WO2023063516A1 - 유기발광다이오드 및 이를 포함하는 유기발광장치 - Google Patents

유기발광다이오드 및 이를 포함하는 유기발광장치 Download PDF

Info

Publication number
WO2023063516A1
WO2023063516A1 PCT/KR2022/005837 KR2022005837W WO2023063516A1 WO 2023063516 A1 WO2023063516 A1 WO 2023063516A1 KR 2022005837 W KR2022005837 W KR 2022005837W WO 2023063516 A1 WO2023063516 A1 WO 2023063516A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
compound
material layer
layer
emitting material
Prior art date
Application number
PCT/KR2022/005837
Other languages
English (en)
French (fr)
Inventor
이동륜
배숙영
김종욱
안한진
김준연
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to EP22797000.1A priority Critical patent/EP4417669A1/en
Priority to CN202280003837.4A priority patent/CN116264870A/zh
Priority to JP2022581644A priority patent/JP7478266B2/ja
Publication of WO2023063516A1 publication Critical patent/WO2023063516A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer

Definitions

  • the present disclosure relates to an organic light emitting diode, and more particularly, to an organic light emitting diode having excellent light emitting characteristics and an organic light emitting device including the same.
  • Organic light emitting diode one of the flat display devices, is attracting attention as a light emitting device that rapidly replaces a liquid crystal display device.
  • Organic light emitting diodes are formed of a thin organic thin film of less than 2000 ⁇ , and can implement images in a single direction or in both directions depending on the configuration of electrodes used.
  • organic light emitting diodes can be formed on a flexible transparent substrate such as plastic, so it is easy to implement a flexible or foldable display device.
  • the organic light emitting diode display can be driven at a low voltage and has excellent color purity, so it has great advantages over the liquid crystal display.
  • An object of the present disclosure is to provide an organic light emitting diode and an organic light emitting device including the organic light emitting diode capable of improving light emitting efficiency, color purity and light emitting lifetime while lowering a driving voltage.
  • the present disclosure provides a first electrode; a second electrode facing the first electrode; and a light emitting layer disposed between the first and second electrodes and including a light emitting material layer, wherein the light emitting material layer includes a first compound and a second compound, wherein the first compound has a structure represented by Chemical Formula 1 below.
  • the second compound provides an organic light emitting diode including an organic compound having a structure of Formula 6 below.
  • R 1 to R 11 are each independently light hydrogen, heavy hydrogen, tritium, a halogen atom, unsubstituted or substituted C 1 -C 20 alkyl, unsubstituted or substituted C 1 -C 20 alkyl amino, or unsubstituted C 1 -C 20 alkyl.
  • R 1 to R 11 have a structure represented by Formula 2 below;
  • X 1 and X 2 are each independently O, S or Se;
  • Q 1 is deuterium, tritium, unsubstituted or substituted C 1 -C 20 alkyl, unsubstituted or substituted C 6 -C 30 aryl, unsubstituted or substituted C 3 -C 30 heteroaryl, unsubstituted or substituted C 6 -C 30 aryl amino or unsubstituted or substituted C 3 -C 30 hetero aryl amino.
  • R 12 and R 13 are each independently deuterium, tritium, halogen atom, unsubstituted or substituted C 1 -C 20 alkyl, unsubstituted or substituted C 1 -C 20 alkyl silyl, unsubstituted or substituted C 1 - C 20 alkyl amino, unsubstituted or substituted C 6 -C 30 aromatic, or unsubstituted or substituted C 3 -C 30 heteroaromatic, wherein when m is plural, each R 12 may be different or the same; When plural, each R 13 may be different or the same, and optionally, when m and n are plural, respectively, at least two adjacent R 12 and/or at least two adjacent R 13 are each bonded to unsubstituted or substituted may form a C 6 -C 20 aromatic ring or an unsubstituted or substituted C 3 -C 20 heteroaromatic ring
  • R 21 to R 28 are each independently light hydrogen, heavy hydrogen, tritium, a halogen atom, an unsubstituted or substituted C 1 -C 20 alkyl, an unsubstituted or substituted C 1 -C 20 alkyl group, or an unsubstituted C 1 -C 20 alkyl group.
  • each R 25 may be different or the same, and when r is plural, each R 26 may be different or the same, , R 27 may be different or the same when s is plural, and R 28 may be different or the same when t is plural; q and s are each independently an integer from 0 to 5, r is an integer from 0 to 3, and t is an integer from 0 to 4.
  • the highest occupied molecular orbital (HOMO) energy level (HOMO DF ) of the first compound and the HOMO energy level (HOMO FD ) of the second compound may satisfy the following formula (1) .
  • An energy band gap between the singlet excitation energy level and the triplet excitation energy level of the second compound may be smaller than an energy band gap between the singlet excitation level and the triplet excitation energy level of the first compound.
  • the energy bandgap between the highest occupied molecular orbital (HOMO) energy level and the lowest unoccupied molecular orbital (LUMO) energy level of the first compound may be about -2.6 eV or more and about -3.1 eV or less.
  • the onset wavelength of the first compound may be about 430 nm to about 440 nm.
  • the first compound may include an organic compound having a structure represented by Chemical Formula 3 below.
  • X 1 and X 2 are each the same as defined in Formula 1;
  • R 14 to R 16 are each independently light hydrogen, heavy hydrogen, tritium, a halogen atom, unsubstituted or substituted C 1 -C 20 alkyl, unsubstituted or substituted C 1 -C 20 alkyl amino, unsubstituted or substituted C 6 -C 30 aryl or an unsubstituted or substituted C 3 -C 30 heteroaryl group, and when p is plural, each R 15 may be different or the same, and at least one of R 14 to R 16 is represented by the following formula It is a condensed heteroaryl having the structure of Formula 4; p is an integer from 0 to 2;
  • the second compound may include an organic compound having a structure represented by Chemical Formulas 7A to 7C.
  • R 21 , R 25 to R 28 and R 31 to R 34 are each independently light hydrogen, heavy hydrogen, tritium, a halogen atom, unsubstituted or substituted C 1 -C 20 alkyl, unsubstituted or substituted C 1 -C 20 alkyl silyl, unsubstituted or substituted C 1 -C 20 alkyl amino, unsubstituted or substituted C 6 -C 30 aryl, or unsubstituted or substituted C 3 -C 30 heteroaryl group.
  • the at least one light emitting material layer may include a light emitting material layer having a single-layer structure.
  • the light emitting material layer of the single-layer structure may further include a third compound.
  • the content of the first compound is about 10 to about 40% by weight
  • the content of the second compound is about 0.1 to about 5% by weight
  • the content of the third compound is about 55 to about 85%. weight percent.
  • the at least one light emitting material layer includes a first light emitting material layer positioned between the first and second electrodes, and between the first electrode and the first light emitting material layer or between the second electrode and the second electrode.
  • An organic light emitting diode comprising a second light emitting material layer positioned between the second light emitting material layers, wherein the first light emitting material layer includes a first compound, and the second light emitting material layer includes a second compound.
  • the first light-emitting material layer further includes a third compound
  • the second light-emitting material layer contains a fourth compound may further include.
  • the triplet excitation energy level of the third compound may be higher than the triplet excitation energy level of the first compound, and the triplet excitation energy level of the first compound may be higher than the triplet excitation energy level of the second compound.
  • the singlet excitation energy level of the three compounds may be higher than that of the first compound, and the singlet excitation energy level of the first compound may be higher than the singlet excitation energy level of the second compound.
  • the excitation singlet energy level of the fourth compound may be higher than that of the second compound.
  • the at least one light emitting material layer is a third light emitting material layer positioned opposite the second light emitting material layer with respect to the first light emitting material layer.
  • a material layer may be further included.
  • the third light emitting material layer may include a fifth compound and a sixth compound, and the fifth compound may include an organic compound having a structure of Chemical Formula 6.
  • the light emitting layer includes a first light emitting part positioned between the first and second electrodes, a second light emitting part positioned between the first light emitting part and the second electrode, and between the first and second light emitting parts. and a charge generation layer positioned on the first light emitting part and at least one of the second light emitting part may include the at least one light emitting material layer.
  • the first light emitting unit may include the at least one light emitting material layer, and the second light emitting unit may emit at least one of red light and green light.
  • the present disclosure provides a substrate; and an organic light emitting device including the above-described organic light emitting diode, for example, an organic light emitting lighting device or an organic light emitting display device.
  • the present disclosure proposes an organic light emitting diode in which a first compound and a second compound having controlled energy levels are included in the same light emitting material layer or adjacent light emitting material layers, and an organic light emitting device including the organic light emitting diode.
  • the driving voltage of the organic light emitting diode can be lowered and the luminous efficiency can be greatly improved. Since the final light emission occurs in the second compound having a narrow half-width and excellent light emission lifetime, the color purity and light emission lifetime of the organic light emitting diode can be improved.
  • FIG. 1 is a schematic circuit diagram of an organic light emitting display device according to the present disclosure.
  • FIG. 2 is a cross-sectional view schematically illustrating an organic light emitting display device as an example of an organic light emitting device according to an exemplary aspect of the present disclosure.
  • FIG 3 is a schematic cross-sectional view of an organic light emitting diode according to an exemplary aspect of the present disclosure.
  • FIG. 4 schematically illustrates a state in which holes are efficiently transferred to the second compound by adjusting the energy level of the light emitting material around the first compound and the second compound constituting the light emitting material layer according to an exemplary aspect of the present disclosure. It is a schematic diagram shown.
  • FIG. 5 is a schematic diagram schematically illustrating a problem in which holes are trapped (captured) by the second compound when the HOMO energy levels of the first compound and the second compound constituting the light emitting material layer are not controlled.
  • FIG. 7 is a view schematically showing that luminous efficiency and color purity can be improved by controlling the emission wavelength of the first compound included in the light emitting material layer according to an exemplary aspect of the present disclosure.
  • FIG. 8 is a view schematically showing that the light emitting efficiency of the organic light emitting diode is lowered when the onset wavelength of the first compound included in the light emitting material layer is less than a specific range.
  • FIG. 9 is a view schematically showing that when the onset wavelength of the first compound included in the light emitting material layer exceeds a specific range, the light emitting efficiency and color purity of the organic light emitting diode are lowered.
  • FIG. 10 is a schematic diagram schematically illustrating a light emitting mechanism according to a singlet energy level and a triplet energy level between light emitting materials in a light emitting material layer constituting an organic light emitting diode according to an exemplary aspect of the present disclosure.
  • FIG. 11 is a schematic cross-sectional view of an organic light emitting diode according to another exemplary aspect of the present disclosure.
  • FIG. 12 is a schematic diagram schematically showing a state in which the HOMO energy levels of the first compound and the second compound constituting the light emitting material layer are adjusted, and holes are efficiently transferred to the second compound according to another exemplary aspect of the present disclosure. .
  • FIG. 13 is a schematic diagram schematically illustrating a light emitting mechanism according to a singlet energy level and a triplet energy level between light emitting materials in a light emitting material layer constituting an organic light emitting diode according to another exemplary aspect of the present disclosure.
  • FIG. 14 is a schematic cross-sectional view of an organic light emitting diode according to another exemplary aspect of the present disclosure.
  • 15 is a schematic diagram schematically showing a state in which holes are efficiently transferred to the second compound by adjusting the HOMO energy levels of the first compound and the second compound constituting the light emitting material layer according to another exemplary aspect of the present disclosure; am.
  • 16 is a schematic diagram schematically illustrating a light emitting mechanism according to a singlet energy level and a triplet energy level between light emitting materials in a light emitting material layer constituting an organic light emitting diode according to another exemplary aspect of the present disclosure.
  • 17 is a schematic cross-sectional view of an organic light emitting diode according to another exemplary aspect of the present disclosure.
  • FIG. 18 is a cross-sectional view schematically illustrating an organic light emitting display device as an example of an organic light emitting device according to another exemplary aspect of the present disclosure.
  • 19 is a schematic cross-sectional view of an organic light emitting diode according to another exemplary aspect of the present disclosure.
  • FIG. 20 is a cross-sectional view schematically illustrating an organic light emitting display device as an example of an organic light emitting device according to another exemplary aspect of the present disclosure.
  • 21 is a schematic cross-sectional view of an organic light emitting diode according to another aspect of the present disclosure.
  • FIG. 22 is a schematic cross-sectional view of an organic light emitting diode according to another aspect of the present disclosure.
  • the present disclosure relates to an organic light emitting diode in which a first compound and a second compound having controlled energy levels are applied in the same light emitting material layer or adjacent light emitting material layers, and an organic light emitting device including the organic light emitting diode.
  • An organic light emitting diode according to the present disclosure may be applied to an organic light emitting device such as an organic light emitting display device or an organic light emitting lighting device.
  • an organic light emitting device such as an organic light emitting display device or an organic light emitting lighting device.
  • a display device to which the organic light emitting diode of the present disclosure is applied will be described.
  • FIG. 1 is a schematic circuit diagram of an organic light emitting display device according to an exemplary aspect of the present disclosure.
  • gate lines GL, data lines DL, and power lines PL which cross each other to define the pixel area P, are formed.
  • a switching thin film transistor Ts, a driving thin film transistor Td, a storage capacitor Cst, and an organic light emitting diode D are formed.
  • the pixel area P may include a first pixel area P1 (see FIG. 18), a second pixel area P2 (see FIG. 18), and a third pixel area (see FIG. 18).
  • the switching thin film transistor (Ts) is connected to the gate line (GL) and the data line (DL), and the driving thin film transistor (Td) and the storage capacitor (Cst) are connected between the switching thin film transistor (Ts) and the power line (PL). do.
  • the organic light emitting diode (D) is connected to the driving thin film transistor (Td). In such an organic light emitting display device, when the switching thin film transistor Ts is turned on according to the gate signal applied to the gate line GL, the data signal applied to the data line DL turns on the switching thin film transistor. It is applied to the gate electrode 130 (FIG. 2) of the driving thin film transistor Td and one electrode of the storage capacitor Cst through (Ts).
  • the driving thin film transistor (Td) is turned on according to the data signal applied to the gate electrode 130, and as a result, a current proportional to the data signal flows from the power line (PL) through the driving thin film transistor (Td) to the organic light emitting diode. (D), and the organic light emitting diode (D) emits light with a luminance proportional to the current flowing through the driving thin film transistor (Td).
  • the storage capacitor Cst is charged with a voltage proportional to the data signal so that the voltage of the gate electrode of the driving thin film transistor Td is maintained constant for one frame. Accordingly, the organic light emitting display device 100 can display a desired image.
  • the organic light emitting display device 100 includes a substrate 110, a thin film transistor Tr positioned on the substrate 110, and a thin film transistor positioned on the planarization layer 150 ( and an organic light emitting diode (D) connected to Tr).
  • the substrate 110 may be a glass substrate, a thin flexible substrate, or a polymer plastic substrate.
  • the flexible substrate may be formed of any one of polyimide (PI), polyethersulfone (PES), polyethylenenaphthalate (PEN), polyethylene terephthalate (PET), and polycarbonate (PC).
  • PI polyimide
  • PES polyethersulfone
  • PEN polyethylenenaphthalate
  • PET polyethylene terephthalate
  • PC polycarbonate
  • a buffer layer 122 is formed on the substrate 110 , and a thin film transistor Tr is formed on the buffer layer 122 .
  • the buffer layer 122 may be omitted.
  • a semiconductor layer 120 is formed on the buffer layer 122 .
  • the semiconductor layer 120 may be made of an oxide semiconductor material.
  • a light blocking pattern (not shown) may be formed under the semiconductor layer 120 . The light-blocking pattern prevents light from being incident on the semiconductor layer 120, thereby preventing the semiconductor layer 120 from being deteriorated by light.
  • the semiconductor layer 120 may be made of polycrystalline silicon, and in this case, both edges of the semiconductor layer 120 may be doped with impurities.
  • a gate insulating film 124 made of an insulating material is formed on the entire surface of the substrate 110 above the semiconductor layer 120 .
  • the gate insulating layer 124 may be formed of an inorganic insulating material such as silicon oxide (SiO x ) or silicon nitride (SiN x ) (0 ⁇ X ⁇ 2).
  • a gate electrode 130 made of a conductive material such as metal is formed on the gate insulating layer 124 corresponding to the center of the semiconductor layer 120 .
  • the gate insulating film 122 is formed on the entire surface of the substrate 110 , but the gate insulating film 1202 may be patterned in the same shape as the gate electrode 130 .
  • the interlayer insulating film 132 made of an insulating material is formed on the entire surface of the substrate 110 above the gate electrode 130 .
  • the interlayer insulating layer 132 may be formed of an inorganic insulating material such as silicon oxide (SiO x ) or silicon nitride (SiNx), or an organic insulating material such as benzocyclobutene or photo-acryl. there is.
  • the interlayer insulating layer 132 has first and second semiconductor layer contact holes 134 and 136 exposing top surfaces of both sides of the semiconductor layer 120 .
  • the first and second semiconductor layer contact holes 134 and 136 are spaced apart from the gate electrode 130 on both sides of the gate electrode 130 .
  • the first and second semiconductor layer contact holes 134 and 136 may also be formed in the gate insulating layer 122 .
  • the gate insulating film 122 is patterned into the same shape as the gate electrode 130 , the first and second semiconductor layer contact holes 134 and 136 are formed only within the interlayer insulating film 132 .
  • a source electrode 144 and a drain electrode 146 made of a conductive material such as metal are formed on the interlayer insulating film 132 .
  • the source electrode 144 and the drain electrode 146 are spaced apart from each other with respect to the gate electrode 130, and are connected to both sides of the semiconductor layer 120 through the first and second semiconductor layer contact holes 134 and 136, respectively. make contact
  • the semiconductor layer 120, the gate electrode 130, the source electrode 144, and the drain electrode 146 form a thin film transistor Tr, and the thin film transistor Tr functions as a driving element.
  • the thin film transistor Tr illustrated in FIG. 2 has a coplanar structure in which a gate electrode 130 , a source electrode 144 , and a drain electrode 146 are positioned on a semiconductor layer 120 .
  • the thin film transistor Tr may have an inverted staggered structure in which a gate electrode is positioned below the semiconductor layer and a source electrode and a drain electrode are positioned above the semiconductor layer.
  • the semiconductor layer may be made of amorphous silicon.
  • a gate line (GL, see FIG. 1) and a data line (DL, see FIG. 1) cross each other to define a pixel area (P, see FIG. 1).
  • a switching element Ts (refer to FIG. 1 ) connected to the wiring DL is further formed.
  • the switching element Ts is connected to the thin film transistor Tr, which is a driving element.
  • the power line (PL, see FIG. 1) is formed spaced apart in parallel with the data line (DL), and the voltage of the gate electrode of the thin film transistor (Tr), which is a driving element, is maintained constant during one frame.
  • a storage capacitor (Cst, see FIG. 1) may be further configured.
  • the organic light emitting display device 100 may include a color filter layer that transmits some of the light emitted from the organic light emitting diode D.
  • the color filter layer may transmit red (R), green (G) or blue (B) light.
  • red, green, and blue color filter patterns that transmit light may be formed in each pixel region (P, see FIG. 1).
  • the organic light emitting display device 100 can implement full-color.
  • a color filter layer that transmits light may be positioned on the interlayer insulating layer 132 corresponding to the organic light emitting diode D.
  • the color filter layer may be positioned above the organic light emitting diode D, that is, above the second electrode 230. there is.
  • a planarization layer 150 is formed on the entire surface of the substrate 110 on the source electrode 144 and the drain electrode 146 .
  • the planarization layer 150 has a flat upper surface and has a drain contact hole 152 exposing the drain electrode 146 of the thin film transistor Tr.
  • the drain contact hole 152 is illustrated as being formed right above the second semiconductor layer contact hole 136, but may be formed spaced apart from the second semiconductor layer contact hole 136.
  • the organic light emitting diode D has a first electrode 210 positioned on the planarization layer 150 and connected to the drain electrode 146 of the thin film transistor Tr, and a light emitting layer sequentially stacked on the first electrode 210. (220) and a second electrode (230).
  • the first electrode 210 is formed separately for each pixel area.
  • the first electrode 210 may be an anode and may be made of a conductive material having a relatively high work function value, for example, transparent conductive oxide (TCO).
  • TCO transparent conductive oxide
  • the first electrode 210 may be indium-tin-oxide (ITO), indium-zinc-oxide (IZO), or indium-tin-zinc-oxide (indium-tin-oxide).
  • ITO indium-tin-oxide
  • IZO indium-zinc-oxide
  • ITZO indium-tin-zinc oxide
  • ITZO tin oxide
  • SnO zinc oxide
  • ZnO zinc oxide
  • ICO indium-copper-oxide
  • Al:ZnO; AZO aluminum:zinc oxide
  • the first electrode 210 may have a single layer structure made of a transparent conductive oxide.
  • a reflective electrode or a reflective layer may be further formed below the first electrode 210 .
  • the reflective electrode or the reflective layer may be made of silver (Ag) or an aluminum-palladium-copper (APC) alloy.
  • the first electrode 210 may have a triple layer structure of ITO/Ag/ITO or ITO/APC/ITO.
  • a bank layer 160 covering an edge of the first electrode 210 is formed on the planarization layer 150 . The bank layer 160 exposes the center of the first electrode 210 corresponding to the pixel area.
  • a light emitting layer 220 is formed on the first electrode 210 .
  • the light emitting layer 220 may have a single layer structure of an emitting material layer (EML).
  • the light emitting layer 220 may include a hole injection layer (HIL), a hole transport layer (HTL), and/or an electron transport layer (HTL) sequentially stacked between the light emitting material layer and the first electrode 210 .
  • An electron blocking layer (EBL), a hole blocking layer (HBL) sequentially stacked between the light emitting material layer and the second electrode 230, an electron transport layer (ETL), and/or An electron injection layer (EIL) may be included (see FIGS. 3, 11, 14, and 17).
  • a single light emitting unit constituting the light emitting layer 220 may be formed, or two or more light emitting units may form a tandem structure.
  • a second electrode 230 is formed on the substrate 110 on which the light emitting layer 220 is formed.
  • the second electrode 230 is located on the front surface of the display area and is made of a conductive material having a relatively low work function value and can be used as a cathode.
  • the second electrode 230 may be made of a material having good reflection characteristics, such as aluminum (Al), magnesium (Mg), calcium (Ca), silver (Ag), or an alloy or combination thereof.
  • the organic light emitting display device 100 is a top emission type
  • the second electrode 230 has a thin thickness and has a light transmission (semi-transmission) characteristic.
  • An encapsulation film 170 is formed on the second electrode 230 to prevent penetration of external moisture into the organic light emitting diode D.
  • the encapsulation film 170 may have a stacked structure of a first inorganic insulating layer 172 , an organic insulating layer 174 , and a second inorganic insulating layer 176 , but is not limited thereto.
  • the organic light emitting display device 100 may further include a polarizer (not shown) to reduce reflection of external light.
  • the polarizer (not shown) may be a circular polarizer.
  • the polarizer may be positioned under the substrate 110 .
  • the polarizer may be positioned above the encapsulation film 170 .
  • a cover window (not shown) may be attached to the encapsulation film 170 or the polarizer (not shown). In this case, when the substrate 110 and the cover window (not shown) are made of a flexible material, a flexible display device may be configured.
  • FIG. 3 is a schematic cross-sectional view of an organic light emitting diode according to a first embodiment of the present disclosure.
  • the organic light emitting diode D1 according to the first embodiment of the present disclosure includes a first electrode 210 and a second electrode 230 facing each other, first and second electrodes 210, 230) and a light emitting layer 220 positioned between them.
  • the organic light emitting display device 100 includes a red pixel area, a green pixel area, and a blue pixel area, and the organic light emitting diode D1 may be positioned in the blue pixel area.
  • the light emitting layer 230 includes a light emitting material layer (EML) 240 positioned between the first and second electrodes 210 and 230 .
  • the light emitting layer 220 includes a hole transport layer (HTL, 260) positioned between the first electrode 210 and the light emitting material layer 240, and an electron transport layer positioned between the light emitting material layer 240 and the second electrode 230. (ETL, 270).
  • the light emitting layer 220 includes a hole injection layer (HIL, 250) positioned between the first electrode 210 and the hole transport layer 260, and electrons positioned between the electron transport layer 270 and the second electrode 230. At least one of the injection layer EIL 280 may be further included.
  • the organic light emitting diode (D1) may include an electron blocking layer (EBL, 265) positioned between the light emitting material layer 240 and the hole transport layer 260 and/or between the light emitting material layer 240 and the electron transport layer 270. It may include a hole blocking layer (HBL, 275) disposed on.
  • EBL electron blocking layer
  • HBL hole blocking layer
  • the first electrode 210 may be an anode supplying holes to the light emitting material layer 240 .
  • the first electrode 210 is preferably formed of a conductive material having a relatively high work function value, for example, transparent conductive oxide (TCO).
  • TCO transparent conductive oxide
  • the first electrode 210 may be made of ITO, IZO, ITZO), SnO, ZnO, ICO, and AZO.
  • the second electrode 230 may be a cathode supplying electrons to the light emitting material layer 240 .
  • the second electrode 230 may be made of a conductive material having a relatively small work function value, for example, a material having good reflective properties such as Al, Mg, Ca, Ag, or an alloy or combination thereof.
  • the light emitting material layer 240 may include a first compound (DF, see FIG. 4), a second compound (FD, see FIG. 4), and optionally a third compound (H, see FIG. 4).
  • the first compound (DF) may be a delayed fluorescent material
  • the second compound (FD) may be a fluorescent material
  • the third compound (H) may be a host.
  • singlet excitons in the form of paired spins and triplet excitons in the form of unpaired spins depend on the arrangement of spins. (triplet exciton) is produced in a ratio of 1:3. Since conventional fluorescent materials can utilize only single excitons, their luminous efficiency is low. Phosphorescent materials can utilize both singlet excitons and triplet excitons, but their luminescence lifetime is short, so they do not reach the level of commercialization.
  • the first compound (DF) may be a delayed fluorescent material having thermally activated delayed fluorescence (TADF) characteristics.
  • the delayed fluorescent material has a very narrow energy band gap ( ⁇ E ST ) between an excited singlet energy level (S 1 DF ) and a triplet excited energy level (T 1 DF ) (see FIG. 10 ).
  • an exciton having a singlet excited energy level (S 1 DF ) and an exciton having a triplet excited energy level (T 1 DF ) are intramolecular charge transfer transfer, ICT) moves to a possible state (S 1 ⁇ ICT ⁇ T 1 ), and from there, it transitions to the ground state (S 0 ) (ICT ⁇ S 0 ).
  • the delayed fluorescent material has an energy band gap ( ⁇ E ST , diagram) between the excited singlet energy level (S 1 DF ) and the excited triplet energy level (T 1 DF ). 10) should be 0.3 eV or less, for example, 0.05 to 0.3 eV.
  • a material with a small energy difference between the singlet state and the triplet state not only exhibits fluorescence as the exciton energy of the original singlet state falls to the ground state, but also exhibits fluorescence due to thermal energy at room temperature.
  • Reverse Inter System Crossing RISC
  • RISC Reverse Inter System Crossing
  • the first compound DF included in the light emitting material layer 240 may be a delayed fluorescent material that forms a condensed ring with at least one of boron, oxygen, sulfur and/or selenium.
  • the first compound (DF) having delayed fluorescence may have a structure represented by Chemical Formula 1 below.
  • R 1 to R 11 are each independently light hydrogen, heavy hydrogen, tritium, a halogen atom, unsubstituted or substituted C 1 -C 20 alkyl, unsubstituted or substituted C 1 -C 20 alkyl amino, or unsubstituted C 1 -C 20 alkyl.
  • R 1 to R 11 have a structure represented by Formula 2 below;
  • X 1 and X 2 are each independently O, S or Se;
  • Q 1 is deuterium, tritium, unsubstituted or substituted C 1 -C 20 alkyl, unsubstituted or substituted C 6 -C 30 aryl, unsubstituted or substituted C 3 -C 30 heteroaryl, unsubstituted or substituted C 6 -C 30 aryl amino or unsubstituted or substituted C 3 -C 30 hetero aryl amino.
  • R 12 and R 13 are each independently deuterium, tritium, halogen atom, unsubstituted or substituted C 1 -C 20 alkyl, unsubstituted or substituted C 1 -C 20 alkyl silyl, unsubstituted or substituted C 1 - C 20 alkyl amino, unsubstituted or substituted C 6 -C 30 aromatic, or unsubstituted or substituted C 3 -C 30 heteroaromatic, wherein when m is plural, each R 12 may be different or the same; When plural, each R 13 may be different or the same, and optionally, when m and n are plural, respectively, at least two adjacent R 12 and/or at least two adjacent R 13 are each bonded to unsubstituted or substituted may form a C 6 -C 20 aromatic ring or an unsubstituted or substituted C 3 -C 20 heteroaromatic ring
  • C 6 -C 30 aromatic, C 3 -C 30 heteroaromatic which may be R 1 to R 11 in Formula 1 and R 1 to R 11 in Formula 2, two adjacent R 12 in Formula 2, and/or Two adjacent R 13 are each independently bonded to form a C 6 -C 20 aromatic ring and/or C 3 -C 20 heteroaromatic ring, each independently unsubstituted, deuterium, tritium, C 1 -C 20 alkyl , C 6 -C 30 aryl, C 3 -C 30 heteroaryl, C 6 -C 30 aryl amino and C 3 -C 30 heteroaryl amino, but may be substituted with at least one functional group, but is not limited thereto.
  • the C 6 -C 30 aromatic group that may constitute R 1 to R 11 of Formula 1 and R 12 and R 13 of Formula 2, respectively, is a C 6 -C 30 aryl group , a C 7 -C 30 aral group, A kill group, a C 6 -C 30 aryloxy group, and a C 6 -C 30 aryl amino group may be included, but is not limited thereto.
  • C 3 -C 30 heteroaromatic which may constitute R 1 to R 11 in Formula 1 and R 12 and R 13 in Formula 2, respectively, is a C 3 -C 30 heteroaryl group, a C 4 -C 30 heteroaralkyl group, It may include a C 3 -C 30 heteroaryloxy group and a C 3 -C 30 heteroaryl amino group, but is not limited thereto.
  • the C 6 -C 30 aryl group that can constitute each of R 1 to R 13 is phenyl, biphenyl, terphenyl, naphthyl, anthracenyl, pentanrenyl, indenyl, indenoidinyl, heptalenyl, biphenyl, phenylenyl, indacenyl, phenalenyl, phenanthrenyl, benzophenanthrenyl, dibenzophenanthrenyl, azulenyl, pyrenyl, fluoranthenyl, triphenylenyl, chrysenyl, tetraphenyl, tetracenanyl, playda It may be an uncondensed or fused aryl group such as, but not limited to, enyl, physenyl, pentaphenyl, pentacenyl, fluorenyl, indenofluorenyl or spir
  • the C 3 -C 30 heteroaryl group that may constitute each of R 1 to R 13 is pyrrolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, tetrazinyl, imidazolyl, pyra Solyl, indolyl, isoindoleyl, indazolyl, indolizinyl, pyrrozinyl, carbazolyl, benzocarbazolyl, dibenzocarbazolyl, indolocarbazolyl, indenocarbazolyl, benzofurocarbazolyl, benzothie Nocarbazolyl, quinolinyl, isoquinolinyl, phthalazinyl, quinoxalinyl, cynolinyl, quinazolinyl, quinozolinyl, quinozolinyl, purinyl, benzoquinolinyl, benzo
  • the C 6 -C 20 aromatic ring and the C 3 -C 20 heteroaromatic ring which may be formed by combining two adjacent R 12 and/or two adjacent R 13 are not particularly limited.
  • the C 6 -C 20 aromatic ring and the C 3 -C 20 heteroaromatic ring, which may be formed by bonding two adjacent R 12 and/or two adjacent R 13 , respectively are each unsubstituted, deuterium, tritium, C 1 -C 20 alkyl, C 6 -C 30 aryl, C 3 -C 30 heteroaryl, C 6 -C 30 aryl amino and C 3 -C 30 heteroaryl amino; benzene ring, naphthyl ring, anthracene ring, phenanthrene ring, indene ring, fluorene ring, pyridine ring, pyrimidine ring, triazine ring, quinoline ring, indole ring, benzofuran ring,
  • the C 6 -C 20 aromatic ring and the C 3 -C 20 heteroaromatic ring which may be formed by combining two adjacent R 12 and/or two adjacent R 13 , respectively, may be unsubstituted, deuterium, tritium, C 1 -C 20 alkyl, C 6 -C 30 aryl, C 3 -C 30 heteroaryl, C 6 -C 30 aryl amino and C 3 -C 30 heteroaryl amino; It may be a heteroaromatic ring, for example, a heteroaromatic ring in which two or more rings are condensed.
  • two adjacent R 12 and/or two adjacent R 13 may be each bonded to form a C 3 -C 20 heteroaromatic ring, each of which is unsubstituted, deuterium, tritium, C 1 -C 20 alkyl, C 6 -C 30 aryl, C 3 -C 30 heteroaryl, C 6 -C 30 aryl amino, and C 3 -C 30 heteroaryl amino, indole ring which may be substituted with at least one functional group, benzofuran ring, benzothione may include, but are not limited to, open rings and combinations thereof.
  • the heteroaromatic moiety having the structure of Formula 2 functioning as an electron donor is an indenocarbazolyl moiety, an indolocarbazolyl moiety, a benzofurocarbazolyl moiety, and/or a benzothienocarbazolyl moiety. It may include, but is not limited to.
  • Each ring may be independently unsubstituted, C 1 -C 10 alkyl (eg C 1 -C 5 alkyl such as t-butyl ) , C 6 -C 30 aryl (eg C 6 -C 30 alkyl such as phenyl).
  • C 3 -C 30 heteroaryl eg C 3 -C 15 heteroaryl such as pyridyl
  • C 6 -C 20 aryl amino eg diphenyl amino
  • the condensed ring containing boron and at least one of oxygen, sulfur and selenium serves as an electron acceptor moiety and has a structure of Formula 2 and has at least one nitrogen atom. functions as an electron acceptor moiety. Accordingly, the organic compound having the structure of Chemical Formula 1 has delayed fluorescence characteristics.
  • the electron-donor moiety having the structure of Chemical Formula 2 includes a 5-membered ring containing a nitrogen atom between benzene rings, the bond strength between the electron-donor and electron-acceptor moiety is maximized while thermal stability is achieved. This is excellent
  • the dihedral angle between the electron donor moiety and the electron acceptor moiety decreases (less than about 75 degrees), and the conjugation structure of the molecule is improved.
  • the first compound (DF) having delayed fluorescence has excellent luminous efficiency, it is possible to realize super-fluorescence while sufficiently transferring exciton energy from the first compound (DF) to the second compound (FD).
  • the electron donor moiety of the first compound (DF) has a 6-membered ring such as an acridine-based ring
  • the dihedral angle between the electron donor moiety and the electron acceptor moiety of the first compound increases (about 90 )
  • the stability of the molecule decreases as the conjugation structure of the molecule is broken.
  • an organic compound having such a structure is used as the first compound of the light emitting material layer 240, the light emitting lifetime of the organic light emitting diode may decrease.
  • each of the three benzene rings located terminally in the molecular structure of the first compound (DF) having the structure of Formula 1 has a condensed heteroaryl having a structure of Formula 2, wherein the electron donor moiety is 0 to 2 dogs can be connected.
  • R 13 in Formula 2 is unsubstituted, deuterium, tritium, C 1 -C 20 alkyl, C 6 -C 30 aryl, C 3 -C 30 heteroaryl, C 6 -C 30 aryl amino and C 3 - C 30 Heteroaryl substituted with at least one functional group from amino, or at least two adjacent R 13 bonded together, each independently unsubstituted, deuterium, tritium, C 1 -C 20 alkyl, C 6 -C 30 aryl, C 3 -C 30 heteroaryl, C 6 -C 30 aryl amino, and C 3 -C 30 heteroaryl amino may form an indole ring that may be substituted with at least one functional group, a benzofuran ring, and a benzothiophene ring. .
  • the first compound (DF) having such a structure may have a structure of Formula 3 below, but is not limited thereto.
  • X 1 and X 2 are each the same as defined in Formula 1;
  • R 14 to R 16 are each independently light hydrogen, heavy hydrogen, tritium, a halogen atom, unsubstituted or substituted C 1 -C 20 alkyl, unsubstituted or substituted C 1 -C 20 alkyl amino, unsubstituted or substituted C 6 -C 30 aryl or an unsubstituted or substituted C 3 -C 30 heteroaryl group, and when p is plural, each R 15 may be different or the same, and at least one of R 14 to R 16 is represented by the following formula It is a condensed heteroaryl having the structure of Formula 4; p is an integer from 0 to 2;
  • C 6 -C 30 aromatic and C 3 -C 30 heteroaromatic which may be R 14 to R 16 in Formula 3
  • C 6 -C 30 aromatic and C 3 which may be R 17 to R 18 in Formula 4
  • -C 30 heteroaromatic and C 3 -C 20 heteroaromatic rings which may be formed by combining two adjacent R18 are each independently unsubstituted, deuterium, tritium, C 1 -C 20 alkyl, C 6 -C 30 It may be substituted with at least one functional group selected from aryl, C 3 -C 30 heteroaryl, C 6 -C 30 aryl amino, and C 3 -C 30 heteroaryl amino, but is not limited thereto.
  • the organic compound having the structure of Chemical Formula 3 not only has delayed fluorescence characteristics, but also has a singlet energy level, a triplet energy level, HOMO and It has a LUMO energy level.
  • the first compound (DF) having a structure of Formula 1 or Formula 3 may include any one selected from organic compounds having a structure of Formula 5 below, but is not limited thereto.
  • the first compound (DF) which may be a delayed fluorescent material, has a very small difference ( ⁇ E ST ) between the excitation singlet energy level (S 1 DF ) and the excitation triplet energy level (T 1 DF ) (0.3 eV or less, FIG. 10 Reference), since the excited triplet exciton energy of the first compound (DF) is converted into singlet excited excitons of the first compound (DF) by the inverse system transition (RISC), the quantum efficiency is excellent.
  • the first compound (DF) having the structures of Chemical Formulas 1 to 5 has a twisted structure due to the electron donor-electron acceptor bonding structure.
  • an additional charge transfer transition (CT transition) is induced. Due to the emission characteristics due to the CT emission mechanism, the first compounds (DF) having the structures of Chemical Formulas 1 to 5 have a wide full-width at half maximum (FWHM), and thus have limitations in terms of color purity.
  • the excitons in the excited singlet energy level (S 1 DF ) of the first compound (DF) are converted to the triplet excited energy level (T 1 DF ) by Inter System Crossing (ISC).
  • ISC Inter System Crossing
  • the triplet excitation energy level (T 1 DF ) is not converted to the excitation singlet energy level (S 1 DF ) by RISC and remains in the excitation triplet energy level (T 1 DF ).
  • An antiexciton is created.
  • These triplet excitons interact with the surrounding triplet excitons or polarons, resulting in triplet-triplet annihilation (TTA) or triplet-polaron annihilation (TPA).
  • the emission lifetime of the organic light emitting diode may be reduced by an quenching process such as TTA and TPA.
  • the light emitting material layer 240 includes the second compound (FD), which may be a fluorescent material, to implement hyperfluorescence.
  • the first compound (DF), which is a delayed fluorescent material may also use singlet exciton energy and triplet exciton energy. Therefore, when the light emitting material layer 240 includes a fluorescent material having an appropriate energy level compared to the first compound (DF), which is a delayed fluorescent material, as the second compound (FD), excitons emitted from the first compound (DF) Energy is absorbed by the second compound (FD), and 100% of the energy absorbed by the second compound (FD) generates only singlet excitons, and luminous efficiency can be maximized.
  • the excited singlet exciton energy of (DF) is transferred to the second compound (FD), which is a fluorescent material in the same light emitting material layer, by the Forster resonance energy transfer (FRET) mechanism, and in the second compound (FD) Final luminescence takes place.
  • FRET Forster resonance energy transfer
  • the compound having a large overlapping region of absorption wavelength with respect to the emission wavelength of the first compound (DF) is used as the second compound ( FD) can be used.
  • the second compound (FD) which finally emits light, can improve color purity due to a narrow half width, and can improve the lifespan of a light emitting device because it has an excellent light emitting lifetime.
  • the second compound DF introduced into the light emitting material layer 240 may be a fluorescent material that emits blue light.
  • the second compound FD introduced into the light emitting material layer 240 may be a boron-based fluorescent material having a full width at half maximum (FWHM) of 35 nm or less.
  • the second compound (FD), which is a boron-based fluorescent material may have a structure represented by Chemical Formula 6 below.
  • R 21 to R 28 are each independently light hydrogen, heavy hydrogen, tritium, a halogen atom, an unsubstituted or substituted C 1 -C 20 alkyl, an unsubstituted or substituted C 1 -C 20 alkyl group, or an unsubstituted C 1 -C 20 alkyl group.
  • each R 25 may be different or the same, and when r is plural, each R 26 may be different or the same, , R 27 may be different or the same when s is plural, and R 28 may be different or the same when t is plural; q and s are each independently an integer from 0 to 5, r is an integer from 0 to 3, and t is an integer from 0 to 4.
  • condensed rings formed by bonding two adjacent C 6 -C 30 aromatic, C 3 -C 30 heteroaromatic, and R 21 to R 24 that may be R 21 to R 24 are each independently substituted. or at least one of deuterium, tritium, C 1 -C 20 alkyl, C 6 -C 30 aryl, C 3 -C 30 heteroaryl, C 6 -C 30 aryl amino and C 3 -C 30 heteroaryl amino It may be substituted with a functional group, but is not limited thereto.
  • the C 6 -C 30 aromatics that may each constitute R 21 to R 28 are C 6 -C 30 aryl groups, C 7 -C 30 aralkyl groups, C 6 -C 30 aryl groups, oxy groups and C 6 -C 30 aryl amino groups.
  • the C 3 -C 30 heteroaromatic which may constitute each of R 21 to R 28 is a C 3 -C 30 heteroaryl group, a C 4 -C 30 heteroaralkyl group, or a C 3 -C 30 heteroaryl group. It may include a group and a C 3 -C 30 heteroaryl amino group, but is not limited thereto.
  • the boron-based compound having the structure of Chemical Formula 6 has excellent light emitting properties. Since the boron-based compound having the structure of Chemical Formula 6 has a wide plate-like structure, exciton energy emitted from the first compound (DF) can be efficiently transferred, and thus luminous efficiency can be maximized.
  • R 21 to R 24 in Formula 6 may not bond to each other.
  • R 22 and R 23 of Formula 6 may combine with each other to form a condensed ring containing boron and nitrogen.
  • the second compound (FD) may include a boron-based organic compound having structures represented by Chemical Formulas 7A to 7C.
  • R 21 , R 25 to R 28 and R 31 to R 34 are each independently light hydrogen, heavy hydrogen, tritium, a halogen atom, unsubstituted or substituted C 1 -C 20 alkyl, unsubstituted or substituted C 1 -C 20 alkyl silyl, unsubstituted or substituted C 1 -C 20 alkyl amino, unsubstituted or substituted C 6 -C 30 aryl, or unsubstituted or substituted C 3 -C 30 heteroaryl group.
  • C 6 -C 30 aryl and C 3 -C 30 heteroaryl which may be each independently unsubstituted, deuterium, tritium, C 1 -C 20 alkyl, C 6 -C 30 aryl, C 3 -C 30 heteroaryl, C 6 -C 30 aryl amino and C 3 -C 30 heteroaryl amino; However, it is not limited thereto.
  • the second compound (FD) which is a boron-based organic compound
  • the second compound (FD) may include any one selected from organic compounds having a structure represented by Chemical Formula 8 below, but is not limited thereto.
  • the third compound (H) that may be included in the light emitting material layer 240 has an energy band gap between the HOMO energy level and the LUMO energy level compared to the first compound (DF) and/or the second compound (FD).
  • (E g ) may include any organic compound broad.
  • the first compound (DF) may be a first dopant
  • the second compound (FD) may be a second dopant.
  • the third compound (H) that may be included in the light emitting material layer 240 is 4,4'-bis (N-carbazolyl) -1,1'-biphenyl (CBP), 3,3'-bis (N-carbazolyl)-1,1'-biphenyl (mCBP), 1,3-Bis(carbazol-9-yl)benzene (mCP), 9-(3-(9H-carbazol-9-yl)phenyl)- 9H-carbazole-3-carbonitrile (mCP-CN), Oxybis(2,1-phenylene))bis(diphenylphosphine oxide (DPEPO), 2,8-bis(diphenylphosphoryl)dibenzothiophene (PPT), 1,3,5-Tri [(3-pyridyl)-phen-3-yl]benzene (TmPyPB), 2,6-Di(9H-carbazol-9-yl)pyridine (PYD-2Cz
  • the third compound when the light emitting material layer 240 (EML) includes the first compound (DF), the second compound (FD) and the third compound (H), the third compound ( The content of H) may be greater than the content of the first compound (DF), and the content of the first compound (DF) may be greater than the content of the second compound (FD).
  • the amount of the first compound (DF) is greater than that of the second compound (FD)
  • exciton energy transfer from the first compound (DF) to the second compound (FD) by the FRET mechanism may sufficiently occur.
  • the second compound (FD) may be included in about 0.1 to about 5 weight %, for example, about 0.1 to about 2 weight %, but is not limited thereto.
  • the HOMO energy level and/or LUMO energy level of the third compound (H) as a host, the first compound (DF) as a delayed fluorescent material, and the third compound (FD) as a fluorescent material are appropriately adjusted. It should be.
