WO2023063174A1 - 排ガス浄化触媒及びその製造方法 - Google Patents

排ガス浄化触媒及びその製造方法 Download PDF

Info

Publication number
WO2023063174A1
WO2023063174A1 PCT/JP2022/037150 JP2022037150W WO2023063174A1 WO 2023063174 A1 WO2023063174 A1 WO 2023063174A1 JP 2022037150 W JP2022037150 W JP 2022037150W WO 2023063174 A1 WO2023063174 A1 WO 2023063174A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
adsorption
adsorption layer
pore
less
Prior art date
Application number
PCT/JP2022/037150
Other languages
English (en)
French (fr)
Inventor
慶徳 遠藤
桃花 山中
秀和 後藤
誉士 馬場
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to EP22880870.5A priority Critical patent/EP4417309A1/en
Priority to JP2023554431A priority patent/JPWO2023063174A1/ja
Priority to CN202280063662.6A priority patent/CN117999126A/zh
Publication of WO2023063174A1 publication Critical patent/WO2023063174A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9481Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
    • B01D53/9486Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start for storing hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites

Definitions

  • the present invention relates to an exhaust gas purifying catalyst and a manufacturing method thereof.
  • Exhaust gas purifying catalysts used in engines such as gasoline engines exert their exhaust gas purifying performance by raising the temperature when they come into contact with the high-temperature exhaust gas emitted from the engine.
  • the exhaust gas purifying catalyst immediately after the engine is started, the exhaust gas purifying catalyst cannot fully demonstrate its exhaust gas purifying performance due to insufficient temperature rise, and hydrocarbons (HC) and the like in the exhaust gas may be discharged without being purified. be. Therefore, it has been studied to use an HC trap material that adsorbs HC in the exhaust gas immediately after the engine is started, and desorbs the HC after the temperature of the exhaust gas purifying catalyst has been increased by the exhaust gas after the engine has been started. ing.
  • Adsorbents containing Si (silicon) such as zeolite are conventionally known as HC trap materials.
  • Patent Literatures 1 to 3 describe an exhaust gas purifying catalyst provided with a catalyst layer containing zeolite.
  • Patent Documents 4 and 5 describe exhaust gas purifying catalysts having specific voids.
  • a Si-containing adsorbent such as zeolite is usually formed as a layered adsorption portion (adsorption layer) on a substrate.
  • adsorption layer layered adsorption portion
  • exhaust gas passes through the vicinity of the surface of the adsorption layer at high speed during circulation, and the contact efficiency with the zeolite in the adsorption layer is low.
  • the Si-containing adsorbent since the Si-containing adsorbent has a high specific surface area, when it is formed on a substrate or other catalyst layer, it generally has poor adhesion to the substrate or catalyst layer.
  • Patent Documents 1 to 3 do not consider compatibility between HC adsorption performance and peeling resistance, and Patent Documents 4 and 5 consider pressure loss prevention and PM collection rate in particulate filters such as GPC. However, it does not take into account the HC adsorption performance of the adsorption part having the Si-containing adsorbent.
  • the present invention is intended to solve the problems of the prior art, and it is possible to improve both the HC adsorption performance and the high peeling resistance in the adsorption part having the Si-containing adsorbent, which has been difficult in the past.
  • An object of the present invention is to provide an exhaust gas purifying catalyst.
  • the present invention provides the following [1] to [17].
  • An exhaust gas purifying catalyst comprising a base material and an adsorption part provided on the base material and containing an adsorbent containing Si, The adsorption part has a plurality of gaps, Exhaust gas in which, in a cross section perpendicular to the exhaust gas flow direction, the ratio of the sum total of voids satisfying the following formula in the adsorption part to the apparent area of the adsorption part existing on the substrate is more than 5% and 30% or less It provides a purification catalyst.
  • the adsorption part has an adsorption layer containing an adsorbent containing Si, and the thickness of the adsorption layer accounts for 20% or more and 80% or less of the thickness of the entire coating layer on the substrate,
  • An exhaust gas purifying system comprising two or more exhaust gas purifying catalysts in an exhaust gas passage, comprising two exhaust gas purifying catalysts according to any one of [1] to [14] from upstream in the exhaust gas flow direction.
  • Exhaust gas purification system that has as a catalyst after the first.
  • an adsorbent containing Si A slurry containing water and a pore-forming agent made of a crosslinked resin containing 90% or more particles having a circularity of L'/ ⁇ 2( ⁇ S') 1/2 ⁇ 1.05 on a number basis as a base material.
  • a step of coating on, and A method for producing an exhaust gas purifying catalyst comprising the step of baking the slurry that has been applied to a substrate to form an adsorption layer containing the adsorbent and voids formed by burning off the pore-forming agent.
  • FIG. 1 shows a schematic perspective view of an exhaust gas purifying catalyst that is one embodiment of the present invention.
  • FIG. 2 is an enlarged view showing a part of the cross section along the axial direction of the substrate.
  • FIG. 3 is a diagram showing a cross-section along the axial direction of the substrate for the portion surrounded by a square in FIG.
  • FIG. 4 is a diagram showing an example of a sampling method for observing the cross section of the adsorption layer.
  • FIG. 5 is a diagram showing an example in which a temporary boundary line is drawn in a scanning electron microscope image of the adsorption layer 12 on the partition wall (substrate).
  • FIGS. 6A and 6B are diagrams showing examples of observation images of cross sections of adsorption layers.
  • FIGS. 7 is a diagram showing an example of a scanning electron microscope image of the adsorption layer 12 on the partition wall (substrate) with division lines drawn.
  • FIGS. 8(a) and 8(b) are schematic diagrams for explaining how to draw demarcation lines for determining the porosity of an approximately perfect circle.
  • FIGS. 9(a) to 9(c) are schematic diagrams for explaining how to draw demarcation lines for determining the porosity of an approximately perfect circle.
  • FIGS. 10(a) and 10(b) are schematic diagrams for explaining how to draw demarcation lines for determining the porosity of an approximately perfect circle.
  • FIGS. 11A and 11B are schematic diagrams for explaining a method for measuring the porosity of an approximately perfect circle.
  • the exhaust gas purifying catalyst 10 of this embodiment includes a substrate 11 and an adsorption portion 12 (hereinafter also referred to as "adsorption layer 12") that is provided on the substrate 11 and contains an adsorbent containing Si. .
  • adsorption layer 12 Objects to be adsorbed by the adsorbent containing Si and the adsorption portion (adsorption layer) containing it are organic substances in the exhaust gas, such as HC (hydrocarbon), aldehyde, alcohol, carboxylic acid, ketone, ether, ester, and the like.
  • the exhaust gas purifying catalyst 10 has a substrate 11 as a support for forming the adsorption layer 12 .
  • the shape of the substrate 11 generally includes a honeycomb shape, a pellet shape, a foam shape, etc., and the honeycomb shape is preferable.
  • honeycomb-shaped substrates include substrates having a large number of cells 15, which are long exhaust gas flow passages parallel to the axial direction, such as wall-flow type and flow-through type.
  • 1 and 2 show an example in which the substrate 11 of the exhaust gas purifying catalyst 10 is a flow-through type honeycomb substrate.
  • the flow-through type honeycomb substrate has, for example, about 200 to 900 cells per square inch, a volume of 0.01 to 2.0 L, an overall length in the axial direction of 15 to 200 mm, and spaces between cells. It is preferable to use a partition wall 23 having a thickness of 50 to 150 ⁇ m in terms of HC adsorption performance and purification of adsorbed HC.
  • the substrate 11 usually has a columnar shape as shown in FIG. 1, and is arranged in the exhaust path of the internal combustion engine so that the axial direction of the columnar shape substantially coincides with the exhaust gas flow direction X. As shown in FIG. As for the outer shape of the base material 11 as a whole, an elliptical columnar shape or a polygonal columnar shape may be adopted instead of the columnar shape.
  • the base material 11 is provided such that its axial direction is parallel to the exhaust gas flow direction X. As shown in FIG.
  • FIGS. 3A to 3C show an example of a form in which the adsorption layer 12 is provided on the partition wall 23 of the substrate 11.
  • FIG. 3A and 3B the adsorption layer 12 is provided on the partition wall 23 so as to be in direct contact with the partition wall 23 .
  • FIG. 3A and 3B the adsorption layer 12 is provided on the partition wall 23 so as to be in direct contact with the partition wall 23 .
  • another layer 13 is formed on the opposite side of the adsorption layer 12 to the partition wall 23 .
  • the adsorption layer 12 may be provided on the partition wall 23 via another layer 13, as shown in FIG.3(c).
  • the adsorption layer 12 is formed on at least part of the substrate 11 in the direction X of exhaust gas flow.
  • the adsorption portion containing the Si-containing adsorbent is provided on the substrate 11
  • the adsorption portion containing the Si-containing adsorbent is provided on the partition wall 23 of the substrate 11.
  • the "other layer 13" referred to here refers to a layer that does not contain an adsorbent containing Si.
  • the adsorption layer 12 has a plurality of voids 12c.
  • the HC adsorption performance of the adsorption layer 12 is excellent when the circular porosity in the cross section of the adsorption layer 12 perpendicular to the exhaust gas flow direction X is a specific value or more.
  • the number of voids in the adsorption layer 12 increases, the number of voids tends to increase in the vicinity of the interface between the adsorption layer 12 and the other layer 13 or the partition wall 23 .
  • the pores in the adsorption layer 12 are usually obtained by adding a pore-forming agent to the slurry for forming the adsorption layer and baking the slurry to remove the pore-forming agent. Due to differences in particle size and specific gravity, the pore-forming agent is likely to accumulate near the interface with the partition walls 23 of the substrate 11 or other layers 13 in the slurry-coated portion during the process of slurry coating and firing. It's for. Circular voids in the cross section of the catalyst 10 have fewer contact points with partition walls (substrate) and other layers than voids of other shapes.
  • the spherical pore-forming agent that produces circular voids in the cross section of the catalyst 10 has a small surface area per unit volume and is less likely to agglomerate than needle-like or rectangular pore-forming agents. can be suppressed.
  • the inventor further studied the relationship between the HC adsorption performance and release performance and the area ratio of the circular voids in the adsorption layer. As a result, it was found that the adsorption layer 12 having excellent HC adsorption performance while having high peeling resistance can be obtained by setting the circular porosity to a specific value.
  • the exhaust gas purifying catalyst 10 has an apparent area of the adsorption layer 12 existing on the substrate 11 in a cross section orthogonal to the exhaust gas flow direction (hereinafter also referred to as “X direction” or “exhaust gas flow direction X”). , the formula: L/ ⁇ 2( ⁇ S) 1/2 ⁇ 1.1 (L is the perimeter of the gap in the cross section and S is the area of the gap in the cross section).
  • the ratio of the total area of voids (also referred to herein as “circular void ratio”) is preferably more than 5% and 30% or less.
  • the apparent area of the adsorption layer 12 present on the substrate 11 in the cross section refers to the total area of the adsorption layer 12 present on the substrate 11 in the cross section including the voids.
  • a gap that satisfies the above formula will be referred to as an approximately circular gap.
  • the approximately perfect circular voids have a diameter equivalent to a circle of 1 ⁇ m or more.
  • the circular porosity is preferably the ratio of the total area of voids that satisfy the above formula and have a diameter of 1 ⁇ m or more and 60 ⁇ m or less in terms of a circle.
  • the equivalent circle diameter refers to the diameter when the void is regarded as a circle having the same area.
  • the circular porosity of the adsorption layer 12 on the partition wall 23 of the substrate 11 is preferably 5% or more and 30% or less, more preferably 10% or more and 25% or less, and 15% or more and 25%. The following are even more preferred.
  • the method for measuring the circular porosity is preferably based on scanning electron microscopy.
  • the X-direction position of the cross section of the exhaust gas purifying catalyst 10 subjected to scanning electron microscope observation is not limited, and the cross section can be observed at any location.
  • a method for measuring the circular porosity is, for example, as follows.
  • a cylindrical sample Sp having a diameter of 25.4 mm and having a central axis parallel to the exhaust gas flow direction is hollowed out.
  • This cylindrical sample Sp has a length covering the entire exhaust gas flow direction X of the exhaust gas purifying catalyst 10 .
  • the hollowed-out position of the cylindrical sample Sp in the exhaust gas purifying catalyst 10 on the plane (see FIG. 4(b)) orthogonal to the exhaust gas flow direction.
  • the center axis of the cutout portion is positioned radially outward from the center C of the substrate 11 on the plane at a distance of 10% to 70% of the radial length thereof.
  • the center of the substrate 11 on the plane is the point that bisects the maximum line segment crossing the outline of the substrate 11 on the plane. Further, the radial length is one-half of the maximum line segment.
  • the cross-sectional position of the exhaust gas purifying catalyst 10 in the exhaust gas flow direction X is not limited as described above. For example, if the position is 5 mm or more away from the upstream end or downstream end of the cylindrical sample Sp in the X direction, the cross section of the adsorption layer 12 can be easily observed.
  • the central portion of the sample Sp in the X direction may be used as the viewing surface. These viewing planes are exposed by cutting along a cross section perpendicular to the X direction. The viewing surface is embedded with resin and polished. It should be noted that the thickness (length in the X direction) of the observation sample is preferably 10 mm from the standpoint of ease of handling the sample.
  • two samples T and B in FIG.
  • the adsorption layer 12 contains an adsorbent containing Si, it can be identified by observing the distribution of Si. Alternatively, when the adsorption layer 12 contains a specific element other than Si, the adsorption layer 12 may be specified by observing the distribution of the specific element. For the other layer 13, any component that is not contained in the base material 11 or the adsorption layer 12 may be used. The same position of the same sample is imaged with a scanning electron microscope (SEM) at the same magnification as the EPMA mapping, and compared with the previous EPMA mapping image, the adsorption layer 12, the substrate 11 and (if necessary) Determine the distribution of the other layer 13 .
  • SEM scanning electron microscope
  • the “temporary boundary line” of the adsorption layer 12 on the substrate 11 is specified by the outer edge of the distribution range of the components of the substrate 11 .
  • the outer edge of the distribution range of the other layer 13 causes the "temporary boundary" of the adsorption layer 12 on the other layer 13. Identify the line.
