WO2023065803A1 - 一种可光/热双重固化树脂组合物及其制备方法和应用 - Google Patents

一种可光/热双重固化树脂组合物及其制备方法和应用 Download PDF

Info

Publication number
WO2023065803A1
WO2023065803A1 PCT/CN2022/113665 CN2022113665W WO2023065803A1 WO 2023065803 A1 WO2023065803 A1 WO 2023065803A1 CN 2022113665 W CN2022113665 W CN 2022113665W WO 2023065803 A1 WO2023065803 A1 WO 2023065803A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
curable resin
photo
light
acrylate
Prior art date
Application number
PCT/CN2022/113665
Other languages
English (en)
French (fr)
Inventor
刘晓荣
林鸿腾
刘涛
李帅
Original Assignee
韦尔通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韦尔通科技股份有限公司 filed Critical 韦尔通科技股份有限公司
Publication of WO2023065803A1 publication Critical patent/WO2023065803A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/66Mercaptans
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • C09J163/10Epoxy resins modified by unsaturated compounds

Definitions

  • the invention belongs to the field of adhesives and sealants, in particular to a light/heat dual-curable resin composition and its preparation method and application.
  • epoxy resin-thiol systems are often used in the assembly and assembly of electronic components to meet the low temperature of the adhesive. Under the requirements of curing and sufficient bond strength. Compositions using this type of system usually require thermal curing, but usually cannot achieve rapid positioning in the assembly of precision electronic components.
  • the light-curing adhesive can be cured in a very short time, with low energy consumption and fast curing efficiency, but in actual production and application, there are also problems such as incomplete curing of the light-shielding part.
  • CN111394028A discloses a light-activated delayed heat-curing adhesive, which contains epoxy resin, polyol, photoinitiator, photosensitizer, thixotropic agent and defoamer, and uses light activation to prepare one-component heat-cured Adhesive, but its curing method is mainly heat curing, which cannot meet the needs of rapid positioning.
  • CN112521870A discloses a UV-curable adhesive composition, which contains UV oligomers, UV functional monomers, photoinitiators, auxiliary agents and functional fillers, and the UV-curable adhesive composition is selected from UV oligomers Prepare UV-curable adhesives, but usually the curing is not complete in the light-shielding part, and deep curing cannot be achieved.
  • CN112840004A discloses a kind of resin composition, contains the compound that has carbon-carbon double bond group in the molecule, difunctional thiol compound, initiator and free radical polymerization inhibitor in this resin composition, although the sulfur used wherein There is no ester bond in alcohol compounds, but ester bonds that may be hydrolyzed still exist in compounds with carbon-carbon double bond groups in the molecule, and because the selected thiol compound has only two functional groups, the cured product is flexible and cross-linked.
  • the degree of humidity is relatively low, the curing effect is poor, the barrier performance to moisture is not good, and the heat resistance, thermal bonding strength and hydrothermal hydrolysis resistance still need to be improved.
  • CN100404579C adopts a dual curing system of fast photocuring positioning and thermal curing bonding, but the curing agent contained in the system has an obvious sulfur odor, and the system has low crosslinking degree after curing, low heat resistance and heat and humidity resistance.
  • the hydrolytic performance is poor, and it still cannot meet the increasing demand in the field of electronic assembly.
  • CN111356716A discloses a one-package composition which is liquid at room temperature, which can be fixed by radiation and cured by heat, which uses ester-free tris (3-mercaptopropyl)
  • the hydrolysis resistance of the photothermal dual-curing resin composition but this polythiol emits an unpleasant strong sulfur odor at room temperature, and the heat resistance of the cured product is not satisfactory.
  • the current mainstream practice in the industry is to use mercaptoalkyl glycoluril as the curing agent.
  • patents CN201480064943.9 and JP2015059099A disclose the so-called polythiol curing agent of mercaptoalkyl glycoluril.
  • the polythiol curing agent has good moisture resistance and heat resistance, it is proposed in the patent CN201680014880.5
  • the thiol curing agent is solid at room temperature, and it is easy to precipitate crystals when forming a complex with epoxy resin, and there is a problem that the composition becomes uneven. At this time, it needs to be used in conjunction with another mercaptoethyl glycoluril compound, thus The solid polythiol curing agent is liquefied to finally form a liquid oligomer mixture with disulfide bonds as a curing agent.
  • this method can finally convert the curing agent into a liquid, it increases the process and cost of the reaction.
  • the mercaptoalkyl glycoluril curing agent mentioned in CN201480064943.9 also has the risk of reducing the storage stability of the one-component low-temperature curing epoxy adhesive.
  • the adhesive used in the manufacture of the image sensor module it is also required that the adhesive used has a low water absorption rate, so as to ensure that after the bonding assembly is sealed, moisture in the air can be prevented from penetrating into the module and interfering with the lens system.
  • the existing dual-cure resin compositions usually have high water absorption, which makes it difficult to meet this requirement.
  • a curing agent that is liquid itself, has good storage stability, low cost and low odor, and uses the mechanism of light/heat dual curing to prepare curing agents that can be cured at low temperature, have low water absorption, and have high heat resistance. It is a resin composition with excellent performance, good moisture and thermal hydrolysis resistance, high bonding strength, and fast positioning requirements, so as to meet the application requirements of electronic circuits and other fields with high precision requirements.
  • the first purpose of the present invention is to overcome the fact that the existing polythiol curing agent cannot achieve liquid state, good storage stability, low cost and low odor, and the corresponding resin composition cannot simultaneously cure at low temperature and have low water absorption. , excellent heat resistance, good resistance to hot and humid hydrolysis, high bonding strength and the ability to achieve rapid positioning requirements, and provide a new light/heat dual-curable resin composition, the resin composition used
  • the polythiol compound does not contain a glycoluril group, it is liquid at room temperature and has no ester bond, and has a small odor.
  • the thermal curing system uses acrylate compounds and photoinitiators to form a photocuring system.
  • the resulting resin composition is a dual-curable system of light and heat. There is no crystal precipitation during storage and the pot life is long.
  • the resin composition is guaranteed On the basis of high bonding performance, it realizes rapid positioning, low-temperature curing and ensures low water absorption, as well as good heat resistance and hydrolysis resistance.
  • the second object of the present invention is to provide a preparation method of the above-mentioned light/heat dual curable resin composition.
  • the third object of the present invention is to provide the application of the above-mentioned light/heat dual curable resin composition.
  • the light/heat dual curable resin composition provided by the present invention includes 20-40 parts by weight of epoxy resin, 10-35 parts by weight of polythiol compound, 20-40 parts by weight of acrylate compound, 1-5 parts by weight Part curing accelerator, 0.3-5 parts by weight photoinitiator, 0.01-3 parts by weight inhibitor and 0.1-3 parts by weight stabilizer;
  • Described polythiol compound is represented by general formula (I):
  • R 1 , R 2 , R 3 and R 4 is a mercaptoalkoxy group with 2-5 carbon atoms
  • R 5 , R 6 , R 7 and R Among 8 there is only one mercaptoalkoxy group with 2-5 carbon atoms, and the remaining six of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are independent
  • one of R 1 , R 2 and R 4 is a mercaptoalkoxy group with 2-5 carbon atoms and in addition Both are hydrogen atoms
  • R 3 and R 7 are independently selected from hydrogen atoms or methoxy groups
  • one of R 5 , R 6 and R 8 is a mercaptoalkoxy group with 2-5 carbon atoms and in addition Both are hydrogen atoms.
  • R 1 and R 5 are both hydrogen atoms
  • R 3 and R 7 are independently selected from hydrogen atoms or methoxy
  • one of R2 and R4 is a mercaptoalkoxy group with 2-5 carbon atoms and the other is a hydrogen atom
  • one of R6 and R8 is a mercaptoalkoxy group with 2-5 carbon atoms and the other is a hydrogen atom.
  • R 1 and R 5 are both hydrogen atoms
  • R 3 and R 7 are independently selected from hydrogen atoms or methoxy
  • R 2 and R 6 are both mercaptoalkoxy groups with 2-5 carbon atoms
  • R 4 and R 8 are both hydrogen atoms
  • R 4 and R 8 are both mercaptoalkoxy groups with 2-5 carbon atoms
  • R 2 and R 6 are hydrogen atoms
  • R 4 and R 6 are mercaptoalkoxyl groups with 2-5 carbon atoms
  • R 2 and R 8 are hydrogen atoms
  • R When 2 and R 8 are both mercaptoalkoxy groups with 2-5 carbon atoms, R 4 and R 6 are both hydrogen atoms.
  • the polythiol compound is prepared according to a method comprising the following steps:
  • Step 1 Substituting the bisphenol compound represented by the general formula (II) and the halogenated compound represented by the general formula (III) in the presence of a phase transfer catalyst and under alkaline conditions, and purifying to obtain a liquid Colorless or light yellow first intermediate product;
  • Step 2 performing a free radical addition reaction on the first intermediate product and thioacetic acid in the presence of a free radical initiator, and obtaining a liquid colorless or light yellow second intermediate product after purification;
  • Step 3 The second intermediate product is subjected to hydrolysis reaction, and after purification, a colorless or light yellow viscous liquid product is obtained, which is a polythiol compound;
  • R 9 , R 10 , R 11 and R 12 is a hydroxyl group
  • R 13 , R 14 , R 15 and R 16 is a hydroxyl group
  • R 9 , the remaining six of R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are independently selected from hydrogen atoms, alkyl groups with 1-3 carbon atoms and 1 carbon atom
  • X represents chlorine or bromine
  • m is 0, 1, 2 or 3.
  • the method of the substitution reaction is to dissolve the bisphenol compound represented by the general formula (II) in an organic solvent, add a base to provide basic conditions, add a phase transfer catalyst, and then Under the protection of an inert gas, heat up to 40-100°C and stir for 10-60 minutes, then add the halogenated compound represented by the general formula (III), react for 4-12 hours, then filter the reaction solution, and distill the filtrate to remove the solvent under reduced pressure. Washed three times with water and extracted with chloroform, the organic phase was collected and evaporated to dryness to obtain a colorless or pale yellow first intermediate product in liquid state.
  • the way of the free radical addition reaction is to dissolve the first intermediate product in an organic solvent, add a free radical initiator, and raise the temperature to 40-100°C under the protection of an inert gas , slowly add thioacetic acid, carry out free radical addition reaction for 4-12 hours, and then distill off the solvent under reduced pressure to obtain a colorless or light yellow second intermediate product in liquid state.
  • the method of the hydrolysis reaction is to dissolve the second intermediate product in an organic solvent, add hydrochloric acid or sodium hydroxide, heat up to 50-100 ° C for 3-12 hours, and reduce Remove the solvent by distillation under pressure, wash twice with 2-8% sodium bicarbonate solution, and extract with chloroform, collect the organic phase and evaporate to dryness to obtain a colorless or light yellow viscous liquid product, which is polythiol compound.
  • the epoxy resin is an aromatic epoxy resin and/or an aliphatic epoxy resin.
  • the epoxy resin is a combination of bisphenol A epoxy resin and bisphenol A epoxy monoacrylate in a weight ratio of 1:(0.3-0.9).
  • the ratio of the equivalent weight of the thiol functional group of the polythiol compound to the equivalent weight of the epoxy functional group of the epoxy resin is 0.5-2.0, preferably 0.8-1.2.
  • the acrylate compound is selected from epoxy (meth)acrylate, polyurethane (meth)acrylate, polyester (meth)acrylate, polyether (meth)acrylate, At least one of silane-modified (meth)acrylates, polyol-based (meth)acrylates, polyolefin (meth)acrylates, melamine (meth)acrylates, and (meth)acrylated acrylic resins kind.
  • the acrylate compound is a combination of epoxy acrylate and tricyclodecane dimethanol diacrylate in a weight ratio of 1:(0.5-1.5).
  • the curing accelerator is selected from at least one of imidazole-based curing accelerators, tertiary amine-based curing accelerators and phosphorus compound-based curing accelerators.
  • the photoinitiator is a free radical photoinitiator; the free radical photoinitiator is a cleavage type photoinitiator and/or a hydrogen abstraction type photoinitiator.
  • the polymerization inhibitor is selected from hydroquinone, p-hydroxyanisole, p-benzoquinone, methylhydroquinone, 2-tert-butylhydroquinone, 2,5-di At least one of tert-butylhydroquinone, 4-hydroxypiperidinol oxygen free radical, phenothiazine and anthraquinone.
  • the stabilizer is selected from at least one of liquid boric acid ester compound, aluminum chelating agent and barbituric acid.
  • the photo/heat dual curable resin composition also includes a coupling agent and/or auxiliary agent;
  • the coupling agent is selected from the group consisting of ⁇ -(2,3-epoxypropoxy ) Propyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 8-epoxypropoxyoctyl At least one of trimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, vinyltrimethoxysilane and vinyltriethoxysilane;
  • the auxiliary agent is selected from fillers, antioxidants, flame retardants , at least one of adhesion promoter, diluent, pigment, defoamer, leveling agent, leveling agent and ion trapping agent;
  • the content of the coupling agent is 0.01-5 parts by weight;
  • the auxiliary agent The content is 0.01
  • the present invention also provides a method for preparing the photo/thermal dual-curable resin composition, wherein the method comprises the following steps: epoxy resin, polythiol compound, acrylate compound, curing accelerator, photoinitiator, polymerization inhibitor Mix with stabilizer and optional coupling agent and/or auxiliary agent under dark conditions to obtain dual curing reactive polyurethane hot melt adhesive.
  • the homogeneous mixing method includes mixing the acrylate compound, the photoinitiator and the polymerization inhibitor at a temperature of 20-30°C and a vacuum degree of -0.05MPa to -0.1MPa under light-proof conditions.
  • the present invention also provides the use of the photo/thermal dual curable resin composition as an adhesive or sealant for bonding or sealing electronic components, sensors or cameras.
  • the present invention uses a polythiol compound with a specific structure, an epoxy resin thermosetting system and an acrylate photocuring system to form a photo/thermal dual-curable resin composition, which makes up for the traditional thermosetting and photocuring.
  • the defect of single curing method has the characteristics of fast positioning, low temperature curing, high bonding strength, good heat and humidity resistance;
  • the polythiol compound provided by the present invention has low odor, which can avoid the problem of excessive odor in the corresponding resin composition
  • the polythiol compound provided by the present invention is a viscous liquid at normal temperature, is easy to mix evenly with the resin, does not crystallize out, has a long pot life, and can be directly used as a curing agent for the curing of the resin composition without the need for The addition of coupling to form oligomer mixture does not need to be combined with other polythiol compounds, and the cost is low.
  • the resin composition containing the polythiol compound can be used as a component of adhesives and sealants.
  • Fig. 1 is the 1 H-NMR figure of 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)biphenyl;
  • Fig. 2 is the IR spectrogram of 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)biphenyl;
  • Fig. 3 is the 1 H-NMR figure of 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)-3,3'-dimethoxybiphenyl;
  • Figure 4 is the IR spectrum of 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)-3,3'-dimethoxybiphenyl.
  • the light/heat dual curable resin composition provided by the present invention contains epoxy resin, polythiol compound, acrylate compound, curing accelerator, photoinitiator, polymerization inhibitor and stabilizer, on this basis, can also Contains coupling agents and/or auxiliaries.
  • the content of the epoxy resin is 20-40 parts by weight, such as 20, 22, 25, 28, 30, 32, 35, 38, 40 parts by weight.
  • the content of the polythiol compound is 10-35 parts by weight, such as 10, 12, 15, 18, 20, 22, 25, 28, 30, 32, 35 parts by weight.
  • the content of the acrylate compound is 20-40 parts by weight, such as 20, 22, 25, 28, 30, 32, 35, 38, 40 parts by weight.
  • the content of the curing accelerator is 1-5 parts by weight, such as 1, 2, 3, 4, 5 parts by weight.
  • the content of the photoinitiator is 0.3-5 parts by weight, such as 0.3, 0.5, 1, 1.5, 2, 2.5, 3 parts by weight.
  • the content of the polymerization inhibitor is 0.01-3 parts by weight, such as 0.01, 0.1, 0.5, 1, 1.5, 2, 2.5, 3 parts by weight.
  • the content of the stabilizer is 0.1-3 parts by weight, such as 0.1, 0.5, 1, 1.5, 2, 2.5, 3 parts by weight.