  • the host in order to implement superfluorescence, the host should be able to induce excitons in a triplet state in delayed fluorescent materials to participate in light emission without quenching.
  • the energy levels of the third compound (H) as a host, the first compound (DF) as a delayed fluorescent material, and the second compound (FD) as a fluorescent material should be adjusted.
  • FIG. 4 is an organic light emitting diode D1 according to the first embodiment of the present disclosure, in which the energy level of the light emitting material is adjusted centering on the first compound and the second compound constituting the light emitting material layer, thereby efficiently transferring charge. It is a schematic diagram schematically showing.
  • the HOMO energy level (HOMO H ) of the third compound (H), which may be a host, may be deeper than the HOMO energy level (HOMO DF ) of the first compound (DF), which may be a delayed fluorescent material, ,
  • the LUMO energy level (LUMO H ) of the third compound (H) may be shallower than the LUMO energy level (LUMO DF ) of the first compound (DF).
  • the energy band gap between the HOMO energy level (HOMO H ) and the LUMO energy level (LUMO H ) of the third compound (H) is the HOMO energy level (HOMO DF ) of the first compound (DF) and the LUMO energy level (LUMO DF ) may be wider than the energy band gap between
  • ) may be 0.5 eV or less, for example, from about 0.1 to about 0.5 eV.
  • charge transfer and/or charge injection efficiency from the third compound (H) to the first compound (DF) may be improved, thereby improving light emitting efficiency of the organic light emitting diode (D1).
  • the energy bandgap ( ⁇ HOMO-1) between the HOMO energy level (HOMO DF ) of the first compound ( DF ) and the HOMO energy level (HOMO FD ) of the second compound (FD) is expressed by the following equation (1) meets
  • the energy bandgap ( ⁇ HOMO-1) between the HOMO energy level (HOMO DF ) of the first compound ( DF ) and the HOMO energy level (HOMO FD ) of the second compound (FD) satisfies Formula (1)
  • the first compound (DF) can realize 100% internal quantum efficiency by utilizing both the original singlet exciton energy and the singlet exciton energy converted from the triplet exciton energy by the RISC mechanism, and the second compound (FD) can efficiently transfer exciton energy.
  • the HOMO energy level (HOMO DF ) of the first compound (DF) and the HOMO energy level (HOMO FD ) of the second compound (FD) may satisfy Equation (2) below, but are not limited thereto.
  • the LUMO energy level (LUMO DF ) of the first compound (DF) may be shallow or equal to the LUMO energy level (LUMO FD ) of the second compound (FD).
  • the LUMO energy level (LUMO DF ) of the first compound (DF) and the LUMO energy level (LUMO FD ) of the second compound (FD) may satisfy Equation (3) below.
  • the electrons injected into the light emitting material layer 240 are It can be quickly transferred to the first compound (DF).
  • the LUMO energy level (LUMO DF ) of the first compound (DF) and the LUMO energy level (LUMO FD ) of the second compound (FD) may satisfy Equation (4) below.
  • the HOMO energy level (HOMO DF ) of the first compound (DF) may be about -5.4 eV to about -5.7 eV, and the LUMO energy level (LUMO DF ) of the first compound (DF) is about -2.5 eV. to about -2.8 eV, but is not limited thereto.
  • the HOMO energy level (HOMO FD ) of the second compound (FD) may be about -5.3 eV to about -5.7 eV, and the LUMO energy level (LUMO FD ) of the second compound (FD) is about -2.7 eV to about - It may be 3.0 eV, but is not limited thereto.
  • the energy bandgap between the HOMO energy level (HOMO DF ) and the LUMO energy level (LUMO DF ) of the first compound (DF) is the HOMO energy level ((HOMO DF ) and the LUMO energy level (LUMO FD ) of the second compound (FD).
  • the band gap between the HOMO energy level (HOMO DF ) and the LUMO energy level (LUMO DF ) of the first compound (DF) is about 2.6 eV or more and about 3.1 eV.
  • the band gap between the HOMO energy level (HOMO FD ) and the LUMO energy level (LUMO FD ) of the second compound (FD) is about 2.4 eV or more and about 2.9 eV or less, for example, about 2.5 eV or more and about 2.8 eV or less
  • the exciton energy generated in the first compound (DF) is efficiently transferred to the second compound (FD), and finally the second compound ( FD) can cause sufficient luminescence.
  • FIG. 5 is a schematic diagram schematically illustrating a problem in which holes are captured by the second compound when the HOMO energy levels of the first compound and the second compound constituting the light emitting material layer are not adjusted.
  • the energy bandgap ( ⁇ HOMO-2) between the HOMO energy level (HOMO DF ) of the first compound (DF) and the HOMO energy level (HOMO FD ) of the second compound (FD) is 0.3 eV or more.
  • holes injected into the light emitting material layer 240 are trapped by the second compound FD, which is a fluorescent material.
  • holes injected into the light emitting material layer 240 are not transferred from the third compound (H) as a host to the first compound (DF) as a delayed fluorescent material.
  • Excitons are not formed in the first compound (DF) having excellent luminous efficiency, and holes captured in the second compound (FD) directly recombine to form excitons and emit light.
  • the triplet exciton energy of the first compound (DF) does not contribute to luminescence and non-luminescence disappears, reducing luminous efficiency.
  • FIG. 6 shows that when the HOMO energy level and the LUMO energy level of the first compound and the second compound constituting the light emitting material layer are not controlled, holes are trapped in the second compound, and exciplex between the first compound and the second compound It is a schematic diagram schematically showing the problem in which (exciplex) is formed.
  • the energy bandgap ( ⁇ HOMO-3) between the HOMO energy level (HOMO DF ) of the first compound (DF) and the HOMO energy level (HOMO FD ) of the second compound (FD) is 0.5 eV or more.
  • holes injected into the light emitting material layer 240 are trapped by the second compound FD, which is a fluorescent material.
  • the second An exciplex is formed between the holes captured by the compound (FD) and the electrons transferred to the first compound (DF).
  • the triplet exciton energy of the first compound (DF) disappears non-emissively, resulting in a decrease in luminous efficiency, and long-wavelength light is emitted as the band gap between the LUMO energy and HOMO energy forming the exciplex is excessively narrowed. Since the first compound (DF) and the second compound (FD) emit light at the same time, the color purity decreases while the full width at half maximum is widened.
  • FIG. 7 is a view schematically showing that luminous efficiency and color purity can be improved by controlling the emission wavelength of the first compound included in the light emitting material layer according to an exemplary embodiment of the present disclosure.
  • the degree of overlap between the photoluminescence (PL) spectrum (PL DF ) of the first compound and the absorption (Absorbance, Abs) spectrum (Abs FD ) of the second compound (FD) is wide, the first The efficiency of exciton energy transfer from the compound (DF) to the second compound (FD) may be improved.
  • the distance between the maximum PL wavelength ( ⁇ PL.max DF ) of the first compound (DF) and the maximum absorption wavelength ( ⁇ Abs.max FD ) of the second compound (FD) is about 50 nm or less, for example It may be about 30 nm or less.
  • the onset wavelength ( ⁇ onset DF ) of the first compound (DF) may be greater than or equal to about 430 nm and less than or equal to about 440 nm.
  • the onset wavelength is a wavelength value at a point where an X-axis (wavelength) intersects an extrapolation line in a linear region of a short wavelength region in the PL spectrum of an organic compound.
  • the onset wavelength may be defined as a wavelength corresponding to a shorter wavelength among two wavelengths corresponding to 1/10 of the maximum emission intensity in the PL spectrum.
  • the onset wavelength ( ⁇ onset DF ) of the first compound (DF) is in the range of about 430 nm to about 440 nn, exciton energy is efficiently transferred from the first compound (DF) to the second compound (FD), Light emitting efficiency of the organic light emitting diode D1 may be maximized.
  • the onset wavelength ( ⁇ onset DF ) of the first compound (DF) is less than 430 nm, the delayed fluorescence characteristics of the first compound (DF) are lowered and/or the first compound (
  • the third compound (H) as a host that transfers exciton energy to DF) should have a high triplet excitation energy (T 1 H ). Accordingly, the luminous efficiency of the organic light emitting diode D1 is reduced.
  • FIG. 10 is a schematic diagram schematically illustrating a light emitting mechanism according to a singlet energy level and a triplet energy level between light emitting materials in a light emitting material layer constituting an organic light emitting diode according to the first embodiment of the present disclosure. As schematically shown in FIG.
  • the excitation triplet energy level (T 1 H ) and the excitation singlet energy level (S 1 ) of the third compound (H), which may be a host included in the light emitting material layer (EML, 240) H ) is higher than the triplet excitation energy level (T 1 DF ) and singlet excitation energy level (S 1 DF ) of the first compound (DF) each having a delayed fluorescence characteristic.
  • the triplet excitation energy level (T 1 H ) of the third compound (H) is about 0.2 eV or more, preferably about 0.3 eV higher than the triplet excitation energy level (T 1 DF ) of the first compound (DF). eV or higher, more preferably about 0.5 eV or higher.
  • the triplet excitation energy level (T 1 H ) and singlet excitation energy level (S 1 H ) of the third compound (H) are the triplet excitation energy level (T 1 DF ) and singlet excitation energy level of the first compound ( DF ). If it is not sufficiently higher than the energy level (S 1 DF ), the exciton of the triplet excitation energy level (T 1 DF ) of the first compound ( DF ) is equivalent to the triplet excitation energy level (T 1 H ) of the third compound ( H ).
  • the difference ( ⁇ E ST ) between the excitation singlet energy level (S 1 DF ) and the triplet excitation energy level (T 1 DF ) of the first compound (DF) having delayed fluorescence is about 0.3 eV or less, for example, about 0.01 eV. to about 0.3 eV.
  • the excitation singlet energy level (S 1 DF ) of the first compound (DF), which may be a delayed fluorescent material is the excitation singlet energy level (S 1 DF ) of the second compound (FD), which may be a fluorescent material. higher than the term energy level (S 1 FD ). If necessary, the triplet excitation energy level (T 1 DF ) of the first compound ( DF ) may be higher than the triplet excitation energy level (T 1 FD ) of the second compound (FD).
  • the second compound (FD) can utilize both the singlet exciton energy and the triplet exciton energy of the first compound (DF) in the light emitting process, so the light emitting efficiency of the organic light emitting diode (D1) can be maximized.
  • an extinction phenomenon such as TTA or TPA is minimized, the light emitting lifetime of the organic light emitting diode D1 can be greatly improved.
  • the hole injection layer 250 is located between the first electrode 210 and the hole transport layer 260, and the interface between the inorganic first electrode 210 and the organic hole transport layer 260 improve the characteristics.
  • the hole injection layer 250 may include 4,4',4"-Tris(3-methylphenylamino)triphenylamine (MTDATA), 4,4',4"-Tris(N,N-diphenyl-amino )triphenylamine(NATA), 4,4',4"-Tris(N-(naphthalene-1-yl)-N-phenyl-amino)triphenylamine(1T-NATA), 4,4',4"-Tris(N -(naphthalene-2-yl)-N-phenyl-amino)triphenylamine(2T-NATA), Copper phthalocyanine(CuPc), Tris(4-carbazoyl-9-yl-phenyl)amine(TCTA), N,N'- Diphenyl-N
  • the hole transport layer 260 is positioned between the hole injection layer 250 and the light emitting material layer 240 .
  • the hole transport layer 260 is N,N'-Diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine; TPD), NPB (NPD), CBP, Poly[N,N'-bis(4-butylpnehyl)-N,N'-bis(phenyl)-benzidine](Poly-TPD), (Poly[(9,9- dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl)diphenylamine))] (TFB), Di-[4-(N,N-di-p-tolyl -amino)-phenyl]cyclohexane (TAPC), 3,5-Di(9H-carbazol-9-
  • An electron transport layer 270 and an electron injection layer 280 may be sequentially stacked between the light emitting material layer 240 and the second electrode 230 .
  • a material constituting the electron transport layer 270 requires high electron mobility, and electrons are stably supplied to the light emitting material layer 240 through smooth electron transport.
  • the electron transport layer 270 is an oxadiazole-base compound, a triazole-base compound, a phenanthroline-base compound, or a benzoxazole-based compound. ) compound, a benzothiazole-base compound, a benzimidazole-base compound, and a triazine-base compound.
  • the electron injection layer 280 is positioned between the second electrode 230 and the electron transport layer 270, and the lifespan of the device can be improved by improving the characteristics of the second electrode 270.
  • the material of the electron injection layer 280 is an alkali metal halide-based material and/or an alkaline earth metal halide-based material such as LiF, CsF, NaF, and BaF 2 , and/or Liq, lithium benzoate) , organometallic materials such as sodium stearate may be used, but are not limited thereto.
  • an exciton blocking layer may be positioned adjacent to the light emitting material layer 240 .
  • an electron blocking layer 265 capable of controlling and preventing the movement of electrons may be positioned between the hole transport layer 260 and the light emitting material layer 240.
  • the electron blocking layer 265 is TCTA, Tris[4-(diethylamino)phenyl]amine, N-(biphenyl-4-yl)-9,9-dimethyl-N-(4-(9 -phenyl-9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine, TAPC, MTDATA, mCP, mCBP, CuPc, N,N'-bis[4-[bis(3-methylphenyl)amino] phenyl]-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (DNTPD), TDAPB, 3,6-bis(N-carbazo
  • a hole blocking layer 275 as a second exciton blocking layer is positioned between the light emitting material layer 240 and the electron transport layer 270 to prevent movement of holes between the light emitting material layer 240 and the electron transport layer 270 .
  • an oxadiazole-based compound, a triazole-based compound, a phenanthroline-based compound, a benzoxazole-based compound, a benzothiazole-based compound, and benzene that may be used in the electron transport layer 270 Any one of an imidazole-based compound and a triazine-based compound may be used.
  • the hole blocking layer 275 may include BCP, BAlq, Alq3, PBD, spiro-PBD, Liq, Bis-4,6-( 3,5-di-3-pyridylphenyl)-2-methylpyrimidine (B3PYMPM), DPEPO, 9-(6-(9H-carbazol-9-yl)pyridine-3-yl)-9H-3,9'-bicarbazole and It may include a compound selected from the group consisting of combinations thereof, but is not limited thereto.
  • FIG. 11 is a schematic cross-sectional view of an organic light emitting diode according to another exemplary aspect of the present disclosure
  • FIG. 12 is a HOMO energy of a first compound and a second compound constituting a light emitting material layer according to another exemplary aspect of the present disclosure. It is a schematic diagram schematically showing a state in which holes are efficiently transferred to the second compound by adjusting the level, and FIG.
  • 13 is a single gap between the light emitting materials in the light emitting material layer constituting the organic light emitting diode according to another exemplary aspect of the present disclosure. It is a schematic diagram schematically showing the light emission mechanism according to the term energy level and the triplet energy level.
  • an organic light emitting diode D2 includes a first electrode 210 and a second electrode 230 facing each other, first and second electrodes 210, 230) and a light emitting layer 220A positioned between them.
  • the organic light emitting display device 100 includes a red pixel area, a green pixel area, and a blue pixel area, and the organic light emitting diode D2 may be positioned in the blue pixel area.
  • the light emitting layer 220A includes the light emitting material layer 240A.
  • the light emitting layer 220A includes a hole transport layer 260 positioned between the first electrode 210 and the light emitting material layer 240A, and an electron transport layer 270 positioned between the light emitting material layer 240A and the second electrode 230. ) may include at least one of them.
  • the light emitting layer 220A may include at least one of a hole injection layer positioned between the first electrode 210 and the hole transport layer 260 and an electron injection layer positioned between the electron transport layer 270 and the second electrode 230. One more may be included.
  • the light emitting layer 220A may include an electron blocking layer 265 positioned between the hole transport layer 260 and the light emitting material layer 240A and/or a hole positioned between the light emitting material layer 240A and the electron transport layer 270.
  • a blocking layer 275 may be further included.
  • the structure of the light emitting layer 220A except for the first electrode 210, the second electrode 230, and the light emitting material layer 240A may be the same as that of the first embodiment described above.
  • the light emitting material layer 240A includes first light emitting material layers (EML1 and 242, lower light emitting material layer, first layer) positioned between the electron blocking layer 265 and the hole blocking layer 275, and the first light emitting material layer.
  • a second light emitting material layer (EML2, 244, upper light emitting material layer, second layer) positioned between the 242 and the hole blocking layer 275 is included.
  • the second light emitting material layer 244 may be positioned between the electron blocking layer 265 and the first light emitting material layer 242 .
  • One of the first light emitting material layer 242 (EML1) and the second light emitting material layer 244 (EML2) includes a first compound (DF, first dopant) which is a delayed fluorescent material
  • the first light emitting material layer 242 , EML1) and the second light emitting material layer 244 (EML2) the other one includes a second compound (FD, second dopant) which is a fluorescent material
  • the first light-emitting layer 242 (EML1) and the second light-emitting material layer 244 (EML2) each include a third compound (H1) that may be a first host and a fourth compound (H2) that may be a second host. can do.
  • the first light emitting material layer 242 includes a first compound (DF) and a third compound (H1)
  • the second light emitting material layer 244 includes a second compound (FD) and a fourth compound ( H2) may be included.
  • the first compound DF constituting the first light emitting material layer 242 (EML1) may be a delayed fluorescent material having a structure represented by Chemical Formulas 1 to 5.
  • the excited triplet exciton energy of the first compound (DF) having delayed fluorescence is converted into a singlet excited exciton energy level by reverse system transition (RISC). While the first compound (DF) has high quantum efficiency, its color purity is not good because its full width at half maximum is wide.
  • the second light emitting material layer 244 includes a second compound (FD) which is a fluorescent material.
  • the second compound (FD) includes any organic compound having a structure represented by Chemical Formulas 6 to 8.
  • the second compound (FD), which is a fluorescent material having a structure of Chemical Formulas 6 to 8, has a narrower half-width than the first compound (DF) (for example, the half-width is 35 nm or less). Therefore, the second compound (FD) has an advantage in color purity.
  • the excited singlet exciton energy and the triplet excited exciton energy of the first compound (DF) having a delayed fluorescence characteristic included in the first light emitting material layer (242, EML1) are FRET Through the mechanism, the light is transmitted to the second compound FD included in the adjacent second light emitting material layer 244 (EML2), and final light emission occurs in the second compound (FD).
  • the excited triplet exciton energy of the first compound DF included in the first light emitting material layer 242 (EML1) is converted into singlet excited exciton energy by a reverse system transition (RISC) phenomenon.
  • the excited singlet exciton energy of the first compound (DF) is transferred to the excited singlet energy level of the second compound (FD).
  • the second compound FD included in the second light emitting material layer 244 (EML2) emits light using both excited singlet exciton energy and triplet excited exciton energy.
  • the first light emitting material layer 242 (EML1) and the second light emitting material layer 244 (EML2) each include a third compound (H1) and a fourth compound (H2).
  • the third compound (H1) and the fourth compound (H2) may be the same as or different from each other.
  • the third compound (H1) and the fourth compound (H2) may each independently include the third compound (H) described in the first embodiment, but are not limited thereto.
  • the energy band between the HOMO energy level (HOMO DF ) of the first compound (DF) and the HOMO energy level (HOMO FD ) of the second compound (FD) may satisfy Equation (1) or Equation (2) described above. Accordingly, holes injected into the light emitting material layer 240 are transferred to the first compound (DF), and the first compound (DF) utilizes both singlet exciton energy and triplet exciton energy to generate the second compound (FD). ) to transfer exciton energy.
  • the LUMO energy level (LUMO DF ) of the first compound (DF) may be shallower than or equal to the LUMO energy level (LUMO FD ) of the second compound (FD), and satisfy Equation (3) or (4) can do.
  • the onset wavelength ( ⁇ onset DF ) of the first compound (DF) may be greater than or equal to about 430 nm and less than or equal to about 440 nm (see FIG. 7 ).
  • the HOMO energy levels of the third compound (H1) and the fourth compound (H2) (HOMO H1 , HOMO 2 ) and the difference between the HOMO energy level (HOMO DF ) of the first compound (DF) (
  • ) may be 0.5 eV or less.
  • the exciton energy generated from the third compound (H1) and the fourth compound (H2) respectively included in the first light emitting material layer (242, EML1) and the second light emitting material layer (244, EML2) are primary It should be transferred to the first compound (DF), which may be a delayed fluorescent material, to emit light.
  • the excitation singlet energy level of the third compound (H1) (S 1 H1 ) and the excitation singlet energy level (S 1 H2 ) of the fourth compound (H2) may be delayed fluorescent materials, respectively. It is higher than the excitation singlet energy level (S 1 DF ) of the first compound (DF).
  • the triplet excitation energy level of the third compound (H1) (T 1 H1 ) and the singlet excitation energy level (T 1 H2 ) of the fourth compound (H2) are each the triplet excitation energy of the first compound (DF). higher than the level (T 1 DF ).
  • the triplet excitation energy levels (T 1 H1 , T 1 H2 ) of the third compound (H1) and the fourth compound ( H2 ) are the triplet excitation energy levels (T 1 DF ) of the first compound (DF). It may be at least about 0.2 eV or more, for example about 0.3 eV or more, preferably about 0.5 eV or more.
  • the excitation singlet energy level (S 1 H2 ) of the fourth compound (H2) which is the second host, is higher than the singlet excitation energy level (S 1 FD ) of the second compound ( FD ), which is a fluorescent material.
  • the triplet excitation energy level (T 1 H2 ) of the fourth compound (H2) may be higher than the triplet excitation energy level (T 1 FD ) of the second compound (FD). Accordingly, the singlet exciton energy generated in the fourth compound (H2) may be transferred to the singlet energy of the second compound (FD).
  • the second compound of the second light emitting material layer 244 is obtained from the first compound (DF) converted to the ICT complex state by inverse system transition (RISC) in the first light emitting material layer (242, EML1).
  • RISC inverse system transition
  • FD must efficiently transfer exciton energy.
  • the excitation singlet energy level (S 1 DF ) of the first compound (DF) which is a delayed fluorescent material included in the first light emitting material layer (242, EML1), is It is higher than the excitation singlet energy level (S 1 FD ) of the second compound (FD), which is a fluorescent material included in the layer 344 (EML2).
  • the triplet excitation energy level (T 1 DF ) of the first compound (DF) may be higher than the triplet excitation energy level (T 1 FD ) of the second compound (FD).
  • the third compound (H1) and the fourth compound (H2) are the first compound (DF) and the second compound (FD) constituting the same light emitting material layer, respectively. ) may be included in an amount greater than or equal to.
  • the content of the first compound (DF) included in the first light emitting material layer 242 (EML1) may be greater than the content of the second compound (FD) included in the second light emitting material layer 244 (EML2). . Accordingly, energy transfer by FRET from the first compound (DF) included in the first light emitting material layer 242 (EML1) to the second compound (FD) included in the second light emitting material layer 344 (EML2) is sufficiently It can happen.
  • the first compound (DF) in the first light emitting material layer 242 (EML1) is about 1 to about 50% by weight, for example, about 10 to 40% by weight or about 20 to about 40% by weight.
  • the content of the second compound (FD) in the second light emitting material layer 244 (EML2) may be about 1 to about 10% by weight, for example, about 1 to about 5% by weight.
  • the fourth compound (H2) constituting the second light-emitting material layer 244 (EML2) is It may be the same material as the material of the blocking layer 275 .
  • the second light emitting material layer 244 (EML2) may simultaneously have a hole blocking function as well as a light emitting function. That is, the second light emitting material layer 244 (EML2) functions as a buffer layer for blocking electrons. Meanwhile, the hole blocking layer 275 may be omitted.
  • the second light emitting material layer 244 (EML2) is used as the light emitting material layer and the hole blocking layer.
  • the fourth compound (H2) constituting the second light emitting material layer 244 (EML2) is The material of the electron blocking layer 265 may be the same material.
  • the second light emitting material layer 244 (EML2) may simultaneously have a light emitting function and an electron blocking function. That is, the second light emitting material layer 244 (EML2) functions as a buffer layer for blocking electrons. Meanwhile, the electron blocking layer 265 may be omitted.
  • the second light emitting material layer 244 (EML2) is used as the light emitting material layer and the electron blocking layer.
  • FIG. 14 is a schematic cross-sectional view of an organic light emitting diode according to another exemplary aspect of the present disclosure.
  • 15 is a schematic diagram schematically showing a state in which holes are efficiently transferred to the second compound by adjusting the HOMO energy levels of the first compound and the second compound constituting the light emitting material layer according to another exemplary aspect of the present disclosure;
  • 16 is a schematic diagram schematically illustrating a light emitting mechanism according to a singlet energy level and a triplet energy level between light emitting materials in a light emitting material layer constituting an organic light emitting diode according to another exemplary aspect of the present disclosure.
  • an organic light emitting diode D3 includes a first electrode 210 and a second electrode 230 facing each other, and first and second electrodes 210 , 230) and a light emitting layer 220B positioned between them.
  • the organic light emitting display device 100 (refer to FIG. 2 ) includes a red pixel area, a green pixel area, and a blue pixel area, and the organic light emitting diode D3 may be positioned in the blue pixel area.
  • the light emitting layer 220B includes a light emitting material layer 240B having a three-layer structure.
  • the light emitting layer 220B includes a hole transport layer 260 positioned between the first electrode 210 and the light emitting material layer 240B, and an electron transport layer 270 positioned between the light emitting material layer 240B and the second electrode 230. ) may include at least one of them.
  • the light emitting layer 220B includes a hole injection layer positioned between the first electrode 210 and the hole transport layer 260 and an electron injection layer 280 positioned between the electron transport layer 270 and the second electrode 230. At least one of them may be included.
  • the light emitting layer 220B may include an electron blocking layer 265 positioned between the hole transport layer 260 and the light emitting material layer 240B and/or a hole positioned between the light emitting material layer 240B and the electron transport layer 250.
  • a blocking layer 275 may be further included.
  • Other configurations of the light emitting layer 220B except for the first electrode 210 and the second electrode 230 and the light emitting material layer 240B may be substantially the same as those described in the above-described first and second embodiments. there is.
  • the light emitting material layer 240B includes a first light emitting material layer 242 (EML1, intermediate light emitting material layer, first layer) positioned between the electron blocking layer 265 and the hole blocking layer 275, and the electron blocking layer. 265 and the second light-emitting material layer 244 (EML2, lower light-emitting material layer, second layer) positioned between the first light-emitting material layer 242 (EML1), and the first light-emitting material layer 242 (EML1)
  • a third light emitting material layer 246 (EML3, upper light emitting material layer, third layer) positioned between the hole blocking layer 275 is included.
  • the first light-emitting material layer 242 includes a first compound (DF, a first dopant) that is a delayed fluorescent material, and the second and third light-emitting material layers 244 and 246 may each be a fluorescent material. It includes two compounds (FD1, second dopant) and a fifth compound (FD2, third dopant).
  • the first to third light-emitting material layers 242, 244, and 246 further include a third compound (H1), a fourth compound (H2), and a sixth compound (H3), which may be first to third hosts, respectively. can do.
  • the excited singlet exciton energy and the triplet excited exciton energy of the first compound (DF), which is a delayed fluorescent material included in the first light emitting material layer 242 (EML1) are Foster energy Transferred to the second compound (FD1) and the fifth compound (FD2), which are fluorescent materials included in the adjacent second and third light-emitting material layers 244 and 246 and EML3, respectively, through FRET, which is a transition.
  • final light emission occurs in the second compound (FD1) and the fifth compound (FD2).
  • the excited triplet exciton energy of the first compound DF included in the first light emitting material layer 242 (EML1) is converted into singlet excited exciton energy by the reverse field transition phenomenon.
  • the excitation singlet energy level of the first compound DF which is a delayed fluorescent material, is determined by the second compound, which is a fluorescent material, introduced into the adjacent second light emitting material layer 244 (EML2) and third light emitting material layer 246 (EML3), respectively.
  • the excited singlet exciton energy of the first compound (DF) included in the first light emitting material layer 242 (EML1) is applied through FRET to the adjacent second light emitting material layer 244 (EML2) and third light emitting material layer 246 (EML3). ), the excitation energy of the second compound (FD1) and the fifth compound (FD2) included in the singlet energy is transferred.
  • the second compound FD1 and the fifth compound FD2 introduced into the second light emitting material layer 244 and EML2 and the third light emitting material layer 246 and EML3 respectively have singlet exciton energy and triplet exciton energy It will light up using all of them.
  • the second compound (FD1) and the fifth compound (FD2) have a narrower half-maximum width than the first compound (DF) (for example, a half-maximum width of 35 nm or less). Accordingly, the quantum efficiency of the organic light emitting diode D4 is improved, the half width is narrowed, and the color purity is improved. At this time, substantial light emission occurs in the second light emitting material layer 242 (EML2) and the third light emitting material layer 246 (EML3) each including the second compound (FD1) and the fifth compound (FD2).
  • the first compound (DF), which is a delayed fluorescent material, includes an organic compound having a structure represented by Chemical Formulas 1 to 5, and the second compound (FD1) and a fifth compound (FD2), which are fluorescent substances, are each independently represented by Chemical Formulas 6 to 5. It includes a boron-based organic compound having a structure of 8.
  • the third compound (H1), the fourth compound (H2), and the sixth compound (H3) may be the same as or different from each other.
  • the third compound (H1), the fourth compound (H2), and the sixth compound (H3) may each independently include the aforementioned three compounds (H), but are not limited thereto.
  • the HOMO energy levels of the first compound (DF) (HOMO DF ) and the HOMO energy levels of the second compound (FD1) and the fifth compound (FD2) (HOMO FD , HOMO DF3 )
  • the energy bandgap ( ⁇ HOMO-1) between may satisfy Equation (1) or Equation (2) described above. Accordingly, holes injected into the light emitting material layer 340 are transferred to the first compound DF, and the first compound DF utilizes both singlet exciton energy and triplet exciton energy to generate the second compound FD1. ) and exciton energy may be transferred to the fifth compound (FD2).
  • the LUMO energy level (LUMO DF ) of the first compound (DF) may be shallower than or equal to the LUMO energy levels (LUMO FD , LUMO DF3 ) of the second compound (FD) and the fifth compound (DF3), (3) or (4) can be satisfied.
  • the onset wavelength ( ⁇ onset DF ) of the first compound (DF) may be greater than or equal to about 430 nm and less than or equal to about 440 nm (see FIG. 7 ).
  • the HOMO energy levels of the third compound (H1), the fourth compound (H2), and the sixth compound (H3) (HOMO H1 , HOMO 2 , HOMO 3 ) and the difference between the HOMO energy level (HOMO DF ) of the first compound (DF) (
  • ) between the LUMO energy levels (LUMO H1 , LUMO H2 , and LUMO H3 ) of and the LUMO energy level (LUMO DF ) of the first compound (DF) may be about 0.5 eV or less.
  • the excitation singlet energy level (S 1 H1 ) of the third compound (H1) which may be the first host
  • the singlet excitation energy level (S ) of the fourth compound (H2) which may be the second host
  • 1 H2 ) and the excitation singlet energy level (S 1 H3 ) of the sixth compound (H3) which may be a third host
  • S 1 DF the excitation singlet energy level of the first compound (DF), which may be a delayed fluorescent material.
  • the triplet excitation energy level of the third compound (H1) (T 1 H1 ), the singlet excitation energy level (T 1 H2 ) of the fourth compound (H2) and the triplet excitation energy level of the sixth compound (H3) (T 1 H3 ) is higher than the triplet excitation energy level (T 1 DF ) of the first compound (DF), respectively.
  • Exciton energy should be efficiently transferred to the second compound (FD1) and the fifth compound (FD2), respectively, which are introduced fluorescent materials.
  • the excitation singlet energy level (S 1 DF ) of the first compound (DF), which is a delayed fluorescent material included in the first light emitting material layer 242 (EML1) is respectively the second Excitation singlet energy levels (S 1 ) of the second compound (FD1) and the fifth compound (FD2), which may be fluorescent materials included in the light emitting material layer 244 (EML2) and the third light emitting material layer 246 (EML3), respectively.
  • FD1 , S 1 FD2 ) is higher.
  • the triplet excitation energy level (T 1 DF ) of the first compound ( DF ) is higher than the triplet excitation energy levels (T 1 FD1 , T 1 FD2 ) of the second compound (FD1) and the fifth compound ( FD2 ), respectively. can be high
  • the excitation singlet energy levels (S 1 H2 , S 1 H3 ) of the fourth compound (H2), which may be the second host, and the sixth compound ( H3 ), which may be the third host, are respectively fluorescent materials. higher than the excitation singlet energy levels (S 1 FD1 , S 1 FD2 ) of the second compound (FD1) and the fifth compound (FD2), which may be .
  • the excitation triplet energy levels (T 1 H2 , T 1 H3 ) of the fourth compound (H2) and the sixth compound ( H3 ) are singlet excitation singlets of the second compound (FD1) and the fifth compound (FD2), respectively. It may be higher than the energy level (T 1 FD , T 1 DF3 ).
  • the content of the first compound (DF) included in the first light emitting material layer 242 (EML1) is equal to the second light emitting material layer 244 (EML2) and the third light emitting material layer 246 (EML3) respectively.
  • the content of the compound (FD1) and the fifth compound (FD2) may be greater.
  • the second light emitting material layer (244, EML2) and the third light emitting material layer (246, EML3) respectively include the second compound (DF). Energy transfer by FRET can sufficiently occur with the compound (FD1) and the fifth compound (FD2).
  • the content of the first compound (DF) in the first light emitting material layer 242 (EML1) is about 1 to about 50% by weight, for example, about 10 to about 40% by weight or about 20 to about 40% by weight. may be %.
  • the content of the second compound (FD1) and the fifth compound (FD2) in each of the second light emitting material layer 242 and EMl2 and the third light emitting material layer 246 and EML3 is about 1 to about 10% by weight, for example, , from about 1 to about 5% by weight.
  • the fourth compound (H2) constituting the second light emitting material layer 244 (EML2) is It may be the same material as the material of the blocking layer 265 .
  • the second light emitting material layer 244 (EML2) may simultaneously have a light emitting function and an electron blocking function. That is, the second light emitting material layer 244 (EML2) functions as a buffer layer for blocking electrons. Meanwhile, the electron blocking layer 265 may be omitted. In this case, the second light emitting material layer 244 (EML2) is used as the light emitting material layer and the electron blocking layer.
  • the sixth compound (H3) constituting the third light emitting material layer 246 (EML3) is a hole blocking layer ( 275) may be the same material.
  • the third light emitting material layer 246 (EML3) may simultaneously have a hole blocking function as well as a light emitting function. That is, the third light emitting material layer 246 (EML3) functions as a buffer layer for blocking holes. Meanwhile, the hole blocking layer 275 may be omitted. In this case, the third light emitting material layer 246 (EML3) is used as the light emitting material layer and the hole blocking layer.
  • the fourth compound (H2) constituting the second light emitting material layer 244 (EML2) is the same material as the material of the electron blocking layer 265, and the third light emitting material layer 246 (EML3).
  • the constituent sixth compound (H3) may be the same material as that of the hole blocking layer 275.
  • the second light emitting material layer 244 (EML2) may simultaneously have a light emitting function and an electron blocking function
  • the third light emitting material layer 246 (EML3) may have a hole blocking function as well as a light emitting function.
  • the second light emitting material layer 244 (EML2) and the third light emitting material layer 246 (EML3) may function as a buffer layer for blocking electrons and a buffer layer for blocking holes, respectively. Meanwhile, the electron blocking layer 265 and the hole blocking layer 275 may be omitted.
  • the second light emitting material layer 244 (EML2) is used as the light emitting material layer and the electron blocking layer
  • the third light emitting material layer (246, EML3) is used as a light emitting material layer and a hole blocking layer.
  • an organic light emitting diode may include two or more light emitting units. 17 is a schematic cross-sectional view of an organic light emitting diode according to another exemplary aspect of the present disclosure.
  • the organic light emitting diode D4 includes a first electrode 210 and a second electrode 230 facing each other and a light emitting layer 22C positioned between the first and second electrodes 210 and 230.
  • the organic light emitting display device 100 includes a red pixel area, a green pixel area, and a blue pixel area, and the organic light emitting diode D4 may be positioned in the blue pixel area.
  • the first electrode 210 may be an anode
  • the second electrode 230 may be a cathode.
  • the light emitting layer 220C includes a first light emitting part 320 including a first light emitting material layer 340 and a second light emitting part 420 including a second light emitting material layer 440 .
  • the light emitting layer 220C may further include a charge generation layer 380 positioned between the first light emitting part 320 and the second light emitting part 420 .
  • the charge generation layer 380 is located between the first and second light emitting parts 320 and 420, and the first light emitting part 320, the charge generating layer 380, and the second light emitting part 420 are the first electrode. (210) are sequentially stacked on top. That is, the first light emitting part 320 is located between the first electrode 310 and the charge generating layer 380, and the second light emitting part 420 is located between the second electrode 230 and the charge generating layer 380. located in
  • the first light emitting unit 320 includes a first light emitting material layer 340 (lower light emitting material layer).
  • the first light emitting unit 320 includes a hole injection layer (HIL, 350) positioned between the first electrode 210 and the first light emitting material layer 340, the first light emitting material layer 340 and the hole injection layer.
  • HIL hole injection layer
  • At least one of the first hole transport layer 360 (HTL1) located between the layers 350 and the first electron transport layer 370 (ETL1) located between the first light emitting material layer 340 and the charge generation layer 380 may include more.
  • the first light emitting unit 320 includes a first electron blocking layer 365 (EBL1) positioned between the first hole transport layer 360 and the first light emitting material layer 340, and the first light emitting material layer 340. ) and at least one of the first hole blocking layer 375 (HBL1) positioned between the first electron transport layer 370 may be further included.
  • EBL1 electron blocking layer 365
  • HBL1 first hole blocking layer 375
  • the second light emitting unit 420 includes a second light emitting material layer 440 (upper light emitting material layer).
  • the second light emitting unit 420 includes a second hole transport layer 40 (HTL2) positioned between the charge generation layer 380 and the second light emitting material layer 440, the second light emitting material layer 440 and the second light emitting material layer 440.
  • HTL2 second hole transport layer 40
  • At least one of the second electron transport layer 470 (ETL2) located between the electrodes 230 and the electron injection layer 480 (HIL) located between the second electron transport layer 470 and the second electrode 230 are further included. can do.
  • the second light emitting unit 420 includes a second electron blocking layer 465 (EBL2) and a second light emitting material layer 440 positioned between the second hole transport layer 460 and the second light emitting material layer 440. And at least one of the second hole blocking layer 475 (HBL2) located between the second electron transport layer 470 may be further included.
  • EBL2 second electron blocking layer 465
  • HBL2 second hole blocking layer 475
  • the charge generation layer 380 is positioned between the first light emitting part 320 and the second light emitting part 420 . That is, the first light emitting part 320 and the second light emitting part 420 are connected by the charge generation layer 380 .
  • the charge generation layer 380 may be a PN junction charge generation layer in which the N-type charge generation layer 382 and the P-type charge generation layer 384 are bonded.
  • the N-type charge generation layer 382 is located between the first electron transport layer 370 and the second hole transport layer 460, and the P-type charge generation layer 384 is located between the N-type charge generation layer 382 and the second hole transport layer. It is located between (460).
  • the N-type charge generation layer 382 transfers electrons to the first light emitting material layer 340 of the first light emitting unit 320, and the P-type charge generation layer 384 transfers holes to the second light emitting unit 420. It is transferred to the second light emitting material layer 440 .
  • each of the first light emitting material layer 340 and the second light emitting material layer 440 may be a blue light emitting material layer.
  • at least one of the first light-emitting material layer 340 and the second light-emitting material layer 440 includes a first compound (DF) as a delayed fluorescent material and a second compound (FD) as a fluorescent material,
  • a third compound (H) as a host may be included.
  • the first light-emitting material layer 340 and/or the second light-emitting material layer 440 include the first compound (DF), the second compound (FD), and the third compound (H)
  • the content of the third compound (H) is greater than the content of the first compound (DF)
  • the content of the first compound (DF) is greater than that of the second compound (FD).
  • energy can be sufficiently transferred from the first compound (DF) to the second compound (FD).
  • the second light emitting material layer 440 includes the first compound (DF) and the second compound (FD) in the same manner as the first light emitting material layer 340, and optionally a third compound ( H) may be included.
  • the second light-emitting material layer 440 includes a compound different from at least one of the first compound (DF) and the second compound (FD) included in the first light-emitting material layer 340, It may emit light of a wavelength different from that of 340 or may have a different luminous efficiency.
  • the first light emitting material layer 340 and the second light emitting material layer 440 are each shown as having a single-layer structure. Unlike this, the first light-emitting material layer 340 and the second light-emitting material layer 440, which may include at least the first compound (DF), the second compound (FD), and optionally the third compound (H), respectively, Each may have a two-layer structure (see FIG. 11) or a three-layer structure (see FIG. 14).
  • the first compound (DF) having a structure of Chemical Formulas 1 to 5 and the second compound (FD) having a structure of Chemical Formulas 6 to 8 are used for at least the first light emitting material layer 340, thereby organic light emitting.
  • the luminous efficiency and color purity of the diode D4 are further improved.
  • color of the organic light emitting diode D4 may be improved or luminous efficiency may be optimized.
  • the organic light emitting display device 500 includes a substrate 510 on which first to third pixel regions P1, P2, and P3 are defined, and a thin film transistor Tr positioned on the substrate 510. ), and an organic light emitting diode (D) positioned above the thin film transistor (Tr) and connected to the thin film transistor (Tr).
  • the first pixel region P1 may be a blue pixel region
  • the second pixel region P2 may be a green pixel region
  • the third pixel region P3 may be a red pixel region.
  • the substrate 510 may be a glass substrate or a flexible substrate.
  • the flexible substrate may be any one of a PI substrate, a PES substrate, a PEN substrate, a PET substrate, and a PC substrate.
  • a buffer layer 512 is formed on the substrate 510 , and a thin film transistor Tr is formed on the buffer layer 512 .
  • the buffer layer 512 may be omitted.
  • the thin film transistor Tr includes a semiconductor layer, a gate electrode, a source electrode, and a drain electrode, and functions as a driving element.
  • a planarization layer 550 is positioned on the thin film transistor Tr.
  • the planarization layer 550 has a flat upper surface and has a drain contact hole 552 exposing the drain electrode of the thin film transistor Tr.
  • the organic light emitting diode (D) is positioned on the planarization layer 550 and has a first electrode 610 connected to the drain electrode of the thin film transistor (Tr), and a light emitting layer 620 sequentially stacked on the first electrode 610. ) and a second electrode 630.
  • the organic light emitting diode D is positioned in each of the first to third pixel regions P1, P2, and P3, and emits light of different colors. For example, the organic light emitting diode D of the first pixel region P1 emits blue light, the organic light emitting diode D of the second pixel region P2 emits green light, and the third pixel region emits green light.