  • the acceleration voltage for SEM observation is preferably 10 kV to 15 kV.
  • the cells of the honeycomb substrate usually have a polygonal cross section perpendicular to the X direction.
  • an image including intersections Cn of sides such as corners of polygons is used (see FIG. 5).
  • FIG. 5 is an example of an image of an exhaust gas purifying catalyst 10 in which the adsorption layer 12 is formed directly on the partition walls of a honeycomb base material having cells with square cross sections, and the cross section perpendicular to the X direction is observed by SEM. is.
  • FIG. 5 is an image obtained by observing corners of cells having a square cross section in the exhaust gas purifying catalyst 10 .
  • the observation image It is preferable to employ an observation image of a portion in which the length L1 (see FIG. 5) in the longitudinal direction is 15% or more. Further, when the cell 15 has a polygonal cross section perpendicular to the X direction, the longitudinal direction L1 of the observed image is preferably 80% or less of the length of one side of the polygon. When the length of each side of a polygon is not the same, the length of one side referred to here is the average value of the length of each side. It is preferable that one observation image has one intersection Cn. The fact that there is one intersection in one observation image has the following meaning in detail.
  • One crossing portion (corner) of cells partitioned by partition walls is adjacent to another crossing portion (corner), such as the portion surrounded by the frame 38 in FIG. Therefore, for example, depending on the observation image, a plurality of intersections Cn may be observed in one observation image. For example, four intersections Cn are observed in FIG. 6(a), and two intersections Cn are observed in FIG. 6(b). However, in the present specification, there is preferably one intersection Cn in one observation image (for example, FIG. 5). However, it is permissible that the intersection Cn adjacent to the observed image is unavoidably included.
  • the observation image is preferably an image in which a suction portion having a length equal to or longer than a predetermined length exists within the range of the observation image.
  • the adsorption layer 12 extending along one crossing portion Cn and two sides E1 and E2 connected thereto is continuous with respect to the length in the longitudinal direction A of the observed image by 80% or more as the length in the same direction.
  • We adopt an observation image that exists at the same time see FIG. 5).
  • the length of the adsorption layer 12 extending along one intersection Cn and two sides E1 and E2 connected thereto is 80% of the width direction B of the observation image. Observation images that exist continuously as described above are adopted (see FIG. 5).
  • the outer edge of the adsorption layer 12 on the side of the substrate 11 is based on the SEM observation image and the EPMA mapping image, and the case where the substrate component or another layer 13 is interposed is defined by the outer edge of the distribution range of the other layer 13 components.
  • the outer edge of the adsorption layer 12 on the opposite side of the substrate 11 is adsorbed by the outer edge of the distribution range of the adsorption layer 12 when another layer 13 is laminated on the opposite side of the adsorption layer 12 to the substrate 11. It defines the outer edge of the layer 12 opposite the substrate 11 .
  • the outer edge is defined by the difference in color between the adsorption layer 12 and the outside of the catalyst in the SEM image.
  • the outer edges of these adsorbent layers 12 are defined as "temporary boundaries", as shown in FIG.
  • the adsorption layer 12 is gray while the outside of the catalyst 10 is black, as shown in FIG.
  • the "temporary boundary line” can be defined by image processing software for drawing a boundary line, which will be described later, and the selection threshold can be set within the same range as described later.
  • the "temporary boundary line” is used to define a gap in a substantially circular shape provisionally in order to define the partition width described later, and to define the base material side boundary line and the outer boundary line described later. Therefore, it is not used for measuring the adsorption layer area.
  • S void area
  • L peripheral length of the void
  • S void area
  • L peripheral length of the void
  • the selection threshold value is preferably 20 or more and 40 or less based on the color of the definite void portion, for example.
  • the definite color of the void portion is the color of the portions other than the constituent components of the adsorption layer and the base material 11, and as shown in FIG. 5, it is usually black.
  • the perimeter of each void is preferably drawn using 20 points or more.
  • Image analysis software can be used to calculate the perimeter L and area S of the void after drawing the boundary line, specifically ImageJ (public domain), Photoshop (provided by Adobe Systems Incorporated) or AreaQ (provided by Estech Co., Ltd.) can be used.
  • the entirety is contained in the adsorption layer 12 on the partition wall 23 or other layer 13 partitioned by the "temporary boundary line" described above, and L / ⁇ 2 ( ⁇ S) 1/2 ⁇ ⁇ 1.1
  • the area of each void which is filled and has an equivalent circle diameter of 1 ⁇ m or more and 60 ⁇ m or less is measured for 20 visual fields. For all of them, the circle conversion diameter is measured.
  • a plurality of straight lines parallel to the observed image are drawn at regular intervals on the SEM image of the cross section of the catalyst with a width equal to or less than the median diameter of the obtained circle conversion diameters.
  • the width between the division lines is also referred to as the "division width".
  • the width of the section is equal to or less than the median diameter of the equivalent circle diameter.
  • the width is 75% of the median diameter of the equivalent circle diameter.
  • the longitudinal direction of the observation image is the horizontal direction A
  • the width direction is the vertical direction B.
  • the terms "longitudinal direction” and “width direction” in the following description are read as “horizontal direction” and "vertical direction”.
  • the 20 fields of view are entirely included in the adsorption layer 12 on the partition wall partitioned by the “temporary boundary line”, have a circle conversion diameter of 1 ⁇ m or more and 60 ⁇ m or less, and are L/ ⁇ 2( ⁇ S) 1/ 2 ⁇ means a field having at least one gap satisfying ⁇ 1.1, and a field having no such gap shall not be included.
  • a line connecting the intersecting points of the provisional boundary line and the division line extending in the longitudinal direction A or the width direction B is a line that defines the boundary of the adsorption layer 12 on the substrate side. (Hereinafter, it is also referred to as a "substrate-side boundary line" to distinguish it from the above-mentioned "provisional boundary line”.).
  • a line connecting the intersections of the edge of the adsorption layer 12, which is a provisional boundary line, and the demarcation line extending in the longitudinal direction A or the width direction B with a straight line. (hereinafter also referred to as the "outer boundary line” to distinguish it from the above “temporary boundary line”).
  • the marking line extending in the longitudinal direction A is also called the marking line A
  • the marking line extending in the width direction B is also called the marking line B.
  • intersection point P' and the previous intersection point R' are connected. Find the intersection of the partition line B and the provisional boundary line closest to the intersection point P' on the opposite side of the substrate 11 to the straight line, toward the opposite side of the substrate 11 to the line P'R' in the A direction, Switch so as to connect the intersection of the division line B and the provisional boundary line, and do the same thereafter unless there is a similar event. 8, 9, and 10, illustration of the adsorption layer 12 is omitted for explanation. As will be described later, as shown in FIG.
  • the substrate-side boundary line, the outer boundary line, and the two outermost division lines A′ in the width direction B in the observed image (indicated by thick lines in FIG. 7) and two compartment lines extending in the A direction), and the two outermost compartment lines B' in the longitudinal direction A (two compartment lines extending in the B direction indicated by thick lines in FIG. 7).
  • the enclosed area is determined as the apparent area of the adsorption layer 12 .
  • the base material side boundary lines are set as follows for the portions where the adsorbent component has penetrated into the base material 11 .
  • S1 which is an infiltration point other than the corner of the cell, shown in FIG. 7, as shown in FIG.
  • intersection point R 1 and intersection point R 2 in FIG. 9B the intersection point (intersection point R 1 and intersection point R 2 ) where the change width in the B direction based on the intersection point P is equal to or greater than the partition width is not used, and the width direction A straight line PQ in which the change width of B is less than the division width is defined as the substrate-side boundary line.
  • Figure 9 (a) and (b) shows the case where the intersections of the zoning line B and the provisional boundary line are connected, but even when the intersections of the zoning line A and the provisional boundary line are connected treat in the same way. That is, as shown in FIG. 9(c), when the intersection of the demarcation line A and the provisional boundary line is connected along the drawing direction, the width of change in the longitudinal direction A with respect to the intersection P is greater than or equal to the demarcation width. (intersection R in FIG. 9(c)), the R is not used, and the straight line PQ with the next intersection Q where the width of change in the longitudinal direction A is less than the partition width is defined as the substrate side boundary line.
  • intersection point R2 which is one step back from the intersection point R1 used as the starting point.
  • intersection point R2 as the starting point
  • the intersection point P that is one step back from the intersection point R2 is the starting point.
  • the straight line PQ is defined as the substrate-side boundary line.
  • the intersections R1 and R2 are not used, and the straight line PQ is used as the substrate-side boundary line. It should be noted that the same applies to the case where a line is drawn by connecting the intersections of the demarcation line A and the provisional boundary line.
  • the base material side boundary line is defined as follows.
  • the division line A including the adjacent intersection point R' is the base material formed by P'R' in the A direction. It has intersections with two or more temporary boundaries on the side of the side boundary opposite the substrate 11 .
  • Q' which is the intersection of the temporary boundary line and the division line B adjacent to P on the opposite side of the substrate in the A direction with respect to P', is used.
  • the straight line P'Q' is defined as the substrate-side boundary line, and thereafter, the division line B is similarly used to define the substrate-side boundary line unless the above phenomenon applies.
  • Non-applicable substantially circular voids are processed as follows.
  • the ratio of the length of the dotted line connecting both ends (the length of the dotted line in FIG. 11(a)) to the peripheral length (length of the solid line in FIG. 11(a)) other than the protruding portion or the missing portion is 30% or less
  • the range surrounded by the dotted line and the solid line is regarded as the void.
  • FIG. 11(b) shows a tentative void shape considered as above for ⁇ and ⁇ .
  • the above ratio is more than 30%, the above process is not performed, and the area and perimeter are obtained in the conventional manner, and the above formula L / ⁇ 2 ( ⁇ S) 1/2 ⁇ ⁇ 1.1 is satisfied. Determine if applicable.
  • the same processing as ⁇ and ⁇ is performed from the peripheral length (solid line length) other than the boundary line of the gap and the boundary line portion (dotted line length) of the gap. Also, the same processing as ⁇ and ⁇ is performed for the gaps partially missing due to the partition lines.
  • an adsorbent component or the like is included as in ⁇ in FIG. 11(a), it is assumed that there is no included component, and the voids and their areas that satisfy the above formula are specified.
  • the total area of approximately perfect circular voids having a circle-equivalent diameter of 1 ⁇ m or more and 60 ⁇ m or less existing in the region of the “apparent area” of the adsorption layer 12 on the base material 11 is obtained.
  • the ratio of the sum to the apparent area of the adsorption layer 12 on the substrate 11 is obtained. This ratio is calculated for each visual field, and the circular porosity is obtained as the average value for 20 visual fields.
  • a division line is drawn according to the previously obtained division width for a new and separate field of view, and the "apparent area" region is specified using the EPMA observation image according to the procedure described above. Then, an average value is obtained in 20 fields of view in which one or more approximately perfect circular voids having a circle-equivalent diameter of 1 ⁇ m or more and 60 ⁇ m or less exist in the “apparent area” region.
  • the circular porosity obtained by observing a total of 20 visual fields obtained by observing one or more observation surfaces in one sample Sp should satisfy the above range.
  • the present invention can be achieved. It shall be regarded as an invention. The same applies to the circle-converted diameter, the number of approximately circular voids per mm, and the thickness of the adsorption layer 12, which will be described later.
  • the average value of the circle-converted diameter of the approximately perfect circular voids is 1 ⁇ m or more and 60 ⁇ m or less, and this range By doing so, it is possible to measure the circular porosity that contributes to the suppression of peeling and the HC adsorption performance.
  • the average value of the circle equivalent diameter is preferably 5 ⁇ m or more and 50 ⁇ m or less, more preferably 10 ⁇ m or more and 30 ⁇ m or less.
  • the average value of the circle equivalent diameter is obtained by obtaining the average value of the circle equivalent diameter of each void having a circle conversion diameter of 1 ⁇ m or more and 60 ⁇ m or less for each field of view, and calculating the average value of each field of view to obtain the circular porosity. It is obtained by averaging the 20 fields of view that were finally used for .
  • the standard deviation of the equivalent circle diameter of the approximate perfect circle that exists in the adsorption layer 12 on the substrate 11 and has an equivalent circle diameter of 1 ⁇ m or more and 60 ⁇ m or less is less than 25% with respect to the average value of the circle conversion diameter. is preferably This indicates that the pore-forming agent used to form the voids is present in the adsorption layer 12 in a highly dispersed state, and has the advantage of suppressing deterioration in adhesion of the adsorption layer 12 .
  • the standard deviation of the equivalent circle diameter of the approximate perfect circle is preferably 5% or more with respect to the average value of the equivalent circle diameter. , indicates that excessive aggregation is avoided and high dispersion is maintained by being slightly present in the front and back directions.
  • the pore-forming agent is highly dispersed because it has the advantage of suppressing a decrease in adhesion of the adsorption layer 12 .
  • the standard deviation of the equivalent circle diameter is more preferably 10% or more and 23% or less, particularly preferably 15% or more and 20% or less, with respect to the average value of the circle equivalent diameter.
  • the value of the standard deviation itself of the equivalent circle diameter is preferably 0.1 ⁇ m or more and 15 ⁇ m or less, and more preferably 1.0 ⁇ m or more and 5.0 ⁇ m or less.
  • the average number of approximately perfect circular voids having a circle conversion diameter of 1 ⁇ m or more and 60 ⁇ m or less per 1 mm 2 of the apparent area of the adsorption layer 12 present on the substrate 11 is 50 or more. and preferably 25,000 or less from the viewpoint of suppressing peeling. From these points of view, the average number of approximately perfectly circular voids having a circle-equivalent diameter of 1 ⁇ m or more and 60 ⁇ m or less per 1 mm 2 of the apparent area is more preferably 100 or more and 20,000 or less, and more preferably 200 or more and 15,000. It is even more preferable that the number is 1 or less.
  • the average number of approximately perfect circular voids having a circle conversion diameter of 1 ⁇ m or more and 60 ⁇ m or less per 1 mm 2 of the apparent area of the adsorption layer 12 is the average value for 20 visual fields that were finally used to obtain the circular void ratio. is.