  • the content of the coupling agent is preferably 0.01-5 parts by weight, such as 0.01, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 parts by weight.
  • the content of the auxiliary agent is preferably 0.01-30 parts by weight, such as 0.01, 1, 5, 10, 15, 20, 25, 30 parts by weight.
  • Described polythiol compound has the structure shown in general formula (I):
  • R 1 , R 2 , R 3 and R 4 is a mercaptoalkoxy group with 2-5 carbon atoms
  • R 5 , R 6 , R 7 and R Among 8 there is only one mercaptoalkoxy group with 2-5 carbon atoms, and the remaining six of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are independent
  • the mercaptoalkoxy group with 2-5 carbon atoms can be, for example, mercaptoethoxy, mercapto-n-propoxy, mercapto-isopropoxy, mercapto-n-butoxy, mercapto-sec-butoxy, mercapto-iso Butoxy, mercapto-tert-butoxy, mercapto-n-pentyloxy, mercapto-isoamyloxy, mercapto-tert-amyloxy or mercapto-pivalyloxy.
  • Specific examples of the alkyl group having 1-3 carbon atoms include, but are not limited to: methyl, ethyl, n-propyl or isopropyl.
  • Specific examples of the alkoxy group having 1-3 carbon atoms include, but are not limited to: methoxy, ethoxy, propoxy or isopropoxy.
  • one of R 1 , R 2 and R 4 is a mercaptoalkoxy group with 2-5 carbon atoms and the other two are hydrogen atom
  • R3 and R7 are independently selected from a hydrogen atom or a methoxy group
  • one of R5 , R6 and R8 is a mercaptoalkoxy group with 2-5 carbon atoms and the other two are hydrogen atom.
  • R 1 and R 5 are both hydrogen atoms
  • R 3 and R 7 are independently selected from hydrogen atoms or methoxy groups
  • R 2 and One of R4 is a mercaptoalkoxy group with 2-5 carbon atoms and the other is a hydrogen atom
  • one of R6 and R8 is a mercaptoalkoxy group with 2-5 carbon atoms and the other is A hydrogen atom.
  • R 1 and R 5 are both hydrogen atoms
  • R 3 and R 7 are independently selected from hydrogen atoms or methoxy groups
  • R 2 and R6 are both mercaptoalkoxy groups with 2-5 carbon atoms
  • R4 and R8 are both hydrogen atoms
  • R 4 and R8 are both mercaptoalkoxy groups with 2-5 carbon atoms
  • R 2 and R 6 are both hydrogen atoms
  • R 4 and R 6 are both mercaptoalkoxy groups with 2-5 carbon atoms
  • R 2 and R 8 are hydrogen atoms
  • R 2 and R 8 When both are mercaptoalkoxy groups with 2-5 carbon atoms, R4 and R6 are both hydrogen atoms.
  • polythiol compound examples include, but are not limited to: 5,5′-bis(3-mercaptopropyl)-2,2′-bis(3-mercaptobutoxy)biphenyl (R 1 , R 2 , R 3 , R 5 , R 6 and R 7 are all hydrogen atoms, R 4 and R 8 are both mercaptoalkoxy groups with 4 carbon atoms), 5,5'-bis(3-mercaptopropyl)- 2,2′-bis(3-mercaptobutoxy)-3,3′-dimethoxybiphenyl (R 1 , R 2 , R 5 and R 6 are hydrogen atoms, R 3 and R 7 are Methoxy, R 4 and R 8 are both mercaptoalkoxy groups with 4 carbon atoms), 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopentyloxy) ) biphenyl (R 1 , R 2 , R 3 , R 5 , R
  • the polythiol compound is prepared according to a method comprising the following steps:
  • Step 1 Substituting the bisphenol compound represented by the general formula (II) and the halogenated compound represented by the general formula (III) in the presence of a phase transfer catalyst and under alkaline conditions, and purifying to obtain a liquid Colorless or light yellow first intermediate product;
  • Step 2 performing a free radical addition reaction on the first intermediate product and thioacetic acid in the presence of a free radical initiator, and obtaining a liquid colorless or light yellow second intermediate product after purification;
  • Step 3 The second intermediate product is subjected to hydrolysis reaction, and after purification, a colorless or light yellow viscous liquid product is obtained, which is a polythiol compound;
  • R 9 , R 10 , R 11 and R 12 is a hydroxyl group
  • R 13 , R 14 , R 15 and R 16 is a hydroxyl group
  • R 9 , the remaining six of R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are independently selected from hydrogen atoms, alkyl groups with 1-3 carbon atoms and 1 carbon atom
  • R 9 , R 10 and R 12 is a hydroxyl group and the other two are hydrogen atoms
  • R 11 and R 15 are independently selected from hydrogen atoms or methoxy groups
  • R 13 , R 14 and R 16 One of them is a hydroxyl group and the other two are hydrogen atoms. More preferably, R 9 and R 13 are both hydrogen atoms, R 11 and R 15 are independently selected from hydrogen atoms or methoxy groups, one of R 10 and R 12 is a hydroxyl group and the other is a hydrogen atom, R 14 and one of R 16 is a hydroxyl group and the other is a hydrogen atom.
  • R 9 and R 13 are both hydrogen atoms
  • R 11 and R 15 are independently selected from hydrogen atoms or methoxy groups
  • R 10 and R 14 are both hydroxyl groups
  • R 12 and R 16 are both Hydrogen atom
  • R 10 and R 14 are hydrogen atoms
  • R 10 and R 16 are hydrogen atoms
  • R 10 and R 16 are hydrogen atoms
  • R 10 and R 16 are hydrogen atoms
  • X represents chlorine or bromine
  • m is 0, 1, 2 or 3.
  • step 1 the method of the substitution reaction is preferably to dissolve the bisphenol compound represented by the general formula (II) in an organic solvent, add a base to provide basic conditions, add a phase transfer catalyst, and then heat up to Stir at 40-100°C for 10-60 minutes, then add the halogenated compound represented by general formula (III), react for 4-12 hours, then filter the reaction solution, distill the filtrate to remove the solvent under reduced pressure, wash with water three times, and wash with trichloro After extraction with methane, the organic phase was collected and evaporated to dryness to obtain a colorless or pale yellow first intermediate product in liquid state.
  • the type of the base is not particularly limited, it can be a conventional choice in the field, and its specific examples include but are not limited to: potassium carbonate, sodium carbonate, sodium hydroxide, potassium hydroxide, triethylamine and p-dimethylaminopyridine at least one.
  • the phase transfer catalyst can be various existing ones that can catalyze the substitution reaction between the phenolic hydroxyl group in the bisphenol compound represented by the general formula (II) and the chlorine or bromine in the halogenated compound represented by the general formula (III) substances, preferably at least one of cyclic crown ethers, polyethers and ammoniums.
  • cyclic crown ethers include but are not limited to: at least one of 18-crown-6, 15-crown-5 and cyclodextrin.
  • Specific examples of the polyethers include, but are not limited to: chain polyethylene glycol and/or chain polyethylene glycol dialkyl ether.
  • ammonium species include, but are not limited to: benzyltriethylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium bisulfate, trioctylmethylammonium chloride , at least one of dodecyltrimethylammonium chloride and tetradecyltrimethylammonium chloride.
  • step 2 the way of the free radical addition reaction is to dissolve the first intermediate product in an organic solvent, add a free radical initiator, raise the temperature to 40-100°C under the protection of an inert gas, slowly add thioacetic acid, and carry out The free radical addition reaction lasted for 4-12 hours, and then the solvent was distilled off under reduced pressure to obtain a colorless or pale yellow second intermediate product in liquid state.
  • the free radical initiator can be various existing materials that can initiate the double bond in the first intermediate product and the sulfhydryl group in the thioacetic acid to realize the free radical addition reaction, and can be an azo initiator and/or an azo initiator.
  • Oxygen initiators include but are not limited to: azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), dimethyl 2,2'- Azobis(2-methylpropionate), dimethyl azobisisobutyrate, azobisisobutylamidine hydrochloride, azodicarbonamide, azodiisopropylimidazoline hydrochloride, At least A sort of.
  • peroxy initiator examples include, but are not limited to: tert-hexyl peroxyisopropyl monocarbonate, tert-hexyl peroxy 2-ethylhexanoate, 1,1,3,3-tetramethylbutyl 2-ethylhexanoate, tert-butylperoxypivalate, tert-hexylperoxypivalate, tert-butylperoxyneodecanoate, tert-hexylperoxyneodecanoate, 1 , 1,3,3-Tetramethylbutylperoxyneodecanoate, 1,1-bis(tert-hexylperoxy)cyclohexane, benzoyl peroxide, 3,5,5-trimethylperoxy At least one of caproyl oxide, lauroyl peroxide and benzoyl t-butyl peroxide.
  • the free radical initiator is preferably azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), dimethyl 2,2'- Nitrobis(2-methylpropionate), tert-hexyl peroxyisopropyl monocarbonate, tert-hexyl peroxy 2-ethylhexanoate, 1,1,3,3-tetramethylbutyl peroxide 2-Ethylhexanoate, tert-butylperoxypivalate, tert-hexylperoxypivalate, tert-butylperoxyneodecanoate, tert-hexylperoxyneodecanoate, 1,1, 3,3-tetramethylbutylperoxyneodecanoate, 1,1-bis(tert-hexylperoxy)cyclohexane, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide and at least
  • step 3 the method of the hydrolysis reaction is preferably to dissolve the second intermediate product in an organic solvent, add hydrochloric acid or sodium hydroxide, heat up to 50-100 ° C for 3-12 hours, and distill off the solvent under reduced pressure. -8% sodium bicarbonate solution was washed twice, and extracted with chloroform, and the organic phase was collected and evaporated to dryness to obtain a colorless or light yellow viscous liquid product, namely polythiol compound.
  • step 1 is carried out in the presence of organic solvent I
  • step 2 is carried out in the presence of organic solvent II
  • step 3 is carried out in the presence of organic solvent in the presence of III.
  • the organic solvent I and the organic solvent II are preferably independently selected from methanol, ethanol, propanol, butanol, isopropanol, ethyl acetate, propyl acetate, butyl acetate, tetrahydrofuran, dioxane, At least one of acetonitrile, toluene, xylene, methylene chloride, chloroform, carbon tetrachloride, dimethylformamide, dimethylacetamide and dimethyl sulfoxide.
  • the organic solvent III is preferably an alcohol, more preferably a monoalcohol with 1-5 carbon atoms, such as at least one of methanol, ethanol, propanol and n-butanol.
  • the epoxy resin can be aromatic epoxy resin and/or aliphatic epoxy resin, and its specific examples include but not limited to: aliphatic polyhydric glycidyl ether compound, aromatic polyhydric glycidyl ether compound, aliphatic polyhydric glycidol Ester compounds, aromatic polyglycidyl ester compounds, alicyclic polyglycidyl ether ester compounds, aliphatic polyglycidylamine compounds, hydantoin type polyglycidyl compounds, novolak type polyglycidyl ether compounds, cyclic Oxydiene polymer, 3,4-epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methylcyclohexanedicarboxylate, rubber modified epoxy resin (Modified by CTBN, ATBN, etc.), polyalkylene glycol type epoxy resin, bisphenol A type epoxy resin with ether elastomer added, silicone rubber modified epoxy resin, acrylic modified epoxy resin at least one.
  • the epoxy resin is preferably a combination of bisphenol A epoxy resin and bisphenol A epoxy monoacrylate in a weight ratio of 1: (0.3-0.9), such as 1:0.3, 1:0.4, 1:0.5, 1 : 0.6, 1: 0.7, 1: 0.8, 1: 0.9, at this time, it is more conducive to the improvement of the heat resistance, adhesive performance, moisture barrier performance and moisture and heat hydrolysis resistance of the photo/thermal dual curable resin composition .
  • the ratio of the thiol functional group equivalent of the polythiol compound to the epoxy functional group equivalent of the epoxy resin is preferably 0.5-2.0, such as 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4 , 1.5, 1.6, 1.7, 1.8, 1.9, 2.0.
  • the ratio of the thiol functional group equivalent of the polythiol compound to the epoxy functional group equivalent of the epoxy resin is most preferably 0.8-1.2, and when the ratio exceeds this range, the resulting photo/thermal dual-curable resin composition The glass transition temperature, adhesive performance and moisture barrier performance all decreased to some extent.
  • the present invention is not particularly limited to the specific type of the acrylate compound, and its specific examples include but are not limited to: epoxy (meth)acrylate, polyurethane (meth)acrylate, polyester (meth)acrylate, Polyether (meth)acrylate, silane-modified (meth)acrylate, polyol (meth)acrylate, polyolefin (meth)acrylate, melamine (meth)acrylate and (meth) At least one of acrylated acrylic resins.
  • the acrylate compound is preferably a combination of epoxy acrylate and tricyclodecane dimethanol diacrylate in a weight ratio of 1: (0.5-1.5), which is more conducive to the resistance of the light/heat dual-curable resin composition. Improved thermal properties, adhesive properties, moisture barrier properties, and hydrothermal hydrolysis resistance.
  • the present invention has no particular limitation on the type of the curing accelerator, and its specific examples include but not limited to: at least one of an imidazole-based curing accelerator, a tertiary amine-based curing accelerator or a phosphorus compound-based curing accelerator.
  • the curing accelerator is preferably a latent curing accelerator.
  • the latent curing accelerator refers to a compound that is inactive at room temperature and is activated by heating to act as a curing accelerator, for example: an imidazole compound that is solid at normal temperature, an organic acid dihydrazide ; Reaction products of amine compounds and epoxy compounds (amine-epoxy adduct system) and other solid-dispersed amine adduct systems latent curing accelerators; reaction products of amine compounds and isocyanate compounds or urea compounds (urea-type adducts) compound system), etc.
  • the present invention is not particularly limited to the type of photoinitiator, and can be various existing free radical photoinitiators that can initiate polymerization of carbon-carbon double bonds in unsaturated resins to complete curing, specifically cracking photoinitiators. Initiators and/or hydrogen abstraction type photoinitiators.
  • the free radical photoinitiator include, but are not limited to: 2-hydroxyl-2-methyl-1-phenyl-1-propanone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxyl-4- (2-Hydroxyethoxy)-2-methylpropiophenone, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylphosphine ethyl acetate, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2-methyl-1-[4-(methylthio)phenyl]-2-(4-morpho Linyl)-1-propanone, 2-phenylbenzyl-2-dimethylamine-1-(4-morpholinebenzylphenyl)butanone, 4-benzoyl-4′-methyl-diphenylsulfide Ether, 2-(4-methylbenzyl)-2-(dimethylamino)-1-(4-)-
  • the present invention does not have special limitation to the kind of polymerization inhibitor, can be the conventional selection of this field, and its specific example includes but not limited to: Hydroquinone, p-hydroxyanisole, p-benzoquinone, methyl hydroquinone, 2 - at least one of tert-butylhydroquinone, 2,5-di-tert-butylhydroquinone, 4-hydroxypiperidinol oxygen free radical, phenothiazine and anthraquinone.
  • Described stabilizing agent can be the stabilizing agent of various existing with epoxy resin and acrylate compound as the main agent, from the angle of improving storage stability effect, described stabilizing agent is preferably selected from liquid borate compound, aluminum chelate Compounds and at least one of barbituric acid.
  • liquid borate compound examples include, but are not limited to: 2,2'-oxybis(5,5'-dimethyl-1,3,2-oxaborane), boric acid tris Methyl borate, triethyl borate, tri-n-propyl borate, tri-isopropyl borate, tri-n-butyl borate, amyl borate, triallyl borate, trihexyl borate, tricyclohexyl borate, trioctyl borate Esters, Trinonyl borate, Tridecyl borate Tridodecyl borate, Trihexadecyl borate, Trioctadecyl borate, Triphenyl borate, Tri-o-toluene borate At least one of ester, tri-m-cresyl borate, triethanolamine borate, etc.
  • the aluminum chelate compound may be, for example, aluminum chelate compound A (manufactured by Kawaken Fine Chemicals Co., Ltd.).
  • the photo/thermal dual curable resin composition further includes a coupling agent, so as to improve the dispersion performance of the inorganic substances in the resin matrix in the system.
  • a coupling agent include, but are not limited to: ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxy Silane, 3-methacryloxypropyltrimethoxysilane, 8-glycidoxyoctyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, vinyltrimethoxysilane and vinyl at least one of triethoxysilanes.
  • the photo/thermal dual curable resin composition preferably further includes an auxiliary agent.
  • the auxiliary agent for example, can be selected from at least one of fillers, antioxidants, flame retardants, adhesion promoters, diluents, pigments, defoamers, leveling agents, leveling agents and ion scavengers, and each of the above.
  • auxiliaries are well known to those skilled in the art, and will not be repeated here.
  • the preparation method of the light/heat dual curable resin composition provided by the present invention comprises epoxy resin, polythiol compound, acrylate compound, curing accelerator, photoinitiator, polymerization inhibitor and stabilizer and optional coupling
  • the coupling agent and/or auxiliary agent are uniformly mixed under the condition of avoiding light to obtain a light/heat dual curable resin composition.
  • the homogeneous mixing method includes mixing the acrylate compound, the photoinitiator and the polymerization inhibitor at a temperature of 20-30°C and a vacuum degree of -0.05MPa to -0.1MPa under light-proof conditions.
  • the present invention also provides the use of the light/heat dual curable resin composition as an adhesive or sealant for bonding or sealing electronic components, sensors or cameras.
  • This preparation example is used to illustrate the preparation of polythiol compound (5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)biphenyl), specific steps and reaction process
  • the picture is as follows:
