8 hours to obtain the catalyst.
  • the XRD pattern of the obtained catalyst is similar to that in Figure 2, indicating that the catalyst is a ZSM-5 molecular sieve catalyst.
  • the total pore volume of the catalyst is 0.3mL/g, and the micropore pore volume accounts for 80% of the total pore volume.
  • the ratio of the amount of skeleton aluminum at the intersection of straight and sinusoidal channels to the amount of skeleton aluminum in straight and sinusoidal channels is 1.8:1.
  • the SiO 2 /Al 2 O 3 molar ratio of the catalyst is 47.
  • XRD is similar to Fig. 2, the binder content in this catalyst is less than 0.2%.
  • the catalyst evaluation method is the same as in Example 1, and the reaction results are as follows: carbon tetraolefin conversion rate 68.6%, hydrogen transfer index 12.3%, propylene and ethylene selectivity 62.5%, catalyst reaction 72h, catalyst activity and selectivity began to decline.
  • Tetrapropylammonium bromide is used as the first template, aluminum nitrate is the first aluminum source, silica sol is the silicon source, sodium hydroxide is the first alkali source, tetrapropylammonium bromide is calculated as NH 4 + , aluminum nitrate
  • the molar ratio of SiO 2 /Al 2 O 3 is 300, and the second aluminum source potassium aluminum sulfate dodecahydrate after removing the first aluminum source is added,
  • the second template agent and the second aluminum source are added with the second template agent n-butylamine at a ratio of NH 4 + /Al 2 O 3 molar ratio of 200:1, fully mixed with the above crystallization solution, and then hydrogenated with the second alkali source Adjust the pH to 10 with sodium, then transfer to a stainless steel autoclave for the second hydrothermal crystallization, and crystallize at 120°C for 100h.
  • the synthesized product was washed with water, dried at 90°C for 15 hours, and calcined at 600°C for 10 hours to obtain ZSM-5 molecular sieve powder.
  • the above-mentioned ZSM-5 molecular sieve raw powder 100g, 25g silica sol containing 40wt% SiO 2 and 0.056g alumina were kneaded, extruded and dried at 80°C for 10h to obtain a catalyst precursor.
  • ammonium was exchanged in 5wt% ammonium nitrate solution at 90°C for 3 times, and after drying, it was roasted in a muffle furnace at 500°C for 4 hours to obtain hydrogen ZSM-5 molecular sieve.
  • the obtained hydrogen-form ZSM-5 molecular sieve solid was immersed in 20 g of praseodymium nitrate solution with a mass content of 1% of Pr for 10 hours, dried at 100° C. for 10 hours, and calcined at 550° C. for 8 hours.
  • FIG. 4 is the XRD pattern of the catalyst obtained in Comparative Example 5, which shows that the catalyst is a ZSM-5 molecular sieve catalyst with a binder content of 10%.
  • the total pore volume of the catalyst is 0.1mL/g, and the micropore pore volume accounts for 68% of the total pore volume.
  • the ratio of the amount of skeleton aluminum located at the intersection of straight and sinusoidal tunnels to the amount of skeleton aluminum in straight and sinusoidal tunnels is 0.8:1.
  • the SiO 2 /Al 2 O 3 molar ratio of the catalyst is 282.
  • the catalyst evaluation method is the same as in Example 1, and the reaction results are as follows: the conversion rate of carbon tetraolefins is 65%, the hydrogen transfer index is 15.8%, and the selectivity of propylene and ethylene is 58.5%.
  • Tetrapropylammonium bromide is used as template, aluminum nitrate is used as aluminum source, silica sol is used as silicon source, sodium hydroxide is used as alkali source, tetrapropylammonium bromide is calculated as NH 4 + , aluminum nitrate is calculated as Al 2 O 3
  • the synthesized product was washed with water, dried at 90°C for 15 hours, and calcined at 600°C for 10 hours to obtain ZSM-5 molecular sieve powder.
  • the above-mentioned ZSM-5 molecular sieve raw powder 100g, 25g silica sol containing 40wt% SiO 2 and 0.056g alumina were kneaded, extruded and dried at 80°C for 10h to obtain a catalyst precursor.
  • ammonium was exchanged in 5wt% ammonium nitrate solution at 90°C for 3 times, and after drying, it was roasted in a muffle furnace at 500°C for 4 hours to obtain hydrogen ZSM-5 molecular sieve.
  • the obtained hydrogen-form ZSM-5 molecular sieve solid was immersed in 20 g of praseodymium nitrate solution with a mass content of 1% of Pr for 10 hours, dried at 100° C. for 10 hours, and calcined at 550° C. for 8 hours.