  • the organic light emitting diode (D) of (P3) may emit red light.
  • the first electrode 610 is separated and formed for each of the first to third pixel regions P1, P2, and P3, and the second electrode 630 corresponds to the first to third pixel regions P1, P2, and P3. is formed integrally.
  • the first electrode 610 may be one of an anode and a cathode
  • the second electrode 630 may be the other of an anode and a cathode.
  • one of the first electrode 610 and the second electrode 630 may be a transmissive electrode (or transflective electrode), and the other of the first electrode 610 and the second electrode 630 may be a reflective electrode. .
  • the first electrode 610 may be an anode and may include a transparent conductive oxide layer made of a conductive material having a relatively high work function value, for example, transparent conductive oxide (TCO).
  • the second electrode 630 may be a cathode and may include a metal material layer made of a conductive material having a relatively low work function value, for example, a low-resistance metal.
  • the first electrode 610 includes any one of ITO, IZO, ITZO, SnO, ZnO, ICO and AZO, and the second electrode 630 is Al, Mg, Ca, Ag or an alloy thereof (eg For example, Mg-Ag alloy) or a combination thereof.
  • the first electrode 610 may have a single layer structure of a transparent conductive oxide layer. Meanwhile, when the organic light emitting display device 500 is a top emission type, a reflective electrode or a reflective layer may be further formed below the first electrode 610 .
  • the reflective electrode or reflective layer may be made of silver or an aluminum-palladium-copper (APC) alloy.
  • the first electrode 610 may have a triple layer structure of ITO/Ag/ITO or ITO/APC/ITO.
  • the second electrode 630 may have a light transmission (semi-transmission) characteristic by having a thin thickness.
  • a bank layer 560 covering an edge of the first electrode 610 is formed on the planarization layer 550 .
  • the bank layer 560 exposes the center of the first electrode 610 corresponding to each of the first to third pixel regions P1 , P2 , and P3 .
  • a light emitting layer 620 is formed on the first electrode 610 .
  • the light emitting layer 620 may have a single layer structure of the light emitting material layer EML.
  • the light emitting layer 620 includes a hole injection layer (HIL), a hole transport layer (HTL) and/or an electron blocking layer (EBL) sequentially positioned between the first electrode 610 and the light emitting material layer, and the light emitting material layer. and at least one of a hole blocking layer (HBL), an electron transport layer (ETL), an electron injection layer (EIL), and/or a charge generation layer (CGL) sequentially disposed between the and the second electrode 630.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer sequentially positioned between the first electrode 610 and the light emitting material layer
  • CGL charge generation layer sequentially disposed between the and the second electrode 630.
  • the light emitting material layer constituting the light emitting layer 620 includes a first compound DF, which is a delayed fluorescent material having a structure of Chemical Formulas 1 to 5, and Chemical Formulas 6 to 8 It may include a second compound (FD), which is a fluorescent material having a structure, and optionally a third compound (H), which is a host.
  • a first compound DF which is a delayed fluorescent material having a structure of Chemical Formulas 1 to 5, and Chemical Formulas 6 to 8 It may include a second compound (FD), which is a fluorescent material having a structure, and optionally a third compound (H), which is a host.
  • An encapsulation film 570 is formed on the second electrode 630 to prevent penetration of external moisture into the organic light emitting diode D.
  • the encapsulation film 570 may have a triple layer structure of a first inorganic insulating layer, an organic insulating layer, and a second inorganic insulating layer, but is not limited thereto.
  • the organic light emitting display device 500 may further include a polarizer (not shown) to reduce reflection of external light.
  • the polarizer (not shown) may be a circular polarizer.
  • the polarizer may be positioned below the substrate 510 .
  • the polarizer may be positioned above the encapsulation film 570 .
  • the organic light emitting diode D5 includes a first electrode 610 and a second electrode 630 and an emission layer 620 positioned between the first and second electrodes 610 and 630 .
  • the first electrode 610 may be an anode, and the second electrode 630 may be a cathode.
  • the first electrode 610 may be a reflective electrode, and the second electrode 630 may be a transmissive electrode (semi-transmissive electrode).
  • the light emitting layer 620 includes the light emitting material layer 640 .
  • the light emitting layer 620 includes a hole transport layer (HTL, 660) positioned between the first electrode 610 and the light emitting material layer 640, and an electron transport layer positioned between the light emitting material layer 640 and the second electrode 630. (ETL, 670).
  • the light emitting layer 620 includes a hole injection layer (HIL) 650 positioned between the first electrode 610 and the hole transport layer 660 and electrons positioned between the electron transport layer 670 and the second electrode 630. At least one of the injection layer HIL 680 may be further included.
  • HIL hole injection layer
  • the light emitting layer 630 is an electron blocking layer (EBL, 665) located between the hole transport layer 660 and the light emitting material layer 640, and located between the light emitting material layer 640 and the electron transport layer 670 At least one of the hole blocking layer (HBL, 675) may be further included.
  • EBL electron blocking layer
  • HBL hole blocking layer
  • the light emitting layer 620 may further include an auxiliary hole transport layer 662 positioned between the hole transport layer 660 and the electron blocking layer 665 .
  • the auxiliary hole transport layer 662 includes a first auxiliary hole transport layer 662a located in the first pixel region P1, a second auxiliary hole transport layer 662b located in the second pixel region P2, and a third pixel region.
  • a third auxiliary hole transport layer 662c positioned at (P3) may be included.
  • the first auxiliary hole transport layer 662a has a first thickness
  • the second auxiliary hole transport layer 662b has a second thickness
  • the third auxiliary hole transport layer 662c has a third thickness.
  • the first thickness is smaller than the second thickness
  • the second thickness is smaller than the third thickness. Accordingly, the organic light emitting diode D6 has a micro-cavity structure.
  • the first electrode 610 in the first pixel region P1 emitting light (blue) in the first wavelength range by the first to third auxiliary hole transport layers 662a, 662b, and 662c having different thicknesses.
  • the second electrode 630 between the first electrode 610 and the second electrode 630 in the second pixel region P2 emitting light (green) in the second wavelength range longer than the first wavelength range. less than the distance
  • the distance between the first electrode 610 and the second electrode 630 in the second pixel region P2 is a third pixel region P3 that emits light (red) in a third wavelength range longer than the second wavelength range. is smaller than the distance between the first electrode 610 and the second electrode 630 in . Accordingly, the light emitting efficiency of the organic light emitting diode D5 is improved.
  • the first auxiliary hole transport layer 662a is formed in the first pixel region P3.
  • a microcavity structure may be implemented without the first auxiliary hole transport layer 662a.
  • a capping layer for improving light extraction may be additionally formed on the second electrode 630 .
  • the light emitting material layer 640 includes a first light emitting material layer 642 located in the first pixel region P1, a second light emitting material layer 644 located in the second pixel region P2, and a third pixel region 642.
  • a third light emitting material layer 646 positioned in the region P3 is included.
  • the first light emitting material layer 642 , the second light emitting material layer 644 , and the third light emitting material layer 646 may be a blue light emitting material layer, a green light emitting material layer, and a red light emitting material layer, respectively.
  • the first light emitting material layer 642 of the first pixel region P1 includes a first compound DF, which is a delayed fluorescent material having a structure of Chemical Formulas 1 to 5, and a fluorescent material having a structure of Chemical Formulas 6 to 8 It may include a second compound (FD) and, optionally, a third compound (H) which may be a host.
  • the first light emitting material layer 642 may have a single-layer structure, a two-layer structure (see FIG. 11), or a three-layer structure (see FIG. 14).
  • the content of the third compound (H) is greater than the content of the first compound (DF), and the content of the first compound (DF) is greater than the content of the second compound (FD).
  • the content of the first compound (DF) is greater than the content of the second compound (FD)
  • energy can be sufficiently transferred from the first compound (DF) to the second compound (FD).
  • the second light emitting material layer 644 of the second pixel region P2 may include a host and a green dopant
  • the third light emitting material layer 646 of the third pixel region P3 may include a host and a red dopant.
  • the host of the second light emitting material layer 644 and the third light emitting material layer 646 includes the third compound (H)
  • the green dopant and the red dopant are green or red phosphor materials, green or red phosphors, respectively. It may include at least one of a fluorescent material and a green or red delayed fluorescent material.
  • the organic light emitting diode D5 of FIG. 19 emits blue light, green light, and red light from the first to third pixel regions P1, P2, and P3, respectively, and accordingly, the organic light emitting display device 500 (see FIG. 18) ) may implement a color image.
  • the organic light emitting display device 500 may further include color filter layers corresponding to the first to third pixel areas P1 , P2 , and P3 to improve color purity.
  • the color filter layer includes a first color filter layer (blue color filter layer) corresponding to the first pixel region P1, a second color filter layer (green color filter layer) corresponding to the second pixel region P2, and a third pixel region.
  • a third color filter layer (red color filter layer) corresponding to (P3) may be included.
  • the color filter layer may be positioned between the organic light emitting diode D and the substrate 510 .
  • the color filter layer may be positioned above the organic light emitting diode D.
  • the organic light emitting display device 1000 includes a substrate 1010 on which first to third pixel regions P1, P2, and P3 are defined, and a thin film transistor Tr positioned on the substrate 1010.
  • the first pixel region P1 may be a blue pixel region
  • the second pixel region P2 may be a green pixel region
  • the third pixel region P3 may be a red pixel region.
  • the substrate 1010 may be a glass substrate or a flexible substrate.
  • the flexible substrate may be any one of a PI substrate, a PES substrate, a PEN substrate, a PET substrate, and a PC substrate.
  • the thin film transistor Tr is positioned on the substrate 1010 .
  • a buffer layer (not shown) may be formed on the substrate 1010, and the thin film transistor Tr may be formed on the buffer layer.
  • the thin film transistor Tr includes a semiconductor layer, a gate electrode, a source electrode, and a drain electrode, and functions as a driving element.
  • a color filter layer 1020 is positioned on the substrate 1010 .
  • the color filter layer 820 includes a first color filter layer 1022 corresponding to the first pixel region P1, a second color filter layer 1024 corresponding to the second pixel region P2, and a third pixel region ( A third color filter layer 1026 corresponding to P3) may be included.
  • the first color filter layer 1022 may be a blue color filter layer
  • the second color filter layer 1024 may be a green color filter layer
  • the third color filter layer 1026 may be a red color filter layer.
  • the first color filter layer 1022 includes at least one of a blue dye and a blue pigment
  • the second color filter layer 1024 includes at least one of a green dye and a green pigment
  • the third color filter layer 1026 may include at least one of a red dye and a red pigment.
  • a planarization layer 1050 is positioned on the thin film transistor Tr and the color filter layer 1020 .
  • the planarization layer 1050 has a flat upper surface and has a drain contact hole 1052 exposing a drain electrode (not shown) of the thin film transistor Tr.
  • the organic light emitting diode D is positioned on the planarization layer 1050 and corresponds to the color filter layer 1020 .
  • the organic light emitting diode (D) includes a first electrode 1110 connected to the drain electrode of the thin film transistor (Tr), a light emitting layer 1120 and a second electrode 1130 sequentially positioned on the first electrode 1110. do.
  • the organic light emitting diode D emits white light from the first to third pixel regions P1, P2, and P3.
  • the first electrode 1110 is separated and formed for each of the first to third pixel regions P1, P2, and P3, and the second electrode 1130 corresponds to the first to third pixel regions P1, P2, and P3. is formed integrally.
  • the first electrode 1110 may be one of an anode and a cathode, and the second electrode 1130 may be the other of an anode and a cathode.
  • the first electrode 1110 may be a transmissive electrode, and the second electrode 1130 may be a reflective electrode.
  • the first electrode 1110 may be an anode and may include a transparent conductive oxide layer made of a conductive material having a relatively high work function value, for example, transparent conductive oxide (TCO).
  • the second electrode 1130 may be a cathode and may include a metal material layer made of a conductive material having a relatively low work function value, for example, a low-resistance metal.
  • the transparent conductive oxide layer of the first electrode 1110 includes any one of ITO, IZO, ITZO, SnO, ZnO, ICO, and AZO
  • the second electrode 1130 includes Al, Mg, Ca, Ag, It may be made of these alloys (eg, Mg-Ag alloy) or a combination thereof.
  • a light emitting layer 1120 is formed on the first electrode 1110 .
  • the light emitting layer 1120 includes at least two light emitting parts emitting different colors.
  • Each of the light emitting units may have a single layer structure of the light emitting material layer EML.
  • the light emitting unit further includes at least one of a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), a hole blocking layer (HBL), an electron transport layer (ETL), and an electron injection layer (EIL), respectively.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • HBL hole blocking layer
  • ETL electron transport layer
  • EIL electron injection layer
  • the light emitting layer 1120 may further include a charge generation layer (CGL) positioned between light emitting units.
  • CGL charge generation layer
  • At least one light emitting material layer (EML) among the at least two light emitting parts includes a first compound (DF), which is a delayed fluorescent material having a structure of Chemical Formulas 1 to 5, and a fluorescent material having a structure of Chemical Formulas 6 to 8 It may include a second compound (FD), which is phosphorus, and a third compound (H), which may optionally be a host.
  • DF first compound
  • FD second compound
  • H third compound
  • a bank layer 1060 covering an edge of the first electrode 1110 is formed on the planarization layer 1050 .
  • the bank layer 1060 exposes the center of the first electrode 1110 corresponding to each of the first to third pixel regions P1 , P2 , and P3 .
  • the organic light emitting diode D emits white light in the first to third pixel regions P1, P2, and P3, the light emitting layer 1120 has the first to third pixel regions P1, P2, and P3. P3) can be formed as a common layer without needing to be separated.
  • the bank layer 1060 is formed to prevent leakage of current at the edge of the first electrode 1110, and the bank layer 1060 may be omitted.
  • the organic light emitting display device 1000 may further include an encapsulation film disposed on the second electrode 1130 to prevent external moisture from penetrating into the organic light emitting diode D.
  • the organic light emitting display device 1000 may further include a polarizer positioned under the substrate 1010 to reduce reflection of external light.
  • the first electrode 1110 is a transmissive electrode
  • the second electrode 1130 is a reflective electrode
  • the color filter layer 1020 is formed between the substrate 1010 and the organic light emitting diode D ) is located between That is, the organic light emitting display device 1000 is a bottom emission type.
  • the first electrode 1110 is a reflective electrode
  • the second electrode 1130 is a transmissive electrode (transflective electrode)
  • the color filter layer 1020 is an organic light emitting diode (D ) can be located at the top.
  • the organic light emitting diodes D of the first to third pixel regions P1, P2, and P3 emit white light
  • the first to third color filter layers 1022, 1024, and 1026 emit white light.
  • blue, green, and red colors are displayed in the first to third pixel regions P1, P2, and P3, respectively.
  • a color conversion layer may be provided between the organic light emitting diode D and the color filter layer 1020 .
  • the color conversion layer corresponds to each of the first to third pixel regions P1, P2, and P3, includes a blue color conversion layer, a green color conversion layer, and a red color conversion layer, and emits light emitted from the organic light emitting diode (D). It can convert white light into blue, green and red respectively.
  • the color conversion layer may include quantum dots. Accordingly, color purity of the organic light emitting display device 1000 may be further improved.
  • a color conversion layer may be included instead of the color filter layer 1020 .
  • the organic light emitting diode D6 has a first electrode 1110 and a second electrode 1130 facing each other and a light emitting layer 1120 positioned between the first and second electrodes 1110 and 1130.
  • the first electrode 1110 may be an anode
  • the second electrode 1130 may be a cathode.
  • the first electrode 1110 may be a transmissive electrode
  • the second electrode 1130 may be a reflective electrode.
  • the light-emitting layer 1120 includes a first light-emitting part 1220 including a first light-emitting material layer 1240 (lower light-emitting material layer) and a second light-emitting part including a second light-emitting material layer 1340 (middle light-emitting material layer). 1320 and a third light emitting part 1420 including a third light emitting material layer 1440 (upper light emitting material layer).
  • the light emitting layer 1120 includes a first charge generation layer 1280 positioned between the first light emitting unit 1220 and the second light emitting unit 1320, the second light emitting unit 1320 and the third light emitting unit 1420. ) may further include a second charge generation layer 1380 positioned between them. Therefore, the first light emitting part 1220, the first charge generating layer 1280, the second light emitting part 1320, the second charge generating layer 1380, and the third light emitting part 1420 form the first electrode 1110. sequentially stacked on top.
  • the first light emitting unit 1220 includes a hole injection layer 1250 positioned between the first electrode 1110 and the first light emitting material layer 1240, and the first light emitting material layer 1240 and the hole injection layer 1250. At least one of the first hole transport layer (HTL1, 1260) located between and the first electron transport layer (ETL1, 1270) located between the first light emitting material layer 1240 and the first charge generation layer 1280 can include Optionally, the first light emitting unit 1220 includes a first electron blocking layer EBL1 and 1265 positioned between the first hole transport layer 1260 and the first light emitting material layer 1240 and the first light emitting material layer 1240. And at least one of the first hole blocking layer 1275 (HBL1) positioned between the first electron transport layer 1270 may be further included.
  • HBL1 first electron blocking layer
  • the second light emitting unit 1320 includes the second hole transport layers HTL2 and 1360 positioned between the first charge generation layer 1280 and the second light emitting material layer 1340, the second light emitting material layer 1340, and the second light emitting material layer 1340. At least one of the second electron transport layers ETL2 and 1370 positioned between the two charge generation layers 1380 may be included.
  • the second light emitting unit 1220 includes a second electron blocking layer (EBL2, 1365) and a second light emitting material layer 1340 positioned between the second hole transport layer 1360 and the second light emitting material layer 1340. At least one of the second hole blocking layers HBL2 and 1375 positioned between the first electron transport layer 1370 and the second electron transport layer 1370 may be further included.
  • the third light emitting unit 1420 includes a third hole transport layer (HTL3, 1460) positioned between the second charge generation layer 1380 and the third light emitting material layer 1440, the third light emitting material layer 1440, and the third light emitting material layer 1440.
  • a third electron transport layer HTL3, 1470 located between the second electrodes 1130 and an electron injection layer (HIL, 1480) located between the third electron transport layer 1470 and the second electrode 1130 can include
  • the third light emitting unit 1420 includes a third electron blocking layer (EBL3, 1465) and a third light emitting material layer 1440 positioned between the third hole transport layer 1460 and the third light emitting material layer 1440.
  • at least one of the third hole blocking layer 1475 positioned between the third electron transport layer 1470 may be further included.
  • the first charge generation layer 1280 is positioned between the first light emitting part 1220 and the second light emitting part 1320 . That is, the first light emitting part 1220 and the second light emitting part 1320 are connected by the first charge generation layer 1280 .
  • the first charge generation layer 1280 may be a PN junction charge generation layer in which the first N-type charge generation layer 1282 and the first P-type charge generation layer 1284 are bonded.
  • the first N-type charge generation layer 1282 is located between the first electron transport layer 1270 and the second hole transport layer 1360, and the first P-type charge generation layer 1284 is the first N-type charge generation layer 1282 ) and the second hole transport layer 1360.
  • the first N-type charge generation layer 1282 transfers electrons to the first light-emitting material layer 1240 of the first light-emitting unit 1220, and the first P-type charge generation layer 1284 transfers holes to the second light-emitting unit. 1320 is transferred to the second light emitting material layer 1340.
  • the second charge generation layer 1380 is positioned between the second light emitting part 1320 and the third light emitting part 1420 . That is, the second light emitting part 1320 and the third light emitting part 1420 are connected by the second charge generation layer 1380 .
  • the second charge generation layer 1380 may be a PN junction charge generation layer in which the second N-type charge generation layer 1382 and the second P-type charge generation layer 1384 are bonded together.
  • the second N-type charge generation layer 1382 is located between the second electron transport layer 1370 and the third hole transport layer 1460, and the second P-type charge generation layer 1384 is the second N-type charge generation layer 1382 ) and the third hole transport layer 1460.
  • the first N-type charge generation layer 1382 transfers electrons to the first light-emitting material layer 1340 of the second light-emitting unit 1320, and the second P-type charge generation layer 1384 transfers holes to the third light-emitting unit. 1420 is transferred to the third light emitting material layer 1440.
  • one of the first to third light emitting material layers 1240 , 1340 and 1440 is a blue light emitting material layer, and among the first to third light emitting material layers 1240 , 1340 and 1440 The other may be a green light emitting material layer, and the rest of the first to third light emitting material layers 1240 , 1340 , and 1440 may be red light emitting material layers.
  • the first light emitting material layer 1240 may be a blue light emitting material layer
  • the second light emitting material layer 1340 may be a green light emitting material layer
  • the third light emitting material layer 1440 may be a red light emitting material layer.
  • the first light emitting material layer 1240 may be a red light emitting material layer
  • the second light emitting material layer 1340 may be a green light emitting material layer
  • the third light emitting material layer 1440 may be a blue light emitting material layer.
  • the first light emitting material layer 1240 is a blue light emitting material layer
  • the second light emitting material layer 1340 is a green light emitting material layer
  • the third light emitting material layer 1340 is a red light emitting material layer.
  • the first light-emitting material layer 1240 includes a first compound (DF), which is a delayed fluorescent material having a structure of Chemical Formulas 1 to 5, and a second compound (FD), which is a fluorescent material having a structure of Chemical Formulas 6 to 8; Optionally, it may include a third compound (H) which may be a host.
  • the first light-emitting material layer 1240 including the first to third compounds may have a single-layer structure, a two-layer structure (see FIG. 11), or a three-layer structure (see FIG. 14).
  • the content of the third compound (H) may be greater than the content of the first compound (DF), and the content of the first compound (DF) may be greater than the content of the second compound (FD).
  • the content of the first compound (DF) is greater than the content of the second compound (FD)
  • energy can be sufficiently transferred from the first compound (DF) to the second compound (FD).
  • the second light emitting material layer 1340 may include a host and a green dopant
  • the third light emitting material layer 1440 may include a host and a red dopant.
  • the host includes a third compound (H)
  • green and red dopants are green and red phosphors, respectively, and green and red phosphors. It may include at least one of a fluorescent material and green and red delayed fluorescent materials.
  • the organic light emitting diode D6 emits white light in the first to third pixel regions P1, P2, and P3 (see FIG. 16), and is formed to correspond to the first to third pixel regions P1, P2, and P3. It passes through the color filter layer (1020, see FIG. 20). Accordingly, the organic light emitting display device 1000 (refer to FIG. 20 ) can implement a full-color image.
  • the organic light emitting diode D7 has a first electrode 1110 and a second electrode 1130 facing each other and a light emitting layer 1120A positioned between the first and second electrodes 1110 and 1130. ).
  • the first electrode 1110 may be an anode, and the second electrode 1130 may be a cathode.
  • the first electrode 1110 may be a transmissive electrode, and the second electrode 1130 may be a reflective electrode.
  • the light-emitting layer 1120A includes a first light-emitting part 1520 including a first light-emitting material layer 1540 (lower light-emitting material layer) and a second light-emitting part including a second light-emitting material layer 1640 (middle light-emitting material layer). 1620 and a third light emitting part 1720 including a third light emitting material layer 1740 (upper light emitting material layer).
  • the light emitting layer 1120A includes a first charge generation layer 1580 positioned between the first light emitting part 1520 and the second light emitting part 1620, the second light emitting part 1620 and the third light emitting part 1720 ) may further include a second charge generation layer 1680 positioned between them. Therefore, the first light emitting part 1520, the first charge generating layer 1580, the second light emitting part 1620, the second charge generating layer 1680, and the third light emitting part 1720 form the first electrode 1110. sequentially stacked on top.
  • the first light emitting unit 1520 includes a hole injection layer 1550 (HIL) positioned between the first electrode 1110 and the first light emitting material layer 1540, the first light emitting material layer 1540 and the hole injection layer ( 1550) at least one of the first hole transport layer (HTL1, 1560) located between the first light emitting material layer 1540 and the first electron transport layer (ETL1, 1570) located between the first charge generation layer 1580 may contain one.
  • the first light emitting unit 1520 includes a first electron blocking layer EBL1 and 1565 positioned between the first hole transport layer 1560 and the first light emitting material layer 1540 and the first light emitting material layer 1540. And at least one of the first hole blocking layer 1575 (HBL1) positioned between the first electron transport layer 1570 may be further included.
  • the second light emitting material layer 1640 constituting the second light emitting unit 1620 includes a lower light emitting material layer (first layer, 1642) and an upper light emitting material layer (second layer, 1644). That is, the lower light emitting material layer 1642 is positioned close to the first electrode 1110 and the upper light emitting material layer 1644 is positioned close to the second electrode 1130 .
  • the second light emitting unit 1620 includes a second hole transport layer (HTL2, 1660) positioned between the first charge generation layer 1580 and the second light emitting material layer 1640, and the second light emitting material layer 1640. and at least one of the second electron transport layers ETL2 and 1670 positioned between the second charge generation layer 1680 .
  • HTL2 second hole transport layer
  • the second light emitting unit 1620 includes a second electron blocking layer (EBL2, 1665) and a second light emitting material layer 1640 positioned between the second hole transport layer 1660 and the second light emitting material layer 1640. At least one of the second hole blocking layers HBL2 and 1675 positioned between the first electron transport layer 1670 and the second electron transport layer 1670 may be further included.
  • EBL2, 1665 second electron blocking layer
  • HBL2 and 1675 At least one of the second hole blocking layers HBL2 and 1675 positioned between the first electron transport layer 1670 and the second electron transport layer 1670 may be further included.
  • the third light emitting unit 1720 includes a third hole transport layer (HTL3, 1760) positioned between the second charge generation layer 1680 and the third light emitting material layer 1740, the third light emitting material layer 1740, and the third light emitting material layer 1740.
  • a third electron transport layer (HTL3, 1770) positioned between the second electrodes 1130 and an electron injection layer (HIL, 1780) positioned between the third electron transport layer 1770 and the second electrode 1130 can include
  • the third light emitting unit 1720 includes a third electron blocking layer (EBL3, 1765) and a third light emitting material layer 1740 positioned between the third hole transport layer 1760 and the third light emitting material layer 1740.
  • at least one of the third hole blocking layer 1775 positioned between the third electron transport layer 1770 may be further included.
  • the first charge generation layer 1580 is positioned between the first light emitting part 1520 and the second light emitting part 1620 . That is, the first light emitting part 1520 and the second light emitting part 1620 are connected by the first charge generation layer 1580 .
  • the first charge generation layer 1580 may be a PN junction charge generation layer in which the first N-type charge generation layer 1582 and the first P-type charge generation layer 1584 are bonded.
  • the first N-type charge generation layer 1582 is located between the first electron transport layer 1570 and the second hole transport layer 1660, and the first P-type charge generation layer 1584 is the first N-type charge generation layer 1582 ) and the second hole transport layer 1660.
  • the second charge generation layer 1680 is positioned between the second light emitting part 1620 and the third light emitting part 1720 . That is, the second light emitting part 1620 and the third light emitting part 1720 are connected by the second charge generation layer 1680 .
  • the second charge generation layer 1680 may be a PN junction charge generation layer in which the second N-type charge generation layer 1682 and the second P-type charge generation layer 1684 are bonded.
  • the second N-type charge generation layer 1682 is located between the second electron transport layer 1670 and the third hole transport layer 1760, and the second P-type charge generation layer 1684 is the second N-type charge generation layer 1682 ) and the third hole transport layer 1760.
  • each of the first light emitting material layer 1540 and the third light emitting material layer 1740 may be a blue light emitting material layer.
  • the first light-emitting material layer 1540 and the third light-emitting material layer 1740 each independently include a first compound (DF), which is a delayed fluorescent material having a structure represented by Chemical Formulas 1 to 5, and Chemical Formulas 6 to 6. It may include a second compound (FD), which is a fluorescent material having a structure of Chemical Formula 8, and a third compound (H), which may optionally be a host.
  • DF first compound
  • FD a delayed fluorescent material having a structure represented by Chemical Formulas 1 to 5
  • Chemical Formulas 6 to 6 It may include a second compound (FD), which is a fluorescent material having a structure of Chemical Formula 8, and a third compound (H), which may optionally be a host.
  • the first compound (DF), the second compound (FD), and the third compound (H) constituting the first light emitting material layer 1540 and the third light emitting material layer 1740 may be the same or different, respectively.
  • the third light emitting material layer 1740 includes a compound different from at least one of the first compound DF and the second compound FD included in the first light emitting material layer 5240 to emit the first light emitting material. Light having a wavelength different from that of the material layer 1540 may be emitted or light emitting efficiency may be different.
  • the first light-emitting material layer 1540 and the third light-emitting material layer 1740 include the first compound (DF), the second compound (FD), and the third compound (H)
  • the content of the third compound (H) is greater than the content of the first compound (DF)
  • the content of the first compound (DF) is greater than that of the second compound (FD).
  • ) may be greater than the content of
  • Either one of the middle lower light emitting material layer (first layer, 1642) and the middle upper light emitting material layer (second layer, 1644) constituting the second light emitting material layer 1640 is a green light emitting material layer, and the second light emitting material Among the middle lower light emitting material layer 1642 and the middle upper light emitting material layer 1644 constituting the layer 1640 , the other may be a red light emitting material layer. That is, the second light emitting material layer 1640 is formed by continuously stacking the green light emitting material layer and the red light emitting material layer.
  • the lower middle light emitting material layer 1642 which may be a green light emitting material layer
  • the upper middle light emitting material layer 1644 which is a red light emitting material layer
  • the host may include the third compound (H)
  • the green and red dopants may include at least one of green and red phosphors, green and red fluorescent materials, and green and red delayed fluorescent materials, respectively.
  • the organic light emitting diode D7 emits white light in all of the first to third pixel regions P1, P2, and P3 (see FIG. 15), and the color filter layer in each of the first to third pixel regions P1, P2, and P3. (1020, see FIG. 20), the organic light emitting display device (1000, see FIG. 20) can implement a full-color image.
  • the organic light emitting diode D7 includes first and third light emitting material layers 1540 and 1740 which are blue light emitting material layers, respectively, and includes first to third light emitting parts 1520, 1620 and 1720. It has a triple stack structure. In contrast, either one of the first and third light emitting units 1520 and 1720 including the first and third light emitting material layers 1540 and 1740 is omitted, and the organic light emitting diode D7 has a double stack structure. may be
  • Example 1 (Ex. 1): Organic Light-Emitting Diode Manufacturing
  • the ITO attached substrates were cleaned with UV ozone before use and loaded into the evaporation system. It was transported into a deposition chamber to deposit other layers on top of the substrate. Organic layers were deposited in the following order by evaporation from a heating boat under a vacuum of about 10 ⁇ 7 Torr. At this time, the deposition rate of the organic material was set to 1 ⁇ /s.
  • ITO 50 nm
  • Hole injection layer HAT-CN, thickness 7 nm
  • hole transport layer NPB, thickness 45 nm
  • electron blocking layer TAPC, thickness 10 nm
  • hole blocking layer B3PYMPM, thickness 10 nm
  • electron blocking layer TBi, thickness 30 nm
  • LiF cathode
  • Al cathode
  • CPL capping layer
  • Example 2 (Ex. 2): Organic Light-Emitting Diode Manufacturing
  • Example 3 (Ex. 3): Organic Light-Emitting Diode Manufacturing
  • Example 4 (Ex. 4): Organic Light-Emitting Diode Manufacturing
  • the 1-83 compound of Formula 5 (HOMO: -5.5 eV, LUMO: -2.7 eV, onset wavelength: 434 nm, dihedral angle 65.8 degrees) was used Except, an organic light emitting diode was manufactured using the same materials as in Example 1.
  • Example 5 (Ex. 5): Organic Light-Emitting Diode Manufacturing
  • Example 6 (Ex. 6): Organic Light-Emitting Diode Manufacturing
  • Example 7 (Ex. 7): Organic Light-Emitting Diode Manufacturing
  • compound 1-48 of Formula 5 (HOMO: -5.6 eV, LUMO: -2.6 eV, onset wavelength: 430 nm, dihedral angle 72.0 degrees) was used Except, an organic light emitting diode was manufactured using the same materials as in Example 1.
  • Example 8 (Ex. 8): Organic Light-Emitting Diode Manufacturing
  • Example 9 (Ex. 9): Organic Light-Emitting Diode Manufacturing
  • 1-112 compound of Formula 5 (HOMO: -5.6 eV, LUMO: -2.7 eV, onset wavelength: 432 nm, dihedral angle 70.4 degrees) was used as the first compound of the light emitting material layer instead of 1-47 compound. Except, an organic light emitting diode was manufactured using the same materials as in Example 1.
  • Example 10 (Ex. 10): Organic Light-Emitting Diode Manufacturing
  • the same material as in Example 9 was used, except for using the 2-23 compound of Formula 8 (HOMO: -5.4 eV, LUMO: -2.8 eV) instead of the 2-1 compound.
  • 2-23 compound of Formula 8 HOMO: -5.4 eV, LUMO: -2.8 eV
  • the first compound and the second compound of the light emitting material layer Sample first compound second compound ⁇ HOMO (eV) ⁇ onset DF dihedral angle (do) compound HOMO (eV) compound HOMO (eV) Ex.
  • HOMO (eV) ⁇ onset DF dihedral angle (do) compound HOMO (eV) compound HOMO (eV)
  • eV onset DF dihedral angle
  • HOMO (eV) compound HOMO (eV) Ex.
  • An organic light emitting diode was manufactured using the same materials as in Example 1, except that mCBP and the compound 1-47 of Formula 8 were mixed in a weight ratio of 70:30 in the light emitting material layer.
  • An organic light emitting diode was manufactured using the same materials as in Example 1, except that Compound 2-1 (HOMO: -5.2 eV, LUMO: -2.7 eV) was used.
  • An organic light emitting diode was manufactured using the same materials as in Example 1, except that Compound 2-2 (HOMO: -5.2 eV, LUMO: -2.6 eV) was used.
  • An organic light emitting diode was manufactured using the same materials as in Example 4, except that mCBP and the 1-83 compound of Formula 8 were mixed in a weight ratio of 70:30 in the light emitting material layer.
  • An organic light emitting diode was manufactured using the same materials as in Example 4, except that Compound 2-1 (HOMO: -5.2 eV, LUMO: -2.7 eV) was used.
  • An organic light emitting diode was manufactured using the same materials as in Example 4, except that Compound 2-2 (HOMO: -5.2 eV, LUMO: -2.6 eV) was used.
  • An organic light emitting diode was manufactured using the same materials as in Example 7, except that mCBP and the 1-48 compound of Formula 8 were mixed in a weight ratio of 70:30 in the light emitting material layer.
  • An organic light emitting diode was manufactured using the same materials as in Example 7, except that Compound 2-1 (HOMO: -5.2 eV, LUMO: -2.7 eV) was used.
  • An organic light emitting diode was manufactured using the same materials as in Example 9, except that mCBP and the 1-112 compound of Formula 8 were mixed in a weight ratio of 70:30 in the light emitting material layer.
  • An organic light emitting diode was manufactured using the same materials as in Example 9, except that Compound 2-1 (HOMO: -5.2 eV, LUMO: -2.7 eV) was used.
  • mCBP and Ref. 1-1 compound (HOMO: -5.9 eV, LUMO: -2.8 eV, onset wavelength: 434 nm, dihedral angle: 68.7 degrees) using the same materials as in Example 1, except that they were blended in a weight ratio of 70:30.
  • An organic light emitting diode was manufactured.
  • An organic light emitting diode was manufactured using the same materials as in Example 1, except for using the 1-1 compound.
  • An organic light emitting diode was manufactured using the same materials as in Comparative Example 12, except that Compound 2-23 of Chemical Formula 8 was used instead of Compound 2-1 as the second compound of the light emitting material layer.
  • An organic light emitting diode was manufactured using the same materials as in Comparative Example 12, except that Compound 2-24 of Chemical Formula 8 was used instead of Compound 2-1 as the second compound of the light emitting material layer.
  • mCBP and Ref. 1-2 compounds (HOMO: -6.0 eV, LUMO: -3.0 eV, onset wavelength: 426 nm, dihedral angle: 54.5 degrees) were mixed in a 70:30 weight ratio, using the same materials as in Example 1.
  • An organic light emitting diode was manufactured.
  • An organic light emitting diode was manufactured using the same materials as in Example 1, except that Compound 1-2 was used.
  • An organic light emitting diode was manufactured using the same materials as in Comparative Example 18, except that Compound 2-24 of Chemical Formula 8 was used instead of Compound 2-1 as the second compound of the light emitting material layer.
  • An organic light emitting diode was manufactured using the same materials as in Comparative Example 18, except that Compound 2-1 (HOMO: -5.2 eV, LUMO: -2.7 eV) was used.
  • mCBP and Ref. 1-3 compounds (HOMO: -5.6 eV, LUMO: -2.6 eV, onset wavelength: 424 nm, dihedral angle: 70.0 degrees) were mixed in a 70:30 weight ratio, using the same materials as in Example 1.
  • An organic light emitting diode was manufactured.
  • An organic light emitting diode was manufactured using the same materials as in Example 1, except that Compound 1-3 was used.
  • An organic light emitting diode was manufactured using the same materials as in Comparative Example 22, except that Compound 2-23 of Chemical Formula 8 was used instead of Compound 2-1 as the second compound of the light emitting material layer.
  • mCBP and Ref. 1-4 compounds (HOMO: -5.5 eV, LUMO: -2.7 eV, onset wavelength: 450 nm, dihedral angle: 68.5 degrees) were mixed in a 70:30 weight ratio, using the same materials as in Example 1.
  • An organic light emitting diode was manufactured.
  • An organic light emitting diode was manufactured using the same materials as in Example 1, except for using the compound 1-4.
  • An organic light emitting diode was manufactured using the same materials as in Comparative Example 25, except that Compound 2-23 of Chemical Formula 8 was used instead of Compound 2-1 as the second compound of the light emitting material layer.
  • mCBP and Ref. 1-4 compounds (HOMO: -5.5 eV, LUMO: -2.7 eV, onset wavelength: 450 nm, dihedral angle: 68.5 degrees) were mixed in a 70:30 weight ratio, using the same materials as in Example 1.
  • An organic light emitting diode was manufactured.
  • An organic light emitting diode was manufactured using the same materials as in Example 1, except for using compounds 1-5.
  • An organic light emitting diode was manufactured using the same materials as in Comparative Example 28, except that Compound 2-23 of Chemical Formula 8 was used instead of Compound 2-1 as the second compound of the light emitting material layer.
  • mCBP and Ref. 1-6 compounds (HOMO: -5.6 eV, LUMO: -2.8 eV, onset wavelength: 448 nm, dihedral angle: 78.6 degrees) were mixed in a 70:30 weight ratio, using the same materials as in Example 1.
  • An organic light emitting diode was manufactured.
  • An organic light emitting diode was manufactured using the same materials as in Example 1, except for using the compounds 1-6.
  • An organic light emitting diode was manufactured using the same materials as in Comparative Example 31, except that Compound 2-23 of Chemical Formula 8 was used instead of Compound 2-1 as the second compound of the light emitting material layer. Structures of comparative compounds used in Comparative Examples are shown below.
  • the first compound and the second compound of the light emitting material layer Sample first compound second compound ⁇ HOMO (eV) ⁇ onset DF dihedral angle (do) compound HOMO (eV) compound HOMO (eV) Ref.
  • ⁇ HOMO (eV) ⁇ onset DF dihedral angle (do) compound HOMO (eV) compound HOMO (eV) Ref.
  • eV onset DF dihedral angle
  • Optical characteristics were measured for the organic light emitting diodes manufactured in Examples 1 to 10 and Comparative Examples 1 to 32, respectively.
  • Each organic light emitting diode having an emission area of 9 mm 2 was connected to an external power source, and device characteristics were evaluated at room temperature using a current source (KEITHLEY) and a photometer (PR 650).
  • Table 3 shows the light emitting characteristics of the organic light emitting diodes prepared in Examples 1 to 10
  • Table 4 shows the light emitting characteristics of the organic light emitting diodes prepared in Comparative Examples 1 to 32, respectively.
  • the HOMO energy band gap of the first compound and the second compound is less than 0.3 eV, and the onset wavelength of the first compound is set to 430 nm to 440 nm Emission characteristics of organic light emitting diodes This has been greatly improved.
  • Comparative Example 1 Comparative Example 4, Comparative Example 7, Comparative Example 9, Comparative Example 11, Comparative Example 17, Comparative Example 21, Comparative Example 24, Comparative Example 27, and Comparative Example 30, a dopant called a light emitting material Compared to the organic light emitting diode using only the first compound, the driving voltage of the organic light emitting diode prepared in Example was lowered by up to 21.5%, the EQE was improved by up to 256.7%, and the light emitting lifespan was greatly improved. In addition, compared to the organic light emitting diodes manufactured in these comparative examples, the organic light emitting diodes manufactured in Examples implemented an emission wavelength in a blue wavelength band.
  • Comparative Examples 2-3, Comparative Examples 4-6, Comparative Example 8, Comparative Example 10, Comparative Examples 12-16, and Comparative Examples 17-20 the HOMO energy band gap between the first compound and the second compound Hole traps occurred when it exceeded 0.3 eV.
  • Comparative Examples 15-16 and Comparative Example 20 when the HOMO energy band gap between the first compound and the second compound exceeded 0.5 eV, exciplex was formed.
  • the EQE of the organic light-emitting diodes prepared in Examples was improved by up to 100.8%, and the light emission lifespan was improved by up to 100.8%. Greatly improved.
  • the EQE of the organic light emitting diodes prepared in Examples was improved by up to 94.3%, and the light emitting lifetime was significantly improved. Improved. In particular, in the organic light emitting diodes manufactured according to Comparative Example 25 and Comparative Example 26, the color purity was lowered and the color coordinates moved to the green region.
  • the onset wavelength is less than 430 nm or greater than 440 nm, and the electron donor moiety has an acridine moiety, so that the dihedral angle is increased.
  • the driving voltage of the organic light emitting diode manufactured in Example was lowered by up to 23.3%, the EQE was improved by up to 246.4%, and the light emitting lifespan was greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 개시는 2개의 전극 사이에 위치하는 발광물질층이 보론과, 산소, 황 또는 셀레늄 중에서 적어도 하나가 축합환을 형성하는 제 1 화합물 및 보론과 질소가 축합환을 형성하는 제 2 화합물을 포함하는 유기발광다이오드와, 상기 유기발광다이오드를 포함하는 유기발광장치에 관한 것이다. 제 1 화합물과 제 2 화합물은 동일한 발광물질층 내에 또는 인접한 발광물질층에 포함될 수 있다. 에너지 준위가 조절될 수 있는 제 1 화합물과 제 2 화합물을 포함한 발광물질층을 적용하여, 유기발광다이오드의 구동 전압을 낮추고 발광 효율 및 발광 수명을 향상시킬 수 있다.