  • Step 1 Dissolve 80g of 5,5'-diallyl-2,2'-diphenol in 200mL of acetone, add 103.6g of potassium carbonate and 67.9g of phase transfer catalyst 18-crown-67.9g, under inert gas protection Lower the temperature to 70°C and stir for 10 minutes, then slowly add 79.8 g of allyl bromide, react for 8 hours, filter the reaction solution, distill the filtrate to remove the solvent under reduced pressure, wash with water three times, and extract with chloroform, after the organic phase is collected Evaporate to dryness, obtain the light yellow first intermediate product that is liquid;
  • Step 2 Dissolve the first intermediate product obtained in Step 2 in 200 mL of tetrahydrofuran, add 5.4 g of free radical initiator azobisisobutyronitrile, raise the temperature to 70°C under the protection of an inert gas, and slowly add 96.2 g of thioacetic acid , after reacting for 12 hours, the solvent and excess thioacetic acid were distilled off under reduced pressure to obtain a liquid light yellow second intermediate product;
  • Step 3 Dissolve the second intermediate product obtained in step 2 in 300 mL of methanol, add 60 mL of hydrochloric acid for hydrolysis, heat up to 60 ° C for 12 hours of hydrolysis reaction, distill off the solvent under reduced pressure, and wash the two parts with 5% sodium bicarbonate solution. and extracted with chloroform, the organic phase was collected and evaporated to dryness to obtain 124.8 g of the final product in the form of light yellow viscous liquid, namely 5,5'-bis(3-mercaptopropyl)-2,2'-bis( 3-mercaptopropoxy)biphenyl, the total yield is 86.2%, the thiol equivalent is 120g/eq, and the molecular weight is 482.8.
  • This 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)biphenyl basically had no sulfur odor.
  • Step 1 Dissolve 98 g of 5,5'-diallyl-3,3'-dimethoxy-2,2'-biphenyldiol in 250 mL of acetone, add 103.6 g of potassium carbonate and a phase transfer catalyst of 18 -Crown-67.9g, heated up to 70°C and stirred for 10 minutes under the protection of an inert gas, then slowly added 79.8g of allyl bromide, reacted for 8 hours, filtered the reaction solution, distilled the filtrate to remove the solvent under reduced pressure, washed with water three times, And extract with chloroform, evaporate to dryness after the organic phase is collected, obtain the light yellow first intermediate product that is liquid;
  • Step 2 Dissolve the first intermediate product obtained in Step 1 in 200 mL of tetrahydrofuran, add 5.4 g of a free radical initiator azobisisobutyronitrile, raise the temperature to 70°C under the protection of an inert gas, and slowly add 96.2 g of thioacetic acid , after reacting for 12 hours, the solvent and excess thioacetic acid were distilled off under reduced pressure to obtain a liquid light yellow second intermediate product;
  • Step 3 Dissolve the second intermediate product obtained in step 2 in 300 mL of methanol, add 60 mL of hydrochloric acid for hydrolysis, heat up to 70 ° C for 12 hours of hydrolysis reaction, remove the solvent by distillation under reduced pressure, and wash the two parts with 5% sodium bicarbonate solution.
  • A1 is 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)biphenyl (thiol equivalent: 120g/eq)
  • A2 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)-3,3'-dimethoxybiphenyl (thiol equivalent: 135g/eq)
  • A3 is PEMP (thiol equivalent: 122g/eq)
  • A4 is a difunctional hybrid thiol compound disclosed in CN112840004A (thiol equivalent: 211g/eq)
  • A5 is 1,3,4,6-tetra(2 -Mercaptoethyl) glycoluril (thiol equivalent: 95g/eq)
  • A6 is 1,1-(dithiobisethanediyl)-bis[3,4,6-tri(2-mercaptoethyl) Glycoluril
  • the main source of raw material used in embodiment 1-17 and comparative example 1-5 is as follows:
  • the polythiol compound 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)biphenyl was prepared from Preparation Example 1, the thiol equivalent was 120g/eq, and the molecular weight is 482.8, and the structural formula is as shown in formula (IV):
  • the polythiol compound 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)-3,3'-dimethoxybiphenyl was prepared from Preparation Example 2 , the thiol equivalent is 135g/eq, the molecular weight is 542.8, and the structural formula is as shown in formula (V):
  • Pentaerythritol tetrakis (3-mercapto propionate) is the PEMP of Japan SC Organic Chemical Co., Ltd., and mercaptan equivalent is 122g/eq, and molecular weight is 488.6, and structural formula is as shown in formula (VI):
  • the difunctional hybrid thiol compound has a structure shown in formula (VII), which is derived from Shikoku Chemical Industry Co., Ltd., is liquid at room temperature, has a molecular weight of 389, and a thiol equivalent of 211g/eq:
  • 1,3,4,6-Tetrakis (2-mercaptoethyl) glycoluril derived from Shikoku Chemical Industry Co., Ltd., is a crystalline solid at room temperature, and the mercaptan equivalent is 95g/eq;
  • 1,1-(dithiobisethanediyl)-bis[3,4,6-tris(2-mercaptoethyl)glycoluril] has a mercaptan equivalent of 127g/eq, specifically prepared according to the following method: Add 3.18 g of 1,3,4,6-tetrakis(2-hydroxyethyl) glycoluril into the reaction flask, stir at room temperature, and dropwise add 11.75 g of thionyl chloride, and reflux for 2 hours after dropping; cool to 10°C , add water 10mL, thiourea 3.65g, continue to reflux and stir for 12 hours; then cool to 25°C, add 4.00g of 48% sodium hydroxide aqueous solution dropwise under nitrogen atmosphere, stir and react at 70°C for 9 hours; then cool to 20°C , add 3.50 g of concentrated hydrochloric acid and 10 mL of chloroform, stir for 30 minutes, then perform the first suction filtration, add 10 mL of chlor
  • Epoxy resin is bisphenol A type epoxy resin, is selected from the EPICLON EXA-850CRP of DIC Corporation, and epoxy equivalent is 170-175g/eq, and structural formula is as shown in formula (VIII):
  • Bisphenol A epoxy monoacrylate is selected from the EA-1010LC of Japan NK Oligo Company, and epoxy equivalent is 412.5g/eq, and structural formula is as shown in formula (IX):
  • the acrylate compound is epoxy acrylate CN121 and tricyclodecane dimethanol diacrylate SR833S selected from SARTOMER;
  • the curing accelerator is a latent curing agent selected from NOVACURE HXA9322HP of Asahi Kasei;
  • Photoinitiator is 2-hydroxyl-2-methyl-1-phenylacetone and diphenyl-(2,4,6-trimethylbenzoyl)phosphine, selected from Irgacure 1173 and IGM of BASF company respectively The company's Omnirad TPO;
  • Polymerization inhibitor is p-hydroxyanisole, is selected from the MEHQ of Solvay company;
  • the stabilizer is triisopropyl borate, selected from W330012 of Sann Chemical Technology (Shanghai) Co., Ltd.;
  • the silane coupling agent is ⁇ -methacrylate propyltrimethoxysilane, selected from KBM503 of Shin-Etsu Corporation of Japan;
  • the filler is fumed silica, selected from AEROSIL R202 of Evonik Company.
  • the resin compositions obtained in the above examples and comparative examples were sealed and stored at room temperature for 240 hours, and then the resin compositions were taken out and coated on stainless steel sheets, and pressed with tempered glass sheets.
  • the area of the glue layer was 25.4 mm ⁇ 5mm, and ensure that the thickness of the adhesive layer is 0.1mm; irradiate and cure with a UV light source (365nm, light intensity 1000mW/cm 2 ) for 4 seconds, and then heat-cure the sample at 80°C for 60 minutes in an oven and nitrogen atmosphere ;Use a universal testing machine to pull the two sheets apart in opposite directions. The test is carried out at an ambient temperature of 85°C.
  • the measured force value is the thermal bonding strength just after sample preparation, expressed in terms of strength (MPa ) records; after the cured sample was heated and humidified at 85°C/85%RH for 150 hours, the shear bond strength of the sample was tested again at an ambient temperature of 85°C, which was the thermal bond strength after heating and humidifying Bonding strength (MPa).
  • MPa thermal bonding strength
  • the crystal precipitation time of the photo/thermal dual-curable resin composition of the present invention is uniform. Exceeded the maximum test time of 240 hours, this is because the polythiol compound of the present invention is liquid at room temperature and makes the resin composition storage more stable, thereby has long pot life, simultaneously the polythiol compound of the present invention has no ester Bonding and low odor, the resin composition can be quickly cured by UV light irradiation after 240 hours of static storage to achieve rapid positioning, and then continue to heat cure at a milder temperature of 80°C to achieve a high degree of crosslinking, glass The transformation temperature exceeds 124°C, and the water absorption rate is within 2.2%, showing high heat resistance and good moisture barrier performance.
  • the thermal bonding strength of the cured product measured at a high temperature of 85°C has reached 7.1 It is above MPa, and can still maintain about 90% of the thermal bonding strength after the heating and humidification test, indicating that the photo/thermal dual-curable resin composition of the present invention has excellent bonding performance and resistance to moisture and heat hydrolysis.
  • the thiol functional group of polythiol compound and the epoxy functional group equivalent ratio of epoxy resin are for the storage stability of resin composition and There is no obvious effect on the resistance to heat and humidity.
  • the resin composition has no crystal precipitation within 240 hours. It has a certain influence on the bonding performance of the resin composition.
  • the thermal bonding strength of the resin composition after curing will drop slightly, but it still reaches above 6.8MPa, and the glass transition temperature also has a certain degree of influence. A certain decrease, but the overall temperature still exceeds 118°C, the barrier performance to moisture decreases to a certain extent, and the water absorption rate increases to within 2.37%-2.89%.
  • Example 1 By comparative analysis of Example 1 and Examples 15-16, it can be found that after the preferred acrylate compound combination of the present invention is replaced by a single acrylate compound, the storage stability of the resin composition is not affected, but the glass transition temperature and thermal bonding strength all appear to decline more obviously, and the thermal bonding strength after heating and humidifying experiment also has reduction to a certain extent, and water absorption rate rises to more than 2.9%, illustrate that the preferred acrylate compound combination of the present invention is photosensitive/ The heat resistance, adhesive performance, moisture barrier performance and moisture-heat hydrolysis resistance of the thermal dual-curing resin composition have a relatively obvious influence.
  • Example 17 By comparative analysis of Example 1 and Example 17, it can be found that after the preferred epoxy resin combination of the present invention is replaced by a single bisphenol A type epoxy resin, the storage stability of the resin composition is not affected, but the vitrification The transition temperature drops to 108°C, the thermal bonding strength decreases to 6.45MPa, and the thermal bonding strength after the heating and humidification experiment also decreases to a certain extent, and the water absorption rate rises to 2.98%, which is due to the preferred epoxy resin combination of the present invention
  • Another component of bisphenol A epoxy monoacrylate has both epoxy functional groups and acrylate functional groups, which can effectively increase the system compatibility between the two components of UV light curing and thermal curing. The compatibility and curing effect of the resin composition are reduced, thereby reducing the overall performance. Performance and moisture resistance to thermal hydrolysis have a more obvious impact.
  • Example 5 By comparative analysis of Example 1, Example 5 and Comparative Example 1, it can be found that after the polythiol compound prepared by the present invention is replaced with ester bond-containing pentaerythritol tetrakis (3-mercaptopropionic acid) ester, due to pentaerythritol tetrakis (3-mercaptopropionate) Mercaptopropionate is liquid at room temperature, the resin composition does not have crystals to separate out, storage stability and pot life are not greatly affected, but the glass transition temperature of the cured product drops sharply to 64 ° C, and the thermal bonding strength also drops to 5.06MPa, the heat resistance and bonding performance are significantly reduced, and the water absorption of the cured product is as high as 7.56%, and the thermal bonding strength after the heating and humidification test almost disappears, indicating that there is no ester bond in the present invention.
  • the alcohol compound has a very critical influence on the heat resistance, adhesive performance, moisture barrier performance and moisture-heat hydrolysis resistance of the
  • Example 1 By comparative analysis of Example 1, Example 5 and Comparative Example 2, it can be found that after the polythiol compound prepared by the present invention is replaced by the difunctional hybrid thiol compound shown in structural formula (VII), since the thiol compound at room temperature The bottom is a liquid, the resin composition has no crystal precipitation, and the storage stability and pot life are not greatly affected, but the glass transition temperature of the cured product drops sharply to 26°C, and the thermal bonding strength also drops to 4.75MPa.
  • thermal and thermal bonding properties are significantly reduced, and the water absorption of the cured product is also as high as 5.13%, and the thermal bonding strength after the heating and humidification test is also significantly reduced, which further illustrates that the polythiol compound of the present invention is effective for photoresisting.
  • the heat resistance, adhesive performance, moisture barrier performance and moisture-heat hydrolysis resistance of the cured thermal dual-curing resin composition all have extremely critical effects.
  • Example 1 By comparative analysis of Example 1, Example 5 and Comparative Example 3, it can be found that the polythiol compound prepared by the present invention is replaced by 1,3,4,6-tetrakis (2-mercaptoethyl) glycoluril, due to pure
  • the polythiol compound is a solid crystal at room temperature, the crystallization time of the resin composition is greatly shortened to 12.5 hours, the glass transition temperature after curing is reduced to 87°C, the thermal bonding strength is reduced to 6.14MPa, and the water absorption rate also reaches 3.82%, indicating that the solid polythiol curing agent 1,3,4,6-tetrakis(2-mercaptoethyl) glycoluril precipitates crystals after storage for a period of time, which is prone to incomplete curing and causes photo/thermal dual Reduction of overall properties of cured resin composition.
  • Example 4 By comparatively analyzing Example 1, Example 5 and Comparative Examples 3-4, it can be found that in Comparative Example 4, by adding part liquid 1,1-(dithiobisethanediyl)-bis[3,4 , 6-three (2-mercaptoethyl) glycoluril] although solid polythiol compound 1,3,4,6-tetra(2-mercaptoethyl) glycoluril crystal precipitation time is short and the problem of performance decline can be improved,
  • this solution obviously increases the cost, the cured glass transition temperature, thermal bonding strength and water absorption of the resin composition are still not as good as the resin compositions of Example 1 and Example 5 as a whole, which illustrates the advantages of the present invention.
  • the polythiol compound can significantly improve the storage stability, heat resistance, adhesive performance, moisture barrier performance and moisture-thermal hydrolysis resistance of the photo/thermal dual-curable resin composition at low cost and without crystal precipitation. Impact.
  • Example 1 By comparative analysis of Example 1 and Comparative Example 5, it can be found that the preferred epoxy resin combination of the present invention is replaced by a single bisphenol A epoxy monoacrylate, and when no acrylate compound is used, the storage of the resin composition The stability is not affected, but the glass transition temperature is further lowered to 102 °C, the thermal bond strength is greatly reduced to 5.07 MPa, and the water absorption is increased to 3.45%, which is due to another
  • the component bisphenol A type epoxy resin has multiple epoxy functional groups, which can increase the degree of crosslinking and bonding strength, while completely replacing it with bisphenol A epoxy monoacrylate greatly reduces the number of epoxy functional groups and adhesion Intensity, thereby reducing the overall performance, while the light/heat dual curing system can make up for the defects of the traditional single curing method, further illustrating the preferred epoxy resin combination of the present invention and the heat resistance of the light/heat dual curing system to the resin composition It has a significant impact on the properties of adhesion, adhesive properties, moisture barrier properties and resistance to
  • the polythiol compound provided by the present invention the preferred acrylate compound combination and the preferred epoxy resin combination all have a significant impact on the comprehensive performance of the light/heat dual curable resin composition;
  • the present invention adopts
  • the polyfunctional thiol compound is liquid at room temperature and has no ester bond, low odor and low cost, and the corresponding photo/thermal dual curable resin composition has no crystal precipitation during storage;
  • the cured resin composition has the advantages of low odor, low cost, good storage stability, rapid positioning under light and low-temperature thermal curing to improve bonding performance, etc., and has high cross-linking degree after curing, good moisture barrier performance, excellent Heat resistance, adhesive performance and thermal hydrolysis resistance can meet the application requirements of bonding or sealing in high-precision fields such as electronic circuits, sensors or cameras.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