  • the above solid was immersed in 20 grams of magnesium nitrate solution with a Mg weight content of 2% for 8 hours, dried at 100° C. for 10 hours, and calcined at 550° C. for 8 hours to obtain the catalyst.
  • the XRD pattern of the obtained catalyst is similar to that shown in Figure 4, indicating that the catalyst is a ZSM-5 molecular sieve catalyst with a binder content of 10%.
  • the total pore volume of the catalyst is 0.13mL/g, and the micropore pore volume accounts for 62% of the total pore volume.
  • the ratio of the amount of skeleton aluminum located at the intersection of straight and sinusoidal channels to the amount of skeleton aluminum in straight and sinusoidal channels is 0.7:1.
  • the SiO 2 /Al 2 O 3 molar ratio of the catalyst is 280.
  • the catalyst evaluation method is the same as in Example 1, and the reaction results are as follows: the conversion rate of carbon tetraolefins is 62.5%, the hydrogen transfer index is 16.9%, and the selectivity of propylene and ethylene is 53.5%.
  • the ZSM-5 molecular sieve catalyst of the present invention has a significantly higher ratio of the amount of framework aluminum located at the intersection of straight and sinusoidal channels to the amount of framework aluminum in straight and sinusoidal channels than conventional catalysts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种ZSM-5分子筛催化剂及其制备方法和应用。在所述催化剂中:位于直孔道与正弦孔道相交处的骨架铝量与直孔道内和正弦孔道内的骨架铝量的比例为1.4∶1~10∶1,硅铝摩尔比SiO 2/Al 2O 3为80~1500,微孔孔容可占总孔容的70%~92%。本发明催化剂用于烯烃催化裂解制丙烯和乙烯反应时,具有反应氢转移指数低、稳定性高、原料烯烃转化率高、产物丙烯和乙烯选择性高的特点。

Description

一种ZSM-5分子筛催化剂及其制备方法和应用 技术领域
本发明涉及催化裂解领域,具体涉及一种ZSM-5分子筛催化剂及其制备方法,以及在烯烃催化裂解增产丙烯和乙烯中的应用。
背景技术
丙烯和乙烯是石油化学工业的重要基础原料,受聚烯烃及其衍生物需求快速增长的驱动,近几年丙烯和乙烯的需求持续旺盛并以较快的速度增长,因此被认为是具有很大市场潜力的产品。混合碳四及以上烯烃为乙烯厂及炼油厂FCC装置的副产,通常只能作为液化气燃料等低附加值的产品,将其进一步深加工为丙烯和乙烯,充分利用好这部分数量可观的宝贵烯烃资源,无疑对经济和技术的发展具有显著的促进作用。烯烃催化裂解技术可以将包含烯烃物质的原料转化为乙烯和丙烯,随着开发技术不断创新和发展,烯烃催化裂解增产丙烯和乙烯技术取得了显著成效,大大提升了生产效率,对于石化工业的发展具有十分深远的影响,有助于推动后续石化生产技术创新和发展。催化剂作为烯烃催化裂解反应中的核心技术,众多学者采用各种制备方法进行了广泛研究,研究重点是制备具有高活性和选择性的催化剂,通过调控酸性质、优化控制分子筛孔道结构来提高分子筛选择性,并且减少副产物和积炭的生成,改性元素、负载量和改性方法都会直接影响催化性能和产物分布。
用于烯烃裂解的催化剂,活性组分为氢型ZSM-5、ZSM-11或SAPO-34等分子筛,惰性气体作为热载体及稀释剂对本反应各项指标的提升大有裨益。然而,反应中水的存在对催化剂长期使用不利。通常酸性分子筛催化剂在高温水热条件下,会发生严重的骨架脱铝现象,从而使得催化剂酸密度迅速下降,造成催化剂活性不可逆丧失。同时,由于分子筛具有较强的酸性,在进行烯烃裂解生成丙烯、乙烯的同时,会发生烯烃叠合链增长、氢转移及芳构化等副反应,甚至在分子筛催化剂孔道内结焦,覆盖反应活性中心,使得催化剂快速失活。EP0109059A1公开了一种将C 4-C 12烯烃裂解制丙烯的方法,其中采用ZSM-5或ZSM-11分子筛作为催化剂。US6307117公开了一种C 4-C 12烯烃裂解生产丙烯和乙烯的方法,其中所用催化剂的活性组分为无质 子酸、含IB族金属的ZSM-5分子筛。上述文献报道的烯烃裂解催化剂,都不同程度的存在产物选择性差、催化剂稳定性差、易结焦失活、不能满足长期运转等缺陷,因而难于实现工业化。
发明内容
针对现有技术中存在的烯烃催化裂解生产丙烯和乙烯的催化剂稳定性差、双烯选择性不高等的问题,本发明所要解决的技术问题是提供一种ZSM-5分子筛催化剂及其制备方法,以及该催化剂在烯烃催化裂解增产丙烯和乙烯中的应用。本发明催化剂用于烯烃催化裂解制丙烯和乙烯反应时,具有反应氢转移指数低、稳定性高、原料烯烃转化率高、产物丙烯和乙烯选择性高的特点。
本发明第一方面提供了一种ZSM-5分子筛催化剂,其中位于直孔道与正弦孔道相交处的骨架铝量与直孔道内和正弦孔道内的骨架铝量的比例为1.4∶1~10∶1,以及该ZSM-5分子筛的硅铝摩尔比SiO 2/Al 2O 3为80~1500。
上述技术方案中,在所述催化剂中:位于直孔道与正弦孔道相交处的骨架铝量与直孔道内和正弦孔道内的骨架铝量的比例优选为1.4∶1~4∶1,更优选1.5∶1~3∶1。
上述技术方案中,在所述催化剂中,位于直孔道与正弦孔道相交处的骨架铝量与直孔道内和正弦孔道内的骨架铝量的比例范围内,非限制性具体点值可以是1.4∶1、1.5∶1、1.6∶1、1.7∶1、1.8∶1、1.9∶1、2.0∶1、2.1∶1、2.2∶1、2.3∶1、2.4∶1、2.5∶1、2.6∶1、2.7∶1、2.8∶1、2.9∶1、3.0∶1、3.2∶1、3.5∶1、4.0∶1等等。
上述技术方案中,在所述催化剂中:所述ZSM-5分子筛的硅铝摩尔比SiO 2/Al 2O 3优选为80~1000,更优选96~1000,还更优选150~1000,进一步还更优选200~1000,再进一步还更优选250~1000。
上述技术方案中,在所述催化剂中:微孔孔容优选占总孔容的70%~92%,更优选75%~90%,还更优选80%~90%。
上述技术方案中,微孔孔容占总孔容的比例,非限制性具体点值可以是70%、72%、73%、74%、76%、78%、80%、82%、84%、86%、88%、90%、92%等等。
上述技术方案中,所述催化剂的总孔容优选为0.01~1.2mL/g,更优选为0.1~0.8mL/g。
上述技术方案中,所述ZSM-5分子筛催化剂,以重量份数计,优选包括以下组分:
a)氢型ZSM-5分子筛90~100份,优选为92~99份;
b)稀土元素0~5份,优选为0.5~3.0份;和
c)碱土金属元素0~5份,优选为0.5~5.0份。
上述技术方案中,所述氢型ZSM-5分子筛的硅铝摩尔比SiO 2/Al 2O 3优选为80~1500,更优选为80~1000,再更优选96~1000,还更优选150~1000,进一步还更优选200~1000,再进一步还更优选250~1000。
上述技术方案中,稀土元素优选选自La、Ce、Pr和Nd中的至少一种。
上述技术方案中,碱土金属元素优选选自Mg、Ca、Sr和Ba中的至少一种。
上述技术方案中,所述ZSM-5分子筛催化剂以催化剂的质量为基准粘结剂的质量含量优选在5%以下,更优选为2%以下,进一步优选为0.5%以下。进一步地,所述ZSM-5分子筛催化剂优选为无粘结剂ZSM-5分子筛催化剂。
上述技术方案中,所述ZSM-5分子筛催化剂优选为烯烃催化裂解催化剂。
本发明第二方面提供了上述ZSM-5分子筛催化剂的制备方法,包括如下步骤:
(1)制备ZSM-5分子筛原粉;
(2)将步骤(1)所得分子筛原粉与粘结剂混捏成型,经干燥,得到催化剂前体;
(3)将步骤(2)所得催化剂前体在第三模板剂存在下进行第三水热晶化,铵交换,得到ZSM-5分子筛催化剂。
上述技术方案中,任选地,还可以包括步骤(4):步骤(3)所得ZSM-5分子筛负载稀土金属和/或碱土金属,得到含金属的ZSM-5分子筛催化剂。
上述技术方案中,步骤(1)中所述ZSM-5分子筛原粉的制备方法优选包括:
(1.1)将第一模板剂、第一铝源、硅源、第一碱源与水混合,经第一水热晶化;
(1.2)将第二铝源、第二模板剂、第二碱源与步骤(1.1)晶化后所得的混合物混合,经第二水热晶化,得到ZSM-5分子筛原粉。
