TWI832476B - 有機發光二極體及包含該有機發光二極體的有機發光裝置 - Google Patents

有機發光二極體及包含該有機發光二極體的有機發光裝置 Download PDF

Info

Publication number
TWI832476B
TWI832476B TW111138083A TW111138083A TWI832476B TW I832476 B TWI832476 B TW I832476B TW 111138083 A TW111138083 A TW 111138083A TW 111138083 A TW111138083 A TW 111138083A TW I832476 B TWI832476 B TW I832476B
Authority
TW
Taiwan
Prior art keywords
compound
energy level
substituted
organic light
unsubstituted
Prior art date
Application number
TW111138083A
Other languages
English (en)
Other versions
TW202315926A (zh
Inventor
李烔侖
裵淑英
金鐘旭
安漢鎭
金捘演
Original Assignee
南韓商Lg顯示器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商Lg顯示器股份有限公司 filed Critical 南韓商Lg顯示器股份有限公司
Publication of TW202315926A publication Critical patent/TW202315926A/zh
Application granted granted Critical
Publication of TWI832476B publication Critical patent/TWI832476B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本發明涉及一種有機發光二極體,其中,設置在兩個電極之間的發光材料層包括:第一化合物,在硼原子與氧原子、硫原子和硒原子中的至少一個之間形成稠環、以及第二化合物,在硼原子與氮原子之間形成稠環;以及涉及一種包含該有機發光二極體的有機發光裝置。第一化合物和第二化合物可以被包含在同一發光材料層中或相鄰設置的發光材料層中。有機發光二極體包括發光材料層,該發光材料層包括調整其能階的第一化合物和第二化合物,從而可以降低有機發光二極體的驅動電壓,並可以提高有機發光二極體的發光效率和發光壽命。