  • the average thickness of the adsorption layer 12 on the substrate 11 is preferably 10 ⁇ m or more in terms of HC adsorption performance and the formation of approximately perfect circular voids, and 100 ⁇ m or less to maintain practical pressure loss. point is preferable. From these points, the average thickness of the adsorption layer 12 on the substrate 11 (partition wall 23) is more preferably 15 ⁇ m or more and 60 ⁇ m or less, and even more preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • the average thickness of the adsorption layer 12 on the base material 11 (partition wall 23) is the apparent area of the adsorption layer 12 on the base material 11 in one observation image, and the length of the base-side boundary line in the observation image. Find by dividing by . In this way, the thickness of the adsorption layer is obtained in each field of view. The thickness of each field is averaged over the final 20 fields used to determine the circular porosity.
  • a pore-forming agent having a specific shape, a thermal decomposition initiation temperature, a particle size distribution, and a degree of swelling in a solvent is used in a suitable method for producing an exhaust gas purification catalyst, which will be described later. If the amount of the pore-forming agent, the particle size of the pore-forming agent, the particle size of the adsorbent and other metal oxide particles in the slurry, the composition of the adsorbent and other metal oxides, and the viscosity of the slurry described later, good. The same applies to the number of approximate perfect circular voids, the ratio of the diameter converted to circle and the standard deviation thereof, and the thickness of the adsorption layer 12 .
  • the circular porosity is 30% or less, and the value (%/ ⁇ m) of the circular porosity (%) with respect to the thickness ( ⁇ m) of the adsorption layer 12 is 0.20 (%/ ⁇ m) or more. is particularly preferable from the viewpoint of lowering the adhesiveness of the adsorption layer 12 .
  • the value of the circular porosity with respect to the thickness of the adsorption layer 12 is a value indicating the degree of aggregation of the pore-forming agent used when forming the adsorption layer 12 . The more the pore-forming agent aggregates during the formation of the adsorption layer 12, the smaller the circular porosity of the adsorption layer 12 to be formed.
  • the upper limit of the circular porosity (%) value (%/ ⁇ m) with respect to the thickness ( ⁇ m) of the adsorption layer 12 is 1.00 (%/ ⁇ m) or less. It is preferable from the viewpoint of suppressing peeling. More preferably, the value of the circular porosity (%) with respect to the thickness ( ⁇ m) of the adsorption layer 12 is 0.30 (%/ ⁇ m) or more and 0.80 (%/ ⁇ m) or less.
  • the value (%/ ⁇ m) of the circular porosity (%) with respect to the thickness ( ⁇ m) of the adsorption layer 12 is obtained by using a pore-forming agent having a specific shape, thermal decomposition initiation temperature, particle size distribution, and degree of swelling in a solvent. , the amount of pore-forming agent, the particle size of the pore-forming agent, the particle size of the adsorbent and other metal oxide particles in the slurry, the composition of the adsorbent and other metal oxides, and the slurry viscosity described later. This can be achieved by adjusting the amount of pore-forming agent, the particle size of the pore-forming agent, the particle size of the adsorbent and other metal oxide particles in the slurry, the composition of the adsorbent and other metal oxides, and the slurry viscosity described later. This can be achieved by adjusting the amount of the pore-forming agent having a specific shape, thermal decomposition initiation temperature, particle size distribution, and degree of swelling
  • the pore volume with a pore diameter of 1 to 300 nm derived from the pores in the adsorption layer 12 is 0.05 cm 3 /g to 0.3 cm. It is preferably within the range of 3 /g.
  • the pore volume is measured according to the BJH method (Barrett-Joyner-Halenda method) described in ISO 15901-2, and the pore volume is calculated from the obtained nitrogen adsorption isotherm. A desorption curve is used for the calculation, and the adsorption cross section of nitrogen molecules is calculated as 0.1620 nm 2 .
  • BELSORP MAX II manufactured by Microtrac Bell Co., Ltd. can be used as a measuring device.
  • Si-containing adsorbents examples include zeolite, silica, and silica-alumina composite oxides typified by silica-alumina phosphate (SAPO).
  • SAPO silica-alumina phosphate
  • Use of zeolite is preferred from the viewpoint of further enhancing HC adsorption performance.
  • Zeolite is a crystalline substance in which TO4 units (T is the central atom) with a tetrahedral structure are three-dimensionally connected by sharing O atoms to form open and regular micropores. Point. Specifically, it includes silicates, germanium salts, arsenates, etc. described in the data compiled by the Structure Committee of the International Zeolite Association (hereinafter sometimes referred to as "IZA").
  • silicates include, for example, aluminosilicates, gallosilicates, ferrisilicates, titanosilicates, and borosilicates; germanium salts include, for example, aluminogermanium salts; For example, aluminoarsenates and the like are included. These include, for example, those in which Si or Al in the skeleton is replaced with divalent or trivalent cations such as Ti, Ga, Mg, Mn, Fe, Co and Zn. In this embodiment, it is preferable to use a crystalline aluminosilicate as the zeolite.
  • Zeolites have various crystal structures and are classified into types such as BEA type, MSE type, MFI type, YFI type, FER type, MOR type and FAU type. Among them, in the present invention, it is preferable to employ a zeolite having at least one pore structure among 10-membered rings and 12-membered rings from the viewpoint of HC adsorption performance.
  • the pore size can be made excellent in adsorbability for toluene, propylene, pentane, etc., which are contained in large quantities as HC molecular species in the exhaust gas, especially 12-membered It is more preferable to employ at least one selected from BEA type, MSE type and YFI type having a ring structure.
  • SiO 2 /Al 2 O 3 molar ratio should be 5 to 500, more preferably 5 to 250, particularly 10 to 40. It is preferable in terms of excellent heat resistance under exhaust gas.
  • Zeolite can support various elements from the viewpoint of improving its function, and examples of such elements include P, Zr, Ga, Sn, B, K, and Cs. In particular, it is preferable to contain P and/or Zr from the viewpoint of improving heat resistance, and a combination of both is most preferable.
  • P and Zr are carried in the zeolite by, for example, calcining the zeolite with phosphoric acid (H 3 PO 4 ) or zirconium oxynitrate to modify it.
  • the amount is 0.5 to 10% by mass, more preferably 1 to 5% by mass, in terms of phosphorus atoms, relative to the zeolite after modification.
  • the amount of zirconium is preferably 1 to 20% by mass, more preferably 5 to 10% by mass, in terms of Zr atoms, relative to the modified zeolite.
  • the amount of zeolite after modification refers to the amount including those elements or compounds.
  • the amount of phosphorus and zirconium in the zeolite can be measured with an X-ray fluorescence instrument.
  • the phrase “component A is supported on particles B” refers to a state in which component A is physically or chemically adsorbed or retained on the outer surface or inner surface of pores of the particles B. .
  • the fact that the particles B support the component A can be confirmed by the elemental mapping obtained by analyzing the cross section of the exhaust gas purification catalyst 10 by EDS, for example, where the component A and the particles B are present in the same region. It can be determined that the particles B "carry” the component A by confirming that the
  • the term "particles" as used herein includes sintered bodies in which particles are bonded to each other by sintering.
  • the ratio of zeolite in the adsorption layer 12 is preferably 30% by mass or more and 95% by mass or less from the viewpoint of HC adsorption performance and adhesion, more preferably 50% by mass or more and 90% by mass or less, and 57% by mass or more and 80% by mass. The following are particularly preferred.
  • Components other than the Si adsorbent that can be contained in the adsorption layer 12 include, for example, alumina, titania, zirconia, ceria, ceria-zirconia, activated carbon, and metal-organic framework (MOF).
  • alumina is preferably used from the viewpoint of excellent heat resistance.
  • the amount of metal oxides other than the Si adsorbent that can be contained in the adsorption layer 12 is, for example, more preferably 5% by mass or more and 50% by mass or less, and particularly preferably 10% by mass or more and 43% by mass or less.
  • the adsorption layer 12 may contain a catalytically active component.
  • the catalytically active components include platinum group metals, specifically platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir) and osmium (Os). or 1 or 2 or more.
  • the catalytically active component contained in the adsorption layer 12 is preferably at least one selected from platinum (Pt), palladium (Pd), and rhodium (Rh).
  • the amount thereof is preferably 0.05% by mass or more and 5% by mass or less, more preferably 0.5% by mass or more and 2.5% by mass or less.
  • the adsorption layer 12 may contain at least one transition metal selected from Cu, Ag, Ni, Fe and Mn. When such a transition metal is contained in the adsorption layer containing the Si-containing adsorbent, the HC retention performance in a high temperature range is enhanced, which is preferable.
  • the amount of zeolite, the amount of inorganic oxides such as alumina, and the amounts of transition metals and catalytically active components in the adsorption layer 12 are measured by ICP-AES for the amounts of various component elements in the solution obtained by completely dissolving the adsorption layer 12. It can be measured by
  • the mass of the adsorption layer 12 after drying is preferably 30 g or more per 1 L volume of the base material 11 in the portion where the adsorption layer 12 is formed, in terms of improving the HC adsorption performance, and is particularly 50 g or more. is more preferable.
  • the mass of the adsorption layer 12 after drying is preferably 200 g or less per 1 L of volume of the base material 11 in the portion where the adsorption layer 12 is formed, in terms of improving peel resistance, etc., and is preferably 150 g or less. more preferred.
  • the volume of the base material 11 as used herein includes the partition walls 23 of the base material 11, the adsorption layer 12, other layers 13 when the other layers 13 are included, the pores in the partition walls 23, and the spaces in the cells 15.
  • the apparent volume of the substrate 11 is represented by ⁇ A 2 ⁇ B, where the outer diameter of the substrate 11 is 2A and the length of the substrate 11 is B. .
  • the volume of the base material 11 in the portion where the adsorption layer 12 is formed is the volume obtained by "apparent volume of the base material 11 x length of the adsorption layer 12 in the X direction/length of the base material 11 in the X direction".
  • the other layer 13 when the exhaust gas purification catalyst 10 contains another layer 13 in addition to the adsorption layer 12 as the coat layer 16, the other layer 13 must have a catalytically active component. is preferred.
  • the catalytically active component in that case, the same component as the catalytically active component that the adsorption layer 12 may have may be mentioned.
  • the other layer 13 preferably contains an inorganic oxide that is an oxygen storage component or an inorganic oxide other than an oxygen storage component as a component that supports a catalytically active component.
  • Oxygen storage components include CeO 2 and CZ material (ceria-zirconia composite oxide containing Ce and Zr, solid solution of CeO 2 and ZrO 2 ), iron oxide, and copper oxide. In addition to these, oxides of rare earth elements other than Ce can be mentioned.
  • Inorganic oxides other than the oxygen storage component include alumina, titania, zirconia and the like.
  • the ratio of the adsorption layer 12 to the entire coating layer 16 on the substrate 11 is 20% by mass or more. is preferable, and more preferably 20% by mass or more and 50% by mass or less.
  • the thickness of the adsorption layer 12 with respect to the entire thickness of the coat layer 16 existing on the base material 11 is More preferably, the proportion is 20% or more and 80% or less.
  • the thickness of the adsorption layer 12 can be measured by the method described above. Also, the thickness of the coat layer 16 can be measured according to the method for measuring the thickness of the adsorption layer 12 .
  • the adsorption layer 12 is provided so as to be in direct contact with the partition walls 23, the adsorption layer 12 is provided mainly in the partition walls 23, not in the partition walls 23, in order to further improve the HC adsorption performance and to improve the exhaust gas purification performance during high-speed operation. It is preferably present on the surface. That the adsorption layer 12 is mainly present on the surface of the partition wall 23 means that the mass of the adsorption layer 12 present on the surface of the partition wall 23 of the substrate 11 in the cross section of the substrate 11 provided with the adsorption layer 12 is the partition wall 23 . It means that there is more than the mass of the adsorption layer 12 existing inside.
  • the cross section of the partition wall provided with the adsorption layer 12 is observed with a scanning electron microscope (“JEM-ARM200F” manufactured by JEOL Ltd.), and energy dispersive X-ray analysis (EDS: Energy dispersive X-ray spectrometry). line analysis of the boundary between an element present in the substrate 11 (for example, Mg, etc.) and an element present in the adsorption layer 12 (for example, Si or a specific element present in the adsorption layer), or an electron beam It can be confirmed that it mainly exists on the surface by a method of analyzing with a microanalyzer (EPMA) or the like.
  • EPMA microanalyzer
  • the length of the adsorption layer 12 in the X direction is preferably 50% to 100% of the length of the substrate 11 in the X direction in order to improve the HC adsorption performance while reducing the suppression of peeling. It is even more preferred that it is ⁇ 100%.
  • the length of the adsorption layer 12 can be measured by the following method. That is, it is preferable to visually observe the exhaust gas purifying catalyst 10 to specify and measure the boundaries of the adsorption layers 12 respectively. In this case, for example, it is preferable to measure the length of the adsorption layer 12 at arbitrary ten locations of the exhaust gas purification catalyst 10 and obtain the average value as the length of the adsorption layer 12 .
  • the composition at a large number (for example, 8 to 16 positions) along the exhaust gas flow direction in the exhaust gas purification catalyst is analyzed, and the catalytic activity at each position is analyzed. It can be identified based on the concentration of the ingredients.
  • concentration of the catalytically active component at each location can be determined by, for example, X-ray fluorescence analysis (XRF) or ICP emission spectrometry (ICP-AES).
  • This production method includes an adsorbent containing Si (Si-containing adsorbent), A pore-forming agent made of a crosslinked resin containing 90% or more particles having a circularity of L'/ ⁇ 2( ⁇ S') 1/2 ⁇ 1.05 (hereinafter simply referred to as "the pore-forming agent”)
  • the pore-forming agent A step of applying a slurry containing the above to a substrate, and forming an adsorption layer containing the adsorbent and voids formed by burning off the pore-forming agent on the substrate by baking the slurry that has been applied to the substrate.
  • a method for producing a purification catalyst After stirring the slurry at a rotation speed of 3000 rpm or more and 8000 rpm or less, the slurry is applied to a substrate in a state where the viscosity at 25° C. is 2000 cP or more and 100000 cP or less.
  • L' is the peripheral length of the image obtained by observing the pore-forming agent with a scanning electron microscope (SEM), and S' is the area of the image obtained by observing it with a scanning electron microscope.