上述技术方案中,步骤(1.1)中所述第一模板剂优选为四丙基溴化铵、四丙基氢氧化铵、四乙基氯化铵和氨水中的至少一种;所述第一铝源优选为硝酸铝、硫酸铝和磷酸铝中的至少一种;所述硅源优选为水玻璃、正硅酸乙酯和硅溶胶中的至少一种;所述第一碱源优选为氢氧化钠和氢氧化钾中的至少一种。所述第一水热晶化可以在不锈钢高压釜内产生的自生压力下进行。所述水优选为去离子水。所述第一水热晶化的条件优选如下:晶化温度为80~150℃,晶化时间为2~10h。步骤(1.1)中,第一模板剂以NH 4 +计、第一铝源以Al 2O 3计、硅源以SiO 2计、第一碱源以OH -计、水以H 2O计的摩尔比为:NH 4 +∶Al 2O 3∶SiO 2∶OH -∶H 2O=0.2~0.3∶0.0005~0.008∶1∶0.2~0.4∶15~20,优选0.2~0.3∶0.0005~0.001∶1∶0.2~0.4∶15~20。
上述技术方案中,步骤(1.2)中所述第二铝源优选为硫酸铝钾和偏铝酸钠中的至少一种。所述硫酸铝钾可以为水合物,比如十二水合硫酸铝钾。所述第二模板剂优选为正丁胺、己二胺和吡啶中至少一种。所述第二碱源优选为氢氧化钠和氢氧化钾中至少一种。步骤(1.1)中的硅源与步骤(1.2)中的第二铝源和步骤(1.1)中的第一铝源的加入总量,按照SiO 2/Al 2O 3计,摩尔比优选为80~1500,更优选为80~1000。步骤(1.2)中的第二铝源以Al 2O 3计的加入量占步骤(1.2)中的第二铝源和步骤(1.1)中的第一铝源以Al 2O 3计总质量的优选30%以上,更优选40%以上。
上述技术方案中,步骤(1.2)中所述第二模板剂和第二铝源,按照NH 4 +/Al 2O 3计,摩尔比优选为200~500∶1。第二碱源用于控制体系pH值优选为8~10。所述第二水热晶化的条件优选如下:晶化温度为120~200℃,晶化时间为10~100h。所述第二水热晶化可以在不锈钢高压釜内产生的自生压力下进行。
上述技术方案中,第二水热晶化后所得产物可以进行洗涤,干燥,焙烧,得到ZSM-5分子筛原粉。所述洗涤可以采用去离子水洗涤。所述的干燥条件优选如下:干燥温度为80~100℃,干燥时间为10~20h。所述的焙烧条件优选如下:焙烧温度为500~650℃,焙烧时间为8~15h。
上述技术方案中,步骤(2)中,所述粘结剂优选为硅化合物或者硅化合物和铝化合物。所述铝化合物优选选自氧化铝和铝溶胶中至少一种,所述硅化合物优选选自白炭黑和硅溶胶中的至少一种。所述粘结剂中,硅化合物以二氧化硅计,铝化合物以氧化铝计,硅化合物用量可以以质量计占10%~100%,也可以以质量计占50%~100%。所述粘结剂的加入量,以氧化铝和氧化硅质量之和计,优选占分子筛原粉与粘结剂总质量的8%~45%,更优选为10%~40%。步骤(2)中所述的成型可以采用常规的成型方法,比如挤条成型等。步骤(2)中根据成型要求,可以加入适量的水。所述的干燥条件优选如下:干燥温度为80~120℃,干燥时间为5~10h。
上述技术方案中,步骤(3)中所述第三模板剂优选为氨水、乙胺、乙二胺、三乙胺、正丁胺、己二胺、四丙基溴化铵和四丙基氢氧化铵中的至少一种。所述第三水热晶化优选是将步骤(2)所得催化剂前体置于含有第三模板剂的蒸气中进行晶化,第三模板剂与催化剂前体的质量比优选为1~3∶1,优选在130~200℃下晶化20~100h。所述的第三水热晶化优选是采用气固转晶法,即将催化剂前体置于晶化釜中间隔网之上,含第三模板剂的水溶液置于中间隔网下方,在晶化条件下,使下方的含第三模板剂的水溶液形成蒸气对催化剂前体进行转晶处理。所述第三水热晶化可以在不锈钢高压釜内产生的自生压力下进行。所述第三模板剂的水溶液中第三模板剂和水的质量比优选为1~2∶1。
上述技术方案中,第三水热晶化后所得产物可以进行洗涤,干燥,焙烧。所述的干燥条优选如下:干燥温度为80~100℃,干燥时间为10~20h。所述的焙烧条件优选如下:焙烧温度为450~600℃,焙烧时间为5~10h。
上述技术方案中,步骤(3)中所述铵交换优选为将催化剂前体晶化后所得产物置于铵盐水溶液中进行铵交换,洗涤、干燥。所述铵盐优选选自氯化铵、硝酸铵和硫酸铵的一种或几种。所述铵盐水溶液中铵盐的质量含量优选为5%~10%。所述铵交换的温度优选为80~90℃;所述铵交换次数可以为3~6次。铵交换后所得产物进行焙烧;所述焙烧条件优选如下:焙烧温度为500~600℃,焙烧时间为4~8h。
上述技术方案中,步骤(4)为任选步骤,根据催化剂组成而确定。 稀土金属和/或碱土金属的负载方法可以采用浸渍法。优选地,所述催化剂中含有稀土金属和碱土金属,其负载过程如下:先得到负载有稀土金属的ZSM-5分子筛,然后再得到负载有稀土金属和碱土金属的ZSM-5分子筛,即为含金属的ZSM-5分子筛催化剂。所述浸渍法优选为等体积浸渍法,将分子筛在含有稀土金属盐溶液或者碱土金属盐溶液中等体积浸渍3~10h,在60~100℃干燥10~20h后,于450~600℃焙烧8~10h即得。所述稀土金属盐溶液中,稀土金属的重量浓度优选为0.2%~5%。所述稀土元素优选选自La、Ce、Pr和Nd中的至少一种;所述碱土金属盐溶液中,碱土金属的重量浓度优选为0.2%~5%。所述碱土金属元素优选选自Mg、Ca、Sr和Ba中的至少一种。
本发明第三方面提供了一种上述ZSM-5分子筛催化剂在烯烃催化裂解生产丙烯和乙烯中的应用或者一种在烯烃催化裂解中通过使用上述ZSM-5分子筛催化剂生产丙烯和乙烯的方法。
上述技术方案中,烯烃催化裂解生产丙烯和乙烯的过程可如下:烯烃原料与上述ZSM-5分子筛催化剂接触进行反应,得到丙烯和乙烯产品。
上述技术方案中,优选以碳四至碳六烯烃中的至少一种为原料,反应条件优选如下:反应温度为400~600℃,更优选为420~580℃,反应压力为0~0.3MPa,更优选为0.01~0.2MPa,重量空速1~50h -1,更优选为2~40h -1
上述技术方案中,原料通过所述催化剂床层生成丙烯和乙烯,反应氢转移指数优选低于9.6%,更优选低于7%;这里所述反应氢转移指数为产物中丙烷和丙烯的收率质量比。
现有技术中,由于烯烃催化裂解增产丙烯和乙烯工艺中存在丙烯和乙烯选择性偏低、催化剂稳定性差的问题,这主要是由于烯烃裂解反应网络复杂,包括单分子裂解、双分子裂解及三分子裂解反应,过程涉及烯烃异构化、齐聚、裂解、脱氢芳构化、氢转移反应、烷基化、焦化等多个步骤,其中氢转移反应的程度是影响其余副反应和产物选择性的关键因素。普通低硅铝比ZSM-5分子筛酸中心偏多,用于反应后导致副反应增多,产物选择性低,副产物堵塞分子筛孔道,从而使催化剂活性降低,最终导致催化剂失活。而高硅铝比ZSM-5分子筛则活性中心较少,活性分布不均匀,导致反应活性偏低,催化剂稳定性 差。发明人经研究发现,ZSM-5分子筛催化剂中,直孔道和正弦孔道交叉处的骨架铝量明显高于直孔道和正弦孔道内部的骨架铝量以及具有较高硅铝比时,用于烯烃催化裂解制丙烯和乙烯时,具备良好的活性和选择性,稳定性也得到进一步增长。此外适宜的微孔孔容占比有助于性能的增加。
与现有技术相比,本发明具有如下技术效果:
1、本发明ZSM-5分子筛催化剂具有直孔道和正弦孔道交叉处的骨架铝量明显高于直孔道和正弦孔道内部的骨架铝量,以及具有较高硅铝比的特点,使得催化剂活性中心利用率大大提高,从而使交叉孔道处生成的产物和中间物更易于扩散,显著减少了副反应的发生和积炭形成,大幅降低了反应的氢转移指数,催化剂活性和产物选择性明显提高,稳定性也进一步增长。
2、本发明ZSM-5分子筛催化剂的制备过程中,尤其是ZSM-5分子筛原粉合成过程中采用分次加入不同的铝源和模板剂,制备的分子筛催化剂具备复合孔道结构,经转晶处理,使所得的催化剂中基本不含粘结剂,位于直孔道和正弦孔道交叉处的骨架铝量明显高于直孔道和正弦孔道内部的骨架铝量时,硅铝比较高,这使得催化剂活性和产物选择性明显提高,稳定性也进一步增长。适宜的微孔孔容占比进一步增加了性能。
3、本发明烯烃催化裂解制乙烯和丙烯的方法有效克服了现有技术中反应氢转移指数高、催化剂活性差、丙烯和乙烯选择性低的缺点,采用本发明催化剂,可以将反应氢转移指数降低到9.6%以下,更优选7%以下,原料烯烃的转化率在71%以上,目的产物丙烯和乙烯的选择性超过68%,优选超过80%,当反应进行75h后,催化剂的活性和选择性未发生明显变化,具有良好的稳定性。
附图说明
图1为实施例1所得催化剂的骨架铝27Al核磁谱图,其中在图1中,线1为直孔道和正弦孔道交叉处的骨架铝物种,线2为直孔道和正弦孔道内的骨架铝物种;线3为分峰前原始曲线;
图2为实施例1所得催化剂的XRD图;
图3为对比例5所得催化剂的骨架铝27Al核磁谱图,其中在图3中,线1为直孔道和正弦孔道交叉处的骨架铝物种,线2为直孔道和 正弦孔道内的骨架铝物种;线3为分峰前原始曲线;
图4为对比例5所得催化剂的XRD图。
具体实施方式
下面通过实施例对本发明作进一步阐述。
本发明中,孔容的测定是在TriStar 3000型物理吸附仪上进行。300℃真空处理3h后样品放入测试仪并加入液氮进行测试。采用Barret-Joyner-Halenda(BJH)模型计算样品孔分布。
本发明中, 27Al核磁表征采用的仪器为Bruker公司的DSX 300型核磁共振仪, 27Al化学位移参照饱和氯化铝溶液中的Al(H 2O) 6 3+,核磁谱图是在魔角旋转速度4kHz条件下获得。其中,催化剂中位于直孔道与正弦孔道相交处的骨架铝对应于 27Al核磁图谱中化学位移位于54ppm附近(例如54±0.2ppm的范围)的谱峰,位于直孔道和正弦孔道内的骨架铝对应于27Al核磁图谱中化学位移位于56ppm附近(例如56±0.6ppm范围)的谱峰。位于直孔道与正弦孔道相交处骨架铝量与位于直孔道和正弦孔道内的骨架铝量之比为根据 27Al核磁图谱中54ppm附近和56ppm附近的谱峰进行分峰后所对应面积之比。
本发明中,XRD分析在Rigaku D/MAX-1400X型多晶X射线衍射仪上进行,石墨单色器,Cu Kα射线,管电压40kV,管电流40mA,扫描速度15°·min -1,扫描范围2θ为5~50°。
本发明中,硅铝摩尔比SiO 2/Al 2O 3通过采用荷兰Philips公司Magix X型荧光光谱仪分析固体样品的元素组成后计算得到,操作电压40kV,操作电流40mA。