Description

有機發光二極體及包含該有機發光二極體的有機發光裝置
本發明涉及一種有機發光二極體,更具體地,涉及一種具有有益的發光特性的有機發光二極體及包含該有機發光二極體的有機發光裝置。
包含有機發光二極體(OLED)的平板顯示裝置作為一種可替代液晶顯示裝置(LED)的顯示裝置而受到關注。OLED可以形成為小於2000 Å(埃)的有機薄膜,並且電極配置可以實現單向或雙向影像。此外,OLED甚至可以形成在諸如塑膠基板的可撓式透明基板上,從而可以利用OLED容易地實現可撓式或可折疊式的顯示裝置。另外,OLED可以在較低電壓下驅動,且與LCD相比,OLED具有高色純度的優勢。
在OLED中,當電洞和電子注入到陰極與陽極之間的發光材料層中時,電荷再結合以形成不穩定激發態的激子,然後隨著再結合的激子轉移到穩定的基態而發光。由於螢光材料在發光過程中僅使用單重態激子能量,因此先前技術的螢光材料展現出低發光效率。由於磷光材料在發光過程中使用三重態激子能量以及單重態激子能量,因此可以展現出高發光效率。然而,磷光材料的示例包括金屬錯合物,其發光壽命短而難以用於商業用途。
因此,本發明的實施方式涉及一種有機發光二極體和一種有機發光裝置,其等基本上消除了由於先前技術的限制和缺點而導致的一個或多個問題。
本發明的一態樣是提供一種可以具有改良的發光效率和發光壽命的有機發光二極體。本發明的另一態樣是提供一種包含該有機發光二極體的有機發光裝置。
附加特徵和態樣將在隨後的描述中闡述,並且將部分地從該描述中明顯看出,或者可以透過實踐本文提供之所揭示的概念而獲知。所揭示概念的其他特徵和態樣可以透過在說明書中特別指出的結構、或從其衍生出的結構、及本文的請求項以及所附圖式來實現和獲得。
為了實現所揭示概念的此等和其他態樣,如所體現和廣泛描述的,在一個態樣中,本發明提供一種有機發光二極體,包括:第一電極;面向第一電極的第二電極;以及發光層,設置在第一電極與第二電極之間,並包含至少一個發光材料層,其中,該至少一個發光材料層包含第一化合物和第二化合物,其中,第一化合物包含具有以下式1結構的有機化合物,以及其中,第二化合物包含具有以下式6結構的有機化合物: [式1] , 在式1中, R 1至R 11各自獨立地為氕、氘、氚、鹵素原子、未被取代或被取代的C 1-C 20烷基、未被取代或被取代的C 1-C 20烷基胺基、未被取代或被取代的C 6-C 30芳香族基團(aromatic group)、或未被取代或被取代的C 3-C 20雜芳族基團(hetero aromatic group),其中,R 1至R 11中的1至4個具有式2的結構;以及 X 1和X 2各自獨立地為O、S或Se, [式2] , 在式2中,「
Figure 111138083-A0305-02-0005-11
」表示與式1的稠環的連接;R12和R13各自獨立地為氘、氚、鹵素原子、未被取代或被取代的C1-C20烷基、未被取代或被取代的C1-C20烷基矽基(alkyl silyl)、未被取代或被取代的C1-C20烷基胺基、未被取代或被取代的C6-C30芳香族基團、或未被取代或被取代的C3-C20雜芳族基團,其中,當m為2、3或4時,每個R12彼此相同或不同,其中,當n為2、3或4時,每個R13彼此相同或不同,可選地,當m為2、3或4時,至少兩個相鄰的R12及/或當n為2、3或4時,至少兩個相鄰的R13
連接在一起以形成未被取代或被取代的C6-C20芳香環、或未被取代或被取代的C3-C20雜芳環;以及m和n各自獨立地為0、1、2、3或4,
Figure 111138083-A0305-02-0005-1
在式6中,R21至R28各自獨立地為氕、氘、氚、鹵素原子、未被取代或被取代的C1-C20烷基、未被取代或被取代的C1-C20烷基矽基、未被取代或被取代的C1-C20烷基胺基、未被取代或被取代的C6-C30芳香族基團、或未被取代或被取代的C3-C20雜芳族基團,其中,當q為2、3、4或5時,每個R25彼此相同或不同,其中,當r為2或3時,每個R26彼此相同或不同,其中,當s為2、3、4或5時,每個R27彼此相同或不同,以及其中,當t為2、3或4時,每個R28彼此相同或不同,可選地,R21至R24中的兩個相鄰的基團連接在一起以形成具有硼原子和氮原子的未被取代或被取代的稠環;q和s各自獨立地為0、1、2、3、4或5; r為0、1、2或3;以及 t為0、1、2、3或4。
作為一示例,第一化合物的最高佔有分子軌域(HOMO)能階和第二化合物的HOMO能階可以滿足以下方程式(1)中的關係: |HOMO FD– HOMO DF| < 0.3 eV       (1), 在方程式(1)中, HOMO DF表示第一化合物的HOMO能階;以及HOMO FD表示第二化合物的HOMO能階。
第二化合物的激發單重態能階與激發三重態能階之間的能帶隙可以小於第一化合物的激發單重態能階與激發三重態能階之間的能帶隙。
作為一示例,第一化合物的HOMO能階與最低未佔分子軌域(LUMO)能階之間的能帶隙可以在約2.6 eV與約3.1 eV之間。
另外,第一化合物可以具有在約430 nm與約440 nm之間的起始波長(onset wavelength)。
第一化合物可以具有以下式3的結構: [式3] , 在式3中, X 1和X 2各自如式1中所定義; R 14至R 16各自獨立地為氕、氘、氚、鹵素原子、未被取代或被取代的C 1-C 20烷基、未被取代或被取代的C 1-C 20烷基胺基、未被取代或被取代的C 6-C 30芳基(aryl)、或未被取代或被取代的C 3-C 20雜芳基(hetero aryl),其中,R 14至R 16中的至少一個是具有以下式4的結構的稠合雜芳基,以及其中,當p為2時,每個R 15彼此相同或不同;以及 p為0、1或2, [式4] , 在式4中, 「 」表示與式3的稠環的連接; R 17和R 18各自獨立地為氘、氚、鹵素原子、未被取代或被取代的C 1-C 20烷基、未被取代或被取代的C 1-C 20烷基矽基、未被取代或被取代的C 1-C 20烷基胺基、未被取代或被取代的C 6-C 30芳香族基團、或未被取代或被取代的C 3-C 20雜芳族基團,其中,當m為2、3或4時,每個R 17彼此相同或不同,以及其中,當n為2、3或4時,每個R 18彼此相同或不同, 可選地, 當n為2、3或4時,至少兩個相鄰的R 18連接在一起以形成未被取代或被取代的C 3-C 20雜芳環;以及 m和n各自獨立地為0、1、2、3或4。
第二化合物可以包括具有以下式7A、式7B或式7C結構的有機化合物: [式7A] [式7B] [式7C] , 在式7A至7C中, R 21、R 25至R 28、和R 31至R 34各自獨立地為氕、氘、氚、鹵素原子、未被取代或被取代的C 1-C 20烷基、未被取代或被取代的C 1-C 20烷基矽基、未被取代或被取代的C 1-C 20烷基胺基、未被取代或被取代的C 6-C 30芳基、或未被取代或被取代的C 3-C 20雜芳基。
在一示例性實施方式中,該至少一個發光材料層可以包括單層發光材料層。
單層發光材料層可以進一步包括第三化合物。
第一化合物在單層發光材料層中的含量可以為約10 wt%至約40 wt%,第二化合物在單層發光材料層中的含量可為約0.01 wt%至約5 wt%,而第三化合物在單層發光材料層中的含量可以為約55 wt%至約85 wt%。
在一替代態樣中,該至少一個發光材料層可以包括:第一發光材料層,設置在第一電極與第二電極之間;以及第二發光材料層,設置在第一電極與第一發光材料層之間、或設置在第二電極與第一發光材料層之間,其中,第一發光材料層可以包括第一化合物,以及其中,第二發光材料層可以包括第二化合物。
當第一化合物和第二化合物各自分別包含在第一發光材料層和第二發光材料層的每一個中時,第一發光材料層可以進一步包括第三化合物,而第二發光材料層可以進一步包括第四化合物。
第三化合物的激發三重態能階可以高於第一化合物的激發三重態能階,以及其中,第一化合物的激發三重態能階可以高於第二化合物的激發三重態能階。
第三化合物的激發單重態能階可以高於第一化合物的激發單重態能階,以及其中,第一化合物的激發單重態能階可以高於第二化合物的激發單重態能階。
第四化合物的激發單重態能階可以高於第二化合物的激發單重態能階。
當第一化合物和第二化合物各自包含在分開的發光材料層中時,該至少一個發光材料層可以進一步包括第三發光材料層,第三發光材料層相對於第一發光材料層與第二發光材料層相對設置。
第三發光材料層可以包括第五化合物和第六化合物,以及其中,第五化合物包括具有式6結構的有機化合物。
發光層可以包括:第一發光部分,設置在第一電極與第二電極之間;第二發光部分,設置在第一發光部分與第二電極之間;電荷產生層,設置在第一發光部分與第二發光部分之間,其中,第一發光部分和第二發光部分中的至少一個包含該至少一個發光材料層。
作為一示例,第一發光部分可以包括該至少一個發光材料層,而第二發光部分可以發出紅光和綠光中的至少一種。
根據另一態樣,本發明提供一種有機發光裝置,例如,有機發光顯示裝置或有機發光照明裝置,該有機發光裝置包括:基板;以及有機發光二極體,位於基板上。
本發明涉及一種有機發光二極體,其中,在控制第一化合物和第二化合物的能階的情況下將其等包含在同一發光材料層或相鄰設置的發光材料層中;以及涉及一種包含該有機發光二極體的有機發光裝置。
調整第一化合物和第二化合物的能階,使得電洞快速注入和傳輸到具有有益發光效率和熱穩定性的第一化合物,而不會被第二化合物捕獲。由於在第一化合物與第二化合物之間不產生激發錯合體,因此可以在具有優異發光效率的第一化合物處實現100%的內部量子效率,並可以將在第一化合物處產生的激子轉移到第二化合物。
透過提高電荷注入效率和激子產生效率,可以降低有機發光二極體的驅動電壓,並提高有機發光二極體的發光效率。由於最終發光發生在具有窄FWHM和有益發光壽命的第二化合物處,因此可以提高有機發光二極體的色純度和發光壽命。
應當理解的是,前面的廣義描述和以下的詳細描述為示例性及範例性,並且旨在提供對所請求保護的揭示概念的進一步解釋。
現在將詳細參照本發明的各個態樣,其示例在所附圖式中示出。在可能的情況下,將在全部圖式中使用相同的元件符號來指代相同或相似的部分。
本發明涉及一種有機發光二極體,其中,在調整能階的情況下將第一化合物和第二化合物包含在同一發光材料層或相鄰設置的發光材料層中;以及涉及一種包含該有機發光二極體的有機發光裝置。根據本發明的有機發光二極體可以應用於有機發光裝置,諸如有機發光顯示裝置或有機發光照明裝置。舉例來說,將詳細描述應用該有機發光二極體的有機發光顯示裝置。
圖1示出根據本發明的有機發光顯示裝置的示意性電路圖。如圖1所示,在有機發光顯示裝置100中,閘極線GL、資料線DL和電源線PL彼此交叉以界定像素區域P。開關薄膜電晶體Ts、驅動薄膜電晶體Td、儲存電容器Cst和有機發光二極體D設置在像素區域P內。像素區域P可以包括:第一像素區域P1(圖18);第二像素區域P2(圖18);以及第三像素區域P3(圖18)。
開關薄膜電晶體Ts連接到閘極線GL和資料線DL。驅動薄膜電晶體Td和儲存電容器Cst連接在開關薄膜電晶體Ts與電源線PL之間。有機發光二極體D連接到驅動薄膜電晶體Td。當開關薄膜電晶體Ts由施加到閘極線GL的閘極信號導通時,施加到資料線DL的資料信號透過開關薄膜電晶體Ts施加到驅動薄膜電晶體Td的閘極電極130(圖2)和儲存電容器Cst的一個電極。
驅動薄膜電晶體Td由施加到閘極電極130(圖2)的資料信號導通,使得與資料信號成比例的電流從電源線PL通過驅動薄膜電晶體Td供應給有機發光二極體D。接著,有機發光二極體D發出亮度與流過驅動薄膜電晶體Td的電流成比例的光。在這種情況下,儲存電容器Cst被充有以與資料信號成比例的電壓,使得驅動薄膜電晶體Td中的閘極電極的電壓在一個訊框期間保持恆定。因此,有機發光顯示裝置可以顯示期望的影像。
圖2示出根據本發明的一示例性實施方式的有機發光顯示裝置的示意性剖面圖。如圖2所示,有機發光顯示裝置100包括:基板110;薄膜電晶體Tr,位於基板110上;以及有機發光二極體D,位於鈍化層150上並連接到薄膜電晶體Tr。
基板110可以包括但不限於玻璃、薄的可撓式材料及/或聚合物塑膠。舉例來說,可撓式材料可以選自但不限於聚醯亞胺(PI)、聚醚碸(PES)、聚萘二甲酸乙二酯(PEN)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)及/或其組合的群組。基板110形成陣列基板,其上佈置有薄膜電晶體Tr和有機發光二極體D。
緩衝層122可以設置在基板110上。薄膜電晶體Tr可以設置在緩衝層122上。可以省略緩衝層122。
半導體層120設置在緩衝層122上。在一示例性實施方式中,半導體層120可以包括但不限於氧化物半導體材料。在這種情況下,可以在半導體層120下方設置遮光圖案,並且遮光圖案可以防止光入射到半導體層120,從而防止或減少半導體層120因光而劣化。或者,半導體層120可以包括多晶矽。在這種情況下,半導體層120的相對邊緣可以摻雜有雜質。
包含絕緣材料的閘極絕緣層124設置在半導體層120上。閘極絕緣層124可以包括但不限於無機絕緣材料,諸如氧化矽(SiO x,其中,0 < x ≤ 2)或氮化矽(SiN x,其中,0 < x ≤ 2)。
由諸如金屬的導電材料製成的閘極電極130設置在閘極絕緣層124上,以對應於半導體層120的中心。雖然閘極絕緣層124如圖2所示設置在基板110的整個區域上,但閘極絕緣層124可以與閘極電極130相同地圖案化。
包含絕緣材料的層間絕緣層132設置在閘極電極130上並覆蓋基板110的整個表面。層間絕緣層132可以包括但不限於諸如氧化矽(SiO x)或氮化矽(SiN x)的無機絕緣材料,或諸如苯環丁烯或感光丙烯酸(photo-acryl)的有機絕緣材料。
層間絕緣層132具有第一半導體層接觸孔134和第二半導體層接觸孔136,該等接觸孔暴露或未覆蓋靠近半導體層120的相對端而不是中心的表面的部分。第一半導體層接觸孔134和第二半導體層接觸孔136設置在閘極電極130的相對側,並與閘極電極130間隔開。在圖2中,第一半導體層接觸孔134和第二半導體層接觸孔136形成在閘極絕緣層124內。或者,當閘極絕緣層124與閘極電極130相同地圖案化時,第一半導體層接觸孔134和第二半導體層接觸孔136可以僅形成在層間絕緣層132內。
源極電極144和汲極電極146由諸如金屬的導電材料形成,並設置在層間絕緣層132上。源極電極144和汲極電極146在閘極電極130的相對側上彼此間隔開,並分別通過第一半導體層接觸孔134和第二半導體層接觸孔136接觸半導體層120的兩側。
半導體層120、閘極電極130、源極電極144和汲極電極146構成用作驅動元件的薄膜電晶體Tr。圖2中的薄膜電晶體Tr具有共面結構,其中閘極電極130、源極電極144和汲極電極146設置在半導體層120上。或者,薄膜電晶體Tr可以具有逆堆疊型結構(inverted staggered structure),其中,閘極電極設置在半導體層下方,且源極電極和汲極電極設置在半導體層上。在這種情況下,半導體層可以包括非晶矽。
彼此交叉以界定像素區域P的閘極線GL和資料線DL以及連接到閘極線GL和資料線DL的開關元件Ts可以進一步形成在像素區域P中。開關元件Ts連接到作為驅動元件的薄膜電晶體Tr。此外,電源線PL與閘極線GL或資料線DL平行地間隔開。薄膜電晶體Tr可以進一步包括儲存電容器Cst,儲存電容器Cst配置以在一訊框內恆定地保持閘極電極130的電壓。
有機發光顯示裝置100可以包含濾色器層,該濾色器層透射從有機發光二極體D發出的一部分光。舉例來說,濾色器層可以透射紅光、綠光或藍光。在這種情況下,可以將透射紅光、綠光或藍光的濾色器圖案設置在各個像素區域P(圖1)中。有機發光顯示裝置100可以藉由應用濾色器圖案來實現全彩影像。
在一示例性實施方式中,當有機發光顯示裝置100是底部發光型時,濾色器層可以設置在與有機發光二極體D對應的層間絕緣層132上方。或者,當有機發光顯示裝置100是頂部發光型時,濾色器層可以位於有機發光二極體D上方,即位於第二電極230上方。
鈍化層150設置在源極電極144和汲極電極146上。鈍化層150在整個基板110上覆蓋薄膜電晶體Tr。鈍化層150具有平坦的頂表面和汲極接觸孔152,汲極接觸孔152暴露或未覆蓋薄膜電晶體Tr的汲極電極146。當汲極接觸孔152設置在第二半導體層接觸孔136上時,其可以與第二半導體層接觸孔136間隔開。
有機發光二極體(OLED)D包含第一電極210,其設置在鈍化層150上並連接到薄膜電晶體Tr的汲極電極146。OLED D進一步包含:發光層220;以及第二電極230,其中的每一個依序設置在第一電極210上。
第一電極210設置在每個像素區域中。第一電極210可以是陽極,並包含具有相對高功函數值的導電材料。舉例來說,第一電極210可以包括但不限於透明導電氧化物(TCO)。更具體地,第一電極210可以包括氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化銦錫鋅(ITZO)、氧化錫(SnO)、氧化鋅(ZnO)、氧化銦鈰(ICO)、摻鋁氧化鋅(AZO)、及/或類似物。
在一示例性實施方式中,當有機發光顯示裝置100是底部發光型時,第一電極210可以具有TCO的單層結構。或者,當有機發光顯示裝置100為頂部發光型時,反射電極或反射層可以設置在第一電極210下方。
舉例來說,反射電極或反射層可以包括但不限於銀(Ag)或鋁-鈀-銅(APC)合金。在頂部發光型OLED D中,第一電極210可以具有ITO/Ag/ITO或ITO/APC/ITO的三層結構。此外,堤層160設置在鈍化層150上以覆蓋第一電極210的邊緣。堤層160暴露或未覆蓋對應於像素區域的第一電極210的中心。
發光層220設置在第一電極210上。在一示例性實施方式中,發光層220可以具有發光材料層(EML)的單層結構。或者,發光層220可以具有:電洞注入層(HIL)、電洞傳輸層(HTL)及/或電子阻擋層(EBL)的多層結構,其中的每一個依序層疊在EML與第一電極210之間;電洞阻擋層(HBL)、電子傳輸層(ETL)及/或電子注入層(EIL)的多層結構,其中的每一個依序層疊在EML與第二電極230之間(圖3、圖11、圖14、及圖17)。在一個態樣中,發光層220可以具有單個發光部分。或者,發光層220可以具有多個發光部分以形成串聯結構。
第二電極230設置在其上方設置有發光層220的基板110上。第二電極230可以設置在整個顯示區域上。第二電極230可以包含與第一電極210相比具有相對低的功函數值的導電材料。第二電極230可以是陰極。舉例來說,第二電極230可以包括但不限於鋁(Al)、鎂(Mg)、鈣(Ca)、銀(Ag)、其合金、以及其組合中的至少一種,諸如鋁-鎂合金(Al-Mg)。當有機發光顯示裝置100是頂部發光型時,第二電極230較薄以具有透光(半透光)特性。
此外,封裝膜170可以設置在第二電極230上,以防止或減少外部濕氣滲透到有機發光二極體D中。封裝膜170可以具有但不限於第一無機絕緣膜172、有機絕緣膜174和第二無機絕緣膜176的層疊結構。可以省略封裝膜170。
可以將偏光板貼附在封裝膜上以減少外部光的反射。例如,偏光板可以是圓偏光板。當有機發光顯示裝置100是底部發光型時,偏光板可以設置在基板110下方。或者,當有機發光顯示裝置100是頂部發光型時,偏光板可以設置在封裝膜170上。此外,在頂部發光型有機發光顯示裝置100中,可以將覆蓋窗貼附到封裝膜170或偏光板。在這種情況下,基板110和覆蓋窗可以具有可撓特性,因此有機發光顯示裝置100可以是可撓式顯示裝置。
更詳細地描述了可以應用於根據本發明第一實施方式的有機發光裝置中的OLED D。圖3示出根據本發明一示例性實施方式的有機發光二極體的示意性剖面圖。如圖3所示,根據本發明第一實施方式的有機發光二極體(OLED)D1包含:面向彼此的第一電極210和第二電極230;以及發光層220,設置在第一電極210與第二電極230之間。有機發光顯示裝置100(圖2)包含:紅色像素區域;綠色像素區域;以及藍色像素區域,並且OLED D1可以設置在藍色像素區域中。
在一示例性實施方式中,發光層220包含發光材料層(EML)240,設置在第一電極210與第二電極230之間。此外,發光層220可以包含以下中的至少一個:HTL 260,設置在第一電極210與EML 240之間;以及ETL 270,設置在EML 240與第二電極230之間。另外,發光層220可以進一步包含以下中的至少一個:HIL 250,設置在第一電極210與HTL 260之間;以及EIL 280,設置在ETL 270與第二電極230之間。或者,發光層220可以進一步包含:EBL 265,設置在EML 240與HTL 260之間;及/或HBL 275,設置在EML 240與ETL 270之間。
第一電極210可以是向EML 240提供電洞的陽極。第一電極210可以包含具有相對高功函數值的導電材料,例如透明導電氧化物(TCO)。在一示例性實施方式中,第一電極210可以包括但不限於ITO、IZO、ITZO、SnO、ZnO、ICO、AZO等。
第二電極230可以是向EML 240提供電子的陰極。第二電極230可以包含具有相對低功函數值的導電材料,即高反射率材料,諸如Al、Mg、Ca、Ag、及/或其合金、以及/或其組合,諸如Al-Mg。
EML 240可以包括:第一化合物DF(圖4);第二化合物FD(圖4);以及可選地,第三化合物H(圖4)。舉例來說,第一化合物DF可以是延遲螢光材料,第二化合物FD可以是螢光材料,而第三化合物H可以是主體。
當電洞和電子在EML 240中相遇形成激子時,透過自旋排列,以1:3的比率產生成對自旋形式的單重態激子和不成對自旋形式的三重態激子。由於先前技術的螢光材料僅能利用單重態激子,因此其發光效率低。雖然磷光材料可以利用三重態激子和單重態激子,但其等的發光壽命太短而不能用於商業層面。
為了解決先前技術的螢光材料和磷光材料的缺點,第一化合物DF可以是具有熱活化延遲螢光(TADF)特性的延遲螢光材料。延遲螢光材料在其激發單重態能階S 1 DF與其激發三重態能階T 1 DF之間具有非常窄的能帶隙△E ST(圖10)。因此,在延遲螢光材料的第一化合物DF中,處於激發單重態能階S 1 DF的激子和處於激發三重態能階T 1 DF的激子皆轉移至分子內電荷轉移(ICT)態(S 1à ICT ß T 1),然後下降至基態S 0(ICT à S 0)。
延遲螢光材料在其激發單重態能階S 1 DF與其激發三重態能階T 1 DF之間的能帶隙△E ST(圖10)應等於或小於0.3 eV,例如在0.05 eV與0.3 eV之間,以便轉移處於三重態和單重態的激子能量。在其單重態與其三重態之間具有小的能帶隙的材料顯示出螢光性,其中,其原始單重態激子能量下降到其基態;並透過逆向系統間跨越(RISC)顯示出延遲螢光特性,其中,透過室溫熱能將三重態上轉換(up-converting)為更高能階的單重態,然後使轉換後的單重態激子能量下降至基態。
包含在根據本發明的EML 240中的第一化合物DF可以是延遲螢光材料,其中硼原子與氧原子、硫原子及/或硒原子中的至少一個形成稠環。延遲螢光材料的第一化合物DF可以具有以下式1的結構: [式1] , 在式1中, R 1至R 11各自獨立地為氕、氘、氚、鹵素原子、未被取代或被取代的C 1-C 20烷基、未被取代或被取代的C 1-C 20烷基胺基、未被取代或被取代的C 6-C 30芳香族基團、或未被取代或被取代的C 3-C 20雜芳族基團,其中,R 1至R 11中的1至4個具有以下式2的結構;以及 X 1和X 2各自獨立地為O、S或Se, [式2] , 在式2中, 「 」表示與式1的稠環的連接; R 12和R 13各自獨立地為氘、氚、鹵素原子、未被取代或被取代的C 1-C 20烷基、未被取代或被取代的C 1-C 20烷基矽基、未被取代或被取代的C 1-C 20烷基胺基、未被取代或被取代的C 6-C 30芳香族基團、或未被取代或被取代的C 3-C 20雜芳族基團,其中,當m為2、3或4時,每個R 12彼此相同或不同,以及其中,當n為2、3或4時,每個R 13彼此相同或不同, 可選地, 當m為2、3或4時,至少兩個相鄰的R 12及/或 當n為2、3或4時,至少兩個相鄰的R 13連接在一起以形成未被取代或被取代的C 6-C 20芳香環、或未被取代或被取代的C 3-C 20雜芳環;以及 m和n各自獨立地為0、1、2、3或4。
舉例來說,各自可以是式1中的R 1至R 11及/或式2中的R 12和R 13的C 6-C 30芳香族基團和C 3-C 30雜芳族基團、以及可以由式2中兩個相鄰的R 12及/或兩個相鄰的R 13形成的C 6-C 20芳香環及/或C 3-C 20雜芳環中的每一個可以獨立地未被取代或被氘、氚、C 1-C 20烷基、C 6-C 30芳基、C 3-C 30雜芳基、C 6-C 30芳基胺基和C 3-C 30雜芳基胺基中的至少一種取代,但不限於此。
在一個示例性實施方式中,各自可以是式1中的R 1至R 11和式2中的R 12和R 13的C 6-C 30芳香族基團中的每一個分別可以包括但不限於C 6-C 30芳基、C 7-C 30芳基烷基、C 6-C 30芳氧基和C 6-C 30芳基胺基。各自可以是式1中的R 1至R 11和式2中的R 12和R 13的C 3-C 30雜芳族基團中的每一個分別可以包括但不限於C 3-C 30雜芳基、C 4-C 30雜芳基烷基、C 6-C 30雜芳氧基和C 6-C 30雜芳基胺基。
舉例來說,可以構成R 1至R 13中的每一個的C 6-C 30芳基可以包括但不限於非稠合或稠合的芳基,諸如苯基、聯苯基、三聯苯基、萘基、蒽基、并環戊二烯基(pentalenyl)、茚基、茚并茚基(indeno-indenyl)、并環庚三烯基(heptalenyl)、聯苯烯基(biphenylenyl)、二環戊二烯并苯基(indacenyl)、萉基(phenalenyl)、菲基(phenanthrenyl)、苯并菲基、二苯并菲基、薁基、芘基、丙烯合茀基(fluoranthenyl)、三亞苯基(triphenylenyl)、 基(chrysenyl)、伸聯四苯基(tetraphenylenyl)、稠四苯基(tetracenyl)、七曜烯基(pleiadenyl)、苉基、伸聯五苯基(pentaphenylenyl)、稠五苯基、茀基、茚并茀基、或螺茀基。
或者,可以構成R 1至R 13中的每一個的C 3-C 30雜芳基可以包括但不限於非稠合或稠合的雜芳基,諸如吡咯基、吡啶基、嘧啶基、吡𠯤基、嗒𠯤基、三𠯤基、四𠯤基、咪唑基、吡唑基、吲哚基、異吲哚基、吲唑基、吲 基、吡 基、咔唑基、苯并咔唑基、二苯并咔唑基、吲哚并咔唑基、茚并咔唑基、苯并呋喃并咔唑基、苯并噻吩并咔唑基、咔啉基、喹啉基、異喹啉基、呔𠯤基、喹㗁啉基、㖕啉基、喹唑啉基、喹𠯤基、嘌呤基、苯并喹啉基、苯并異喹啉基、苯并喹唑啉基、苯并喹㗁啉基、吖啶基、啡𠯤基、啡㗁𠯤基、啡噻𠯤基、啡啉基、呸啶基(perimidinyl)、啡啶基、蝶啶基、㖠啶基、呋喃基、哌喃基、㗁𠯤基、㗁唑基、㗁二唑基、三唑基、二氧雜環己烯基(dioxinyl)、苯并呋喃基、二苯并呋喃基、噻喃基、𠮿基、𠳭烯基、異𠳭烯基、噻𠯤基(thioazinyl)、苯硫基、苯并苯硫基、二苯并苯硫基、二呋喃并吡𠯤基、苯并呋喃并二苯并呋喃基、苯并噻吩并苯并苯硫基、苯并噻吩并二苯并苯硫基、苯并噻吩并苯并呋喃基、苯并噻吩并二苯并呋喃基、與𠮿 連接的螺吖啶基、被至少一個C 1-C 10烷基取代的二氫吖啶基、和N-取代的螺茀基。
各自可以由式2中兩個相鄰的R 12及/或兩個相鄰的R 13形成的C 6-C 20芳香環及/或C 3-C 20雜芳環不限於特定的環。舉例來說,各自可以由式2中兩個相鄰的R 12及/或兩個相鄰的R 13形成的C 6-C 20芳香環及/或C 3-C 20雜芳環可以包括但不限於苯環、萘環、蒽環、菲環、茚環、茀環、吡啶環、嘧啶環、三𠯤環、喹啉環、吲哚環、苯并呋喃環、苯并噻吩環、二苯并呋喃環、二苯并噻吩環及/或其組合,其中的每一個可以獨立地未被取代或被氘、氚、C 1-C 20烷基、C 6-C 30芳基、C 3-C 30雜芳基、C 6-C 30芳基胺基和C 3-C 20雜芳基胺基中的至少一種取代。