本发明属于胶黏剂与密封剂领域,涉及一种可光/热双重固化树脂组合物及其制备方法和应用。所述可光/热双重固化树脂组合物中含有环氧树脂、多硫醇化合物、丙烯酸酯化合物、固化促进剂、光引发剂、阻聚剂和稳定剂。该可光/热双重固化树脂组合物中所采用的硫醇化合物在不含有甘脲基的基础上,室温下为液态且无酯键,气味小,对应的可光/热双重固化树脂组合物在储存中无晶体析出,适用期长,具有良好的耐热耐湿性,能够快速固化且固化后具有高的粘结强度,可用作胶黏剂和密封剂。

Description

一种可光/热双重固化树脂组合物及其制备方法和应用
相关申请的交叉引用
本申请要求于2021年10月22日提交至中国专利局、申请号为2021112322646、申请名称为“一种可光/热双重固化树脂组合物及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合至本申请中。
技术领域
本发明属于胶黏剂与密封剂领域,特别涉及一种可光/热双重固化树脂组合物及其制备方法和应用。
背景技术
基于近年来电子电路领域对于保护半导体元件使电路高集中化和提高连接可靠性的要求,环氧树脂-硫醇体系被经常应用于电子部件的组装和装配,来满足在胶黏剂较低温度下固化和有足够粘接强度的要求。采用该种体系的组合物通常需要热固化的方式,但通常不能在精密电子部件组装时做到快速定位。而光固化的胶黏剂可在极短的时间内固化,能耗较低且固化效率快,但在实际生产应用当中也存在着遮光部分固化不全等问题。例如,CN111394028A公开了一种光激活延迟热固化胶黏剂,其含有环氧树脂、多元醇、光引发剂、光敏剂、触变剂和消泡剂,利用光激活来制备单组分热固化胶黏剂,但其固化方式主要还是热固化,无法满足快速定位的需求。CN112521870A公开了一种紫外光固化胶黏剂组合物,其含有UV低聚物、UV功能单体、光引发剂、助剂和功能填料,该紫外光固化胶黏剂组合物选用UV低聚物制备紫外光固化胶黏剂,但是在遮光部分通常固化不完全,不能达到深层固化。此外,CN112840004A公开了一种树脂组合物,该树脂组合物中含有分子内具有碳碳双键基团的化合物、二官能硫醇化合物、引发剂以及自由基阻聚剂,虽然其中所采用的硫醇化合物中无酯键,但是分子内具有碳碳双键基团的化合物中依然会存在可能水解的酯键,并且由于所选用的硫醇化合物只有两个官能团,固化产物具有柔软性,交联度比较低,固化效果差,对湿气的阻隔性能不佳,耐热性、热粘接强度和耐湿热水解性 能仍然有待提升。
光/热双重固化体系是解决以上问题的一种有效方案。例如,CN100404579C采用了快速光固化定位和热固化粘接的双重固化体系,但是该体系中所含的固化剂硫臭味明显,且该体系经固化后交联度低、耐热性及耐湿热水解性能差,仍无法满足目前电子装配领域日益提高的需求。CN111356716A公开了一种在室温下为液体的单包装组合物,该组合物能够通过辐射固定并通过热固化,其采用不含酯的三(3-巯基丙基)异氰尿酸酯,提升了光热双固化树脂组合物的耐水解性能,但这种多硫醇在室温下会散发出难闻的强烈硫臭味,固化物的耐热性也不令人满意。此外,为了同时赋予树脂固化物良好的耐湿性及耐热性,目前行业内的主流做法是采用巯基烷基甘脲作为固化剂。例如,专利CN201480064943.9和JP2015059099A公开了所谓巯基烷基甘脲的多硫醇固化剂,虽然该多硫醇固化剂具有良好的耐湿性及耐热性,但是专利CN201680014880.5中却提出该多硫醇固化剂在室温下为固体,在与环氧树脂形成配合物时容易析出晶体,存在组成变得不均匀的问题,此时需要与另一种巯基乙基甘脲化合物配合使用,由此使固体多硫醇固化剂液体化,最终形成液体状的具有二硫键的低聚物混合物作为固化剂,虽然该方式能够使固化剂最终转化为液体,但是却增加了反应的工序和成本。再则,CN201480064943.9中提及的巯基烷基甘脲类固化剂还有降低单组份低温固化环氧胶的储存稳定性的风险。另外,在图像传感器模组的制造中,还要求使用的胶黏剂吸水率低,从而保证粘接组装密封后能够阻止空气中湿气渗透到模组内部以及对透镜系统的干扰。然而,现有的双固化树脂组合物的吸水率通常较高,难以满足这一要求。
综上分析,亟需开发一种本身为液态、储存稳定性好、低成本且低气味的固化剂并利用光/热双重固化的机理来制备可在低温下固化、吸水率低、耐热性优良、耐湿热水解性好、粘接强度高、能实现快速定位要求的树脂组合物,以满足电子电路等高精密要求领域的应用需求。
发明内容
本发明的第一目的是为了克服采用现有的多硫醇固化剂无法实现本身为液态、储存稳定性好、低成本且低气味并且对应的树脂组合物无法同时兼具低温固化、吸水率低、耐热性优良、耐湿热水解性好、粘接强度高且能实现快速定位要求的缺陷,而提供一种新的可 光/热双重固化树脂组合物,该树脂组合物中所采用的多硫醇化合物在不含有甘脲基的基础上,室温下为液态且无酯键,气味小,该树脂组合物采用具有独特结构的双苯环型无酯键多硫醇化合物与环氧树脂组成低温热固化体系,采用丙烯酸酯化合物与光引发剂组成光固化体系,由此所得树脂组合物为可光/热双重固化体系,在储存过程中无晶体析出,适用期长,该树脂组合物在保证高粘结性能的基础上,实现了快速定位、低温固化并保证了低吸水率、以及良好的耐热性和耐湿热水解性能。
本发明的第二目的在于提供上述可光/热双重固化树脂组合物的制备方法。
本发明的第三目的在于提供上述可光/热双重固化树脂组合物的应用。
具体地,本发明提供的可光/热双重固化树脂组合物中包括20-40重量份环氧树脂、10-35重量份多硫醇化合物、20-40重量份丙烯酸酯化合物、1-5重量份固化促进剂、0.3-5重量份光引发剂、0.01-3重量份阻聚剂和0.1-3重量份稳定剂;所述多硫醇化合物由通式(I)表示:
Figure PCTCN2022113665-appb-000001
所述通式(I)中,R 1、R 2、R 3和R 4中有且仅有一个为碳原子数为2-5的巯基烷氧基,R 5、R 6、R 7和R 8中有且仅有一个为碳原子数为2-5的巯基烷氧基,R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8中剩余六个分别独立地选自氢原子、碳原子数为1-3的烷基和碳原子数为1-3的低级烷氧基中的一种。
在一种优选实施方式中,所述通式(I)所示的多硫醇化合物中,R 1、R 2和R 4中的一个为碳原子数为2-5的巯基烷氧基且另外两个均为氢原子,R 3和R 7分别独立地选自氢原子或甲氧基,R 5、R 6和R 8中的一个为碳原子数为2-5的巯基烷氧基且另外两个均为氢原子。
在一种优选实施方式中,所述通式(I)所示的多硫醇化合物中,R 1和R 5均为氢原子,R 3和R 7分别独立地选自氢原子或甲氧基,R 2和R 4中的一个为碳原子数为2-5的巯基烷氧基且另外一个为氢原子,R 6和R 8中的一个为碳原子数为2-5的巯基烷氧基且另外一个为氢原子。
在一种优选实施方式中,所述通式(I)所示的多硫醇化合物中,R 1和R 5均为氢原子,R 3和R 7分别独立地选自氢原子或甲氧基,且当R 2和R 6均为碳原子数为2-5的巯基烷氧基时,R 4和R 8均为氢原子;当R 4和R 8均为碳原子数为2-5的巯基烷氧基时,R 2和R 6均为氢原子;当R 4和R 6均为碳原子数为2-5的巯基烷氧基时,R 2和R 8均为氢原子;当R 2和R 8均为碳原子数为2-5的巯基烷氧基时,R 4和R 6均为氢原子。
在一种优选实施方式中,所述多硫醇化合物按照包括以下步骤的方法制备得到:
步骤一:将由通式(II)表示的双苯酚类化合物和由通式(III)表示的卤代化合物在相转移催化剂的存在下且在碱性条件下进行取代反应,提纯后得到呈液态的无色或淡黄色的第一中间产物;
步骤二:将第一中间产物和硫代乙酸在自由基引发剂的存在下进行自由基加成反应,提纯后得到呈液态的无色或淡黄色的第二中间产物;
步骤三:将第二中间产物进行水解反应,提纯后得到呈无色或淡黄色的粘稠液体状产物,即为多硫醇化合物;
Figure PCTCN2022113665-appb-000002
所述通式(II)中,R 9、R 10、R 11和R 12中有且仅有一个为羟基,R 13、R 14、R 15和R 16中有且仅有一个为羟基,R 9、R 10、R 11、R 12、R 13、R 14、R 15和R 16中剩余六个分别独立地选自氢原子、碳原子数为1-3的烷基和碳原子数为1-3的烷氧基中的一种;
所述通式(III)中,X表示氯或溴,m为0、1、2或3。
在一种优选实施方式中,步骤一中,所述取代反应的方式为将由通式(II)表示的双苯酚类化合物溶解在有机溶剂中,加碱提供碱性条件,加入相转移催化剂,之后在惰性气体保护下升温至40-100℃搅拌10-60分钟,随后再加入通式(III)表示的卤代化合物,反应4-12小时,接着将反应液过滤,滤液减压蒸馏除去溶剂,用水洗三次,并用三氯甲烷萃取,有机相收集后蒸干,得到呈液态的无色或淡黄色的第一中间产物。
在一种优选实施方式中,步骤二中,所述自由基加成反应的方式为将第一中间产物溶解在有机溶剂中,加入自由基引发剂,在惰性气体保护下升温至40-100℃,缓慢加入硫代 乙酸,进行自由基加成反应4-12小时,之后减压蒸馏除去溶剂,得到呈液态的无色或淡黄色的第二中间产物。
在一种优选实施方式中,步骤三中,所述水解反应的方式为将第二中间产物溶解在有机溶剂中,加入盐酸或氢氧化钠,升温至50-100℃反应3-12小时,减压蒸馏除去溶剂,用2-8%的碳酸氢钠溶液洗两遍,并用三氯甲烷萃取,有机相收集后蒸干,得到呈无色或淡黄色的粘稠液状产物,即为多硫醇化合物。
在一种优选实施方式中,所述环氧树脂为芳香族环氧树脂和/或脂肪族环氧树脂。
在一种优选实施方式中,所述环氧树脂为双酚A型环氧树脂和双酚A环氧单丙烯酸酯以重量比1∶(0.3-0.9)的组合。
在一种优选实施方式中,所述多硫醇化合物的硫醇官能团当量与所述环氧树脂的环氧官能团当量之比为0.5-2.0,优选为0.8-1.2。
在一种优选实施方式中,所述丙烯酸酯化合物选自环氧(甲基)丙烯酸酯、聚氨酯(甲基)丙烯酸酯、聚酯(甲基)丙烯酸酯、聚醚(甲基)丙烯酸酯、硅烷改性(甲基)丙烯酸酯、多元醇类(甲基)丙烯酸酯、聚烯烃(甲基)丙烯酸酯、三聚氰胺(甲基)丙烯酸酯和(甲基)丙烯酸酯化丙烯酸树脂中的至少一种。
在一种优选实施方式中,所述丙烯酸酯化合物为环氧丙烯酸酯和三环癸烷二甲醇二丙烯酸酯以重量比1∶(0.5-1.5)的组合。
在一种优选实施方式中,所述固化促进剂选自咪唑系固化促进剂、叔胺系固化促进剂和磷化合物系固化促进剂中的至少一种。
在一种优选实施方式中,所述光引发剂为自由基光引发剂;所述自由基光引发剂为裂解型光引发剂和/或夺氢型光引发剂。
在一种优选实施方式中,所述阻聚剂选自对苯二酚、对羟基苯甲醚、对苯醌、甲基氢醌、2-叔丁基对苯二酚、2,5-二叔丁基对苯二酚、4-羟基哌啶醇氧自由基、吩噻嗪和蒽醌中的至少一种。
在一种优选实施方式中,所述稳定剂选自液体硼酸酯化合物、铝螯合剂及巴比妥酸中的至少一种。
在一种优选实施方式中,所述可光/热双重固化树脂组合物中还包括偶联剂和/或助剂;所述偶联剂选自γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷、β-(3,4-环氧环己基)乙基三甲氧基硅 烷、3-甲基丙烯酰氧基丙基三甲氧基硅烷、8-环氧丙氧基辛基三甲氧基硅烷、γ-巯基丙基三甲氧基硅烷、乙烯基三甲氧基硅烷以及乙烯基三乙氧基硅烷中的至少一种;所述助剂选自填料、抗氧化剂、阻燃剂、粘接促进剂、稀释剂、颜料、消泡剂、流平剂、均化剂以及离子捕捉剂中的至少一种;所述偶联剂的含量为0.01-5重量份;所述助剂的含量为0.01-30重量份。
本发明还提供了所述可光/热双重固化树脂组合物的制备方法,其中,该方法包括将环氧树脂、多硫醇化合物、丙烯酸酯化合物、固化促进剂、光引发剂、阻聚剂和稳定剂以及任选的偶联剂和/或助剂在避光条件下混合均匀,得到双重固化反应型聚氨酯热熔胶。
在一种优选实施方式中,所述混合均匀的方式包括在避光条件下,将丙烯酸酯化合物、光引发剂和阻聚剂于温度20-30℃、真空度-0.05MPa~-0.1MPa、转速40-60转/分的条件下搅拌20-40分钟,再加入环氧树脂、多硫醇化合物和稳定剂于温度20-30℃、真空度-0.05MPa~-0.1MPa、转速40-60转/分的条件下再次搅拌20-40分钟,之后加入固化促进剂以及任选的硅烷偶联剂和助剂于温度20-30℃、真空度-0.05MPa~-0.1MPa、转速40-60转/分的条件下继续搅拌20-40分钟,避光密封包装即可。
此外,本发明还提供了所述可光/热双重固化树脂组合物作为用于电子部件、传感器或摄像头的粘接或密封的胶黏剂或密封剂的用途。
本发明的有益效果如下:
(1)本发明采用具有特定结构的多硫醇化合物与环氧树脂热固化体系以及丙烯酸酯系光固化体系共同形成可光/热双重固化树脂组合物,弥补了传统热固化和光固化这两种单一固化方式的缺陷,具有快速定位、低温固化、粘接强度高、耐热耐湿性能好等特点;
(2)本发明提供的多硫醇化合物气味低,如此能够避免相应的树脂组合物出现气味过大的问题;
(3)本发明提供的多硫醇化合物在常温下为粘稠液体,容易与树脂混合均匀,不会发生晶体析出,适用期长,而且可直接作为固化剂用于树脂组合物的固化,无需额外进行偶联形成低聚物混合物,也无须与其他多硫醇化合物联用,成本低,含有该多硫醇化合物的树脂组合物可作为胶黏剂和密封剂的成分。
附图说明
图1为5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯的 1H-NMR图;
图2为5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯的IR光谱图;
图3为5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯的 1H-NMR图;
图4为5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯的IR光谱图。
具体实施方式
本发明提供的可光/热双重固化树脂组合物中含有环氧树脂、多硫醇化合物、丙烯酸酯化合物、固化促进剂、光引发剂、阻聚剂和稳定剂,在此基础上,还可以含有偶联剂和/或助剂。其中,所述环氧树脂的含量为20-40重量份,如20、22、25、28、30、32、35、38、40重量份。所述多硫醇化合物的含量为10-35重量份,如10、12、15、18、20、22、25、28、30、32、35重量份。所述丙烯酸酯化合物的含量为20-40重量份,如20、22、25、28、30、32、35、38、40重量份。所述固化促进剂的含量为1-5重量份,如1、2、3、4、5重量份。所述光引发剂的含量为0.3-5重量份,如0.3、0.5、1、1.5、2、2.5、3重量份。所述阻聚剂的含量为0.01-3重量份,如0.01、0.1、0.5、1、1.5、2、2.5、3重量份。所述稳定剂的含量为0.1-3重量份,如0.1、0.5、1、1.5、2、2.5、3重量份。所述偶联剂的含量优选为0.01-5重量份,如0.01、0.1、0.5、1、1.5、2、2.5、3、3.5、4、4.5、5重量份。所述助剂的含量优选为0.01-30重量份,如0.01、1、5、10、15、20、25、30重量份。
所述多硫醇化合物具有通式(I)所示的结构:
Figure PCTCN2022113665-appb-000003
所述通式(I)中,R 1、R 2、R 3和R 4中有且仅有一个为碳原子数为2-5的巯基烷氧基,R 5、R 6、R 7和R 8中有且仅有一个为碳原子数为2-5的巯基烷氧基,R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8中剩余六个分别独立地选自氢原子、碳原子数为1-3的烷基和碳原子数为1-3的低级烷氧基中的一种。其中,所述碳原子数为2-5的巯基烷氧基例如可以为巯基乙氧基、巯基正丙氧基、巯基异丙氧基、巯基正丁氧基、巯基仲丁氧基、巯基异丁氧基、巯基叔丁 氧基、巯基正戊氧基、巯基异戊氧基、巯基叔戊氧基或巯基新戊氧基。所述碳原子数为1-3的烷基的具体实例包括但不限于:甲基、乙基、正丙基或异丙基。所述碳原子数为1-3的烷氧基的具体实例包括但不限于:甲氧基、乙氧基、丙氧基或异丙氧基。
所述通式(I)所示的多硫醇化合物中,优选地,R 1、R 2和R 4中的一个为碳原子数为2-5的巯基烷氧基且另外两个均为氢原子,R 3和R 7分别独立地选自氢原子或甲氧基,R 5、R 6和R 8中的一个为碳原子数为2-5的巯基烷氧基且另外两个均为氢原子。更优选地,所述通式(I)所示的多硫醇化合物中,R 1和R 5均为氢原子,R 3和R 7分别独立地选自氢原子或甲氧基,R 2和R 4中的一个为碳原子数为2-5的巯基烷氧基且另外一个为氢原子,R 6和R 8中的一个为碳原子数为2-5的巯基烷氧基且另外一个为氢原子。最优选地,所述通式(I)所示的多硫醇化合物中,R 1和R 5均为氢原子,R 3和R 7分别独立地选自氢原子或甲氧基,且当R 2和R 6均为碳原子数为2-5的巯基烷氧基时,R 4和R 8均为氢原子;当R 4和R 8均为碳原子数为2-5的巯基烷氧基时,R 2和R 6均为氢原子;当R 4和R 6均为碳原子数为2-5的巯基烷氧基时,R 2和R 8均为氢原子;当R 2和R 8均为碳原子数为2-5的巯基烷氧基时,R 4和R 6均为氢原子。