本发明实施例和对比例中,以碳四至碳六烯烃中的至少一种为原料,催化裂解生成乙烯和丙烯,其中,氢转移指数为产物中丙烷和丙烯的收率质量比;
原料烯烃转化率(%)=(1-产物中烯烃质量/原料中烯烃质量)×100%;
双烯选择性(%)=产物中生成的丙烯与乙烯质量和/(原料中烯烃质量-反应后剩余的烯烃质量)×100%。
【实施例1】
(1)制备ZSM-5分子筛原粉
以四丙基溴化铵为第一模板剂,硝酸铝为第一铝源,硅溶胶为硅 源,氢氧化钠为第一碱源,四丙基溴化铵以NH 4 +计、硝酸铝以Al 2O 3计、硅溶胶以SiO 2计、氢氧化钠以OH -计、水以H 2O计的摩尔比为:NH 4 +∶Al 2O 3∶SiO 2∶OH -∶H 2O=0.3∶0.001∶1∶0.2∶15,充分混合搅拌后转移到高压釜内,在100℃晶化8h后冷却备用。按硅源与第一铝源和第二铝源总量,按SiO 2/Al 2O 3摩尔比为300的比例,加入除去第一铝源后的第二铝源十二水合硫酸铝钾,第二模板剂与第二铝源以NH 4 +/Al 2O 3摩尔比为200∶1的比例加入第二模板剂正丁胺,和上述晶化液充分混合,用第二碱源氢氧化钠调节pH为10,再转移到不锈钢高压釜内进行第二水热晶化,于120℃晶化100h。将合成产物水洗、于90℃下干燥15h,于600℃焙烧10h后,得到ZSM-5分子筛原粉。
(2)制备催化剂前体
将上述ZSM-5分子筛原粉100g、25g含40wt%SiO 2的硅溶胶和0.056g氧化铝,混捏,挤条成型,于80℃干燥10h,得到催化剂前体;
(3)制备氢型ZSM-5分子筛
以乙胺为第三模板剂,在反应釜中预先加入30克乙胺和30克蒸馏水的混合物,将20克上述制备的条状催化剂前体置于反应釜中多孔不锈钢网上方密封后在130℃下进行气固相水热晶化100h。产物取出后用蒸馏水洗涤,90℃干燥15h,然后在空气气氛中于550℃焙烧10h。
再于90℃ 5wt%硝酸铵溶液中铵交换3次,干燥后于500℃马弗炉中焙烧4h,得到氢型ZSM-5分子筛。
(4)浸渍金属组分
将得到的氢型ZSM-5分子筛固体置于20g Pr质量含量为1%的硝酸镨溶液中进行浸渍10h,100℃干燥10h,550℃焙烧8h。
最后将上述固体置于20克Mg重量含量为2%的硝酸镁溶液中进行浸渍8h,100℃干燥10h,550℃焙烧8h,即得催化剂。
经物理吸附测试,催化剂总孔容为0.3mL/g,其中微孔孔容占总孔容86%。经铝核磁测定,见图1,位于直孔道和正弦孔道交叉处的骨架铝量与直孔道和正弦孔道内骨架铝量之比为2∶1。该催化剂SiO 2/Al 2O 3摩尔比为282。图2为实施例1所得催化剂的XRD图,说明此催化剂为ZSM-5分子筛催化剂,且粘结剂含量低于0.2%。
采用固定床催化反应装置,以乙烯厂抽余混合碳四(以质量计,丁烷40%,丁烯60%)为原料,对制备的催化剂进行了烯烃催化裂解 制丙烯和乙烯反应活性评价,考察所用的工艺条件为:催化剂装5克,反应温度为500℃,反应压力为0.02MPa,重量空速为20h -1。反应结果为:碳四烯烃转化率75%,氢转移指数6.5%,丙烯和乙烯的选择性为80.8%。催化剂反应80h,催化剂活性和选择性未发生明显变化,具有良好的稳定性。
【实施例2】
(1)制备ZSM-5分子筛原粉
以四丙基氢氧化铵为第一模板剂,硝酸铝为第一铝源,正硅酸乙酯为硅源,氢氧化钠为第一碱源,四丙基氢氧化铵以NH 4 +计、硝酸铝以Al 2O 3计、正硅酸乙酯以SiO 2计、氢氧化钠以OH -计、水以H 2O计的摩尔比为:NH 4 +∶Al 2O 3∶SiO 2∶OH -∶H 2O=0.2∶0.0005∶1∶0.4∶20,充分混合搅拌后转移到高压釜内,在80℃晶化10h后冷却备用。按硅源与第一铝源和第二铝源总量,按SiO 2/Al 2O 3摩尔比为1000的比例,加入除去第一铝源后的第二铝源偏铝酸钠,第二模板剂与第二铝源以NH 4 +/Al 2O 3摩尔比为300∶1的比例加入第二模板剂吡啶,和上述晶化液充分混合,用第二碱源氢氧化钠调节pH为8,再转移到不锈钢高压釜内进行第二水热晶化,于200℃晶化10h。将合成产物水洗、于80℃下干燥20h,于500℃焙烧15h后得到ZSM-5分子筛原粉。
(2)制备催化剂前体
将上述ZSM-5分子筛原粉100g、白炭黑80g和铝溶胶0.68g(含Al 2O 3质量分数为20%),加水50g混捏,挤条成型,于120℃下干燥5h,得到催化剂前体;
(3)制备氢型ZSM-5分子筛
以己二胺为第三模板剂,在反应釜中预先加入60克的己二胺和30克蒸馏水的混合物,将20克上述制备的条状催化剂前体置于反应釜中多孔不锈钢网上方密封后在150℃下进行晶化80h。产物取出后用蒸馏水洗涤,100℃干燥10h,在空气气氛中于600℃焙烧5h。
再于80℃10%硝酸铵溶液中铵交换三次,干燥后于550℃马弗炉中焙烧4h,得到氢型ZSM-5分子筛。
(4)浸渍金属组分
将得到的氢型ZSM-5分子筛固体置于20g Nd质量含量为2%的硝酸钕溶液中进行浸渍5h,60℃干燥20h,600℃焙烧8h。
最后将上述固体置于20克Ca重量含量为0.8%的硝酸钙溶液中进行浸渍10h,100℃烘干,500℃焙烧10h,即得催化剂。所得催化剂的XRD图与图2类似,说明此催化剂为ZSM-5分子筛催化剂,且粘结剂含量低于0.2%。
经物理吸附测试,催化剂总孔容为0.4mL/g,其中微孔孔容占总孔容90%。经铝核磁测定,位于直孔道和正弦孔道交叉处的骨架铝量与直孔道和正弦孔道内骨架铝量之比1.5∶1。该催化剂SiO 2/Al 2O 3摩尔比为925。
催化剂评价方法同实施例1,反应结果为:碳四烯烃转化率73%,氢转移指数4.8%,丙烯和乙烯选择性85.6%。催化剂反应78h,催化剂活性和选择性未发生明显变化,具有良好的稳定性。
【实施例3】
(1)制备ZSM-5分子筛原粉
以四丙基溴化铵为第一模板剂,硝酸铝为第一铝源,硅溶胶为硅源,氢氧化钠为第一碱源,四丙基溴化铵以NH 4 +计、硝酸铝以Al 2O 3计、硅溶胶以SiO 2计、氢氧化钠以OH -计、水以H 2O计的摩尔比为:NH 4 +∶Al 2O 3∶SiO 2∶OH -∶H 2O=0.3∶0.001∶1∶0.2∶15,充分混合搅拌后转移到高压釜内,在100℃晶化8h后冷却备用。按硅源与第一铝源和第二铝源总量,按SiO 2/Al 2O 3摩尔比为300的比例,加入除去第一铝源后的第二铝源十二水合硫酸铝钾,第二模板剂与第二铝源以NH 4 +/Al 2O 3摩尔比为200∶1的比例加入第二模板剂正丁胺,和上述晶化液充分混合,用第二碱源氢氧化钠调节pH为10,再转移到不锈钢高压釜内进行第二水热晶化,于120℃晶化100h。将合成产物水洗、于90℃下干燥15h,于600℃焙烧10h后,得到ZSM-5分子筛原粉。
(2)制备催化剂前体
将上述ZSM-5分子筛原粉100g、25g含40wt%SiO 2的硅溶胶和0.056g氧化铝,混捏,挤条成型,于80℃干燥10h,得到催化剂前体;
(3)制备氢型ZSM-5分子筛
以乙胺为第三模板剂,在反应釜中预先加入30克乙胺和30克蒸馏水的混合物,将20克上述制备的条状催化剂前体置于反应釜中多孔不锈钢网上方密封后在130℃下进行气固相水热晶化100h。产物取出后用蒸馏水洗涤,90℃干燥15h,然后在空气气氛中于550℃焙烧10h。
再于90℃ 5wt%硝酸铵溶液中铵交换3次,干燥后于500℃马弗炉中焙烧4h,即得催化剂。所得催化剂的XRD图与图2类似,说明此催化剂为ZSM-5分子筛催化剂,且粘结剂含量低于0.2%。
经物理吸附测试,催化剂总孔容为0.5mL/g,其中微孔孔容占总孔容87%。经铝核磁测定,位于直孔道和正弦孔道交叉处的骨架铝量与直孔道和正弦孔道内骨架铝量之比2∶1。该催化剂SiO 2/Al 2O 3摩尔比为280。
催化剂评价方法同实施例1,反应结果为:碳四烯烃转化率76%,氢转移指数9.6%,丙烯和乙烯选择性68.2%。催化剂反应82h,催化剂活性和选择性未发生明显变化,具有良好的稳定性。
【实施例4】
(1)制备ZSM-5分子筛原粉
以四丙基溴化铵为第一模板剂,硝酸铝为第一铝源,硅溶胶为硅源,氢氧化钠为第一碱源,四丙基溴化铵以NH 4 +计、硝酸铝以Al 2O 3计、硅溶胶以SiO 2计、氢氧化钠以OH -计、水以H 2O计的摩尔比为:NH 4 +∶Al 2O 3∶SiO 2∶OH -∶H 2O=0.3∶0.001∶1∶0.2∶15,充分混合搅拌后转移到高压釜内,在100℃晶化8h后冷却备用。按硅源与第一铝源和第二铝源总量,按SiO 2/Al 2O 3摩尔比为300的比例,加入除去第一铝源后的第二铝源十二水合硫酸铝钾,第二模板剂与第二铝源以NH 4 +/Al 2O 3摩尔比为200∶1的比例加入第二模板剂正丁胺,和上述晶化液充分混合,用第二碱源氢氧化钠调节pH为10,再转移到不锈钢高压釜内进行第二水热晶化,于120℃晶化100h。将合成产物水洗、于90℃下干燥15h,于600℃焙烧10h后,得到ZSM-5分子筛原粉。
(2)制备催化剂前体
将上述ZSM-5分子筛原粉100g、25g含40wt%SiO 2的硅溶胶和0.056g氧化铝,混捏,挤条成型,于80℃干燥10h,得到催化剂前体;
(3)制备氢型ZSM-5分子筛
以乙胺为第三模板剂,在反应釜中预先加入30克乙胺和30克蒸馏水的混合物,将20克上述制备的条状催化剂前体置于反应釜中多孔不锈钢网上方密封后在130℃下进行气固相水热晶化100h。产物取出后用蒸馏水洗涤,90℃干燥15h,然后在空气气氛中于550℃焙烧10h。
再于90℃ 5wt%硝酸铵溶液中铵交换3次,干燥后于500℃马弗炉 中焙烧4h,得到氢型ZSM-5分子筛。
(4)浸渍金属组分
将得到的氢型ZSM-5分子筛固体置于20g Pr重量含量为1%的硝酸镨溶液中进行浸渍10h,100℃干燥10h,550℃焙烧8h。即得催化剂。所得催化剂的XRD图与图2类似,说明此催化剂为ZSM-5分子筛催化剂,且粘结剂含量低于0.2%。
经物理吸附测试,催化剂总孔容为0.4mL/g,其中微孔孔容占总孔容86%。经铝核磁测定,位于直孔道和正弦孔道交叉处的骨架铝量与直孔道和正弦孔道内骨架铝量之比2∶1。该催化剂SiO 2/Al 2O 3摩尔比为285。