在一示例性實施方式中,各自可以由式2中兩個相鄰的R 12及/或兩個相鄰的R 13形成的C 6-C 20芳香環及/或C 3-C 20雜芳環可以是雜芳環,例如,具有兩個或更多個環的稠合雜芳環,該兩個或更多個環未被取代或被氘、氚、C 1-C 20烷基、C 6-C 30芳基、C 3-C 30雜芳基、C 6-C 30芳基胺基和C 3-C 20雜芳基胺基中的至少一種取代。作為一示例,可以由兩個相鄰的R 12及/或兩個相鄰的R 13形成的C 3-C 20雜芳環可以包括但不限於吲哚環、苯并呋喃環、苯并噻吩環及其組合,其中的每一個可以獨立地未被取代或被氘、氚、C 1-C 20烷基、C 6-C 30芳基、C 3-C 30雜芳基、C 6-C 30芳基胺基和C 3-C 20雜芳基胺基中的至少一種取代。
作為一示例,作為電子予體之具有式2結構的雜芳族部分可以包括但不限於茚并咔唑基部分、吲哚并咔唑基部分、苯并呋喃并咔唑基部分及/或苯并噻吩并咔唑基部分。
舉例來說,各自可以是式1中的R 1至R 11和式2中的R 12和R 13的C 6-C 30芳香族基團分別可以獨立地未被取代或被選自由以下所組成的群組中的至少一種取代:C 1-C 10烷基(例如C 1-C 5烷基,諸如三級丁基)、C 6-C 30芳基(例如C 6-C 15芳基,諸如苯基)、C 3-C 30雜芳基(例如C 3-C 15雜芳基,諸如吡啶基)、以及C 6-C 20芳基胺基(例如二苯基胺基)。
式1中之包含硼原子和氧原子、硫原子和硒原子中的至少一種的稠環作為電子受體部分,而式2之具有至少一個氮原子的稠合雜芳環作為電子予體部分。因此,具有式1結構的有機化合物具有延遲螢光特性。
特別是,由於具有式2結構的電子予體部分在兩個苯環之間包括包含氮原子的5員環,因此電子予體部分與電子受體部分之間的鍵結強度可以最大化,並且具有式1結構的有機化合物具有有益的熱穩定性。隨著在具有這種化學構形的第一化合物中的電子予體部分與電子受體部分之間的二面角減小(約小於75度),第一化合物具有改良的分子共軛結構。由於具有延遲螢光特性的第一化合物DF具有有益的發光效率,因此激子能量可以從第一化合物DF充分地轉移到第二化合物FD,並可以實現超螢光(hyper-fluorescence)。
相反地,當第一化合物DF包括6員環的電子予體部分,諸如吖啶基環系統,隨著第一化合物DF內的電子予體部分與電子受體部分之間的二面角增加(約90度),分子的共軛結構被破壞,從而使分子的穩定性降低。當具有這種結構的有機化合物用作EML 240的第一化合物時,有機發光二極體的發光壽命可能會降低。
在一示例性實施方式中,0至2個具有式2結構的稠合雜芳基的電子予體部分可以與位於具有式1結構的第一化合物DF的分子結構末端的三個苯環中的每一個連接。
此外,式2中的R 13可以未被取代或被氘、氚、C 1-C 20烷基、C 6-C 30芳基、C 3-C 30雜芳基、C 6-C 30芳基胺基和C 3-C 30雜芳基胺基中的至少一種取代;或者,至少兩個相鄰的R 13可以連接在一起以形成吲哚環、苯并呋喃環及/或苯并噻吩環,其中的每一個可以獨立地未被取代或被氘、氚、C 1-C 20烷基、C 6-C 30芳基、C 3-C 30雜芳基、C 6-C 30芳基胺基和C 3-C 30雜芳基胺基中的至少一種取代。具有這種結構的第一化合物DF可以具有但不限於以下式3的結構: [式3] , 在式3中, X 1和X 2各自如式1中所定義; R 14至R 16各自獨立地為氕、氘、氚、鹵素原子、未被取代或被取代的C 1-C 20烷基、未被取代或被取代的C 1-C 20烷基胺基、未被取代或被取代的C 6-C 30芳基、或未被取代或被取代的C 3-C 20雜芳基,其中,R 14至R 16中的至少一個是具有以下式4的結構的稠合雜芳基,以及其中,當p為2時,每個R 15彼此相同或不同;以及 p為0、1或2, [式4] , 在式4中, 「 」表示與式3的稠環的連接; R 17和R 18各自獨立地為氘、氚、鹵素原子、未被取代或被取代的C 1-C 20烷基、未被取代或被取代的C 1-C 20烷基矽基、未被取代或被取代的C 1-C 20烷基胺基、未被取代或被取代的C 6-C 30芳香族基團、或未被取代或被取代的C 3-C 20雜芳族基團,其中,當m為2、3或4時,每個R 17彼此相同或不同,以及其中,當n為2、3或4時,每個R 18彼此相同或不同, 可選地, 當n為2、3或4時,至少兩個相鄰的R 18連接在一起以形成未被取代或被取代的C 3-C 20雜芳環;以及 m和n各自獨立地為0、1、2、3或4。
舉例來說,各自可以是式3中的R 14至R 16的C 6-C 30芳香族基團和C 3-C 30雜芳族基團、各自可以是式4中的R 17和R 18的C 6-C 30芳香族基團和C 3-C 30雜芳族基團、以及由兩個相鄰的R 18形成的C 3-C 20雜芳環中的每一個可以獨立地未被取代或被氘、氚、C 1-C 20烷基、C 6-C 30芳基、C 3-C 30雜芳基、C 6-C 30芳基胺基和C 3-C 30雜芳基胺基中的至少一種取代,但不限於此。
具有式3結構的有機化合物具有延遲螢光特性,且單重態激子能階、三重態能階、HOMO(最高佔有分子軌域)能階和LUMO(最低未佔分子軌域)能階足以將激子能量轉移至第二化合物FD,如下所述。作為一示例,具有式1或式3結構的第一化合物DF可以包括但不限於以下式5的有機化合物中的至少一種: [式5]
Figure 111138083-A0305-02-0033-3
延遲螢光材料的第一化合物DF在單重態能階S1 DF與三重態能階T1 DF之間具有非常窄的能帶隙△EST DF(例如小於或等於約0.3eV,圖10),並具有有益的量子效率,因為第一化合物DF的三重態激子能量可以透過RISC機制轉換為其單重態激子能量。
然而,具有式1至式5結構的第一化合物DF由於電子受體部分和電子予體部分而具有扭曲的化學構形。此外,第一化合物DF由於利用了三重態激子,因此需要額外的電荷轉移躍遷(CT躍遷)。具有式1至式5結構的第一化合物DF由於CT發光機制所致的發光特性而具有非常寬的半高寬(full-width at half maximum,FWHM),因此其色純度非常有限。
此外,第一化合物DF之處於單重態能階S1 DF的一部分激子能量透過系統間跨越(Inter System Crossing,ISC)轉換為其三重態能階T1 DF,因此,產生了未向上轉換為其單重態能階S 1 DF並駐留在三重態能階T 1 DF的三重態激子。由於這些三重態激子與周圍的三重態激子及/或極化子交互作用,因此其等由於TTA(三重態-三重態湮滅)或TPA(三重態-極化子湮滅)而淬滅。換言之,當EML 240僅包含第一化合物DF時,第一化合物DF的三重態激子能量不能有助於發光。此外,由於諸如TTA及/或TPA的淬滅,OLED D1的發光壽命可能會降低。
EML 240包含螢光材料的第二化合物FD,以最大化延遲螢光材料的第一化合物DF的發光特性,並實現超螢光。如上所述,延遲螢光材料的第一化合物DF可以利用三重態激子能量和單重態激子能量。當EML 240包含與延遲螢光材料的第一化合物DF相比具有適當能階的螢光材料的第二化合物FD時,從第一化合物DF發出的激子能量由第二化合物FD吸收,然後由第二化合物FD吸收的激子能量產生100%的單重態激子,以最大化其發光效率。
延遲螢光材料的第一化合物DF的單重態激子能量,其包含EML 240中第一化合物DF從其自身的三重態激子能量上轉換而來的單重態激子能量和原始單重態激子能量,經由Forster共振能量轉移(FRET)機制轉移到同一EML 240中的螢光材料的第二化合物FD,並在第二化合物FD發生最終發光。具有與第一化合物DF的光致發光(PL)光譜廣泛重疊的吸收光譜的化合物可以用作第二化合物FD,使得在第一化合物DF處產生的激子能量可以有效地轉移到第二化合物FD。最終發光的第二化合物FD具有窄的FWHM和有益的發光壽命,因此可以提高發光二極體的色純度和發光壽命。
EML 240中的第二化合物FD可以是藍色螢光材料。舉例來說,EML 240中的第二化合物FD可以是其FWHM等於或小於約35 nm的硼基化合物。作為一示例,硼基螢光材料的第二化合物FD可以具有以下式6的結構: [式6] , 在式6中,R21至R28各自獨立地為氕、氘、氚、鹵素原子、未被取代或被取代的C1-C20烷基、未被取代或被取代的C1-C20烷基矽基、未被取代或被取代的C1-C20烷基胺基、未被取代或被取代的C6-C30芳香族基團、或未被取代或被取代的C3-C20雜芳族基團,其中,當q為2、3、4或5時,每個R25彼此相同或不同,其中,當r為2或3時,每個R26彼此相同或不同,其中,當s為2、3、4或5時,每個R27彼此相同或不同,以及其中,當t為2、3或4時,每個R28彼此相同或不同,可選地,R21至R24中的兩個相鄰的基團連接在一起以形成具有硼原子和氮原子的未被取代或被取代的稠環;q和s各自獨立地為0、1、2、3、4或5;r為0、1、2或3;以及t為0、1、2、3或4。
舉例來說,各自可以是式6中的R21至R28的C6-C30芳香族基團和C3-C30雜芳族基團、以及由式6中的R21至R24中的兩個相鄰的基團形成的稠環中的每一個可以獨立地未被取代或被氘、氚、C1-C20烷基、C6-C30芳基、C3-C30雜芳基、C6-C30芳基胺基和C3-C30雜芳基胺基中的至少一種取代,但不限於此。
類似於式1,各自可以是式6中的R21至R28的C6-C30芳香族基團中的每一個可以包括但不限於C6-C30芳基、C7-C30芳基烷基、C6-C30芳氧基和C6-C30芳基胺基。各自可以是式6中的R21至R28的C3-C30雜芳族基團中的每一個可以包括但不限於C3-C30雜芳基、C4-C30雜芳基烷基、C6-C30雜芳氧基和C6-C30雜芳基胺基。
具有式6結構的硼基化合物具有非常有益的發光特性。具有式6結構的硼基化合物具有非常寬的板狀結構,因此其可以有效地接收從第一化合物DF發出的激子能量,因此可以最大化EML 240中的發光效率。
在一個示例性實施方式中,式6中的R21至R24可以不彼此連接。或者,式6中的R22和R23連接在一起以形成具有至少一個硼原子和至少一個氮原子的稠環。舉例來說,第二化合物FD可以包含具有以下式7A、式7R或式7C結構的硼基化合物:[式7A] [式7B] [式7C] , 在式7A至7C中, R 21、R 25至R 28、和R 31至R 34各自獨立地為氕、氘、氚、鹵素原子、未被取代或被取代的C 1-C 20烷基、未被取代或被取代的C 1-C 20烷基矽基、未被取代或被取代的C 1-C 20烷基胺基、未被取代或被取代的C 6-C 30芳基、或未被取代或被取代的C 3-C 20雜芳基。
舉例來說,各自可以獨立地為式7A至式7C中的R 21、R 25至R 28、和R 31至R 34中的每一個的C 6-C 30芳基和C 3-C 30雜芳基中的每一個可以獨立地未被取代或被氘、氚、C 1-C 20烷基、C 6-C 30芳基、C 3-C 30雜芳基、C 6-C 30芳基胺基和C 3-C 30雜芳基胺基中的至少一種取代,但不限於此。
在另一示例性實施方式中,硼基有機化合物的第二化合物DF可以包括但不限於以下式8的有機化合物: [式8]
可以包含在EML 240中的第三化合物H與第一化合物DF及/或第二化合物FD相比,可以包含在HOMO能階與LUMO能階之間具有更寬的能帶隙的任何有機化合物。當EML 240包含主體的第三化合物H時,第一化合物DF可以是第一摻雜劑,而第二化合物FD可以是第二摻雜劑。
在一示例性實施方式中,EML 240中的第三化合物可以包括但不限於4,4'-雙(N-咔唑基)-1,1'-聯苯(CBP)、3,3'-雙(N-咔唑基)-1,1'-聯苯(mCBP)、1,3-雙(咔唑-9-基)苯(mCP)、9-(3-(9H-咔唑-9-基)苯基)-9H-咔唑-3-腈(mCP-CN)、雙[2-(二苯基膦基)苯基]醚氧化物(DPEPO)、2,8-雙(二苯基膦醯基)二苯并噻吩(PPT)、1,3,5-三[(3-吡啶基)-苯-3-基]苯(TmPyPB)、2,6-二(9H-咔唑-9-基)吡啶(PYD-2Cz)、2,8-二(9H-咔唑-9-基)二苯并噻吩(DCzDBT)、3',5'-二(咔唑-9-基)-[1,1'-聯苯]-3,5-二腈(DCzTPA)、4'-(9H-咔唑-9-基)聯苯-3,5-二腈(pCzB-2CN)、3'-(9H-咔唑-9-基)聯苯-3,5-二腈(mCzB-2CN)、二苯基-4-三苯基矽基苯基-膦氧化物(TSPO1)、9-(9-苯基-9H-咔唑-6-基)-9H-咔唑(CCP)、4-(3-(三亞苯-2-基)苯基)二苯并[b,d]噻吩、9-(4-(9H-咔唑-9-基)苯基)-9H-3,9'-雙咔唑、9-(3-(9H-咔唑-9-基)苯基)-9H-3,9'-雙咔唑、9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9'-雙咔唑)、及其組合。
在一示例性實施方式中,當EML 240包含第一化合物DF、第二化合物FD和第三化合物H時,在EML 240中第三化合物H的含量可以大於第一化合物DF的含量,並且在EML 240中第一化合物DF的含量可以大於第二化合物FD的含量。當第一化合物DF的含量大於第二化合物FD的含量時,激子能量可以經由FRET機制從第一化合物DF有效地轉移到第二化合物FD。舉例來說,第三化合物H在EML 240中的含量可以是約55 wt%至約85 wt%,第一化合物DF在EML 240中的含量可以是約10 wt%至約40 wt%,例如約10 wt%至約30 wt%,並且第二化合物FD在EML 240中的含量可以是約0.1 wt%至約5 wt%,例如約0.1 wt%至約2 wt%,但不限於此。
在一示例性實施方式中,主體的第三化合物H、延遲螢光材料的第一化合物DF與螢光材料的第二化合物FD之間的HOMO能階及/或LUMO能階必須適當調整。舉例來說,為了實現超螢光,主體必須誘導在延遲螢光材料處產生的三重態激子參與發光過程,且不以非輻射再結合的方式淬滅。為此,應調整主體的第三化合物H、延遲螢光材料的第一化合物DF與螢光材料的第二化合物FD之間的能階。
圖4示出根據本發明一示例性實施方式藉由調整集中在EML中的第一化合物和第二化合物的發光材料的能階來有效地將電洞轉移至第二化合物的示意圖。
如圖4所示,主體的第三化合物H可以設計以具有比延遲螢光材料的第一化合物DF的HOMO能階HOMO DF更深的HOMO能階HOMO H,並具有比第一化合物DF的LUMO能階LUMO DF更淺的LUMO能階LUMO H。換言之,第三化合物H的HOMO能階HOMO H與LUMO能階LUMO H之間的能帶隙可以比第一化合物DF的HOMO能階HOMO DF與LUMO能階LUMO DF之間的能帶隙更寬。
舉例來說,主體的第三化合物H的HOMO能階(HOMO H)與延遲螢光材料的第一化合物DF的HOMO能階(HOMO DF)之間的能帶隙(|HOMO H-HOMO DF|)、或者第三化合物H的LUMO能階(LUMO H)與第一化合物DF的LUMO能階(LUMO DF)之間的能帶隙(|LUMO H-LUMO DF|)可以等於或小於約0.5 eV,例如在約0.1 eV至約0.5 eV之間。在這種情況下,電荷可以有效地從第三化合物H傳輸到第一化合物DF,從而提高OLED D1的最終發光效率。
在一示例性實施方式中,第一化合物DF的HOMO能階HOMO DF與第二化合物FD的HOMO能階HOMO FD之間的能帶隙ΔHOMO-1滿足以下方程式(1)中的關係: |HOMO FD– HOMO DF| < 0.3 eV    (1)。
當第一化合物DF的HOMO能階HOMO DF與第二化合物FD的HOMO能階HOMO FD之間的能帶隙ΔHOMO-1滿足方程式(1)中的關係時,注入到EML 240中的電洞可以快速轉移到第一化合物DF。因此,第一化合物DF可以利用原始單重態激子能量,也可以利用從其三重態激子能量透過RISC機制上轉換的單重態激子能量,從而實現100%的內部量子效率,並將其激子能量有效地轉移到第二化合物FD。舉例來說,第一化合物DF的HOMO能階HOMO DF和第二化合物FD的HOMO能階HOMO FD可以滿足以下方程式(2)中的關係: |HOMO FD– HOMO DF| ≤ 0.2 eV     (2)。
在另一示例性實施方式中,第一化合物DF的LUMO能階LUMO DF可以比第二化合物FD的LUMO能階LUMO FD更淺或相等。舉例來說,第一化合物DF的LUMO能階LUMO DF和第二化合物FD的LUMO能階LUMO FD可以滿足以下方程式(3)中的關係: 0 ≤ LUMO DF– LUMO FD≤ 0.5 eV    (3)。
當第一化合物DF的LUMO能階LUMO DF和第二化合物FD的LUMO能階LUMO FD滿足方程式(3)的關係時,注入到EML 240中的電子可以快速轉移到第一化合物DF。舉例來說,第一化合物DF的LUMO能階LUMO DF和第二化合物FD的LUMO能階LUMO FD可以滿足以下方程式(4)中的關係: 0 ≤ LUMO DF– LUMO FD≤ 0.2 eV     (4)。
由於激子可以在延遲螢光材料的第一化合物DF中再結合,第一化合物DF可以利用RISC機制實現100%的內部量子效率。在第一化合物DF處產生的單重態激子能量包含原始單重態激子能量和上轉換的單重態激子能量,可以經由FRET轉移給螢光材料的第二化合物FD,因此第二化合物FD可以實現有效的發光。
作為一示例,第一化合物DF可以設計以但不限於具有在約-5.4 eV與-5.7 eV之間的HOMO能階HOMO DF、以及在約-2.5 eV與-2.8 eV之間的LUMO能階LUMO DF。第二化合物FD可以設計以但不限於具有在約-5.3 eV與約-5.7 eV之間的HOMO能階HOMO FD、以及在約-2.7 eV與約-3.0 eV之間的LUMO能階LUMO FD
第一化合物DF的HOMO能階HOMO DF與LUMO能階LUMO DF之間的能帶隙可以比第二化合物FD的HOMO能階HOMO FD與LUMO能階LUMO FD之間的能帶隙更寬。在一示例性實施方式中,第一化合物DF之在HOMO能階HOMO DF與LUMO能階LUMO DF之間的能帶隙可以介於約2.6 eV與約3.1 eV之間,例如約2.7 eV與約3.0 eV之間。第二化合物FD之在HOMO能階HOMO FD與LUMO能階LUMO FD之間的能帶隙可以介於約2.4 eV與約2.9 eV之間,例如約2.5 eV與約2.8 eV之間。在這種情況下,在第一化合物DF處產生的激子能量可以有效地轉移到第二化合物FD,然後第二化合物FD可以充分發光。
圖5示出當發光材料層中的第一化合物和第二化合物的HOMO能階未調整時電洞在第二化合物處被捕獲的示意圖。如圖5所示,當第一化合物DF的HOMO能階HOMO DF與第二化合物FD的HOMO能階HOMO FD之間的能帶隙ΔHOMO-2等於或大於0.3 eV時,注入到EML 240中的電洞在螢光材料的第二化合物FD處被捕獲。換言之,注入到EML 240中的電洞不會從主體的第三化合物H轉移到延遲螢光材料的第一化合物DF。在具有有益發光效率的第一化合物DF中未形成激子,但是在第二化合物FD處被捕獲的電洞直接再結合形成激子並發光。第一化合物DF的三重態激子能量不能參與發光過程,而是由於非輻射再結合而淬滅,從而導致EML的發光效率降低。
圖6示出當發光材料層中的第一化合物和第二化合物的HOMO能階和LUMO能階未調整時電洞在第二化合物處被捕獲、並在第一化合物與第二化合物之間產生激發錯合體的示意圖。如圖6所示,當第一化合物DF的HOMO能階HOMO DF與第二化合物FD的HOMO能階HOMO FD之間的能帶隙△HOMO-3等於或大於0.5 eV時,注入到EML 240中的電洞在螢光材料的第二化合物FD處被捕獲。
此外,當第一化合物DF的LUMO能階LUMO DF比第二化合物FD的LUMO能階LUMO FD更深時(即LUMO FD> LUMO DF),在第二化合物FD處被捕獲的電洞和轉移到第一化合物DF的電子形成激發錯合體。第一化合物DF的三重態激子能量由於非輻射再結合而淬滅,導致EML的發光效率降低。此外,由於形成激發錯合體的LUMO能階與HOMO能階之間的能帶隙太窄,因此EML發出較長波長的光。由於第一化合物DF和第二化合物FD同時發光,因此EML發出的光具有較寬的FWHM和較差的色純度。
此外,為了進一步提高有機發光二極體的發光效率和色純度,需要調整第一化合物DF與第二化合物FD之間的光致發光波長和吸收波長。圖7示出根據本發明的一示例性實施方式藉由調整發光材料層中的第一化合物的發光波長來提高有機發光二極體的發光效率和色純度的示意圖。如圖7所示,當第一化合物DF的光致發光(PL)光譜PL DF與第二化合物FD的吸收(Abs)光譜Abs FD之間的光譜重疊的程度高,可以改善從第一化合物DF至第二化合物FD的激子能量轉移效率。作為一示例,第一化合物DF的最大PL波長λ PL.max DF與最大Abs波長λ Abs.max FD之間的距離可以等於或小於約50 nm,例如約30 nm。特別是,在本發明的一示例性實施方式中,第一化合物DF的起始波長λ onset DF可以在約430 nm與約440 nm之間。該起始波長表示在有機化合物的PL光譜中較短波長區域的線性區域中的外延(extrapolation)線和X軸(波長)相交的點的波長。更具體地,該起始波長可以定義為與PL光譜中發光強度對應於最大發光強度的1/10的兩個波長中較短的波長相對應的波長。當第一化合物DF的起始波長λ onset DF在約430 nm與約440 nm之間時,激子能量可以從第一化合物DF有效地轉移到第二化合物FD,並可以最大化OLED D1的發光效率。
相反地,如圖8所示,當第一化合物DF的起始波長λ onset DF小於430 nm時,第一化合物的延遲螢光特性可能會降低,且/或將激子能量轉移到第一化合物DF的主體的第三化合物H應具有非常高的激發三重態能階T 1 H。在這種情況下,OLED D1的發光效率降低。
此外,如圖9所示,第一化合物DF的起始波長λ onset DF大於440 nm,從第一化合物DF到第二化合物FD的激子能量轉移效率會降低。由於未轉移到第二化合物FD的激子駐留在第一化合物DF,因此OLED D1的發光效率降低,因為駐留激子由於非輻射再結合而淬滅。
將更詳細地描述根據一示例性實施方式在EML 240中的發光機制。圖10示出根據本發明一示例性實施方式在有機發光二極體的發光材料層中的發光材料之中的單重態能階和三重態能階的發光機制示意圖。如圖10所示,可以作為EML 240中的主體的第三化合物H的單重態能階S 1 H高於具有延遲螢光特性的第一化合物DF的單重態能階S 1 DF。此外,第三化合物H的三重態能階T 1 H可以高於第一化合物DF的三重態能階T 1 DF。作為一示例,第三化合物H的三重態能階T 1 H可以高出第一化合物DF的三重態能階T 1 DF至少約0.2 eV,例如至少約0.3 eV,諸如至少約0.5 eV。
當第三化合物H的三重態能階T 1 H及/或單重態能階S 1 H高出第一化合物DF的三重態能階T 1 DF及/或單重態能階S 1 DF的程度不夠時,處於第一化合物DF的激發三重態能階T 1 DF的激子可能會逆向轉移到第三化合物H的三重態能階T 1 H。在這種情況下,在三重態激子不能在第三化合物H中發光的情況下,逆向轉移到第三化合物H的三重態激子在不發光的情況下淬滅,使得具有延遲螢光特性的第一化合物DF的三重態激子能量不能有助於發光。具有延遲螢光特性的第一化合物DF的在單重態能階S 1 DF與三重態能階T 1 DF之間的能帶隙△E ST DF可以等於或小於約0.3 eV,例如在約0.05 eV與約0.3 eV之間。
此外,在EML 240中經由RISC轉換為ICT錯合體的延遲螢光材料的第一化合物DF處產生的單重態激子能量應有效地轉移到螢光材料的第二化合物FD,從而實現具有高發光效率和高色純度的OLED D1。為此,延遲螢光材料的第一化合物DF的單重態能階S 1 DF高於螢光材料的第二化合物FD的單重態能階S 1 FD。可選地,第一化合物DF的三重態能階T 1 DF可以高於第二化合物FD的三重態能階T 1 FD
由於第二化合物FD在發光過程中可以同時利用第一化合物DF的單重態激子能量和三重態激子能量,因此可以最大化OLED D1的發光效率。此外,由於TTA或TTP等淬滅現象在發光過程中被最小化,因此OLED D1的發光壽命可以大大提高。
回到圖3, HIL 250設置在第一電極210與HTL 260之間,並改善了無機的第一電極210與有機的HTL 260之間的界面特性。在一個示例性實施方式中,HIL 250可以包括但不限於4,4’4”-三(3-甲基苯基胺基)三苯胺(MTDATA)、4,4’,4”-三(N,N-二苯基-胺基)三苯胺(NATA)、4,4’,4”-三(N-(萘-1-基)-N-苯基-胺基)三苯胺(1T-NATA)、4,4',4”-三(N-(萘-2-基)-N-苯基-胺基)三苯胺(2T-NATA)、銅酞青(CuPc)、三(4-咔唑-9-基-苯基)胺(TCTA)、N,N'-二苯基-N,N'-雙(1-萘基)-1,1'-聯苯-4,4”-二胺(NPB;NPD)、1,4,5,8,9,11-六氮雜三亞苯六腈(二吡𠯤[2,3-f:2’3’-h]喹㗁啉-2,3,6,7,10,11-六腈;HAT-CN)、1,3,5-三[4-(二苯基胺基)苯基]苯(TDAPB)、聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸鹽(PEDOT/PSS)、N-(聯苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-茀-2-胺、及其組合。根據OLED D1的結構,可以省略HIL 250。
HTL 260設置在HIL 250與EML 240之間。在一個示例性實施方式中,HTL 260可以包括但不限於N,N'-二苯基-N,N'-雙(3-甲基苯基)-1,1'-聯苯-4,4'-二胺(TPD)、NPB(NPD)、CBP、聚[N,N'-雙(4-丁基苯基)-N,N'-雙(苯基)-聯苯胺](聚-TPD)、共聚[(9,9-二辛基茀-2,7-二基)/(4,4'-(N-(4-二級丁基苯基))二苯胺))](TFB)、二-[4-(N,N-二-對甲苯基-胺基)-苯基]環己烷(TAPC)、3,5-二(9H-咔唑-9-基)-N,N-二苯基苯胺(DCDPA)、N-(聯苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-茀-2-胺、N-(聯苯-4-基)-N-(4-(9-苯基-9H-咔唑-3-基)苯基)聯苯-4-胺、及其組合。
ETL 270和EIL 280可以依序層疊在EML 240與第二電極230之間。ETL 270包含具有高電子遷移率的材料,以便透過快速的電子傳輸向EML 240穩定地提供電子。在一個示例性實施方式中,ETL 270可以包括但不限於㗁二唑類化合物、三唑類化合物、啡啉類化合物、苯并㗁唑類化合物、苯并噻唑類化合物、苯并咪唑類化合物、三𠯤類化合物等中的任一種。
更具體地,ETL 270可以包括但不限於三-(8-羥基喹啉鋁)(Alq 3)、2-聯苯-4-基-5-(4-三級丁基苯基)-1,3,4-㗁二唑(PBD)、螺-PBD、喹啉鋰(Liq)、1,3,5-三(N-苯基苯并咪唑-2-基)苯(TPBi)、雙(2-甲基-8-喹啉-N1,O8)-(1,1’-聯苯-4-醇)鋁(BAlq)、4,7-二苯基-1,10-啡啉(Bphen)、2,9-雙(萘-2-基)-4,7-二苯基-1,10-啡啉(NBphen)、2,9-二甲基-4,7-二苯基-1,10-啡啉(BCP)、3-(4-聯苯基)-4-苯基-5-三級丁基苯基-1,2,4-三唑(TAZ)、4-(萘-1-基)-3,5-二苯基-4H-1,2,4-三唑(NTAZ)、1,3,5-三(對-吡啶-3-基-苯基)苯(TpPyPB)、2,4,6-三(3'-(吡啶-3-基)聯苯-3-基)1,3,5-三𠯤(TmPPPyTz)、交替共聚[9,9-雙(3'-((N,N-二甲基)-N-乙基銨)-丙基)-2,7-茀/2,7-(9,9-二辛基茀)](PFNBr)、三(苯基喹㗁啉)(TPQ)、TSPO1、及其組合。