  • the pore-forming agent contains 90% or more particles having a circularity of L′/ ⁇ 2( ⁇ S′) 1/2 ⁇ 1.05 on a number basis. With such a configuration, it is easy to obtain the exhaust gas purification catalyst 10 having the circular porosity.
  • the roundness referred to here is measured based on observation by SEM. An observation sample is obtained by dropping a powder sample attached to a cotton swab from above onto a SEM sample stage to which a carbon tape is attached, and then brushing off excess powder with an air gun.
  • Air gun spraying conditions include, but are not limited to, blowing air of 5 atmospheres (gauge pressure) for 1 second from a position separated by 10 cm.
  • SEM observation is preferably performed at an acceleration voltage of 5 kV to 15 kV and at an observation magnification of 40 times to 1000 times.
  • SEM images of 50 arbitrary pore-forming agents are observed, and the proportion of SEM images having "roundness of L'/ ⁇ 2( ⁇ S') 1/2 ⁇ 1.05" is determined.
  • the ratio of the pore-forming agent having “a circularity of L′/ ⁇ 2( ⁇ S′) 1/2 ⁇ 1.05” among the pore-forming agents is 95% or more is more preferable, and 98% or more is particularly preferable.
  • Examples of the material of the pore-forming agent include a polymer of a monomer having an ethylenically unsaturated bond containing a crosslinkable monomer. Particles, crosslinked poly(meth)acrylate particles, and the like can be used. Crosslinked poly(meth)acrylate particles include crosslinked poly(meth)acrylate particles, crosslinked poly(meth)acrylate particles, and the like. By using a crosslinked resin as the pore-forming agent, it is easy to leave voids with a high degree of circularity in the adsorption layer 12 without losing their shape during baking.
  • the pore-forming agent preferably has a thermal decomposition initiation temperature of 200°C or higher in the atmosphere.
  • a pore-forming agent having a high thermal decomposition temperature generally has a high degree of cross-linking of molecular chains. Due to this, highly circular voids can be left in the adsorption layer 12 without losing their shape during firing.
  • the thermal decomposition initiation temperature of the pore-forming agent in the atmosphere is more preferably 230° C. or higher, particularly preferably 250° C. or higher.
  • the upper limit of the thermal decomposition initiation temperature is preferably 550° C. or less, more preferably 500° C. or less, from the point of view that the pore-forming agent disappears reliably during firing.
  • the temperature is raised from room temperature to 500° C. in an air atmosphere, and the pyrolysis behavior is measured.
  • the heating rate can be, for example, 5° C./min to 20° C./min.
  • the thermal decomposition initiation temperature is defined as the intersection of a line parallel to the horizontal axis passing through the mass before the start of test heating and a tangent line drawn so as to maximize the slope between the inflection points in the decomposition curve.
  • the thermal decomposition initiation temperature in the air is simply referred to as "thermal decomposition initiation temperature”.
  • the particle size at 10% cumulative volume measured by a laser diffraction particle size distribution method is defined as D10
  • the particle size at 50% cumulative volume is defined as D50
  • the particle size at 90% cumulative volume is defined as D90.
  • the value of (D90-D10)/D50 is preferably 0.1 or more and 1.1 or less.
  • the value of (D90-D10)/D50 (hereinafter also referred to as "monodispersity") is a measure of the particle size distribution of the pore-forming agent, and the smaller the monodispersity value, the sharper the particle size distribution. It is.
  • a pore-forming agent having a sharp particle size distribution has a high degree of cross-linking, and thus is more excellent in that deformation of the pore-forming agent during firing due to thermal expansion is small, and the circular porosity described above can be easily obtained.
  • the pore-forming agent preferably has a monodispersity of 0.7 or less, particularly preferably 0.3 or less.
  • D50 of the pore-forming agent is preferably 5 ⁇ m or more and 50 ⁇ m or less, more preferably 10 ⁇ m or more and 30 ⁇ m or less, from the viewpoint of obtaining the above-described circle-equivalent diameter pores.
  • the pore-forming agent preferably has a D90 of 6 ⁇ m or more and 60 ⁇ m or less, more preferably 10 ⁇ m or more and 30 ⁇ m or less. From the same point of view, D10 is preferably 1 ⁇ m or more and 30 ⁇ m or less, more preferably 2 ⁇ m or more and 20 ⁇ m or less.
  • the monodispersity and particle size can be measured using a laser diffraction/scattering type particle size/particle size distribution analyzer such as Microtrac HRA and Microtrac 3000 series manufactured by Microtrac Bell. For example, it can be measured as follows.
  • a pore-forming agent is added to an aqueous dispersion medium, and 40 W ultrasonic waves are applied at a flow rate of 40%. is irradiated for 360 seconds, and then measured using a laser diffraction scattering particle size distribution meter (“Microtrac MT3300EXII” manufactured by Microtrac Bell).
  • the measurement conditions were as follows: “particle refractive index” of 1.5, “particle shape” of spherical shape, “solvent refractive index” of 1.3, “set zero” of 30 seconds, and “measurement time” of 30 seconds, twice. Obtained as the average value of the measurements. Pure water is used as the aqueous dispersion medium.
  • the pore-forming agent preferably has a low degree of solvent swelling. This is because a pore-forming agent with a low degree of swelling has a high degree of cross-linking.
  • the solvent absorption per gram of polymer (g/g) after immersion at 50°C for 48 hours is preferably 0.05 g/g or less for ethanol, and preferably 0.7 g/g or less for acetone.
  • 2-methoxyethanol is preferably 0.15 g/g or less
  • toluene is preferably 0.15 g/g or less.
  • the ratio of the pore-forming agent in the total pore-forming agent used for forming the adsorption layer is preferably 80% by mass or more, more preferably 90% by mass or more, and 100% by mass. It is particularly preferred to have
  • the slurry containing the pore-forming agent further contains particles of an Si-containing adsorbent and metal oxide particles.
  • the particles of the Si-containing adsorbent and other metal oxide particles include the inorganic oxide particles described above as constituent components of the adsorption layer 12 .
  • the particle size of the metal oxide particles containing the particles of the Si-containing adsorbent is preferably 3 ⁇ m or more in D50 and 10 ⁇ m or more in D90 from the viewpoint of enhancing the dispersibility of the catalytically active component and improving the HC adsorption performance.
  • D50 is preferably 3 ⁇ m or more
  • D90 is more preferably 12 ⁇ m or more.
  • the D50 of the metal oxide particles in the slurry is more preferably 15 ⁇ m or less, and the D90 is 30 ⁇ m or less, from the viewpoint of enhancing the dispersibility of the catalytically active component. is more preferred.
  • D50 and D90 of the metal oxide particles can be measured in the same manner as D50 and D90 of the pore-forming agent.
  • D50 is preferably 2 ⁇ m or more, D90 is preferably 8 ⁇ m or more, D50 is more preferably 3 ⁇ m or more, and D90 is 9 ⁇ m. It is more preferable to be above. D50 is preferably 40 ⁇ m or less, preferably D90 is 120 ⁇ m or less, more preferably D50 is 30 ⁇ m or less, and more preferably D90 is 70 ⁇ m or less.
  • the inventors of the present invention have found that if the slurry containing the Si-containing adsorbent and the pore-forming agent is applied to the substrate as it is, an exhaust gas purification catalyst with sufficient peeling resistance cannot be obtained, and that the adsorption layer 12 contains It has been found that it is difficult to obtain an exhaust gas purifying catalyst having the above circular porosity. Then, after stirring at a predetermined number of revolutions, the mixture is stirred at a predetermined number of revolutions, and then coated on a base material in a state of a predetermined viscosity, thereby obtaining an exhaust gas purifying catalyst with high peeling performance and excellent HC adsorption performance.
  • Si-containing adsorbents such as zeolite are hydrophobic and tend to agglomerate in a slurry containing water.
  • a circular pore-forming agent made of a crosslinked resin is also hydrophobic.
  • the slurry is applied to the substrate in a state satisfying the viscosity of 3000 to 50000 cP after the stirring, and the slurry is applied to the substrate in a state satisfying the viscosity of 5000 to 20000 cP after the stirring.
  • the stirring rotation speed is more preferably 5000 to 8000 rpm, and the temperature of the slurry during the viscosity measurement is, for example, 25°C.
  • the viscosity after stirring is preferably measured within 30 minutes after stirring, and preferably within 10 minutes.
  • a thickener may be used to adjust the viscosity. Thickeners include xanthan gum, carboxymethylcellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, and the like.
  • the stirring time is preferably 5 to 20 minutes, more preferably 10 to 15 minutes, for a slurry of 2500 g.
  • the preferable stirring time may be increased or decreased in proportion to the rate at which the amount of slurry is increased or decreased.
  • Coating the base material includes coating the slurry on the other layer 13 when the other layer 13 has already been formed on the base material.
  • the amount of solid content excluding the pore-forming agent in the slurry for forming the adsorption layer is preferably 20% by mass or more and 40% by mass or less, more preferably 25% by mass or more and 35% by mass or less.
  • the amount of the pore-forming agent relative to the solid content of the adsorption layer-forming slurry excluding the pore-forming agent is preferably, for example, 10% by mass or more and less than 75% by mass, and is preferably 20% by mass or more and 60% by mass or less. more preferably 30% by mass or more and 50% by mass or less is particularly preferable.
  • a slurry having the above components is applied to the partition walls.
  • the drying temperature is preferably 40 to 120°C. Firing is usually carried out in air.
  • the firing temperature is preferably 350 to 550° C., for example.
  • the exhaust gas purifying catalyst 10 manufactured in this way can be used for various purposes as an exhaust gas purifying catalyst for internal combustion engines powered by fossil fuels, such as gasoline engines, by taking advantage of its peeling prevention performance and HC adsorption performance. Further, according to this embodiment, an exhaust gas purification method using such an exhaust gas purification catalyst 10 can also be provided. For example, by providing the exhaust gas purifying catalyst 10 in the exhaust path of an internal combustion engine such as a gasoline engine and utilizing the HC adsorption performance, it is possible to satisfactorily purify the exhaust gas from the gasoline engine.
  • the exhaust gas purifying catalyst 10 when used in an exhaust gas purifying device in which two or more exhaust gas purifying catalysts are arranged along the direction of flow of the exhaust gas, it is preferably used as the second and subsequent catalysts from the upstream side.
  • the reason for this is that the amount of coating slurry is restricted due to the characteristics of the organic matter trapping catalyst, so if it is used as the first catalyst with a high heat load, deterioration tends to progress, while the second and subsequent catalysts should be used. This is because high purifying performance and HC adsorption performance can be favorably maintained.
  • the pore volume with a pore diameter of 1 to 300 nm derived from the pores in the adsorption layer was within the range of 0.05 cm 3 / g to 0.3 cm 3 /g.
  • the method for measuring the particle size of the particles in the slurry was the same as the method for measuring the particle size of the pore-forming agent described above. However, the particles in the slurry were not drained, and instead of an aqueous dispersion in which a pore-forming agent was dispersed, the slurry was directly supplied to an automatic sample feeder for a laser diffraction particle size distribution analyzer and subjected to ultrasonic wave treatment. processed.
  • the ratio of roundness indicates the number-based ratio of particles satisfying L/ ⁇ 2( ⁇ S) 1/2 ⁇ 1.05 among the particles of the spherical pore-forming agent.
  • the zeolite powder was 60 parts by mass
  • the alumina powder was 30 parts by mass
  • the boehmite powder was 5 parts by mass
  • the alumina sol was 5 parts by mass.
  • the mass ratio of the pore-forming agent to the slurry solid content was 30%.
  • the amount of the thickening agent was set so as to give the predetermined viscosity.
  • the D50 in the slurry was 9 ⁇ m and the D90 was 18 ⁇ m.
  • the SEM observation for measuring the roundness of the pore-forming agent as a raw material was performed at an acceleration voltage of 15 kV and an observation magnification of 300 times.
  • Adsorption Part Precursor Layer (Adsorption Part Before Firing)
  • a flow having, as a base material, 600 cells/inch 2 in a plane orthogonal to the axial direction, which are partitioned by partition walls having a thickness of 80 to 100 ⁇ m and extend in the axial direction, and has a volume of 0.174 L and a total length of 30 mm.
  • a through substrate was used.
  • a portion of 10% to 50% of the total length in the exhaust gas flow direction from one end face of the base material was immersed in the slurry for forming the adsorption layer, and the other end face was sucked.
  • the adsorption layer forming slurry was similarly immersed in the sucked surface, and was sucked from the other end surface. After that, by drying at 90° C. for 10 minutes, an adsorption part precursor layer composed of the solid content of the adsorption layer forming slurry was formed.
  • the adsorption portion was formed on the partition wall surface over the range of the total length L in the exhaust gas flow direction X.
  • the mass of the adsorbing portion with respect to the volume of the base material in the portion where the adsorbing portion was formed was 97.9 g/L in mass after firing.
  • Example 2 In Example 1, the mass ratio of the pore-forming agent in the adsorption layer-forming slurry to the solid content of the slurry was changed to 10%. Under the above stirring conditions, stirring was performed for 10 minutes at a rotation speed of 7000 rpm to prepare an adsorption layer forming slurry. The viscosity of the adsorption layer forming slurry was 7500 cP. The D50 in the slurry was 8 ⁇ m and the D90 was 17 ⁇ m. An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except for this point.
  • Example 3 In Example 1, the mass ratio of the pore-forming agent in the adsorption layer-forming slurry to the solid content of the slurry was changed to 20%. Under the above stirring conditions, stirring was performed for 10 minutes at a rotation speed of 7000 rpm to prepare an adsorption layer forming slurry. The viscosity of the adsorption layer forming slurry was 7300 cP. The D50 in the slurry was 9 ⁇ m and the D90 was 18 ⁇ m. An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except for this point.
  • Example 4 In Example 1, the mass ratio of the pore-forming agent in the adsorption layer-forming slurry to the solid content of the slurry was changed to 40%. Under the above stirring conditions, stirring was performed for 10 minutes at a rotation speed of 7500 rpm to prepare an adsorption layer forming slurry. The viscosity of the adsorption layer forming slurry was 6300 cP. The D50 in the slurry was 10 ⁇ m and the D90 was 20 ⁇ m. An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except for this point.