催化剂评价方法同实施例1,反应结果为:碳四烯烃转化率77.3%,氢转移指数8.8%,丙烯和乙烯选择性70.2%。催化剂反应76h,催化剂活性和选择性未发生明显变化,具有良好的稳定性。
【实施例5】
(1)制备ZSM-5分子筛原粉
以四丙基溴化铵为第一模板剂,硝酸铝为第一铝源,硅溶胶为硅源,氢氧化钠为第一碱源,四丙基溴化铵以NH 4 +计、硝酸铝以Al 2O 3计、硅溶胶以SiO 2计、氢氧化钠以OH -计、水以H 2O计的摩尔比为:NH 4 +∶Al 2O 3∶SiO 2∶OH -∶H 2O=0.3∶0.001∶1∶0.2∶15,充分混合搅拌后转移到高压釜内,在100℃晶化8h后冷却备用。按硅源与第一铝源和第二铝源总量,按SiO 2/Al 2O 3摩尔比为300的比例,加入除去第一铝源后的第二铝源十二水合硫酸铝钾,第二模板剂与第二铝源以NH 4 +/Al 2O 3摩尔比为200∶1的比例加入第二模板剂正丁胺,和上述晶化液充分混合,用第二碱源氢氧化钠调节pH为10,再转移到不锈钢高压釜内进行第二水热晶化,于120℃晶化100h。将合成产物水洗、于90℃下干燥15h,于600℃焙烧10h后,得到ZSM-5分子筛原粉。
(2)制备催化剂前体
将上述ZSM-5分子筛原粉100g、25g含40wt%SiO 2的硅溶胶和0.056g氧化铝,混捏,挤条成型,于80℃干燥10h,得到催化剂前体;
(3)制备氢型ZSM-5分子筛
以乙胺为第三模板剂,在反应釜中预先加入30克乙胺和30克蒸馏水的混合物,将20克上述制备的条状催化剂前体置于反应釜中多孔 不锈钢网上方密封后在130℃下进行气固相水热晶化100h。产物取出后用蒸馏水洗涤,90℃干燥15h,然后在空气气氛中于550℃焙烧10h。
再于90℃ 5wt%硝酸铵溶液中铵交换3次,干燥后于500℃马弗炉中焙烧4h,得到氢型ZSM-5分子筛。
(4)浸渍金属组分
将得到的氢型ZSM-5分子筛固体置于20克Mg质量含量为2%的硝酸镁溶液中进行浸渍8h,100℃干燥10h,550℃焙烧8h,即得催化剂。所得催化剂的XRD图与图2类似,说明此催化剂为ZSM-5分子筛催化剂,且粘结剂含量低于0.2%。
经物理吸附测试,催化剂总孔容为0.6mL/g,其中微孔孔容占总孔容83%。经铝核磁测定,位于直孔道和正弦孔道交叉处的骨架铝量与直孔道和正弦孔道内骨架铝量之比1.8∶1。该催化剂SiO 2/Al 2O 3摩尔比为282。
催化剂评价方法同实施例1,反应结果为:碳四烯烃转化率75.8%,氢转移指数9.3%,丙烯和乙烯选择性69.5%。催化剂反应75h,催化剂活性和选择性未发生明显变化,具有良好的稳定性。
【实施例6】
(1)制备ZSM-5分子筛原粉
以四丙基溴化铵为第一模板剂,硫酸铝为第一铝源,硅溶胶为硅源,氢氧化钠为第一碱源,四丙基溴化铵以NH 4 +计、硫酸铝以Al 2O 3计、硅溶胶以SiO 2计、氢氧化钠以OH -计、水以H 2O计的摩尔比为:NH 4 +∶Al 2O 3∶SiO 2∶OH -∶H 2O=0.2∶0.005∶1∶0.4∶20,充分混合搅拌后转移到高压釜内,在150℃晶化2h后冷却备用。按硅源与第一铝源和第二铝源总量,按SiO 2/Al 2O 3摩尔比为100的比例,加入除去第一铝源后的第二铝源硫酸铝钾,第二模板剂与第二铝源以NH 4 +/Al 2O 3摩尔比为500∶1的比例加入第二模板剂正丁胺,和上述晶化液充分混合,用第二碱源氢氧化钠调节pH为10,再转移到不锈钢高压釜内进行第二水热晶化,于150℃晶化40h。将合成产物水洗、于90℃下干燥15h,于600℃焙烧10h后得到ZSM-5分子筛原粉。
(2)制备催化剂前体
将上述ZSM-5分子筛原粉115g、白炭黑10g和铝溶胶0.85g(含Al 2O 3质量分数为20%),加水40g混捏,挤条成型,于120℃下干燥 5h,得到催化剂前体。
(3)制备氢型ZSM-5分子筛
以己二胺为第三模板剂,在反应釜中预先加入60克的己二胺和30克蒸馏水的混合物,将30克上述制备的条状催化剂前体置于反应釜中多孔不锈钢网上方密封后在200℃下进行晶化20h。产物取出后用蒸馏水洗涤,100℃干燥10h,晾干后在空气气氛中于450℃焙烧10h。
再于90℃ 5%硫酸铵溶液中铵交换6次,干燥后于600℃马弗炉中焙烧4h,得到氢型ZSM-5分子筛。
(4)浸渍金属组分
将得到的氢型ZSM-5分子筛固体置于20g Ce质量含量为0.2%的硝酸钕溶液中进行浸渍3h,100℃干燥10h,450℃焙烧10h。
最后将上述固体置于20g Mg重量含量为0.2%的硝酸镁溶液中进行浸渍10h,100℃烘干,500℃焙烧10h,即得催化剂。所得催化剂的XRD图与图2类似,说明此催化剂为ZSM-5分子筛催化剂,且粘结剂含量低于0.2%。
经物理吸附测试,催化剂总孔容为0.8mL/g,其中微孔孔容占总孔容90%。经铝核磁测定,位于直孔道和正弦孔道交叉处的骨架铝量与直孔道和正弦孔道内骨架铝量之比3∶1。该催化剂SiO 2/Al 2O 3摩尔比为98。
催化剂评价方法同实施例1,反应结果为:碳四烯烃转化率76.3%,氢转移指数5.3%,丙烯和乙烯选择性84.5%。催化剂反应77h,催化剂活性和选择性未发生明显变化,具有良好的稳定性。
【实施例7】
(1)制备ZSM-5分子筛原粉
以四乙基氯化铵为第一模板剂,磷酸铝为第一铝源,水玻璃为硅源,氢氧化钠为第一碱源,四乙基氯化铵以NH 4 +计、磷酸铝以Al 2O 3计、水玻璃以SiO 2计、氢氧化钠以OH -计、水以H 2O计的摩尔比为:NH 4 +∶Al 2O 3∶SiO 2∶OH -∶H 2O=0.2∶0.001∶1∶0.4∶20,充分混合搅拌后转移到高压釜内,在80℃晶化10h后冷却备用。按硅源与第一铝源和第二铝源总量,按SiO 2/Al 2O 3摩尔比为100的比例,加入除去第一铝源后的第二铝源偏铝酸钠,第二模板剂与第二铝源以NH 4 +/Al 2O 3摩尔比为200∶1的比例加入第二模板剂己二胺,和上述晶化液充分混合,用第二 碱源氢氧化钠调节pH为10,再转移到不锈钢高压釜内进行第二水热晶化,于120℃晶化100h。将合成产物水洗、于100℃下干燥10h,于650℃焙烧8h后得到ZSM-5分子筛原粉。
(2)制备催化剂前体
将上述ZSM-5分子筛原粉112g、白炭黑40g和铝溶胶3.4g(含Al 2O 3质量分数为20%),加水60g混捏,挤条成型,于80℃下干燥10h,得到催化剂前体;
(3)制备氢型ZSM-5分子筛
以三乙胺为第三模板剂,在反应釜中预先加入50g的三乙胺和50g蒸馏水的混合物,将50g上述制备的条状催化剂前体置于反应釜中多孔不锈钢网上方密封后在130℃下进行晶化100h。产物取出后用蒸馏水洗涤,80℃干燥20h,晾干后在空气气氛中于500℃焙烧8h。
再于80℃10%氯化铵溶液中铵交换4次,干燥后于500℃马弗炉中焙烧8h,得到氢型ZSM-5分子筛。
(4)浸渍金属组分
将得到的氢型ZSM-5分子筛固体置于20g La质量含量为5%的硝酸镧溶液中进行浸渍10h,100℃干燥12h,500℃焙烧10h。
最后将上述固体置于20克Ba质量含量为0.5%的硝酸钡溶液中进行浸渍10h,100℃烘干,500℃焙烧10h,即得催化剂。所得催化剂的XRD图与图2类似,说明此催化剂为ZSM-5分子筛催化剂,且粘结剂含量低于0.2%。
经物理吸附测试,催化剂总孔容为0.1mL/g,其中微孔孔容占总孔容70%。经铝核磁测定,位于直孔道和正弦孔道交叉处的骨架铝量与直孔道和正弦孔道内骨架铝量之比2∶1。该催化剂SiO 2/Al 2O 3摩尔比为96。
催化剂评价方法同实施例1,反应结果为:碳四烯烃转化率71%,氢转移指数5.6%,丙烯和乙烯选择性80.3%。催化剂反应78h,催化剂活性和选择性未发生明显变化,具有良好的稳定性。
【实施例8】
(1)制备ZSM-5分子筛原粉
以氨水为第一模板剂,硝酸铝为第一铝源,正硅酸乙酯为硅源,氢氧化钠为第一碱源,氨水以NH 4 +计、硝酸铝以Al 2O 3计、正硅酸乙 酯以SiO 2计、氢氧化钠以OH -计、水以H 2O计的摩尔比为:NH 4 +∶Al 2O 3∶SiO 2∶OH -∶H 2O=0.3∶0.008∶1∶0.2∶20,充分混合搅拌后转移到高压釜内,在80℃晶化10h后冷却备用。按硅源与第一铝源和第二铝源总量,按SiO 2/Al 2O 3摩尔比为500的比例,加入除去第一铝源后的第二铝源硫酸铝钾,第二模板剂与第二铝源以NH 4 +/Al 2O 3摩尔比为400∶1的比例加入第二模板剂吡啶,和上述晶化液充分混合,用第二碱源氢氧化钠调节pH为8,再转移到不锈钢高压釜内进行第二水热晶化,于180℃晶化20h。将合成产物水洗、于90℃下干燥15h,于600℃焙烧10h后得到ZSM-5分子筛原粉。
(2)制备催化剂前体
将上述ZSM-5分子筛原粉150g、白炭黑100g和铝溶胶1.7g(含Al 2O 3质量分数为20%),加水50g混捏,挤条成型,于120℃下干燥5h,得到催化剂前体;
(3)制备氢型ZSM-5分子筛
以己二胺为第三模板剂,在反应釜中预先加入50克的己二胺和30克蒸馏水的混合物,将20克上述制备的条状催化剂前体置于反应釜中多孔不锈钢网上方密封后在150℃下进行晶化80h。产物取出后用蒸馏水洗涤,100℃干燥10h,晾干后在空气气氛中于600℃焙烧5h。
再于80℃10%硝酸铵溶液中铵交换三次,干燥后于550℃马弗炉中焙烧4h,得到氢型ZSM-5分子筛。
(4)浸渍金属组分
将得到的氢型ZSM-5分子筛固体置于20g Pr质量含量为1%的硝酸镨溶液中进行浸渍5h,60℃干燥20h,600℃焙烧8h。
最后将上述固体置于20克Sr重量含量为0.3%的硝酸锶溶液中进行浸渍10h,100℃烘干,500℃焙烧10h,即得催化剂。所得催化剂的XRD图与图2类似,说明此催化剂为ZSM-5分子筛催化剂,且粘结剂含量低于0.2%。
经物理吸附测试,催化剂总孔容为0.6mL/g,其中微孔孔容占总孔容83%。经铝核磁测定,位于直孔道和正弦孔道交叉处的骨架铝量与直孔道和正弦孔道内骨架铝量之比1.8∶1。该催化剂SiO 2/Al 2O 3摩尔比为488。