EIL 280設置在第二電極230與ETL 270之間,並可以改善第二電極230的物理特性,因此可以提高OLED D1的發光壽命。在一個示例性實施方式中,EIL 280可以包括但不限於:鹼金屬鹵化物或鹼土金屬鹵化物,諸如LiF、CsF、NaF、BaF 2等;及/或有機金屬化合物,諸如喹啉鋰、苯甲酸鋰、硬脂酸鈉等。
當電洞經由EML 240轉移到第二電極230且/或電子經由EML 240轉移到第一電極210時,OLED D1可能具有短壽命和降低的發光效率。為了防止這些現象,根據本發明此實施方式的OLED D1可以具有與EML 240相鄰的激子阻擋層。
舉例來說,該示例性實施方式的OLED D1包含在HTL 260與EML 240之間的EBL 265,以控制和防止電子轉移。在一個示例性實施方式中,EBL 265可以包含但不限於TCTA、三[4-(二乙基胺基)苯基]胺、N-(聯苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-茀-2-胺、TAPC、MTDATA、mCP、mCBP、CuPc、N,N'-雙[4-(雙(3-甲基苯基)胺基)苯基]-N,N'-二苯基-[1,1'-聯苯]-4,4'-二胺(DNTPD)、TDAPB、及/或3,6-雙(N-咔唑基)-N-苯基-咔唑、及其組合。
此外,OLED D1可以進一步包含HBL 275作為EML 240與ETL 270之間的第二激子阻擋層,使得電洞不能從EML 240轉移到ETL 270。在一個示例性實施方式中,HBL 275可以包括但不限於㗁二唑類化合物、三唑類化合物、啡啉類化合物、苯并㗁唑類化合物、苯并噻唑類化合物、苯并咪唑類化合物、及三𠯤類化合物,其中的每一個皆可以在ETL 270中使用。
舉例來說,HBL 275可以包括與EML 240中的發光材料的HOMO能階相比具有相對低的HOMO能階的化合物。HBL 275可以包括但不限於BCP、BAlq、Alq 3、PBD、螺-PBD、Liq、雙-4,5-(3,5-二-3-吡啶基苯基)-2-甲基嘧啶(B3PYMPM)、DPEPO、9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9'-雙咔唑、及其組合。
在上述態樣中,具有延遲螢光特性的第一化合物和具有螢光特性的第二化合物包含在同一EML內。與該態樣不同,第一化合物和第二化合物包含在分開的EML中。圖11示出根據本發明另一示例性實施方式的有機發光二極體的示意性剖面圖。圖12示出根據本發明另一示例性實施方式藉由調整集中在發光材料層中的第一化合物和第二化合物的發光材料的能階來有效地將電洞轉移至第二化合物的示意圖。圖13示出根據本發明另一示例性實施方式在有機發光二極體的發光材料層中的發光材料之中的單重態能階和三重態能階的發光機制的示意圖。
如圖11所示,OLED D2包含:面向彼此的第一電極210和第二電極230;以及發光層220A,設置在第一電極210與第二電極230之間。有機發光顯示裝置100(圖2)包含:紅色像素區域;綠色像素區域;以及藍色像素區域,並且OLED D2可以設置在藍色像素區域中。
在一示例性實施方式中,發光層220A包含EML 240A。發光層220A可以包括以下中的至少一個:HTL 260,設置在第一電極210與EML 240A之間;以及ETL 270,設置在第二電極230與EML 240A之間。
另外,發光層240A可以進一步包括以下中的至少一個:HIL 250,設置在第一電極210與HTL 260之間;以及EIL 280,設置在ETL 270與第二電極230之間。或者,發光層220A可以進一步包括:EBL 265,設置在HTL 260與EML 240A之間;及/或HBL 275,設置在EML 240A與ETL 270之間。第一電極210和第二電極230以及發光層220A中除EML 240A外的其他層的配置可以實質上相同於OLED D1中對應的電極和層。
EML 240A包括:第一EML(EML1,下層EML,第一層)242,設置在EBL 265與HBL 275之間;以及第二EML(EML2,上層EML,第二層)244,設置在EML1 242與HBL 275之間。或者,EML2 244可以設置在EBL 265與EML1 242之間。
EML1 242和EML2 244中的一個包含延遲螢光材料的第一化合物(第一摻雜劑)DF,並且EML1 242和EML2 244中的另一個包含螢光材料的第二化合物(第二摻雜劑)FD。此外,EML1 242和EML2 244中的每一個包含第一主體的第三化合物(化合物3)H1和第二主體的第四化合物(化合物4)H2。作為一示例,EML1 242可以包含:第一化合物DF;以及第三化合物H1,而EML2 244可以包含:第二化合物FD;以及第四化合物H2。
EML1 242中的第一化合物DF可以是具有式1至式5結構的延遲螢光材料。具有延遲螢光特性的第一化合物DF的三重態激子能量可以經由RISC機制上轉換為其自身的單重態激子能量。第一化合物DF雖然具有較高的內部量子效率,但由於其較寬的FWHM而色純度較差。
EML2 244包括螢光材料的第二化合物FD。第二化合物FD包含具有式6至式8結構的任何有機化合物。而具有式6至式8結構的螢光材料的第二化合物FD由於其較窄的FWHM(例如≤35 nm)而在色純度方面具有優勢。
在此示例性實施方式中,EML1 242中具有延遲螢光特性的第一化合物DF的單重態激子能量以及三重態激子能量可以透過FRET機制轉移到與EML1 242相鄰設置的EML2 244中的第二化合物FD,且在EML2 244內的第二化合物FD中發生最終發光。
在EML1 242中,第一化合物DF的三重態激子能量透過RISC機制上轉換為其自身的單重態激子能量。然後,在EML2 244中,第一化合物DF的原始單重態激子能量和轉換後的單重態激子能量皆轉移到第二化合物FD的單重態激子能量。EML2 244中的第二化合物FD可以利用三重態激子能量和單重態激子能量來發光。
由於在EML1 242中的延遲螢光材料的第一化合物DF處產生的激子能量有效地轉移到EML2 244中的螢光材料的第二化合物FD,因此OLED D2可以實現超螢光。在這種情況下,雖然第一化合物DF僅用作將激子能量轉移到第二化合物FD,但在包含螢光材料的第二化合物FD的EML2 244中發生大量發光。由於窄的FWHM,OLED D2可以提高量子效率和色純度。
EML1 242和EML2 244中的每一個進一步分別包含第三化合物H1和第四化合物H2。第三化合物H1可以與第四化合物H2相同或不同。舉例來說,第三化合物H1和第四化合物H2中的每一個分別可以獨立地包含但不限於上述的第三化合物H。
與第一態樣類似,參照圖4,第一化合物DF的HOMO能階HOMO DF與第二化合物FD的HOMO能階HOMO FD之間的能帶隙△HOMO-1可以滿足方程式(1)或方程式(2)中的關係,如圖12所示。因此,注入到EML 240A中的電洞有效地轉移到第一化合物DF,使得第一化合物DF可以利用單重態和三重態激子能量,並將激子能量轉移到第二化合物FD。此外,第一化合物DF的LUMO能階LUMO DF可以比第二化合物FD的LUMO能階LUMO FD更淺或相等,並可以滿足方程式(3)或方程式(4)中的關係。另外,第一化合物DF可以具有在約430 nm與約440 nm之間的起始波長λ onset DF(圖7)。
此外,第三化合物H1和第四化合物H2的HOMO能階(HOMO H1和HOMO H2)與第一化合物DF的HOMO能階(HOMO DF)之間的能帶隙(|HOMO H-HOMO DF|)、或第三化合物H1和第四化合物H2的LUMO能階(LUMO H1和LUMO H2)與第一化合物DF的LUMO能階(LUMO DF)之間的能帶隙(|LUMO H-LUMO DF|)可以等於或小於約0.5 eV。當第三化合物H1和第四化合物H2與第一化合物DF之間的HOMO或LUMO能帶隙不滿足上述條件時,第一化合物DF處的激子能量可能由於非輻射再結合而淬滅,或者,激子能量可能無法有效地從第三化合物H1和第四化合物H2轉移到第一化合物DF及/或第二化合物FD,因此OLED D2中的內部量子效率可能會降低。
此外,在EML1 242中的第三化合物H1和EML2 244中的第四化合物H2中的每一個處產生的每個激子能量應首先轉移到延遲螢光材料的第一化合物DF,然後轉移到螢光材料的第二化合物FD。如圖13所示,第三化合物H1的單重態能階S 1 H1和第四化合物H2的單重態能階S 1 H2皆高於延遲螢光材料的第一化合物DF的單重態能階S 1 DF。此外,第三化合物H1的三重態能階T 1 H1和第四化合物H2的三重態能階T 1 H2皆高於第一化合物DF的三重態能階T 1 DF。舉例來說,第三化合物H1的三重態能階T 1 H1和第四化合物H2的三重態能階T 1 H2可以高出第一化合物DF的三重態能階T 1 DF至少約0.2 eV,例如至少0.3 eV,諸如至少0.5 eV。
此外,第二主體的第四化合物H2的單重態能階S 1 H2高於螢光材料的第二化合物FD的單重態能階S 1 FD。可選地,第四化合物H2的三重態能階T 1 H2可以高於第二化合物FD的三重態能階T 1 FD。因此,在第四化合物H2產生的單重態激子能量可以轉移到第二化合物FD的單重態激子能量。
此外,在EML1 242中經由RISC轉化為ICT錯合體的延遲螢光材料的第一化合物DF處產生的單重態激子能量應有效地轉移到EML2 244中的螢光材料的第二化合物FD。為此,EML1 242中的延遲螢光材料的第一化合物DF的單重態能階S 1 DF高於EML2 244中的螢光材料的第二化合物FD的單重態能階S 1 FD。可選地,第一化合物DF的三重態能階T 1 DF可以高於第二化合物FD的三重態能階T 1 FD
EML1 242和EML2 244中的第三化合物H1和第四化合物H2的含量中的每一個可以分別大於或等於同一層中的第一化合物DF和第二化合物FD的含量中的每一個。此外,EML1 242中的第一化合物DF的含量可以大於EML2 244中的第二化合物FD的含量。因此,激子能量經由FRET機制從第一化合物DF充分轉移到第二化合物FD。
舉例來說,EML1 242可以包括在約1 wt%至約50 wt%之間,例如,約10 wt%至約40 wt%,或約20 wt%至約40 wt%的第一化合物DF。EML2 244可以包括在約1 wt%至約10 wt%之間,例如約1 wt%至5 wt%的第二化合物FD。
在一替代實施方式中,當EML2 244與HBL 275相鄰設置時,EML2 244中的第四化合物H2可以是與HBL 275相同的材料。在這種情況下,EML2 244可以具有電洞阻擋功能和發光功能。換言之,EML2 244可以用作阻擋電洞的緩衝層。在一個態樣中,可以省略HBL 275,其中EML2 244可以是電洞阻擋層和發光材料層。
在另一示例性實施方式中,當EML2 244與EBL 265相鄰設置時,EML2 244中的第四化合物H2可以是與EBL 265相同的材料。在這種情況下,EML2 244可以具有電子阻擋功能和發光功能。換言之,EML2 244可以用作阻擋電子的緩衝層。在一個態樣中,可以省略EBL 265,其中EML2 244可以是電子阻擋層和發光材料層。
將描述具有三層的EML的OLED。圖14示出根據本發明另一示例性實施方式的有機發光二極體的示意性剖面圖。圖15示出根據本發明另一示例性實施方式藉由過調整集中在發光材料層中的第一化合物和第二化合物的發光材料的能階來有效地將電洞轉移至第二化合物的示意圖。圖16示出根據本發明另一示例性實施方式在有機發光二極體的發光材料層中的發光材料之中的單重態能階和三重態能階的發光機制的示意圖。
如圖14所示,OLED D3包括:面向彼此的第一電極210和第二電極230;以及發光層220B,設置在第一電極210與第二電極230之間。有機發光顯示裝置100(圖2)包含:紅色像素區域;綠色像素區域;以及藍色像素區域,並且OLED D3可以設置在藍色像素區域中。
在一個示例性實施方式中,發光層220B包括三層的EML 240B。此外,發光層220B可以包括以下中的至少一個:HTL 260,設置在第一電極210與EML 240B之間;以及ETL 270,設置在EML 240B與第二電極230之間。另外,發光層220B可以進一步包括以下中的至少一個:HIL 250,設置在第一電極210與HTL 260之間;以及EIL 280,設置在ETL 270與第二電極230之間。或者,發光層220B可以進一步包括:EBL 265,設置在HTL 260與EML 240B之間;及/或HBL 275,設置在EML 240B 與ETL 270之間。第一電極210和第二電極230以及發光層220B中除EML 240B外的其他層的配置實質上相同於OLED D1和OLED D2中對應的電極和層。
EML 240B包括:第一EML(EML1,中間層EML,第一層)242,設置在EBL 265與HBL 275之間;第二EML(EML2,下層EML,第二層)244,設置在EBL 265與EML1 242之間;以及第三EML(EML3,上層EML,第三層)246,設置在EML1 242與HBL 275之間。
EML1 242包含延遲螢光材料的第一化合物(第一摻雜劑)DF,並且EML2 244和EML3 246中的每一個包含各自作為螢光材料的第二化合物(第二摻雜劑)FD1和第五化合物(第三摻雜劑)FD2。EML1 242、EML2 244和EML3 246分別包含:第一主體的第三化合物H1;第二主體的第四化合物H2;以及第三主體的第六化合物H3。
根據示例性實施方式,EML1 242中的延遲螢光材料的第一化合物DF的單重態激子能量和三重態激子能量可以透過FRET能量轉移機制轉移到螢光材料的第二化合物FD1和第五化合物FD2,其中,第二化合物FD1和第五化合物FD2各自包含在與EML1 242相鄰設置的EML2 244和EML3 246中。因此,在EML2 244和EML3 246中的第二化合物FD1和第五化合物FD2中發生最終發光。
EML1 242中的第一化合物DF的三重態激子能量透過RISC機制上轉換為其自身的單重態激子能量,然後,第一化合物DF的原始單重態激子能量和轉換後的單重態激子能量轉移到第二化合物FD1和第五化合物FD2的單重態激子能量。第一化合物DF的單重態能階S 1 DF高於第二化合物FD1和第五化合物FD2的單重態能階S 1 FD1和S 1 FD2中的每一個。EML1 242中的第一化合物DF的單重態激子能量透過FRET機制轉移到與EML1 242相鄰設置的EML2 244和EML3 246中的第二化合物FD1和第五化合物FD2。
因此,EML2 244和EML3 246中的第二化合物FD1和第五化合物FD2可以利用源自第一化合物DF的單重態激子能量和三重態激子能量來發光。與第一化合物DF相比,第二化合物FD1和第五化合物FD2中的每一個具有相對較窄的FWHM(例如≤35 nm)。因此,由於窄的FWHM,OLED D3可以提高其量子效率和色純度,並且在EML2 244和EML3 246內的第二化合物FD1和第五化合物FD2中發生最終發光。
延遲螢光材料的第一化合物DF包括具有式1至式5結構的任何有機化合物。螢光材料的第二化合物FD1和第五化合物FD2中的每一個獨立地包括具有式6至式8結構的任何硼基化合物。第三化合物H1、第四化合物H2和第六化合物H3可以彼此相同或不同。舉例來說,第三化合物H1、第四化合物H2和第六化合物H3中的每一個可以分別包含但不限於上述的第三化合物H。
如圖15所示,與第一實施方式和第二實施方式類似,第一化合物DF的HOMO能階HOMO DF與第二化合物FD1和第五化合物FD2的HOMO能階HOMO FD1與HOMO FD2中的每一個之間的能帶隙△HOMO-1可以滿足方程式(1)或方程式(2)中的關係。因此,注入到EML 240的電洞有效地轉移到第一化合物DF,使得第一化合物DF可以利用單重態和三重態激子能量,並將激子能量轉移到第二化合物FD1和第五化合物FD2。此外,第一化合物DF的LUMO能階LUMO DF可以比第二化合物FD1和第五化合物FD2的LUMO能階LUMO FD1和LUMO FD2中的每一個更淺或相等,並可以滿足如上所述的方程式(3)或(4)中的關係。另外,第一化合物DF可以具有在約430 nm與約440 nm之間的起始波長λ onset DF(圖7)。
此外,第三化合物H1、第四化合物H2和第六化合物H3的HOMO能階(HOMO H1、HOMO H2和HOMO H3)與第一化合物DF的HOMO能階(HOMO DF)之間的能帶隙(|HOMO H-HOMO DF|)、或第三化合物H1、第四化合物H2和第六化合物H3的LUMO能階(LUMO H1、LUMO H2和LUMO H3)與第一化合物DF的LUMO能階(LUMO DF)之間的能帶隙(|LUMO H-LUMO DF|)可以等於或小於約0.5 eV。
另外,應適當調整EML1 242、EML2 244和EML3 246中引入的發光材料之間的單重態能階和三重態能階,以實現有效的發光。參照圖16,作為第一主體的第三化合物H1的單重態能階S 1 H1、作為第二主體的第四化合物H2的單重態能階S 1 H2、以及作為第三主體的第六化合物H3的單重態能階S 1 H3中的每一個皆高於延遲螢光材料的第一化合物DF的單重態能階S 1 DF。此外,第三化合物H1的三重態能階T 1 H1、第四化合物H2的三重態能階T 1 H2、以及第六化合物H3的三重態能階T 1 H3中的每一個可以高於第一化合物DF的三重態能階T 1 DF
在EML1 242中透過RISC轉化為ICT錯合體的延遲螢光材料的第一化合物DF處產生的單重態激子能量應有效地轉移到EML2 244和EML3 246中的螢光材料的第二化合物FD1和第五化合物FD2中的每一個。為此,EML1 242中的延遲螢光材料的第一化合物DF的單重態能階S 1 DF高於EML2 244和EML3 246中的螢光材料的第二化合物FD1和第五化合物FD2的單重態能階S 1 FD1和S 1 FD2中的每一個。可選地,第一化合物DF的三重態能階T 1 DF可以高於第二化合物FD1和第五化合物FD2的三重態能階T 1 FD1和T 1 FD2中的每一個。
此外,從第一化合物DF轉移到第二化合物FD1和第五化合物FD2中的每一個的激子能量不應該轉移到第四化合物H2和第六化合物H3中的每一個,以實現有效的發光。為此,可以作為第二主體和第三主體的第四化合物H2和第六化合物H3的單重態能階S 1 H2和S 1 H3中的每一個分別高於螢光材料的第二化合物FD1和第五化合物FD2的單重態能階S 1 FD1和S 1 FD2中的每一個。可選地,第四化合物H2和第六化合物H3的三重態能階T 1 H2和T 1 H3中的每一個分別高於第二化合物FD1和第五化合物FD2的三重態能階T 1 FD1和T 1 FD2中的每一個。
EML1 242中的第一化合物DF的含量可以大於EML2 244或EML3 246中的第二化合物FD1和第五化合物FD2的含量中的每一個。在這種情況下,激子能量可以經由FRET機制從EML1 242中的第一化合物DF充分轉移到EML2 244和EML3 246中的第二化合物FD1和第五化合物FD2中的每一個。
舉例來說, EML1 242可以包括在約1 wt%至約50 wt%之間,例如約10 wt%至約40 wt%之間,或約20 wt%至約40 wt%之間的第一化合物DF。EML2 244和EML3 246中每一個可以分別包括在約1 wt%至約10 wt%之間,例如約1 wt%至5 wt%的第二化合物FD1和第五化合物FD2。
在一替代實施方式中,當EML2 244與EBL 265相鄰設置時,EML2 244中的第四化合物H2可以是與EBL 265相同的材料。在這種情況下,EML2 244可以具有電子阻擋功能和發光功能。換言之,EML2 244可以用作阻擋電子的緩衝層。在一個態樣中,可以省略EBL 265,其中EML2 244可以是電子阻擋層和發光材料層。
當EML3 246與HBL 275相鄰設置時,EML3 246中的第六化合物H3可以是與HBL 275相同的材料。在這種情況下,EML3 246可以具有電洞阻擋功能和發光功能。換言之,EML3 246可以用作阻擋電洞的緩衝層。在一個態樣中,可以省略HBL 275,其中EML3 246可以是電洞阻擋層和發光材料層。
在另一示例性實施方式中,EML2 244中的第四化合物H2可以是與EBL 265相同的材料,並且EML3 246中的第六化合物H3可以是與HBL 275相同的材料。在此態樣中,EML2 244可以具有電子阻擋功能和發光功能,並且EML3 246可以具有電洞阻擋功能和發光功能。換言之,EML2 244和EML3 246中每一個可以分別用作阻擋電子或電洞的緩衝層。在一個態樣中,可以省略EBL 265和HBL 275,其中EML2 244可以是電子阻擋層和發光材料層,並且EML3 246可以是電洞阻擋層和發光材料層。
在一替代態樣中,OLED可以包含多個發光部分。圖17示出根據本發明另一示例性實施方式的有機發光二極體的示意性剖面圖。
如圖17所示,OLED D4包括:面向彼此的第一電極210和第二電極230;以及發光層220C,設置在第一電極210與第二電極230之間。有機發光顯示裝置100(圖2)包含:紅色像素區域;綠色像素區域;以及藍色像素區域,並且OLED D4可以設置在藍色像素區域中。第一電極210可以是陽極,而第二電極230可以是陰極。
發光層220C包含:第一發光部分320,其包含第一EML(EML1)340;以及第二發光部分420,其包含第二EML(EML2)440。此外,發光層220C可以進一步包括電荷產生層(CGL)380,設置在第一發光部分320與第二發光部分420之間。
CGL 380設置在第一發光部分320與第二發光部分420之間,使得第一發光部分320、CGL 380以及第二發光部分420依序設置在第一電極210上。換言之,第一發光部分320設置在第一電極210與CGL 380之間,而第二發光部分420設置在第二電極230與CGL 380之間。
第一發光部分320包括EML1 340。第一發光部分320可以進一步包括以下中的至少一個:HIL 350,設置在第一電極210與EML1 340之間;第一HTL(HTL1)360,設置在HIL 350與EML 340之間;以及第一ETL(ETL1)370,設置在EML1 340與CGL 380之間。或者,第一發光部分320可以進一步包括:第一EBL(EBL1)365,設置在HTL1 360與EML1 340之間;及/或第一HBL(HBL1)375,設置在EML1 340與ETL1 370之間。
第二發光部分420包括EML2 440。第二發光部分420可以進一步包括以下中的至少一個:第二HTL(HTL2)460,設置在CGL 380與EML2 440之間;第二ETL(ETL2)470,設置在EML2 440與第二電極230之間;以及EIL 480,設置在ETL2 470與第二電極230之間。或者,第二發光部分420可以進一步包括:第二EBL(EBL2)465,設置在HTL2 460與EML2 440之間;及/或第二HBL(HBL2)475,設置在EML2 440與ETL2 470之間。
CGL 380設置在第一發光部分320與第二發光部分420之間。第一發光部分320和第二發光部分420經由CGL 380連接。CGL 380可以是PN接面CGL,其將N型CGL(N-CGL)382與P型CGL(P-CGL)384接合。
N-CGL 382設置在ETL1 370與HTL2 460之間,而P-CGL 384設置在N-CGL 382與HTL2 460之間。N-CGL 382將電子傳輸到第一發光部分320的EML1 340,而P-CGL 384將電洞傳輸到第二發光部分420的EML2 440。
在另一示例性實施方式中,EML1 340和EML2 440中的每一個可以是藍色發光材料層。舉例來說,EML1 340和EML2 440中的至少一個包括:延遲螢光材料的第一化合物DF;螢光材料的第二化合物FD;以及可選地,主體的第三化合物H。
當EML1 340及/或EML2 440包含第一化合物DF、第二化合物FD和第三化合物H時,在EML1 340及/或EML2 440中,第三化合物H的含量可以大於第一化合物DF的含量,且第一化合物DF的含量大於第二化合物FD的含量。在這種情況下,激子能量可以從第一化合物DF有效地轉移到第二化合物FD。
在一示例性實施方式中,類似於EML1 340,EML2 440可以包含:第一化合物DF;第二化合物FD;以及可選地,第三化合物H。或者,EML2 440可以包含與EML1 340中的第一化合物DF和第二化合物FD中的至少一個不同的另一化合物,因此,EML2 440可以發出與從EML1 340發出的光不同的光,或者可以具有與EML1 340的發光效率不同的發光效率。
在圖17中,EML1 340和EML2 440中的每一個具有單層結構。或者,EML1 340和EML2 440中的每一個可以分別具有雙層結構(圖11)或三層結構(圖14),其中ML1 340和EML2 440中的每一個可以包含第一化合物DF、第二化合物FD及可選地第三化合物。
在根據一示例性實施方式的OLED D4中,延遲螢光材料的第一化合物DF的單重態激子能量轉移到螢光材料的第二化合物FD,並且在第二化合物FD發生最終發光。因此,OLED D4可以具有優異的發光效率和色純度。此外,OLED D4包含至少一個包含具有式1至式5結構的第一化合物DF和具有式6至式8結構的第二化合物FD的EML,使得OLED D4可以進一步提高其發光效率和色純度。另外,由於OLED D4具有藍色發光材料層的雙堆疊結構,因此OLED D4可以提高其色感或最佳化其發光效率。
圖18示出作為根據本發明另一示例性實施方式作為有機發光裝置的有機發光顯示裝置的示意性剖面圖。如圖18所示,有機發光顯示裝置500包含:基板510,其界定第一像素區域P1、第二像素區域P2和第三像素區域P3;薄膜電晶體Tr,設置在基板510上方;以及OLED D,其設置在薄膜電晶體Tr上方,並連接到薄膜電晶體Tr。作為一示例,第一像素區域P1可以是藍色像素區域,第二像素區域P2可以是綠色像素區域,而第三像素區域P3可以是紅色像素區域。
基板510可以是玻璃基板或可撓式基板。舉例來說,可撓式基板可以是PI基板、PES基板、PEN基板、PET基板和PC基板中的任一個。緩衝層512設置在基板510上方,並且薄膜電晶體Tr設置在緩衝層512上方。可以省略緩衝層512。如圖2所示,薄膜電晶體Tr包含:半導體層;閘極電極;源極電極;以及汲極電極,並且用作驅動元件。
鈍化層550設置在薄膜電晶體Tr上方。鈍化層550具有平坦的頂表面和暴露薄膜電晶體Tr的汲極電極的汲極接觸孔552。
OLED D設置在鈍化層550上方,並包含:第一電極610,連接到薄膜電晶體Tr的汲極電極;以及發光層620和第二電極630,各自依序設置在第一電極610上。OLED D設置在第一像素區域P1、第二像素區域P2和第三像素區域P3的每一個中,並在每個像素區域中發出不同顏色的光。舉例來說,第一像素區域P1中的OLED D可以發出藍光,第二像素區域P2中的OLED D可以發出綠光,而第三像素區域P3中的OLED D可以發出紅光。
第一電極610針對第一像素區域P1、第二像素區域P2和第三像素區域P3中的每一個分開形成,並且第二電極630對應於第一像素區域P1、第二像素區域P2和第三像素區域P3且一體形成。第一電極610可以是陽極和陰極中的一個,而第二電極630可以是陽極和陰極中的另一個。此外,第一電極610和第二電極630中的一個是透射(或半透射)電極,而第一電極610和第二電極630中的另一個是反射電極。