所述多硫醇化合物的具体实例包括但不限于:5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丁氧基)联苯(R 1、R 2、R 3、R 5、R 6和R 7均为氢原子,R 4和R 8均为碳原子数为4的巯基烷氧基)、5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丁氧基)-3,3′-二甲氧基联苯(R 1、R 2、R 5和R 6均为氢原子,R 3和R 7均为甲氧基,R 4和R 8均为碳原子数为4的巯基烷氧基)、5,5′-双(3-巯基丙基)-2,2′-双(3-巯基戊氧基)联苯(R 1、R 2、R 3、R 5、R 6和R 7均为氢原子,R 4和R 8均为碳原子数为5的巯基烷氧基)、5,5′-双(3-巯基丙基)-2,2′-双(3-巯基戊氧基)-3,3′-二甲氧基联苯(R 1、R 2、R 5和R 6均为氢原子,R 3和R 7均为甲氧基,R 4和R 8均为碳原子数为5的巯基烷氧基)、5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯(R 1、R 2、R 3、R 5、R 6和R 7均为氢原子,R 4和R 8均为碳原子数为3的巯基烷氧基)以及5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯(R 1、R 2、R 5和R 6均为氢原子,R 3和R 7均为甲氧基,R 4和R 8均为碳原子数为3的巯基烷氧基)中的至少一种。
在一种具体实施方式中,所述多硫醇化合物按照包括以下步骤的方法制备得到:
步骤一:将由通式(II)表示的双苯酚类化合物和由通式(III)表示的卤代化合物在相转移催化剂的存在下且在碱性条件下进行取代反应,提纯后得到呈液态的无色或淡黄色 的第一中间产物;
步骤二:将第一中间产物和硫代乙酸在自由基引发剂的存在下进行自由基加成反应,提纯后得到呈液态的无色或淡黄色的第二中间产物;
步骤三:将第二中间产物进行水解反应,提纯后得到呈无色或淡黄色的粘稠液体状产物,即为多硫醇化合物;
Figure PCTCN2022113665-appb-000004
所述通式(II)中,R 9、R 10、R 11和R 12中有且仅有一个为羟基,R 13、R 14、R 15和R 16中有且仅有一个为羟基,R 9、R 10、R 11、R 12、R 13、R 14、R 15和R 16中剩余六个分别独立地选自氢原子、碳原子数为1-3的烷基和碳原子数为1-3的烷氧基中的一种。优选地,R 9、R 10和R 12中的一个为羟基且另外两个均为氢原子,R 11和R 15分别独立地选自氢原子或甲氧基,R 13、R 14和R 16中的一个为羟基且另外两个均为氢原子。更优选地,R 9和R 13均为氢原子,R 11和R 15分别独立地选自氢原子或甲氧基,R 10和R 12中的一个为羟基且另外一个为氢原子,R 14和R 16中的一个为羟基且另外一个为氢原子。最优选地,R 9和R 13均为氢原子,R 11和R 15分别独立地选自氢原子或甲氧基,且当R 10和R 14均为羟基时,R 12和R 16均为氢原子;当R 12和R 16均为羟基时,R 10和R 14均为氢原子;当R 12和R 14均为羟基时,R 10和R 16均为氢原子;当R 10和R 16均为羟基时,R 12和R 14均为氢原子。
所述通式(III)中,X表示氯或溴,m为0、1、2或3。
步骤一中,所述取代反应的方式优选为将由通式(II)表示的双苯酚类化合物溶解在有机溶剂中,加碱提供碱性条件,加入相转移催化剂,之后在惰性气体保护下升温至40-100℃搅拌10-60分钟,随后再加入通式(III)表示的卤代化合物,反应4-12小时,接着将反应液过滤,滤液减压蒸馏除去溶剂,用水洗三次,并用三氯甲烷萃取,有机相收集后蒸干,得到呈液态的无色或淡黄色的第一中间产物。
所述碱的种类没有特别的限定,可以为领域的常规选择,其具体实例包括但不限于:碳酸钾、碳酸钠、氢氧化钠、氢氧化钾、三乙胺和对二甲氨基吡啶中的至少一种。
所述相转移催化剂可以为现有的各种能够催化由通式(II)表示的双苯酚类化合物中 的酚羟基与由通式(III)表示的卤代化合物中的氯或溴发生取代反应的物质,优选为环状冠醚类、聚醚类和铵类中的至少一种。其中,所述环状冠醚类的具体实例包括但不限于:18-冠-6、15-冠-5和环糊精中的至少一种。所述聚醚类的具体实例包括但不限于:链状聚乙二醇和/或链状聚乙二醇二烷基醚。所述铵类的具体实例包括但不限于:苄基三乙基氯化铵、四丁基溴化铵、四丁基氯化铵、四丁基硫酸氢铵、三辛基甲基氯化铵、十二烷基三甲基氯化铵和十四烷基三甲基氯化铵中的至少一种。
步骤二中,所述自由基加成反应的方式为将第一中间产物溶解在有机溶剂中,加入自由基引发剂,在惰性气体保护下升温至40-100℃,缓慢加入硫代乙酸,进行自由基加成反应4-12小时,之后减压蒸馏除去溶剂,得到呈液态的无色或淡黄色的第二中间产物。
所述自由基引发剂可以为现有的各种能够引发第一中间产物中的双键与硫代乙酸中的巯基实现自由基加成反应的物质,可以为偶氮类引发剂和/或过氧类引发剂。其中,所述偶氮类引发剂的具体实例包括但不限于:偶氮二异丁腈、2,2′-偶氮双(2-甲基丁腈)、二甲基2,2′-偶氮双(2-甲基丙酸酯)、偶氮二异丁酸二甲酯、偶氮二异丁脒盐酸盐、偶氮二甲酰胺、偶氮二异丙基咪唑啉盐酸盐、偶氮异丁氰基甲酰胺、偶氮二环己基甲腈、偶氮二氰基戊酸、偶氮二异丙基咪唑啉、偶氮二异戊腈和偶氮二异庚腈中的至少一种。所述过氧类引发剂的具体实例包括但不限于:叔己基过氧化异丙基单碳酸酯、叔己基过氧化2-乙基己酸酯、1,1,3,3-四甲基丁基过氧化2-乙基己酸酯、叔丁基过氧化特戊酸酯、叔己基过氧化特戊酸酯、叔丁基过氧化新癸酸酯、叔己基过氧化新癸酸酯、1,1,3,3-四甲基丁基过氧化新癸酸酯、1,1-双(叔己基过氧化)环己烷、过氧化苯甲酰、3,5,5-三甲基过氧化己酰、过氧化月桂酰和过氧化苯甲酰叔丁酯中的至少一种。从原料易得性的角度考虑,所述自由基引发剂优选为偶氮二异丁腈、2,2′-偶氮双(2-甲基丁腈)、二甲基2,2′-偶氮双(2-甲基丙酸酯)、叔己基过氧化异丙基单碳酸酯、叔己基过氧化2-乙基己酸酯、1,1,3,3-四甲基丁基过氧化2-乙基己酸酯、叔丁基过氧化特戊酸酯、叔己基过氧化特戊酸酯、叔丁基过氧化新癸酸酯、叔己基过氧化新癸酸酯、1,1,3,3-四甲基丁基过氧化新癸酸酯、1,1-双(叔己基过氧化)环己烷、过氧化苯甲酰、3,5,5-三甲基过氧化己酰和过氧化月桂酰中的至少一种。
步骤三中,所述水解反应的方式优选为将第二中间产物溶解在有机溶剂中,加入盐酸或氢氧化钠,升温至50-100℃反应3-12小时,减压蒸馏除去溶剂,用2-8%的碳酸氢钠溶 液洗两遍,并用三氯甲烷萃取,有机相收集后蒸干,得到呈无色或淡黄色的粘稠液状产物,即为多硫醇化合物。
在本发明的一种优选实施方式中,步骤一的取代反应在有机溶剂I的存在下进行,步骤二的自由基加成反应在有机溶剂II的存在下进行,步骤三的水解反应在有机溶剂III的存在下进行。所述有机溶剂I和有机溶剂II优选分别独立地选自甲醇、乙醇、丙醇、丁醇、异丙醇、乙酸乙酯、乙酸丙酯、乙酸丁酯、四氢呋喃、二氧杂环己烷、乙腈、甲苯、二甲苯、二氯甲烷、氯仿、四氯化碳、二甲基甲酰胺、二甲基乙酰胺和二甲基亚砜中的至少一种。所述有机溶剂III优选为醇,更优选为碳原子数为1-5的单元醇,如甲醇、乙醇、丙醇和正丁醇中的至少一种。
所述环氧树脂可以为芳香族环氧树脂和/或脂肪族环氧树脂,其具体实例包括但不限于:脂肪族多元缩水甘油醚化合物、芳香族多元缩水甘油醚化合物、脂肪族多元缩水甘油酯化合物、芳香族多元缩水甘油酯化合物、脂环式多元缩水甘油醚酯化合物、脂肪族多元缩水甘油胺化合物、乙内酰脲型多元缩水甘油基化合物、酚醛清漆型多元缩水甘油醚化合物、环氧化二烯聚合物、3,4-环氧基-6-甲基环己基甲基-3,4-环氧基-6-甲基环己二烷羧酸酯、橡胶改性环氧树脂(通过CTBN、ATBN等进行改性)、聚烷撑二醇型环氧树脂、添加醚弹性体的双酚A型环氧树脂、硅橡胶改性环氧树脂、丙烯酸改性环氧树脂中的至少一种。所述环氧树脂优先为双酚A型环氧树脂和双酚A环氧单丙烯酸酯以重量比1∶(0.3-0.9)的组合,如1∶0.3、1∶0.4、1∶0.5、1∶0.6、1∶0.7、1∶0.8、1∶0.9,此时更有利于可光/热双重固化树脂组合物的耐热性能、粘接性能、湿气阻隔性能和耐湿热水解性能的提高。
所述多硫醇化合物的硫醇官能团当量与所述环氧树脂的环氧官能团当量之比优选为0.5-2.0,如0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0。所述多硫醇化合物的硫醇官能团当量与所述环氧树脂的环氧官能团当量之比最优选为0.8-1.2,当该比值超出该范围时,所得可光/热双重固化树脂组合物的玻璃化转变温度、粘结性能以及湿气阻隔性能均有一定程度降低。
本发明对所述丙烯酸酯化合物的具体种类没有特别的限定,其具体实例包括但不限于:环氧(甲基)丙烯酸酯、聚氨酯(甲基)丙烯酸酯、聚酯(甲基)丙烯酸酯、聚醚(甲基)丙烯酸酯、硅烷改性(甲基)丙烯酸酯、多元醇类(甲基)丙烯酸酯、聚烯烃(甲基)丙烯酸酯、三聚氰胺(甲基)丙烯酸酯和(甲基)丙烯酸酯化丙烯酸树脂中的至少一种。所述丙烯酸酯化合物优选为环 氧丙烯酸酯和三环癸烷二甲醇二丙烯酸酯以重量比1∶(0.5-1.5)的组合,此时更有利于可光/热双重固化树脂组合物的耐热性能、粘接性能、湿气阻隔性能和耐湿热水解性能的提高。
本发明对所述固化促进剂的种类没有特别的限定,其具体实例包括但不限于:咪唑系固化促进剂、叔胺系固化促进剂或磷化合物系固化促进剂中的至少一种。所述固化促进剂优选为潜伏型固化促进剂。所述潜伏型固化促进剂是指在室温下为非活性状态,通过加热而被活化、作为固化促进剂起作用的化合物,可列举例如:在常温下为固体的咪唑化合物、有机酸二酰肼;胺化合物与环氧化合物的反应产物(胺-环氧加合物系)等固体分散型胺加合物系潜在性固化促进剂;胺化合物与异氰酸酯化合物或脲化合物的反应产物(脲型加合物系)等。
本发明对光引发剂的种类没有特别的限定,可以为现有的各种能够引发不饱和树脂中的碳碳双键发生聚合以完成固化的自由基型光引发剂,具体可以为裂解型光引发剂和/或夺氢型光引发剂。所述自由基型光引发剂的具体实例包括但不限于:2-羟基-2-甲基-1-苯基-1-丙酮、1-羟基环己基苯基甲酮、2-羟基-4-(2-羟乙氧基)-2-甲基苯丙酮、2,4,6-三甲基苯甲酰基-二苯基氧化膦、2,4,6-三甲基苯甲酰基苯基膦酸乙酯、双(2,4,6-三甲基苯甲酰基)苯基氧化膦、2-甲基-1-[4-(甲基硫代)苯基]-2-(4-吗啉基)-1-丙酮、2-苯基苄-2-二甲基胺-1-(4-吗啉苄苯基)丁酮、4-苯甲酰基-4′-甲基-二苯硫醚、2-(4-甲基苄基)-2-(二甲基氨基)-1-(4-吗啉苯基)-1-丁酮、1,1′-(亚甲基二-4,1-亚苯基)双[2-羟基-2-甲基-1-丙酮]、2,2-二甲氧基-2-苯基苯乙酮、2,2-二乙氧基-1-苯己酮、双2,6-二氟-3-吡咯苯基二茂钛、苯甲酰甲酸甲酯、二苯甲酮、4-甲基二苯甲酮、4-苯基二苯甲酮、4-氯二苯甲酮、邻苯甲酰苯甲酸甲酯、4-二甲基氨基苯甲酸乙酯、对二甲氨基苯甲酸异辛酯、4,4′-双(二乙氨基)苯甲酮、异丙基硫杂蒽酮、2,4-二乙基硫杂蒽酮以及2-乙基蒽醌中的至少一种。
本发明对阻聚剂的种类没有特别的限定,可以为本领域的常规选择,其具体实例包括但不限于:对苯二酚、对羟基苯甲醚、对苯醌、甲基氢醌、2-叔丁基对苯二酚、2,5-二叔丁基对苯二酚、4-羟基哌啶醇氧自由基、吩噻嗪以及蒽醌中的至少一种。
本发明提供的可光/热双重固化树脂组合物中添加稳定剂的目的是为了提高其储藏稳定性、延长贮存期。所述稳定剂可以为现有的各种以环氧树脂和丙烯酸酯化合物为主剂的稳定剂,从提高储藏稳定效果的角度出发,所述稳定剂优选选自液体硼酸酯化合物、铝螯合物及巴比妥酸中的至少一种。其中,所述液体硼酸酯化合物的具体实例包括但不限于: 2,2’-氧基双(5,5’-二甲基-1,3,2-氧杂己硼烷)、硼酸三甲酯、硼酸三乙酯、硼酸三正丙酯、硼酸三异丙酯、硼酸三正丁酯、硼酸戊酯、硼酸三烯丙酯、硼酸三己酯、硼酸三环己酯、硼酸三辛酯、硼酸三壬酯、硼酸三癸酯硼酸三(十二烷基)酯、硼酸三(十六烷基)酯、硼酸三(十八烷基)酯、硼酸三苯酯、硼酸三邻甲苯酯、硼酸三间甲苯酯、三乙醇胺硼酸酯等中的至少一种。所述液体硼酸酯化合物在常温(25℃)下为液状,因此将配合物粘度抑制为较低,故而优选。所述铝螯合物例如可以为铝螯合物A(川研精密化学公司制)。
所述可光/热双重固化树脂组合物中优选还包括偶联剂,以改善体系中无机物质在树脂基体中的分散性能。所述偶联剂的具体实例包括但不限于:γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷、β-(3,4-环氧环己基)乙基三甲氧基硅烷、3-甲基丙烯酰氧基丙基三甲氧基硅烷、8-环氧丙氧基辛基三甲氧基硅烷、γ-巯基丙基三甲氧基硅烷、乙烯基三甲氧基硅烷以及乙烯基三乙氧基硅烷中的至少一种。
所述可光/热双重固化树脂组合物中优选还包括助剂。所述助剂例如可以选自填料、抗氧化剂、阻燃剂、粘接促进剂、稀释剂、颜料、消泡剂、流平剂、均化剂以及离子捕捉剂中的至少一种,以上各种助剂的具体选择为本领域技术人员公知,在此不作赘述。
本发明提供的可光/热双重固化树脂组合物的制备方法包括将环氧树脂、多硫醇化合物、丙烯酸酯化合物、固化促进剂、光引发剂、阻聚剂和稳定剂以及任选的偶联剂和/或助剂在避光条件下混合均匀,得到可光/热双重固化树脂组合物。
本发明对将各组分在避光条件下混合均匀的方式没有特别的限定,只要能够实现各组分的混合均匀并确保整个混合过程不受光照的影响即可。在一种优选实施方式中,所述混合均匀的方式包括在避光条件下,将丙烯酸酯化合物、光引发剂和阻聚剂于温度20-30℃、真空度-0.05MPa~-0.1MPa、转速40-60转/分的条件下搅拌20-40分钟,再加入环氧树脂、多硫醇化合物和稳定剂于温度20-30℃、真空度-0.05MPa~-0.1MPa、转速40-60转/分的条件下再次搅拌20-40分钟,之后加入固化促进剂以及任选的硅烷偶联剂和助剂于温度20-30℃、真空度-0.05MPa~-0.1MPa、转速40-60转/分的条件下继续搅拌20-40分钟,避光密封包装即可。其中,各组分的种类和用量已经在上文中有所描述,在此不作赘述。
本发明还提供了所述可光/热双重固化树脂组合物作为用于电子部件、传感器或摄像头的粘接或密封的胶黏剂或密封剂的用途。
下面将结合实施例,对本发明作进一步说明。
以下制备例中,在多硫醇化合物5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯和5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯的制备过程中用到的原材料来源如下:5,5′-二烯丙基-2,2′-联苯二酚源自萨恩化学技术(上海)有限公司,牌号为E100338;相转移催化剂18-冠-6源自上海泰坦科技股份有限公司,牌号为30243D;烯丙基溴源自上海泰坦科技股份有限公司,牌号为13125C;偶氮二异丁腈(简称“AIBN”)源自上海麦克林生化科技有限公司,牌号为A800353;硫代乙酸源自国药集团化学试剂有限公司,牌号为80128126;5,5′-二烯丙基-3,3′-二甲氧基-2,2′-联苯二酚源自萨恩化学技术(上海)有限公司,牌号为D050881。
制备例1
该制备例用于说明多硫醇化合物(5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯)的制备,具体步骤及反应流程图如下:
Figure PCTCN2022113665-appb-000005
步骤一:将5,5′-二烯丙基-2,2′-联苯二酚80g溶解在200mL丙酮中,加入碳酸钾103.6g和相转移催化剂18-冠-67.9g,在惰性气体保护下升温至70℃搅拌10分钟,然后缓慢加入烯丙基溴79.8g,反应8小时后,将反应液过滤,滤液减压蒸馏除去溶剂,用水洗三次,并用三氯甲烷萃取,有机相收集后蒸干,得到呈液态的淡黄色第一中间产物;
步骤二:将步骤二中得到的第一中间产物溶解在200mL四氢呋喃中,加入自由基引发剂偶氮二异丁腈5.4g,在惰性气体保护下升温至70℃,缓慢加入硫代乙酸96.2g,反应12小时后,减压蒸馏除去溶剂和过量的硫代乙酸,得到呈液态的淡黄色第二中间产物;
步骤三:将步骤二中得到的第二中间产物溶解在300mL甲醇中,加入60mL盐酸进行水解,升温至60℃水解反应12小时,减压蒸馏除去溶剂,用5%的碳酸氢钠溶液洗两遍,并用三氯甲烷萃取,有机相收集后蒸干,得到呈淡黄色粘稠液体的最终产物124.8g,即5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯,总产率86.2%,硫醇当量为120g/eq,分子量为482.8。该5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯基本没有硫臭味。
该5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯的 1H-NMR图以及IR光谱图分别如图1和图2所示。从图1和图2可以看出,该5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯具有式(IV)所示。