催化剂评价方法同实施例1,反应结果为:碳四烯烃转化率76.5%, 氢转移指数5.1%,丙烯和乙烯选择性83.9%。催化剂反应80h,催化剂活性和选择性未发生明显变化,具有良好的稳定性。
【实施例9】
采用实施例8的催化剂,以氮气稀释的戊烯(氮气和戊烯体积比1∶1)为原料,对制备的催化剂进行了烯烃催化裂解制丙烯和乙烯反应活性评价,考察所用的工艺条件为:催化剂装5克,反应温度为580℃,反应压力为0.3MPa,重量空速为40h -1。反应结果为:碳五烯烃转化率80%,氢转移指数5.3%,丙烯和乙烯的选择性为82.8%,催化剂反应78h,催化剂活性和选择性未发生明显变化,具有良好的稳定性。
【实施例10】
采用实施例8的催化剂,以氮气稀释的己烯(氮气和己烯体积比1∶1)为原料,对制备的催化剂进行了烯烃催化裂解制丙烯和乙烯反应活性评价,考察所用的工艺条件为:催化剂装5克,反应温度为420℃,反应压力为0.01MPa,重量空速为2h -1。反应结果为:碳六烯烃转化率72%,氢转移指数6.8%,丙烯和乙烯的选择性为80.3%。催化剂反应76h,催化剂活性和选择性未发生明显变化,具有良好的稳定性。
【对比例1】
(1)制备ZSM-5分子筛原粉
以四丙基溴化铵为模板剂,硝酸铝为铝源,硅溶胶为硅源,氢氧化钠为碱源,四丙基溴化铵以NH 4 +计、硝酸铝以Al 2O 3计、硅溶胶以SiO 2计、氢氧化钠以OH -计、水以H 2O计的摩尔比为:NH 4 +∶Al 2O 3∶SiO 2∶OH -∶H 2O=0.3∶0.001∶1∶0.2∶15,充分混合搅拌后转移到高压釜内,于100℃晶化8h。将合成产物水洗、于90℃下干燥15h,于600℃焙烧10h后,得到ZSM-5分子筛原粉。
(2)制备催化剂前体
将上述ZSM-5分子筛原粉100g、25g含40wt%SiO 2的硅溶胶和0.056g氧化铝,混捏,挤条成型,于80℃干燥10h,得到催化剂前体;
(3)制备氢型ZSM-5分子筛
以乙胺为第三模板剂,在反应釜中预先加入30克乙胺和30克蒸馏水的混合物,将20克上述制备的条状催化剂前体置于反应釜中多孔不锈钢网上方密封后在130℃下进行气固相水热晶化100h。产物取出后用蒸馏水洗涤,90℃干燥15h,然后在空气气氛中于550℃焙烧10h。
再于90℃ 5wt%硝酸铵溶液中铵交换3次,干燥后于500℃马弗炉中焙烧4h,得到氢型ZSM-5分子筛。
(4)浸渍金属组分
将得到的氢型ZSM-5分子筛固体置于20g Pr质量含量为1%的硝酸镨溶液中进行浸渍10h,100℃干燥10h,550℃焙烧8h。
最后将上述固体置于20克Mg重量含量为2%的硝酸镁溶液中进行浸渍8h,100℃干燥10h,550℃焙烧8h,即得催化剂。
经物理吸附测试,催化剂总孔容为0.6mL/g,其中微孔孔容占总孔容68%。经铝核磁测定,位于直孔道和正弦孔道交叉处的骨架铝量与直孔道和正弦孔道内骨架铝量之比为1∶1。XRD类似于图2,此催化剂中粘结剂含量低于0.2%。
催化剂评价方法同实施例1,反应结果为:碳四烯烃转化率76%,氢转移指数9.2%,丙烯和乙烯选择性69.3%,催化剂反应65h,催化剂活性和选择性开始下降。
【对比例2】
(1)制备ZSM-5分子筛原粉
以四丙基溴化铵为第一模板剂,硝酸铝为第一铝源,硅溶胶为硅源,氢氧化钠为第一碱源,四丙基溴化铵以NH 4 +计、硝酸铝以Al 2O 3计、硅溶胶以SiO 2计、氢氧化钠以OH -计、水以H 2O计的摩尔比为:NH 4 +∶Al 2O 3∶SiO 2∶OH -∶H 2O=0.3∶0.001∶1∶0.2∶15,充分混合搅拌后转移到高压釜内,在100℃晶化8h后冷却备用。按硅源与第一铝源和第二铝源总量,按SiO 2/Al 2O 3摩尔比为300的比例,加入除去第一铝源后的第二铝源硝酸铝,第二模板剂与铝源以NH 4 +/Al 2O 3摩尔比为200∶1的比例加入第二模板剂正丁胺,和上述晶化液充分混合,用第二碱源氢氧化钠调节pH为10,再转移到不锈钢高压釜内进行第二水热晶化,于120℃晶化100h。将合成产物水洗、于90℃下干燥15h,于600℃焙烧10h后,得到ZSM-5分子筛原粉。
(2)制备催化剂前体
将上述ZSM-5分子筛原粉50g、25g含40wt%SiO 2的硅溶胶和0.056g氧化铝,混捏,挤条成型,于80℃干燥10h,得到催化剂前体;
(3)制备氢型ZSM-5分子筛
以乙胺为第三模板剂,在反应釜中预先加入30克乙胺和30克蒸 馏水的混合物,将20克上述制备的条状催化剂前体置于反应釜中多孔不锈钢网上方密封后在130℃下进行气固相水热晶化100h。产物取出后用蒸馏水洗涤,90℃干燥15h,然后在空气气氛中于550℃焙烧10h。
再于90℃ 5wt%硝酸铵溶液中铵交换3次,干燥后于500℃马弗炉中焙烧4h,得到氢型ZSM-5分子筛。
(4)浸渍金属组分
将得到的氢型ZSM-5分子筛固体置于20g Pr重量含量为1%的硝酸镨溶液中进行浸渍10h,100℃干燥10h,550℃焙烧8h。
最后将上述固体置于20克Mg重量含量为2%的硝酸镁溶液中进行浸渍8h,100℃干燥10h,550℃焙烧8h,即得催化剂。
经物理吸附测试,催化剂总孔容为0.8mL/g,其中微孔孔容占总孔容77%。经铝核磁测定,位于直孔道和正弦孔道交叉处的骨架铝量与直孔道和正弦孔道内骨架铝量之比为0.8∶1。该催化剂SiO 2/Al 2O 3摩尔比为280。XRD类似于图2,此催化剂中粘结剂含量低于0.2%。
催化剂评价方法同实施例1,反应结果为:碳四烯烃转化率72%,氢转移指数7.3%,丙烯和乙烯的选择性为75.5%,催化剂反应70h,催化剂活性和选择性开始下降。
【对比例3】
(1)制备ZSM-5分子筛原粉
以四丙基溴化铵为第一模板剂,硝酸铝为第一铝源,硅溶胶为硅源,氢氧化钠为第一碱源,四丙基溴化铵以NH 4 +计、硝酸铝以Al 2O 3计、硅溶胶以SiO 2计、氢氧化钠以OH -计、水以H 2O计的摩尔比为:NH 4 +∶Al 2O 3∶SiO 2∶OH -∶H 2O=0.3∶0.001∶1∶0.2∶15,充分混合搅拌后转移到高压釜内,在100℃晶化8h后冷却备用。按硅源与第一铝源和第二铝源总量,按SiO 2/Al 2O 3摩尔比为300的比例,加入除去第一铝源后的第二铝源十二水合硫酸铝钾,与第二铝源以NH 4 +/Al 2O 3摩尔比为200∶1的比例加入模板剂四丙基溴化铵,和上述晶化液充分混合,用第二碱源氢氧化钠调节pH为10,再转移到不锈钢高压釜内进行第二水热晶化,于120℃晶化100h。将合成产物水洗、于90℃下干燥15h,于600℃焙烧10h后,得到ZSM-5分子筛原粉。
(2)制备催化剂前体
将上述ZSM-5分子筛原粉100g、25g含40wt%SiO 2的硅溶胶和 0.056g氧化铝,混捏,挤条成型,于80℃干燥10h,得到催化剂前体;
(3)制备氢型ZSM-5分子筛
以乙胺为第三模板剂,在反应釜中预先加入30克乙胺和30克蒸馏水的混合物,将20克上述制备的条状催化剂前体置于反应釜中多孔不锈钢网上方密封后在130℃下进行气固相水热晶化100h。产物取出后用蒸馏水洗涤,90℃干燥15h,然后在空气气氛中于550℃焙烧10h。
再于90℃ 5wt%硝酸铵溶液中铵交换3次,干燥后于500℃马弗炉中焙烧4h,得到氢型ZSM-5分子筛。
(4)浸渍金属组分
将得到的氢型ZSM-5分子筛固体置于20g Pr重量含量为1%的硝酸镨溶液中进行浸渍10h,100℃干燥10h,550℃焙烧8h。
最后将上述固体置于20克Mg重量含量为2%的硝酸镁溶液中进行浸渍8h,100℃干燥10h,550℃焙烧8h,即得催化剂。所得催化剂的XRD图与图2类似,说明此催化剂为ZSM-5分子筛催化剂。
经物理吸附测试,催化剂总孔容为0.28mL/g,其中微孔孔容占总孔容73%。经铝核磁测定,位于直孔道和正弦孔道交叉处的骨架铝量与直孔道和正弦孔道内骨架铝量之比为1.2∶1。该催化剂SiO 2/Al 2O 3摩尔比为285。XRD类似于图2,此催化剂中粘结剂含量低于0.2%。
催化剂评价方法同实施例1,反应结果为:碳四烯烃转化率69.8%,氢转移指数7.2%,丙烯和乙烯的选择性为71.8%,催化剂反应72h,催化剂活性和选择性开始下降。
【对比例4】
(1)制备ZSM-5分子筛原粉
以四丙基溴化铵为第一模板剂,硝酸铝为第一铝源,硅溶胶为硅源,氢氧化钠为第一碱源,四丙基溴化铵以NH 4 +计、硝酸铝以Al 2O 3计、硅溶胶以SiO 2计、氢氧化钠以OH -计、水以H 2O计的摩尔比为:NH 4 +∶Al 2O 3∶SiO 2∶OH -∶H 2O=0.3∶0.01∶1∶0.2∶15,充分混合搅拌后转移到高压釜内,在100℃晶化8h后冷却备用。按硅源与第一铝源和第二铝源总量,按SiO 2/Al 2O 3摩尔比为50的比例,加入除去第一铝源后的第二铝源十二水合硫酸铝钾,第二模板剂与第二铝源以NH 4 +/Al 2O 3摩尔比为200∶1的比例加入第二模板剂正丁胺,和上述晶化液充分混合,用第二碱源氢氧化钠调节pH为10,再转移到不锈钢高压釜内进行第二水 热晶化,于120℃晶化100h。将合成产物水洗、于90℃下干燥15h,于600℃焙烧10h后,得到ZSM-5分子筛原粉。
(2)制备催化剂前体
将上述ZSM-5分子筛原粉100g、25g含40wt%SiO 2的硅溶胶和0.056g氧化铝,混捏,挤条成型,于80℃干燥10h,得到催化剂前体;
(3)制备氢型ZSM-5分子筛
以乙胺为第三模板剂,在反应釜中预先加入30克乙胺和30克蒸馏水的混合物,将20克上述制备的条状催化剂前体置于反应釜中多孔不锈钢网上方密封后在130℃下进行气固相水热晶化100h。产物取出后用蒸馏水洗涤,90℃干燥15h,然后在空气气氛中于550℃焙烧10h。
再于90℃ 5wt%硝酸铵溶液中铵交换3次,干燥后于500℃马弗炉中焙烧4h,得到氢型ZSM-5分子筛。
(4)浸渍金属组分
将得到的氢型ZSM-5分子筛固体置于20g Pr质量含量为1%的硝酸镨溶液中进行浸渍10h,100℃干燥10h,550℃焙烧8h。
最后将上述固体置于20克Mg重量含量为2%的硝酸镁溶液中进行浸渍8h,100℃干燥10h,550℃焙烧8h,即得催化剂。所得催化剂的XRD图与图2类似,说明此催化剂为ZSM-5分子筛催化剂。