舉例來說,第一電極610可以是陽極,並可以包含具有相對高功函數值的導電材料,即透明導電氧化物(TCO)的透明導電氧化物層。第二電極630可以是陰極,並可以包括含有相對低功函數值的導電材料,即低電阻金屬的金屬材料層。舉例來說,第一電極610可以包含ITO、IZO、ITZO、SnO、ZnO、ICO和AZO中的任一種,而第二電極630可以包含Al、Mg、Ca、Ag、其合金(例如Mg-Ag)或其組合。
當有機發光顯示裝置500是底部發光型時,第一電極610可以具有透明導電氧化物層的單層結構。或者,當有機發光顯示裝置500是頂部發光型時,反射電極或反射層可以設置在第一電極610下方。舉例來說,反射電極或反射層可以包含但不限於Ag或APC合金。在頂部發光型OLED D中,第一電極610可以具有ITO/Ag/ITO或ITO/APC/ITO的三層結構。此外,第二電極630較薄以具有透光(或半透光)特性。
堤層560設置在鈍化層550上以覆蓋第一電極610的邊緣。堤層560對應於第一像素區域P1、第二像素區域P2和第三像素區域P3中的每一個,並暴露第一電極610的中心。
發光層620設置在第一電極610上。發光層620可以具有EML的單層結構。或者,發光層620可以包含HIL、HTL和EBL中的至少一個,依序設置在第一電極610與EML之間;及/或HBL、ETL和EIL中的至少一個,依序設置在EML與第二電極630之間。
藍色像素區域的第一像素區域P1中的發光層620的EML可以包括:具有式1至式5結構的延遲螢光材料的第一化合物DF;具有式6至式8結構的螢光材料的第二化合物FD;以及可選地,主體的第三化合物H。
封裝膜570設置在第二電極630上方,以防止外部濕氣滲入OLED D。封裝膜570可以具有但不限於第一無機絕緣膜、有機絕緣膜和第二無機絕緣膜的三層結構。
有機發光顯示裝置500可以具有偏光板以減少外部光反射。舉例來說,偏光板可以是圓偏光板。當有機發光顯示裝置500是底部發光型時,偏光板可以設置在基板510下方。或者,當有機發光顯示裝置500是頂部發光型時,偏光板可以設置在封裝膜570上方。
圖19示出根據本發明另一示例性實施方式的有機發光二極體的示意性剖面圖。如圖19所示,OLED D5包括:第一電極610;面向第一電極610的第二電極630;以及發光層620,設置在第一電極610與第二電極630之間。
第一電極610可以是陽極,而第二電極630可以是陰極。作為一示例,第一電極610可以是反射電極,而第二電極630可以是透射(或半透射)電極。
發光層620包括EML 640。發光層620可以包括以下中的至少一個:HTL 660,設置在第一電極610與EML 640之間;以及ETL 670,設置在EML 640與第二電極630之間。發光層620可以進一步包括以下中的至少一個:HIL 650,設置在第一電極610與HTL 660之間;以及EIL 680,設置在ETL 670與第二電極630之間。此外,發光層620可以進一步包括以下中的至少一個:EBL 665,設置在HTL 660與EML 640之間;及/或HBL 675,設置在EML 640與ETL 670之間。
另外,發光層620可以進一步包括輔助電洞傳輸層(輔助HTL)662,設置在HTL 660與EBL 665之間。輔助HTL 662可以包括:第一輔助HTL 662a,位於第一像素區域P1中;第二輔助HTL 662b,位於第二像素區域P2中;以及第三輔助HTL 662c,位於第三像素區域P3中。
第一輔助HTL 662a具有第一厚度,第二輔助HTL 662b具有第二厚度,而第三輔助HTL 662c具有第三厚度。第一厚度小於第二厚度,而第二厚度小於第三厚度。因此,OLED D5具有微腔結構。
由於第一輔助HTL 662a、第二輔助HTL662b和第三輔助HTL662c彼此具有不同的厚度,因此在發出第一波長範圍的光(藍光)的第一像素區域P1中的第一電極610與第二電極630之間的距離小於在發出第二波長範圍的光(綠光)的第二像素區域P2中的第一電極610與第二電極630之間的距離,其中,第二波長範圍比第一波長範圍更長。此外,在第二像素區域P2中的第一電極610與第二電極630之間的距離小於在發出第三波長範圍的光(紅光)的第三像素區域P3中的第一電極610與第二電極630之間的距離,其中,第三波長範圍比第二波長範圍更長。因此,OLED D5具有提高的發光效率。
在圖19中,第一輔助HTL 662a位於第一像素區域P1中。或者,OLED D5可以在沒有第一輔助HTL 662a的情況下實現微腔結構。此外,可以在第二電極630上方設置覆蓋層,以改善從OLED D5發出的光的取出(out-coupling)。
EML 640包括:第一EML(EML1)642,位於第一像素區域P1中;第二EML(EML2)644,位於第二像素區域P2中;以及第三EML(EML3)646,位於第三像素區域P3中。EML1 642、EML2 644和EML3 646中的每一個可以分別是藍色EML、綠色EML和紅色EML。
位於第一像素區域P1中的EML1 642可以包括:具有式1至式5結構的延遲螢光材料的第一化合物DF;具有式6至式8結構的螢光材料的第二化合物FD;以及可選地,主體的第三化合物H。EML1 642可以具有單層結構、雙層結構(圖11)或三層結構(圖14)。
在這種情況下,在EML1 642中,第三化合物H的含量可以大於第一化合物DF的含量,並且第一化合物DF的含量大於第二化合物FD的含量。在這種情況下,激子能量可以從第一化合物DF有效地轉移到第二化合物FD。
位於第二像素區域P2中的EML2 644可以包括:主體;以及綠色摻雜劑,並且位於第三像素區域P3中的EML3 646可以包括:主體;以及紅色摻雜劑。舉例來說,EML2 644和EML3 646中的主體可以包括第三化合物H,並且綠色摻雜劑和紅色摻雜劑中的每一個可以包含綠色或紅色磷光材料、綠色或紅色螢光材料、以及綠色或紅色延遲螢光材料中的至少一種。
圖19中的OLED D5在第一像素區域P1、第二像素區域P2和第三像素區域P3的每一個中發出藍光、綠光和紅光,使得有機發光顯示裝置500(圖18)可以實現全彩影像。
有機發光顯示裝置500可以進一步包括與第一像素區域P1、第二像素區域P2和第三像素區域P3對應的濾色器層,用於提高從OLED D發出的光的色純度。作為一示例,濾色器層可以包括:第一濾色器層(藍色濾色器層),對應於第一像素區域P1;第二濾色器層(綠色濾色器層),對應於第二像素區域P2;以及第三濾色器層(紅色濾色器層),對應於第三像素區域P3。
當有機發光顯示裝置500是底部發光型時,濾色器層可以設置在OLED D與基板510之間。或者,當有機發光顯示裝置500是頂部發光型時,濾色器層可以設置在OLED D上方。
圖20示出作為根據本發明另一示例性實施方式作為有機發光裝置的有機發光顯示裝置的示意性剖面圖。如圖20所示,有機發光顯示裝置1000包括:基板1010,界定第一像素區域P1、第二像素區域P2和第三像素區域P3;薄膜電晶體Tr,設置在基板1010上方;OLED D,設置在薄膜電晶體Tr上方,並連接到薄膜電晶體Tr;以及濾色器層1020,對應於第一像素區域P1、第二像素區域P2和第三像素區域P3。作為一示例,第一像素區域P1可以是藍色像素區域,第二像素區域P2可以是綠色像素區域,而第三像素區域P3可以是紅色像素區域。
基板1010可以是玻璃基板或可撓式基板。舉例來說,可撓式基板可以是PI基板、PES基板、PEN基板、PET基板和PC基板中的任一個。薄膜電晶體Tr位於基板1010上方。或者,緩衝層可以設置在基板1010上方,並且薄膜電晶體Tr可以設置在緩衝層上。如圖2所示,薄膜電晶體Tr包括:半導體層;閘極電極;源極電極;以汲汲極電極,並用作驅動元件。
濾色器層1020位於基板1010上。作為一示例,濾色器層1020可以包括:第一濾色器層1022,對應於第一像素區域P1;第二濾色器層1024,對應於第二像素區域P2;以及第三濾色器層1026,對應於第三像素區域P3。第一濾色器層1022可以是藍色濾色器層,第二濾色器層1024可以是綠色濾色器層,而第三濾色器層1026可以是紅色濾色器層。舉例來說,第一濾色器層1022可以包括藍色染料或綠色顏料中的至少一種,第二濾色器層1024可以包括綠色染料或紅色顏料中的至少一種,而第三濾色器層1026可以包括紅色染料或藍色顏料中的至少一種。
鈍化層1050設置在薄膜電晶體Tr和濾色器層1020上。鈍化層1050具有平坦的頂表面和暴露薄膜電晶體Tr的汲極電極的汲極接觸孔1052。
OLED D設置在鈍化層1050上並對應於濾色器層1020。OLED D包含:第一電極1110,連接到薄膜電晶體Tr的汲極電極;以及發光層1120和第二電極1130,各自依序設置在第一電極1110上。OLED D在第一像素區域P1、第二像素區域P2和第三像素區域P3中發出白光。
第一電極1110針對第一像素區域P1、第二像素區域P2和第三像素區域P3中的每一個分開形成,並且第二電極1130對應於第一像素區域P1、第二像素區域P2和第三像素區域P3且一體形成。
第一電極1110可以是陽極和陰極中的一個,而第二電極1130可以是陽極和陰極中的另一個。此外,第一電極1110可以是透射(或半透射)電極,而第二電極1130可以是反射電極。
舉例來說,第一電極1110可以是陽極,並可以包含具有相對高功函數值的導電材料,即透明導電氧化物(TCO)的透明導電氧化物層。第二電極1130可以是陰極,並可以包含具有相對低功函數值的導電材料,即低電阻金屬的金屬材料層。舉例來說,第一電極1110的透明導電氧化物層可以包含ITO、IZO、ITZO、SnO、ZnO、ICO和AZO中的任一種,而第二電極1130可以包含Al、Mg、Ca、Ag、其合金(例如Mg-Ag)或其組合。
發光層1120設置在第一電極1110上。發光層1120包含至少兩個發出不同顏色的光的發光部分。每個發光部分可以具有EML的單層結構。或者,每個發光部分可以包含HIL、HTL、EBL、HBL、ETL和EIL中的至少一個。此外,發光層1120可以進一步包括設置在發光部分之間的CGL。
該至少兩個發光部分中的至少一個可以包括:具有式1至式5結構的延遲螢光材料的第一化合物DF;具有式6至式8結構的螢光材料的第二化合物FD;以及可選地,主體的第三化合物H。
堤層1060設置在鈍化層1050上以覆蓋第一電極1110的邊緣。堤層1060對應於第一像素區域P1、第二像素區域P2和第三像素區域P3中的每一個並暴露第一電極1110的中心。如上所述,由於OLED D在第一像素區域P1、第二像素區域P2和第三像素區域P3中發出白光,因此發光層1120可以形成為共同層,而不在第一像素區域P1、第二像素區域P2和第三像素區域P3中分開。形成堤層1060以防止電流從第一電極1110的邊緣洩漏,並可以省略堤層1060。
此外,有機發光顯示裝置1000可以進一步包括設置在第二電極1130上的封裝膜,以防止外部濕氣滲入OLED D。另外,有機發光顯示裝置1000可以進一步包括設置在基板1010下方的偏光板,以減少外部光反射。
在圖20的有機發光顯示裝置1000中,第一電極1110是透射電極,第二電極1130是反射電極,並且濾色器層1020設置在基板1010與OLED D之間。亦即,有機發光顯示裝置1000是底部發光型。或者,第一電極1110可以是反射電極,第二電極1130可以是透射電極(或半透射電極),並且濾色器層1020可以設置在有機發光顯示裝置1000中的OLED D上。
在有機發光顯示裝置1000中,位於第一像素區域P1、第二像素區域P2和第三像素區域P3中的OLED D發出白光,並且白光穿過第一像素區域P1、第二像素區域P2和第三像素區域P3中的每一個,使得在第一像素區域P1、第二像素區域P2和第三像素區域P3中分別顯示藍色、綠色和紅色中的每一種。
色轉換膜可以設置在OLED D與濾色器層1020之間。色轉換膜對應於第一像素區域P1、第二像素區域P2和第三像素區域P3,並包括藍色轉換膜、綠色轉換膜和紅色轉換膜,各自可以將從OLED D發出的白光分別轉換為藍光、綠光和紅光。例如,色轉換膜可以包含量子點。因此,有機發光顯示裝置1000可以進一步增強其色純度。或者,色轉換膜可以取代濾色器層1020。
圖21示出根據本發明另一示例性實施方式的有機發光二極體的示意性剖面圖。如圖21所示,OLED D6包括:面向彼此的第一電極1110和第二電極1130;以及發光層1120,設置在第一電極1110與第二電極1130之間。第一電極1110可以是陽極,而第二電極1130可以是陰極。舉例來說,第一電極1110可以是透射電極,而第二電極1130可以是反射電極。
發光層1120包含:第一發光部分1220,包括第一EML(EML1,下層EML)1240;第二發光部分1320,包括第二EML(EML2,中間層EML)1340;以及第三發光部分1420,包括第三EML(EML3,上層EML)1440。此外,發光層1120可以進一步包括:第一電荷產生層(CGL1)1280,設置在第一發光部分1220與第二發光部分1320之間;以及第二電荷產生層(CGL2)1380,設置在第二發光部分1320與第三發光部分1420之間。因此,第一發光部分1220、CGL1 1280、第二發光部分1320、CGL2 1380和第三發光部分1420依序設置在第一電極1110上。
第一發光部分1220可以進一步包括以下中的至少一個:HIL 1250,設置在第一電極1110與EML1 1240之間;第一HTL(HTL1)1260,設置在EML1 1240與HIL 1250之間;以及第一ETL(ETL1)1270,設置在EML1 1240與CGL1 1280之間。或者,第一發光部分1220可以進一步包括以下中的至少一個:第一EBL(EBL1)1265,設置在HTL1 1260與EML1 1240之間;以及第一HBL(HBL1)1275,設置在EML1 1240與ETL1 1270之間。
第二發光部分1320可以進一步包含以下中的至少一個:第二HTL(HTL2)1360,設置在CGL1 1280與EML2 1340之間;以及第二ETL(ETL2)1370,設置在EML2 1340與CGL2 1380之間。或者,第二發光部分1320可以進一步包括:第二EBL(EBL2)1365,設置在HTL2 1360與EML2 1340之間;及/或第二HBL(HBL2)1375,設置在EML2 1340與ETL2 1370之間。
第三發光部分1420可以進一步包括以下中的至少一個:第三HTL(HTL3)1460,設置在CGL2 1380與EML3 1440之間;第三ETL(ETL3)1470,設置在EML3 1440與第二電極1130之間;以及EIL 1480,設置在ETL3 1470與第二電極1130之間。或者,第三發光部分1420可以進一步包括:第三EBL(EBL3)1465,設置在HTL3 1460與EML3 1440之間;及/或第三HBL(HBL3)1475,設置在EML3 1440與ETL3 1470之間。
CGL1 1280設置在第一發光部分1220與第二發光部分1320之間。亦即,第一發光部分1220和第二發光部分1320經由CGL1 1280連接。CGL1 1280可以是PN接面CGL,其將第一N型CGL(N-CGL1)1282與第一P型CGL(P-CGL1)1284接合。
N-CGL1 1282設置在ETL1 1270與HTL2 1360之間,而P-CGL1 1284設置在N-CGL1 1282與HTL2 1360之間。N-CGL1 1282將電子傳輸到第一發光部分1220的EML1 1240,而P-CGL1 1284將電洞傳輸到第二發光部分1320的EML2 1340。
CGL2 1380設置在第二發光部分1320與第三發光部分1420之間。亦即,第二發光部分1320和第三發光部分1420經由CGL2 1380連接。CGL2 1380可以是PN接面CGL,其將第二N型CGL(N-CGL2)1382與第二P型CGL(P-CGL2)1384接合。
N-CGL2 1382設置在ETL2 1370與HTL3 1460之間,而P-CGL2 1384設置在N-CGL2 1382與HTL3 1460之間。N-CGL2 1382將電子傳輸到第二發光部分1320的EML2 1340,而P-CGL2 1384將電洞傳輸到第三發光部分1420的EML3 1440。
在一示例性實施方式中,第一EML 1240、第二EML1340和第三EML1440中的一個可以是藍色EML,第一EML 1240、第二EML1340和第三EML1440中的另一個可以是綠色EML,而第一EML 1240、第二EML1340和第三EML1440中的第三個可以是紅色EML。
作為一示例,EML1 1240可以是藍色EML,EML2 1340可以是綠色EML,而EML3 1440可以是紅色EML。或者,EML1 1240可以是紅色EML,EML2 1340可以是綠色EML,而EML3 1440可以是藍色EML。在下文中,將描述OLED D6,其中EML1 1240是藍色EML,EML2 1340是綠色EML,而EML3 1440是紅色EML。
EML1 1240可以包括:具有式1至式5結構的延遲螢光材料的第一化合物DF;具有式6至式8結構的螢光材料的第二化合物FD;以及可選地,主體的第三化合物H。EML1 1240可以具有單層結構、雙層結構(圖11)或三層結構(圖14)。
在EML1 1240中,第三化合物H的含量可以大於第一化合物DF的含量,而第一化合物DF的含量大於第二化合物FD的含量。在這種情況下,激子能量可以從第一化合物DF有效地轉移到第二化合物FD。
EML2 1340可以包含:主體;以及綠色摻雜劑,並且EML3 1440可以包含:主體;以及紅色摻雜劑。作為一示例,EML2 1340和EML3 1440中的主體可以包括第三化合物H,並且綠色摻雜劑和紅色摻雜劑中的每一個可以包括綠色或紅色磷光材料、綠色或紅色螢光材料、以及綠色或紅色延遲螢光材料中的至少一種。
OLED D6在第一像素區域P1、第二像素區域P2和第三像素區域P3中的每一個中發出白光,並且白光穿過對應地設置在第一像素區域P1、第二像素區域P2和第三像素區域P3中的濾色器層1020(圖20)。因此,有機發光顯示裝置1000(圖20)可以實現全彩影像。
圖22示出根據本發明另一示例性實施方式的有機發光二極體的示意性剖面圖。如圖22所示,OLED D7包括:面向彼此的第一電極1110和第二電極1130;以及發光層1120A,設置在第一電極1110與第二電極1130之間。
第一電極1110可以是陽極,而第二電極1130可以是陰極。舉例來說,第一電極1110可以是透射電極,而第二電極1130可以是反射電極。
發光層1120A包含:第一發光部分1520,包括EML1(下層EML)1540;第二發光部分1620,包括EML2(中間層EML)1640;以及第三發光部分1720,包括EML3(上層EML)1740。此外,發光層1120A可以進一步包括:CGL1 1580,設置在第一發光部分1520與第二發光部分1620之間;以及CGL2 1680,設置在第二發光部分1620與第三發光部分1720之間。因此,第一發光部分1520、CGL1 1580、第二發光部分1620、CGL2 1680和第三發光部分1720依序設置在第一電極1110上。
第一發光部分1520可以進一步包括以下中的至少一個:HIL 1550,設置在第一電極1110與EML1 1540之間;HTL1 1560,設置在EML1 1540與HIL 1550之間;以及ETL1 1570,設置在EML1 1540與CGL1 1580之間。或者,第一發光部分1520可以進一步包含:EBL1 1565,設置在HTL1 1560與EML1 1540之間;及/或HBL1 1575,設置在EML1 1540與ETL1 1570之間。
第二發光部分1620的EML2 1640包括:中下層EML(第一層)1642;以及中上層EML(第二層)1644。中下層EML 1642鄰近第一電極1110,而中上層EML 1644鄰近第二電極1130。此外,第二發光部分1620可以進一步包括以下中的至少一個:HTL2 1660,設置在CGL1 1580與EML2 1640之間;以及ETL2 1670,設置在EML2 1640與CGL2 1680之間。或者,第二發光部分1620可以進一步包括以下中的至少一個:EBL2 1665,設置在HTL2 1660與EML2 1640之間;以及HBL2 1675,設置在EML2 1640與ETL2 1670之間。
第三發光部分1720可以進一步包括以下中的至少一個:HTL3 1760,設置在CGL2 1680與EML3 1740之間;ETL3 1770,設置在EML3 1740與第二電極1130之間;以及EIL 1780,設置在ETL3 1770與第二電極1130之間。或者,第三發光部分1720可以進一步包括:EBL3 1765,設置在HTL3 1760與EML3 1740之間;及/或HBL3 1775,設置在EML3 1740與ETL3 1770之間。
CGL1 1580設置在第一發光部分1520與第二發光部分1620之間。亦即,第一發光部分1520和第二發光部分1620經由CGL1 1580連接。CGL1 1580可以是PN接面CGL,其將N-CGL1 1582與P-CGL1 1584接合。N-CGL1 1582設置在ETL1 1570與HTL2 1660之間,而P-CGL1 1584設置在N-CGL1 1582與HTL2 1660之間。
CGL2 1680設置在第二發光部分1620與第三發光部分1720之間。亦即,第二發光部分1620和第三發光部分1720經由CGL2 1680連接。CGL2 1680可以是PN接面CGL,其將N-CGL2 1682與P-CGL2 1684接合。N-CGL2 1682設置在ETL2 1670與HTL3 1760之間,而P-CGL2 1684設置在N-CGL2 1682與HTL3 1760之間。
在一示例性實施方式中,EML1 1540和EML3 1740中的每一個可以是藍色EML。在一示例性實施方式中,EML1 1540和EML3 1740中的每一個可以包含:具有式1至式5結構的延遲螢光材料的第一化合物DF;具有式6至式8結構的螢光材料的第二化合物FD;以及可選地,主體的第三化合物H。EML1 1540中的第一化合物DF、第二化合物FD和第三化合物H中的每一個可以分別與EML3 1740中的第一化合物DF、第二化合物FD和第三化合物H中的每一個相同或不同。或者,EML3 1740可以包含與EML1 1540中的第一化合物DF和第二化合物FD中的至少一個不同的另一化合物,因此,EML3 1740可以發出與從EML1 1540發出的光不同的光,或者可以具有與EML1 1540的發光效率不同的發光效率。
作為一示例,當EML1 1540和EML3 1740中的每一個包含第一化合物DF、第二化合物FD和第三化合物H時,在EML1 1540和EML3 1740中,第三化合物H的含量可以大於第一化合物DF的含量,而第一化合物DF的含量大於第二化合物FD的含量。在這種情況下,激子能量可以從第一化合物DF有效地轉移到第二化合物FD。
EML2 1640中的中下層EML 1642和中上層EML 1644中的一個可以是綠色EML,而EML2 1640中的下層EML 1642和上層EML 1644中的另一個可以是紅色EML。依序設置綠色EML和紅色EML以形成EML2 1640。
舉例來說,綠色EML的中下層EML 1642可以包括:主體;以及綠色摻雜劑,而紅色EML的中上層EML 1644可以包括:主體;以及紅色摻雜劑。作為一示例,主體可以包含第三化合物H,並且綠色摻雜劑和紅色摻雜劑中的每一個可以包括綠色或紅色磷光材料、綠色或紅色螢光材料、以及綠色或紅色延遲螢光材料中的至少一種。
OLED D7在第一像素區域P1、第二像素區域P2和第三像素區域P3中的每一個中發出白光,並且白光穿過對應地設置在第一像素區域P1、第二像素區域P2和第三像素區域P3中的濾色器層1020(圖20)。因此,有機發光顯示裝置1000(圖20)可以實現全彩影像。
在圖22中,OLED D7具有包括第一發光部分1520、第二發光部分1620和第三發光部分1720的三層堆疊結構,其包含作為藍色EML的EML1 1540和EML3 1740。或者,OLED D7可以具有雙層堆疊結構,其中省略了各自包含EML1 1540和EML3 1740作為藍色EML的第一發光部分1520和第三發光部分1720中的一個。
在下文中,雖然將透過示例性實施例來描述本發明,但是本發明不限於以下實施例。 實施例 1 Ex. 1 ): OLED 的製造
製造一種包括EML的OLED,在EML中引入了以下化合物:式5的化合物1-47(HOMO:-5.6 eV,LUMO:-2.8 eV,起始波長:430 nm,電子予體部分與電子受體部分之間的二面角(在下文中稱為「二面角」):78.3 o)作為第一化合物DF;式8的化合物2-1(HOMO:-5.6 eV,LUMO:-2.9 eV)作為第二化合物FD;以及mCBP(HOMO:-6.0 eV,LUMO:-2.5 eV)作為第三化合物H。將ITO基板在使用前透過紫外線臭氧(UV-Ozone)處理進行清洗,並轉移到真空腔室中以沉積發光層。隨後,在10 -7torr真空條件下透過加熱舟(heating boat)進行蒸發,將沉積速率設定為1 Å/s,依照以下順序沉積陽極、發光層和陰極:
陽極(ITO,50 nm);HIL(HAT-CN,7 nm);HTL(NPB,45 nm);EBL(TAPC,10 nm);EML(mCBP(69 wt%)、化合物1-47(30 wt%)和化合物2-1(1 wt%),35 nm);HBL(B3PYMPM,10 nm);ETL(TPBi,25 nm);EIL(LiF);以及陰極(Al)。
在層壓CPL(覆蓋層)後,用玻璃封裝OLED。在沉積發光層和陰極後,將OLED從沉積腔室轉移到乾燥箱中以進行成膜,最後使用UV固化環氧樹脂和吸氣劑進行封裝。用於發光層中的有機化合物的結構如下所示。 實施例 2 Ex. 2 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了使用式8的化合物2-23(HOMO:-5.4 eV,LUMO:-2.8 eV)作為EML中的第二化合物代替化合物2-1之外。 實施例 3 Ex. 3 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了使用式8的化合物2-24(HOMO:-5.5 eV,LUMO:-2.8 eV)作為EML中的第二化合物代替化合物2-1之外。 實施例 4 Ex. 4 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了使用式5的化合物1-83(HOMO:-5.5 eV,LUMO:-2.7 eV,起始波長:434 nm,二面角:65.8 o)作為EML中的第一化合物代替化合物1-47之外。 實施例 5 Ex. 5 ): OLED 的製造
使用與實施例4相同的材料製造OLED,除了使用式8的化合物2-23(HOMO:-5.4 eV,LUMO:-2.8 eV)作為EML中的第二化合物代替化合物2-1之外。 實施例 6 Ex. 6 ): OLED 的製造
使用與實施例4相同的材料製造OLED,除了使用式8的化合物2-24(HOMO:-5.5 eV,LUMO:-2.8 eV)作為EML中的第二化合物代替化合物2-1之外。 實施例 7 Ex. 7 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了使用式5的化合物1-48(HOMO:-5.6 eV,LUMO:-2.6 eV,起始波長:430 nm,二面角:72.0 o)作為EML中的第一化合物代替化合物1-47之外。 實施例 8 Ex. 8 ): OLED 的製造
使用與實施例7相同的材料製造OLED,除了使用式8的化合物2-23(HOMO:-5.4 eV,LUMO:-2.8 eV)作為EML中的第二化合物代替化合物2-1之外。 實施例 9 Ex. 9 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了使用式5的化合物1-112(HOMO:-5.6 eV,LUMO:-2.7 eV,起始波長:432 nm,二面角:70.4 o)作為EML中的第一化合物代替化合物1-47之外。 實施例 10 Ex. 10 ): OLED 的製造