Figure PCTCN2022113665-appb-000006
制备例2
该制备例用于说明多硫醇化合物(5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯)的制备,具体步骤及反应流程图如下:
步骤一:将5,5′-二烯丙基-3,3′-二甲氧基-2,2′-联苯二酚98g溶解在250mL丙酮中,加入碳酸钾103.6g和相转移催化剂18-冠-67.9g,在惰性气体保护下升温至70℃搅拌10分钟,然后缓慢加入烯丙基溴79.8g,反应8小时后,将反应液过滤,滤液减压蒸馏除去溶剂,用水洗三次,并用三氯甲烷萃取,有机相收集后蒸干,得到呈液态的淡黄色第一中间产物;
步骤二:将步骤一中得到的第一中间产物溶解在200mL四氢呋喃中,加入自由基引发剂偶氮二异丁腈5.4g,在惰性气体保护下升温至70℃,缓慢加入硫代乙酸96.2g,反应12小时后,减压蒸馏除去溶剂和过量的硫代乙酸,得到呈液态的淡黄色第二中间产物;
步骤三:将步骤二中得到的第二中间产物溶解在300mL甲醇中,加入60mL盐酸进行 水解,升温至70℃水解反应12小时,减压蒸馏除去溶剂,用5%的碳酸氢钠溶液洗两遍,并用三氯甲烷萃取,有机相收集后蒸干,得到呈淡黄色粘稠液体的最终产物137.7g,即5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯,总产率84.5%,硫醇当量为135g/eq,分子量为542.8。该5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯基本没有硫臭味。
该5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯的 1H-NMR图以及IR光谱图分别如图3和图4所示。从图3和图4可以看出,该5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯具有式(V)所示的结构。
Figure PCTCN2022113665-appb-000007
实施例1-17
按表1的重量份数准确称取各原料,在避光下将丙烯酸酯化合物、光引发剂和阻聚剂于温度25℃、真空度-0.07MPa、转速50转/分条件下搅拌30分钟,再加入环氧树脂、多硫醇化合物和稳定剂于温度25℃、真空度-0.07MPa、转速50转/分条件下搅拌30分钟,之后再加入固化剂、硅烷偶联剂和助剂于温度25℃、真空度-0.07MPa、转速50转/分条件下搅拌30分钟,避光密封包装即得到可光/热双重固化树脂组合物。
对比例1-5
按表2的重量份数准确称取各原料,在避光下将丙烯酸酯化合物、光引发剂和阻聚剂于温度25℃、真空度-0.07MPa、转速50转/分条件下搅拌30分钟,再加入环氧树脂、多硫醇化合物和稳定剂于温度25℃、真空度-0.07MPa、转速50转/分条件下搅拌30分钟,之后再加入固化剂、硅烷偶联剂和助剂于温度25℃、真空度-0.07MPa、转速50转/分条件下搅拌30分钟,避光密封包装即得到可光/热双重固化树脂组合物。
Figure PCTCN2022113665-appb-000008
表2
Figure PCTCN2022113665-appb-000009
表1和表2中,A1为5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯(硫醇当量:120g/eq),A2为5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯(硫醇当量:135g/eq),A3为PEMP(硫醇当量:122g/eq),A4为CN112840004A中公开的二官能杂化硫醇化合物(硫醇当量:211g/eq),A5为1,3,4,6-四(2-巯基乙基)甘脲(硫醇当量:95g/eq),A6为1,1-(二硫代双乙烷二基)-双[3,4,6-三(2-巯基乙基)甘脲](硫醇当量:127g/eq);B1为双酚A型环氧树脂EPICLON EXA-850CRP(环氧当量:170-175g/eq),B2为双酚A环氧单丙烯酸酯EA-1010LC(环氧当量:412.5g/eq);C1为环氧丙烯酸酯CN121,C2为三环癸烷二甲醇二丙烯酸酯SR833S;D为潜伏性固化促进剂NOVACURE HXA9322HP;E1为2-羟基-2-甲基-1-苯基丙酮Irgacure 1173,E2为二苯基-(2,4,6-三甲基苯甲酰)氧磷Omnirad TPO;F为对羟基苯甲醚MEHQ;G为硼酸三异丙酯W330012;H为硅烷偶联剂KBM503;I为气相二氧化硅AEROSIL R202。
实施例1-17与对比例1-5中用到的主要原材料来源如下:
多硫醇化合物5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯由制备例1制得,硫醇当量为120g/eq,分子量为482.8,结构式如式(IV)所示:
Figure PCTCN2022113665-appb-000010
多硫醇化合物5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯由制备例2制得,硫醇当量为135g/eq,分子量为542.8,结构式如式(V)所示:
Figure PCTCN2022113665-appb-000011
季戊四醇四(3-巯基丙酸酯)为日本SC有机化学株式会社的PEMP,硫醇当量为122g/eq, 分子量为488.6,结构式如式(VI)所示:
Figure PCTCN2022113665-appb-000012
二官能杂化硫醇化合物具有式(VII)所示的结构,源自四国化成工业株式会社,室温下为液态,分子量为389,硫醇当量为211g/eq:
Figure PCTCN2022113665-appb-000013
1,3,4,6-四(2-巯基乙基)甘脲,源自四国化成工业株式会社,室温下为结晶的固体,硫醇当量为95g/eq;
1,1-(二硫代双乙烷二基)-双[3,4,6-三(2-巯基乙基)甘脲]的硫醇当量为127g/eq,具体按照以下方法制备得到:在反应瓶中加入1,3,4,6-四(2-羟基乙基)甘脲3.18g,室温下搅拌,并滴加亚硫酰氯11.75g,滴完后回流2小时;冷却至10℃,添加水10mL、硫脲3.65g,继续回流搅拌反应12小时;然后冷却至25℃,在氮气气氛下滴加48%氢氧化钠水溶液4.00g,70℃搅拌反应9小时;再冷却至20℃,添加浓盐酸3.50g、氯仿10mL,搅拌30分钟,之后进行第1次抽吸过滤,在所得滤饼中添加氯仿10mL,搅拌30分钟,然后进行第2次抽吸过滤。将两次抽吸过滤的滤液合并后除去水层,有机层用5mL水清洗5次,有机层减压浓缩,得到3.1g的黄色油状物(粗产物);利用柱层析(洗脱液:氯仿)对该粗产物进行分离纯化,得到2.85g白色晶体(熔点:75.3℃-77.8℃),即为1,3,4,6-四(2-巯基乙基)甘脲;另外得到0.28g淡黄色油状物,即为产物1,1′-(二硫代双乙烷二基)-双[3,4,6-三(2-巯基乙基)甘脲],硫醇当量为127g/eq;
环氧树脂为双酚A型环氧树脂,选自DIC株式会社的EPICLON EXA-850CRP,环氧当量为170-175g/eq,结构式如式(VIII)所示:
Figure PCTCN2022113665-appb-000014
双酚A环氧单丙烯酸酯,选自日本NK Oligo公司的EA-1010LC,环氧当量为412.5g/eq, 结构式如式(IX)所示:
Figure PCTCN2022113665-appb-000015
丙烯酸酯化合物为选自SARTOMER公司的环氧丙烯酸酯CN121和三环癸烷二甲醇二丙烯酸酯SR833S;
固化促进剂为潜伏型固化剂,选自旭化成公司的NOVACURE HXA9322HP;
光引发剂为2-羟基-2-甲基-1-苯基丙酮和二苯基-(2,4,6-三甲基苯甲酰)氧磷,分别选自BASF公司的Irgacure 1173和IGM公司的Omnirad TPO;
阻聚剂为对羟基苯甲醚,选自Solvay公司的MEHQ;
稳定剂为硼酸三异丙酯,选自萨恩化学技术(上海)有限公司的W330012;
硅烷偶联剂为γ-甲基丙烯酸酯丙基三甲氧基硅烷,选自日本信越公司的KBM503;
填料为气相二氧化硅,选自Evonik公司的AEROSIL R202。
测试例
(1)晶体析出时间:
将以上实施例以及对比例所得树脂组合物分别在室温下放置,从树脂组合物制备完成直至确认晶体析出为止的时间。需要说明的是,晶体析出的确认通过目视进行,测试最长时间为240小时。结果见表3。
(2)玻璃化转变温度的测定:
将以上实施例与对比例所得树脂组合物分别在室温下密封静置储存240小时后,再分别取出树脂组合物注入四氟乙烯模具中,刮平,用紫外光源(365nm,光强1000mW/cm 2)辐照固化4秒,再将样品置于80℃烘箱中热固化60分钟,然后将固化完全的树脂组合物制成42mm×8mm×0.3mm的薄片,使用美国TA仪器的Q-800型动态热机械分析测试仪进行测试,在-40~250℃的温度范围内,在液氮氛围和薄膜拉伸模式下测定损耗因子(tanδ)随温度的变化规律,其中,升温速率10℃/min,测试频率为10Hz,从而确定树脂组合物固化后的玻璃化转变温度(℃)。结果见表3。
(3)热粘接强度:
将以上实施例及对比例所得树脂组合物分别在室温下密封静置储存240小时后,再取出树脂组合物分别涂覆在不锈钢片材上,用钢化玻璃片材压合,胶层面积为25.4mm×5mm,并保证胶层的厚度为0.1mm;用紫外光源(365nm,光强1000mW/cm 2)辐照固化4秒,再将样品在烘箱和氮气氛围下于80℃下热固化60分钟;使用万能试验机将两个片材沿相反方向拉开,测试在环境温度为85℃的条件下进行,所测得的力值即为刚制样后的热粘接强度,以强度(MPa)记录;将固化后的样品经过加热加湿条件85℃/85%RH处理150小时后,再次在环境温度为85℃的条件下测试样品的剪切粘接强度,即为加热加湿后的热粘接强度(MPa)。所得结果见表3。
(4)吸水率:将固化完全的树脂组合物制成3mm×3mm×1.5mm的样品,称重并记录后,浸入100℃的去离子水中,恒温处理2小时;将样品从水中取出,用滤纸小心吸去样品表面附着的水,然后再次称重样品并记录;计算样品水煮前后增加的重量百分比,即为吸水率(%)。所得结果见表3。
表3
Figure PCTCN2022113665-appb-000016
Figure PCTCN2022113665-appb-000017
结合表3分析比较实施例1-17和/或对比例1-5,首先通过对实施例1-8进行分析,可以看出本发明的可光/热双重固化树脂组合物的晶体析出时间均超过了240小时的最长测试时间,这是由于本发明的多硫醇化合物在室温下为液态使得树脂组合物储存更加稳定,从而具有长的适用期,同时本发明的多硫醇化合物无酯键且气味小,树脂组合物在静置储存240小时后能够通过UV光辐照快速初步固化实现快速定位,然后再在80℃较温和的温度下继续热固化,实现高的交联度,玻璃化转变温度均超过124℃,吸水率则均在2.2%以内,表现出高的耐热性和良好的湿气阻隔性能,固化物在85℃高温下测定出的热粘接强度均达到了7.1MPa以上,且经过加热加湿试验后仍能保持约90%的热粘接强度,说明本发明的可光/热双重固化树脂组合物具有极佳的粘结性能和耐湿热水解性能。
通过对比分析实施例1和实施例9-11、实施例5和实施例12-14,多硫醇化合物的硫醇官能团与环氧树脂的环氧官能团当量比值对于树脂组合物的储存稳定性和耐湿热性能没有明显影响,树脂组合物在240小时以内均没有晶体析出,树脂组合物固化后经过加热加湿实验前后热粘接强度的降低幅度依然比较小,但硫醇官能团与环氧官能团当量比值对于树脂组合物的粘接性能有一定的影响,当该比值过大或过小时,树脂组合物固化后的热粘接强度有小幅度的下降,但依然达到6.8MPa以上,玻璃化转变温度也有一定的降低,但整体上仍然超过了118℃,对湿气的阻隔性能有一定下降,吸水率增长到2.37%-2.89%以内。
通过对比分析实施例1和实施例15-16,可以发现将本发明优选的丙烯酸酯化合物组合更换为其中单一的丙烯酸酯化合物后,树脂组合物的储存稳定性不受影响,但玻璃化转变温度和热粘接强度均出现比较明显的下降,加热加湿实验后的热粘接强度也有一定程度的降低,且吸水率升高到2.9%以上,说明本发明优选的丙烯酸酯化合物组合对可光/热双重固化树脂组合物的耐热性、粘接性能、湿气阻隔性能和耐湿热水解性能产生比较明显的影响。
通过对比分析实施例1和实施例17,可以发现将本发明优选的环氧树脂组合更换为其中单一的双酚A型环氧树脂后,树脂组合物的储存稳定性不受影响,但玻璃化转变温度下降到108℃,热粘接强度降低至6.45MPa,加热加湿实验后的热粘接强度也有一定程度的降 低,且吸水率上升到2.98%,这是由于本发明优选的环氧树脂组合中的另一组分双酚A环氧单丙烯酸酯同时具有环氧官能团和丙烯酸酯官能团,能够有效增加UV光固化和热固化两个组分之间的体系相容性,将其去除后影响了该树脂组合物的相容性和固化效果,从而降低了整体性能,说明本发明优选的环氧树脂组合对可光/热双重固化树脂组合物的耐热性、粘接性能、湿气阻隔性能和耐湿热水解性能产生比较明显的影响。
通过对比分析实施例1、实施例5和对比例1,可以发现将本发明制备的多硫醇化合物更换为含酯键的季戊四醇四(3-巯基丙酸)酯后,由于季戊四醇四(3-巯基丙酸)酯室温下为液体,树脂组合物没有晶体析出,储存稳定性和适用期没有受到太大影响,但固化物的玻璃化转变温度急剧下降到64℃,热粘接强度也下降到5.06MPa,耐热性和粘接性能均明显降低,同时固化物的吸水率高达7.56%,且经加热加湿试验后的热粘接强度几乎消失殆尽,说明本发明中无酯键的多硫醇化合物对可光/热双重固化树脂组合物固化后的耐热性、粘接性能、湿气阻隔性能和耐湿热水解性能均具有极为关键的影响;
通过对比分析实施例1、实施例5和对比例2,可以发现将本发明制备的多硫醇化合物更换为结构式(VII)所示的二官能杂化硫醇化合物后,由于该硫醇化合物室温下为液体,树脂组合物没有晶体析出,储存稳定性和适用期也没有受到太大影响,但固化物的玻璃化转变温度急剧下降到26℃,热粘接强度也下降到4.75MPa,耐热性和热粘接性能均下降明显,同时固化物的吸水率也高达5.13%,且经加热加湿试验后的热粘接强度也有比较明显的降低,进一步说明本发明的多硫醇化合物对可光/热双重固化树脂组合物固化后的耐热性、粘接性能、湿气阻隔性能和耐湿热水解性能均具有极为关键的影响。
通过对比分析实施例1、实施例5和对比例3,可以发现将本发明制备的多硫醇化合物更换为1,3,4,6-四(2-巯基乙基)甘脲后,由于纯的该多硫醇化合物室温下为固态晶体,树脂组合物的晶体析出时间大幅缩短至12.5小时,固化后的玻璃化转变温度降低至87℃,热粘接强度降低至6.14MPa,吸水率也达到了3.82%,说明固体的多硫醇固化剂1,3,4,6-四(2-巯基乙基)甘脲在储存一段时间后析出晶体,容易出现固化不完全造成了可光/热双重固化树脂组合物综合性能的降低。
通过对比分析实施例1、实施例5和对比例3-4,可以发现,在对比例4中通过加入部分液态的1,1-(二硫代双乙烷二基)-双[3,4,6-三(2-巯基乙基)甘脲]虽然可以改进固体多硫醇化合物1,3,4,6-四(2-巯基乙基)甘脲晶体析出时间短和性能下降的问题,但这种方案在明显增 加成本的同时,该树脂组合物的固化后的玻璃化转变温度、热粘接强度和吸水率依然整体不如实施例1和实施例5的树脂组合物,说明本发明的多硫醇化合物可以在低成本且无晶体析出的情况下对可光/热双重固化树脂组合物的储存稳定性、耐热性、粘接性能、湿气阻隔性能和耐湿热水解性能产生明显的影响。
通过对比分析实施例1和对比例5,可以发现将本发明优选的环氧树脂组合更换为其中单一的双酚A环氧单丙烯酸酯后,同时未使用丙烯酸酯化合物时,树脂组合物的储存稳定性不受影响,但玻璃化转变温度进一步下降到102℃,热粘接强度大幅降低至5.07MPa,且吸水率上升到3.45%,这是由于本发明优选的环氧树脂组合中的另一组分双酚A型环氧树脂具有多个环氧官能团,能够提高交联度和粘接强度,而完全用双酚A环氧单丙烯酸酯取代后大幅降低了环氧官能团的数量和粘接强度,从而降低了整体性能,同时可光/热双重固化体系能够弥补传统单一固化方式的缺陷,进一步说明本发明优选的环氧树脂组合以及可光/热双重固化体系对树脂组合物的耐热性、粘接性能、湿气阻隔性能和耐湿热水解性能产生明显的影响。
综上所述,本发明提供的多硫醇化合物、优选的丙烯酸酯化合物组合以及优选的环氧树脂组合,对可光/热双重固化树脂组合物的综合性能均具有明显的影响;本发明采用的多官能团硫醇化合物在室温下为液态且无酯键、气味小、成本低,对应的可光/热双重固化树脂组合物在储存过程中无晶体析出;本发明提供的可光/热双重固化树脂组合物具有气味小、成本低、储存稳定性好、可光照快速定位且低温热固化提高粘接性能等优点,同时固化后具有高的交联度、好的湿气阻隔性能、优良的耐热性、粘接性能和耐湿热水解性能,能够满足电子电路、传感器或摄像头等高精密要求领域的粘接或密封的应用需求。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (22)