Description

유기발광다이오드 및 이를 포함하는 유기발광장치
이 출원은, 본 출원에 전체 내용이 병합되어 있는, 2021.10.12자로 대한민국에서 출원된 제10-2021-0134734호의 우선권의 이익을 주장한다.
본 개시는 유기발광다이오드에 관한 것으로, 더욱 상세하게는 우수한 발광 특성을 가지는 유기발광다이오드 및 이를 포함하는 유기발광장치에 관한 것이다.
평면표시소자 중의 하나인 유기발광다이오드는 액정표시장치(Liquid Crystal Display Device)를 빠르게 대체하는 발광 소자로서 주목을 받고 있다. 유기발광다이오드(organic light emitting diodes; OLED)는 2000 Å 이내의 얇은 유기 박막으로 형성되고, 사용되는 전극의 구성에 따라 단일 방향 또는 양방향으로의 화상을 구현할 수 있다. 또한 유기발광다이오드는 플라스틱과 같은 플렉서블(flexible) 투명 기판 위에도 소자를 형성할 수 있어서 플렉서블 또는 폴더블(foldable) 표시장치를 구현하기 용이하다. 뿐만 아니라, 유기발광다이오드 표시장치는 낮은 전압에서 구동이 가능하고, 색 순도가 우수하여, 액정표시장치에 비하여 큰 장점을 가지고 있다.
유기발광다이오드는 양극에서 주입된 정공(hole)과 음극에서 주입된 전자(electron)가 발광물질층에서 결합하여 엑시톤을 형성하여 불안정한 에너지 상태(excited state)로 되었다가, 안정한 바닥 상태(ground state)로 돌아오며 빛을 방출한다. 종래의 일반적인 형광 물질은 단일항 엑시톤만이 발광에 참여하기 때문에 발광 효율이 낮다. 삼중항 엑시톤도 발광에 참여하는 인광 물질은 형광 물질에 비하여 발광 효율이 높다. 하지만, 대표적인 인광 물질인 금속 착화합물은 발광 수명이 짧아서 상용화에 한계가 있다.
본 개시의 목적은 구동 전압을 낮추면서, 발광 효율, 색순도 및 발광 수명을 향상시킬 수 있는 유기발광다이오드 및 유기발광다이오드를 포함하는 유기발광장치를 제공하고자 하는 것이다.
일 측면에 따르면, 본 개시는 제 1 전극; 상기 제 1 전극과 마주하는 제 2 전극; 및 상기 제 1 및 제 2 전극 사이에 위치하며, 발광물질층을 포함하는 발광층을 포함하고, 상기 발광물질층은 제 1 화합물 및 제 2 화합물을 포함하고, 상기 제 1 화합물은 하기 화학식 1의 구조를 가지는 유기 화합물을 포함하고, 상기 제 2 화합물은 하기 화학식 6의 구조를 가지는 유기 화합물을 포함하는 유기발광다이오드를 제공한다.
화학식 1
Figure PCTKR2022005837-appb-img-000001
화학식 1에서, R1 내지 R11는 각각 독립적으로 경수소, 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 방향족 또는 치환되지 않거나 치환된 C3-C30 헤테로 방향족이며, 상기 R1 내지 R11 중에서 1 내지 4개는 하기 화학식 2의 구조를 가짐; X1 및 X2는 각각 독립적으로 O, S 또는 Se임; Q1은 중수소, 삼중수소, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C6-C30 아릴, 치환되지 않거나 치환된 C3-C30 헤테로 아릴, 치환되지 않거나 치환된 C6-C30 아릴 아미노 또는 치환되지 않거나 치환된 C3-C30 헤테로 아릴 아미노임.
화학식 2
Figure PCTKR2022005837-appb-img-000002
화학식 2에서, 별표는 화학식 1의 축합 고리에 연결되는 부위를 나타냄; R12 및 R13은 각각 독립적으로 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환딘 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 실릴, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 방향족 또는 치환되지 않거나 치환된 C3-C30 헤테로 방향족이며, m이 복수인 경우 각각의 R12는 상이하거나 동일할 수 있고, n이 복수인 경우 각각의 R13은 상이하거나 동일할 수 있으며, 선택적으로 m과 n이 각각 복수인 경우, 인접한 적어도 2개의 R12 및/또는 인접한 적어도 2개의 R13은 각각 결합하여 치환되지 않거나 치환된 C6-C20 방향족 고리 또는 치환되지 않거나 치환된 C3-C20 헤테로 방향족 고리를 형성할 수 있음; m과 n은 각각 독립적으로 0 내지 4의 정수임.
화학식 6
Figure PCTKR2022005837-appb-img-000003
화학식 6에서, R21 내지 R28은 각각 독립적으로 경수소, 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 실기, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 방향족 또는 치환되지 않거나 치환된 C3-C30 헤테로 방향족이며, 선택적으로 R31 내지 R34 중에서 인접한 2개가 서로 결합하여 보론과 질소를 갖는 치환되지 않거나 치환된 축합환을 형성함, q가 복수인 경우 각각의 R25는 상이하거나 동일할 수 있고, r이 복수인 경우 각각의 R26은 상이하거나 동일할 수 있고, s가 복수인 경우 R27은 상이하거나 동일할 수 있고, t가 복수인 경우 R28은 상이하거나 동일할 수 있음; q와 s는 각각 독립적으로 0 내지 5의 정수이고, r은 0 내지 3의 정수이며, t는 0 내지 4의 정수임.
일례로, 상기 제 1 화합물의 최고점유분자궤도(Highest Occupied Molecular Orbital, HOMO) 에너지 준위(HOMODF)와 상기 제 2 화합물의 HOMO 에너지 준위(HOMOFD)는 하기 식 (1)을 충족할 수 있다.
|HOMOFD - HOMODF| < 0.3 eV (1)
상기 제 2 화합물의 여기 단일항 에너지 준위와 여기 삼중항 에너지 준위 사이의 에너지 밴드갭은, 상기 제 1 화합물의 여기 단일항 준위와 여기 삼중항 에너지 준위 사이의 에너지 밴드갭보다 작을 수 있다.
일례로, 상기 제 1 화합물의 최고점유분자궤도(HOMO) 에너지 준위와 최저비점유분자궤도(LUMO) 에너지 준위 사이의 에너지 밴드갭은 약 -2.6 eV 이상 약 -3.1 eV 이하일 수 있다.
상기 제 1 화합물의 온셋파장은 약 430 nm 내지 약 440 nm일 수 있다.
상기 제 1 화합물은 하기 화학식 3의 구조를 가지는 유기 화합물을 포함할 수 있다.
화학식 3
Figure PCTKR2022005837-appb-img-000004
화학식 3에서, X1 및 X2는 각각 화학식 1에서 정의된 것과 동일함; R14 내지 R16은 각각 독립적으로 경수소, 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 아릴 또는 치환되지 않거나 치환된 C3-C30 헤테로 아릴기이며, p가 복수인 경우 각각의 R15는 상이하거나 동일할 수 있으며, R14 내지 R16 중에서 적어도 하나는 하기 화학식 하기 화학식 4의 구조를 갖는 축합 헤테로 아릴임; p는 0 내지 2의 정수임.
화학식 4
Figure PCTKR2022005837-appb-img-000005
화학식 4에서, 별표는 화학식 3의 축합 고리에 연결되는 부위를 나타냄; R17 및 R18은 각각 독립적으로 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 실릴, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 방향족 또는 치환되지 않거나 치환된 C3-C30 헤테로 방향족이며, m이 복수인 경우 각각의 R17는 상이하거나 동일할 수 있고, n이 복수인 경우 각각의 R18은 상이하거나 동일할 수 있으며, 선택적으로 n이 복수인 경우 인접한 적어도 2개의 R18은 각각 결합하여 치환되지 않거나 치환된 C3-C20 헤테로 방향족 고리를 형성할 수 있음; m과 n은 각각 독립적으로 0 내지 4의 정수임.
상기 제 2 화합물은 하기 화학식 7A 내지 화학식 7C의 구조를 가지는 유기 화합물을 포함할 수 있다.
화학식 7A
Figure PCTKR2022005837-appb-img-000006
화학식 7B
Figure PCTKR2022005837-appb-img-000007
화학식 7C
Figure PCTKR2022005837-appb-img-000008
화학식 7A 내지 화학식 7C에서, R21, R25 내지 R28 및 R31 내지 R34는 각각 독립적으로 경수소, 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 실릴, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 아릴 또는 치환되지 않거나 치환된 C3-C30 헤테로 아릴기임.
예시적인 측면에서, 상기 적어도 하나의 발광물질층은 단층 구조의 발광물질층을 포함할 수 있다.
상기 단층 구조의 발광물질층은 제 3 화합물을 더욱 포함할 수 있다.
상기 단층 구조의 발광물질층 중에 상기 제 1 화합물의 함량은 약 10 내지 약 40 중량%, 상기 제 2 화합물의 함량은 약 0.1 내지 약 5 중량%, 상기 제 3 화합물의 함량은 약 55 내지 약 85 중량%일 수 있다.
선택적인 측면에서, 상기 적어도 하나의 발광물질층은, 상기 제 1 및 제 2 전극 사이에 위치하는 제 1 발광물질층과, 상기 제 1 전극과 상기 제 1 발광물질층 사이 또는 상기 제 2 전극과 상기 제 2 발광물질층 사이에 위치하는 제 2 발광물질층을 포함하고, 상기 제 1 발광물질층은 제 1 화합물을 포함하고, 상기 제 2 발광물질층은 제 2 화합물을 포함하는 유기발광다이오드.
제 1 화합물과 제 2 화합물이 각각 제 1 발광물질층과 제 2 발광물질층에 포함되는 경우, 상기 제 1 발광물질층은 제 3 화합물을 더욱 포함하고, 상기 제 2 발광물질층은 제 4 화합물을 더욱 포함할 수 있다.
상기 제 3 화합물의 여기 삼중항 에너지 준위는 상기 제 1 화합물의 여기 삼중항 에너지 준위보다 높고, 상기 제 1 화합물의 여기 삼중항 에너지 준위는 상기 제 2 화합물의 여기 삼중항 에너지 준위보다 높을 수 있다.
상기 3 화합물의 여기 단일항 에너지 준위는 상기 제 1 화합물의 여기 단일항 에너지 준위보다 높고, 상기 제 1 화합물의 여기 단일항 에너지 준위는 상기 제 2 화합물의 여기 단일항 에너지 준위보다 높을 수 있다.
상기 제 4 화합물의 여기 단일항 에너지 준위는 상기 제 2 화합물의 여기 단일항 에너지 준위보다 높을 수 있다.
제 1 화합물과 제 2 화합물이 각각 별개의 발광물질층에 포함되는 경우, 상기 적어도 하나의 발광물질층은 상기 제 1 발광물질층을 중심으로 상기 제 2 발광물질층의 반대쪽에 위치하는 제 3 발광물질층을 더욱 포함할 수 있다.
상기 상기 제 3 발광물질층은 제 5 화합물과 제 6 화합물을 포함하고, 상기 제 5 화합물은 상기 화학식 6의 구조를 가지는 유기 화합물을 포함할 수 있다.
상기 발광층은, 상기 제 1 및 제 2 전극 사이에 위치하는 제 1 발광부와, 상기 제 1 발광부와 상기 제 2 전극 사이에 위치하는 제 2 발광부와, 상기 제 1 및 제 2 발광부 사이에 위치하는 전하생성층을 포함하고, 상기 제 1 발광부와 상기 제 2 발광부 중에서 적어도 하나는 상기 적어도 하나의 발광물질층을 포함할 수 있다.
일례로, 제 1 발광부는 상기 적어도 하나의 발광물질층을 포함하고, 상기 제 2 발광부는 적색 및 녹색 중에서 적어도 하나의 광을 방출할 수 있다.
또 다른 측면에 따르면, 본 개시는 기판; 및 전술한 유기발광다이오드를 포함하는 유기발광장치, 예를 들어 유기발광 조명장치 또는 유기발광표시장치를 제공한다.
본 개시는 에너지 준위가 조절된 제 1 화합물 및 제 2 화합물이 동일한 발광물질층 내에 또는 인접한 발광물질층에 포함된 유기발광다이오드 및 상기 유기발광다이오드를 포함하는 유기발광장치를 제안한다.
제 1 화합물 및 제 2 화합물의 에너지 준위를 조절하여, 정공이 제 2 화합물에서 포획되지 않고 발광 효율이 우수하고 열 안정이 뛰어난 제 1 화합물로 전하가 신속하게 주입, 이동할 수 있다. 제 1 화합물과 제 2 화합물 사이에 들뜬복합체가 형성되지 않고, 발광 효율이 우수한 제 1 화합물에서 내부양자효율 100%를 구현하고, 제 1 화합물에서 생성된 엑시톤은 제 2 화합물로 전달된다.
전하 주입 효율 및 엑시톤 생성 효율이 개선되어, 유기발광다이오드의 구동 전압을 낮추고 발광 효율을 크게 향상시킬 수 있다. 최종적인 발광은 반치폭이 협소하며 발광 수명이 우수한 제 2 화합물에서 일어나기 때문에, 유기발광다이오드의 색 순도 및 발광 수명을 향상시킬 수 있다.
도 1은 본 개시에 따른유기발광표시장치의 개략적인 회로도이다.
도 2는 본 개시의 예시적인 측면에 따른 따른 유기발광장치의 일례로서 유기발광표시장치를 개략적으로 도시한 단면도이다.
도 3은 본 개시의 예시적인 측면에 따른 유기발광다이오드를 개략적으로 나타낸 단면도이다.
도 4는 본 개시의 예시적인 측면에 다라 발광물질층을 구성하는 제 1 화합물과 제 2 화합물을 중심으로 발광 물질의 에너지 준위가 조절되어, 정공이 제 2 화합물로 효율적으로 전달되는 상태를 개략적으로 나타낸 모식도이다.
도 5는 발광물질층을 구성하는 제 1 화합물과 제 2 화합물의 HOMO 에너지 준위가 조절되지 않을 때, 정공이 제 2 화합물에 트랩(포획)되는 문제를 개략적으로 나타낸 모식도이다.
도 6은 발광물질층을 구성하는 제 1 화합물과 제 2 화합물의 HOMO 에너지 준위 및 LUMO 에너지 준위가 조절되지 않을 때, 정공이 제 2 화합물에 포획되고, 제 1 화합물과 제 2 화합물 사이에 엑시플렉스(들뜬복합체)가 형성되는 문제를 개략적으로 나타낸 모식도이다.
도 7은 본 개시의 예시적인 측면에 따라 발광물질층에 포함되는 제 1 화합물의 발광 파장을 제어하여, 발광 효율과 색 순도를 향상시킬 수 있는 것을 개략적으로 나타낸 도면이다.
도 8은 발광물질층에 포함되는 제 1 화합물의 온셋파장이 특정 범위 미만인 경우, 유기발광다이오드의 발광 효율이 저하되는 것을 개략적으로 나타낸 도면이다.
도 9는 발광물질층에 포함되는 제 1 화합물의 온셋파장이 특정 범위를 초과하는 경우, 유기발광다이오드의 발광 효율 및 색 순도가 저하되는 것을 개략적으로 나타낸 도면이다.
도 10은 본 개시의 예시적인 측면에 따른 유기발광다이오드를 구성하는 발광물질층에서 발광 물질 사이의 단일항 에너지 준위 및 삼중항 에너지 준위에 따른 발광 메커니즘을 개략적으로 나타낸 모식도이다.
도 11은 본 개시의 다른 예시적인 측면에 따른 유기발광다이오드를 개략적으로 나타낸 단면도이다.
도 12는 본 개시의 다른 예시적인 측면에 따라 발광물질층을 구성하는 제 1 화합물과 제 2 화합물의 HOMO 에너지 준위가 조절되어, 정공이 제 2 화합물로 효율적으로 전달되는 상태를 개략적으로 나타낸 모식도이다.
도 13은 본 개시의 다른 예시적인 측면에 따른 유기발광다이오드를 구성하는 발광물질층에서 발광 물질 사이의 단일항 에너지 준위 및 삼중항 에너지 준위에 따른 발광 메커니즘을 개략적으로 나타낸 모식도이다.
도 14는 본 개시의 또 다른 예시적인 측면에 따른 유기발광다이오드를 개략적으로 나타낸 단면도이다.
도 15는 본 개시의 또 다른 예시적인 측면에 따라 발광물질층을 구성하는 제 1 화합물과 제 2 화합물의 HOMO 에너지 준위가 조절되어, 정공이 제 2 화합물로 효율적으로 전달되는 상태를 개략적으로 나타낸 모식도이다.
도 16은 본 개시의 또 다른 예시적인 측면에 따른 유기발광다이오드를 구성하는 발광물질층에서 발광 물질 사이의 단일항 에너지 준위 및 삼중항 에너지 준위에 따른 발광 메커니즘을 개략적으로 나타낸 모식도이다.
도 17은 본 개시의 또 다른 예시적인 측면에 따른 유기발광다이오드를 개략적으로 나타낸 단면도이다.
도 18은 본 개시의 또 다른 예시적인 측면에 따른 유기발광장치의 일례로서 유기발광표시장치를 개략적으로 나타낸 단면도이다.
도 19는 본 개시의 또 다른 예시적인 측면에 따른 유기발광다이오드를 개략적으로 나타낸 단면도이다.
도 20은 본 개시의 또 다른 예시적인 측면에 따른 유기발광장치의 일례로서 유기발광표시장치를 개략적으로 나타낸 단면도이다.
도 21은 본 개시의 또 다른 측면에 따른 유기발광다이오드를 개략적으로 나타낸 단면도이다.
도 22는 본 개시의 또 다른 측면에 따른 유기발광다이오드를 개략적으로 나타낸 단면도이다.
본 개시는 에너지 준위가 조절된 제 1 화합물과 제 2 화합물이 동일한 발광물질층 내에 또는 인접한 발광물질층에 적용된 유기발광다이오드 및 상기 유기발광다이오드를 포함하는 유기발광장치에 대한 것이다. 본 개시에 따른 유기발광다이오드는 유기발광표시장치 또는 유기발광조명 장치 등의 유기발광장치에 적용될 수 있다. 일례로, 본 개시의 유기발광다이오드를 적용한 표시장치에 대해서 설명한다.
도 1은 본 개시의 예시적인 측면에 따른 유기발광표시장치의 개략적인 회로도이다. 도 1에 나타낸 바와 같이, 유기발광표시장치(100)에는, 서로 교차하여 화소영역(P)을 정의하는 게이트 배선(GL)과, 데이터 배선(DL) 및 파워 배선(PL)이 형성된다. 화소영역(P)에는, 스위칭 박막트랜지스터(Ts), 구동 박막트랜지스터(Td), 스토리지 커패시터(Cst) 및 유기발광다이오드(D)가 형성된다. 화소영역(P)은 제 1 화소영역(P1, 도 18 참조), 제 2 화소영역(P2, 도 18 참조) 및 제 3 화소영역(도 18 참조)을 포함할 수 있다.
스위칭 박막트랜지스터(Ts)는 게이트 배선(GL) 및 데이터 배선(DL)에 연결되고, 구동 박막트랜지스터(Td) 및 스토리지 커패시터(Cst)는 스위칭 박막트랜지스터(Ts)와 파워 배선(PL) 사이에 연결된다. 유기발광다이오드(D)는 구동 박막트랜지스터(Td)에 연결된다. 이러한 유기발광 표시장치에서는, 게이트 배선(GL)에 인가된 게이트 신호에 따라 스위칭 박막트랜지스터(Ts)가 턴-온(turn-on) 되면, 데이터 배선(DL)에 인가된 데이터 신호가 스위칭 박막트랜지스터(Ts)를 통해 구동 박막트랜지스터(Td)의 게이트 전극(130, 도 2)과 스토리지 커패시터(Cst)의 일 전극에 인가된다.
구동 박막트랜지스터(Td)는 게이트 전극(130)에 인가된 데이터 신호에 따라 턴-온 되며, 그 결과 데이터 신호에 비례하는 전류가 파워 배선(PL)으로부터 구동 박막트랜지스터(Td)를 통하여 유기발광다이오드(D)로 흐르게 되고, 유기발광다이오드(D)는 구동 박막트랜지스터(Td)를 통하여 흐르는 전류에 비례하는 휘도로 발광한다. 이때, 스토리지 커패시터(Cst)에는 데이터 신호에 비례하는 전압으로 충전되어, 일 프레임(frame) 동안 구동 박막트랜지스터(Td)의 게이트 전극의 전압이 일정하게 유지되도록 한다. 따라서, 유기발광표시장치(100)는 원하는 영상을 표시할 수 있다.
도 2는 본 개시의 예시적인 측면에 따른 유기발광표시장치를 개략적으로 나타낸 단면도이다. 도 2에 개략적으로 나타낸 바와 같이, 유기발광표시장치(100)는 기판(110)과, 기판(110) 상부에 위치하는 박막트랜지스터(Tr)와, 평탄화층(150) 상에 위치하며 박막트랜지스터(Tr)에 연결되는 유기발광다이오드(D)를 포함한다.
기판(110)은 유리 기판, 얇은 플렉서블(flexible) 기판 또는 고분자 플라스틱 기판일 수 있다. 예를 들어, 플렉서블 기판은 polyimide(PI), polyethersulfone(PES), polyethylenenaphthalate(PEN), polyethylene Terephthalate(PET) 및 polycarbonate(PC) 중에서 어느 하나로 형성될 수 있다. 그 상부에 박막트랜지스터(Tr)와, 유기발광다이오드(D)가 위치하는 기판(110)은 어레이 기판을 이룬다.
기판(110) 상에 버퍼층(122)이 형성되고, 버퍼층(122) 상에 박막트랜지스터(Tr)가 형성된다. 버퍼층(122)은 생략될 수 있다.
버퍼층(122) 상부에 반도체층(120)이 형성된다. 예를 들어, 반도체층(120)은 산화물 반도체 물질로 이루어질 수 있다. 반도체층(120)이 산화물 반도체 물질로 이루어지는 경우, 반도체층(120) 하부에 차광패턴(도시하지 않음)이 형성될 수 있다. 차광패턴은 반도체층(120)으로 빛이 입사되는 것을 방지하여 반도체층(120)이 빛에 의하여 열화되는 것을 방지한다. 선택적으로, 반도체층(120)은 다결정 실리콘으로 이루어질 수도 있으며, 이 경우 반도체층(120)의 양 가장자리에 불순물이 도핑될 수 있다.
반도체층(120)의 상부에는 절연 물질로 이루어진 게이트 절연막(124)이 기판(110) 전면에 형성된다. 게이트 절연막(124)은 실리콘산화물(SiOx) 또는 실리콘질화물(SiNx) (0 < X ≤ 2)과 같은 무기 절연 물질로 이루어질 수 있다.
게이트 절연막(124) 상부에는 금속과 같은 도전성 물질로 이루어진 게이트 전극(130)이 반도체층(120)의 중앙에 대응하여 형성된다. 도 2에서 게이트 절연막(122)은 기판(110) 전면에 형성되어 있으나, 게이트 절연막(1202은 게이트 전극(130)과 동일한 모양으로 패터닝 될 수도 있다.
게이트 전극(130) 상부에는 절연 물질로 이루어진 층간 절연막(132)이 기판(110) 전면에 형성된다. 층간 절연막(132)은 실리콘산화물(SiOx) 또는 실리콘질화물(SiNx)과 같은 무기 절연 물질로 형성되거나, 벤조사이클로부텐(benzocyclobutene)이나 포토 아크릴(photo-acryl)과 같은 유기 절연 물질로 형성될 수 있다.
층간 절연막(132)은 반도체층(120)의 양측 상면을 노출하는 제 1 및 제 2 반도체층 컨택홀(134, 136)을 갖는다. 제 1 및 제 2 반도체층 컨택홀(134, 136)은 게이트 전극(130)의 양측에서 게이트 전극(130)과 이격되어 위치한다. 여기서, 제 1 및 제 2 반도체층 컨택홀(134, 136)은 게이트 절연막(122) 내에도 형성될 수 있다. 선택적으로, 게이트 절연막(122)이 게이트 전극(130)과 동일한 모양으로 패터닝 될 경우, 제 1 및 제 2 반도체층 컨택홀(134, 136)은 층간 절연막(132) 내에만 형성된다.
층간 절연막(132) 상부에는 금속과 같은 도전성 물질로 이루어진 소스 전극(144)과 드레인 전극(146)이 형성된다. 소스 전극(144)과 드레인 전극(146)은 게이트 전극(130)을 중심으로 이격되어 위치하며, 각각 제 1 및 제 2 반도체층 컨택홀(134, 136)을 통해 반도체층(120)의 양측과 접촉한다.
반도체층(120), 게이트 전극(130), 소스 전극(144) 및 드레인 전극(146)은 박막트랜지스터(Tr)를 이루며, 박막트랜지스터(Tr)는 구동 소자(driving element)로 기능한다. 도 2에 예시된 박막트랜지스터(Tr)는 반도체층(120)의 상부에 게이트 전극(130), 소스 전극(144) 및 드레인 전극(146)이 위치하는 코플라나(coplanar) 구조를 가진다. 이와 달리, 박막트랜지스터(Tr)는 반도체층의 하부에 게이트 전극이 위치하고, 반도체층의 상부에 소스 전극과 드레인 전극이 위치하는 역 스태거드(inverted staggered) 구조를 가질 수 있다. 이 경우, 반도체층은 비정질 실리콘으로 이루어질 수 있다.
도 2에 도시하지 않았으나, 게이트 배선(GL, 도 1 참조)과 데이터 배선(DL, 도 1 참조)이 서로 교차하여 화소영역(P, 도 1 참조)을 정의하며, 게이트 배선(GL)과 데이터 배선에(DL)에 연결되는 스위칭 소자(Ts, 도 1 참조)가 더 형성된다. 스위칭 소자(Ts)는 구동 소자인 박막트랜지스터(Tr)에 연결된다. 또한, 파워 배선(PL, 도 1 참조)이 데이터 배선(DL)과 평행하게 이격되어 형성되며, 일 프레임(frame) 동안 구동 소자인 박막트랜지스터(Tr)의 게이트 전극의 전압을 일정하게 유지되도록 하기 위한 스토리지 커패시터(Cst, 도 1 참조)가 더 구성될 수 있다.
한편, 유기발광표시장치(100)는 유기발광다이오드(D)에서 방출된 빛의 일부를 투과시키는 컬러 필터층을 포함할 수 있다. 예를 들어, 컬러 필터층않음)은 적색(R), 녹색(G) 또는 청색(B) 광을 투과할 수 있다. 이 경우, 광을 투과하는 적색, 녹색 및 청색의 컬러 필터 패턴이 각각의 화소 영역(P, 도 1 참조)에 형성될 수 있다. 컬러 필터층을 채택함으로써, 유기발광표시장치(100)는 풀-컬러를 구현할 수 있다.
예시적인 측면에서, 유기발광표시장치(100)가 하부 발광 타입(bottom-emssion type)인 경우, 유기발광다이오드(D)에 대응하는 층간 절연막(132) 상부에 광을 투과하는 컬러 필터층이 위치할 수 있다. 다른 예시적인 측면에서, 유기발광표시장치(100)가 상부 발광 타입(top-emission type)인 경우, 컬러 필터층은 유기발광다이오드(D)의 상부, 즉 제 2 전극(230) 상부에 위치할 수도 있다.
소스 전극(144)과 드레인 전극(146) 상부에는 평탄화층(150)이 기판(110) 전면에 형성된다. 평탄화층(150)은 상면이 평탄하며, 박막트랜지스터(Tr)의 드레인 전극(146)을 노출하는 드레인 컨택홀(152)을 갖는다. 여기서, 드레인 컨택홀(152)은 제 2 반도체층 컨택홀(136) 바로 위에 형성된 것으로 도시되어 있으나, 제 2 반도체층 컨택홀(136)과 이격되어 형성될 수도 있다.
유기발광다이오드(D)는 평탄화층(150) 상에 위치하며 박막트랜지스터(Tr)의 드레인 전극(146)에 연결되는 제 1 전극(210)과, 제 1 전극(210) 상에 순차 적층되는 발광층(220) 및 제 2 전극(230)을 포함한다.
1 전극(210)은 각각의 화소영역 별로 분리되어 형성된다. 제 1 전극(210)은 양극(anode)일 수 있으며, 일함수(work function) 값이 비교적 큰 도전성 물질, 예를 들어 투명 도전성 산화물(transparent conductive oxide; TCO)로 이루어질 수 있다. 구체적으로, 제 1 전극(210)은 인듐-주석-산화물 (indium-tin-oxide; ITO), 인듐-아연-산화물(indium-zinc-oxide; IZO), 인듐-주석-아연-산화물(indium-tin-zinc oxide; ITZO), 주석산화물(SnO), 아연산화물(ZnO), 인듐-구리-산화물(indium-copper-oxide; ICO) 및 알루미늄:산화아연(Al:ZnO; AZO)으로 이루어질 수 있다.
예시적인 측면에서, 본 개시의 유기발광표시장치(100)가 하부 발광 방식인 경우, 제 1 전극(210)은 투명 도전성 산화물로 이루어진 단층 구조를 가질 수 있다. 선택적인 측면에서, 본 개시의 유기발광표시장치(100)가 상부 발광 방식인 경우, 제 1 전극(210) 하부에는 반사전극 또는 반사층이 더욱 형성될 수 있다.
예를 들어, 상기 반사전극 또는 상기 반사층은 은(Ag) 또는 알루미늄-팔라듐-구리(aluminum-palladium-copper: APC) 합금으로 이루어질 수 있다. 상부 발광 방식인 유기발광다이오드(D)에서, 제 1 전극(210)은 ITO/Ag/ITO 또는 ITO/APC/ITO의 삼중층 구조를 가질 수 있다. 또한, 평탄화층(150) 상에는 제 1 전극(210)의 가장자리를 덮는 뱅크층(160)이 형성된다. 뱅크층(160)은 화소 영역에 대응하여 제 1 전극(210)의 중앙을 노출한다.
제 1 전극(210) 상에는 발광층(220)이 형성된다. 하나의 예시적인 측면에서, 발광층(220)은 발광물질층(emitting material layer; EML)의 단층 구조를 가질 수 있다. 선택적인 측면에서, 발광층(220)은 발광물질층과 제 1 전극(210) 사이에 순차적으로 적층되는 정공주입층(hole injection layer; HIL), 정공수송층(hole transport layer; HTL) 및/또는 전자차단층(electron blocking layer; EBL)과, 발광물질층과 제 2 전극(230) 사이에 순차적으로 적층되는 정공차단층(hole blocking layer; HBL), 전자수송층(electron transport layer; ETL) 및/또는 전자주입층(electron injection layer; EIL)을 포함할 수 있다(도 3, 도 11, 도 14 및 도 17 참조). 또한 발광층(220)을 구성하는 발광부는 1개로 이루어질 수도 있고, 2개 이상의 발광부가 탠덤 구조를 형성할 수도 있다.
발광층(220)이 형성된 기판(110) 상부로 제 2 전극(230)이 형성된다. 제 2 전극(230)은 표시 영역의 전면에 위치하며 일함수 값이 비교적 작은 도전성 물질로 이루어져 음극(cathode)으로 이용될 수 있다. 예를 들어, 제 2 전극(230)은 알루미늄(Al), 마그네슘(Mg), 칼슘(Ca), 은(Ag), 또는 이들의 합금이나 조합과 같은 반사 특성이 좋은 소재로 이루어질 수 있다. 유기발광표시장치(100)가 상부 발광 방식인 경우, 제 2 전극(230)은 얇은 두께를 가져 광투과(반투과) 특성을 갖는다.
제 2 전극(230) 상에는, 외부 수분이 유기발광다이오드(D)로 침투하는 것을 방지하기 위해, 인캡슐레이션 필름(encapsulation film, 170)이 형성된다. 인캡슐레이션 필름(170)은 제 1 무기 절연층(172)과, 유기 절연층(174)과, 제 2 무기 절연층(176)의 적층 구조를 가질 수 있으나, 이에 한정되지 않는다.
유기발광표시장치(100)는 외부광의 반사를 줄이기 위한 편광판(도시하지 않음)을 더욱 포함할 수 있다. 예를 들어, 편광판(도시하지 않음)은 원형 편광판일 수 있다. 유기발광표시장치(100)가 하부 발광 방식인 경우, 편광판은 기판(110) 하부에 위치할 수 있다. 한편, 유기발광표시장치(100)가 상부 발광 방식인 경우, 편광판은 인캡슐레이션 필름(170) 상부에 위치할 수 있다. 또한, 상부 발광 방식의 유기발광표시장치(100)에서는, 인캡슐레이션 필름(170) 또는 편광판(도시하지 않음) 상에 커버 윈도우(도시하지 않음)가 부착될 수 있다. 이때, 기판(110)과 커버 윈도우(도시하지 않음)가 플렉서블 소재로 이루어진 경우, 플렉서블 표시장치를 구성할 수 있다.
본 개시의 제 1 실시형태에 따른 유기발광장치에 적용될 수 있는 유기발광다이오드에 대해서 구체적으로 설명한다. 도 3은 본 개시의 제 1 실시형태에 따른 유기발광다이오드를 개략적으로 나타낸 단면도이다. 도 3에 나타내 바와 같이, 본 개시의 제 1 실시형태에 따른 유기발광다이오드(D1)는 서로 마주하는 제 1 전극(210) 및 제 2 전극(230)과, 제 1 및 제 2 전극(210, 230) 사이에 위치하는 발광층(220)을 포함한다. 유기발광표시장치(100, 도 2 참조)는 적색 화소영역, 녹색 화소영역, 청색 화소영역을 포함하고, 유기발광다이오드(D1)는 청색 화소영역에 위치할 수 있다.
예시적인 측면에서, 발광층(230)은 제 1 및 제 2 전극(210, 230) 사이에 위치하는 발광물질층(EML, 240)을 포함한다. 또한, 발광층(220)은 제 1 전극(210)과 발광물질층(240) 사이에 위치하는 정공수송층(HTL, 260)과, 발광물질층(240)과 제 2 전극(230) 위치하는 전자수송층(ETL, 270) 중에서 적어도 어느 하나를 포함할 수 있다. 아울러, 발광층(220)은 제 1 전극(210)과 정공수송층(260) 사이에 위치하는 정공주입층(HIL, 250)과, 전자수송층(270)과 제 2 전극(230) 사이에 위치하는 전자주입층(EIL, 280) 중 적어도 어느 하나를 더욱 포함할 수 있다. 선택적으로, 유기발광다이오드(D1)는 발광물질층(240)과 정공수송층(260) 사이에 위치하는 전자차단층(EBL, 265) 및/또는 발광물질층(240)과 전자수송층(270) 사이에 배치되는 정공차단층(HBL, 275)을 포함할 수 있다.
제 1 전극(210)은 발광물질층(240)에 정공을 공급하는 양극일 수 있다. 제 1 전극(210)은 일함수(work function) 값이 비교적 큰 도전성 물질, 예를 들어 투명 도전성 산화물(TCO)로 형성되는 것이 바람직하다. 예시적인 측면에서, 제 1 전극(210)은 ITO, IZO, ITZO), SnO, ZnO, ICO 및 AZO로 이루어질 수 있다.
제 2 전극(230)은 발광물질층(240)에 전자를 공급하는 음극일 수 있다. 제 2 전극(230)은 일함수 값이 비교적 작은 도전성 물질, 예를 들어 Al, Mg, Ca, Ag, 또는 이들의 합금이나 조합과 같은 반사 특성이 좋은 소재로 이루어질 수 있다.
발광물질층(240)은 제 1 화합물(DF, 도 4 참조), 제 2 화합물(FD, 도 4 참조)을 포함하고, 선택적으로 제 3 화합물(H, 도 4 참조)을 포함할 수 있다. 예를 들어, 제 1 화합물(DF)은 지연 형광 물질이고, 제 2 화합물(FD)은 형광 물질이며, 제 3 화합물(H)은 호스트일 수 있다.
발광물질층(240)에서 정공과 전자가 만나 엑시톤을 형성할 때, 스핀의 배열에 따라 짝스핀(paired spin) 형태인 단일항 엑시톤(singlet exciton)과 홀스핀(unpaired spin) 형태인 삼중항 엑시톤(triplet exciton)이 1:3의 비율로 생성된다. 종래의 형광 물질은 단일할 엑시톤만을 활용할 수 있기 때문에, 발광 효율이 낮다. 인광 물질은 단일항 엑시톤 이외에도 삼중항 엑시톤을 모두 활용할 수 있지만, 발광 수명이 짧아 상용화 수준에 미치지 못하고 있다.
종래의 형광 물질 및 인광 물질이 가지는 단점을 해결하기 위해, 제 1 화합물(DF)은 열활성지연형광(thermally activated delayed fluorescence; TADF) 특성을 가지는 지연 형광 물질일 수 있다. 지연 형광 물질은 여기 단일항 에너지 준위(S1 DF)와 여기 삼중항 에너지 준위(T1 DF) 사이의 에너지 밴드갭(ΔEST)이 매우 협소하다(도 10 참조). 따라서, 지연 형광 물질일 수 있는 제 1 화합물(DF)에서 여기 단일항 에너지 준위(S1 DF)를 가지는 엑시톤과 여기 삼중항 에너지 준위(T1 DF)를 가지는 엑시톤은 분자내전하이동(intramolecular charge transfer, ICT)이 가능한 상태로 이동하고(S1→ICT←T1), 이로부터 바닥 상태(ground state, S0)로 전이된다(ICT →S0).
삼중항 상태와 단일항 상태에서 모두 에너지 전이가 일어나기 위해서, 지연 형광 물질은 여기 단일항 에너지 준위(S1 DF)와 여기 삼중항 에너지 준위(T1 DF) 사이의 에너지 밴드갭(ΔEST, 도 10 참조)이 0.3 eV 이하, 예를 들어 0.05 내지 0.3 eV이어야 한다. 단일항 상태와 삼중항 상태의 에너지 차이가 작은 재료는 원래의 단일항 상태의 엑시톤 에너지가 바닥 상태로 떨어지면서 형광을 나타낼 뿐만 아니라, 상온 수준의 열 에너지에 의하여 삼중항 상태에서 에너지가 보다 높은 단일항 상태로 전환(up-conversion)되는 역 계간전이(Reverse Inter System Crossing; RISC)가 일어나고, 단일항 상태가 바닥 상태로 전이되면서 지연 형광을 나타낸다.
본 개시에 따라 발광물질층(240)에 포함되는 제 1 화합물(DF)은 보론과, 산소, 황 및/또는 셀레늄 중에서 적어도 하나의 원자가 축합환을 형성하는 지연 형광 물질일 수 있다. 지연 형광 특성을 가지는 제 1 화합물(DF)은 하기 화학식 1의 구조를 가질 수 있다.
화학식 1
Figure PCTKR2022005837-appb-img-000009
화학식 1에서, R1 내지 R11는 각각 독립적으로 경수소, 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 방향족 또는 치환되지 않거나 치환된 C3-C30 헤테로 방향족이며, 상기 R1 내지 R11 중에서 1 내지 4개는 하기 화학식 2의 구조를 가짐; X1 및 X2는 각각 독립적으로 O, S 또는 Se임; Q1은 중수소, 삼중수소, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C6-C30 아릴, 치환되지 않거나 치환된 C3-C30 헤테로 아릴, 치환되지 않거나 치환된 C6-C30 아릴 아미노 또는 치환되지 않거나 치환된 C3-C30 헤테로 아릴 아미노임.
화학식 2
Figure PCTKR2022005837-appb-img-000010
화학식 2에서, 별표는 화학식 1의 축합 고리에 연결되는 부위를 나타냄; R12 및 R13은 각각 독립적으로 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환딘 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 실릴, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 방향족 또는 치환되지 않거나 치환된 C3-C30 헤테로 방향족이며, m이 복수인 경우 각각의 R12는 상이하거나 동일할 수 있고, n이 복수인 경우 각각의 R13은 상이하거나 동일할 수 있으며, 선택적으로 m과 n이 각각 복수인 경우, 인접한 적어도 2개의 R12 및/또는 인접한 적어도 2개의 R13은 각각 결합하여 치환되지 않거나 치환된 C6-C20 방향족 고리 또는 치환되지 않거나 치환된 C3-C20 헤테로 방향족 고리를 형성할 수 있음; m과 n은 각각 독립적으로 0 내지 4의 정수임.
예를 들어, 화학식 1에서 R1 내지 R11 및 화학식 2에서 R1 내지 R11일 수 있는 C6-C30 방향족, C3-C30 헤테로 방향족, 화학식 2에서 인접한 2개의 R12 및/또는 인접한 2개의 R13은 각각 결합하여 형성될 수 있는 C6-C20 방향족 고리 및/또는 C3-C20 헤테로 방향족 고리는 각각 독립적으로 치환되지 않거나, 중수소, 삼중수소, C1-C20 알킬, C6-C30 아릴, C3-C30 헤테로 아릴, C6-C30 아릴 아미노 및 C3-C30 헤테로 아릴 아미노 중에서 적어도 하나의 작용기로 치환될 수 있으나, 이에 한정되지 않는다.
예시적인 측면에서, 화학식 1의 R1 내지 R11와, 화학식 2의 R12 및 R13을 각각 구성할 수 있는 C6-C30 방향족은 C6-C30 아릴기, C7-C30 아랄킬기, C6-C30 아릴옥시기 및 C6-C30 아릴 아미노기를 포함할 수 있으나, 이에 한정되지 않는다. 화학식 1의 R1 내지 R11와, 화학식 2의 R12 및 R13을 각각 구성할 수 있는 C3-C30 헤테로 방향족은 C3-C30 헤테로 아릴기, C4-C30 헤테로 아랄킬기, C3-C30 헤테로 아릴옥시기 및 C3-C30 헤테로 아릴 아미노기를 포함할 수 있으나, 이에 한정되지 않는다.
예를 들어, R1 내지 R13를 각각 구성할 수 있는 C6-C30 아릴기는 페닐, 바이페닐, 터페닐, 나프틸, 안트라세닐, 펜탄레닐, 인데닐, 인데노인데닐, 헵탈레닐, 바이페닐레닐, 인다세닐, 페날레닐, 페난트레닐, 벤조페난트레닐, 디벤조페난트레닐, 아줄레닐, 파이레닐, 플루오란테닐, 트리페닐레닐, 크라이세닐, 테트라페닐, 테트라세닐, 플레이다에닐, 파이세닐, 펜타페닐, 펜타세닐, 플루오레닐, 인데노플루오레닐 또는 스파이로 플루오레닐과 같은 축합되지 않거나 축합된(fused) 아릴기일 수 있으나, 이에 한정되지 않는다.
선택적으로, R1 내지 R13를 각각 구성할 수 있는 C3-C30 헤테로 아릴기는 피롤릴, 피리디닐, 피리미디닐, 피라지닐, 피리다지닐, 트리아지닐, 테트라지닐, 이미다졸일, 피라졸일, 인돌일, 이소인돌일, 인다졸일, 인돌리지닐, 피롤리지닐, 카바졸일, 벤조카바졸일, 디벤조카바졸일, 인돌로카바졸일, 인데노카바졸일, 벤조퓨로카바졸일, 벤조티에노카바졸일, 퀴놀리닐, 이소퀴놀리닐, 프탈라지닐, 퀴녹살리닐, 시놀리닐, 퀴나졸리닐, 퀴노졸리닐, 퀴놀리지닐, 퓨리닐, 벤조퀴놀리닐, 벤조이소퀴놀리닐, 벤조퀴나졸리닐, 벤조퀴녹살리닐, 아크리디닐, 페난트롤리닐, 페리미디닐, 페난트리디닐, 프테리디닐, 나프타리디닐, 퓨라닐, 파이라닐, 옥사지닐, 옥사졸일, 옥사디아졸일, 트리아졸일, 디옥시닐, 벤조퓨라닐, 디벤조퓨라닐, 티오파이라닐, 잔테닐, 크로메닐, 이소크로메닐, 티오아지닐, 티오페닐, 벤조티오페닐, 디벤조티오페닐, 디퓨로피라지닐, 벤조퓨로디벤조퓨라닐, 벤조티에노벤조티오페닐, 벤조티에노디벤조티오페닐, 벤조티에노벤조퓨라닐, 벤조티에노디벤조퓨라닐 또는 N-치환된 스파이로 플루오레닐, 스파이로 플루오레노아크리디닐, 스파이로 플루오레노잔테닐과 같은 축합되지 않거나 축합된 헤테로 아릴기일 수 있으나, 이에 한정되지 않는다.
한편, 화학식 2에서 인접한 2개의 R12 및/또는 인접한 2개의 R13이 각각 결합하여 형성할 수 있는 C6-C20 방향족 고리 및 상기 C3-C20 헤테로 방향족 고리는 특별히 한정되지 않는다. 예를 들어, 인접한 2개의 R12 및/또는 인접한 2개의 R13이 각각 결합하여 형성할 수 있는 C6-C20 방향족 고리 및 상기 C3-C20 헤테로 방향족 고리는 각각 치환되지 않거나, 중수소, 삼중수소, C1-C20 알킬, C6-C30 아릴, C3-C30 헤테로 아릴, C6-C30 아릴 아미노 및 C3-C30 헤테로 아릴 아미노 중에서 적어도 하나의 작용기로 치환될 수 있는 벤젠 고리, 나프틸 고리, 안트라센 고리, 페난트렌 고리, 인덴 고리, 플루오렌 고리, 피리딘 고리, 피리미딘 고리, 트리아진 고리, 퀴놀린 고리, 인돌 고리, 벤조퓨란 고리, 벤조티오펜 고리, 디벤조퓨란 고리, 디벤조티오펜 고리 및/또는 이들의 조합을 포함할 수 있다.
예시적인 측면에서, 인접한 2개의 R12 및/또는 인접한 2개의 R13이 각각 결합하여 형성할 수 있는 C6-C20 방향족 고리 및 상기 C3-C20 헤테로 방향족 고리는 치환되지 않거나, 중수소, 삼중수소, C1-C20 알킬, C6-C30 아릴, C3-C30 헤테로 아릴, C6-C30 아릴 아미노 및 C3-C30 헤테로 아릴 아미노 중에서 적어도 하나의 작용기로 치환될 수 있는 헤테로 방향족 고리, 예를 들어 2개 이상의 고리가 축합된 헤테로 방향족 고리일 수 있다. 일례로, 인접한 2개의 R12 및/또는 인접한 2개의 R13이 각각 결합하여 형성할 수 있는 C3-C20 헤테로 방향족 고리는 각각 치환되지 않거나, 중수소, 삼중수소, C1-C20 알킬, C6-C30 아릴, C3-C30 헤테로 아릴, C6-C30 아릴 아미노 및 C3-C30 헤테로 아릴 아미노 중에서 적어도 하나의 작용기로 치환될 수 있는 인돌 고리, 벤조퓨란 고리, 벤조티오펜 고리 및 이들의 조합을 포함할 수 있으나, 이에 한정되지 않는다.
일례로, 전자주개로 기능하는 화학식 2의 구조를 가지는 헤테로 방향족 모이어티는 인데노카바졸일 모이어티, 인돌로카바졸일 모이어티, 벤조퓨로카바졸일 모이어티 및/또는 벤조티에노카바졸일 모이어티를 포함할 수 있으나, 이에 한정되지 않는다.
예를 들어, 화학식 1 및 화학식 2에서 R1 내지 R13을 각각 구성하는 C6-C30 방향족, C3-C30 헤테로 방향족, C6-C30 방향족 고리 및 C3-C30 축합 헤테로 방향족 고리는 각각 독립적으로 치환되지 않거나, C1-C10 알킬(예를 들어, t-부틸과 같은 C1-C5 알킬), C6-C30 아릴(예를 들어 페닐과 같은 C6-C15 아릴) 및 C3-C30 헤테로 아릴(예를 들어, 피리딜과 같은 C3-C15 헤테로 아릴) 및 C6-C20 아릴 아미노(예를 들어, 디페닐 아미노)로 구성되는 군에서 선택되는 적어도 하나의 작용기로 치환될 수 있다.
화학식 1에서, 보론과, 산소, 황 및 셀레늄 중에서 적어도 하나를 포함하는 축합 고리는 전자받개(electron acceptor) 모이어티로 기능하고, 화학식 2의 구조를 가지는 적어도 하나의 질소 원자를 갖는 축합 헤테로 방향족 고리는 전자주개(electron acceptor) 모이어티로 기능한다. 따라서 화학식 1의 구조를 가지는 유기 화합물은 지연 형광 특성을 갖는다.
특히, 화학식 2의 구조를 갖는 전자주개 모이어티는 벤젠 고리 사이에 질소 원자를 포함하는 5-원자 고리를 포함하고 있기 때문에, 전자주개 모이어티와 전자받개 모이어티 사이의 결합 세기가 극대화되면서 열 안정성이 우수하다. 이러한 구조를 갖는 제 1 화합물에서 전자주개 모이어티와 전자받개 모이어티 사이의 이면각(dihedral angle)이 감소하면서(약 75도 미만), 분자의 공액 구조(conjugation structure)가 개선된다. 지연 형광 특성을 갖는 제 1 화합물(DF)은 발광 효율이 우수하기 때문에, 제 1 화합물(DF)로부터 제 2 화합물(FD)로 엑시톤 에너지가 충분히 전달되면서, 초형광을 구현할 수 있다.
반면, 제 1 화합물(DF)의 전자주개 모이어티가 아크리딘계와 같은 6-원자 고리를 갖는 경우, 제 1 화합물의 전자주개 모이어티와 전자받개 모이어티 사이의 이면각이 증가하여(약 90도), 분자의 공액 구조(conjugation structure)가 끊어지면서 분자의 안정성이 감소한다. 이러한 구조를 갖는 유기 화합물을 발광물질층(240)의 제 1 화합물로 사용하는 경우, 유기발광다이오드의 발광 수명이 감소할 수 있다.
예시적인 측면에서, 화학식 1의 구조를 가지는 제 1 화합물(DF)의 분자 구조에서 말단에 위치하는 3개의 벤젠 고리 각각으로 화학식 2의 구조를 가지는 축합 헤테로 아릴인 전자주개 모이어티가 0개 내지 2개 연결될 수 있다. 아울러, 화학식 2에서 R13은 치환되지 않거나, 중수소, 삼중수소, C1-C20 알킬, C6-C30 아릴, C3-C30 헤테로 아릴, C6-C30 아릴 아미노 및 C3-C30 헤테로 아릴 아미노 중에서 적어도 하나의 작용기로 치환되거나, 적어도 인접한 2개의 R13이 결합하여, 각각 독립적으로 치환되지 않거나, 중수소, 삼중수소, C1-C20 알킬, C6-C30 아릴, C3-C30 헤테로 아릴, C6-C30 아릴 아미노 및 C3-C30 헤테로 아릴 아미노 중에서 적어도 하나의 작용기로 치환될 수 있는 인돌 고리, 벤조퓨란 고리 및 벤조티오펜 고리를 형성할 수 있다. 이와 같은 구조를 갖는 제 1 화합물(DF)은 하기 화학식 3의 구조를 가질 수 있으나, 이에 한정되지 않는다.
화학식 3
Figure PCTKR2022005837-appb-img-000011
화학식 3에서, X1 및 X2는 각각 화학식 1에서 정의된 것과 동일함; R14 내지 R16은 각각 독립적으로 경수소, 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 아릴 또는 치환되지 않거나 치환된 C3-C30 헤테로 아릴기이며, p가 복수인 경우 각각의 R15는 상이하거나 동일할 수 있으며, R14 내지 R16 중에서 적어도 하나는 하기 화학식 하기 화학식 4의 구조를 갖는 축합 헤테로 아릴임; p는 0 내지 2의 정수임.
화학식 4
Figure PCTKR2022005837-appb-img-000012