使用與實施例9相同的材料製造OLED,除了使用式8的化合物2-23(HOMO:-5.4 eV,LUMO:-2.8 eV)作為EML中的第二化合物代替化合物2-1之外。
下表1說明了在Ex. 1至Ex. 10中使用之各個第一化合物和第二化合物的HOMO能階、第一化合物和第二化合物的HOMO能帶隙(△HOMO)、第一化合物的起始波長(λ onset DF,nm)、以及第一化合物的二面角。 1 EML 中的第一和第二化合物
樣品 第一化合物 第二化合物 △HOMO (eV) λ onset DF(nm) 二面角( o)
化合物 HOMO (eV) 化合物 HOMO (eV)
Ex.1 1-47 -5.6 2-1 -5.6 0 430 73.8
Ex.2 1-47 -5.6 2-23 -5.4 0.2 430 73.8
Ex.3 1-47 -5.6 2-24 -5.5 0.1 430 73.8
Ex.4 1-83 -5.5 2-1 -5.6 -0.1 434 65.8
Ex.5 1-83 -5.5 2-23 -5.4 0.1 434 65.8
Ex.6 1-83 -5.5 2-24 -5.5 0 434 65.8
Ex.7 1-48 -5.6 2-1 -5.6 0 430 72.0
Ex.8 1-48 -5.6 2-23 -5.4 0.2 430 72.0
Ex.9 1-112 -5.6 2-1 -5.6 0 432 70.4
Ex.10 1-112 -5.6 2-23 -5.4 0.2 432 70.4
比較例 1 Ref. 1 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了mCBP和式5的化合物1-47在EML中以70:30的重量比混合之外。 比較例 2 Ref. 2 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了使用以下參考化合物Ref. 2-1(HOMO:-5.2 eV,LUMO:-2.7 eV)作為EML中的第二化合物代替化合物2-1之外。 比較例 3 Ref. 3 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了使用以下參考化合物Ref. 2-2(HOMO:-5.2 eV,LUMO:-2.6 eV)作為EML中的第二化合物代替化合物2-1之外。 比較例 4 Ref. 4 ): OLED 的製造
使用與實施例4相同的材料製造OLED,除了mCBP和式5的化合物1-83在EML中以70:30的重量比混合之外。 比較例 5 Ref. 5 ): OLED 的製造
使用與實施例4相同的材料製造OLED,除了使用以下參考化合物Ref. 2-1(HOMO:-5.2 eV,LUMO:-2.7 eV)作為EML中的第二化合物代替化合物2-1之外。 比較例 6 Ref. 6 ): OLED 的製造
使用與實施例4相同的材料製造OLED,除了使用以下參考化合物Ref. 2-2(HOMO:-5.2 eV,LUMO:-2.6 eV)作為EML中的第二化合物代替化合物2-1之外。 比較例 7 Ref. 7 ): OLED 的製造
使用與實施例7相同的材料製造OLED,除了mCBP和式5的化合物1-48在EML中以70:30的重量比混合之外。 比較例 8 Ref. 8 ): OLED 的製造
使用與實施例7相同的材料製造OLED,除了使用以下參考化合物Ref. 2-1(HOMO:-5.2 eV,LUMO:-2.7 eV)作為EML中的第二化合物代替化合物2-1之外。 比較例 9 Ref. 9 ): OLED 的製造
使用與實施例9相同的材料製造OLED,除了mCBP和式5的化合物1-112在EML中以70:30的重量比混合之外。 比較例 10 Ref. 10 ): OLED 的製造
使用與實施例9相同的材料製造OLED,除了使用以下參考化合物Ref. 2-1(HOMO:-5.2 eV,LUMO:-2.7 eV)作為EML中的第二化合物代替化合物2-1之外。 比較例 11 Ref. 11 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了mCBP和以下參考化合物Ref. 1-1(HOMO:-5.9 eV,LUMO:-2.8 eV,起始波長:434 nm,二面角:68.7 o)在EML中以70:30的重量比混合之外。 比較例 12 Ref. 12 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了使用以下參考化合物Ref. 1-1作為EML中的第一化合物代替化合物1-47之外。 比較例 13 Ref. 13 ): OLED 的製造
使用與比較例12相同的材料製造OLED,除了使用式8的化合物2-23作為EML中的第二化合物代替化合物2-1之外。 比較例 14 Ref. 14 ): OLED 的製造
使用與比較例12相同的材料製造OLED,除了使用式8的化合物2-24作為EML中的第二化合物代替化合物2-1之外。 比較例 15 Ref. 15 ): OLED 的製造
使用與比較例12相同的材料製造OLED,除了使用以下參考化合物Ref. 2-1(HOMO:-5.2 eV,LUMO:-2.7 eV)作為EML中的第二化合物代替化合物2-1之外。 比較例 16 Ref. 16 ): OLED 的製造
使用與比較例12相同的材料製造OLED,除了使用以下參考化合物Ref. 2-2(HOMO:-5.2 eV,LUMO:-2.6 eV)作為EML中的第二化合物代替化合物2-1之外。 比較例 17 Ref. 17 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了mCBP和以下參考化合物Ref. 1-2(HOMO:-6.0 eV,LUMO:-3.0 eV,起始波長:426 nm,二面角:54.5 o)在EML中以70:30的重量比混合之外。 比較例 18 Ref. 18 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了使用以下參考化合物Ref. 1-2作為EML中的第一化合物代替化合物1-47之外。 比較例 19 Ref. 19 ): OLED 的製造
使用與比較例18相同的材料製造OLED,除了使用式8的化合物2-24作為EML中的第二化合物代替化合物2-1之外。 比較例 20 Ref. 20 ): OLED 的製造
使用與比較例18相同的材料製造OLED,除了使用以下參考化合物Ref. 2-1(HOMO:-5.2 eV,LUMO:-2.7 eV)作為EML中的第二化合物代替化合物2-1之外。 比較例 21 Ref. 21 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了mCBP和以下參考化合物Ref. 1-3(HOMO:-5.6 eV,LUMO:-2.6 eV,起始波長:424 nm,二面角:70.7 o)在EML中以70:30的重量比混合之外。 比較例 22 Ref. 22 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了使用以下參考化合物Ref. 1-3作為EML中的第一化合物代替化合物1-47之外。 比較例 23 Ref. 23 ): OLED 的製造
使用與比較例22相同的材料製造OLED,除了使用式8的化合物2-23作為EML中的第二化合物代替化合物2-1之外。 比較例 24 Ref. 24 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了mCBP和以下參考化合物Ref. 1-4(HOMO:-5.5 eV,LUMO:-2.7 eV,起始波長:450 nm,二面角:68.5 o)在EML中以70:30的重量比混合之外。 比較例 25 Ref. 25 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了使用以下參考化合物Ref. 1-4作為EML中的第一化合物代替化合物1-47之外。 比較例 26 Ref. 26 ): OLED 的製造
使用與比較例25相同的材料製造OLED,除了使用式8的化合物2-23作為EML中的第二化合物代替化合物2-1之外。 比較例 27 Ref. 27 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了mCBP和以下參考化合物Ref. 1-5(HOMO:-5.5 eV,LUMO:-2.7 eV,起始波長:424 nm,二面角:84.9 o)在EML中以70:30的重量比混合之外。 比較例 28 Ref. 28 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了使用以下參考化合物Ref. 1-5作為EML中的第一化合物代替化合物1-47之外。 比較例 29 Ref. 29 ): OLED 的製造
使用與比較例28相同的材料製造OLED,除了使用式8的化合物2-23作為EML中的第二化合物代替化合物2-1之外。 比較例 30 Ref. 30 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了mCBP和以下參考化合物Ref. 1-6(HOMO:-5.6 eV,LUMO:-2.8 eV,起始波長:448 nm,二面角:78.6 o)在EML中以70:30的重量比混合之外。 比較例 31 Ref. 31 ): OLED 的製造
使用與實施例1相同的材料製造OLED,除了使用以下參考化合物Ref. 1-6作為EML中的第一化合物代替化合物1-47之外。 比較例 32 Ref. 32 ): OLED 的製造
使用與比較例31相同的材料製造OLED,除了使用式8的化合物2-23作為EML中的第二化合物代替化合物2-1之外。參考化合物的結構如下所示。 [參考化合物]
下表2說明了在Ref. 1至Ref. 32中使用的各個第一化合物和第二化合物的HOMO能階、第一和第二化合物的HOMO能帶隙(△HOMO)、第一化合物的起始波長(λ onset DF,nm)、以及第一化合物的二面角。 2 EML 中的第一二化合物和第二化合物
樣品 第一化合物 第二化合物 △HOMO (eV) λ onset DF(nm) 二面角( o)
化合物 HOMO (eV) 化合物 HOMO (eV)
Ref. 1 1-47 -5.6 - - - 430 73.8
Ref. 2 1-47 -5.6 Ref. 2-1 -5.2 0.4 430 73.8
Ref. 3 1-47 -5.6 Ref. 2-2 -5.2 0.4 430 73.8
Ref. 4 1-83 -5.5 - - - 434 65.8
Ref. 5 1-83 -5.5 Ref. 2-1 -5.2 0.3 434 65.8
Ref. 6 1-83 -5.5 Ref. 2-2 -5.2 0.3 434 65.8
Ref. 7 1-48 -5.6 - - - 430 72.0
Ref. 8 1-48 -5.6 Ref. 2-1 -5.2 0.4 430 72.0
Ref. 9 1-112 -5.6 - - - 432 70.4
Ref. 10 1-112 -5.6 Ref. 2-1 -5.2 0.4 432 70.4
Ref. 11 Ref. 1-1 -5.9 - - - 434 68.7
Ref. 12 Ref. 1-1 -5.9 2-1 -5.6 0.3 434 68.7
Ref. 13 Ref. 1-1 -5.9 2-23 -5.4 0.5 434 68.7
Ref. 14 Ref. 1-1 -5.9 2-24 -5.5 0.4 434 68.7
Ref. 15 Ref. 1-1 -5.9 Ref. 2-1 -5.2 0.7 434 68.7
Ref. 16 Ref. 1-1 -5.9 Ref. 2-2 -5.2 0.7 434 68.7
Ref. 17 Ref. 1-2 -6.0 - - - 426 54.5
Ref. 18 Ref. 1-2 -6.0 2-1 -5.6 0.4 426 54.5
Ref. 19 Ref. 1-2 -6.0 2-24 -5.5 0.5 426 54.5
Ref. 20 Ref. 1-2 -6.0 Ref. 2-1 -5.2 0.8 426 54.5
Ref. 21 Ref. 1-3 -5.6 - - - 424 70.0
Ref. 22 Ref. 1-3 -5.6 2-1 -5.6 0 424 70.0
Ref. 23 Ref. 1-3 -5.6 2-23 -5.4 0.2 424 70.0
Ref. 24 Ref. 1-4 -5.5 - - - 450 68.5
Ref. 25 Ref. 1-4 -5.5 2-1 -5.6 -0.1 450 68.5
Ref. 26 Ref. 1-4 -5.5 2-23 -5.4 0.1 450 68.5
Ref. 27 Ref. 1-5 -5.5 - - - 424 84.9
Ref. 28 Ref. 1-5 -5.5 2-1 -5.6 -0.1 424 84.9
Ref. 29 Ref. 1-5 -5.5 2-23 -5.4 0.1 424 84.9
Ref. 30 Ref. 1-6 -5.6 - - - 448 78.6
Ref. 31 Ref. 1-6 -5.6 2-1 -5.6 0 448 78.6
Ref. 32 Ref. 1-6 -5.6 2-23 -5.4 0.2 448 78.6
實驗例 1 OLED 發光特性的測量
將在Ex. 1至10和Ref. 1至32中製造的每一個OLED連接到外部電源,然後在室溫下使用恆流源(KEITHLEY)和光度計PR650評估所有發光面積為9 mm 2的二極體的發光特性。特別是測量在8.6 mA/m 2電流密度下的驅動電壓(V)、色座標(CIEy)、外部量子效率(EQE,%)和LT 95(從初始亮度到95%的時間)、以及是否形成電洞陷阱和激發錯合體(在形成電洞陷阱及/或激發錯合體的情況下,表示為「Y」;在未形成電洞陷阱及/或激發錯合體的情況下,表示為「N」)。Ex. 1至Ex. 10中的OLED的測量結果顯示在下表3中,並且Ref. 1至Ref. 12中的OLED的測量結果顯示在下表4中。 3 OLED 的發光特性
樣品 V CIEy EQE (%) LT 95 電洞陷阱 激發錯合體
Ex.1 3.40 0.134 19.7 100% N N
Ex.2 3.51 0.210 23.4 123% N N
Ex.3 3.34 0.253 24.6 121% N N
Ex.4 3.37 0.126 21.6 90% N N
Ex.5 3.38 0.237 21.6 95% N N
Ex.6 3.25 0.259 22.7 94% N N
Ex.7 3.40 0.139 20.7 134% N N
Ex.8 3.50 0.187 23.9 157% N N
Ex.9 3.70 0.138 21.8 104% N N
Ex.10 3.60 0.192 23.4 123% N N
4 OLED 的發光特性
樣品 V CIEy EQE (%) LT 95 電洞陷阱 激發錯合體
Ref. 1 3.49 0.268 19.3 82% - -
Ref. 2 4.45 0.158 4.9 16% Y N
Ref. 3 4.19 0.183 9.8 21% Y N
Ref. 4 3.22 0.288 18.9 76% - -
Ref. 5 4.11 0.169 10.0 12% Y N
Ref. 6 4.07 0.170 11.7 8% Y N
Ref. 7 3.40 0.260 18.1 92% N N
Ref. 8 3.90 0.186 13.9 36% N N
Ref. 9 3.50 0.275 18.7 86% - -
Ref. 10 3.81 0.187 6.9 6% Y N
Ref. 11 3.59 0.288 15.2 47% - -
Ref. 12 4.98 0.208 8.5 12% Y N
Ref. 13 4.87 0.216 10.8 5% Y N
Ref. 14 4.00 0.264 12.5 2% Y N
Ref. 15 3.53 0.417 9.4 2% Y Y
Ref. 16 3.57 0.336 10.7 3% Y Y
Ref. 17 3.54 0.244 14.7 30% - -
Ref. 18 5.05 0.212 6.9 2% Y N
Ref. 19 4.10 0.275 12.7 7% Y N
Ref. 20 3.35 0.405 8.3 4% Y Y
Ref. 21 3.54 0.261 8.4 4% - -
Ref. 22 3.69 0.133 11.9 1% N N
Ref. 23 3.65 0.232 14.7 1% N N
Ref. 24 3.36 0.437 24.8 97% - -
Ref. 25 3.46 0.348 12.3 46% N N
Ref. 26 3.51 0.287 23.5 129% N N
Ref. 27 4.14 0.226 6.7 1.2% - -
Ref. 28 4.24 0.167 10.3 1.4% N N
Ref. 29 3.93 0.184 13.9 1.6% N N
Ref. 30 3.70 0.356 11.3 1.4% - -
Ref. 31 3.84 0.320 6.9 0.8% N N
Ref. 32 3.70 0.288 15.2 1.2% N N
如表3和表4所示,在第一 化合物與第二化合物之間的HOMO能帶隙小於0.3 eV且第一化合物的起始波長在430 nm與440 nm之間的OLED中,發光性能得到很大的改善。特別是,與在Ref. 1、Ref. 4、Ref. 7、Ref. 9、Ref. 11、Ref. 17、Ref. 21、Ref. 24、Ref. 27和Ref. 30中製造的EML中僅使用第一化合物的OLED相比,實施例中製造的OLED的驅動電壓降低至21.5%,EQE提高至256.7%,並且發光壽命顯著提高。此外,與在這些比較例中製造的OLED相比,在實施例中製造的OLED實現了在藍色波長範圍內的發光峰。
如Ref. 2至3、Ref. 4至6、Ref. 8、Ref. 10、Ref. 12至16和Ref. 17至20所示,當第一化合物與第二化合物之間的HOMO能帶隙大於0.3 eV時,電洞被捕獲。此外,如Ref. 15至16和Ref. 20所示,第一化合物與第二化合物之間的HOMO能帶隙大於0.5 eV,形成激發錯合體。
與在Ref. 2至3、Ref. 4至6、Ref. 8、Ref. 10、Ref. 12至14和Ref. 18至19中製造的電洞被捕獲的OLED相比,實施例中製造的OLED的驅動電壓降低至35.6%,EQE提高至387.7%,並且發光壽命顯著提高。與在Ref. 15至16和Ref. 20中製造的電洞被捕獲並形成激發錯合體的OLED相比,實施例中製造的OLED其EQE提高至188.0%,並且發光壽命顯著提高。特別是在Ref. 15至16和Ref. 20製造的OLED中,由於第一化合物和第二化合物均發光,因此色座標移動到綠色區域,色純度降低。
與在Ref. 22和Ref. 23中製造的第一化合物的起始波長小於430 nm的OLED相比,實施例中製造的OLED的EQE提高至100.8%,並且發光壽命顯著提高。與在Ref. 25和Ref. 26中製造的第一化合物的起始波長大於450 nm的OLED相比,實施例中製造的OLED的EQE提高至94.3%,並且發光壽命顯著提高。
此外,與第一化合物的起始波長小於430 nm或大於440 nm,並且第一化合物包括吖啶部分作為電子予體部分,因此在電子受體部分與電子予體部分之間具有增加的二面角的OLED相比,實施例中製造的OLED的驅動電壓降低至23.3%,EQE提高至246.4%,並發光壽命顯著提高。
對於所屬領域中具有通常知識者將顯而易見的是,在不脫離本發明的技術思想或範圍的情況下,可以對本發明的OLED和包括該OLED的有機發光裝置進行各種修改和變化。因此,本發明的目的為涵蓋本發明的修改和變化,只要它們落入所附申請專利範圍及其均等物的範圍內。
本申請主張於2021年10月12日在大韓民國提交的韓國專利申請案第10-2021-0134734號的優先權權益,在此明確將其全部內容併入本申請案中。
Cst:儲存電容器 D,D1,D2,D3,D4,D5,D6,D7:有機發光二極體 DF:第一化合物 DL:資料線 EML:發光材料層 FD,FD1:第二化合物 FD2:第五化合物 GL:閘極線 H,H1:第三化合物 H2:第四化合物 H3:第六化合物 P:像素區域 P1:第一像素區域 P2:第二像素區域 P3:第三像素區域 PL:電源線 Td:驅動薄膜電晶體 Tr:薄膜電晶體 Ts:開關薄膜電晶體 100,500,1000:有機發光顯示裝置 110,510,1010:基板 120:半導體層 122,512:緩衝層 124:閘極絕緣層 130:閘極電極 132:層間絕緣層 134:第一半導體層接觸孔 136:第二半導體層接觸孔 144:源極電極 146:汲極電極 150,550,1050:鈍化層 152,552,1052:汲極接觸孔 160,560,1060:堤層 170,570:封裝膜 172:第一無機絕緣膜 174:有機絕緣膜 176:第二無機絕緣膜 210,610,1110:第一電極 220,220A,220B,220C,620,1120,1120A:發光層 230,630,1130:第二電極 240,240A,240B,640:發光材料層(EML) 242,340,642,1240,1540:第一EML(EML1) 244,440,644,1340,1640:第二EML(EML2) 246,646,1440,1740:第三EML(EML3) 250,350,650,1250,1550:電洞注入層(HIL) 260,660:電洞傳輸層(HTL) 265,665:電子阻擋層(EBL) 270,670:電子傳輸層(ETL) 275,675:電洞阻擋層(HBL) 280,480,680,1480,1780:電子注入層(EIL) 320,1220,1520:第一發光部分 360,1260,1560:第一HTL(HTL1) 365,1265,1565:第一EBL(EBL1) 370,1270,1570:第一ETL(ETL1) 375,1275,1575:第一HBL(HBL1) 380:電荷產生層(CGL) 382:N型CGL(N-CGL) 384:P型CGL(P-CGL) 420,1320,1620:第二發光部分 460,1360,1660:第二HTL(HTL2) 465,1365,1665:第二EBL(EBL2) 470,1370,1670:第二ETL(ETL2) 475,1375,1675:第二HBL(HBL2) 662:輔助電洞傳輸層(輔助HTL) 662a:第一輔助HTL 662b:第二輔助HTL 662c:第三輔助HTL 1020:濾色器層 1022:第一濾色器層 1024:第二濾色器層 1026:第三濾色器層 1280,1580:第一電荷產生層(CGL1) 1282,1582:第一N型CGL(N-CGL1) 1284,1584:第一P型CGL(P-CGL1) 1380,1680:第二電荷產生層(CGL2) 1382,1682:第二N型CGL(N-CGL2) 1384,1684:第二P型CGL(N-CGL2) 1420,1720:第三發光部分 1460,1760:第三HTL(HTL3) 1465,1765:第三EBL(EBL3) 1470,1770:第三ETL(ETL3) 1475,1775:第三HBL(HBL3) 1642:中下層EML 1644:中上層EML HOMO DF:第一化合物的HOMO能階 HOMO FD:第二化合物的HOMO能階 HOMO H:第三化合物的HOMO能階 LUMO DF:第一化合物的LUMO能階 LUMO FD:第二化合物的LUMO能階 LUMO H:第三化合物的LUMO能階 △HOMO-1,△HOMO-2,△HOMO-3,△E ST:能帶隙 S 1 DF,S 1 DF1,S 1 DF2,S 1 FD,S 1 FD1,S 1 FD2,S 1 H,S 1 H1,S 1 H2,S 1 H3:單重態能階 T 1 DF,T 1 DF1,T 1 DF2,T 1 FD,T 1 FD1,T 1 FD2,T 1 H,T 1 H1,T 1 H2,T 1 H3:三重態能階 FRET:Forster共振能量轉移 RISC:逆向系統間跨越
所附圖式被包含以提供對本發明的進一步理解,其併入並構成本申請的一部分,說明本發明的實施方式,並與描述一起用於解釋本發明的原理,其中: 圖1示出根據本發明的有機發光顯示裝置的示意性電路圖。 圖2示出作為根據本發明一示例性實施方式作為有機發光裝置的有機發光顯示裝置的示意性剖面圖。 圖3示出根據本發明一示例性實施方式的有機發光二極體的示意性剖面圖。 圖4示出根據本發明一示例性實施方式藉由調整集中在發光材料層中的第一化合物和第二化合物的發光材料的能階來有效地將電洞轉移至第二化合物的示意圖。 圖5示出當發光材料層中的第一化合物和第二化合物的HOMO能階未調整時電洞在第二化合物處被捕獲的示意圖。 圖6示出當發光材料層中的第一化合物和第二化合物的HOMO能階和LUMO能階未調整時電洞在第二化合物處被捕獲、且在第一化合物與第二化合物之間產生激發錯合體的示意圖。 圖7示出根據本發明一示例性實施方式藉由調整發光材料層中的第一化合物的發光波長來提高有機發光二極體的發光效率和色純度的示意圖。 圖8示出當發光材料層中的第一化合物的起始波長小於特定範圍時有機發光二極體的發光效率降低的示意圖。 圖9示出當發光材料層中的第一化合物的起始波長大於特定範圍時有機發光二極體的發光效率和色純度降低的示意圖。 圖10示出根據本發明一示例性實施方式在有機發光二極體的發光材料層中的發光材料之中單重態能階和三重態能階的發光機制的示意圖。 圖11示出根據本發明另一示例性實施方式的有機發光二極體的示意性剖面圖。 圖12示出根據本發明另一示例性實施方式藉由調整集中在發光材料層中的第一化合物和第二化合物的發光材料的能階來有效地將電洞轉移至第二化合物的示意圖。 圖13示出根據本發明另一示例性實施方式在有機發光二極體的發光材料層中的發光材料之中單重態能階和三重態能階的發光機制的示意圖。 圖14示出根據本發明另一示例性實施方式的有機發光二極體的示意性剖面圖。 圖15示出根據本發明另一示例性實施方式藉由調整集中在發光材料層中的第一化合物和第二化合物的發光材料的能階來有效地將電洞轉移至第二化合物的示意圖。 圖16示出根據本發明另一示例性實施方式在有機發光二極體的發光材料層中的發光材料之中單重態能階和三重態能階的發光機制的示意圖。 圖17示出根據本發明另一示例性實施方式的有機發光二極體的示意性剖面圖。 圖18示出作為根據本發明另一示例性實施方式作為有機發光裝置的有機發光顯示裝置的示意性剖面圖。 圖19示出根據本發明另一示例性實施方式的有機發光二極體的示意性剖面圖。 圖20示出作為根據本發明另一示例性實施方式作為有機發光裝置的有機發光顯示裝置的示意性剖面圖。 圖21示出根據本發明另一示例性實施方式的有機發光二極體的示意性剖面圖。 圖22示出根據本發明另一示例性實施方式的有機發光二極體的示意性剖面圖。
DF:第一化合物
EML:發光材料層
FD:第二化合物
H:第三化合物
HOMODF:第一化合物的HOMO能階
HOMOFD:第二化合物的HOMO能階
HOMOH:第三化合物的HOMO能階
LUMODF:第一化合物的LUMO能階
LUMOFD:第二化合物的LUMO能階
LUMOH:第三化合物的LUMO能階
△HOMO-1:能帶隙