经物理吸附测试,催化剂总孔容为0.3mL/g,其中微孔孔容占总孔容80%。经铝核磁测定,位于直孔道和正弦孔道交叉处的骨架铝量与直孔道和正弦孔道内骨架铝量之比为1.8∶1。该催化剂SiO 2/Al 2O 3摩尔比为47。XRD类似于图2,此催化剂中粘结剂含量低于0.2%。
催化剂评价方法同实施例1,反应结果为:碳四烯烃转化率68.6%,氢转移指数12.3%,丙烯和乙烯的选择性为62.5%,催化剂反应72h,催化剂活性和选择性开始下降。
【对比例5】
(1)制备ZSM-5分子筛原粉
以四丙基溴化铵为第一模板剂,硝酸铝为第一铝源,硅溶胶为硅源,氢氧化钠为第一碱源,四丙基溴化铵以NH 4 +计、硝酸铝以Al 2O 3计、硅溶胶以SiO 2计、氢氧化钠以OH -计、水以H 2O计的摩尔比为:NH 4 +∶Al 2O 3∶SiO 2∶OH -∶H 2O=0.3∶0.001∶1∶0.2∶15,充分混合搅拌后转移到高压釜内,在100℃晶化8h后冷却备用。按硅源与第一铝源和第二铝 源总量,按SiO 2/Al 2O 3摩尔比为300的比例,加入除去第一铝源后的第二铝源十二水合硫酸铝钾,第二模板剂与第二铝源以NH 4 +/Al 2O 3摩尔比为200∶1的比例加入第二模板剂正丁胺,和上述晶化液充分混合,用第二碱源氢氧化钠调节pH为10,再转移到不锈钢高压釜内进行第二水热晶化,于120℃晶化100h。将合成产物水洗、于90℃下干燥15h,于600℃焙烧10h后,得到ZSM-5分子筛原粉。
(2)制备催化剂前体
将上述ZSM-5分子筛原粉100g、25g含40wt%SiO 2的硅溶胶和0.056g氧化铝,混捏,挤条成型,于80℃干燥10h,得到催化剂前体。
(3)制备氢型ZSM-5分子筛
取20克上述制备的条状催化剂前体,在空气气氛中于550℃焙烧10h。
再于90℃ 5wt%硝酸铵溶液中铵交换3次,干燥后于500℃马弗炉中焙烧4h,得到氢型ZSM-5分子筛。
(4)浸渍金属组分
将得到的氢型ZSM-5分子筛固体置于20g Pr质量含量为1%的硝酸镨溶液中进行浸渍10h,100℃干燥10h,550℃焙烧8h。
最后将上述固体置于20克Mg重量含量为2%的硝酸镁溶液中进行浸渍8h,100℃干燥10h,550℃焙烧8h,即得催化剂。图4为对比例5所得催化剂的XRD图,说明此催化剂为ZSM-5分子筛催化剂,且粘结剂含量为10%。
经物理吸附测试,催化剂总孔容为0.1mL/g,其中微孔孔容占总孔容68%。经铝核磁测定,见图3,位于直孔道和正弦孔道交叉处的骨架铝量与直孔道和正弦孔道内骨架铝量之比为0.8∶1。该催化剂SiO 2/Al 2O 3摩尔比为282。
催化剂评价方法同实施例1,反应结果为:碳四烯烃转化率65%,氢转移指数15.8%,丙烯和乙烯的选择性为58.5%。
【对比例6】
(1)制备ZSM-5分子筛原粉
以四丙基溴化铵为模板剂,硝酸铝为铝源,硅溶胶为硅源,氢氧化钠为碱源,四丙基溴化铵以NH 4 +计、硝酸铝以Al 2O 3计、硅溶胶以SiO 2计、氢氧化钠以OH -计、水以H 2O计的摩尔比为: NH 4 +∶Al 2O 3∶SiO 2∶OH -∶H 2O=0.3∶0.001∶1∶0.2∶15,充分混合搅拌后转移到高压釜内,于100℃晶化8h。将合成产物水洗、于90℃下干燥15h,于600℃焙烧10h后,得到ZSM-5分子筛原粉。
(2)制备催化剂前体
将上述ZSM-5分子筛原粉100g、25g含40wt%SiO 2的硅溶胶和0.056g氧化铝,混捏,挤条成型,于80℃干燥10h,得到催化剂前体。
(3)制备氢型ZSM-5分子筛
取20克上述制备的条状催化剂前体,在空气气氛中于550℃焙烧10h。
再于90℃ 5wt%硝酸铵溶液中铵交换3次,干燥后于500℃马弗炉中焙烧4h,得到氢型ZSM-5分子筛。
(4)浸渍金属组分
将得到的氢型ZSM-5分子筛固体置于20g Pr质量含量为1%的硝酸镨溶液中进行浸渍10h,100℃干燥10h,550℃焙烧8h。
最后将上述固体置于20克Mg重量含量为2%的硝酸镁溶液中进行浸渍8h,100℃干燥10h,550℃焙烧8h,即得催化剂。所得催化剂的XRD图与图4类似,说明此催化剂为ZSM-5分子筛催化剂,且粘结剂含量为10%。
经物理吸附测试,催化剂总孔容为0.13mL/g,其中微孔孔容占总孔容62%。经铝核磁测定,位于直孔道和正弦孔道交叉处的骨架铝量与直孔道和正弦孔道内骨架铝量之比为0.7∶1。该催化剂SiO 2/Al 2O 3摩尔比为280。
催化剂评价方法同实施例1,反应结果为:碳四烯烃转化率62.5%,氢转移指数16.9%,丙烯和乙烯的选择性为53.5%。
由图1、图3可见,本发明的ZSM-5分子筛催化剂,位于直孔道与正弦孔道相交处的骨架铝量与直孔道内和正弦孔道内的骨架铝量的比例明显高于常规催化剂。
由图2、图4可见,本发明实施例1所得的催化剂的结晶度显著高于对比例5所得的催化剂,而且对比例5所得的ZSM-5分子筛催化剂中含有大量的粘结剂组分。
以上详细描述了本发明的具体实施方式,但是,本发明并不限于 此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (15)

  1. 一种ZSM-5分子筛催化剂,其中位于直孔道与正弦孔道相交处的骨架铝量与直孔道内和正弦孔道内的骨架铝量的比例为1.4∶1~10∶1,优选1.4∶1~4∶1,更优选1.5∶1~3∶1,以及该ZSM-5分子筛的硅铝摩尔比SiO 2/Al 2O 3为80~1500,优选为80~1000,更优选96~1000,还更优选150~1000,进一步还更优选200~1000,再进一步还更优选250~1000。
  2. 根据权利要求1所述的催化剂,其特征在于,所述催化剂的微孔孔容占总孔容的70%~92%,优选75%~90%,更优选80%~90%。
  3. 根据权利要求1或2所述的催化剂,其特征在于,所述催化剂的总孔容为0.01~1.2mL/g,优选为0.1~0.8mL/g。
  4. 根据权利要求1-3任一项所述的催化剂,其特征在于,以重量份数计,包括以下组分:
    a)氢型ZSM-5分子筛90~100份,优选为92~99份;
    b)稀土元素0~5份,优选为0.5~3.0份;和
    c)碱土金属元素0~5份,优选为0.5~5.0份。
  5. 根据权利要求1-4任一项所述的催化剂,其特征在于,所述氢型ZSM-5分子筛的硅铝摩尔比SiO 2/Al 2O 3为80~1500,优选为80~1000,更优选96~1000,还更优选150~1000,进一步还更优选200~1000,再进一步还更优选250~1000。
  6. 根据权利要求4-5任一项所述的催化剂,其特征在于,所述稀土元素选自La、Ce、Pr和Nd中的至少一种;和/或,所述碱土金属元素选自Mg、Ca、Sr和Ba中的至少一种。
  7. 根据权利要求1-6任一项所述的催化剂,其特征在于,所述ZSM-5分子筛催化剂中,以催化剂的质量为基准,粘结剂的质量含量在5%以下,优选为2%以下,进一步优选为0.5%以下,特别优选无粘结剂。
  8. 一种权利要求1-7任一所述ZSM-5分子筛催化剂的制备方法,包括:
    (1)制备ZSM-5分子筛原粉;
    (2)将步骤(1)所得分子筛原粉与粘结剂混捏成型,经干燥, 得到催化剂前体;
    (3)将步骤(2)所得催化剂前体在第三模板剂存在下进行第三水热晶化,铵交换,得到ZSM-5分子筛催化剂。
  9. 根据权利要求8所述的制备方法,其特征在于,所述制备方法还包括步骤(4):步骤(3)所得ZSM-5分子筛负载稀土金属和/或碱土金属,得到含金属的ZSM-5分子筛催化剂。
  10. 根据权利要求8或9所述的制备方法,其特征在于,步骤(1)中所述ZSM-5分子筛原粉的制备方法包括:
    (1.1)将第一模板剂、第一铝源、硅源、第一碱源与水混合,经第一水热晶化;
    (1.2)将第二铝源、第二模板剂、第二碱源与步骤(1.1)晶化后所得的混合物混合,经第二水热晶化,得到ZSM-5分子筛原粉。
  11. 根据权利要求10所述的制备方法,其特征在于,步骤(1.1)中所述第一模板剂为四丙基溴化铵、四丙基氢氧化铵、四乙基氯化铵和氨水中至少一种;
    和/或,步骤(1.1)中所述第一铝源为硝酸铝、硫酸铝和磷酸铝中至少一种;
    和/或,步骤(1.1)中所述第一水热晶化的条件如下:晶化温度为80~150℃,晶化时间为2~10h;
    和/或,步骤(1.1)中第一模板剂以NH 4 +计、第一铝源以Al 2O 3计、硅源以SiO 2计、第一碱源以OH -计、水以H 2O计的摩尔比为:NH 4 +∶Al 2O 3∶SiO 2∶OH -∶H 2O=0.2~0.3∶0.0005~0.008∶1∶0.2~0.4∶15~20,优选0.2~0.3∶0.0005~0.001∶1∶0.2~0.4∶15~20。
  12. 根据权利要求10或11所述的制备方法,其特征在于,步骤(1.2)中所述第二铝源为硫酸铝钾和偏铝酸钠中的至少一种;
    和/或,步骤(1.2)中的第二铝源以Al 2O 3计的加入量占步骤(1.2)中的第二铝源和步骤(1.1)中的第一铝源以Al 2O 3计总质量的30%以上,优选40%以上;
    和/或,步骤(1.2)中所述第二模板剂为正丁胺、己二胺和吡啶中至少一种;
    和/或,步骤(1.2)中,用第二碱源控制体系的pH值为8~10;
    和/或,所述第二水热晶化的条件如下:晶化温度为120~200℃, 晶化时间为10~100h。
  13. 根据权利要求8-12任一项所述的制备方法,其特征在于,步骤(3)中所述第三模板剂为氨水、乙胺、乙二胺、三乙胺、正丁胺、己二胺、四丙基溴化铵和四丙基氢氧化铵中的至少一种;
    和/或,所述第三水热晶化是将步骤(2)所得催化剂前体置于含有第三模板剂的蒸气中进行晶化,第三模板剂与催化剂前体的质量比为1~3∶1,在130~200℃下晶化20~200h。
  14. 一种权利要求1-7任一项所述催化剂或权利要求8-13任一项所述的制备方法制备的催化剂在烯烃催化裂解生产丙烯和乙烯中的应用。