  1. 一种可光/热双重固化树脂组合物,其特征在于,所述可光/热双重固化树脂组合物中包括20-40重量份环氧树脂、10-35重量份多硫醇化合物、20-40重量份丙烯酸酯化合物、1-5重量份固化促进剂、0.3-5重量份光引发剂、0.01-3重量份阻聚剂和0.1-3重量份稳定剂;所述多硫醇化合物由通式(I)表示:
    Figure PCTCN2022113665-appb-100001
    所述通式(I)中,R 1、R 2、R 3和R 4中有且仅有一个为碳原子数为2-5的巯基烷氧基,R 5、R 6、R 7和R 8中有且仅有一个为碳原子数为2-5的巯基烷氧基,R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8中剩余六个分别独立地选自氢原子、碳原子数为1-3的烷基和碳原子数为1-3的低级烷氧基中的一种。
  2. 如权利要求1所述的可光/热双重固化树脂组合物,其特征在于,所述通式(I)所示的多硫醇化合物中,R 1、R 2和R 4中的一个为碳原子数为2-5的巯基烷氧基且另外两个均为氢原子,R 3和R 7分别独立地选自氢原子或甲氧基,R 5、R 6和R 8中的一个为碳原子数为2-5的巯基烷氧基且另外两个均为氢原子。
  3. 如权利要求1所述的可光/热双重固化树脂组合物,其特征在于,所述通式(I)所示的多硫醇化合物中,R 1和R 5均为氢原子,R 3和R 7分别独立地选自氢原子或甲氧基,R 2和R 4中的一个为碳原子数为2-5的巯基烷氧基且另外一个为氢原子,R 6和R 8中的一个为碳原子数为2-5的巯基烷氧基且另外一个为氢原子。
  4. 如权利要求1所述的可光/热双重固化树脂组合物,其特征在于,所述通式(I)所示的多硫醇化合物中,R 1和R 5均为氢原子,R 3和R 7分别独立地选自氢原子或甲氧基,且当R 2和R 6均为碳原子数为2-5的巯基烷氧基时,R 4和R 8均为氢原子;当R 4和R 8均为碳原子数为2-5的巯基烷氧基时,R 2和R 6均为氢原子;当R 4和R 6均为碳原子数为2-5的巯基烷氧基时,R 2和R 8均为氢原子;当R 2和R 8均为碳原子数为2-5的巯基烷氧基时,R 4和R 6均为氢原子。
  5. 如权利要求1所述的可光/热双重固化树脂组合物,其特征在于,所述多硫醇化合物按照包括以下步骤的方法制备得到:
    步骤一:将由通式(II)表示的双苯酚类化合物和由通式(III)表示的卤代化合物在相转移催化剂的存在下且在碱性条件下进行取代反应,提纯后得到呈液态的无色或淡黄色的第一中间产物;
    步骤二:将第一中间产物和硫代乙酸在自由基引发剂的存在下进行自由基加成反应,提纯后得到呈液态的无色或淡黄色的第二中间产物;
    步骤三:将第二中间产物进行水解反应,提纯后得到呈无色或淡黄色的粘稠液体状产物,即为多硫醇化合物;
    Figure PCTCN2022113665-appb-100002
    所述通式(II)中,R 9、R 10、R 11和R 12中有且仅有一个为羟基,R 13、R 14、R 15和R 16中有且仅有一个为羟基,R 9、R 10、R 11、R 12、R 13、R 14、R 15和R 16中剩余六个分别独立地选自氢原子、碳原子数为1-3的烷基和碳原子数为1-3的烷氧基中的一种;
    所述通式(III)中,X表示氯或溴,m为0、1、2或3。
  6. 如权利要求5所述的可光/热双重固化树脂组合物,其特征在于,步骤一中,所述取代反应的方式为将由通式(II)表示的双苯酚类化合物溶解在有机溶剂中,加碱提供碱性条件,加入相转移催化剂,之后在惰性气体保护下升温至40-100℃搅拌10-60分钟,随后再加入通式(III)表示的卤代化合物,反应4-12小时,接着将反应液过滤,滤液减压蒸馏除去溶剂,用水洗三次,并用三氯甲烷萃取,有机相收集后蒸干,得到呈液态的无色或淡黄色的第一中间产物。
  7. 如权利要求5所述的可光/热双重固化树脂组合物,其特征在于,步骤二中,所述自由基加成反应的方式为将第一中间产物溶解在有机溶剂中,加入自由基引发剂,在惰性气体保护下升温至40-100℃,缓慢加入硫代乙酸,进行自由基加成反应4-12小时,之后减压蒸馏除去溶剂,得到呈液态的无色或淡黄色的第二中间产物。
  8. 如权利要求5所述的可光/热双重固化树脂组合物,其特征在于,步骤三中,所述水解反应的方式为将第二中间产物溶解在有机溶剂中,加入盐酸或氢氧化钠,升温至50-100℃反应3-12小时,减压蒸馏除去溶剂,用2-8%的碳酸氢钠溶液洗两遍,并用三氯甲烷萃取,有机相收集后蒸干,得到呈无色或淡黄色的粘稠液状产物,即为多硫醇化合物。
  9. 如权利要求1所述的可光/热双重固化树脂组合物,其特征在于,所述环氧树脂为芳香族环氧树脂和/或脂肪族环氧树脂。
  10. 如权利要求1所述的可光/热双重固化树脂组合物,其特征在于,所述环氧树脂为双酚A型环氧树脂和双酚A环氧单丙烯酸酯以重量比1∶(0.3-0.9)的组合。
  11. 如权利要求1所述的可光/热双重固化树脂组合物,其特征在于,所述多硫醇化合物的硫醇官能团当量与所述环氧树脂的环氧官能团当量之比为0.5-2.0。
  12. 如权利要求11所述的可光/热双重固化树脂组合物,其特征在于,所述多硫醇化合物的硫醇官能团当量与所述环氧树脂的环氧官能团当量之比为0.8-1.2。
  13. 如权利要求1所述的可光/热双重固化树脂组合物,其特征在于,所述丙烯酸酯化合物选自环氧(甲基)丙烯酸酯、聚氨酯(甲基)丙烯酸酯、聚酯(甲基)丙烯酸酯、聚醚(甲基)丙烯酸酯、硅烷改性(甲基)丙烯酸酯、多元醇类(甲基)丙烯酸酯、聚烯烃(甲基)丙烯酸酯、三聚氰胺(甲基)丙烯酸酯和(甲基)丙烯酸酯化丙烯酸树脂中的至少一种。
  14. 如权利要求1所述的可光/热双重固化树脂组合物,其特征在于,所述丙烯酸酯化合物为环氧丙烯酸酯和三环癸烷二甲醇二丙烯酸酯以重量比1∶(0.5-1.5)的组合。
  15. 如权利要求1所述的可光/热双重固化树脂组合物,其特征在于,所述固化促进剂选自咪唑系固化促进剂、叔胺系固化促进剂和磷化合物系固化促进剂中的至少一种。
  16. 如权利要求1所述的可光/热双重固化树脂组合物,其特征在于,所述光引发剂为自由基光引发剂;所述自由基光引发剂为裂解型光引发剂和/或夺氢型光引发剂。
  17. 如权利要求1所述的可光/热双重固化树脂组合物,其特征在于,所述阻聚剂选自对苯二酚、对羟基苯甲醚、对苯醌、甲基氢醌、2-叔丁基对苯二酚、2,5-二叔丁基对苯二酚、4-羟基哌啶醇氧自由基、吩噻嗪和蒽醌中的至少一种。
  18. 如权利要求1所述的可光/热双重固化树脂组合物,其特征在于,所述稳定剂选自液体硼酸酯化合物、铝螯合剂及巴比妥酸中的至少一种。
  19. 如权利要求1所述的可光/热双重固化树脂组合物,其特征在于,所述可光/热双重 固化树脂组合物中还包括偶联剂和/或助剂;所述偶联剂选自γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷、β-(3,4-环氧环己基)乙基三甲氧基硅烷、3-甲基丙烯酰氧基丙基三甲氧基硅烷、8-环氧丙氧基辛基三甲氧基硅烷、γ-巯基丙基三甲氧基硅烷、乙烯基三甲氧基硅烷以及乙烯基三乙氧基硅烷中的至少一种;所述助剂选自填料、抗氧化剂、阻燃剂、粘接促进剂、稀释剂、颜料、消泡剂、流平剂、均化剂以及离子捕捉剂中的至少一种;所述偶联剂的含量为0.01-5重量份;所述助剂的含量为0.01-30重量份。
  20. 权利要求1所述的可光/热双重固化树脂组合物的制备方法,其特征在于,该方法包括将环氧树脂、多硫醇化合物、丙烯酸酯化合物、固化促进剂、光引发剂、阻聚剂和稳定剂以及任选的偶联剂和/或助剂在避光条件下混合均匀,得到可光/热双重固化树脂组合物。
  21. 根据权利要求20所述的可光/热双重固化树脂组合物的制备方法,其特征在于,所述混合均匀的方式包括在避光条件下,将丙烯酸酯化合物、光引发剂和阻聚剂于温度20-30℃、真空度-0.05MPa~-0.1MPa、转速40-60转/分的条件下搅拌20-40分钟,再加入环氧树脂、多硫醇化合物和稳定剂于温度20-30℃、真空度-0.05MPa~-0.1MPa、转速40-60转/分的条件下再次搅拌20-40分钟,之后加入固化促进剂以及任选的硅烷偶联剂和助剂于温度20-30℃、真空度-0.05MPa~-0.1MPa、转速40-60转/分的条件下继续搅拌20-40分钟,避光密封包装即可。
  22. 权利要求1所述的可光/热双重固化树脂组合物作为用于电子部件、传感器或摄像头的粘接或密封的胶黏剂或密封剂的用途。
PCT/CN2022/113665 2021-10-22 2022-08-19 一种可光/热双重固化树脂组合物及其制备方法和应用 WO2023065803A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111232264.6A CN113788936B (zh) 2021-10-22 2021-10-22 一种可光/热双重固化树脂组合物及其制备方法和应用
CN202111232264.6 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023065803A1 true WO2023065803A1 (zh) 2023-04-27