Claims (24)

  1. 一種有機發光二極體,包括:一第一電極;一第二電極,面向該第一電極;以及一發光層,設置在該第一電極與該第二電極之間,並包含至少一個發光材料層,其中,該至少一個發光材料層包含一第一化合物和一第二化合物,其中,該第一化合物包含具有以下式1結構的一有機化合物,以及其中,該第二化合物包括具有以下式6結構的一有機化合物:
    Figure 111138083-A0305-02-0083-5
    在式1中,R1至R11各自獨立地為氕、氘、氚、鹵素原子、未被取代或被取代的C1-C20烷基、未被取代或被取代的C1-C20烷基胺基、未被取代或被取代的C6-C30芳香族基團、或未被取代或被取代的C3-C20雜芳族基團,其中,R1至R11中的1至4個具有以下式2的結構;以及X1和X2各自獨立地為O、S或Se,
    Figure 111138083-A0305-02-0083-7
    在式2中,「
    Figure 111138083-A0305-02-0083-12
    」表示與式1的稠環的直接連接; R12和R13各自獨立地為氘、氚、鹵素原子、未被取代或被取代的C1-C20烷基、未被取代或被取代的C1-C20烷基矽基、未被取代或被取代的C1-C20烷基胺基、未被取代或被取代的C6-C30芳香族基團、或未被取代或被取代的C3-C20雜芳族基團,其中,當m為2、3或4時,每個R12彼此相同或不同,以及其中,當n為2、3或4時,每個R13彼此相同或不同,可選地,當m為2、3或4時,至少兩個相鄰的R12及/或當n為2、3或4時,至少兩個相鄰的R13連接在一起以形成未被取代或被取代的C6-C20芳香環、或未被取代或被取代的C3-C20雜芳環;以及m和n各自獨立地為0、1、2、3或4,
    Figure 111138083-A0305-02-0084-8
    在式6中,R21至R28各自獨立地為氕、氘、氚、鹵素原子、未被取代或被取代的C1-C20烷基、未被取代或被取代的C1-C20烷基矽基、未被取代或被取代的C1-C20烷基胺基、未被取代或被取代的C6-C30芳香族基團、或未被取代或被取代的C3-C20雜芳族基團,其中,當q為2、3、4或5時,每個R25彼此相同或不同,其中,當r為2或3時,每個R26彼此相同或不同,其中,當s為2、3、4或5時,每個R27彼此相同或不同,以及其中,當t為2、3或4時,每個R28彼此相同或不同,可選地,R21至R24中之兩個相鄰的基團連接在一起以形成具有硼原子和氮原子的未被取代或被取代的稠環;q和s各自獨立地為0、1、2、3、4或5;r為0、1、2或3;以及 t為0、1、2、3或4。
  2. 如請求項1所述之有機發光二極體,其中,該第一化合物的一最高佔有分子軌域(HOMO)能階和該第二化合物的一HOMO能階滿足以下方程式(1)中的關係: |HOMO FD– HOMO DF| < 0.3 eV       (1), 在方程式(1)中, HOMO DF表示該第一化合物的該HOMO能階;以及HOMO FD表示該第二化合物的該HOMO能階。
  3. 如請求項1所述之有機發光二極體,其中,該第二化合物的一激發單重態能階與一激發三重態能階之間的一能帶隙小於該第一化合物的一激發單重態能階與一激發三重態能階之間的一能帶隙。
  4. 如請求項1所述之有機發光二極體,其中,該第一化合物的一HOMO能階與一最低未佔分子軌域(LUMO)能階之間的一能帶隙在約2.6 eV與約3.1 eV之間。
  5. 如請求項1所述之有機發光二極體,其中,該第一化合物具有在約430 nm與約440 nm之間的一起始波長。
  6. 如請求項1所述之有機發光二極體,其中,該第一化合物具有以下式3的結構: [式3] , 在式3中, X 1和X 2各自如式1中所定義; R 14至R 16各自獨立地為氕、氘、氚、鹵素原子、未被取代或被取代的C 1-C 20烷基、未被取代或被取代的C 1-C 20烷基胺基、未被取代或被取代的C 6-C 30芳基、或未被取代或被取代的C3-C20雜芳基,其中,R14至R16中的至少一個是具有以下式4結構的稠合雜芳基,以及其中,當p為2時,每個R15彼此相同或不同;以及p為0、1或2,
    Figure 111138083-A0305-02-0086-9
    在式4中,「
    Figure 111138083-A0305-02-0086-13
    」表示與式3的稠環的直接連接;R17和R18各自獨立地為氘、氚、鹵素原子、未被取代或被取代的C1-C20烷基、未被取代或被取代的C1-C20烷基矽基、未被取代或被取代的C1-C20烷基胺基、未被取代或被取代的C6-C30芳香族基團、或未被取代或被取代的C3-C20雜芳族基團,其中,當m為2、3或4時,每個R17彼此相同或不同,以及其中,當n為2、3或4時,每個R18彼此相同或不同,可選地,當n為2、3或4時,至少兩個相鄰的R18連接在一起以形成未被取代或被取代的C3-C20雜芳環;以及m和n各自獨立地為0、1、2、3或4。
  7. 如請求項1所述之有機發光二極體,其中,該第一化合物選自以下有機化合物:
    Figure 111138083-A0305-02-0086-10
  8. 如請求項1所述之有機發光二極體,其中,該第二化合物包括具有以下式7A、式7B或式7C結構的一有機化合物: [式7A] [式7B] [式7C] , 在式7A至7C中, R 21、R 25至R 28、和R 31至R 34各自獨立地為氕、氘、氚、鹵素原子、未被取代或被取代的C 1-C 20烷基、未被取代或被取代的C 1-C 20烷基矽基、未被取代或被取代的C 1-C 20烷基胺基、未被取代或被取代的C 6-C 30芳基、或未被取代或被取代的C 3-C 20雜芳基。
  9. 如請求項1所述之有機發光二極體,其中,該第二化合物選自以下有機化合物:
  10. 如請求項1所述之有機發光二極體,其中,該至少一個發光材料層包括一單層發光材料層。
  11. 如請求項10所述之有機發光二極體,其中,該單層發光材料層進一步包括一第三化合物。
  12. 如請求項11所述之有機發光二極體,其中,該第一化合物在該單層發光材料層中的含量為約10 wt%至約40 wt%,該第二化合物在該單層發光材料層中的含量為約0.01 wt%至約5 wt%,而該第三化合物在該單層發光材料層中的含量為約55 wt%至約85 wt%。
  13. 如請求項11所述之有機發光二極體,其中,該第三化合物的一激發三重態能階高於該第一化合物的一激發三重態能階,以及其中,該第一化合物的該激發三重態能階高於該第二化合物的一激發三重態能階。
  14. 如請求項11所述之有機發光二極體,其中,該第三化合物的一激發單重態能階高於該第一化合物的一激發單重態能階,以及其中,該第一化合物的該激發單重態能階高於該第二化合物的一激發單重態能階。
  15. 如請求項1所述之有機發光二極體,其中,該至少一個發光材料層包括: 一第一發光材料層,設置在該第一電極與該第二電極之間;以及 一第二發光材料層,設置在該第一電極與該第一發光材料層之間、或該第二電極與該第一發光材料層之間, 其中,該第一發光材料層包括該第一化合物,以及 其中,該第二發光材料層包括該第二化合物。
  16. 如請求項15所述之有機發光二極體,其中,該第一發光材料層進一步包括一第三化合物,而該第二發光材料層進一步包括一第四化合物。
  17. 如請求項16所述之有機發光二極體,其中,該第三化合物的一激發三重態能階高於該第一化合物的一激發三重態能階,以及其中,該第一化合物的該激發三重態能階高於該第二化合物的一激發三重態能階。
  18. 如請求項16所述之有機發光二極體,其中,該第三化合物的一激發單重態能階高於該第一化合物的一激發單重態能階,以及其中,該第一化合物的該激發單重態能階高於該第二化合物的一激發單重態能階。
  19. 如請求項16所述之有機發光二極體,其中,該第四化合物的一激發單重態能階高於該第二化合物的一激發單重態能階。
  20. 如請求項15所述之有機發光二極體,其中,該至少一個發光材料層進一步包括一第三發光材料層,該第三發光材料層相對於該第一發光材料層與該第二發光材料層相對設置。
  21. 如請求項20所述之有機發光二極體,其中,該第三發光材料層包括一第五化合物和一第六化合物,以及其中,該第五化合物包括具有式6結構的一有機化合物。
  22. 如請求項1所述之有機發光二極體,其中,該發光層包括: 一第一發光部分,設置在該第一電極與該第二電極之間; 一第二發光部分,設置在該第一發光部分與該第二電極之間;以及 一電荷產生層,設置在該第一發光部分與該第二發光部分之間, 其中,該第一發光部分和該第二發光部分中的至少一個包括該至少一個發光材料層。
  23. 如請求項22所述之有機發光二極體,其中,該第一發光部分包括該至少一個發光材料層,以及其中,該第二發光部分發出紅光和綠光中的至少一種。
  24. 一種有機發光裝置,包括: 一基板;以及 如請求項1所述之有機發光二極體,位於該基板之上。
TW111138083A 2021-10-12 2022-10-06 有機發光二極體及包含該有機發光二極體的有機發光裝置 TWI832476B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0134734 2021-10-12
KR1020210134734A KR20230051852A (ko) 2021-10-12 2021-10-12 유기발광다이오드 및 이를 포함하는 유기발광장치