  15. 根据权利要求14所述的应用,其特征在于,烯烃原料与所述ZSM-5分子筛催化剂接触进行反应,得到丙烯和乙烯产品,优选地以碳四至碳六烯烃中的至少一种为原料,反应条件如下:反应温度为400~600℃,优选为420~580℃,反应压力为0~0.3MPa,优选为0.01~0.2MPa,重量空速为1~50h -1,优选为2~40h -1
PCT/CN2022/125833 2021-10-19 2022-10-18 一种zsm-5分子筛催化剂及其制备方法和应用 WO2023066225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111217885.7A CN115990508A (zh) 2021-10-19 2021-10-19 一种zsm-5分子筛催化剂及其制备方法和应用
CN202111217885.7 2021-10-19

Publications (1)

Publication Number Publication Date
WO2023066225A1 true WO2023066225A1 (zh) 2023-04-27

Family

ID=85992928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125833 WO2023066225A1 (zh) 2021-10-19 2022-10-18 一种zsm-5分子筛催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115990508A (zh)
WO (1) WO2023066225A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0109059A1 (en) 1982-11-10 1984-05-23 MONTEDIPE S.p.A. Process for converting olefins having 4 to 12 carbon atoms into propylene
US6307117B1 (en) 1998-08-25 2001-10-23 Asahi Kasei Kogyo Kabushiki Kaisha Method for producing ethylene and propylene
JP2011073913A (ja) * 2009-09-30 2011-04-14 Asahi Kasei Chemicals Corp Zsm−5型ゼオライトの製造方法
CN103071522A (zh) * 2012-12-26 2013-05-01 宁夏大学 一种c4-c6混合烃催化裂解增产丙烯和乙烯的催化剂及方法
CN104107709A (zh) * 2013-04-16 2014-10-22 中国石油化工股份有限公司 无粘结剂zsm-5分子筛催化剂及其制备方法和用途
CN104226360A (zh) * 2013-06-17 2014-12-24 中国石油化工股份有限公司 全结晶zsm-5分子筛催化剂及其制备方法和用途
CN112387303A (zh) * 2019-08-14 2021-02-23 国家能源投资集团有限责任公司 改性zsm-5分子筛及其制备方法和应用以及催化剂及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0109059A1 (en) 1982-11-10 1984-05-23 MONTEDIPE S.p.A. Process for converting olefins having 4 to 12 carbon atoms into propylene
US6307117B1 (en) 1998-08-25 2001-10-23 Asahi Kasei Kogyo Kabushiki Kaisha Method for producing ethylene and propylene
JP2011073913A (ja) * 2009-09-30 2011-04-14 Asahi Kasei Chemicals Corp Zsm−5型ゼオライトの製造方法
CN103071522A (zh) * 2012-12-26 2013-05-01 宁夏大学 一种c4-c6混合烃催化裂解增产丙烯和乙烯的催化剂及方法
CN104107709A (zh) * 2013-04-16 2014-10-22 中国石油化工股份有限公司 无粘结剂zsm-5分子筛催化剂及其制备方法和用途
CN104226360A (zh) * 2013-06-17 2014-12-24 中国石油化工股份有限公司 全结晶zsm-5分子筛催化剂及其制备方法和用途
CN112387303A (zh) * 2019-08-14 2021-02-23 国家能源投资集团有限责任公司 改性zsm-5分子筛及其制备方法和应用以及催化剂及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI JIANWEN, MA HONGFANG, CHEN YAN, XU ZHIQIANG, LI CHUNZHONG, YING WEIYONG: "Conversion of methanol to propylene over hierarchical HZSM-5: the effect of Al spatial distribution", CHEMICAL COMMUNICATIONS, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 54, no. 47, 19 May 2018 (2018-05-19), UK , pages 6032 - 6035, XP093059315, ISSN: 1359-7345, DOI: 10.1039/C8CC02042F *
ZHANG LI-WEI ET AL.: "Effect of framework Al siting on catalytic performance in methanol to aromatics over ZSM-5 zeolites", JOURNAL OF FUEL CHEMISTRY AND TECHNOLOGY, vol. 47, no. 12, 27 December 2019 (2019-12-27), XP086037212, ISSN: 1872-5813, DOI: 10.1016/S1872-5813(19)30058-1 *

Also Published As

Publication number Publication date
CN115990508A (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
CN108046288B (zh) 一种制备用于甲醇制丙烯的多级孔zsm-5分子筛的方法
CN108726535B (zh) 一种具有多级孔的磷改性zsm-5分子筛的制备方法
US20090288990A1 (en) Catalyst for Catalytic Cracking Fluidized Bed
CN112657547A (zh) 一种使用含磷的多级孔zsm-5/y复合分子筛制备低碳烯烃的方法
CN102897785B (zh) 一种zsm-23分子筛的制备方法
US9480975B2 (en) Catalyst for catalytic cracking in a fluidized bed
CN115007197B (zh) 兼具微孔和介孔的多级孔ZSM-5分子筛封装Ni金属催化剂及其制备方法和应用
CN100473461C (zh) 一种碳四液化石油气芳构化的催化剂及其制备方法
CN111589467A (zh) 一种中空zsm-5分子筛催化剂的制备及应用
CN112108180A (zh) 一种合成气直接转化制低碳烯烃的催化剂及其制备方法
WO2023066225A1 (zh) 一种zsm-5分子筛催化剂及其制备方法和应用
CN102476807A (zh) 一种含镓l沸石的制备方法
US11097263B2 (en) Aromatization catalyst, preparation method, regeneration method thereof, and aromatization method
JP2023540642A (ja) Scm-34分子篩、その調製方法及び使用
CN104230633A (zh) 液相烷基转移方法
CN110871106B (zh) 一种稳定运行的乙烷、丙烷转化催化剂的制备方法
KR20240090507A (ko) Zsm-5 분자체 촉매, 이의 제조방법 및 응용
CN102373069A (zh) 用于碳六烷烃裂解的方法
CN109701621B (zh) Ssz-13/ssz-39复合结构分子筛催化剂、制备方法及其应用
CN115990506A (zh) 碳四混合烃共裂解的催化剂及其制备方法和应用
CN112121850B (zh) 流化床催化剂和二甲苯的生产方法
CN112125771B (zh) 二甲苯的生产方法
WO2024067765A1 (zh) 一种mfi分子筛催化剂及其制备方法和应用
CN1136984C (zh) 甲烷直接合成芳烃的沸石催化剂及其制备方法
WO2022270401A1 (ja) シクロペンタジエンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882831

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022882831

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022882831

Country of ref document: EP

Effective date: 20240521