  • Example 5 In Example 1, the mass ratio of the pore-forming agent in the adsorption layer-forming slurry to the solid content of the slurry was changed to 50%. Under the above stirring conditions, stirring was performed for 10 minutes at a rotation speed of 7500 rpm to prepare an adsorption layer forming slurry. The viscosity of the adsorption layer forming slurry was 5500 cP. The D50 in the slurry was 12 ⁇ m and the D90 was 23 ⁇ m. An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except for this point.
  • the mass ratio of the pore-forming agent to the slurry solid content was changed to 50%. Under the above stirring conditions, stirring was performed for 10 minutes at a rotation speed of 7500 rpm to prepare an adsorption layer forming slurry.
  • the viscosity of the slurry for forming the adsorption layer was 19800 cP.
  • the D50 in the slurry was 5 ⁇ m and the D90 was 12 ⁇ m.
  • An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except for this point.
  • the mass ratio of the pore-forming agent to the slurry solid content was changed to 20%. Under the above stirring conditions, stirring was performed for 10 minutes at a rotation speed of 7000 rpm to prepare an adsorption layer forming slurry.
  • the viscosity of the adsorption layer forming slurry was 4800 cP.
  • D50 in the slurry was 28 ⁇ m and D90 was 85 ⁇ m.
  • An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except for this point.
  • Example 8 In Example 1, the amounts of zeolite, alumina powder, alumina sol, and boehmite sol were each increased at the same rate to make the solid content of the slurry 32% by mass, and under the above stirring conditions, stirring was performed for 10 minutes at a rotation speed of 7000 rpm to adsorb. A layer forming slurry was prepared. The viscosity of the adsorption layer forming slurry was 11000 cP. D50 in the slurry was 8 ⁇ m and D90 was 19 ⁇ m. The mass of the adsorbing portion with respect to the volume of the base material in the portion where the adsorbing portion was formed was 120.3 g/L in mass after firing. An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except for this point.
  • Example 10 Preparation of upper layer forming slurry
  • a CeO 2 —ZrO 2 solid solution powder (the CeO 2 —ZrO 2 solid solution contains 40% by mass of CeO 2 , 50% by mass of ZrO 2 , and 10% by mass of oxides of rare earth elements other than Ce) and alumina powder were prepared.
  • the CeO 2 —ZrO 2 solid solution powder and alumina powder were mixed and impregnated in an aqueous palladium nitrate solution. Next, this suspension was mixed with an alumina sol, a zirconia sol, and water as a liquid medium to prepare an upper layer slurry as an example of the "other layer”. [2.
  • the upper layer forming slurry After forming the adsorption layer precursor layer in Example 1, the upper layer forming slurry is immersed in the above-described upper layer forming slurry from one end face to 10% to 50% of the total length in the exhaust gas flow direction, and the other end face. aspirated from Another layer-forming slurry was similarly immersed in the sucked surface and sucked from the other end surface. After that, by drying at 90° C. for 10 minutes, an upper layer precursor layer composed of the solid content of the upper layer forming slurry was formed. Firing was carried out in the same manner as in Example 1 to obtain an exhaust gas purifying catalyst in which an adsorption portion and an upper layer were formed on a base material.
  • the mass of the adsorbing portion with respect to the volume of the substrate in the portion where the adsorbing portion was formed was 200.8 g/L in terms of the mass after firing.
  • the thickness of the coat layer consisting of the adsorption layer and the upper layer was 48.22 ⁇ m.
  • Example 1 In Example 1, no pore forming agent was added to the adsorption layer forming slurry. Under the above stirring conditions, stirring was performed for 10 minutes at a rotation speed of 7000 rpm to prepare an adsorption layer forming slurry. The adsorption layer forming slurry viscosity was 9800 cP. The D50 in the slurry was 7 ⁇ m and the D90 was 16 ⁇ m. An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except for this point.
  • Example 2 the mass ratio of the pore-forming agent in the adsorption layer-forming slurry to the solid content of the slurry was changed to 75%. Under the above stirring conditions, stirring was performed for 10 minutes at a rotation speed of 7000 rpm to prepare an adsorption layer forming slurry. The adsorption layer forming slurry viscosity was 3800 cP. The D50 in the slurry was 15 ⁇ m and the D90 was 25 ⁇ m. An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except for this point.
  • Example 3 acicular particles (material: cellulose) having an average diameter of 28 ⁇ m were used in an amount of 30% by mass based on the solid content of the slurry as the pore-forming agent in the slurry for forming the adsorption layer. Under the above stirring conditions, stirring was performed for 10 minutes at a rotation speed of 7000 rpm to prepare an adsorption layer forming slurry. The viscosity of the adsorption layer forming slurry was 5800 cP. The D50 in the slurry was 9 ⁇ m and the D90 was 18 ⁇ m. An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except for these points.
  • Example 4 In Example 1, stirring was performed for 10 minutes at a rotation speed of 1500 rpm under the stirring conditions described above to prepare an adsorption layer forming slurry.
  • the viscosity of the adsorption layer forming slurry was 1500 cP.
  • the D50 in the slurry was 10 ⁇ m and the D90 was 20 ⁇ m.
  • An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except for these points.
  • Example 5 ⁇ Comparative Example 5>
  • the solid content of the slurry was set to 25% by mass, and the slurry was stirred for 10 minutes at a rotation speed of 3000 rpm under the above stirring conditions to prepare an adsorption layer forming slurry.
  • the adsorption layer forming slurry viscosity was 800 cP.
  • the D50 in the slurry was 11 ⁇ m and the D90 was 19 ⁇ m.
  • An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except for these points.
  • the observation surface of the sample was set at an arbitrary position separated by 5 mm or more from each of the upstream end and the downstream end in the exhaust gas flow direction X, and a total of 20 fields of view were observed on the observation surface.
  • the sample had a thickness of 10 mm in the X direction from each observation surface as in FIG. 4(c).
  • the observation magnification for EPMA mapping was 300 times, and the acceleration voltage was 15 kV (when measuring Al, Ba, Ce, La, Mg, Si and Zr) and 25 kV (when measuring Pd, Rh and Pt).
  • the substrate component element in EPMA mapping was Mg, and the adsorption part component elements were Si and Al.
  • the observation magnification of the SEM when defining the partition width was the same as that of the EPMA mapping, and the acceleration voltage was 15 kV. Note that the width of the partitions when measuring various parameters was set to 0.75 times the mean value of the tentatively obtained circle-converted diameters. Table 1 shows the results.
  • the exhaust gas purifying catalysts obtained in Examples and Comparative Examples were installed in a catalyst evaluation device (SIGU series, manufactured by Horiba, Ltd.), and an evaluation gas having the composition shown below was heated from 50°C to 500°C by a temperature-rising reaction method.