Family

ID=79185208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113665 WO2023065803A1 (zh) 2021-10-22 2022-08-19 一种可光/热双重固化树脂组合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113788936B (zh)
WO (1) WO2023065803A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116903979A (zh) * 2023-09-13 2023-10-20 台州黄岩泽钰新材料科技有限公司 一种抗静电淀粉基生物降解材料及其制备工艺

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788936B (zh) * 2021-10-22 2022-05-10 韦尔通(厦门)科技股份有限公司 一种可光/热双重固化树脂组合物及其制备方法和应用
CN113912523B (zh) 2021-10-22 2022-09-06 韦尔通(厦门)科技股份有限公司 一种多硫醇化合物及其制备方法、固化剂、树脂组合物、胶黏剂和密封剂
CN114381208A (zh) * 2022-01-13 2022-04-22 广州惠利电子材料有限公司 光热双固化胶黏剂
WO2023196484A1 (en) * 2022-04-07 2023-10-12 Basf Se Dual curable pressure sensitive adhesive
CN115232259B (zh) * 2022-06-24 2024-02-27 同济大学 一种耐湿热水解的双固化树脂组合物及其制备方法和应用
CN115232441B (zh) * 2022-06-30 2023-11-21 深圳先进电子材料国际创新研究院 一种有机硅改性的光-热双重固化环氧树脂及其制备方法和应用
CN118222194A (zh) * 2024-04-09 2024-06-21 华南农业大学 生物基环保防伪阻燃型复合板胶粘剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032202A (ja) * 2009-07-31 2011-02-17 Showa Denko Kk チオール化合物の製造方法
CN110054760A (zh) * 2018-01-18 2019-07-26 味之素株式会社 单组分树脂组合物
CN111093842A (zh) * 2017-09-15 2020-05-01 3M创新有限公司 包含具有可固化环氧/硫醇树脂组合物的(甲基)丙烯酸酯基质的粘合剂膜、带以及方法
CN113272274A (zh) * 2019-01-07 2021-08-17 四国化成工业株式会社 硫醇化合物、其合成方法和该硫醇化合物的应用
CN113788936A (zh) * 2021-10-22 2021-12-14 韦尔通(厦门)科技股份有限公司 一种可光/热双重固化树脂组合物及其制备方法和应用
CN113912523A (zh) * 2021-10-22 2022-01-11 韦尔通(厦门)科技股份有限公司 一种多硫醇化合物及其制备方法、固化剂、树脂组合物、胶黏剂和密封剂

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051954A (ja) * 2007-08-28 2009-03-12 Three Bond Co Ltd 光および加熱硬化性組成物とその硬化物
EP3998252B1 (en) * 2017-10-26 2024-04-24 Shikoku Chemicals Corporation Thiol compounds, synthesis method therefor, and utilization of said thiol compounds
JP7199917B2 (ja) * 2017-11-02 2023-01-06 四国化成工業株式会社 チオール化合物、その合成方法および該チオール化合物の利用
JP7473205B2 (ja) * 2018-10-17 2024-04-23 ナミックス株式会社 樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032202A (ja) * 2009-07-31 2011-02-17 Showa Denko Kk チオール化合物の製造方法
CN111093842A (zh) * 2017-09-15 2020-05-01 3M创新有限公司 包含具有可固化环氧/硫醇树脂组合物的(甲基)丙烯酸酯基质的粘合剂膜、带以及方法
CN110054760A (zh) * 2018-01-18 2019-07-26 味之素株式会社 单组分树脂组合物
CN113272274A (zh) * 2019-01-07 2021-08-17 四国化成工业株式会社 硫醇化合物、其合成方法和该硫醇化合物的应用
CN113788936A (zh) * 2021-10-22 2021-12-14 韦尔通(厦门)科技股份有限公司 一种可光/热双重固化树脂组合物及其制备方法和应用
CN113912523A (zh) * 2021-10-22 2022-01-11 韦尔通(厦门)科技股份有限公司 一种多硫醇化合物及其制备方法、固化剂、树脂组合物、胶黏剂和密封剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAILYN GUZMáN, BLAI MATEU, XAVIER FERNáNDEZ-FRANCOS, XAVIER RAMIS, ANGELS SERRA: "Novel thermal curing of cycloaliphatic resins by thiol-epoxy click process with several multifunctional thiols : Thermal curing of cycloaliphatic resins by click process", POLYMER INTERNATIONAL, BARKING, GB, vol. 66, no. 12, 1 December 2017 (2017-12-01), GB , pages 1697 - 1707, XP055467546, ISSN: 0959-8103, DOI: 10.1002/pi.5336 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116903979A (zh) * 2023-09-13 2023-10-20 台州黄岩泽钰新材料科技有限公司 一种抗静电淀粉基生物降解材料及其制备工艺
CN116903979B (zh) * 2023-09-13 2023-12-08 台州黄岩泽钰新材料科技有限公司 一种抗静电淀粉基生物降解材料及其制备工艺

Also Published As

Publication number Publication date
CN113788936A (zh) 2021-12-14
CN113788936B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
WO2023065803A1 (zh) 一种可光/热双重固化树脂组合物及其制备方法和应用
CN113652186B (zh) 一种光热双重固化树脂组合物及其制备方法和应用
US9316906B2 (en) Fluorene oxime ester compound, photopolymerization initiator and photoresist composition containing the same
JP4211942B2 (ja) 液晶シール剤およびそれを用いた液晶表示セル
KR101011613B1 (ko) 안트라퀴논 유도체를 포함하는 광경화성 수지 조성물
CN113943420B (zh) 一种uv光固化树脂组合物及其制备方法和应用
JP4548415B2 (ja) 紫外線硬化型組成物
WO2007086461A1 (ja) チオール化合物を含有する硬化性組成物
WO2023065802A1 (zh) 一种多硫醇化合物及其制备方法、固化剂、树脂组合物及其应用
JPWO2016010152A1 (ja) 液晶シール剤及びそれを用いた液晶表示セル
CN115093567B (zh) 一种基于硫醇-烯反应的紫外光固化树脂组合物及其制备方法和应用
KR102211198B1 (ko) 경화성 조성물, 액정용 씰제, 액정 패널, 및 액정 패널의 제조 방법
JP5796890B2 (ja) 新規ヒドラジド化合物及びそれを用いた樹脂組成物
JP5748273B2 (ja) 液晶シール剤及びそれを用いた液晶表示セル
WO2018225543A1 (ja) 化合物及びそれを用いた光硬化性組成物
CN115232259B (zh) 一种耐湿热水解的双固化树脂组合物及其制备方法和应用
KR102041123B1 (ko) 액정표시소자용 실란트 조성물
JP6204624B2 (ja) 過酸化物を用いた熱ラジカル重合開始剤及び熱硬化性樹脂組成物
CN113896694B (zh) 一种多官能团杂化环氧化合物和光热双固化树脂组合物及其制备方法和应用
JP2015017060A (ja) 過酸化物及び熱硬化性樹脂組成物
JP2018105989A (ja) 表示素子用封止剤及びそれを用いた表示素子
KR20230053260A (ko) 이중경화형 에폭시 접착제 조성물 및 이의 경화물
JP5543035B1 (ja) 液晶シール剤及びそれを用いた液晶表示セル
CN118291046A (zh) 低温固化型环氧粘合剂组合物
JP3918689B2 (ja) 重合性組成物及びその硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22882422

Country of ref document: EP

Kind code of ref document: A1