화학식 4에서, 별표는 화학식 3의 축합 고리에 연결되는 부위를 나타냄; R17 및 R18은 각각 독립적으로 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 실릴, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 방향족 또는 치환되지 않거나 치환된 C3-C30 헤테로 방향족이며, m이 복수인 경우 각각의 R17는 상이하거나 동일할 수 있고, n이 복수인 경우 각각의 R18은 상이하거나 동일할 수 있으며, 선택적으로 n이 복수인 경우 인접한 적어도 2개의 R18은 각각 결합하여 치환되지 않거나 치환된 C3-C20 헤테로 방향족 고리를 형성할 수 있음; m과 n은 각각 독립적으로 0 내지 4의 정수임.
예를 들어, 화학식 3에서 R14 내지 R16일 수 있는 C6-C30 방향족 및 C3-C30 헤테로 방향족, 화학식 4에서 R17 내지 R18일 수 있는 C6-C30 방향족 및 C3-C30 헤테로 방향족 및 2개의 인접한 R18이 결합하여 형성될 수 있는 C3-C20 헤테로 방향족 고리는 각각 독립적으로 치환되지 않거나, 중수소, 삼중수소, C1-C20 알킬, C6-C30 아릴, C3-C30 헤테로 아릴, C6-C30 아릴 아미노 및 C3-C30 헤테로 아릴 아미노 중에서 적어도 하나의 작용기로 치환될 수 있으나, 이에 한정되지 않는다.
화학식 3의 구조를 가지는 유기 화합물은 지연 형광 특성을 가질 뿐만 아니라, 후술하는 바와 같이, 제 2 화합물(FD)로 엑시톤 에너지를 효율적으로 전달하기에 충분한 단일항 에너지 준위, 삼중항 에너지 준위, HOMO 및 LUMO 에너지 준위를 가지고 있다. 일례로, 화학식 1 또는 화학식 3의 구조를 가지는 제 1 화합물(DF)은 하기 화학식 5의 구조를 가지는 유기 화합물에서 선택되는 어느 하나를 포함할 수 있으나, 이에 한정되지 않는다.
화학식 5
Figure PCTKR2022005837-appb-img-000013
Figure PCTKR2022005837-appb-img-000014
Figure PCTKR2022005837-appb-img-000015
Figure PCTKR2022005837-appb-img-000016
Figure PCTKR2022005837-appb-img-000017
Figure PCTKR2022005837-appb-img-000018
Figure PCTKR2022005837-appb-img-000019
Figure PCTKR2022005837-appb-img-000020
Figure PCTKR2022005837-appb-img-000021
Figure PCTKR2022005837-appb-img-000022
Figure PCTKR2022005837-appb-img-000023
Figure PCTKR2022005837-appb-img-000024
Figure PCTKR2022005837-appb-img-000025
Figure PCTKR2022005837-appb-img-000026
Figure PCTKR2022005837-appb-img-000027
Figure PCTKR2022005837-appb-img-000028
Figure PCTKR2022005837-appb-img-000029
Figure PCTKR2022005837-appb-img-000030
Figure PCTKR2022005837-appb-img-000031
Figure PCTKR2022005837-appb-img-000032
Figure PCTKR2022005837-appb-img-000033
Figure PCTKR2022005837-appb-img-000034
Figure PCTKR2022005837-appb-img-000035
Figure PCTKR2022005837-appb-img-000036
Figure PCTKR2022005837-appb-img-000037
Figure PCTKR2022005837-appb-img-000038
Figure PCTKR2022005837-appb-img-000039
Figure PCTKR2022005837-appb-img-000040
Figure PCTKR2022005837-appb-img-000041
Figure PCTKR2022005837-appb-img-000042
Figure PCTKR2022005837-appb-img-000043
Figure PCTKR2022005837-appb-img-000044
Figure PCTKR2022005837-appb-img-000045
Figure PCTKR2022005837-appb-img-000046
Figure PCTKR2022005837-appb-img-000047
Figure PCTKR2022005837-appb-img-000048
Figure PCTKR2022005837-appb-img-000049
Figure PCTKR2022005837-appb-img-000050
Figure PCTKR2022005837-appb-img-000051
Figure PCTKR2022005837-appb-img-000052
Figure PCTKR2022005837-appb-img-000053
Figure PCTKR2022005837-appb-img-000054
Figure PCTKR2022005837-appb-img-000055
Figure PCTKR2022005837-appb-img-000056
Figure PCTKR2022005837-appb-img-000057
Figure PCTKR2022005837-appb-img-000058
Figure PCTKR2022005837-appb-img-000059
Figure PCTKR2022005837-appb-img-000060
Figure PCTKR2022005837-appb-img-000061
Figure PCTKR2022005837-appb-img-000062
.
지연 형광 물질일 수 있는 제 1 화합물(DF)은 여기 단일항 에너지 준위(S1 DF)와 여기 삼중항 에너지 준위(T1 DF)의 차이(ΔEST)가 매우 적고(0.3 eV 이하, 도 10 참조), 역 계간전이(RISC)에 의하여 제 1 화합물(DF)의 여기 삼중항 엑시톤 에너지가 제 1 화합물(DF)의 여기 단일항 엑시톤으로 전환되기 때문에, 양자 효율이 우수하다.
그런데, 화학식 1 내지 화학식 5의 구조를 가지는 제 1 화합물(DF)은 전자주개-전자받개의 결합 구조로 인하여 뒤틀린 구조를 갖는다. 또한, 제 1 화합물(DF)은 삼중항 엑시톤을 활용하기 때문에, 추가적인 전하이동 전이(charge transfer transition, CT transition)가 유발된다. CT 발광 메커니즘에 기인하는 발광 특성에 기인하여, 화학식 1 내지 화학식 5의 구조를 가지는 제 1 화합물(DF)은 반치폭(full-width at half maximum, FWHM)이 넓어서 색 순도 측면에서 한계가 있다.
또한, 제 1 화합물(DF)의 여기 단일항 에너지 준위(S1 DF) 상태에 있는 엑시톤의 일부는 계간전이(Inter System Crossing; ISC)에 의하여 여기 삼중항 에너지 준위(T1 DF)로 전환된다. 제 1 화합물(DF)에서 RISC에 의하여 여기 삼중항 에너지 준위(T1 DF)로부터 여기 단일항 에너지 준위(S1 DF)으로 변환되지 못하고, 여기 삼중항 에너지 준위(T1 DF)에 잔류하는 삼중항 엑시톤이 생성된다. 이러한 삼중항 엑시톤은 주변의 삼중항 엑시톤 또는 폴라론(polaron)과 상호작용하면서, 삼중항-삼중항 소멸(Triplet-triplet annhilation; TTA) 또는 삼중항-폴라론 소멸(Triplet-polaron annhilation, TPA)에 의해 소광(quenching)된다. 즉, 발광물질층(240)에 제 1 화합물(DF)만을 포함하는 경우, 제 1 화합물(DF)의 삼중항 엑시톤 에너지가 발광에 기여하지 못한다. 뿐만 아니라, TTA와 TPA와 같은 소광 과정에 의하여 유기발광다이오드의 발광 수명이 저하될 수 있다.
지연 형광 물질인 제 1 화합물(DF)의 발광 특성을 극대화할 수 있도록, 발광물질층(240)은 형광 물질일 수 있는 제 2 화합물(FD)을 포함하여 초형광(Hyperfluorescence)을 구현한다. 전술한 바와 같이, 지연 형광 물질인 제 1 화합물(DF)은 단일항 엑시톤 에너지와 삼중항 엑시톤 에너지도 이용할 수 있다. 따라서, 발광물질층(240)이 지연 형광 물질인 제 1 화합물(DF)과 비교해서 적절한 에너지 준위를 가지는 형광 물질을 제 2 화합물(FD)로 포함하면, 제 1 화합물(DF)로부터 방출된 엑시톤 에너지를 제 2 화합물(FD)이 흡수하고, 제 2 화합물(FD)이 흡수한 에너지는 100% 단일항 엑시톤만 생성하면서 발광 효율을 극대화할 수 있다.
발광물질층(240)에 포함된 지연 형광 물질인 제 1 화합물(DF)의 여기 삼중항 엑시톤 에너지로부터 전환(up-conversion)된 단일항 엑시톤 에너지와 원래의 단일항 엑시톤 에너지를 포함하는 제 1 화합물(DF)의 여기 단일항 엑시톤 에너지는 Forster 공명에너지전이(Forster resonance energy transfer, FRET) 메커니즘에 의하여 동일한 발광물질층 내의 형광 물질인 제 2 화합물(FD)로 전달되고, 제 2 화합물(FD)에서 최종적인 발광이 일어난다. 제 1 화합물(DF)에서 생성된 엑시톤 에너지가 제 2 화합물(FD)로 효율적으로 전달될 수 있도록, 제 1 화합물(DF)의 발광 파장에 대하여 흡수 파장의 중첩 영역이 큰 화합물이 제 2 화합물(FD)로 사용될 수 있다. 최종적으로 발광하는 제 2 화합물(FD)은 반치폭이 협소하여 색 순도를 향상시킬 수 있고, 발광 수명이 우수하기 때문에, 발광 소자의 수명을 개선할 수 있다.
발광물질층(240)에 도입되는 제 2 화합물(DF)은 청색으로 발광하는 형광 물질일 수 있다. 예를 들어, 발광물질층(240)에 도입되는 제 2 화합물(FD)은 반치폭(FWHM)이 35 nm 이하인 보론계 형광 물질일 수 있다. 일례로, 보론계 형광 물질인 제 2 화합물(FD)은 하기 화학식 6의 구조를 가질 수 있다.
화학식 6
Figure PCTKR2022005837-appb-img-000063
화학식 6에서, R21 내지 R28은 각각 독립적으로 경수소, 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 실기, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 방향족 또는 치환되지 않거나 치환된 C3-C30 헤테로 방향족이며, 선택적으로 R21 내지 R24 중에서 인접한 2개가 서로 결합하여 보론과 질소를 갖는 치환되지 않거나 치환된 축합환을 형성함, q가 복수인 경우 각각의 R25는 상이하거나 동일할 수 있고, r이 복수인 경우 각각의 R26은 상이하거나 동일할 수 있고, s가 복수인 경우 R27은 상이하거나 동일할 수 있고, t가 복수인 경우 R28은 상이하거나 동일할 수 있음; q와 s는 각각 독립적으로 0 내지 5의 정수이고, r은 0 내지 3의 정수이며, t는 0 내지 4의 정수임.
예를 들어, 화학식 6에서 R21 내지 R29일 수 있는 C6-C30 방향족, C3-C30 헤테로 방향족 및 R21 내지 R24 중에서 인접한 2개가 서로 결합하여 형성되는 축합환은 각각 독립적으로 치환되지 않거나, 중수소, 삼중수소, C1-C20 알킬, C6-C30 아릴, C3-C30 헤테로 아릴, C6-C30 아릴 아미노 및 C3-C30 헤테로 아릴 아미노 중에서 적어도 하나의 작용기로 치환될 수 있으나, 이에 한정되지 않는다.
화학식 1에서와 유사하게, 화학식 6에서 R21 내지 R28를 각각 구성할 수 있는 C6-C30 방향족은 C6-C30 아릴기, C7-C30 아랄킬기, C6-C30 아릴옥시기 및 C6-C30 아릴 아미노기를 포함할 수 있다. 또한, 화학식 6에서 R21 내지 R28를 각각 구성할 수 있는 C3-C30 헤테로 방향족은 C3-C30 헤테로 아릴기, C4-C30 헤테로 아랄킬기, C3-C30 헤테로 아릴옥시기 및 C3-C30 헤테로 아릴 아미노기를 포함할 수 있으나, 이에 한정되지 않는다.
화학식 6의 구조를 가지는 보론계 화합물은 발광 특성이 우수하다. 화학식 6의 구조를 가지는 보론계 화합물은 넓은 판상 구조를 가지고 있기 때문에, 제 1 화합물(DF)에서 방출되는 엑시톤 에너지를 효율적으로 전이받을 수 있어서 발광 효율을 극대화할 수 있다.
예시적인 측면에서, 화학식 6의 R21 내지 R24는 서로 결합하지 않을 수 있다. 선택적인 측면에서, 화학식 6의 R22 및 R23이 서로 결합하여 보론과 질소를 갖는 축합환을 형성할 수 있다. 예를 들어, 제 2 화합물(FD)은 하기 화학식 7A 내지 화학식 7C의 구조를 가지는 보론계 유기 화합물을 포함할 수 있다.
화학식 7A
Figure PCTKR2022005837-appb-img-000064
화학식 7B
Figure PCTKR2022005837-appb-img-000065
화학식 7C
Figure PCTKR2022005837-appb-img-000066
화학식 7A 내지 화학식 7C에서, R21, R25 내지 R28 및 R31 내지 R34는 각각 독립적으로 경수소, 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 실릴, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 아릴 또는 치환되지 않거나 치환된 C3-C30 헤테로 아릴기임.
예를 들어, 화학식 7A 내지 7C에서 R21, R25 내지 R28 및 R31 내지 R34일 수 있는 C6-C30 아릴 및 C3-C30 헤테로 아릴은 각각 독립적으로 치환되지 않거나, 중수소, 삼중수소, C1-C20 알킬, C6-C30 아릴, C3-C30 헤테로 아릴, C6-C30 아릴 아미노 및 C3-C30 헤테로 아릴 아미노 중에서 적어도 하나의 작용기로 치환될 수 있으나, 이에 한정되지 않는다.
다른 예시적인 측면에서, 보론계 유기 화합물인 제 2 화합물(FD)은 하기 화학식 8의 구조를 가지는 유기 화합물에서 선택되는 어느 하나를 포함할 수 있으나, 이에 한정되지 않는다.
화학식 8
Figure PCTKR2022005837-appb-img-000067
Figure PCTKR2022005837-appb-img-000068
Figure PCTKR2022005837-appb-img-000069
Figure PCTKR2022005837-appb-img-000070
Figure PCTKR2022005837-appb-img-000071
Figure PCTKR2022005837-appb-img-000072
Figure PCTKR2022005837-appb-img-000073
Figure PCTKR2022005837-appb-img-000074
Figure PCTKR2022005837-appb-img-000075
Figure PCTKR2022005837-appb-img-000076
Figure PCTKR2022005837-appb-img-000077
Figure PCTKR2022005837-appb-img-000078
Figure PCTKR2022005837-appb-img-000079
Figure PCTKR2022005837-appb-img-000080
Figure PCTKR2022005837-appb-img-000081
.
한편, 발광물질층(240)에 포함될 수 있는 제 3 화합물(H)은 제 1 화합물(DF) 및/또는 제 2 화합물(FD)과 비교하여, HOMO 에너지 준위 및 LUMO 에너지 준위 사이의 에너지 밴드갭(Eg)이 넓은 임의의 유기 화합물을 포함할 수 있다. 발광물질층(240)이 호스트일 수 있는 제 3 화합물(H)을 포함하는 경우, 제 1 화합물(DF)은 제 1 도펀트일 수 있고, 제 2 화합물(FD)은 제 2 도펀트일 수 있다.
예시적인 측면에서, 발광물질층(240)에 포함될 수 있는 제 3 화합물(H)은 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP), 3,3'-bis(N-carbazolyl)-1,1'-biphenyl (mCBP), 1,3-Bis(carbazol-9-yl)benzene (mCP), 9-(3-(9H-carbazol-9-yl)phenyl)-9H-carbazole-3-carbonitrile (mCP-CN), Oxybis(2,1-phenylene))bis(diphenylphosphine oxide (DPEPO), 2,8-bis(diphenylphosphoryl)dibenzothiophene (PPT), 1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene (TmPyPB), 2,6-Di(9H-carbazol-9-yl)pyridine (PYD-2Cz), 2,8-di(9H-carbazol-9-yl)dibenzothiophene (DCzDBT), 3',5'-Di(carbazol-9-yl)-[1,1'-bipheyl]-3,5-dicarbonitrile (DCzTPA), 4'-(9H-carbazol-9-yl)biphenyl-3,5-dicarbonitrile(4'-(9H-carbazol-9-yl)biphenyl-3,5-dicarbonitrile (pCzB-2CN), 3'-(9H-carbazol-9-yl)biphenyl-3,5-dicarbonitrile (mCzB-2CN), Diphenyl-4-triphenylsilylphenyl-phosphine oxide (TSPO1), 9-(9-phenyl-9H-carbazol-6-yl)-9H-carbazole (CCP), 4-(3-(triphenylen-2-yl)phenyl)dibenzo[b,d]thiophene, 9-(4-(9H-carbazol-9-yl)phenyl)-9H-3,9'-bicarbazole, 9-(3-(9H-carbazol-9-yl)phenyl)-9H-3,9'-bicarbazole, 9-(6-(9H-carbazol-9-yl)pyridin-3-yl)-9H-3,9'-bicabazole 및 이들의 조합을 포함할 수 있으나, 이에 한정되지 않는다.
예시적인 측면에서, 발광물질층(240, EML)이 제 1 화합물(DF), 제 2 화합물(FD) 및 제 3 화합물(H)을 포함하는 경우, 발광물질층(240) 내에 제 3 화합물(H)의 함량은 제 1 화합물(DF)의 함량보다 크고, 제 1 화합물(DF)의 함량은 제 2 화합물(FD)의 함량보다 클 수 있다. 제 1 화합물(DF)의 함량이 제 2 화합물(FD)의 함량보다 큰 경우, 제 1 화합물(DF)로부터 제 2 화합물(FD)로 FRET 메커니즘에 의한 엑시톤 에너지 전달이 충분히 일어날 수 있다. 일례로, 발광물질층(240, EML) 중에 제 3 화합물(H)은 약 55 내지 약 85 중량%, 제 1 화합물(DF)은 약 10 내지 약 40 중량%, 예를 들어 약 10 내지 약 30 중량%, 제 2 화합물(FD)은 약 0.1 내지 약 5 중량%, 예를 들어 약 0.1 내지 약 2 중량%로 포함될 수 있으나, 이에 한정되지 않는다.
예시적인 측면에서, 호스트인 제 3 화합물(H)과, 지연 형광 물질인 제 1 화합물(DF)과 형광 물질인 제 3 화합물(FD)의 HOMO 에너지 준위 및/또는 LUMO) 에너지 준위가 적절하게 조절되어야 한다. 예를 들어, 초형광을 구현하기 위하여, 호스트는 지연 형광 물질에서의 삼중항 상태의 엑시톤이 소광(비-발광 소멸, quenching)되지 않고 발광에 관여할 수 있도록 유도할 수 있어야 한다. 이를 위해서, 호스트인 제 3 화합물(H), 지연 형광 물질인 제 1 화합물(DF), 형광 물질인 제 2 화합물(FD)의 에너지 준위가 조절되어야 한다.
도 4는 본 개시의 제 1 실시형태에 따른 유기발광다이오드(D1)에서 발광물질층을 구성하는 제 1 화합물과 제 2 화합물을 중심으로 발광 물질의 에너지 준위가 조절되어 전하가 효율적으로 전달되는 상태를 개략적으로 나타낸 모식도이다.
도 4에 나타낸 바와 같이, 호스트일 수 있는 제 3 화합물(H)의 HOMO 에너지 준위(HOMOH)는 지연 형광 물질일 수 있는 제 1 화합물(DF)의 HOMO 에너지 준위(HOMODF)보다 깊을 수 있고, 제 3 화합물(H)의 LUMO 에너지 준위(LUMOH)는 제 1 화합물(DF)의 LUMO 에너지 준위(LUMODF)보다 얕을 수 있다. 즉, 제 3 화합물(H)의 HOMO 에너지 준위(HOMOH)와 LUMO 에너지 준위(LUMOH) 사이의 에너지 밴드갭은 제 1 화합물(DF)의 HOMO 에너지 준위(HOMODF)와 LUMO 에너지 준위(LUMODF) 사이의 에너지 밴드갭보다 넓을 수 있다.
일례로, 발광물질층(EML)에서, 호스트일 수 있는 제 3 화합물(H)의 HOMO 에너지 준위(HOMOH)와 지연 형광 물질일 수 있는 1 화합물(DF)의 HOMO 에너지 준위(HOMODF)의 차이(|HOMOH-HOMODF|) 또는 제 3 화합물(H)의 LUMO 에너지 준위(LUMOH)와 제 1 화합물(DF)의 LUMO 에너지 준위(LUMODF)의 차이(|LUMOH-LUMODF|)는 0.5 eV 이하, 예를 들어, 약 0.1 내지 약 0.5 eV일 수 있다. 이 경우, 제 3 화합물(H)에서 제 1 화합물(DF)로의 전하 이동 및/또는 전하 주입 효율이 향상되어, 유기발광다이오드(D1)의 발광 효율을 향상시킬 수 있다.
예시적인 측면에서, 제 1 화합물(DF)의 HOMO 에너지 준위(HOMODF)와 제 2 화합물(FD)의 HOMO 에너지 준위(HOMOFD) 사이의 에너지 밴드갭(ΔHOMO-1)은 하기 식 (1)을 충족한다.
|HOMOFD - HOMODF| < 0.3 eV (1)
제 1 화합물(DF)의 HOMO 에너지 준위(HOMODF)와 제 2 화합물(FD)의 HOMO 에너지 준위(HOMOFD) 사이의 에너지 밴드갭(ΔHOMO-1)이 식 (1)을 충족하는 경우, 발광물질층(240)으로 주입된 정공은 제 1 화합물(DF)로 신속하게 전달될 수 있다. 이에 따라, 제 1 화합물(DF)은 원래의 단일항 엑시톤 에너지와, RISC 메커니즘에 의하여 삼중항 엑시톤 에너지로부터 전환된 단일할 엑시톤 에너지를 모두 활용하여 내부양자효율 100%를 구현할 수 있고, 제 2 화합물(FD)로 엑시톤 에너지를 효율적으로 전달할 수 있다. 일례로, 제 1 화합물(DF)의 HOMO 에너지 준위(HOMODF)와 제 2 화합물(FD)의 HOMO 에너지 준위(HOMOFD)는 하기 식 (2)를 충족할 수 있으나, 이에 한정되지 않는다.
|HOMOFD - HOMODF| ≤ 0.2 eV (2)
다른 예시적인 측면에서, 제 1 화합물(DF)의 LUMO 에너지 준위(LUMODF)는 제 2 화합물(FD)의 LUMO 에너지 준위(LUMOFD)와 비교해서, 얕거나(shallow) 동일할 수 있다. 일례로, 제 1 화합물(DF)의 LUMO 에너지 준위(LUMODF)와 제 2 화합물(FD)의 LUMO 에너지 준위(LUMOFD)는 하기 식 (3)을 충족할 수 있다.
0 ≤ LUMODF - LUMOFD ≤ 0.5 eV (3)
제 1 화합물(DF)의 LUMO 에너지 준위(LUMODF)와 제 2 화합물(FD)의 LUMO 에너지 준위(LUMOFD)가 식 (3)을 충족하는 경우, 발광물질층(240)으로 주입된 전자는 제 1 화합물(DF)로 신속하게 전달될 수 있다. 일례로, 제 1 화합물(DF)의 LUMO 에너지 준위(LUMODF)와 제 2 화합물(FD)의 LUMO 에너지 준위(LUMOFD)는 하기 식 (4)를 충족할 수 있다.
0 ≤ LUMODF - LUMOFD ≤ 0.2 eV (4)
지연 형광 물질인 제 1 화합물(DF)에서 엑시톤이 재결합할 수 있기 때문에, RISC 메커니즘을 이용하여 내부양자효율 100%를 구현할 수 있다. 제 1 화합물(DF)에서 RISC를 통해 생성된 여기 단일항 엑시톤 에너지는 FRET을 통해 형광 물질인 제 2 화합물(FD)로 전달되고, 제 2 화합물(FD)에서 효율적인 발광이 일어날 수 있다.
일례로, 제 1 화합물(DF)의 HOMO 에너지 준위(HOMODF)는 약 -5.4 eV 내지 약 -5.7 eV일 수 있고, 제 1 화합물(DF)의 LUMO 에너지 준위(LUMODF)는 약 -2.5 eV 내지 약 -2.8 eV일 수 있으나, 이에 한정되지 않는다. 제 2 화합물(FD)의 HOMO 에너지 준위(HOMOFD)는 약 -5.3 eV 내지 약 -5.7 eV일 수 있고, 제 2 화합물(FD)의 LUMO 에너지 준위(LUMOFD)는 약 -2.7 eV 내지 약 -3.0 eV일 수 있으나, 이에 한정되지 않는다.
제 1 화합물(DF)의 HOMO 에너지 준위(HOMODF)와 LUMO 에너지 준위(LUMODF) 사이의 에너지 밴드갭은 제 2 화합물(FD)의 HOMO 에너지 준위((HOMODF)와 LUMO 에너지 준위(LUMOFD) 사이의 에너지 밴드갭보다 넓을 수 있다. 예시적인 측면에서, 제 1 화합물(DF)의 HOMO 에너지 준위(HOMODF)와 LUMO 에너지 준위(LUMODF) 사이의 밴드갭은 약 2.6 eV 이상 약 3.1 eV 이하, 예를 들어 약 2.7 eV 이상 약 3.0 eV 이하일 수 있다. 제 2 화합물(FD)의 HOMO 에너지 준위(HOMOFD)와 LUMO 에너지 준위(LUMOFD) 사이의 밴드갭은 약 2.4 eV 이상 약 2.9 eV 이하, 예를 들어, 약 2.5 eV 이상 약 2.8 eV 이하일 수 있다. 이 경우, 제 1 화합물(DF)에서 생성된 엑시톤 에너지가 제 2 화합물(FD)로 효율적으로 전이되어, 최종적으로 제 2 화합물(FD)에서 충분한 발광이 일어날 수 있다.
도 5는 발광물질층을 구성하는 제 1 화합물과 제 2 화합물의 HOMO 에너지 준위가 조절되지 않을 때, 정공이 제 2 화합물에 포획되는 문제를 개략적으로 나타낸 모식도이다. 도 5에 나타낸 바와 같이, 제 1 화합물(DF)의 HOMO 에너지 준위(HOMODF)와 제 2 화합물(FD)의 HOMO 에너지 준위(HOMOFD) 사이의 에너지 밴드갭(ΔHOMO-2)이 0.3 eV 이상인 경우, 발광물질층(240)으로 주입된 정공은 형광 물질인 제 2 화합물(FD)에 포획(trap)된다. 즉, 발광물질층(240)으로 주입된 정공은 호스트인 제 3 화합물(H)로부터 지연 형광 물질인 제 1 화합물(DF)로 전달되지 않는다. 발광 효율이 우수한 제 1 화합물(DF)에서 엑시톤이 형성되지 못하고, 제 2 화합물(FD)에 포획된 정공이 직접 재결합(direct recombination)하여 엑시톤을 형성하여 발광한다. 제 1 화합물(DF)의 삼중항 엑시톤 에너지는 발광에 기여하지 못하고 비발광 소멸하여 발광 효율이 감소한다.
도 6은 발광물질층을 구성하는 제 1 화합물과 제 2 화합물의 HOMO 에너지 준위 및 LUMO 에너지 준위가 조절되지 않을 때, 정공이 제 2 화합물에 포획되고, 제 1 화합물과 제 2 화합물 사이에 엑시플렉스(들뜬복합체)가 형성되는 문제를 개략적으로 나타낸 모식도이다. 도 6에 나타낸 바와 같이, 제 1 화합물(DF)의 HOMO 에너지 준위(HOMODF)와 제 2 화합물(FD)의 HOMO 에너지 준위(HOMOFD) 사이의 에너지 밴드갭(ΔHOMO-3)이 0.5 eV 이상인 경우, 발광물질층(240)으로 주입된 정공은 형광 물질인 제 2 화합물(FD)에 포획(trap)된다.
또한, 제 1 화합물(DF)의 LUMO 에너지 준위(LUMODF)가 제 2 화합물(FD)의 LUMO 에너지 준위(LUMOFD)보다 깊은 경우(즉, LUMOFD - LUMODF > 0인 경우), 제 2 화합물(FD)에 포획된 정공과 제 1 화합물(DF)로 전달된 전자 사이에서 들뜬복합체(exciplex)를 형성한다. 제 1 화합물(DF)의 삼중항 엑시톤 에너지는 비발광 소멸하여 발광 효율이 감소할 뿐만 아니라, 들뜬복합체를 형성하는 LUMO 에너지와 HOMO 에너지 밴드갭이 지나치게 좁아지면서 장파장 대역의 빛이 발광한다. 제 1 화합물(DF)과 제 2 화합물(FD)이 동시에 발광하기 때문에, 반치폭이 넓어지면서 색순도가 저하된다.
한편, 유기발광다이오드의 발광 효율 및 색 순도를 향상시킬 수 있도록, 제 1 화합물(DF)과 제 2 화합물(FD)의 발광 및 흡수 파장을 조절할 필요가 있다. 도 7은 본 개시의 예시적인 실시형태에 따라 발광물질층에 포함되는 제 1 화합물의 발광 파장을 제어하여, 발광 효율과 색 순도를 향상시킬 수 있는 것을 개략적으로 나타낸 도면이다. 도 7에 나타낸 바와 같이, 제 1 화합물의 발광(photoluminescence, PL) 스펙트럼(PLDF)와 제 2 화합물(FD)의 흡수(Absorbance, Abs) 스펙트럼(AbsFD)의 중첩도가 넓으면, 제 1 화합물(DF)에서 제 2 화합물(FD)로의 엑시톤 에너지 전달 효율이 향상될 수 있다. 일례로, 제 1 화합물(DF)의 최대 PL 파장(λPL.max DF)와 제 2 화합물(FD)의 최대 흡수 파장(λAbs.max FD) 사이의 거리가 약 50 nm 이하, 예를 들어 약 30 nm 이하일 수 있다. 특히, 본 개시의 예시적인 측면에서, 제 1 화합물(DF)의 온셋파장(onset wavelength, λonset DF)은 약 430 nm 이상, 약 440 nm 이하일 수 있다. 여기서, 온셋 파장은, 유기 화합물의 PL 스팩트럼에서 단파장 영역의 선형 구간(linear region)에서의 외삽선(extrapolation line)과 X축(파장)이 교차되는 지점의 파장값이다. 보다 구체적으로, 온셋파장은, PL 스팩트럼에서 발광 세기가 최대값의 1/10에 해당하는 두 개의 파장 중 단파장에 해당하는 파장으로 정의될 수 있다. 제 1 화합물(DF)의 온셋파장(λonset DF)이 약 430 nm 내지 약 440 nn의 범위에 있는 경우, 제 1 화합물(DF)에서 제 2 화합물(FD)로의 엑시톤 에너지가 효율적으로 전달되어, 유기발광다이오드(D1)의 발광 효율을 극대화할 수 있다.
반면, 도 8에 나타낸 바와 같이, 제 1 화합물(DF)의 온셋파장(λonset DF)이 430 nm 미만인 경우, 제 1 화합물(DF)의 지연 형광 특성이 낮아지고/낮아지거나, 제 1 화합물(DF)로 엑시톤 에너지를 전달하는 호스트로서의 제 3 화합물(H)은 높은 여기 삼중항 에너지(T1 H)를 가져야 한다. 따라서, 유기발광다이오드(D1)의 발광 효율이 저하된다.
또한, 도 9에 나타낸 바와 같이, 제 1 화합물(DF)의 온셋파장(λonset DF)이 440 nm를 초과하는 경우, 제 1 화합물(DF)에서 제 2 화합물(FD)로의 엑시톤 에너지 전달 효율이 감소한다. 제 2 화합물(FD)로 전달되지 않은 엑시톤이 제 1 화합물(DF)에 잔류하면서, 잔류하는 엑시톤은 비발광 소멸되기 때문에, 유기발광다이오드(D1)의 발광 효율이 감소한다. 또한, 제 1 화합물(DF)과 제 2 화합물(FD)이 동시에 발광하면서, 색 순도가 저하될 수 있다.
계속해서, 본 개시의 제 1 실시형태에 따른 발광물질층(240)에서 발광 메커니즘에 대해 설명한다. 도 10은 본 개시의 제 1 실시형태에에 따른 유기발광다이오드를 구성하는 발광물질층에서 발광 물질 사이의 단일항 에너지 준위 및 삼중항 에너지 준위에 따른 발광 메커니즘을 개략적으로 나타낸 모식도이다. 도 10에 개략적으로 나타낸 바와 같이, 발광물질층(EML, 240)에 포함되는 호스트일 수 있는 제 3 화합물(H)의 여기 삼중항 에너지 준위(T1 H)와 여기 단일항 에너지 준위(S1 H)는 각각 지연 형광 특성을 가지는 제 1 화합물(DF)의 여기 삼중항 에너지 준위(T1 DF)와 여기 단일항 에너지 준위(S1 DF)보다 높다. 예를 들어, 제 3 화합물(H)의 여기 삼중항 에너지 준위(T1 H)는 제 1 화합물(DF)의 여기 삼중항 에너지 준위(T1 DF)보다 약 0.2 eV 이상, 바람직하게는 약 0.3 eV 이상, 더욱 바람직하게는 약 0.5 eV 이상 높을 수 있다.
제 3 화합물(H)의 여기 삼중항 에너지 준위(T1 H) 및 여기 단일항 에너지 준위(S1 H)가 제 1 화합물(DF)의 여기 삼중항 에너지 준위(T1 DF) 및 여기 단일항 에너지 준위(S1 DF)보다 충분히 높지 않은 경우, 제 1 화합물(DF)의 여기 삼중항 에너지 준위(T1 DF)의 엑시톤이 제 3 화합물(H)의 여기 삼중항 에너지 준위(T1 H)로의 역-전하 이동이 발생한다. 이에 따라, 삼중항 엑시톤이 발광할 수 없는 제 3 화합물(H)에서 삼중항 엑시톤이 비-발광 소멸되기 때문에, 지연 형광 특성을 가지는 제 1 화합물(DF)의 삼중항 상태 엑시톤이 발광에 기여하지 못하게 된다. 지연 형광 특성을 가지는 제 1 화합물(DF)의 여기 단일항 에너지 준위(S1 DF)와 여기 삼중항 에너지 준위(T1 DF)의 차이(ΔEST)는 약 0.3 eV 이하, 예를 들어 약 0.01 내지 약 0.3 eV일 수 있다.
또한, 발광물질층(240, EML)에서 RISC에 의하여 ICT 착물 상태로 변환된 지연 형광 물질인 제 1 화합물(DF)로부터 형광 물질인 제 2 화합물(FD)로 엑시톤 에너지가 효율적으로 전이되어, 고효율, 고색순도를 가지는 유기발광다이오드(D1)를 구현할 필요가 있다. 이러한 유기발광다이오드(D1)를 구현하기 위하여, 지연 형광 물질일 수 있는 제 1 화합물(DF)의 여기 단일항 에너지 준위(S1 DF)는 형광 물질일 수 있는 제 2 화합물(FD)의 여기 단일항 에너지 준위(S1 FD)보다 높다. 필요한 경우, 제 1 화합물(DF)의 여기 삼중항 에너지 준위(T1 DF)는 제 2 화합물(FD)의 여기 삼중항 에너지 준위(T1 FD)보다 높을 수 있다.
제 2 화합물(FD)은 제 1 화합물(DF)의 단일항 엑시톤 에너지와 삼중항 엑시톤 에너지를 모두 발광 과정에 활용할 수 있어서 유기발광다이오드(D1)의 발광 효율이 극대화될 수 있다. 아울러, TTA 또는 TPA와 같은 소광 현상이 최소화되어, 유기발광다이오드(D1)의 발광 수명을 크게 향상시킬 수 있다.
다시 도 3으로 돌아가면, 정공주입층(250)은 제 1 전극(210)과 정공수송층(260) 사이에 위치하는데, 무기물인 제 1 전극(210)과 유기물인 정공수송층(260) 사이의 계면 특성을 향상시킨다. 하나의 예시적인 측면에서, 정공주입층(250)은 4,4',4"-Tris(3-methylphenylamino)triphenylamine (MTDATA), 4,4',4"-Tris(N,N-diphenyl-amino)triphenylamine(NATA), 4,4',4"-Tris(N-(naphthalene-1-yl)-N-phenyl-amino)triphenylamine(1T-NATA), 4,4',4"-Tris(N-(naphthalene-2-yl)-N-phenyl-amino)triphenylamine(2T-NATA), Copper phthalocyanine(CuPc), Tris(4-carbazoyl-9-yl-phenyl)amine(TCTA), N,N'-Diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4"-diamine(NPB; NPD), 1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile(Dipyrazino[2,3-f:2'3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile; HAT-CN), 1,3,5-Tris[4-(diphenylamino)phenyl]benzene(TDAPB), poly(3,4-ethylenedioxythiphene)polystyrene sulfonate(PEDOT/PSS), N-(biphenyl-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine 및 이들의 조합으로 구성되는 군에서 선택되는 화합물을 포함할 수 있으나, 이에 한정되지 않는다. 유기발광다이오드(D1)의 특성에 따라 정공주입층(250)은 생략될 수 있다.
정공수송층(260)은 정공주입층(250)과 발광물질층(240) 사이에 위치한다. 하나의 예시적인 측면에서, 정공수송층(260)은 N,N'-Diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine; TPD), NPB(NPD), CBP, Poly[N,N'-bis(4-butylpnehyl)-N,N'-bis(phenyl)-benzidine](Poly-TPD), (Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl)diphenylamine))] (TFB), Di-[4-(N,N-di-p-tolyl-amino)-phenyl]cyclohexane(TAPC), 3,5-Di(9H-carbazol-9-yl)-N,N-diphenylaniline(DCDPA), N-(biphenyl-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine, N-(biphenyl-4-yl)-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)biphenyl-4-amine 및 이들의 조합으로 구성되는 군에서 선택되는 화합물을 포함할 수 있으나, 이에 한정되지 않는다.
발광물질층(240)과 제 2 전극(230) 사이에는 전자수송층(270)과 전자주입층(280)이 순차적으로 적층될 수 있다. 전자수송층(270)을 이루는 소재는 높은 전자 이동도가 요구되는데, 원활한 전자 수송을 통하여 발광물질층(240)에 전자를 안정적으로 공급한다. 하나의 예시적인 실시형태에서, 전자수송층(270)은 옥사디아졸계(oxadiazole-base) 화합물, 트리아졸계(triazole-base) 화합물, 페난트롤린계(phenanthroline-base) 화합물, 벤족사졸계(benzoxazole-based) 화합물, 벤조티아졸계(benzothiazole-base) 화합물, 벤즈이미다졸계(benzimidazole-base) 화합물, 트리아진계(triazine-base) 화합물 중에서 어느 하나의 화합물을 포함할 수 있다.
보다 구체적으로, 전자수송층(270)은 tris-(8-hydroxyquinoline aluminum(Alq3), 2-biphenyl-4-yl-5-(4-t-butylphenyl)-1,3,4-oxadiazole(PBD), 스파이로-PBD, lithium quinolate(Liq), 1,3,5-Tris(N-phenylbenzimidazol-2-yl)benzene(TPBi), Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-biphenyl-4-olato)aluminum(BAlq), 4,7-diphenyl-1,10-phenanthroline(Bphen), 2,9-Bis(naphthalene-2-yl)4,7-diphenyl-1,10-phenanthroline(NBphen), 2,9-Dimethyl-4,7-diphenyl-1,10-phenathroline(BCP), 3-(4-Biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole(TAZ), 4-(Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole(NTAZ), 1,3,5-Tri(p-pyrid-3-yl-phenyl)benzene(TpPyPB), 2,4,6-Tris(3'-(pyridin-3-yl)biphenyl-3-yl)1,3,5-triazine(TmPPPyTz), Poly[9,9-bis(3'-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene]-alt-2,7-(9,9-dioctylfluorene)](PFNBr), Tris(phenylquinoxaline(TPQ), TSPO1 및 이들의 조합으로 구성되는 군에서 선택되는 화합물을 포함할 수 있으나, 이에 한정되지 않는다.
전자주입층(280)은 제 2 전극(230)과 전자수송층(270) 사이에 위치하는데, 제 2 전극(270)의 특성을 개선하여 소자의 수명을 개선할 수 있다. 하나의 예시적인 측면태에서, 전자주입층(280)의 소재로는 LiF, CsF, NaF, BaF2 등의 알칼리금속 할라이드계 물질 및/또는 알칼리토금속 할라이드계 물질, 및/또는 Liq, lithium benzoate), sodium stearate 등의 유기금속계 물질이 사용될 수 있으나, 이에 한정되지 않는다.
정공이 발광물질층(240)을 제 2 전극(230) 쪽으로 이동하거나, 전자가 발광물질층(240)을 지나 제 1 전극(210) 쪽으로 이동하는 경우, 유기발광다이오드(D1)의 발광 수명과 발광 효율이 감소할 수 있다. 이를 방지하기 위하여, 본 개시의 예시적인 제 1 실시형태에 따른 유기발광다이오드(D1)는 발광물질층(240)에 인접하여 엑시톤 차단층이 위치할 수 있다.
본 개시의 예시적인 제 1 측면에 따른 유기발광다이오드(D1)는 정공수송층(260)과 발광물질층(240) 사이에 전자의 이동을 제어, 방지할 수 있는 전자차단층(265)이 위치할 수 있다. 하나의 예시적인 측면에서, 전자차단층(265)은 TCTA, Tris[4-(diethylamino)phenyl]amine, N-(biphenyl-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine, TAPC, MTDATA, mCP, mCBP, CuPc, N,N'-bis[4-[bis(3-methylphenyl)amino]phenyl]-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine(DNTPD), TDAPB, 3,6-bis(N-carbazolyl)-N-phenyl-carbazole 및 이들의 조합으로 구성되는 군에서 선택되는 화합물을 포함할 수 있으나, 이에 한정되지 않는다.
발광물질층(240)과 전자수송층(270) 사이에 제 2 엑시톤 차단층으로서 정공차단층(275)이 위치하여 발광물질층(240)과 전자수송층(270) 사이에 정공의 이동을 방지한다. 하나의 예시적인 측면에서, 정공차단층(275)의 소재로서 전자수송층(270)에 사용될 수 있는 옥사디아졸계 화합물, 트리아졸계 화합물, 페난트롤린계 화합물, 벤족사졸계 화합물, 벤조티아졸계 화합물, 벤즈이미다졸계 화합물, 트리아진계 화합물 중에서 어느 하나가 사용될 수 있다.
일례로, 정공차단층(275)은 발광물질층(240)에 사용된 소재와 비교해서 HOMO 에너지 준위가 낮은 BCP, BAlq, Alq3, PBD, 스파이로-PBD, Liq, Bis-4,6-(3,5-di-3-pyridylphenyl)-2-methylpyrimidine (B3PYMPM), DPEPO, 9-(6-(9H-carbazol-9-yl)pyridine-3-yl)-9H-3,9'-bicarbazole 및 이들의 조합으로 구성되는 군에서 선택되는 화합물을 포함할 수 있으나, 이에 한정되지 않는다.
전술한 제 1 측면에서, 지연 형광 특성을 가지는 제 1 화합물과 제 2 화합물이 동일한 발광물질층 내에 도입된 발광물질층을 예시하였다. 이와 달리, 제 2 화합물과 제 3 화합물은 인접한 발광물질층에 각각 도입될 수 있는데, 이에 대해서 설명한다. 도 11은 본 개시의 다른 예시적인 측면에 따른 유기발광다이오드를 개략적으로 나타낸 단면도이고, 도 12는 본 개시의 다른 예시적인 측면에 따라 발광물질층을 구성하는 제 1 화합물과 제 2 화합물의 HOMO 에너지 준위가 조절되어, 정공이 제 2 화합물로 효율적으로 전달되는 상태를 개략적으로 나타낸 모식도이며, 도 13은 본 개시의 다른 예시적인 측면에 따른 유기발광다이오드를 구성하는 발광물질층에서 발광 물질 사이의 단일항 에너지 준위 및 삼중항 에너지 준위에 따른 발광 메커니즘을 개략적으로 나타낸 모식도이다.
도 11에 나타낸 바와 같이, 본 개시의 다른 예시적인 측면에 따른 유기발광다이오드(D2)는 서로 마주하는 제 1 전극(210) 및 제 2 전극(230)과, 제 1 및 제 2 전극(210, 230) 사이에 위치하는 발광층(220A)을 포함한다. 유기발광표시장치(100, 도 2 참조)는 적색 화소영역, 녹색 화소영역, 청색 화소영역을 포함하고, 유기발광다이오드(D2)는 청색 화소영역에 위치할 수 있다.
예시적인 측면에서, 발광층(220A)은 발광물질층(240A)을 포함한다. 발광층(220A)은 제 1 전극(210)과 발광물질층(240A) 사이에 위치하는 정공수송층(260)과, 발광물질층(240A)과 제 2 전극(230) 사이에 위치하는 전자수송층(270) 중에서 적어도 어느 하나를 포함할 수 있다.
또한, 발광층(220A)은 제 1 전극(210)과 정공수송층(260) 사이에 위치하는 정공주입층과, 전자수송층(270)과 제 2 전극(230) 사이에 위치하는 전자주입층 중에서 적어도 어느 하나를 더욱 포함할 수 있다. 선택적으로, 발광층(220A)은 정공수송층(260)과 발광물질층(240A) 사이에 위치하는 전자차단층(265) 및/또는 발광물질층(240A)과 전자수송층(270) 사이에 위치하는 정공차단층(275)을 더욱 포함할 수 있다. 제 1 전극(210), 제 2 전극(230) 및 발광물질층(240A)을 제외한 발광층(220A)의 구성은 전술한 제 1 실시형태와 동일할 수 있다.
발광물질층(240A)은 전자차단층(265)과 정공차단층(275) 사이에 위치하는 제 1 발광물질층(EML1, 242, 하부 발광물질층, 제 1층)과, 제 1 발광물질층(242)과 정공차단층(275) 사이에 위치하는 제 2 발광물질층(EML2, 244, 상부 발광물질층, 제 2층)을 포함한다. 선택적인 측면에서, 제 2 발광물질층(244)은 전자차단층(265)과 제 1 발광물질층(242) 사이에 위치할 수 있다.
제 1 발광물질층(242, EML1)과 제 2 발광물질층(244, EML2) 중에서 어느 하나는 지연 형광 물질인 제 1 화합물(DF. 제 1 도펀트)을 포함하고, 제 1 발광물질층(242, EML1)과 제 2 발광물질층(244, EML2) 중에서 다른 하나는 형광 물질인 제 2 화합물(FD, 제 2 도펀트)를 포함한다. 또한, 제 1 발광층(242, EML1)과 제 2 발광물질층(244, EML2)은 각각 제 1 호스트일 수 있는 제 3 화합물(H1)과 제 2 호스트일 수 있는 제 4 화합물(H2)을 포함할 수 있다. 일례로, 제 1 발광물질층(242)은 제 1 화합물(DF)과 제 3 화합물(H1)을 포함하고, 제 2 발광물질층(244)은 제 2 화합물(FD)과, 제 4 화합물(H2)을 포함할 수 있다.
제 1 발광물질층(242, EML1)을 구성하는 제 1 화합물(DF)은 화학식 1 내지 화학식 5의 구조를 가지는 지연 형광 물질일 수 있다. 지연 형광 특성을 가지는 제 1 화합물(DF)은 역 계간전이(RISC)에 의하여 제 1 화합물(DF)의 여기 삼중항 엑시톤 에너지가 여기 단일항 엑시톤 에너지 준위로 전환된다. 제 1 화합물(DF)은 높은 양자 효율을 가지는 반면, 반치폭이 넓기 때문에 색 순도가 좋지 않다.
반면, 제 2 발광물질층(244, EML2)은 형광 물질인 제 2 화합물(FD)을 포함한다. 제 2 화합물(FD)은 화학식 6 내지 화학식 8의 구조를 가지는 임의의 유기 화합물을 포함한다. 화학식 6 내지 8의 구조를 가지는 형광 물질인 제 2 화합물(FD)은 제 1 화합물(DF)에 비하여 반치폭이 협소하다(예를 들어, 반치폭은 35 nm 이하). 따라서, 제 2 화합물(FD)은 색 순도에서 장점이 있다.