  • the amount of desorption was determined by measuring the total amount of hydrocarbons (isooctane, propylene, toluene) in the evaluation gas.
  • the amount of desorption was measured using an exhaust gas analyzer (manufactured by Horiba Ltd., MEXA-ONE).
  • the exhaust gas purifying catalysts of Comparative Examples 2 to 5 had a high peeling rate, and there was a risk that the adsorption layer would peel off during measurement and contaminate the apparatus. did not.
  • evaluation gas composition The evaluation gas has the composition shown below. Carbon dioxide: 14.00% by volume, oxygen: 0.49% by volume, isooctane: 24ppmC, nitric oxide: 500ppm (by volume), carbon monoxide: 0.50% by volume, hydrogen: 0.17% by volume, propylene : 240 ppmC, toluene: 840 ppmC, water: 10.00% by volume
  • each example in which the circular porosity is more than 5% and 30% or less has a suppressed peeling rate of the adsorption layer and a high HC adsorption amount.
  • the adsorption amount ratio of 62.5 ml/min and 25 ml/min is close to 2.5 times the flow rate ratio, and it can be seen that it has sufficient adsorption performance even when exhaust gas flows at high speed.
  • Comparative Example 1 which does not use a pore-forming agent and has a circular porosity of 0%, has good peeling evaluation, but is inferior in HC adsorption performance.
  • an exhaust gas purifying catalyst capable of achieving both improved HC adsorption performance and high anti-separation performance in an adsorption portion having an Si-containing adsorbent. Further, according to the present invention, there is provided a method for producing an exhaust gas purifying catalyst capable of achieving both improved HC adsorption performance and high anti-separation performance in an adsorption portion having a Si-containing adsorbent, by an industrially advantageous method. can provide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

基材と、該基材に設けられてSiを含む吸着材を含有する吸着部と、を備える排ガス浄化触媒であって、 前記吸着部は複数の空隙を有し、 排ガス流通方向と直交する断面において,前記基材上に存在する前記吸着部の見掛け面積に対して,該吸着部中における下記式を満たす空隙の面積の総和の割合が5%超30%以下である排ガス浄化触媒。 式:L/{2(πS)1/2}≦1.1 (Lは前記断面における前記空隙の周長であり、Sは前記断面における前記空隙の面積である)。

Description

排ガス浄化触媒及びその製造方法
 本発明は、排ガス浄化触媒及びその製造方法に関する。
 ガソリンエンジン等のエンジンに用いられる排ガス浄化触媒は、エンジンから排出される高温の排ガスと接触して昇温することで、排ガス浄化性能を発揮する。しかしながら、エンジン始動直後においては、排ガス浄化触媒は、昇温が足りないことで排ガス浄化性能を十分に発揮できず、排ガス中の炭化水素(HC)等を浄化せずに排出してしまうことがある。そこで、エンジンの始動直後においては排ガス中のHCを吸着し、エンジン始動から時間が経過して排ガスによって排ガス浄化触媒が昇温してから、HCを脱離するHCトラップ材を用いることが検討されている。HCトラップ材としては、ゼオライト等のSi(ケイ素)を含有する吸着材が従来知られている。例えば特許文献1~3には、ゼオライトを含有する触媒層を備える排ガス浄化触媒が記載されている。
 また、排ガス浄化触媒においては、排ガスとの接触効率を向上させるために、造孔剤によって形成した空隙を備える触媒層を設ける技術が知られている。例えば、特許文献4及び5には、特定の空隙を有する排ガス浄化触媒が記載されている。
EP3623048 A1 US2019099749 A1 WO2017178801 A1 特許第6751831号公報 WO2021/029098号パンフレット
 ゼオライト等のSi含有吸着材は通常、基材上において層状の吸着部(吸着層)として形成される。このような吸着層については、排ガスは流通時に高速で吸着層の表面付近を通過し、吸着層中のゼオライトとは接触効率が悪いために、HC吸着性能が得難いという課題が存在する。当該課題を解決するためには、排ガスとゼオライトとの接触効率を上げるために吸着層中に空隙を設けることが考えられる。しかしながら、Si含有吸着材は高比表面積であるために、一般に基材又は他の触媒層上に形成されている場合には当該基材又は触媒層に対する密着性に乏しく、空隙を設けることで、吸着層が当該基材又は触媒層から剥離しやすいという課題があった。
 特許文献1~3は、HC吸着性能と耐剥離性の両立について考慮したものではない、また特許文献4及び5は、GPC等のパティキュレートフィルタにおける圧損防止やPM捕集率を検討したものであり、Si含有吸着材を有する吸着部におけるHC吸着性能を考慮したものではない。
 本発明は、前記従来技術の有する問題点の解決を目的としたものであり、従来難しかった、Si含有吸着材を有する吸着部におけるHC吸着性能の向上と高い耐剥離性能との両立が可能な排ガス浄化触媒を提供することを課題としたものである。
 本発明は以下の〔1〕~〔17〕を提供する。
〔1〕基材と、該基材に設けられてSiを含む吸着材を含有する吸着部と、を備える排ガス浄化触媒であって、
 前記吸着部は複数の空隙を有し、
 排ガス流通方向と直交する断面において,前記基材上に存在する前記吸着部の見掛け面積に対して,該吸着部中における下記式を満たす空隙の総和の割合が5%超30%以下である排ガス浄化触媒を提供するものである。
式:L/{2(πS)1/2}≦1.1
(Lは前記断面における前記空隙の周長であり、Sは前記断面における前記空隙の面積である)
〔2〕前記Siを含む吸着材がゼオライトである、〔1〕に記載の排ガス浄化触媒。
〔3〕 前記ゼオライトが、10員環及び12員環のうち少なくとも一種の細孔構造を有するゼオライトである〔2〕に記載の排ガス浄化触媒。
〔4〕前記ゼオライトが、BEA型、MSE型及びMFI型から選択される少なくとも一種のゼオライトである〔2〕又は〔3〕に記載の排ガス浄化触媒。
〔5〕前記吸着部のゼオライトの含有率が10質量%以上90質量%以下である、〔2〕~〔4〕の何れか1項に記載の排ガス浄化触媒。
〔6〕前記吸着部が、Pt、Pd及びRhから選ばれる少なくとも1種の貴金属を有する〔1〕~〔5〕の何れか1項に記載の排ガス浄化触媒。
〔7〕前記吸着部の厚みに対する前記割合の値が、0.20%/μm以上1.00%/μm以下である、〔1〕~〔6〕の何れか1項に記載の排ガス浄化触媒。
〔8〕前記吸着部に存在し,且つ前記式を満たす空隙の円換算直径の平均値が,1μm以上60μm以下である、〔1〕~〔7〕の何れか1項に記載の排ガス浄化触媒。
〔9〕前記吸着部に存在し,且つ前記式を満たす空隙の数の平均値が前記吸着部の断面積1mmあたり200個以上800個以下である、〔1〕~〔8〕の何れか1項に記載の排ガス浄化触媒。
〔10〕前記吸着部に存在し,且つ前記式を満たす空隙の円換算直径の標準偏差が、円換算直径の平均値の25%未満である、〔1〕~〔9〕の何れか1項に記載の排ガス浄化触媒。
〔11〕前記基材がフロースルー基材である、〔1〕~〔10〕の何れか1項に記載の排ガス浄化触媒。
〔12〕前記吸着部としてSiを含む吸着材を含有する吸着層を有し、更に、触媒活性成分を含む浄化層を有する、〔1〕~〔11〕の何れか1項に記載の排ガス浄化触媒。
〔13〕前記吸着部が、全コート量に対し、20質量%以上50質量%以下を占める、〔1〕~〔12〕の何れか1項に記載の排ガス浄化触媒。
〔14〕前記吸着部としてSiを含む吸着材を含有する吸着層を有し、該吸着層の厚さが、基材上の全コート層の厚さの20%以上80%以下を占める、〔1〕~〔13〕の何れか1項に記載の排ガス浄化触媒。
〔15〕 排ガス流路に排ガス浄化触媒を2つ以上備える排ガス浄化システムであって、〔1〕~〔14〕の何れか1項に記載の排ガス浄化触媒を、排ガス流通方向の上流から2つ目以降の触媒として有する、排ガス浄化システム。
〔16〕Siを含む吸着材と、
 L’/{2(πS’)1/2}≦1.05の真円度を有する粒子を個数基準で90%以上含み架橋樹脂からなる造孔剤と、水とを含有するスラリーを基材に塗工する工程、及び、
 基材に塗工した後の前記スラリーを焼成して、前記吸着材と、前記造孔剤の焼失によって形成される空隙とを含有する吸着層を形成する工程
 を備える排ガス浄化触媒の製造方法であって、
 前記スラリーを回転数3000rpm以上8000rpm以下での撹拌後に25℃における粘度2000cP以上100000cP以下とした状態で、基材に塗工する、排ガス浄化触媒の製造方法。
(但し、L’は造孔剤を走査型電子顕微鏡で観察してなる像の外周長であり、S’は走査型電子顕微鏡で観察してなる像の面積である。)
〔17〕前記スラリーにおける造孔剤の量が、スラリー中の造孔剤を除く固形分100質量部に対し、10質量部以上60質量部以下である、〔16〕に記載の排ガス浄化触媒の製造方法。
図1は、本発明の一実施形態である排ガス浄化触媒の模式斜視図を示す。 図2は、基材の軸方向に沿う断面の一部を拡大して示した図である。 図3は、図2において四角で囲まれた部分について基材の軸方向に沿う断面を示した図である。 図4は、吸着層の断面を観察するためのサンプリング方法の一例を示した図である。 図5は、隔壁(基材)上の吸着層12の走査型電子顕微鏡像に暫定的な境界線を引いた例を示す図である。 図6(a)及び(b)は、吸着層の断面の観察像の例を示す図である。 図7は、隔壁(基材)上の吸着層12の走査型電子顕微鏡像の区画線を引いた例を示す図である。 図8(a)及び(b)は、近似真円状の空隙率を求めるための区画線の引き方を説明するための模式図である。 図9(a)~(c)は、近似真円状の空隙率を求めるための区画線の引き方を説明するための模式図である。 図10(a)及び(b)は、近似真円状の空隙率を求めるための区画線の引き方を説明するための模式図である。 図11(a)及び(b)は、近似真円状の空隙率の測定方法を説明するための模式図である。
 以下本発明を、その好ましい実施形態に基づき説明するが、本発明は下記実施形態に限定されない。
 本実施形態の排ガス浄化触媒10を以下に説明する。
 本実施形態の排ガス浄化触媒10は、基材11と、該基材11に設けられてSiを含む吸着材を含有する吸着部12(以下、「吸着層12」ともいう。)と、を備える。Siを含む吸着材及びそれを含む吸着部(吸着層)が吸着する対象は、排ガス中の有機物、例えば、HC(炭化水素)やアルデヒド、アルコール、カルボン酸、ケトン、エーテル、エステル等である。
 排ガス浄化触媒10は、吸着層12を形成するための支持体として、基材11を有する。基材11の形状としては、一般的にはハニカム形状、ペレット形状、フォーム形状等が挙げられ、ハニカム形状であることが好ましい。ハニカム形状の基材の例としては、軸方向に平行に長い排ガス流通路であるセル15を多数有する基材が挙げられ、例えばウォールフロー型のものやフロースルー型のものが挙げられる。本発明ではフロースルー型の基材を用いることが、均一な吸着層12の形成の点で好ましい。図1及び図2に排ガス浄化触媒10の基材11がフロースルー型のハニカム基材である場合の例を示す。フロースルー型のハニカム基材としては、例えば、1平方インチ当たり約200~900セルであり、体積が0.01~2.0Lであり、軸方向長さ全長15~200mm、セル同士間を隔てる隔壁23の厚さが50~150μmであるものを用いることがHC吸着性能や吸着HCの浄化の点で好ましい。
 基材11の材質としては、例えば、アルミナ(Al)、ムライト(3Al-2SiO)、コージェライト(2MgO-2Al-5SiO)、チタン酸アルミニウム(AlTiO)、炭化ケイ素(SiC)等のセラミックスや、ステンレス等の金属材料を挙げることができる。基材11は、通常、図1に示すような円柱状を有しており、柱状の軸方向が排ガス流通方向Xと略一致するように、内燃機関の排気経路に配置されている。基材11全体の外形については、円柱形に代えて、楕円柱形、多角柱形を採用してもよい。基材11はその軸方向が排ガス流通方向Xと平行になるように設けられる。
 基材11の隔壁23上には、層状のSi含有吸着材を含む吸着部12が設けられている。図2における基材11に設けられたコート層16は、Si含有吸着材を含む層状の吸着部12からなるか、それとも、Si含有吸着材を含む層状の吸着部12をその厚み方向の一部に有するものである。以下、Si含有吸着材を含む層状の吸着部12を、「吸着層12」とも記載する。図3(a)~(c)は、基材11の隔壁23上に吸着層12が設けられる形態の例を挙げている。図3(a)及び(b)に示す例では、吸着層12は、隔壁23と直接接触するように隔壁23上に設けられている。図3(b)では、吸着層12における隔壁23との反対側に他の層13が形成されている。また吸着層12は、図3(c)に示す通り、他の層13を介して隔壁23上に設けられていてもよい。吸着層12は、基材11における排ガス流通方向Xの少なくとも一部において形成されている。以上の通り、本実施形態では基材11上にSi含有吸着材を含む吸着部が設けられている具体的な態様として、基材11の隔壁23上にSi含有吸着材を含む吸着部が設けられている。なお、ここでいう「他の層13」とはSiを含む吸着材を含まない層を指す。図3(a)~(c)に示す通り、吸着層12は複数の空隙12cを有する。
 本発明では、吸着層12の排ガス流通方向Xと直交する断面における円形空隙率が特定値以上であることで、吸着層12のHC吸着性能が優れることを見出した。吸着層12中の空隙は多いほど、吸着層12中のSi含有吸着材と排ガス中のHCとの接触確率が高まり、HC吸着性能にとって有利である。一方で、吸着層12中の空隙が多いほど、吸着層12と他の層13又は隔壁23との界面付近に空隙は多くなりやすいと考えられる。これは、吸着層12中の空隙は通常、吸着層形成用スラリーに造孔剤を添加し、当該スラリーを焼成することにより造孔剤を除去して得られるところ、当該空隙を得るための造孔剤は、粒子の大きさや比重の違いから、スラリーの塗工及び焼成の過程において、スラリー塗工部分における基材11の隔壁23又は他の層13との界面付近に蓄積しやすいと考えられるためである。
 触媒10の前記断面において円状の空隙は、他の形状の空隙に比して隔壁(基材)や他の層との接点が少ない。また触媒10の前記断面に円状の空隙をもたらす球状の造孔剤は、単位体積当たりの表面積が小さく針状や矩形状の造孔剤よりも凝集しにくいため吸着層12中に巨大な空隙ができることが抑制される。
 上記の観点から、発明者はHC吸着性能及び剥離性能と吸着層中の円形空隙の面積比率との関係を更に鋭意検討した。その結果、円形の空隙率が特定値であることで、高い剥離耐性を有しながら、HC吸着性能に優れる吸着層12が得られることが判った。