Publications (2)

Publication Number Publication Date
TW202315926A TW202315926A (zh) 2023-04-16
TWI832476B true TWI832476B (zh) 2024-02-11

Family

ID=85988353

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111138083A TWI832476B (zh) 2021-10-12 2022-10-06 有機發光二極體及包含該有機發光二極體的有機發光裝置

Country Status (5)

Country Link
JP (1) JP7478266B2 (zh)
KR (1) KR20230051852A (zh)
CN (1) CN116264870A (zh)
TW (1) TWI832476B (zh)
WO (1) WO2023063516A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201538513A (zh) * 2014-02-18 2015-10-16 Kwansei Gakuin Educational Foundation 多環芳香族化合物
WO2016143819A1 (ja) * 2015-03-09 2016-09-15 学校法人関西学院 ヘテロ環化合物又はその塩、及びこれらを含む電子デバイス
US20190181350A1 (en) * 2017-12-11 2019-06-13 Kwansei Gakuin Educational Foundation Deuterium-substituted polycyclic aromatic compound
KR20190130265A (ko) * 2018-05-14 2019-11-22 성균관대학교산학협력단 유기 발광 장치
US20200203627A1 (en) * 2018-12-21 2020-06-25 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
TW202030306A (zh) * 2018-11-15 2020-08-16 學校法人關西學院 有機電場發光元件、顯示裝置以及照明裝置
CN112997334A (zh) * 2018-08-31 2021-06-18 学校法人关西学院 使用了多环芳香族化合物的发光材料的有机电致发光元件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3626801A1 (en) * 2018-09-21 2020-03-25 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Novel fluorescent pyrene derivatives, methods for preparing the same, and uses thereof
WO2020180314A1 (en) 2019-03-06 2020-09-10 Kimberly-Clark Worldwide, Inc. Embossed multi-ply tissue products

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201538513A (zh) * 2014-02-18 2015-10-16 Kwansei Gakuin Educational Foundation 多環芳香族化合物
WO2016143819A1 (ja) * 2015-03-09 2016-09-15 学校法人関西学院 ヘテロ環化合物又はその塩、及びこれらを含む電子デバイス
US20190181350A1 (en) * 2017-12-11 2019-06-13 Kwansei Gakuin Educational Foundation Deuterium-substituted polycyclic aromatic compound
KR20190130265A (ko) * 2018-05-14 2019-11-22 성균관대학교산학협력단 유기 발광 장치
CN112997334A (zh) * 2018-08-31 2021-06-18 学校法人关西学院 使用了多环芳香族化合物的发光材料的有机电致发光元件
TW202030306A (zh) * 2018-11-15 2020-08-16 學校法人關西學院 有機電場發光元件、顯示裝置以及照明裝置
US20200203627A1 (en) * 2018-12-21 2020-06-25 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device

Also Published As

Publication number Publication date
JP7478266B2 (ja) 2024-05-02
TW202315926A (zh) 2023-04-16
WO2023063516A1 (ko) 2023-04-20
KR20230051852A (ko) 2023-04-19
JP2023551086A (ja) 2023-12-07
CN116264870A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
US20210066636A1 (en) Organic light emitting diode and organic light emitting device having the diode
US20230165132A1 (en) Organic light emitting diode and organic light emitting device including thereof
US20230200228A1 (en) Organic light emitting diode and organic light emitting device including thereof
JP7246453B2 (ja) 有機発光ダイオードおよび有機発光装置
TWI832476B (zh) 有機發光二極體及包含該有機發光二極體的有機發光裝置
TWI808523B (zh) 有機發光二極體及包含其之有機發光裝置
US20230131832A1 (en) Organic light emitting diode and organic light emitting device including the same
US20240081146A1 (en) Organic light emitting diode and organic light emitting device having thereof
US20240206331A1 (en) Organic light emitting diode
US20240224555A1 (en) Organic light emitting diode and organic light emitting device comprising thereof
US20240179933A1 (en) Organic light emitting diode and organic light emitting device having thereof
US20240215288A1 (en) Organic light emitting diode and organic light emitting device
US20240206330A1 (en) Organic Light Emitting Diode
US20240237517A1 (en) Organic light emitting diode and organic light emitting device
US20230157150A1 (en) Organic light emitting diode and organic light emitting device including the same
US20240224570A1 (en) Organic light emitting diodes and organic light emitting devices
US20240237385A1 (en) Organic light emitting diode and organic light emitting device
US20240237524A1 (en) Organic light emitting diode
US20240215442A1 (en) Organic light emitting diode and organic light emitting device
KR20240103769A (ko) 유기발광다이오드
KR20220067131A (ko) 유기발광다이오드 및 유기발광장치
KR20240081892A (ko) 유기발광다이오드
KR20240088563A (ko) 유기발광다이오드 및 유기발광장치
KR20240094139A (ko) 유기발광다이오드
KR20240100043A (ko) 유기발광다이오드 및 유기발광장치