본 개시의 다른 예시적인 측면에 따르면, 제 1 발광물질층(242, EML1)에 포함되는 지연 형광 특성을 가지는 제 1 화합물(DF)의 여기 단일항 엑시톤 에너지 및 여기 삼중항 에시톤 에너지는, FRET 메커니즘을 통하여 인접한 제 2 발광물질층(244, EML2)에 포함된 제 2 화합물(FD)로 전달되고, 제 2 화합물(FD)에서 최종적인 발광이 일어난다.
역 계간전이(RISC) 현상에 의해 제 1 발광물질층(242, EML1)에 포함된 제 1 화합물(DF)의 여기 삼중항 엑시톤 에너지가 여기 단일항 엑시톤 에너지로 전환된다. 제 1 화합물(DF)의 여기 단일항 엑시톤 에너지는 제 2 화합물(FD)의 여기 단일항 에너지 준위로 전달된다. 제 2 발광물질층(244, EML2)에 포함된 제 2 화합물(FD)은 여기 단일항 엑시톤 에너지와 여기 삼중항 엑시톤 에너지 모두를 이용하여 발광한다.
제 1 발광물질층(242, EML1)에 포함된 지연 형광 물질일 수 있는 제 1 화합물(DF)로부터 생성된 엑시톤 에너지는 제 2 발광물질층(244, EML2)에 포함된 형광 물질일 수 있는 제 2 화합물(FD)로 효율적으로 전달되어, 초형광을 구현할 수 있다. 이때, 실질적인 발광은 형광 물질인 제 2 화합물(FD)을 포함하는 제 2 발광물질층(244, EML2)에서 일어난다. 따라서 유기발광다이오드(D2)의 양자 효율이 향상되고, 반치폭이 좁아지면서, 색 순도가 향상된다.
제 1 발광물질층(242, EML1) 및 제 2 발광물질층(244, EML2)은 각각 제 3 화합물(H1) 및 제 4 화합물(H2)을 포함한다. 제 3 화합물(H1)과 제 4 화합물(H2)은 서로 동일하거나 상이할 수 있다. 예를 들어, 제 3 화합물(H1) 및 제 4 화합물(H2)은 각각 독립적으로 제 1 실시형태에서 설명한 제 3 화합물(H)을 포함할 수 있으나, 이에 한정되지 않는다.
도 4를 참조하면서 설명한 것과 유사하게, 도 12에 나타낸 바와 같이, 제 1 화합물(DF)의 HOMO 에너지 준위(HOMODF)와 제 2 화합물(FD)의 HOMO 에너지 준위(HOMOFD) 사이의 에너지 밴드갭(ΔHOMO-1)은 전술한 식 (1) 또는 식 (2)를 충족할 수 있다. 이에 따라, 발광물질층(240)으로 주입된 정공은 제 1 화합물(DF)로 전달되고, 제 1 화합물(DF)은 단일항 엑시톤 에너지와 삼중항 엑시톤 에너지를 모두 활용하여, 제 2 화합물(FD)로 엑시톤 에너지를 전달할 수 있다. 또한, 제 1 화합물(DF)의 LUMO 에너지 준위(LUMODF)는 제 2 화합물(FD)의 LUMO 에너지 준위(LUMOFD)보다 얕거나 동일할 수 있으며, 식 (3) 또는 식 (4)를 충족할 수 있다. 또한 제 1 화합물(DF)의 온셋파장(λonset DF)은 약 430 nm 이상, 약 440 nm 이하일 수 있다(도 7 참조).
아울러, 제 3 화합물(H1) 및 제 4 화합물(H2)의 HOMO 에너지 준위(HOMOH1, HOMO2)와 제 1 화합물(DF)의 HOMO 에너지 준위(HOMODF)의 차이(|HOMOH-HOMODF|) 또는 제 3 화합물(H1) 및 제 4 화합물(H2)의 LUMO 에너지 준위(LUMOH1, LUMOH2)와 제 1 화합물의 LUMO 에너지 준위(LUMODF)의 차이(|LUMOH-LUMOFD|)는 0.5 eV 이하일 수 있다. 이와 같은 조건을 만족시키지 못하면, 제 1 화합물(DF)에서 비-발광 소멸(quenching)이 일어나거나, 제 3 화합물(H1) 및 제 4 화합물(H2)에서 제 1 화합물(DF) 및/또는 제 2 화합물(FD)로 엑시톤 에너지 전달이 일어나지 않아, 유기발광다이오드(D2)의 양자 효율이 저하될 수 있다.
한편, 제 1 발광물질층(242, EML1) 및 제 2 발광물질층(244, EML2)에 각각 포함될 수 있는 제 3 화합물(H1) 및 제 4 화합물(H2)에서 각각 생성된 엑시톤 에너지는 1차적으로 지연 형광 물질일 수 있는 제 1 화합물(DF)로 전이되어 발광하여야 한다. 도 13에 나타낸 바와 같이, 제 3 화합물(H1)의 여기 단일항 에너지 준위(S1 H1)와 제 4 화합물(H2)의 여기 단일항 에너지 준위(S1 H2)는 각각 지연 형광 물질일 수 있는 제 1 화합물(DF)의 여기 단일항 에너지 준위(S1 DF)보다 높다. 또한, 제 3 화합물(H1)의 여기 삼중항 에너지 준위(T1 H1)와 제 4 화합물(H2)의 여기 단일항 에너지 준위(T1 H2)는 각각 제 1 화합물(DF)의 여기 삼중항 에너지 준위(T1 DF)보다 높다. 예를 들어, 제 3 화합물(H1) 및 제 4 화합물(H2)의 여기 삼중항 에너지 준위(T1 H1, T1 H2)는 제 1 화합물(DF)의 여기 삼중항 에너지 준위(T1 DF)보다 최소 약 0.2 eV 이상, 예를 들어 약 0.3 eV 이상, 바람직하게는 약 0.5 eV 이상 높을 수 있다.
한편, 제 2 호스트인 제 4 화합물(H2)의 여기 단일항 에너지 준위(S1 H2)는 형광 물질인 제 2 화합물(FD)의 여기 단일항 에너지 준위(S1 FD)보다 높다. 선택적으로, 제 4 화합물(H2)의 여기 삼중항 에너지 준위(T1 H2)는 제 2 화합물(FD)의 여기 삼중항 에너지 준위(T1 FD)보다 높을 수 있다. 이에 따라, 제 4 화합물(H2)에서 생성된 단일항 엑시톤 에너지가 제 2 화합물(FD)의 단일항 에너지로 전달될 수 있다.
뿐만 아니라, 제 1 발광물질층(242, EML1)에서 역 계간전이(RISC)에 의하여 ICT 착물 상태로 변환된 제 1 화합물(DF)로부터, 제 2 발광물질층(244, EML2)의 제 2 화합물(FD)로 엑시톤 에너지를 효율적으로 전달하여야 한다. 이러한 유기발광다이오드(D2)를 구현하기 위하여, 제 1 발광물질층(242, EML1)에 포함되는 지연 형광 물질인 제 1 화합물(DF)의 여기 단일항 에너지 준위(S1 DF)는 2 발광물질층(344, EML2)에 포함되는 형광 물질인 제 2 화합물(FD)의 여기 단일항 에너지 준위(S1 FD)보다 높다. 선택적으로, 제 1 화합물(DF)의 여기 삼중항 에너지 준위(T1 DF)는 제 2 화합물(FD)의 여기 삼중항 에너지 준위(T1 FD)보다 높을 수 있다.
제 1 및 제 2 발광물질층(242, 244) 각각에서, 제 3 화합물(H1)과 제 4 화합물(H2)은 각각 동일한 발광물질층을 구성하는 제 1 화합물(DF) 및 제 2 화합물(FD)보다 크거나 동일한 함량으로 포함될 수 있다. 또한, 제 1 발광물질층(242, EML1)에 포함되는 제 1 화합물(DF)의 함량은, 제 2 발광물질층(244, EML2)에 포함되는 제 2 화합물(FD)의 함량보다 클 수 있다. 이에 따라, 제 1 발광물질층(242, EML1)에 포함된 제 1 화합물(DF)로부터 제 2 발광물질층(344, EML2)에 포함된 제 2 화합물(FD)로의 FRET에 의한 에너지 전달이 충분히 일어날 수 있다.
예를 들어, 제 1 발광물질층(242, EML1) 내에 제 1 화합물(DF)은 약 1 내지 약 50 중량%, 예를 들어, 약 10 내지 40 중량% 또는 약 20 내지 약 40 중량%의 비율로 포함될 수 있다. 제 2 발광물질층(244, EML2) 중에 제 2 화합물(FD)의 함량은 약 1 내지 약 10 중량%, 예를 들어, 약 1 내지 약 5 중량%일 수 있다.
선택적인 측면에서, 정공차단층(275)에 인접하여 제 2 발광물질층(244, EML2)이 위치하는 경우, 제 2 발광물질층(244, EML2)을 구성하는 제 4 화합물(H2)은 정공차단층(275)의 물질과 동일한 물질일 수 있다. 이때, 제 2 발광물질층(244, EML2)은 발광 기능과 함께 정공 차단 기능을 동시에 가질 수 있다. 즉, 제 2 발광물질층(244, EML2)은 전자를 차단하기 위한 버퍼층으로 기능한다. 한편, 정공차단층(275)은 생략될 수 있고, 이 경우 제 2 발광물질층(244, EML2)은 발광물질층과 정공차단층으로 이용된다.
다른 예시적인 측면에서, 전자차단층(265)에 인접하여 제 2 발광물질층(244, EML2)이 위치하는 경우, 제 2 발광물질층(244, EML2)을 구성하는 제 4 화합물(H2)은 전자차단층(265)의 물질과 동일한 물질일 수 있다. 이때, 제 2 발광물질층(244, EML2)은 발광 기능과 함께 전자 차단 기능을 동시에 가질 수 있다. 즉, 제 2 발광물질층(244, EML2)은 전자를 차단하기 위한 버퍼층으로 기능한다. 한편, 전자차단층(265)은 생략될 수 있고, 이 경우 제 2 발광물질층(244, EML2)은 발광물질층과 전자차단층으로 이용된다.
계속해서, 발광물질층이 3개의 층으로 이루어진 유기발광다이오드에 대해서 설명한다. 도 14는 본 개시의 또 다른 예시적인 측면에 따른 유기발광다이오드를 개략적으로 나타낸 단면도이다. 도 15는 본 개시의 또 다른 예시적인 측면에 따라 발광물질층을 구성하는 제 1 화합물과 제 2 화합물의 HOMO 에너지 준위가 조절되어, 정공이 제 2 화합물로 효율적으로 전달되는 상태를 개략적으로 나타낸 모식도이다. 도 16는 본 개시의 또 다른 예시적인 측면에 따른 유기발광다이오드를 구성하는 발광물질층에서 발광 물질 사이의 단일항 에너지 준위 및 삼중항 에너지 준위에 따른 발광 메커니즘을 개략적으로 나타낸 모식도이다.
도 14에 나타낸 바와 같이, 본 개시의 또 다른 예시적인 측면에 따른 유기발광다이오드(D3)는 서로 마주하는 제 1 전극(210) 및 제 2 전극(230)과, 제 1 및 제 2 전극(210, 230) 사이에 위치하는 발광층(220B)을 포함한다. 유기발광표시장치(100, 도 2 참조)는 적색 화소영역, 녹색 화소영역, 청색 화소영역을 포함하고, 유기발광다이오드(D3)는 청색 화소영역에 위치할 수 있다.
예시적인 측면에서, 발광층(220B)은 3층 구조를 가지는 발광물질층(240B)을 포함한다. 발광층(220B)은 제 1 전극(210)과 발광물질층(240B) 사이에 위치하는 정공수송층(260)과, 발광물질층(240B)과 제 2 전극(230) 사이에 위치하는 전자수송층(270) 중에서 적어도 어느 하나를 포함할 수 있다. 또한, 발광층(220B)은 제 1 전극(210)과 정공수송층(260) 사이에 위치하는 정공주입층과, 전자수송층(270)과 제 2 전극(230) 사이에 위치하는 전자주입층(280) 중에서 적어도 어느 하나를 포함할 수 있다. 선택적으로, 발광층(220B)은 정공수송층(260)과 발광물질층(240B) 사이에 위치하는 전자차단층(265) 및/또는 발광물질층(240B)과 전자수송층(250) 사이에 위치하는 정공차단층(275)을 더욱 포함할 수 있다. 제 1 전극(210) 및 제 2 전극(230)과, 발광물질층(240B)을 제외한 발광층(220B)의 나머지 구성은 전술한 제 1 실시형태 및 제 2 실시형태에서 설명한 것과 실질적으로 동일할 수 있다.
발광물질층(240B, EML)은 전자차단층(265)과 정공차단층(275) 사이에 위치하는 제 1 발광물질층(242, EML1, 중간발광물질층, 제 1 층)과, 전자차단층(265)과 제 1 발광물질층(242, EML1) 사이에 위치하는 제 2 발광물질층(244, EML2, 하부 발광물질층, 제 2 층)과, 제 1 발광물질층(242, EML1)과 정공차단층(275) 사이에 위치하는 제 3 발광물질층(246, EML3, 상부 발광물질층, 제 3 층)을 포함한다.
제 1 발광물질층(242, EML1)은 지연 형광 물질인 제 1 화합물(DF, 제 1 도펀트)를 포함하고, 제 2 및 제 3 발광물질층(244, 246)은 각각 형광 물질일 수 있는 제 2 화합물(FD1, 제 2 도펀트) 및 제 5 화합물(FD2, 제 3 도펀트)를 포함한다. 제 1 내지 제 3 발광물질층(242, 244, 246)은 각각 제 1 호스트 내지 제 3 호스트일 수 있는 제 3 화합물(H1), 제 4 화합물(H2) 및 제 6 화합물(H3)을 더욱 포함할 수 있다.
본 개시의 또 다른 예시적인 측면에 따르면, 제 1 발광물질층(242, EML1)에 포함되는 지연 형광 물질인 제 1 화합물(DF)의 여기 단일항 엑시톤 에너지 및 여기 삼중항 엑시톤 에너지는, Foster 에너지 전이인 FRET을 통하여 인접한 제 2 발광물질층(244, EML2) 및 제 3 발광물질층(246, EML3)에 각각 포함된 형광 물질인 제 2 화합물(FD1) 및 제 5 화합물(FD2)로 전달되어, 제 2 화합물(FD1) 및 제 5 화합물(FD2)에서 최종적인 발광이 일어난다.
역 계간전이 현상에 의해 제 1 발광물질층(242, EML1)에 포함된 제 1 화합물(DF)의 여기 삼중항 엑시톤 에너지가 여기 단일항 엑시톤 에너지로 전환된다. 지연 형광 물질인 제 1 화합물(DF)의 여기 단일항 에너지 준위는, 인접한 제 2 발광물질층(244, EML2) 및 제 3 발광물질층(246, EML3)에 각각 도입된 형광 물질인 제 2 화합물(FD1) 및 제 5 화합물(FD2)의 여기 단일항 에너지 준위보다 크다. 제 1 발광물질층(242, EML1)에 포함된 제 1 화합물(DF)의 여기 단일항 엑시톤 에너지는 FRET을 통하여 인접한 제 2 발광물질층(244, EML2) 및 제 3 발광물질층(246, EML3)에 포함된 제 2 화합물(FD1) 및 제 5 화합물(FD2)의 여기 단일항 에너지로 전달된다.
따라서, 제 2 발광물질층(244, EML2) 및 제 3 발광물질층(246, EML3)에 각각 도입된 제 2 화합물(FD1) 및 제 5 화합물(FD2)은 단일항 엑시톤 에너지와 삼중항 엑시톤 에너지 모두를 이용하여 발광하게 된다. 제 2 화합물(FD1) 및 제 5 화합물(FD2)은 제 1 화합물(DF)에 비하여 반치폭이 협소하다(예를 들어, 반치폭은 35 nm 이하). 따라서 유기발광다이오드(D4)의 양자 효율이 향상되고, 반치폭이 좁아지면서, 색 순도가 향상된다. 이때, 실질적인 발광은 제 2 화합물(FD1) 제 5 화합물(FD2)을 각각 포함하는 제 2 발광물질층(242, EML2) 및 3 발광물질층(246, EML3)에서 일어난다.
지연 형광 물질인 제 1 화합물(DF)은 화학식 1 내지 화학식 5의 구조를 가지는 유기 화합물을 포함하고, 형광 물질인 제 2 화합물(FD1)과 제 5 화합물(FD2)은 각각 독립적으로 화학식 6 내지 화학식 8의 구조를 가지는 보론계 유기 화합물을 포함한다. 제 3 화합물(H1), 제 4 화합물(H2) 및 제 6 화합물(H3)은 서로 동일하거나 상이할 수 있다. 예를 들어, 제 3 화합물(H1), 제 4 화합물(H2) 및 제 6 화합물(H3)은 각각 독립적으로 전술한 3 화합물(H)을 포함할 수 있으나, 이에 한정되지 않는다.
전술한 예시적인 측면에서와 유사하게, 제 1 화합물(DF)의 HOMO 에너지 준위(HOMODF)와, 제 2 화합물(FD1) 및 제 5 화합물(FD2)의 HOMO 에너지 준위(HOMOFD, HOMODF3) 사이의 에너지 밴드갭(ΔHOMO-1)은 전술한 식 (1) 또는 식 (2)를 충족할 수 있다. 이에 따라, 발광물질층(340)으로 주입된 정공은 제 1 화합물(DF)로 전달되고, 제 1 화합물(DF)은 단일항 엑시톤 에너지와 삼중항 엑시톤 에너지를 모두 활용하여, 제 2 화합물(FD1) 및 제 5 화합물(FD2)로 엑시톤 에너지를 전달할 수 있다. 또한, 제 1 화합물(DF)의 LUMO 에너지 준위(LUMODF)는 제 2 화합물(FD) 및 제 5 화합물(DF3)의 LUMO 에너지 준위(LUMOFD, LUMODF3)보다 얕거나 동일할 수 있으며, 식 (3) 또는 식 (4)를 충족할 수 있다. 또한 제 1 화합물(DF)의 온셋파장(λonset DF)은 약 430 nm 이상, 약 440 nm 이하일 수 있다(도 7 참조).
아울러, 제 3 화합물(H1), 제 4 화합물(H2) 및 제 6 화합물(H3)의 HOMO 에너지 준위(HOMOH1, HOMO2, HOMO3)와 제 1 화합물(DF)의 HOMO 에너지 준위(HOMODF)의 차이(|HOMOH-HOMODF|) 또는 제 3 화합물(H1), 제 4 화합물(H2) 및 제 6 화합물(H3)의 LUMO 에너지 준위(LUMOH1, LUMOH2, LUMOH3)와 제 1 화합물(DF)의 LUMO 에너지 준위(LUMODF)의 차이(|LUMOH-LUMODF|)는 약 0.5 eV 이하일 수 있다.
효율적인 발광을 구현하기 위하여, 제 1 내지 제 3 발광물질층(242/EML1, 244/EML2, 246/EML3)에 도입된 발광 물질의 에너지 준위를 적절하게 조절할 필요가 있다. 도 16를 참조하면, 제 1 호스트일 수 있는 제 3 화합물(H1)의 여기 단일항 에너지 준위(S1 H1), 제 2 호스트일 수 있는 제 4 화합물(H2)의 여기 단일항 에너지 준위(S1 H2) 및 제 3 호스트일 수 있는 제 6 화합물(H3)의 여기 단일항 에너지 준위(S1 H3)는 지연 형광 물질일 수 있는 제 1 화합물(DF)의 여기 단일항 에너지 준위(S1 DF)보다 높다. 또한, 제 3 화합물(H1)의 여기 삼중항 에너지 준위(T1 H1), 제 4 화합물(H2)의 여기 단일항 에너지 준위(T1 H2) 및 제 6 화합물(H3)의 여기 삼중항 에너지 준위(T1 H3)는 각각 제 1 화합물(DF)의 여기 삼중항 에너지 준위(T1 DF)보다 높다.
제 1 발광물질층(242, EML1)에서 RISC에 의하여 ICT 착물 상태로 변환된 제 1 화합물(DF)로부터, 제 2 발광물질층(244, EML2) 및 제 3 발광물질층(246, EML3)에 각각 도입된 형광 물질인 제 2 화합물(FD1) 및 제 5 화합물(FD2)로 엑시톤 에너지를 효율적으로 전이하여야 한다. 이러한 유기발광다이오드(D3)를 구현하기 위하여, 제 1 발광물질층(242, EML1)에 포함되는 지연 형광 물질인 제 1 화합물(DF)의 여기 단일항 에너지 준위(S1 DF)는 각각 제 2 발광물질층(244, EML2) 및 제 3 발광물질층(246, EML3)에 각각 포함되는 형광 물질일 수 있는 제 2 화합물(FD1) 및 제 5 화합물(FD2)의 여기 단일항 에너지 준위(S1 FD1, S1 FD2)보다 높다. 선택적으로 제 1 화합물(DF)의 여기 삼중항 에너지 준위(T1 DF)는 각각 제 2 화합물(FD1) 및 제 5 화합물(FD2)의 여기 삼중항 에너지 준위(T1 FD1, T1 FD2)보다 높을 수 있다.
또한, 지연 형광 물질인 제 1 화합물(DF)로부터 형광 물질인 제 2 화합물(FD1) 및 제 5 화합물(FD2)로 전이된 에너지가 제 4 화합물(H2) 및 제 6 화합물(H3)로 전이되는 것을 방지하여 효율적인 발광을 구현할 필요가 있다. 이러한 목적과 관련하여, 제 2 호스트일 수 있는 제 4 화합물(H2) 및 제 3 호스트일 수 있는 제 6 화합물(H3)의 여기 단일항 에너지 준위(S1 H2, S1 H3)는 각각 형광 물질일 수 있는 제 2 화합물(FD1) 및 제 5 화합물(FD2)의 여기 단일항 에너지 준위(S1 FD1, S1 FD2)보다 높다. 선택적으로, 제 4 화합물(H2) 및 제 6 화합물(H3)의 여기 삼중항 에너지 준위(T1 H2, T1 H3)는 각각 제 2 화합물(FD1) 및 제 5 화합물(FD2)의 여기 단일항 에너지 준위(T1 FD, T1 DF3)보다 높을 수 있다.
제 1 발광물질층(242, EML1)에 포함되는 제 1 화합물(DF)의 함량은, 제 2 발광물질층(244, EML2) 및 제 3 발광물질층(246, EML3)에 각각 포함되는 제 2 화합물(FD1) 및 제 5 화합물(FD2)의 함량보다 클 수 있다. 이 경우, 제 1 발광물질층(242, EML1)에 포함된 제 1 화합물(DF)로부터 제 2 발광물질층(244, EML2) 및 제 3 발광물질층(246, EML3)에 각각 포함된 제 2 화합물(FD1) 및 제 5 화합물(FD2)로 FRET에 의한 에너지 전달이 충분히 일어날 수 있다.
예를 들어, 제 1 발광물질층(242, EML1)에서 제 1 화합물(DF)의 함량은 약 1 내지 약 50 중량%, 예를 들어, 약 10 내지 약 40 중량% 또는 약 20 내지 약 40 중량%일 수 있다. 제 2 발광물질층(242, EMl2) 제 3 발광물질층(246, EML3) 각각에서 제 2 화합물(FD1) 및 제 5 화합물(FD2)의 함량은 각각 약 1 내지 약 10 중량%, 예를 들어, 약 1 내지 약 5 중량%일 수 있다.
선택적인 측면에서, 전자차단층(265)에 인접하여 제 2 발광물질층(244, EML2)이 위치하는 경우, 제 2 발광물질층(244, EML2)을 구성하는 제 4 화합물(H2)은 전자차단층(265)의 물질과 동일한 물질일 수 있다. 이때, 제 2 발광물질층(244, EML2)은 발광 기능과 함께 전자 차단 기능을 동시에 가질 수 있다. 즉, 제 2 발광물질층(244, EML2)은 전자를 차단하기 위한 버퍼층으로 기능한다. 한편, 전자차단층(265)은 생략될 수 있고, 이 경우 제 2 발광물질층(244, EML2)은 발광물질층과 전자차단층으로 이용된다.
또한, 정공차단층(275)에 인접하여 제 3 발광물질층(246, EML3)이 위치하는 경우, 제 3 발광물질층(246, EML3)을 구성하는 제 6 화합물(H3)은 정공차단층(275)의 물질과 동일한 물질일 수 있다. 이때, 제 3 발광물질층(246, EML3)는 발광 기능과 함께 정공 차단 기능을 동시에 가질 수 있다. 즉, 제 3 발광물질층(246, EML3)은 정공을 차단하기 위한 버퍼층으로 기능한다. 한편, 정공차단층(275)은 생략될 수 있고, 이 경우 제 3 발광물질층(246, EML3)은 발광물질층과 정공차단층으로 이용된다.
다른 예시적인 측면에서, 제 2 발광물질층(244, EML2)을 구성하는 제 4 화합물(H2)은 전자차단층(265)의 물질과 동일한 물질이고, 제 3 발광물질층(246, EML3)을 구성하는 제 6 화합물(H3)은 정공차단층(275)의 물질과 동일할 물질일 수 있다. 이때, 제 2 발광물질층(244, EML2)은 발광 기능과 함께 전자 차단 기능을 동시에 가지며, 제 3 발광물질층(246, EML3)은 발광 기능과 함께 정공 차단 기능을 동시에 가질 수 있다. 즉, 제 2 발광물질층(244, EML2) 및 제 3 발광물질층(246, EML3)은 각각 전자 차단을 위한 버퍼층과 정공 차단을 위한 버퍼층으로 기능할 수 있다. 한편, 전자차단층(265) 및 정공차단층(275)은 생략될 수 있고, 이 경우 제 2 발광물질층(244, EML2)은 발광물질층과 전자차단층으로 이용되며, 제 3 발광물질층(246, EML3)은 발광물질층과 정공차단층으로 이용된다.
선택적인 실시형태에서, 유기발광다이오드는 2개 이상의 발광부를 포함할 수 있다. 도 17은 본 개시의 또 다른 예시적인 측면에 따른 유기발광다이오드를 개략적으로 나타낸 단면도이다.
도 17에 나타낸 바와 같이, 유기발광다이오드(D4)는 마주하는 제 1 전극(210) 및 제 2 전극(230)과, 제 1 및 제 2 전극(210, 230) 사이에 위치하는 발광층(22C)을 포함한다. 유기발광표시장치(100, 도 2 참조)는 적색 화소영역, 녹색 화소영역, 청색 화소영역을 포함하고, 유기발광다이오드(D4)는 청색 화소영역 에 위치할 수 있다. 제 1 전극(210)은 양극일 수 있고, 제 2 전극(230)은 음극일 수 있다.
발광층(220C)은 제 1 발광물질층(340)을 포함하는 제 1 발광부(320)와, 제 2 발광물질층(440)을 포함하는 제 2 발광부(420)를 포함한다. 또한, 발광층(220C)은 제 1 발광부(320)와 제 2 발광부(420) 사이에 위치하는 전하생성층(380)을 더욱 포함할 수 있다.
전하생성층(380)은 제 1 및 제 2 발광부(320, 420) 사이에 위치하며, 제 1 발광부(320), 전하생성층(380), 제 2 발광부(420)가 제 1 전극(210) 상에 순차 적층된다. 즉, 제 1 발광부(320)는 제 1 전극(310)과 전하생성층(380) 사이에 위치하며, 제 2 발광부(420)는 제 2 전극(230)과 전하생성층(380) 사이에 위치한다.
제 1 발광부(320)는 제 1 발광물질층(340, 하부 발광물질층)을 포함한다. 또한, 제 1 발광부(320)는, 제 1 전극(210)과 제 1 발광물질층(340) 사이에 위치하는 정공주입층(HIL, 350), 제 1 발광물질층(340)과 정공주입층(350) 사이에 위치하는 제 1 정공수송층(360, HTL1), 제 1 발광물질층(340)과 전하생성층(380) 사이에 위치하는 제 1 전자수송층(370, ETL1) 중에서 적어도 하나를 더 포함할 수도 있다. 선택적으로, 제 1 발광부(320)는 제 1 정공수송층(360)과 제 1 발광물질층(340) 사이에 위치하는 제 1 전자차단층(365, EBL1)과, 제 1 발광물질층(340)과 제 1 전자수송층(370) 사이에 위치하는 제 1 정공차단층(375, HBL1) 중에서 적어도 하나를 더 포함할 수 있다.
제 2 발광부(420)는 제 2 발광물질층(440, 상부 발광물질층)을 포함한다. 또한, 제 2 발광부(420)는 전하생성층(380)과 제 2 발광물질층(440) 사이에 위치하는 제 2 정공수송층(40, HTL2), 제 2 발광물질층(440)과 제 2 전극(230) 사이에 위치하는 제 2 전자수송층(470, ETL2), 제 2 전자수송층(470)과 제 2 전극(230) 사이에 위치하는 전자주입층(480, HIL) 중에서 적어도 하나를 더 포함할 수 있다. 선택적으로, 제 2 발광부(420)는 제 2 정공수송층(460)과 제 2 발광물질층(440) 사이에 위치하는 제 2 전자차단층(465, EBL2)과 제 2 발광물질층(440)과 제 2 전자수송층(470) 사이에 위치하는 제 2 정공차단층(475, HBL2) 중에서 적어도 하나를 더 포함할 수 있다.
전하생성층(380)은 제 1 발광부(320)와 제 2 발광부(420) 사이에 위치한다. 즉, 제 1 발광부(320)와 제 2 발광부(420)는 전하생성층(380)에 의해 연결된다. 전하생성층(380)은 N형 전하생성층(382)과 P형 전하생성층(384)이 접합된 PN접합 전하생성층일 수 있다.
N형 전하생성층(382)은 제 1 전자수송층(370)과 제 2 정공수송층(460) 사이에 위치하고, P형 전하생성층(384)은 N형 전하생성층(382)과 제 2 정공수송층(460) 사이에 위치한다. N형 전하생성층(382)은 전자를 제 1 발광부(320)의 제 1 발광물질층(340)으로 전달하고, P형 전하생성층(384)은 정공을 제 2 발광부(420)의 제 2 발광물질층(440)으로 전달한다.
본 개시의 또 다른 예시적인 측면에서, 제 1 발광물질층(340)과 제 2 발광물질층(440)은 각각 청색 발광물질층일 수 있다. 예를 들어, 제 1 발광물질층(340)과 제 2 발광물질층(440) 중에서 적어도 하나는 지연 형광 물질인 제 1 화합물(DF)과, 형광 물질인 제 2 화합물(FD)을 포함하고, 선택적으로 호스트인 제 3 화합물(H)을 포함할 수 있다.
제 1 발광물질층(340) 및/또는 제 2 발광물질층(440)이 제 1 화합물(DF), 제 2 화합물(FD) 및 제 3 화합물(H)을 포함하는 경우, 제 1 발광물질층(340) 및/또는 제 2 발광물질층(440)에서 제 3 화합물(H)의 함량은 제 1 화합물(DF)의 함량보다 크고, 제 1 화합물(DF)의 함량은 제 2 화합물(FD)의 함량보다 클 수 있다. 제 1 화합물(DF)의 함량이 제 2 화합물(FD)의 함량보다 큰 경우, 제 1 화합물(DF)로부터 제 2 화합물(FD)로 에너지 전달이 충분히 일어날 수 있다.
하나의 예시적인 측면에서, 제 2 발광물질층(440)은 제 1 발광물질층(340)과 동일하게 제 1 화합물(DF)과 제 2 화합물(FD)을 포함하고, 선택적으로 제 3 화합물(H)을 포함할 수 있다. 선택적으로, 제 2 발광물질층(440)은 제 1 발광물질층(340)에 포함되는 제 1 화합물(DF)과 제 2 화합물(FD) 중에서 적어도 하나와 다른 화합물을 포함하여 제 1 발광물질층(340)과 다른 파장의 빛을 발광하거나 다른 발광 효율을 가질 수 있다.
도면에서, 제 1 발광물질층(340) 및 제 2 발광물질층(440)은 각각 단층 구조를 가지는 것으로 도시하였다. 이와 달리, 적어도 제 1 화합물(DF), 제 2 화합물(FD) 및 선택적으로 제 3 화합물(H)을 각각 포함할 수 있는 제 1 발광물질층(340) 및 제 2 발광물질층(440)은 각각 2층 구조(도 11 참조) 또는 3층 구조(도 14 참조)를 가질 수 있다.
본 개시의 예시적인 측면에 따른 유기발광다이오드(D4)에서 지연 형광 물질인 제 1 화합물(DF)의 단일항 엑시톤 에너지가 형광 물질인 제 2 화합물(FD)로 전달되어, 제 2 화합물(FD)에서 최종적인 발광이 일어난다. 따라서, 유기발광다이오드(D4)의 발광 효율과 색 순도가 향상된다. 또한, 화학식 1 내지 화학식 5의 구조를 가지는 제 1 화합물(DF)과, 화학식 6 내지 화학식 8의 구조를 가지는 제 2 화합물(FD)이 적어도 제 1 발광물질층(340)에 이용됨으로써, 유기발광다이오드(D4)의 발광 효율과 색 순도가 더욱 향상된다. 또한, 유기발광다이오드(D4)가 청색 발광물질층의 이중 스택 구조를 가지므로, 유기발광다이오드(D4)의 색감이 향상되거나 발광 효율이 최적화될 수 있다.
도 18은 본 개시의 다른 측면에 따른 유기발광표시장치를 개략적으로 나타낸 단면도이다. 도 18에 나타낸 바와 같이, 유기발광표시장치(500)는 제 1 내지 제 3 화소영역(P1, P2, P3)이 정의된 기판(510)과, 기판(510) 상부에 위치하는 박막트랜지스터(Tr)와, 박막트랜지스터(Tr) 상부에 위치하며 박막트랜지스터(Tr)에 연결되는 유기발광다이오드(D)를 포함한다. 일례로, 제 1 화소영역(P1)은 청색 화소영역이고, 제 2 화소영역(P2)은 녹색 화소영역이며, 제 3 화소영역(P3)은 적색 화소영역일 수 있다.
기판(510)은 유리 기판 또는 플렉서블 기판일 수 있다. 예를 들어, 플렉서블 기판은 PI 기판, PES 기판, PEN 기판, PET 기판 및 PC 기판 중 어느 하나일 수 있다. 기판(510) 상에 버퍼층(512)이 형성되고, 버퍼층(512) 상에 박막트랜지스터(Tr)가 형성된다. 버퍼층(512)은 생략될 수 있다. 도 2에서 설명한 바와 같이, 박막트랜지스터(Tr)는 반도체층, 게이트 전극, 소스 전극 및 드레인 전극을 포함하고, 구동 소자로 기능한다.
박막트랜지스터(Tr) 상에 평탄화층(550)이 위치한다. 평탄화층(550)은 상면이 평탄하며, 박막트랜지스터(Tr)의 드레인 전극을 노출하는 드레인 컨택홀(552)을 갖는다.
유기발광다이오드(D)는 평탄화층(550) 상에 위치하며, 박막트랜지스터(Tr)의 드레인 전극에 연결되는 제 1 전극(610)과, 제 1 전극(610) 상에 순차 적층되는 발광층(620) 및 제 2 전극(630)을 포함한다. 유기발광다이오드(D)는 제 1 내지 제 3 화소영역(P1, P2, P3) 각각에 위치하며, 서로 다른 색의 광을 방출한다. 예를 들어, 제 1 화소영역(P1)의 유기발광다이오드(D)는 청색 광을 발광하고, 제 2 화소영역(P2)의 유기발광다이오드(D)는 녹색 광을 발광하고, 제 3 화소영역(P3)의 유기발광다이오드(D)는 적색 광을 발광할 수 있다.
제 1 전극(610)은 제 1 내지 제 3 화소영역(P1, P2, P3) 별로 분리, 형성되고, 제 2 전극(630)은 제 1 내지 제 3 화소영역(P1, P2, P3)에 대응하여 일체로 형성된다. 제 1 전극(610)은 양극과 음극 중에서 하나일 수 있고, 제 2 전극(630)은 양극과 음극 중에서 다른 하나일 수 있다. 또한, 제 1 전극(610)과 제 2 전극(630) 중에서 하나는 투과전극(또는 반투과전극)이고, 제 1 전극(610)과 제 2 전극(630) 중에서 다른 하나는 반사전극일 수 있다.
예를 들어, 제 1 전극(610)은 양극일 수 있으며, 일함수 값이 비교적 큰 도전성 물질, 예를 들어 투명 도전성 산화물(TCO)로 이루어지는 투명 도전성 산화물층을 포함할 수 있다. 제 2 전극(630)은 음극일 수 있으며, 일함수 값이 비교적 작은 도전성 물질, 예를 들어 저-저항 금속으로 이루어지는 금속물질층을 포함할 수 있다. 일례로, 제 1 전극(610)은 ITO, IZO, ITZO, SnO, ZnO, ICO 및 AZO 중 어느 하나를 포함하고, 제 2 전극(630)은 Al, Mg, Ca, Ag 또는 이들의 합금(예를 들어 Mg-Ag 합금)이나 이들의 조합으로 이루어질 수 있다.
유기발광표시장치(500)가 하부 발광 방식인 경우, 제 1 전극(610)은 투명 도전성 산화물층의 단일층 구조를 가질 수 있다. 한편, 유기발광표시장치(500)가 상부 발광 방식인 경우, 제 1 전극(610) 하부에는 반사전극 또는 반사층이 더욱 형성될 수 있다. 일례로, 반사전극 또는 반사층은 은 또는 알루미늄-팔라듐-구리(APC) 합금으로 이루어질 수 있다. 상부 발광 방식 유기발광다이오드(D)에서, 제 1 전극(610)은 ITO/Ag/ITO 또는 ITO/APC/ITO의 삼중층 구조를 가질 수 있다. 또한, 제 2 전극(630)은 얇은 두께를 가져 광투과(반투과) 특성을 가질 수 있다.
평탄화층(550) 상에는 제 1 전극(610)의 가장자리를 덮는 뱅크층(560)이 형성된다. 뱅크층(560)은 제 1 내지 제 3 화소영역(P1, P2, P3) 각각에 대응하여, 제 1 전극(610)의 중앙을 노출한다.
제 1 전극(610) 상에는 발광층(620)이 형성된다. 발광층(620)은 발광물질층(EML)의 단층 구조를 가질 수 있다. 이와 달리, 발광층(620)은 제 1 전극(610)과 발광물질층 사이에 순차적으로 위치하는 정공주입층(HIL), 정공수송층(HTL) 및/또는 전자차단층(EBL)과, 발광물질층과 제 2 전극(630) 사이에 순차적으로 위치하는 정공차단층(HBL), 전자수송층(ETL) 전자주입층(EIL) 및/또는 전하생성층(CGL) 중에서 적어도 하나를 포함할 수 있다.
청색 화소영역인 제 1 화소영역(P1)에서, 발광층(620)을 구성하는 발광물질층은 화학식 1 내지 화학식 5의 구조를 가지는 지연 형광 물질인 제 1 화합물(DF)과, 화학식 6 내지 화학식 8의 구조를 가지는 형광 물질인 제 2 화합물(FD)과, 선택적으로 호스트인 제 3 화합물(H)을 포함할 수 있다.
제 2 전극(630) 상에는, 외부 수분이 유기발광다이오드(D)로 침투하는 것을 방지하기 위해, 인캡슐레이션 필름(570)이 형성된다. 인캡슐레이션 필름(570)은 제 1 무기 절연층, 유기 절연층, 제 2 무기 절연층의 삼중층 구조를 가질 수 있으나, 이에 한정되지 않는다.
유기발광표시장치(500)는 외부광의 반사를 줄이기 위한 편광판(도시하지 않음)을 더욱 포함할 수 있다. 일례로, 편광판(도시하지 않음)은 원형 편광판일 수 있다. 유기발광표시장치(500)가 하부 발광 방식인 경우, 편광판은 기판(510)의 하부에 위치할 수 있다. 유기발광표시장치(500)가 상부 발광 방식인 경우, 편광판은 인캡슐레이션 필름(570) 상부에 위치할 수 있다.
도 19는 본 개시의 또 다른 예시적인 측면에 따른 유기발광다이오드를 개략적으로 나타낸 단면도이다. 유기발광다이오드(D5)는 제 1 전극(610) 및 제 2 전극(630)과, 제 1 및 제 2 전극(610, 630) 사이에 위치하는 발광층(620)을 포함한다.
제 1 전극(610)은 양극일 수 있고, 제 2 전극(630)은 음극일 수 있다. 일례로, 제 1 전극(610)은 반사전극이고, 제 2 전극(630)은 투과전극(반투과전극)일 수 있다.
발광층(620)은 발광물질층(640)을 포함한다. 발광층(620)은 제 1 전극(610)과 발광물질층(640) 사이에 위치하는 정공수송층(HTL, 660)과, 발광물질층(640)과 제 2 전극(630) 사이에 위치하는 전자수송층(ETL, 670) 중에서 적어도 어느 하나를 포함할 수 있다. 또한, 발광층(620)은 제 1 전극(610)과 정공수송층(660) 사이에 위치하는 정공주입층(HIL, 650)과, 전자수송층(670)과 제 2 전극(630) 사이에 위치하는 전자주입층(HIL, 680) 중에서 적어도 어느 하나를 더욱 포함할 수 있다. 선택적으로, 발광층(630)은 정공수송층(660)과 발광물질층(640) 사이에 위치하는 전자차단층(EBL, 665)과, 발광물질층(640)과 전자수송층(670) 사이에 위치하는 정공차단층(HBL, 675) 중에서 적어도 어느 하나를 더욱 포함할 수 있다.
또한, 발광층(620)은 정공수송층(660)과 전자차단층(665) 사이에 위치하는 보조 정공수송층(662)을 더욱 포함할 수 있다. 보조 정공수송층(662)은 제 1 화소영역(P1)에 위치하는 제 1 보조 정공소송층(662a), 제 2 화소영역(P2)에 위치하는 제 2 보조 정공수송층(662b) 및 제 3 화소영역(P3)에 위치하는 제 3 보조 정공수송층(662c)을 포함할 수 있다.
제 1 보조 정공수송층(662a)은 제 1 두께를 갖고, 제 2 보조 정공수송층(662b)는 제 2 두께를 갖고, 제 3 보조 정공수송층(662c)는 제 3 두께를 갖는다. 이때, 제 1 두께는 제 2 두께보다 작고, 제 2 두께는 제 3 두께보다 작다. 이에 따라, 유기발광다이오드(D6)는 마이크로 캐비티(micro-cavity) 구조를 갖는다.
즉, 서로 다른 두께를 갖는 제 1 내지 제 3 보조 정공수송층(662a, 662b, 662c)에 의해, 제 1 파장 범위의 빛(청색)을 발광하는 제 1 화소영역(P1)에서 제 1 전극(610)과 제 2 전극(630) 간 거리는 제 1 파장 범위보다 긴 제 2 파장 범위의 빛(녹색)을 발광하는 제 2 화소영역(P2)에서 제 1 전극(610)과 제 2 전극(630) 간 거리보다 작다. 또한, 제 2 화소영역(P2)에서 제 1 전극(610)과 제 2 전극(630) 간 거리는 제 2 파장 범위보다 긴 제 3 파장 범위의 빛(적색)을 발광하는 제 3 화소영역(P3)에서 제 1 전극(610)과 제 2 전극(630) 간 거리보다 작다. 이에 따라 유기발광다이오드(D5)의 발광 효율이 향상된다.
도 19에서 제 1 화소영역(P3)에 제 1 보조 정공수송층(662a)이 형성되어 있다. 이와 달리, 제 1 보조 정공수송층(662a) 없이 마이크로 캐버티 구조가 구현될 수 있다. 또한, 제 2 전극(630) 상에는 광추출 향상을 위한 캡핑층(capping layer)이 추가로 형성될 수 있다.
발광물질층(640)은 제 1 화소영역(P1)에 위치하는 제 1 발광물질층(642)과, 제 2 화소영역(P2)에 위치하는 제 2 발광물질층(644)과, 제 3 화소영역(P3)에 위치하는 제 3 발광물질층(646)을 포함한다. 제 1 발광물질층(642), 제 2 발광물질층(644) 및 제 3 발광물질층(646)은 각각 청색 발광물질층, 녹색 발광물질층 및 적색 발광물질층일 수 있다.
제 1 화소영역(P1)의 제 1 발광물질층(642)은 화학식 1 내지 화학식 5의 구조를 가지는 지연 형광 물질인 제 1 화합물(DF)과, 화학식 6 내지 화학식 8의 구조를 가지는 형광 물질인 제 2 화합물(FD)과, 선택적으로 호스트일 수 있는 제 3 화합물(H)을 포함할 수 있다. 제 1 발광물질층(642)은 단층 구조, 2층 구조(도 11 참조) 또는 3층 구조(도 14 참조)를 가질 수 있다.
이때, 제 1 발광물질층(642)에서, 제 3 화합물(H)의 함량은 제 1 화합물(DF)의 함량보다 크고, 제 1 화합물(DF)의 함량은 제 2 화합물(FD)의 함량보다 클 수 있다. 제 1 화합물(DF)의 함량이 제 2 화합물(FD)의 함량보다 큰 경우, 제 1 화합물(DF)로부터 제 2 화합물(FD)로 에너지 전달이 충분히 일어날 수 있다.
제 2 화소영역(P2)의 제 2 발광물질층(644)은 호스트와 녹색 도펀트를 포함하고, 제 3 화소영역(P3)의 제 3 발광물질층(646)은 호스트와 적색 도펀트를 포함할 수 있다. 예를 들어, 제 2 발광물질층(644)과 제 3 발광물질층(646)의 호스트는 제 3 화합물(H)을 포함하고, 녹색 도펀트와 적색 도펀트는 각각 녹색 또는 적색 인광 물질, 녹색 또는 적색 형광 물질 및 녹색 또는 적색 지연 형광 물질 중에서 적어도 하나를 포함할 수 있다.
도 19의 유기발광다이오드(D5)는 제 1 내지 제 3 화소영역(P1, P2, P3) 각각에서 청색 광, 녹색 광 및 적색 광을 발광하며, 이에 따라 유기발광표시장치(500, 도 18 참조)는 컬러 영상을 구현할 수 있다.
한편, 유기발광표시장치(500)는 색 순도를 향상시키기 위해, 제 1 내지 제 3 화소영역(P1, P2, P3)에 대응하여 컬러필터층을 더욱 포함할 수 있다. 일례로, 컬러필터층은 제 1 화소영역(P1)에 대응하는 제 1 컬러필터층(청색 컬러필터층), 제 2 화소영역(P2)에 대응하는 제 2 컬러필터층(녹색 컬러필터층) 및 제 3 화소영역(P3)에 대응하는 제 3 컬러필터층(적색 컬러필터층음)을 포함할 수 있다.
유기발광표시장치(500)가 하부 발광 방식인 경우, 컬러필터층은 유기발광다이오드(D)와 기판(510) 사이에 위치할 수 있다. 유기발광표시장치(500)가 상부 발광 방식인 경우, 컬러필터층은 유기발광다이오드(D) 상부에 위치할 수 있다.
도 20은 본 개시의 또 다른 예시적인 측면에 따른 유기발광표시장치를 개략적으로 나타낸 단면도이다. 도 20에 나타낸 바와 같이, 유기발광표시장치(1000)는 제 1 내지 제 3 화소영역(P1, P2, P3)이 정의된 기판(1010)과, 기판(1010) 상부에 위치하는 박막트랜지스터(Tr)와, 박막트랜지스터(Tr) 상부에 위치하며 박막트랜지스터(Tr)에 연결되는 유기발광다이오드(D)와, 제 1 내지 제 3 화소영역(P1, P2, P3)에 대응되는 컬러필터층(1020)을 포함한다. 일례로, 제 1 화소영역(P1)은 청색 화소영역이고, 제 2 화소영역(P2)은 녹색 화소영역이며, 제 3 화소영역(P3)은 적색 화소영역일 수 있다.
기판(1010)은 유리 기판 또는 플렉서블 기판일 수 있다. 일례로, 플렉서블 기판은 PI 기판, PES 기판, PEN 기판, PET 기판 및 PC 기판 중 어느 하나일 수 있다. 박막트랜지스터(Tr)는 기판(1010) 상에 위치한다. 이와 달리, 기판(1010) 상에 버퍼층(도시하지 않음)이 형성되고, 박막트랜지스터(Tr)는 버퍼층 상에 형성될 수도 있다. 도 2를 통해 설명한 바와 같이, 박막트랜지스터(Tr)는 반도체층, 게이트 전극, 소스 전극 및 드레인 전극을 포함하고, 구동 소자로 기능한다.
컬러필터층(1020)이 기판(1010) 상에 위치한다. 일례로, 컬러필터층(820)은 제 1 화소영역(P1)에 대응되는 제 1 컬러필터층(1022), 제 2 화소영역(P2)에 대응되는 제 2 컬러필터층(1024) 및 제 3 화소영역(P3)에 대응되는 제 3 컬러필터층(1026)을 포함할 수 있다. 제 1 컬러필터층(1022)은 청색 컬러필터층이고, 제 2 컬러필터층(1024)은 녹색 컬러필터층이며, 제 3 컬러필터층(1026)은 적색 컬러필터층일 수 있다. 예를 들어, 제 1 컬러필터층(1022)은 청색 염료(dye)와 청색 안료(pigment) 중 적어도 하나를 포함하고, 제 2 컬러필터층(1024)은 녹색 염료와 녹색 안료 중 적어도 하나를 포함하며, 제 3 컬러필터층(1026)은 적색 염료와 적색 안료 중 적어도 하나를 포함할 수 있다.
박막트랜지스터(Tr)와 컬러필터층(1020) 상에는 평탄화층(1050)이 위치한다. 평탄화층(1050)은 상면이 평탄하며, 박막트랜지스터(Tr)의 드레인 전극(도시하지 않음)을 노출하는 드레인 컨택홀(1052)을 갖는다.
유기발광다이오드(D)는 평탄화층(1050) 상에 위치하며, 컬러필터층(1020)에 대응된다. 유기발광다이오드(D)는 박막트랜지스터(Tr)의 드레인 전극에 연결되는 제 1 전극(1110)과, 제 1 전극(1110) 상에 순차 위치하는 발광층(1120) 및 제 2 전극(1130)을 포함한다. 유기발광다이오드(D)는 제 1 내지 제 3 화소영역(P1, P2, P3)에서 백색 광을 발광한다.
제 1 전극(1110)은 제 1 내지 제 3 화소영역(P1, P2, P3) 별로 분리, 형성되고, 제 2 전극(1130)은 제 1 내지 제 3 화소영역(P1, P2, P3)에 대응하여 일체로 형성된다. 제 1 전극(1110)은 양극과 음극 중에서 하나일 수 있고, 제 2 전극(1130)은 양극과 음극 중에서 다른 하나일 수 있다. 또한, 제 1 전극(1110)은 투과전극이고, 제 2 전극(1130)은 반사전극일 수 있다.
예를 들어, 제 1 전극(1110)은 양극일 수 있으며, 일함수 값이 비교적 큰 도전성 물질, 예를 들어 투명 도전성 산화물(TCO)로 이루어지는 투명 도전성 산화물층을 포함할 수 있다. 제 2 전극(1130)은 음극일 수 있으며, 일함수 값이 비교적 작은 도전성 물질, 예를 들어 저-저항 금속으로 이루어지는 금속물질층을 포함할 수 있다. 일례로, 제 1 전극(1110)의 투명 도전성 산화물층은 ITO, IZO, ITZO, SnO, ZnO, ICO 및 AZO 중 어느 하나를 포함하고, 제 2 전극(1130)은 Al, Mg, Ca, Ag, 이들의 합금(예를 들어, Mg-Ag 합금)이나 이들의 조합으로 이루어질 수 있다.
제 1 전극(1110) 상에 발광층(1120)이 형성된다. 발광층(1120)은 서로 다른 색을 발광하는 적어도 2개의 발광부를 포함한다. 발광부는 각각 발광물질층(EML)의 단층 구조를 가질 수 있다. 이와 달리, 발광부는 각각 정공주입층(HIL), 정공수송층(HTL), 전자차단층(EBL), 정공차단층(HBL), 전자수송층(ETL) 및 전자주입층(EIL) 중 적어도 하나를 더욱 포함할 수 있다. 또한, 발광층(1120)은 발광부 사이에 위치하는 전하생성층(charge generation layer, CGL)을 더욱 포함할 수 있다.
이때, 적어도 2개의 발광부 중에서 적어도 하나의 발광물질층(EML)은 화학식 1 내지 화학식 5의 구조를 가지는 지연 형광 물질인 제 1 화합물(DF)과, 화학식 6 내지 화학식 8의 구조를 가지는 형광 물질인 제 2 화합물(FD)과, 선택적으로 호스트일 수 있는 제 3 화합물(H)을 포함할 수 있다.
평탄화층(1050) 상에는 제 1 전극(1110)의 가장자리를 덮는 뱅크층(1060)이 형성된다. 뱅크층(1060)은 제 1 내지 제 3 화소영역(P1, P2, P3) 각각에 대응하여, 제 1 전극(1110)의 중앙을 노출한다. 전술한 바와 같이, 유기발광다이오드(D)는 제 1 내지 제 3 화소영역(P1, P2, P3)에서 백색 광을 발광하므로, 발광층(1120)은 제 1 내지 제 3 화소영역(P1, P2, P3)에서 분리될 필요 없이 공통층으로 형성될 수 있다. 뱅크층(1060)은 제 1 전극(1110) 가장자리에서의 전류 누석을 막기 위해 형성되며, 뱅크층(1060)은 생략될 수 있다.
도시하지 않았으나, 유기발광표시장치(1000)는 외부 수분이 유기발광다이오드(D)로 침투하는 것을 방지하기 위해, 제 2 전극(1130) 상에 위치하는 인캡슐레이션 필름을 더욱 포함할 수 있다. 또한, 유기발광표시장치(1000)는 외부광의 반사를 줄이기 위해, 기판(1010) 하부에 위치하는 편광판을 더욱 포함할 수 있다.