 具体的には、排ガス浄化触媒10は、排ガス流通方向(以下「X方向」又は「排ガス流通方向X」ともいう。)に直交する断面において、基材11上に存在する吸着層12の見掛け面積に対して、式:L/{2(πS)1/2}≦1.1(Lは前記断面における前記空隙の周長であり、Sは前記断面における前記空隙の面積である)を満たす前記空隙の面積の総和の割合(本明細書において、「円形空隙率」ともいう。)が好ましくは5%超30%以下である。
 前記断面における基材11上に存在する吸着層12の見掛け面積とは、前記断面における基材11上に存在する吸着層12の空隙を含めた全体の面積を指す。
 式:L/{2(πS)1/2}の値は1に近いほど真円に近い形状であり、最小値は1である。従って前記式で導き出される値が1.1以下の空隙の形状は真円に近いものとなる。以下、前記式を満たす空隙を近似真円状の空隙という。なお、画像処理に基づいて円形空隙率を測定する都合と上、近似真円状の空隙はその円換算直径が1μm以上であることが好ましい。このため円形空隙率は、具体的には、前記式を満たし、且つ円換算直径が1μm以上60μm以下である空隙の面積の総和の割合であることが好ましい。ここで円換算直径とは、空隙を同面積の円とみなした場合の直径を指す。
 円形空隙率を5%超とすることで、吸着層12におけるHC吸着性能を高めることができる。また円形空隙率を30%以下とすることで隔壁23又は他の層13から吸着層12が剥離しにくくなる。これらの観点から、基材11の隔壁23上の吸着層12における円形空隙率は5%以上30%以下であることが好ましく10%以上25%以下であることがより好ましく、15%以上25%以下であることが更に一層好ましい。
 円形空隙率の測定方法は、走査型電子顕微鏡観察に基づいて行うことが好ましい。走査型電子顕微鏡観察に供する排ガス浄化触媒10の断面のX方向位置に限定はなく、任意の箇所の断面において観察することができる。円形空隙率の測定方法は例えば以下の通りである。
(1)サンプリング
 排ガス浄化触媒10において、図4(a)のように、排ガス流通方向と平行な中心軸を有する直径25.4mmの円柱状サンプルSpをくり抜く。この円柱状サンプルSpは、排ガス浄化触媒10の排ガス流通方向Xの全体に亘る長さを有する。排ガス流通方向と直交する平面(図4(b)参照)において、排ガス浄化触媒10における円柱状サンプルSpのくり抜き位置に特に制限はない。図4(b)のように、好ましくは前記平面において、基材11の中心Cから径方向外側に向けて、その径方向長さの10%~70%離間した位置に前記くり抜き部分の中心軸が位置することが1つの触媒で複数の円柱状サンプルSpを採取できる点から好ましい。なお前記平面における基材11の中心は、前記平面における基材11の外形を横断する最大の線分を二等分する点とする。また前記の径方向長さとは、前記の最大の線分の二分の一とする。
 排ガス流通方向Xにおける排ガス浄化触媒10の断面位置は上述した通り限定されない。例えば、前記の円柱状サンプルSpのX方向の上流端又は下流端から5mm以上離れた位置とすると、吸着層12の断面を観察しやすい。例えば、サンプルSpのX方向中央部分を観察面として用いてもよい。これらの観察面はX方向と直交する断面で切断することで露出させる。観察面には、樹脂の埋め込み及び研磨を行う。なお、観察サンプルの厚さ(X方向長さ)は10mmとすることがサンプルの取り扱い易さ等から好ましい。図4(c)では、排ガス流通方向Xにおける上下流側の各端部からそれぞれ10mmの位置t及びbを観察するための2つのサンプル(図4(c)のT及びB)並びに排ガス流通方向Xにおける中心位置mを観察するためのサンプル(図4(c)のM)を得る例を示している。
(2)吸着層と接する隔壁外縁の特定
 前記の観察面を、EPMA(Electron Probe Micro Analyzer)マッピングにより、吸着層12、及びその上又は下に位置する、隔壁23又は他の層13の分布をそれぞれ観察して判定する。観察倍率は40~1000倍とする(加速電圧15kV~25kV)。
 EPMAにおいて吸着層12、隔壁23及び他の層13の分布を確定するため用いる成分は、これらの各層及び基材11を、それぞれ、蛍光X線分析等に供することで特定すればよい。例えば隔壁23(基材11)がコージェライトを含む場合は基材成分としてMgの分布を観察する。吸着層12は、Siを含む吸着材を含有するため、Siの分布を観察することにより特定することができる。あるいは、吸着層12にSi以外の特定の元素が含まれる場合には、当該特定の元素の分布を観察して吸着層12を特定してもよい。他の層13については、基材11や吸着層12に含まれていない成分であればよい。同一サンプルの同じ位置を、EPMAマッピングと同倍率で走査型電子顕微鏡(SEM)により画像撮影し、先のEPMAマッピング画像と照合することにより、吸着層12、基材11及び(必要に応じて)他の層13の分布を確定する。吸着層12が基材11に直接接触している場合は、基材11成分の分布範囲の外縁により、基材11上の吸着層12の「暫定的な境界線」を特定する。吸着層12が基材11上に他の層13を介して設けられている場合には、他の層13の分布範囲の外縁により、他の層13上の吸着層12の「暫定的な境界線」を特定する。SEM観察の加速電圧は10kV~15kVとすることが好ましい。
 上述した通り、ハニカム基材のセルは通常、そのX方向に直交する断面が多角形状となっている。セルにおけるSEM観察像及びEPMA観察像においては、多角形の角部等、辺と辺との交差部Cnを含む画像を採用する(図5参照)。図5は、断面が四角形状であるセルを有するハニカム基材の隔壁上に、直接、吸着層12が形成された排ガス浄化触媒10について、X方向に直交する断面をSEMにより観察した像の例である。図5は、当該排ガス浄化触媒10における、断面が四角形状のセルの角部を観察した像である。当該角部のような基材11の辺と辺との交差部Cnは、基材11上の単位面積当たりの吸着材成分の付着量が多く、排ガスとの接触効率が悪くなりやすい。そのため特定の円形空隙率を有することによる効果が大きいと考えられる。また交差部Cnは、吸着材成分の付着量が多いことで、層内に収まる空隙が多く、空隙を観察しやすい。角部は丸みを帯びていてもよい。
 上述した交差部Cnの観察像を用いる場合、基材11の前記断面におけるセル15の周長(スラリー塗工前のセル15におけるX方向と直交する断面における内周長)に対して、観察像の長手方向の長さL1(図5参照)が15%以上である部分の観察像を採用することが好ましい。また、観察像の長手方向L1はセル15がX方向と直交する断面において多角形状である場合、その多角形の一辺の長さの80%以下であることが好ましい。多角形において各辺の長さが同一でない場合、ここでいう一辺の長さは各辺の長さの平均値とする。
 なお、一つの観察像における交差部Cnは一つとすることが好ましい。一の観察像における交差部は一つとは、詳述すると、以下の意味である。図1で枠38で囲んだ箇所のように、隔壁で区画されたセルにおいて一つの交差部(角部)は他の交差部(角部)と隣接している。従って、例えば観察像によっては複数の交差部Cnが一の観察像に観察される可能性がある。例えば図6(a)では4つの交差部Cnが観察されており、図6(b)では2つの交差部Cnが観察される。しかし、本明細書では一の観察像における交差部Cnは好ましくは一つである(例えば図5)。ただし、不可避的に観察像に隣接する交差部Cnが含まれてしまうことは許容される。また、観察像としては、観察像の範囲内に所定以上の長さの吸着部が存在する画像が好ましい。すなわち、好ましくは観察像の長手方向Aの長さに対し、一つの交差部Cn及びそれと接続する2つの辺E1及びE2に沿って延びる吸着層12が同方向の長さとして80%以上連続して存在する観察像を採用する(図5参照)。また観察像において、好ましくは観察像の幅方向Bの長さに対し、一つの交差部Cn及びそれと接続する2つの辺E1及びE2に沿って延びる吸着層12が同方向の長さとして80%以上連続して存在する観察像を採用する(図5参照)。
(3)区画幅の特定
 上述した通り、吸着層12における基材11側の外縁は、SEM観察像とEPMAマッピング像とに基づいて、基材成分、或いは他の層13が介在している場合は他の層13の成分の分布範囲の外縁により規定される。
 また、吸着層12における、基材11の反対側の外縁は、吸着層12が基材11と反対側において他の層13が積層されている場合、吸着層12の分布範囲の外縁により、吸着層12の基材11と反対側の外縁を規定する。また、吸着層12における基材11と反対側に他の層13が積層されていない場合、SEM観察像中における吸着層12と触媒外部との色の違いにより、外縁が規定される。これらの吸着層12の外縁は、図5に示す通り、「暫定的な境界線」として規定される。色の違いの例としては、吸着層12は灰色であるのに対し、触媒10の外部は黒色となっている図5の例が挙げられる。「暫定的な境界線」は、後述する境界線描画用の画像処理ソフトウェアにより規定することができ、選択閾値の設定も後述と同様の範囲内とすることができる。「暫定的な境界線」は、後述する区画幅を規定するために暫定的に近似真円状の空隙を規定し、且つ後述する基材側境界線及び外側境界線を規定するためのものであり、吸着層面積の測定には使用しない。
 「暫定的な境界線」によって区画された基材11又は他の層13上の吸着層において、各空隙のS(空隙面積)とL(空隙の周長)を測定し、円換算直径が1μm以上60μm以下及び前記式:L/{2(πS)1/2}≦1.1に該当するか否かを判断する。各空隙の形状を特定するための画像処理は、境界線描画用の画像処理ソフトウェアにより行うことができ、境界線描画用の画像処理ソフトウェアとしては、例えばPictbear(提供元:フェンリル株式会社)を用いることができる。選択閾値としては例えば明確な空隙部位の色を基準として20以上40以下が好ましい。明確な空隙部位の色とは、吸着層の構成成分及び基材11以外の部分の色であり、図5に示すように、通常黒色である。各空隙の外周は20ポイント以上を用いて描画されることが好ましい。境界線描画を行った後における空隙の周長L及び面積Sの計算には、画像解析ソフトウェアを用いることができ、具体的にはImageJ(パブリックドメイン)、Photoshop(提供元:Adobe Systems Incorporated)又はAreaQ(提供元:エステック株式会社)を用いることができる。上述した「暫定的な境界線」で区画された隔壁23又は他の層13上の吸着層12中に、その全体が含まれ、L/{2(πS)1/2}≦1.1を満たし且つ円換算直径が1μm以上60μm以下である空隙のそれぞれの面積を、20視野分測定する。それら全てについて、各々円換算直径を測定する。次いで、例えば図7に示すように、得られた円換算直径のメディアン径以下の幅で、触媒断面のSEM像に、観察像の縦及び横にそれぞれ平行な直線を複数本等間隔に引く。以下、区画線間の幅を「区画幅」ともいう。区画幅は、円換算直径のメディアン径以下の幅であれば十分な測定精度を確保でき、例えば、当該円換算直径のメディアン径に対して75%とする。図7では、観察像の長手方向が横方向Aであり、幅方向が縦方向Bである。観察像が正方形等の長手方向を有しない形状である場合は、下記説明の長手方向と幅方向の語を横方向と縦方向に読み替える。
 なお、20視野とは、「暫定的な境界線」に区画された隔壁上の吸着層12にその全体が含まれ、円換算直径が1μm以上60μm以下、且つL/{2(πS)1/2}≦1.1を満たす空隙を少なくとも一つ有する視野を意味し、そのような空隙を有しない視野は含めないものとする。
(4)隔壁上における吸着層の見掛け面積の特定
 SEM観察像は、測定倍率を適宜設定し、観察像における長手方向Aにおける前記の区画幅による区画線数が35本以上となる視野で測定することで得られる。得られたSEM観察像に対して以下の処理を行う。図7に示すように、上述した暫定的な境界線と長手方向A又は幅方向Bに延びる区画線との交点を直線で結んだ線を、基材側における吸着層12の境界を画定する線(以下、上記の「暫定的な境界線」と区別して「基材側境界線」ともいう。)とする。基材11と反対側において、暫定的な境界線である吸着層12の端縁と長手方向A又は幅方向Bに延びる区画線との交点を直線で結んだ線を、吸着層12とその外部との境界を画定する線(以下、上記の「暫定的な境界線」と区別して「外側境界線」ともいう。)とする。以下では長手方向Aに延びる区画線を区画線Aとも呼び、幅方向Bに延びる区画線を区画線Bとも呼ぶ。
 なお観察像において、暫定的な境界線と区画線A及び区画線Bのどちらの区画線との交点を結ぶかについては、まず図8(a)に示す描線方向(区画線Bに沿う方向)に向かって、暫定的な境界線と、各区画線Aとの交点を結んでいく。この際においては、観察像としては、図8(a)に示す例のように、観察像の幅方向Bの両端縁(A方向に延びる2つの端縁A1、A2)において、基材11の存在部分の長さが異なる観察像を選ぶ。次いで、その観察像において、基材11の存在部分の割合が少ない端縁A1から他端側A2に向かって、区画線Aと暫定的な境界線との交点を結んでいく。
 一本の暫定的な境界線が一本の区画線Aと2点以上で交差した場合は、後述する図10(b)で説明する場合を除き、直前に結んだ交点との距離が近い交点を選ぶ。図8(a)の例では、暫定的な境界線について、描線方向に沿って交点P’を結んだあとは、次の区画線Aとの交点が存在しない。このように描線方向において、区画線Aと暫定的な境界線との交点がなくなった場合、直前に結んだ交点P’に戻り、交点P’よりも描線方向の前側(図8(a)ではA2側)でP’と最も近い、区画線Bと暫定的な境界線との交点である点Q’をP’と直線で結ぶ。次いでA方向における線P’Q’に対する基材11の反対側に向けて、区画線Bと暫定的な境界線との交点を結ぶように切り替え、以後同様の事象がない限り同様にする。なお、交点P’よりも描線方向の下流側で区画線Bと暫定的な境界線との交点が存在しない場合(図8(b))は、交点P’とその前の交点R’を結ぶ直線に対する基材11の反対側で交点P’と最も近い、区画線Bと暫定的な境界線との交点を探し、A方向における線P’R’に対する基材11の反対側に向けて、区画線Bと暫定的な境界線との交点を結ぶように切り替え、以後同様の事象がない限り同様にする。
 なお図8、図9、図10では、説明のため吸着層12の図示を省略している。
 後述する通り、図7に示すように、観察像における、基材側境界線と、外側境界線と、幅方向Bにおける最も外側の2本の区画線A’(図7において、太い線で示した2本のA方向に延びる区画線)、及び、長手方向Aにおける最も外側の2本の区画線B’(図7において、太い線で示した2本のB方向に延びる区画線)とに囲まれた面積を吸着層12の見掛け面積として確定する。
 なお、以下では基材側境界線を規定する場合の例外を説明する。
 図7の符号S1及びS2に示すように、基材11中に吸着材成分が浸透した箇所については、以下のように基材側境界線を設定する。図7に示す、セルの角部以外の浸透箇所であるS1については、図9(a)に示すように、描線方向に沿って区画線Bの交点を結んでいる場合に、区画線Bと暫定的な境界線の交点P、交点R、交点Qを連結した基材側境界線において、交点Pに隣接した交点Rの幅方向Bの変化幅が区画幅以上あった場合には、その交点Rは用いず、幅方向Bの変化幅が区画幅未満である直線PQを基材側境界線とする。
 同様にA方向の描線方向に沿って区画線Bと暫定的な境界線の交点を結んでいる場合に、交点Pを基準として幅方向Bの変化幅が区画幅以上である交点が連続した場合も(図9(b)の交点Rおよび交点R)、交点Pを基準にしたB方向の変化幅が区画幅以上である交点(交点Rおよび交点R)は用いず、幅方向Bの変化幅が区画幅未満である直線PQを基材側境界線とする。図9(a)及び(b)は区画線Bと暫定的な境界線との交点を結んでいた場合であったが、区画線Aと暫定的な境界線との交点を結んでいる場合でも同様に取り扱う。つまり、図9(c)に示すように、描線方向に沿って区画線Aと暫定的な境界線の交点を結んでいる場合に、交点Pを基準として長手方向Aの変化幅が区画幅以上である交点が存在した場合も(図9(c)の交点R)、当該Rは用いず、長手方向Aの変化幅が区画幅未満である次の交点Qとの直線PQを基材側境界線とする。
 但し例えば図10(a)のように区画線Bと暫定的な境界線との交点を結んで描線していく場合にB方向における区画幅以上の変化を伴う交点が5つ以上連続した場合には以下のようにする。
 図10(a)のように、交点P→交点R→交点Rと線を引いた後、交点Q以降の5つ以上の交点が交点Rを起点としてB方向における区画幅以上の変化を伴っている。この場合、起点とした交点Rから一つ戻った交点Rを起点にする。次いで、交点Rを起点とし、同様に交点Q以降の5つ以上の交点が交点Rを起点として区画幅以上の変化を伴う場合には、交点Rから一つ戻った交点Pを起点にする。交点Pは、交点Qに対して交点を結んでいる区画線の延びる方向Bにおいて区画幅以上の変化を伴わない。この場合、交点Pを起点として、直線PQを基材側境界線とする。例えば図10(a)にて、交点Rおよび交点Rは使用せず、直線PQを基材側境界線としている。なお、区画線Aと暫定的な境界線との交点を結んで描線する場合でも同様に取り扱う。