도 20의 유기발광표시장치(1000)에서, 제 1 전극(1110)은 투과전극이고, 제 2 전극(1130)은 반사전극이며, 컬러필터층(1020)은 기판(1010)과 유기발광다이오드(D) 사이에 위치한다. 즉, 유기발광표시장치(1000)는 하부 발광 방식이다. 이와 달리, 유기발광표시장치(1000)에서, 제 1 전극(1110)은 반사전극이고, 제 2 전극(1130)은 투과전극(반투과전극)이며, 컬러필터층(1020)은 유기발광다이오드(D) 상부에 위치할 수 있다.
유기발광표시장치(1000)에서 제 1 내지 제 3 화소영역(P1, P2, P3)의 유기발광다이오드(D)는 백색 광을 발광하고, 제 1 내지 제 3 컬러필터층(1022, 1024, 1026)을 통과함으로써, 제 1 내지 제 3 화소영역(P1, P2, P3)에서 각각 청색, 녹색 및 적색이 표시된다.
도시하지 않았으나, 유기발광다이오드(D)와 컬러필터층(1020) 사이에는 색변환층이 구비될 수도 있다. 색변환층은 제 1 내지 제 3 화소영역(P1, P2, P3) 각각에 대응하며, 청색 색변환층, 녹색 색변환층 및 적색 색변환층을 포함하며, 유기발광다이오드(D)로부터 방출된 백색 광을 각각 청색, 녹색 및 적색으로 변환시킬 수 있다. 예를 들어, 색변환층은 양자점을 포함할 수 있다. 따라서, 유기발광표시장치(1000)의 색 순도가 더욱 향상될 수 있다. 선택적인 실시형태에서, 컬러필터층(1020) 대신에 색변환층이 포함될 수도 있다.
도 21은 본 개시의 또 다른 측면에 따른 유기발광다이오드를 개략적으로 나타낸 단면도이다. 도 21에 나타낸 바와 같이, 유기발광다이오드(D6)는 서로 마주하는 제 1 전극(1110) 및 제 2 전극(1130)과, 제 1 및 제 2 전극(1110, 1130) 사이에 위치하는 발광층(1120)을 포함한다. 제 1 전극(1110)은 양극일 수 있고, 제 2 전극(1130)은 음극일 수 있다. 예를 들어, 제 1 전극(1110)은 투과전극이고, 제 2 전극(1130)은 반사전극일 수 있다.
발광층(1120)은 제 1 발광물질층(1240, 하부 발광물질층)을 포함하는 제 1 발광부(1220)와, 제 2 발광물질층(1340, 중간 발광물질층)을 포함하는 제 2 발광부(1320)와, 제 3 발광물질층(1440, 상부 발광물질층)을 포함하는 제 3 발광부(1420)를 포함한다. 또한, 발광층(1120)은 제 1 발광부(1220)와 제 2 발광부(1320) 사이에 위치하는 제 1 전하생성층(1280)과, 제 2 발광부(1320)와 제 3 발광부(1420) 사이에 위치하는 제 2 전하생성층(1380)을 더욱 포함할 수 있다. 따라서, 제 1 발광부(1220), 제 1 전하생성층(1280), 제 2 발광부(1320), 제 2 전하생성층(1380) 및 제 3 발광부(1420)가 제 1 전극(1110) 상에 순차 적층된다.
제 1 발광부(1220)는 제 1 전극(1110)과 제 1 발광물질층(1240) 사이에 위치하는 정공주입층(1250)과, 제 1 발광물질층(1240)과 정공주입층(1250) 사이에 위치하는 제 1 정공수송층(HTL1, 1260)과, 제 1 발광물질층(1240)과 제 1 전하생성층(1280) 사이에 위치하는 제 1 전자수송층(ETL1, 1270) 중에서 적어도 어느 하나를 포함할 수 있다. 선택적으로, 제 1 발광부(1220)는 제 1 정공수송층(1260)과 제 1 발광물질층(1240) 사이에 위치하는 제 1 전자차단층(EBL1, 1265)과 제 1 발광물질층(1240)과 제 1 전자수송층(1270) 사이에 위치하는 제 1 정공차단층(1275, HBL1) 중에서 적어도 어느 하나를 더욱 포함할 수 있다.
제 2 발광부(1320)는 제 1 전하생성층(1280)과 제 2 발광물질층(1340) 사이에 위치하는 제 2 정공수송층(HTL2, 1360)과, 제 2 발광물질층(1340)과 제 2 전하생성층(1380) 사이에 위치하는 제 2 전자수송층(ETL2, 1370) 중에서 적어도 어느 하나를 포함할 수 있다. 선택적으로, 제 2 발광부(1220)는 제 2 정공수송층(1360)과 제 2 발광물질층(1340) 사이에 위치하는 제 2 전자차단층(EBL2, 1365)과 제 2 발광물질층(1340)과 제 2 전자수송층(1370) 사이에 위치하는 제 2 정공차단층(HBL2, 1375) 중에서 적어도 어느 하나를 더욱 포함할 수 있다.
제 3 발광부(1420)는 제 2 전하생성층(1380)과 제 3 발광물질층(1440) 사이에 위치하는 제 3 정공수송층(HTL3, 1460)과, 제 3 발광물질층(1440)과 제 2 전극(1130) 사이에 위치하는 제 3 전자수송층(HTL3, 1470)과, 제 3 전자수송층(1470)과 제 2 전극(1130) 사이에 위치하는 전자주입층(HIL, 1480) 중에서 적어도 어느 하나를 포함할 수 있다. 선택적으로, 제 3 발광부(1420)는 제 3 정공수송층(1460)과 제 3 발광물질층(1440) 사이에 위치하는 제 3 전자차단층(EBL3, 1465)과 제 3 발광물질층(1440)과 제 3 전자수송층(1470) 사이에 위치하는 제 3 정공차단층(1475) 중에서 적어도 어느 하나를 더욱 포함할 수 있다.
제 1 전하생성층(1280)은 제 1 발광부(1220)와 제 2 발광부(1320) 사이에 위치한다. 즉, 제 1 발광부(1220)와 제 2 발광부(1320)는 제 1 전하생성층(1280)에 의해 연결된다. 제 1 전하생성층(1280)은 제 1 N형 전하생성층(1282)과 제 1 P형 전하생성층(1284)이 접합된 PN접합 전하생성층일 수 있다.
제 1 N형 전하생성층(1282)은 제 1 전자수송층(1270)과 제 2 정공수송층(1360) 사이에 위치하고, 제 1 P형 전하생성층(1284)은 제 1 N형 전하생성층(1282)과 제 2 정공수송층(1360) 사이에 위치한다. 제 1 N형 전하생성층(1282)은 전자를 제 1 발광부(1220)의 제 1 발광물질층(1240)으로 전달하고, 제 1 P형 전하생성층(1284)은 정공을 제 2 발광부(1320)의 제 2 발광물질층(1340)으로 전달한다.
제 2 전하생성층(1380)은 제 2 발광부(1320)와 제 3 발광부(1420) 사이에 위치한다. 즉, 제 2 발광부(1320)와 제 3 발광부(1420)는 제 2 전하생성층(1380)에 의해 연결된다. 제 2 전하생성층(1380)은 제 2 N형 전하생성층(1382)과 제 2 P형 전하생성층(1384)이 접합된 PN접합 전하생성층일 수 있다.
제 2 N형 전하생성층(1382)은 제 2 전자수송층(1370)과 제 3 정공수송층(1460) 사이에 위치하고, 제 2 P형 전하생성층(1384)은 제 2 N형 전하생성층(1382)과 제 3 정공수송층(1460) 사이에 위치한다. 제 1 N형 전하생성층(1382)은 전자를 제 2 발광부(1320)의 제 1 발광물질층(1340)으로 전달하고, 제 2 P형 전하생성층(1384)은 정공을 제 3 발광부(1420)의 제 3 발광물질층(1440)으로 전달한다.
본 개시의 또 다른 예시적인 측면에서, 제 1 내지 제 3 발광물질층(1240, 1340, 1440) 중에서 하나는 청색 발광물질층이고, 제 1 내지 제 3 발광물질층(1240, 1340, 1440) 중에서 다른 하나는 녹색 발광물질층이고, 제 1 내지 제 3 발광물질층(1240, 1340, 1440) 중에서 나머지는 적색 발광물질층일 수 있다.
일례로, 제 1 발광물질층(1240)은 청색 발광물질층이고, 제 2 발광물질층(1340)은 녹색 발광물질층이며, 제 3 발광물질층(1440)은 적색 발광물질층일 수 있다. 선택적으로, 제 1 발광물질층(1240)은 적색 발광물질층이고, 제 2 발광물질층(1340)은 녹색 발광물질층이며, 제 3 발광물질층(1440)은 청색 발광물질층일 수 있다. 이하에서는, 제 1 발광물질층(1240)이 청색 발광물질층이고, 제 2 발광물질층(1340)이 녹색 발광물질층이며, 제 3 발광물질층(1340)이 적색 발광물질층인 경우를 중심으로 설명한다.
제 1 발광물질층(1240)은 화학식 1 내지 화학식 5의 구조를 가지는 지연 형광 물질인 제 1 화합물(DF)과, 화학식 6 내지 화학식 8의 구조를 가지는 형광 물질인 제 2 화합물(FD)과, 선택적으로 호스트일 수 있는 제 3 화합물(H)을 포함할 수 있다. 제 1 화합물 내지 제 3 화합물을 포함하는 제 1 발광물질층(1240)은 단층 구조, 이층 구조(도 11 참조) 또는 삼층 구조(도 14 참조)를 가질 수 있다.
제 1 발광물질층(1240)에서 제 3 화합물(H)의 함량은 제 1 화합물(DF)의 함량보다 크고, 제 1 화합물(DF)의 함량은 제 2 화합물(FD)의 함량보다 클 수 있다. 제 1 화합물(DF)의 함량이 제 2 화합물(FD)의 함량보다 큰 경우, 제 1 화합물(DF)로부터 제 2 화합물(FD)로 에너지 전달이 충분히 일어날 수 있다.
제 2 발광물질층(1340)은 호스트와 녹색 도펀트를 포함하고, 제 3 발광물질층(1440)은 호스트와 적색 도펀트를 포함할 수 있다. 일례로, 제 2 발광물질층(1340) 및 제 3 발광물질층(1440) 각각에서, 호스트는 제 3 화합물(H)을 포함하고, 녹색 및 적색 도펀트는 각각 녹색 및 적색 인광 물질, 녹색 및 적색 형광 물질 및 녹색 및 적색 지연 형광 물질 중에서 적어도 하나를 포함할 수 있다.
유기발광다이오드(D6)는 제 1 내지 제 3 화소영역(P1, P2, P3, 도 16 참조)에서 백색을 발광하며, 제 1 내지 제 3 화소영역(P1, P2, P3)에 대응되게 형성되는 컬러필터층(1020, 도 20 참조)을 통과한다. 이에 따라, 유기발광표시장치(1000, 도 20 참조)는 풀-컬러 영상을 구현할 수 있다.
도 22은 본 개시의 또 다른 예시적인 측면에 따른 유기발광다이오드를 개략적으로 나타낸 단면도이다. 도 22에 나타낸 바와 같이, 유기발광다이오드(D7)는 서로 마주하는 제 1 전극(1110) 및 제 2 전극(1130)과, 제 1 및 제 2 전극(1110, 1130) 사이에 위치하는 발광층(1120A)을 포함한다.
제 1 전극(1110)은 양극일 수 있고, 제 2 전극(1130)은 음극일 수 있다. 예를 들어, 제 1 전극(1110)은 투과전극이고, 제 2 전극(1130)은 반사전극일 수 있다.
발광층(1120A)은 제 1 발광물질층(1540, 하부 발광물질층)을 포함하는 제 1 발광부(1520)와, 제 2 발광물질층(1640, 중간 발광물질층)을 포함하는 제 2 발광부(1620)와, 제 3 발광물질층(1740, 상부 발광물질층)을 포함하는 제 3 발광부(1720)를 포함한다. 또한, 발광층(1120A)은 제 1 발광부(1520)와 제 2 발광부(1620) 사이에 위치하는 제 1 전하생성층(1580)과, 제 2 발광부(1620)와 제 3 발광부(1720) 사이에 위치하는 제 2 전하생성층(1680)을 더욱 포함할 수 있다. 따라서, 제 1 발광부(1520), 제 1 전하생성층(1580), 제 2 발광부(1620), 제 2 전하생성층(1680) 및 제 3 발광부(1720)가 제 1 전극(1110) 상에 순차 적층된다.
제 1 발광부(1520)는 제 1 전극(1110)과 제 1 발광물질층(1540) 사이에 위치하는 정공주입층(1550, HIL)과, 제 1 발광물질층(1540)과 정공주입층(1550) 사이에 위치하는 제 1 정공수송층(HTL1, 1560)과, 제 1 발광물질층(1540)과 제 1 전하생성층(1580) 사이에 위치하는 제 1 전자수송층(ETL1, 1570) 중에서 적어도 어느 하나를 포함할 수 있다. 선택적으로, 제 1 발광부(1520)는 제 1 정공수송층(1560)과 제 1 발광물질층(1540) 사이에 위치하는 제 1 전자차단층(EBL1, 1565)과 제 1 발광물질층(1540)과 제 1 전자수송층(1570) 사이에 위치하는 제 1 정공차단층(1575, HBL1) 중에서 적어도 어느 하나를 더욱 포함할 수 있다.
제 2 발광부(1620)를 구성하는 제 2 발광물질층(1640)은 하부 발광물질층(제 1 층, 1642)과 상부 발광물질층(제 2 층, 1644)을 포함한다. 즉, 하부 발광물질층(1642)은 제 1 전극(1110)에 근접하게 위치하고, 상부 발광물질층(1644)은 제 2 전극(1130)에 근접하게 위치한다. 또한, 제 2 발광부(1620)는 제 1 전하생성층(1580)과 제 2 발광물질층(1640) 사이에 위치하는 제 2 정공수송층(HTL2, 1660)과, 제 2 발광물질층(1640)과 제 2 전하생성층(1680) 사이에 위치하는 제 2 전자수송층(ETL2, 1670) 중에서 적어도 어느 하나를 포함할 수 있다. 선택적으로, 제 2 발광부(1620)는 제 2 정공수송층(1660)과 제 2 발광물질층(1640) 사이에 위치하는 제 2 전자차단층(EBL2, 1665)과 제 2 발광물질층(1640)과 제 2 전자수송층(1670) 사이에 위치하는 제 2 정공차단층(HBL2, 1675) 중에서 적어도 어느 하나를 더욱 포함할 수 있다.
제 3 발광부(1720)는 제 2 전하생성층(1680)과 제 3 발광물질층(1740) 사이에 위치하는 제 3 정공수송층(HTL3, 1760)과, 제 3 발광물질층(1740)과 제 2 전극(1130) 사이에 위치하는 제 3 전자수송층(HTL3, 1770)과, 제 3 전자수송층(1770)과 제 2 전극(1130) 사이에 위치하는 전자주입층(HIL, 1780) 중에서 적어도 어느 하나를 포함할 수 있다. 선택적으로, 제 3 발광부(1720)는 제 3 정공수송층(1760)과 제 3 발광물질층(1740) 사이에 위치하는 제 3 전자차단층(EBL3, 1765)과 제 3 발광물질층(1740)과 제 3 전자수송층(1770) 사이에 위치하는 제 3 정공차단층(1775) 중에서 적어도 어느 하나를 더욱 포함할 수 있다.
제 1 전하생성층(1580)은 제 1 발광부(1520)와 제 2 발광부(1620) 사이에 위치한다. 즉, 제 1 발광부(1520)와 제 2 발광부(1620)는 제 1 전하생성층(1580)에 의해 연결된다. 제 1 전하생성층(1580)은 제 1 N형 전하생성층(1582)과 제 1 P형 전하생성층(1584)이 접합된 PN접합 전하생성층일 수 있다. 제 1 N형 전하생성층(1582)은 제 1 전자수송층(1570)과 제 2 정공수송층(1660) 사이에 위치하고, 제 1 P형 전하생성층(1584)은 제 1 N형 전하생성층(1582)과 제 2 정공수송층(1660) 사이에 위치한다.
제 2 전하생성층(1680)은 제 2 발광부(1620)와 제 3 발광부(1720) 사이에 위치한다. 즉, 제 2 발광부(1620)와 제 3 발광부(1720)는 제 2 전하생성층(1680)에 의해 연결된다. 제 2 전하생성층(1680)은 제 2 N형 전하생성층(1682)과 제 2 P형 전하생성층(1684)이 접합된 PN접합 전하생성층일 수 있다. 제 2 N형 전하생성층(1682)은 제 2 전자수송층(1670)과 제 3 정공수송층(1760) 사이에 위치하고, 제 2 P형 전하생성층(1684)은 제 2 N형 전하생성층(1682)과 제 3 정공수송층(1760) 사이에 위치한다.
본 개시의 예시적인 측면에서, 제 1 발광물질층(1540)과 제 3 발광물질층(1740)은 각각 청색 발광물질층일 수 있다. 예시적인 측면에서, 제 1 발광물질층(1540)과 제 3 발광물질층(1740)은 각각 독립적으로 화학식 1 내지 화학식 5의 구조를 가지는 지연 형광 물질인 제 1 화합물(DF)과, 화학식 6 내지 화학식 8의 구조를 가지는 형광 물질인 제 2 화합물(FD)과, 선택적으로 호스트일 수 있는 제 3 화합물(H)을 포함할 수 있다. 제 1 발광물질층(1540) 및 제 3 발광물질층(1740)을 구성하는 제 1 화합물(DF), 제 2 화합물(FD) 및 제 3 화합물(H)은 각각 동일하거나 상이할 수 있다. 선택적인 측면에서, 제 3 발광물질층(1740)은 제 1 발광물질층(5240)에 포함되는 제 1 화합물(DF)과 제 2 화합물(FD) 중에서 적어도 하나와 다른 화합물을 포함하여 제 1 발광물질층(1540)과 다른 파장의 빛을 발광하거나 다른 발광 효율을 가질 수 있다.
예를 들어, 제 1 발광물질층(1540) 및 제 3 발광물질층(1740)이 제 1 화합물(DF), 제 2 화합물(FD) 및 제 3 화합물(H)을 포함하는 경우, 제 1 발광물질층(1540) 및 제 3 발광물질층(1740) 각각에서 제 3 화합물(H)의 함량은 제 1 화합물(DF)의 함량보다 크고, 제 1 화합물(DF)의 함량은 제 2 화합물(FD)의 함량보다 클 수 있다. 제 1 화합물(DF)의 함량이 제 2 화합물(FD)의 함량보다 큰 경우, 제 1 화합물(DF)로부터 제 2 화합물(FD)로 에너지 전달이 충분히 일어날 수 있다.
제 2 발광물질층(1640)을 구성하는 중간 하부 발광물질층(제 1 층, 1642)과 중간 상부 발광물질층(제 2 층, 1644) 중에서 어느 하나는 녹색 발광물질층이고, 제 2 발광물질층(1640)을 구성하는 중간 하부 발광물질층(1642)과 중간 상부 발광물질층(1644) 중에서 다른 하나는 적색 발광물질층일 수 있다. 즉, 녹색 발광물질층과 적색 발광물질층이 연속하여 적층됨으로써, 제 2 발광물질층(1640)을 이룬다.
예를 들어, 녹색 발광물질층일 수 있는 중간 하부 발광물질층(1642)은 호스트와 녹색 도펀트를 포함할 수 있고, 적색 발광물질층인 중간 상부 발광물질층(1644)은 호스트와 적색 도펀트를 포함할 수 있다. 일례로, 호스트는 제 3 화합물(H)을 포함하고, 녹색 및 적색 도펀트는 각각 녹색 및 적색 인광 물질, 녹색 및 적색 형광 물질 및 녹색 및 적색 지연 형광 물질 중에서 적어도 하나를 포함할 수 있다.
유기발광다이오드(D7)는 제 1 내지 제 3 화소영역(P1, P2, P3, 도 15 참조) 모두에서 백색을 발광하며, 제 1 내지 제 3 화소영역(P1, P2, P3) 각각에서 컬러필터층(1020, 도 20 참조)를 통과함으로써, 유기발광표시장치(1000, 도 20 참조)는 풀-컬러 영상을 구현할 수 있다.
도 22에서 유기발광다이오드(D7)는 청색 발광물질층인 제 1 및 제 3 발광물질층(1540, 1740)을 각각 포함하여, 제 1 내지 제 3 발광부(1520, 1620, 1720)을 포함하여 3중 스택 구조를 갖는다. 이와 달리, 제 1 및 제 3 발광물질층(1540, 1740)을 포함하는 제 1 및 제 3 발광부(1520, 1720) 중에서 어느 하나가 생략되고, 유기발광다이오드(D7)는 이중 스택 구조를 가질 수도 있다.
이하, 예시적인 실시형태를 통하여 본 개시를 설명하지만, 본 개시가 하기 실시예에 기재된 기술사상으로 한정되지 않는다.
실시예 1 (Ex. 1): 유기발광다이오드 제조
발광물질층의 제 1 화합물(DF)로서 화학식 5의 1-47 화합물(HOMO: -5.6 eV, LUMO: -2.8 eV, 온셋파장: 430 nm; 전자주개 모이어티와 전자받개 모이어티 사이의 이면각, 이하 '이면각'이라 함: 73.8도), 제 2 화합물(FD)로서 화학식 8의 2-1 화합물(HOMO: -5.6 eV, LUMO: -2.9 eV), 제 3 화합물(H)로서 mCBP (HOMO: -6.0 eV, LUMO: -2.5 eV)를 도입한 유기발광다이오드를 제조하였다.
ITO 부착 기판을 사용하기 전에 UV 오존으로 세척하고, 증발 시스템에 적재하였다. 기판 상부에 다른 층들을 증착하기 위하여 증착 챔버 내부로 이송하였다. 약 10-7 Torr 진공 하에 가열 보트로부터 증발에 의해 다음과 같은 순서로 유기물층을 증착하였다. 이때, 유기물의 증착 속도는 1 Å/s로 설정하였다.
ITO (50 nm); 정공주입층(HAT-CN, 두께 7 nm), 정공수송층(NPB, 두께 45 nm), 전자차단층(TAPC, 두께 10 nm), 발광물질층(mCBP: 1-47 화합물: 2-1 화합물 = 69: 30: 1 중량비, 두께 30 nm), 정공차단층(B3PYMPM, 두께 10 nm), 전자차단층(TPBi, 두께 30 nm), 전자주입층(LiF), 음극(Al).
CPL(capping layer)을 성막한 뒤에 유리로 인캡슐레이션 하였다. 발광층 및 음극을 증착한 후, 피막을 형성하기 위하여 증착 챔버에서 건조 박스 내로 옮기고 후속적으로 UV 경화 에폭시 및 수분 게터(getter)를 사용하여 인캡슐레이션 하였다. 아래에 발광층에 사용된 유기 화합물의 구조를 나타낸다.
Figure PCTKR2022005837-appb-img-000082
Figure PCTKR2022005837-appb-img-000083
실시예 2 (Ex. 2): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여 화학식 8의 2-23 화합물(HOMO: -5.4 eV, LUMO: -2.8 eV)을 사용한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
실시예 3 (Ex. 3): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여 화학식 8의 2-24 화합물(HOMO: -5.5 eV, LUMO: -2.8 eV)을 사용한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
실시예 4 (Ex. 4): 유기발광다이오드 제조
발광물질층의 제 1 화합물로서 1-47 화합물을 대신하여, 화학식 5의 1-83 화합물(HOMO: -5.5 eV, LUMO: -2.7 eV, 온셋파장: 434 nm, 이면각 65.8도)를 사용한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
실시예 5 (Ex. 5): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여 화학식 8의 2-23 화합물(HOMO: -5.4 eV, LUMO: -2.8 eV)를 사용한 것을 제외하고, 실시예 4와 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
실시예 6 (Ex. 6): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여 화학식 8의 2-24 화합물(HOMO: -5.5 eV, LUMO: -2.8 eV)을 사용한 것을 제외하고, 실시예 4와 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
실시예 7 (Ex. 7): 유기발광다이오드 제조
발광물질층의 제 1 화합물로서 1-47 화합물을 대신하여, 화학식 5의 1-48 화합물(HOMO: -5.6 eV, LUMO: -2.6 eV, 온셋파장: 430 nm, 이면각 72.0도)를 사용한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
실시예 8 (Ex. 8): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여 화학식 8의 2-23 화합물(HOMO: -5.4 eV, LUMO: -2.8 eV)를 사용한 것을 제외하고, 실시예 7과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
실시예 9 (Ex. 9): 유기발광다이오드 제조
발광물질층의 제 1 화합물로서 1-47 화합물을 대신하여, 화학식 5의 1-112 화합물(HOMO: -5.6 eV, LUMO: -2.7 eV, 온셋파장: 432 nm, 이면각 70.4도)를 사용한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
실시예 10 (Ex. 10): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서, 2-1 화합물을 대신하여 화학식 8의 2-23 화합물(HOMO: -5.4 eV, LUMO: -2.8 eV)를 사용한 것을 제외하고, 실시예 9와 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
하기 표 1에서 실시예 1 내지 실시예 10에서 사용한 제 1 화합물과, 제 2 화합물의 HOMO 에너지 준위, 제 1 및 제 2 화합물의 HOMO 에너지 밴드갭(ΔHOMO), 제 1 화합물의 온셋파장(λonset DF, nm), 제 1 화합물의 이면각을 각각 표시하였다.
발광물질층의 제 1 화합물 및 제 2 화합물
샘플 제 1 화합물 제 2 화합물 ΔHOMO
(eV)
λonset DF 이면각
(도)
화합물 HOMO (eV) 화합물 HOMO (eV)
Ex. 1 1-47 -5.6 2-1 -5.6 0 430 73.8
Ex. 2 1-47 -5.6 2-23 -5.4 0.2 430 73.8
Ex. 3 1-47 -5.6 2-24 -5.5 0.1 430 73.8
Ex. 4 1-83 -5.5 2-1 -5.6 -0.1 434 65.8
Ex. 5 1-83 -5.5 2-23 -5.4 0.1 434 65.8
Ex. 6 1-83 -5.5 2-24 -5.5 0 434 65.8
Ex. 7 1-48 -5.6 2-1 -5.6 0 430 72.0
Ex. 8 1-48 -5.6 2-23 -5.4 0.2 430 72.0
Ex. 9 1-112 -5.6 2-1 -5.6 0 432 70.4
Ex. 10 1-112 -5.6 2-23 -5.4 0.2 432 70.4
비교예 1 (Ref. 1): 유기발광다이오드 제조
발광물질층에 mCBP와 화학식 8의 1-47 화합물을 70:30 중량비로 배합한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 2 (Ref. 2): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여 하기 표시한 Ref. 2-1 화합물(HOMO: -5.2 eV, LUMO: -2.7 eV)을 사용한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 3 (Ref. 3): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여 하기 표시한 Ref. 2-2 화합물(HOMO: -5.2 eV, LUMO: -2.6 eV)을 사용한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 4 (Ref. 4): 유기발광다이오드 제조
발광물질층에 mCBP와 화학식 8의 1-83 화합물을 70:30 중량비로 배합한 것을 제외하고, 실시예 4와 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 5 (Ref. 5): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여 하기 표시한 Ref. 2-1 화합물(HOMO: -5.2 eV, LUMO: -2.7 eV)을 사용한 것을 제외하고, 실시예 4와 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 6 (Ref. 6): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여 하기 표시한 Ref. 2-2 화합물(HOMO: -5.2 eV, LUMO: -2.6 eV)을 사용한 것을 제외하고, 실시예 4와 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 7 (Ref. 7): 유기발광다이오드 제조
발광물질층에 mCBP와 화학식 8의 1-48 화합물을 70:30 중량비로 배합한 것을 제외하고, 실시예 7과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 8 (Ref. 8): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여 하기 표시한 Ref. 2-1 화합물(HOMO: -5.2 eV, LUMO: -2.7 eV)을 사용한 것을 제외하고, 실시예 7과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 9 (Ref. ): 유기발광다이오드 제조
발광물질층에 mCBP와 화학식 8의 1-112 화합물을 70:30 중량비로 배합한 것을 제외하고, 실시예 9와 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 10 (Ref. 10): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여 하기 표시한 Ref. 2-1 화합물(HOMO: -5.2 eV, LUMO: -2.7 eV)을 사용한 것을 제외하고, 실시예 9와 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 11 (Ref. 11): 유기발광다이오드 제조
발광물질층에 mCBP와 하기 표시한 Ref. 1-1 화합물(HOMO: -5.9 eV, LUMO: -2.8 eV, 온셋파장: 434 nm, 이면각: 68.7도)을 70:30 중량비로 배합한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 12 (Ref. 12): 유기발광다이오드 제조
발광물질층의 제 1 화합물로서 1-47 화합물을 대신하여 하기 표시한 Ref. 1-1 화합물을 사용한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 13 (Ref. 13): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여, 화학식 8의 2-23 화합물을 사용한 것을 제외하고, 비교예 12와 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 14 (Ref. 14): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여, 화학식 8의 2-24 화합물을 사용한 것을 제외하고, 비교예 12와 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 15 (Ref. 15): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여, 하기 표시한 Ref. 2-1 화합물(HOMO: -5.2 eV, LUMO: -2.7 eV)을 사용한 것을 제외하고, 비교예 12와 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 16 (Ref. 16): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여, 하기 표시한 Ref. 2-2 화합물(HOMO: -5.2 eV, LUMO: -2.6 eV)을 사용한 것을 제외하고, 비교예 12와 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 17 (Ref. 17): 유기발광다이오드 제조
발광물질층에 mCBP와 하기 표시한 Ref. 1-2 화합물(HOMO: -6.0 eV, LUMO: -3.0 eV, 온셋파장: 426 nm, 이면각: 54.5도)을 70:30 중량비로 배합한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 18 (Ref. 18): 유기발광다이오드 제조
발광물질층의 제 1 화합물로서 1-47 화합물을 대신하여 하기 표시한 Ref. 1-2 화합물을 사용한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 19 (Ref. 19): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여 화학식 8의 2-24 화합물을 사용한 것을 제외하고, 비교예 18과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 20 (Ref. 20): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여 하기 표시한 Ref. 2-1 화합물(HOMO: -5.2 eV, LUMO: -2.7 eV)을 사용한 것을 제외하고, 비교예 18과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 21 (Ref. 21): 유기발광다이오드 제조
발광물질층에 mCBP와 하기 표시한 Ref. 1-3 화합물(HOMO: -5.6 eV, LUMO: -2.6 eV, 온셋파장: 424 nm, 이면각: 70.0도)을 70:30 중량비로 배합한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 22 (Ref. 22): 유기발광다이오드 제조
발광물질층의 제 1 화합물로서 1-47 화합물을 대신하여 하기 표시한 Ref. 1-3 화합물을 사용한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 23 (Ref. 23): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여, 화학식 8의 2-23 화합물을 사용한 것을 제외하고, 비교예 22와 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 24 (Ref. 24): 유기발광다이오드 제조
발광물질층에 mCBP와 하기 표시한 Ref. 1-4 화합물(HOMO: -5.5 eV, LUMO: -2.7 eV, 온셋파장: 450 nm, 이면각: 68.5도)을 70:30 중량비로 배합한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 25 (Ref. 25): 유기발광다이오드 제조
발광물질층의 제 1 화합물로서 1-47 화합물을 대신하여 하기 표시한 Ref. 1-4 화합물을 사용한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 26 (Ref. 26): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여, 화학식 8의 2-23 화합물을 사용한 것을 제외하고, 비교예 25와 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 27 (Ref. 27): 유기발광다이오드 제조
발광물질층에 mCBP와 하기 표시한 Ref. 1-4 화합물(HOMO: -5.5 eV, LUMO: -2.7 eV, 온셋파장: 450 nm, 이면각: 68.5도)을 70:30 중량비로 배합한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 28 (Ref. 28): 유기발광다이오드 제조
발광물질층의 제 1 화합물로서 1-47 화합물을 대신하여 하기 표시한 Ref. 1-5 화합물을 사용한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 29 (Ref. 29): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여, 화학식 8의 2-23 화합물을 사용한 것을 제외하고, 비교예 28과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 30 (Ref. 30): 유기발광다이오드 제조
발광물질층에 mCBP와 하기 표시한 Ref. 1-6 화합물(HOMO: -5.6 eV, LUMO: -2.8 eV, 온셋파장: 448 nm, 이면각: 78.6도)을 70:30 중량비로 배합한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 31 (Ref. 31): 유기발광다이오드 제조
발광물질층의 제 1 화합물로서 1-47 화합물을 대신하여 하기 표시한 Ref. 1-6 화합물을 사용한 것을 제외하고, 실시예 1과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다.
비교예 32 (Ref. 32): 유기발광다이오드 제조
발광물질층의 제 2 화합물로서 2-1 화합물을 대신하여, 화학식 8의 2-23 화합물을 사용한 것을 제외하고, 비교예 31과 동일한 물질을 사용하여 유기발광다이오드를 제조하였다. 비교예에서 사용된 비교 화합물의 구조를 아래에 나타낸다.
비교화합물
Figure PCTKR2022005837-appb-img-000084
Figure PCTKR2022005837-appb-img-000085
Figure PCTKR2022005837-appb-img-000086
하기 표 2에서 비교예 1 내지 비교예 32에서 사용한 제 1 화합물과, 제 2 화합물의 HOMO 에너지 준위, 제 1 및 제 2 화합물의 HOMO 에너지 밴드갭(ΔHOMO), 제 1 화합물의 온셋파장(λonset DF, nm), 제 1 화합물의 이면각을 각각 표시하였다.
발광물질층의 제 1 화합물 및 제 2 화합물
샘플 제 1 화합물 제 2 화합물 ΔHOMO
(eV)
λonset DF 이면각
(도)
화합물 HOMO (eV) 화합물 HOMO (eV)
Ref. 1 1-47 -5.6 - - - 430 73.8
Ref. 2 1-47 -5.6 Ref.2-1 -5.2 0.4 430 73.8
Ref. 3 1-47 -5.6 Ref.2-2 -5.2 0.4 430 73.8
Ref. 4 1-83 -5.5 - - - 434 65.8
Ref. 5 1-83 -5.5 Ref.2-1 -5.2 0.3 434 65.8
Ref. 6 1-83 -5.5 Ref.2-2 -5.2 0.3 434 65.8
Ref. 7 1-48 -5.6 - - - 430 72.0
Ref. 8 1-48 -5.6 Ref.2-1 -5.2 0.4 430 72.0
Ref. 9 1-112 -5.6 - - - 432 70.4
Ref. 10 1-112 -5.6 Ref.2-1 -5.2 0.4 432 70.4
Ref. 11 Ref.1-1 -5.9 - - - 434 68.7
Ref. 12 Ref.1-1 -5.9 2-1 -5.6 0.3 434 68.7
Ref. 13 Ref.1-1 -5.9 2-23 -5.4 0.5 434 68.7
Ref. 14 Ref.1-1 -5.9 2-24 -5.5 0.4 434 68.7
Ref. 15 Ref.1-1 -5.9 Ref.2-1 -5.2 0.7 434 68.7
Ref. 16 Ref.1-1 -5.9 Ref.2-2 -5.2 0.7 434 68.7
Ref. 17 Ref.1-2 -6.0 - - - 426 54.5
Ref. 18 Ref.1-2 -6.0 2-1 -5.6 0.4 426 54.5
Ref. 19 Ref.1-2 -6.0 2-24 -5.5 0.5 426 54.5
Ref. 20 Ref.1-2 -6.0 Ref.2-1 -5.2 0.8 426 54.5
Ref. 21 Ref.1-3 -5.6 - - - 424 70.0
Ref. 22 Ref.1-3 -5.6 2-1 -5.6 0 424 70.0
Ref. 23 Ref.1-3 -5.6 2-23 -5.4 0.2 424 70.0
Ref. 24 Ref.1-4 -5.5 - - - 450 68.5
Ref. 25 Ref.1-4 -5.5 2-1 -5.6 -0.1 450 68.5
Ref. 26 Ref.1-4 -5.5 2-23 -5.4 0.1 450 68.5
Ref. 27 Ref.1-5 -5.5 - - - 424 84.9
Ref. 28 Ref.1-5 -5.5 2-1 -5.6 -0.1 424 84.9
Ref. 29 Ref.1-5 -5.5 2-23 -5.4 0.1 424 84.9
Ref. 30 Ref.1-6 -5.6 - - - 448 78.6
Ref. 31 Ref.1-6 -5.6 2-1 -5.6 0 448 78.6
Ref. 32 Ref.1-6 -5.6 2-23 -5.4 0.2 448 78.6
실험예 1: 유기발광다이오드의 발광 특성 측정
실시예 1 내지 실시예 10과, 비교예 1 내지 비교예 32에서 각각 제작된 유기발광다이오드를 대상으로 광학 특성을 측정하였다. 9 ㎟의 방출 영역을 갖는 각각의 유기발광다이오드를 외부전력 공급원에 연결하였으며, 전류 공급원(KEITHLEY) 및 광도계(PR 650)를 사용하여 실온에서 소자 특성을 평가하였다. 8.6 ㎃/㎠의 전류밀도에서 각각의 유기발광다이오드의 구동 전압(V), 색좌표(CIEy), 외부양자효율(EQE, %), LT95 (최초 휘도로부터 95% 수준으로 휘도 감소하기까지의 시간, 상대값), 정공 트랩 여부 및 엑시플렉스 형성 여부(정공 트랩 및/또는 엑시플렉스가 형성되면 Y로, 정공 트랩 및/또는 엑시플렉스가 형성되지 않으면 N)를 각각 측정하였다. 실시예 1 내지 실시예 10에서 각각 제조된 유기발광다이도의 발광 특성을 표 3에 나타내고, 비교예 1 내지 비교예 32에서 각각 제조된 유기발광다이오드의 발광 특성을 표 4에 나타낸다.
유기발광다이오드의 발광 특성
샘플 V CIEy EQE
(%)
LT95 정공 트랩
여부
Exciplex
여부
Ex. 1 3.40 0.134 19.7 100% N N
Ex. 2 3.51 0.210 23.4 123% N N
Ex. 3 3.34 0.253 24.6 121% N N
Ex. 4 3.37 0.126 21.6 90% N N
Ex. 5 3.38 0.237 21.6 95% N N
Ex. 6 3.25 0.259 22.7 94% N N
Ex. 7 3.40 0.139 20.7 134% N N
Ex. 8 3.50 0.187 23.9 157% N N
Ex. 9 3.70 0.138 21.8 104% N N
Ex. 10 3.60 0.192 23.4 123% N N
유기발광다이오드의 발광 특성
샘플 V CIEy EQE
(%)
LT95 정공 트랩
여부
Exciplex
여부
Ref. 1 3.49 0.268 19.3 82% - -
Ref. 2 4.45 0.158 4.9 16% Y N
Ref. 3 4.19 0.183 9.8 21% Y N
Ref. 4 3.22 0.288 18.9 76% - -
Ref. 5 4.11 0.169 10.0 12% Y N
Ref. 6 4.07 0.170 11.7 8% Y N
Ref. 7 3.40 0.260 18.1 92% N N
Ref. 8 3.90 0.186 13.9 36% N N
Ref. 9 3.50 0.275 18.7 86% - -
Ref. 10 3.81 0.187 6.9 6% Y N
Ref. 11 3.59 0.288 15.2 47% - -
Ref. 12 4.98 0.208 8.5 12% Y N
Ref. 13 4.87 0.216 10.8 5% Y N
Ref. 14 4.00 0.264 12.5 2% Y N
Ref. 15 3.53 0.417 9.4 2% Y Y
Ref. 16 3.57 0.336 10.7 3% Y Y
Ref. 17 3.54 0.244 14.7 30% - -
Ref. 18 5.05 0.212 6.9 2% Y N
Ref. 19 4.10 0.275 12.7 7% Y N
Ref. 20 3.35 0.405 8.3 4% Y Y
Ref. 21 3.54 0.261 8.4 4% - -
Ref. 22 3.69 0.133 11.9 1% N N
Ref. 23 3.65 0.232 14.7 1% N N
Ref. 24 3.36 0.437 24.8 97% - -
Ref. 25 3.46 0.348 12.3 46% N N
Ref. 26 3.51 0.287 23.5 129% N N
Ref. 27 4.14 0.226 6.7 1.2% - -
Ref. 28 4.24 0.167 10.3 1.4% N N
Ref. 29 3.93 0.184 13.9 1.6% N N
Ref. 30 3.70 0.356 11.3 1.4% - -
Ref. 31 3.84 0.320 6.9 0.8% N N
Ref. 32 3.70 0.288 15.2 1.2% N N
표 3과 표 4에 나타낸 바와 같이, 제 1 화합물과 제 2 화합물의 HOMO 에너지 밴드갭을 0.3 eV 미만이고, 제 1 화합물의 온셋파장이 430 nm 내지 440 nm 파장으로 설정한 유기발광다이오드의 발광 특성이 크게 향상되었다. 구체적으로 살펴보면, 비교예 1, 비교예 4, 비교예 7, 비교예 9, 비교예 11, 비교예 17, 비교예 21, 비교예 24, 비교예 27, 비교예 30에 따라 발광물질칭의 도펀트로 제 1 화합물만을 적용한 유기발광다이오드와 비교해서, 실시예에서 제조된 유기발광다이오드의 구동 전압은 최대 21.5% 낮아졌고, EQE는 최대 256.7% 향상되었으며, 발광 수명은 크게 개선되었다. 또한, 이들 비교예에서 제조된 유기발광다이오드와 비교해서, 실시예에서 제조된 유기발광다이오드는 청색 파장 대역의 발광 파장을 구현하였다.
비교예 2-3, 비교예 4-6, 비교예 8, 비교예 10, 비교예 12-16, 비교예 17-20에 나타낸 바와 같이, 제 1 화합물과 제 2 화합물 사이의 HOMO 에너지 밴드갭이 0.3 eV를 초과하면 정공 트랩이 발생하였다. 또한, 비교예 15-16 및 비교예 20에 나타낸 바와 같이, 제 1 화합물과 제 2 화합물 사이의 HOMO 에너지 밴드갭이 0.5 eV를 초과하면, 엑시플렉스가 형성되었다.
정공 트랩이 발생한 비교예 2-3, 비교예 4-6, 비교예 8, 비교예 10, 비교예 12-14, 비교예 18-19에서 제조된 유기발광다이오드와 비교해서, 실시예에서 제조된 유기발광다이오드의 구동 전압은 최대 35.6% 낮아졌고, EQE는 최대 387.7% 향상되었으며, 발광 수명은 크게 향상되었다. 한편, 정공 트랩과 엑시플렉스가 모두 발생한 비교예 15-16 및 비교예 20에서 제조된 유기발광다이오드와 비교해서, 실시예에서 제조된 유기발광다이오드의 EQE는 최대 188.0% 향상되었고, 발광 수명은 크게 개선되었다. 특히, 비교예 15-16 및 비교예 20에서 제조된 유기발광다이오드에서 제 1 화합물과 제 2 화합물이 모두 발광하면서, 색 순도가 떨어지면서 색 좌표가 녹색 영역으로 이동하였다.
한편, 비교예 22 및 비교예 23에 따라, 온셋파장이 430 nm 미만인 제 1 화합물을 적용한 유기발광다이오드와 비교해서, 실시예에서 제조된 유기발광다이오드의 EQE는 최대 100.8% 향상되었고, 발광 수명은 크게 개선되었다. 비교예 25 및 비교예 26에 따라 온셋파장이 450 nm를 초과하는 제 1 화합물을 적용한 유기발광다이오드와 비교해서, 실시예에서 제조된 유기발광다이오드의 EQE는 최대 94.3% 향상되었고, 발광 수명은 크게 개선되었다. 특히, 비교예 25 및 비교예 26에 따라 제조된 유기발광다이오드에서 색 순도가 저하되어 색 좌표가 녹색 영역으로 이동하였다.
또한, 비교예 27-28 및 비교예 31-32에서와 같이, 온셋파장이 430 nm 미만 또는 440 nmm를 초과하고, 전자주개 모이어티가 아크리딘 모이어티를 가지고 있어, 이면각이 증가한 제 1 화합물을 적용한 유기발광다이오드와 비교해서, 실시예에서 제조된 유기발광다이오드의 구동 전압은 최대 23.3% 낮아졌고, EQE는 최대 246.4% 향상되었고 발광 수명은 크게 개선되었다.
상기에서는 본 개시의 예시적인 실시형태 및 실시예에 기초하여 본 개시를 설명하였으나, 본 개시가 상기 실시형태 및 실시예에 기재된 기술사상으로 한정되는 것은 아니다. 오히려 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자라면 전술한 실시형태 및 실시예를 토대로 다양한 변형과 변경을 용이하게 추고할 수 있다. 하지만, 이러한 변형과 변경은 모두 본 개시의 권리범위에 속한다는 점은, 첨부하는 청구범위에서 분명하다.

Claims (24)

  1. 제 1 전극;
    상기 제 1 전극과 마주하는 제 2 전극; 및
    상기 제 1 및 제 2 전극 사이에 위치하며, 적어도 하나의 발광물질층을 포함하는 발광층을 포함하고,
    상기 적어도 하나의 발광물질층은 제 1 화합물 및 제 2 화합물을 포함하고,
    상기 제 1 화합물은 하기 화학식 1의 구조를 가지는 유기 화합물을 포함하고, 상기 제 2 화합물은 하기 화학식 6의 구조를 가지는 유기 화합물을 포함하는 유기발광다이오드.
    화학식 1
    Figure PCTKR2022005837-appb-img-000087
    화학식 1에서, R1 내지 R11는 각각 독립적으로 경수소, 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 방향족 또는 치환되지 않거나 치환된 C3-C30 헤테로 방향족이며, 상기 R1 내지 R11 중에서 1 내지 4개는 하기 화학식 2의 구조를 가짐; X1 및 X2는 각각 독립적으로 O, S 또는 Se임; Q1은 중수소, 삼중수소, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C6-C30 아릴, 치환되지 않거나 치환된 C3-C30 헤테로 아릴, 치환되지 않거나 치환된 C6-C30 아릴 아미노 또는 치환되지 않거나 치환된 C3-C30 헤테로 아릴 아미노임.
    화학식 2
    Figure PCTKR2022005837-appb-img-000088
    화학식 2에서, 별표는 화학식 1의 축합 고리에 연결되는 부위를 나타냄; R12 및 R13은 각각 독립적으로 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환딘 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 실릴, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 방향족 또는 치환되지 않거나 치환된 C3-C30 헤테로 방향족이며, m이 복수인 경우 각각의 R12는 상이하거나 동일할 수 있고, n이 복수인 경우 각각의 R13은 상이하거나 동일할 수 있으며, 선택적으로 m과 n이 각각 복수인 경우, 인접한 적어도 2개의 R12 및/또는 인접한 적어도 2개의 R13은 각각 결합하여 치환되지 않거나 치환된 C6-C20 방향족 고리 또는 치환되지 않거나 치환된 C3-C20 헤테로 방향족 고리를 형성할 수 있음; m과 n은 각각 독립적으로 0 내지 4의 정수임.
    화학식 6
    Figure PCTKR2022005837-appb-img-000089
    화학식 6에서, R21 내지 R28은 각각 독립적으로 경수소, 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 실기, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 방향족 또는 치환되지 않거나 치환된 C3-C30 헤테로 방향족이며, 선택적으로 R21 내지 R24 중에서 인접한 2개가 서로 결합하여 보론과 질소를 갖는 치환되지 않거나 치환된 축합환을 형성함, q가 복수인 경우 각각의 R25는 상이하거나 동일할 수 있고, r이 복수인 경우 각각의 R26은 상이하거나 동일할 수 있고, s가 복수인 경우 R27은 상이하거나 동일할 수 있고, t가 복수인 경우 R28은 상이하거나 동일할 수 있음; q와 s는 각각 독립적으로 0 내지 5의 정수이고, r은 0 내지 3의 정수이며, t는 0 내지 4의 정수임.
  2. 제 1항에 있어서,
    상기 1 화합물의 최고점유분자궤도(Highest Occupied Molecular Orbital, HOMO) 에너지 준위(HOMODF)와 상기 제 2 화합물의 HOMO 에너지 준위(HOMOFD)는 하기 식 (1)을 충족하는 유기발광다이오드.
    |HOMOFD - HOMODF| < 0.3 eV (1)
  3. 제 1항에 있어서,
    상기 제 2 화합물의 여기 단일항 에너지 준위와 여기 삼중항 에너지 준위 사이의 에너지 밴드갭은, 상기 제 1 화합물의 여기 단일항 준위와 여기 삼중항 에너지 준위 사이의 에너지 밴드갭보다 작은 유기발광다이오드.
  4. 제 1항에 있어서,
    상기 제 1 화합물의 최고점유분자궤도(HOMO) 에너지 준위와 최저비점유분자궤도(LUMO) 에너지 준위 사이의 에너지 밴드갭은 약 -2.6 eV 이상 약 -3.1 eV 이하인 유기발광다이오드.
  5. 제 1항에 있어서,
    상기 제 1 화합물의 온셋파장은 약 430 nm 내지 약 440 nm인 유기발광다이오드.
  6. 제 1항에 있어서,
    상기 제 1 화합물은 하기 화학식 3의 구조를 가지는 유기발광다이오드.
    화학식 3
    Figure PCTKR2022005837-appb-img-000090
    화학식 3에서, X1 및 X2는 각각 화학식 1에서 정의된 것과 동일함; R14 내지 R16은 각각 독립적으로 경수소, 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 아릴 또는 치환되지 않거나 치환된 C3-C30 헤테로 아릴기이며, p가 복수인 경우 각각의 R15는 상이하거나 동일할 수 있으며, R14 내지 R16 중에서 적어도 하나는 하기 화학식 하기 화학식 4의 구조를 갖는 축합 헤테로 아릴임; p는 0 내지 2의 정수임.
    화학식 4
    Figure PCTKR2022005837-appb-img-000091
    화학식 4에서, 별표는 화학식 3의 축합 고리에 연결되는 부위를 나타냄; R17 및 R18은 각각 독립적으로 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 실릴, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 방향족 또는 치환되지 않거나 치환된 C3-C30 헤테로 방향족이며, m이 복수인 경우 각각의 R17는 상이하거나 동일할 수 있고, n이 복수인 경우 각각의 R18은 상이하거나 동일할 수 있으며, 선택적으로 n이 복수인 경우 인접한 적어도 2개의 R18은 각각 결합하여 치환되지 않거나 치환된 C3-C20 헤테로 방향족 고리를 형성할 수 있음; m과 n은 각각 독립적으로 0 내지 4의 정수임.
  7. 제 1항에 있어서,
    상기 제 1 화합물은 하기 유기 화합물에서 선택되는 유기발광다이오드.
    Figure PCTKR2022005837-appb-img-000092
    Figure PCTKR2022005837-appb-img-000093
    Figure PCTKR2022005837-appb-img-000094
    Figure PCTKR2022005837-appb-img-000095
    Figure PCTKR2022005837-appb-img-000096
    Figure PCTKR2022005837-appb-img-000097
    Figure PCTKR2022005837-appb-img-000098
    Figure PCTKR2022005837-appb-img-000099
    Figure PCTKR2022005837-appb-img-000100
    Figure PCTKR2022005837-appb-img-000101
    Figure PCTKR2022005837-appb-img-000102
    Figure PCTKR2022005837-appb-img-000103
    Figure PCTKR2022005837-appb-img-000104
    Figure PCTKR2022005837-appb-img-000105
    Figure PCTKR2022005837-appb-img-000106
    Figure PCTKR2022005837-appb-img-000107
    Figure PCTKR2022005837-appb-img-000108
    Figure PCTKR2022005837-appb-img-000109
    Figure PCTKR2022005837-appb-img-000110
    Figure PCTKR2022005837-appb-img-000111
    Figure PCTKR2022005837-appb-img-000112
    Figure PCTKR2022005837-appb-img-000113
    Figure PCTKR2022005837-appb-img-000114
    Figure PCTKR2022005837-appb-img-000115
    Figure PCTKR2022005837-appb-img-000116
    Figure PCTKR2022005837-appb-img-000117
    Figure PCTKR2022005837-appb-img-000118
    Figure PCTKR2022005837-appb-img-000119
    Figure PCTKR2022005837-appb-img-000120
    Figure PCTKR2022005837-appb-img-000121
    Figure PCTKR2022005837-appb-img-000122
    Figure PCTKR2022005837-appb-img-000123
    Figure PCTKR2022005837-appb-img-000124
    Figure PCTKR2022005837-appb-img-000125
    Figure PCTKR2022005837-appb-img-000126
    Figure PCTKR2022005837-appb-img-000127
    Figure PCTKR2022005837-appb-img-000128
    Figure PCTKR2022005837-appb-img-000129
    Figure PCTKR2022005837-appb-img-000130
    Figure PCTKR2022005837-appb-img-000131
    Figure PCTKR2022005837-appb-img-000132
    Figure PCTKR2022005837-appb-img-000133
    Figure PCTKR2022005837-appb-img-000134
    Figure PCTKR2022005837-appb-img-000135
    Figure PCTKR2022005837-appb-img-000136
    Figure PCTKR2022005837-appb-img-000137
    Figure PCTKR2022005837-appb-img-000138
    Figure PCTKR2022005837-appb-img-000139
    Figure PCTKR2022005837-appb-img-000140
    Figure PCTKR2022005837-appb-img-000141
    .
  8. 제 1항에 있어서,
    상기 제 2 화합물은 하기 화학식 7A 내지 화학식 7C의 구조를 가지는 유기 화합물을 포함하는 유기발광다이오드.
    화학식 7A
    Figure PCTKR2022005837-appb-img-000142
    화학식 7B
    Figure PCTKR2022005837-appb-img-000143
    화학식 7C
    Figure PCTKR2022005837-appb-img-000144
    화학식 7A 내지 화학식 7C에서, R21, R25 내지 R28 및 R31 내지 R34는 각각 독립적으로 경수소, 중수소, 삼중수소, 할로겐 원자, 치환되지 않거나 치환된 C1-C20 알킬, 치환되지 않거나 치환된 C1-C20 알킬 실릴, 치환되지 않거나 치환된 C1-C20 알킬 아미노, 치환되지 않거나 치환된 C6-C30 아릴 또는 치환되지 않거나 치환된 C3-C30 헤테로 아릴기임.
  9. 제 1항에 있어서,
    상기 제 2 화합물은 하기 유기 화합물에서 선택되는 유기발광다이오드.
    Figure PCTKR2022005837-appb-img-000145
    Figure PCTKR2022005837-appb-img-000146
    Figure PCTKR2022005837-appb-img-000147
    Figure PCTKR2022005837-appb-img-000148
    Figure PCTKR2022005837-appb-img-000149
    Figure PCTKR2022005837-appb-img-000150
    Figure PCTKR2022005837-appb-img-000151
    Figure PCTKR2022005837-appb-img-000152
    Figure PCTKR2022005837-appb-img-000153
    Figure PCTKR2022005837-appb-img-000154
    Figure PCTKR2022005837-appb-img-000155
    Figure PCTKR2022005837-appb-img-000156
    Figure PCTKR2022005837-appb-img-000157
    Figure PCTKR2022005837-appb-img-000158
    Figure PCTKR2022005837-appb-img-000159
    .
  10. 제 1항에 있어서,
    상기 적어도 하나의 발광물질층은 단층 구조의 발광물질층을 포함하는 유기발광다이오드.
  11. 제 10항에 있어서,
    상기 단층 구조의 발광물질층은 제 3 화합물을 더욱 포함하는 유기발광다이오드.
  12. 제 11항에 있어서,
    상기 단층 구조의 발광물질층 중에 상기 제 1 화합물의 함량은 약 10 내지 약 40 중량%, 상기 제 2 화합물의 함량은 약 0.1 내지 약 5 중량%, 상기 제 3 화합물의 함량은 약 55 내지 약 85 중량%인 유기발광다이오드.
  13. 제 11항에 있어서,
    상기 제 3 화합물의 여기 삼중항 에너지 준위는 상기 제 1 화합물의 여기 삼중항 에너지 준위보다 높고, 상기 제 1 화합물의 여기 삼중항 에너지 준위는 상기 제 2 화합물의 여기 삼중항 에너지 준위보다 높은 유기발광다이오드.
  14. 제 11항에 있어서,
    상기 3 화합물의 여기 단일항 에너지 준위는 상기 제 1 화합물의 여기 단일항 에너지 준위보다 높고, 상기 제 1 화합물의 여기 단일항 에너지 준위는 상기 제 2 화합물의 여기 단일항 에너지 준위보다 높은 유기발광다이오드.
  15. 제 1항에 있어서,
    상기 적어도 하나의 발광물질층은, 상기 제 1 및 제 2 전극 사이에 위치하는 제 1 발광물질층과, 상기 제 1 전극과 상기 제 1 발광물질층 사이 또는 상기 제 2 전극과 상기 제 2 발광물질층 사이에 위치하는 제 2 발광물질층을 포함하고,
    상기 제 1 발광물질층은 제 1 화합물을 포함하고,
    상기 제 2 발광물질층은 제 2 화합물을 포함하는 유기발광다이오드.
  16. 제 15항에 있어서,
    상기 제 1 발광물질층은 제 3 화합물을 더욱 포함하고, 상기 제 2 발광무질층은 제 4 화합물을 더욱 포함하는 유기발광다이오드.
  17. 제 16항에 있어서,
    상기 제 3 화합물의 여기 삼중항 에너지 준위는 상기 제 1 화합물의 여기 삼중항 에너지 준위보다 높고, 상기 제 1 화합물의 여기 삼중항 에너지 준위는 상기 제 2 화합물의 여기 삼중항 에너지 준위보다 높은 유기발광다이오드.
  18. 제 16항에 있어서,
    상기 3 화합물의 여기 단일항 에너지 준위는 상기 제 1 화합물의 여기 단일항 에너지 준위보다 높고, 상기 제 1 화합물의 여기 단일항 에너지 준위는 상기 제 2 화합물의 여기 단일항 에너지 준위보다 높은 유기발광다이오드.
  19. 제 16항에 있어서,
    상기 제 4 화합물의 여기 단일항 에너지 준위는 상기 제 2 화합물의 여기 단일항 에너지 준위보다 높은 유기발광다이오드.
  20. 제 15항에 있어서,
    상기 적어도 하나의 발광질층은 상기 제 1 발광물질층을 중심으로 상기 제 2 발광물질층의 반대쪽에 위치하는 제 3 발광물질층을 더욱 포함하는 유기발광다이오드.
  21. 제 20항에 있어서,
    상기 상기 제 3 발광물질층은 제 5 화합물과 제 6 화합물을 포함하고,
    상기 제 5 화합물은 상기 화학식 6의 구조를 가지는 유기 화합물을 포함하는 유기발광다이오드.
  22. 제 1항에 있어서,
    상기 발광층은,
    상기 제 1 및 제 2 전극 사이에 위치하는 제 1 발광부와, 상기 제 1 발광부와 상기 제 2 전극 사이에 위치하는 제 2 발광부와, 상기 제 1 및 제 2 발광부 사이에 위치하는 전하생성층을 포함하고,
    상기 제 1 발광부와 상기 제 2 발광부 중에서 적어도 하나는 상기 적어도 하나의 발광물질층을 포함하는 유기발광다이오드.
  23. 제 22항에 있어서,
    상기 제 1 발광부는 상기 적어도 하나의 발광물질층을 포함하고,
    상기 제 2 발광부는 적색 및 녹색 중에서 적어도 하나의 광을 방출하는 유기발광다이오드.
  24. 기판; 및
    상기 기판 상에 위치하며, 제 1항에 기재된 유기발광다이오드를 포함하는 유기발광장치.
PCT/KR2022/005837 2021-10-12 2022-04-25 유기발광다이오드 및 이를 포함하는 유기발광장치 WO2023063516A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22797000.1A EP4417669A1 (en) 2021-10-12 2022-04-25 Organic light-emitting diode, and organic light-emitting device comprising same
CN202280003837.4A CN116264870A (zh) 2021-10-12 2022-04-25 有机发光二极管和包括其的有机发光装置
JP2022581644A JP7478266B2 (ja) 2021-10-12 2022-04-25 有機発光ダイオードおよびそれを含む有機発光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210134734A KR20230051852A (ko) 2021-10-12 2021-10-12 유기발광다이오드 및 이를 포함하는 유기발광장치
KR10-2021-0134734 2021-10-12

Publications (1)

Publication Number Publication Date
WO2023063516A1 true WO2023063516A1 (ko) 2023-04-20

Family

ID=85988353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005837 WO2023063516A1 (ko) 2021-10-12 2022-04-25 유기발광다이오드 및 이를 포함하는 유기발광장치

Country Status (6)

Country Link
EP (1) EP4417669A1 (ko)
JP (1) JP7478266B2 (ko)
KR (1) KR20230051852A (ko)
CN (1) CN116264870A (ko)
TW (1) TWI832476B (ko)
WO (1) WO2023063516A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143819A1 (ja) * 2015-03-09 2016-09-15 学校法人関西学院 ヘテロ環化合物又はその塩、及びこれらを含む電子デバイス
WO2020058203A1 (en) * 2018-09-21 2020-03-26 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. Novel fluorescent pyrene derivatives, methods for preparing the same, and uses thereof
KR20200078755A (ko) * 2018-12-21 2020-07-02 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
KR20210134734A (ko) 2019-03-06 2021-11-10 킴벌리-클라크 월드와이드, 인크. 엠보싱된 여러 겹 티슈 제품

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636056B (zh) * 2014-02-18 2018-09-21 學校法人關西學院 多環芳香族化合物及其製造方法、有機元件用材料及其應用
KR102618236B1 (ko) * 2017-12-11 2023-12-26 가꼬우 호징 관세이 가쿠잉 중수소 치환 다환 방향족 화합물
KR102063221B1 (ko) * 2018-05-14 2020-01-07 성균관대학교산학협력단 유기 발광 장치
WO2020045681A1 (ja) * 2018-08-31 2020-03-05 学校法人関西学院 多環芳香族化合物の発光材料を用いた有機電界発光素子
WO2020101001A1 (ja) * 2018-11-15 2020-05-22 学校法人関西学院 有機電界発光素子、表示装置、および照明装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143819A1 (ja) * 2015-03-09 2016-09-15 学校法人関西学院 ヘテロ環化合物又はその塩、及びこれらを含む電子デバイス
WO2020058203A1 (en) * 2018-09-21 2020-03-26 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. Novel fluorescent pyrene derivatives, methods for preparing the same, and uses thereof
KR20200078755A (ko) * 2018-12-21 2020-07-02 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
KR20210134734A (ko) 2019-03-06 2021-11-10 킴벌리-클라크 월드와이드, 인크. 엠보싱된 여러 겹 티슈 제품

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATSUO KYOHEI, YASUDA TAKUMA: "Boronate- and borinate-based π-systems for blue thermally activated delayed fluorescence materials", CHEMICAL COMMUNICATIONS, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 55, no. 17, 21 February 2019 (2019-02-21), UK , pages 2501 - 2504, XP093056570, ISSN: 1359-7345, DOI: 10.1039/C8CC10282A *
MISA NUMANO; NAOTO NAGAMI; SOICHIRO NAKATSUKA; TAKAZUMI KATAYAMA; KIICHI NAKAJIMA; SOU TATSUMI; NOBUHIRO YASUDA; TAKUJI HATAKEYAMA: "Synthesis of Boronate‐Based Benzo[fg]tetracene and Benzo[hi]hexacene via Demethylative Direct Borylation", CHEMISTRY - A EUROPEAN JOURNAL, JOHN WILEY & SONS, INC, DE, vol. 22, no. 33, 8 July 2016 (2016-07-08), DE, pages 11574 - 11577, XP071880891, ISSN: 0947-6539, DOI: 10.1002/chem.201602753 *

Also Published As

Publication number Publication date
TW202315926A (zh) 2023-04-16
JP2023551086A (ja) 2023-12-07
JP7478266B2 (ja) 2024-05-02
CN116264870A (zh) 2023-06-16
KR20230051852A (ko) 2023-04-19
TWI832476B (zh) 2024-02-11
EP4417669A1 (en) 2024-08-21

Similar Documents

Publication Publication Date Title
WO2020106032A1 (ko) 신규한 보론 화합물 및 이를 포함하는 유기발광소자
WO2020251180A1 (ko) 3차 아민 유도체 및 이를 포함한 유기 전계 발광 소자
WO2020138874A1 (en) Organic light emitting diode and organic light emitting device having thereof
WO2018230969A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016108596A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2021066370A1 (en) Organic light emitting diode and organic light emitting device having the same
WO2013022145A9 (ko) 유기광전자소자용 화합물 및 이를 포함하는 유기발광소자
WO2020138876A1 (en) Organic light emitting diode and organic light emitting device having thereof
WO2019182402A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020159279A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2020122384A1 (ko) 축합환 화합물 및 이를 포함하는 유기 발광 소자
WO2021132895A1 (ko) 벤즈아졸 유도체 및 이를 포함한 유기전계발광소자
WO2017014357A1 (ko) 유기 발광 소자
WO2016089165A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2020138875A1 (en) Organic light emitting diode and organic light emitting device having thereof
WO2020145693A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020067823A1 (ko) 유기 전계 발광 소자
WO2022010087A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2016060463A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2020138877A1 (en) Organic light emitting diode and organic light emitting device having thereof
WO2020145692A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020138964A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2020022579A1 (ko) 유기 발광 소자
WO2022055123A1 (en) Organic compound and organic light emitting diode and organic light emitting device including the same
WO2022065750A1 (en) Organic light emitting diode and organic light emitting device including the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022581644

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22797000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022797000

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022797000

Country of ref document: EP

Effective date: 20240513