 また例えば図7のS2のように角部での吸着層12と基材11の位置関係が変化する箇所では、次のように基材側境界線を規定する。図10(b)のように、区画線Aと暫定的な境界線との交点P’において、隣接する交点R’を含む区画線Aは、A方向における、P’R’が形成する基材側境界線の基材11とは反対側において2つ以上の暫定的な境界線との交点を有している。このような場合にはP’に対しA方向における基材と反対側でPと隣接する区画線Bと暫定的な境界線との交点であるQ’を用いる。直線P’Q’を基材側境界線とし、以後、上記事象に該当しない場合は同様に区画線Bを用いて基材側境界線を規定する。
(5)近似真円状の空隙面積の特定
 次いで、基材11上の吸着層領域を、前記の基材側境界線と、前記外側境界線と、観察像における幅方向Bの最も外側の2本のA方向区画線A’と、長手方向Aの最も外側の2本のB方向区画線B’とに囲まれた領域(以下、「見掛け面積」の領域ともいう。)として特定し直す(図7)。このように基材11上の吸着層領域を特定し直すのに伴い、上記(2)において特定した「暫定的な境界線」内の代わりに、新たに「見掛け面積」の領域内に含まれ、円換算直径が1μm以上60μm以下且つ前記式:L/{2(πS)1/2}≦1.1を満たす空隙及びその面積を特定し直す。その際、上述した境界線の特定処理においては行わなかった以下の近似処理を行う(図11参照)。
 図11(a)のα及びβのように、一部突起又は欠損を有しているために、実際の周長及び面積によってはL/{2(πS)1/2}≦1.1に該当しない略円状の空隙については以下のように処理する。突起部分又は欠損部分以外の周長(図11(a)の実線長)に対し、それらの両端をつなぐ点線長(図11(a)の点線長)の比率が30%以下である場合には、当該点線及び実線に囲まれた範囲を空隙とみなす。点線及び実線に囲まれた面積及びそれらの線の合計である周長について、L/{2(πS)1/2}≦1.1に該当するか否かを判断し、該当する場合は当該実線と点線で囲まれた部分を当該空隙の形状とみなし、円形空隙率の計算に算入する。α及びβについて前記のようにみなした仮の空隙形状を図11(b)に示す。一方、前記の比率が30%超である場合には、上記処理を行わず、従来通りに面積と周長を求め、前述の式L/{2(πS)1/2}≦1.1に該当するかどうか判定する。図11(a)のγ及びδのように、基材側境界線、外側境界線又は前述した長手方向A最外側の2本の区画線B及び幅方向Bの最外側の2本の区画線Aにより一部が欠損する空隙については、空隙における境界線以外の周長(実線長)と、空隙における境界線部分(点線長)とから、α及びβと同様の処理を行う。また区画線により一部が欠損する空隙についてもα及びβと同様の処理を行う。また、図11(a)のεのように吸着材成分等を内包する場合、内包する成分はないものとして、前記式を満たす空隙及びその面積を特定する。
 以上の処理により、基材11上の吸着層12について、前記の「見掛け面積」の領域内に存在する、1μm以上60μm以下の円換算直径を有する近似真円状の空隙の面積の総和を求め、当該総和の基材11上の吸着層12の見掛け面積に対する比を求める。各視野においてそれぞれこの比を算出し、20視野分の平均値として円形空隙率を求める。なお、上記の領域の特定し直しに伴い、何れかの視野において、「見掛け面積」の領域内で1μm以上60μm以下の円換算直径を有する近似真円状の空隙が存在しないこととなった場合には、新たな別の視野について先に求めた区画幅による区画線を引き、且つEPMA観察像を用い先に述べた手順で「見掛け面積」の領域を特定する。そして「見掛け面積」の領域において1μm以上60μm以下の円換算直径を有する近似真円状の空隙が1つ以上存在する20視野での平均値を求めることとする。
 本発明では一つのサンプルSpにおける一つ以上の観察面を観察した合計20視野を観察して得られた円形空隙率が、前記範囲を満たせばよい。例えば排ガス流通方向Xにおいて異なる位置の複数の観察面をそれぞれ20視野観察したときに、観察面によって円形空隙率が異なる場合、何れかの観察面における円形空隙率が前記の範囲を満たせば、本発明に該当するものとする。このことは、後述する円換算直径及び1mm当たりの近似真円状空隙数、及び吸着層12の厚さについても同様である。
 「基材側境界線」及び「外側境界線」により区画される基材11上の吸着層12において、近似真円状の空隙の円換算直径の平均値は1μm以上60μm以下であり、この範囲とすることにより、剥離抑制やHC吸着性能に寄与する円形空隙率の測定が可能となる。剥離抑制やHC吸着性能を一層高める観点から、前記の円換算直径の平均値は、5μm以上50μm以下であることが好ましく、10μm以上30μm以下であることがより好ましい。円換算直径の平均値は、1μm以上60μm以下の円換算直径を有する近似真円状の空隙それぞれの円換算直径の平均値を視野ごとに求め、各視野の平均値を、円形空隙率を求めるのに最終的に用いた20視野分で平均することで得られる。
 基材11上の吸着層12に存在し、1μm以上60μm以下の円換算直径を有する近似真円状の円換算直径の標準偏差は、前記の円換算直径の平均値に対して、25%未満であることが好ましい。このことは空隙形成に用いる造孔剤が高分散で吸着層12に存在していることを示しており,吸着層12の密着性低下を抑制する利点があるためである。近似真円状の円換算直径の標準偏差は、円換算直径の平均値に対して5%以上であることが好ましい、このことは、同一観察面にすべての造孔剤が等しく並んでおらず、わずかに手前方向や奥方向に存在することで過度な凝集を回避し高分散を保っていることを示している。造孔剤が高分散であることは、吸着層12の密着性低下を抑制する利点があるため好ましい。これらの点から、円換算直径の標準偏差は、前記の円換算直径の平均値に対して10%以上23%以下であることがより好ましく、15%以上20%以下であることが特に好ましい。また、円換算直径の標準偏差自体の値としては、例えば0.1μm以上15μm以下が好ましく挙げられ、1.0μm以上5.0μm以下がより好ましい。
 基材11上に存在する吸着層12の見掛け面積1mmあたり、1μm以上60μm以下の円換算直径を有する近似真円状の空隙の平均数は50個以上であることが、HC吸着性能の点で好ましく、25000個以下であることが剥離抑制の点で好ましい。これらの観点から、前記の見掛け面積1mmあたり、1μm以上60μm以下の円換算直径を有する近似真円状の空隙の平均数は100個以上20000個以下であることがより好ましく、200個以上15000個以下であることが更に一層好ましい。吸着層12の見掛け面積1mmあたりの、1μm以上60μm以下の円換算直径を有する近似真円状の空隙の平均数は、円形空隙率を求めるのに最終的に用いた20視野分の平均値である。
 基材11上の吸着層12の平均厚さは、10μm以上であることがHC吸着性能及び近似真円状の空隙形成の点で好ましく、100μm以下であることが実用上の圧力損失を維持する点で好ましい。これらの点から、基材11(隔壁23)上の吸着層12の平均厚さは、15μm以上60μm以下であることがより好ましく、20μm以上50μm以下であることが更に一層好ましい。なお、基材11(隔壁23)上の吸着層12の平均厚さは、一の観察像において、基材11上の吸着層12の見掛け面積を、該観察像における基材側境界線の長さで割ることで求める。このようにして各視野において吸着層の厚さを求める。各視野の厚さについて、円形空隙率を求めるのに最終的に用いた20視野における平均値を求める。
 上述した円形空隙率を得るためには、後述する好適な排ガス浄化触媒の製造方法において、造孔剤として特定の形状と熱分解開始温度、粒度分布及び溶剤中の膨潤度を有するものを用い、造孔剤の量、造孔剤の粒径、スラリー中の吸着材及びその他の金属酸化物の粒子の粒径、吸着材及びその他の金属酸化物の組成、後述するスラリー粘度を適宜調整すればよい。近似真円状空隙数、円換算直径及びそれに対する標準偏差の割合、並びに吸着層12の厚さも同様である。
 本発明では、円形空隙率が30%以下であり、且つ吸着層12の厚み(μm)に対する円形空隙率(%)の値(%/μm)が0.20(%/μm)以上であることが吸着層12の密着性低下の点で特に好ましい。吸着層12の厚みに対する円形空隙率の値は、吸着層12を形成する際に用いる造孔剤の凝集程度を示す値である。吸着層12を形成する際における造孔剤の凝集が多くなるほど、形成される吸着層12の円形空隙率が小さくなるため、吸着層12の厚みに対する円形空隙率の値は小さくなる。出願人は、吸着層12の厚みに対する円形空隙率の値を上記範囲に制御することで、吸着層12において、円形空隙が十分に分散した状態で形成され、効果的に剥離を抑制できると考えている。
 吸着層12の厚み(μm)に対する円形空隙率(%)の値(%/μm)の上限は、1.00(%/μm)以下であることが、空隙が多すぎることによる吸着層12の剥離を抑制するという点から好ましい。より好ましくは、吸着層12の厚み(μm)に対する円形空隙率(%)の値は、0.30(%/μm)以上0.80(%/μm)以下である。吸着層12の厚み(μm)に対する円形空隙率(%)の値(%/μm)は、造孔剤として特定の形状と熱分解開始温度、粒度分布及び溶剤中の膨潤度を有するものを用い、造孔剤の量、造孔剤の粒径、スラリー中の吸着材及びその他の金属酸化物の粒子の粒径、吸着材及びその他の金属酸化物の組成を調製した上、後述するスラリー粘度を調整することで実現できる。
 更に一層効果的に、HC吸着性能及び剥離抑制のバランスを図る点から、吸着層12中の細孔に由来する細孔直径1~300nmの細孔容積は0.05cm/g~0.3cm/gの範囲内であることが好ましい。上記細孔容積の測定方法としては、ISO 15901―2に記載のBJH法(Barrett―Jоyner―Halenda法)に従い、測定した得られた窒素吸着等温線から細孔容積を算出する。算出には、脱離曲線を使用し、窒素分子の吸着断面積は0.1620nmとして算出する。測定装置としてマイクロトラック・ベル株式会社製BELSORP MAX IIを用いることができる。
 Si含有吸着材としては、ゼオライト、シリカ、シリカアルミナフォスフェート(SAPO)に代表1されるシリカ―アルミナ複合酸化物が挙げられ、ゼオライトを用いることがHC吸着性能をより一層高める点から好ましい。ゼオライトとは、四面体構造をもつTO単位(Tは中心原子)がO原子を共有して三次元的に連結し、開かれた規則的なミクロ細孔を形成している結晶性物質を指す。具体的には国際ゼオライト学会(International Zeolite Association;以下これを「IZA」ということがある。)の構造委員会データ集に記載のあるケイ酸塩、ゲルマニウム塩、ヒ酸塩等が含まれる。
 ここで、ケイ酸塩には、例えばアルミノケイ酸塩、ガロケイ酸塩、フェリケイ酸塩、チタノケイ酸塩、ボロケイ酸塩等が、ゲルマニウム塩には、例えばアルミノゲルマニウム塩等が、ヒ酸塩には、例えばアルミノヒ酸塩等が含まれる。これらには例えば骨格中のSi又はAlを、Ti、Ga、Mg、Mn、Fe、Co、Znなど2価や3価のカチオンで置換したものが含まれる。本実施形態では、ゼオライトとして、結晶性アルミノケイ酸塩を用いることが好ましい。ゼオライトの結晶構造の形状はさまざまであり、BEA型、MSE型、MFI型、YFI型、FER型、MOR型、FAU型等の類型に分類されている。中でも本発明では、10員環及び12員環のうち少なくとも一種の細孔構造を有するゼオライトを採用することがHC吸着性能の点から好ましく、その中でも特にBEA型、MSE型、MFI型、YFI型から選ばれる少なくとも一種を採用することが、細孔径が排気ガス中のHC分子種として多く含まれるトルエン、プロピレン、ペンタンなどの吸着性に優れたものとすることができる点で好ましく、とりわけ12員環構造を有するBEA型、MSE型、YFI型から選ばれる少なくとも一種を採用することがより好ましい。
 ゼオライトを用いる場合、そのSiO/Alモル比としては、5~500、より好ましくは5~250、特に10~40であることが、HC吸着性能に優れ、且つガソリンエンジン等の高温の排気ガス下での耐熱性に優れる点で好ましい。
 ゼオライトは、その機能を向上させる点から各種元素を担持することが可能であり、そのような元素としては、P、Zr、Ga、Sn、B、K、Csが例示される。特にP及び/又はZrを含有することが耐熱性の向上の点で好ましく、両者を組み合わせることが最も好ましい。P及びZrは例えばリン酸(HPO)やオキシ硝酸ジルコニウムをゼオライトに修飾させる焼成することでゼオライト中に担持される。ゼオライトがPを含有する場合、その量としてはリン原子換算として、修飾後のゼオライトに対し、0.5~10質量%が挙げられ、1~5質量%がより好ましい。またゼオライトがジルコニウムを含有する場合、その量としては、修飾後のゼオライトに対し、Zr原子換算として、1~20質量%が挙げられ、5~10質量%がより好ましい。ここで、修飾後のゼオライトの量とは、ゼオライトが何れか一又は二以上の元素又は化合物で修飾されている場合、その元素又は化合物量を含んだ量を指す。ゼオライト中のリン及びジルコニウムの量は蛍光X線装置で測定できる。
 本明細書中、成分Aが粒子Bに「担持されている」とは、当該粒子Bの外表面又は細孔内表面に成分Aが物理的又は化学的に吸着又は保持されている状態をいう。具体的には、粒子Bが成分Aを担持していることは、例えば排ガス浄化触媒10の断面をEDSで分析して得られた元素マッピングにて、成分Aと粒子Bとが同じ領域に存在することを確認することで、粒子Bが成分Aを「担持」していると判断できる。ここで粒子という場合、焼成により粒子同士が結合して焼結体となったものも含む。
 吸着層12におけるゼオライトの割合は、HC吸着性能及び密着性の点から30質量%以上95質量%以下が好ましく例示され、50質量%以上90質量%以下がより好ましく、57質量%以上80質量%以下が特に好ましい。
 吸着層12に含まれうるSi吸着材以外の成分としては、例えば、アルミナ、チタニア、ジルコニア、セリア、セリア-ジルコニア、活性炭や金属―有機構造体(MOF)等が挙げられる。特にアルミナが耐熱性に優れるという観点で好ましく用いられる。吸着層12に含まれうるSi吸着材以外の金属酸化物の量は、吸着層12中、例えば、5質量%以上50質量%以下がより好ましく、10質量%以上43質量%以下が特に好ましい。
 吸着層12は触媒活性成分を含有していてもよい。触媒活性成分としては白金族金属が挙げられ、具体的には、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)及びオスミウム(Os)のうちの何れか1種又は2種以上が挙げられる。HC等の浄化性能の観点から、吸着層12に含まれる触媒活性成分は、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)から選ばれる少なくとも1種であることが好ましい。吸着層12が触媒活性成分を含有する場合、その量は0.05質量%以上5質量%以下であることが好ましく、0.5質量%以上2.5質量%以下であることがより好ましい。
 吸着層12は、Cu、Ag、Ni、Fe及びMnから選ばれる少なくとも1種の遷移金属を有していてもよい。このような遷移金属を、Si含有吸着材を含む吸着層に含有させると、高温域におけるHCの保持性能が高くなるため好ましい。
 吸着層12中のゼオライトの量やアルミナ等無機酸化物の量、遷移金属や触媒活性成分の量は、吸着層12を全溶解して得られる溶液中の各種成分元素量をICP-AESで測定することにより測定できる。
 吸着層12の質量は、乾燥後の質量で、吸着層12を形成した部分の基材11の体積1Lあたり30g以上であることがHC吸着性能の向上などの点で好ましく、特に50g以上であることがより好ましい。吸着層12の質量は、乾燥後の質量で、吸着層12を形成した部分の基材11の体積1Lあたり200g以下であることが剥離耐性の向上などの点で好ましく、150g以下であることがより好ましい。ここでいう基材11の体積は、基材11の隔壁23、吸着層12、他の層13を含有する場合は当該他の層13、隔壁23中の空孔、セル15内の空間を含めた見掛けの体積である。基材11が円柱状である場合、基材11の外径を2Aとし、基材11の長さをBとすると、基材11の見掛けの体積は、π×A×Bで表される。吸着層12を形成した部分における基材11の体積とは「基材11の見掛けの体積×吸着層12のX方向の長さ/基材11のX方向の長さ」により求まる体積である。
 図3(b)及び(c)のように、排ガス浄化触媒10がコート層16として吸着層12に加えて他の層13を含有する場合は、当該他の層13が触媒活性成分を有することが好ましい。また、その場合の触媒活性成分としては、上記吸着層12が有していてもよい触媒活性成分と同様の成分が挙げられる。他の層13には、触媒活性成分を担持する成分として、酸素貯蔵成分である無機酸化物や、酸素貯蔵成分以外の無機酸化物を含有させることが好適である。酸素貯蔵成分としては、CeOやCZ材(Ce及びZrを含有するセリア-ジルコニア複合酸化物や、CeOとZrOとの固溶体)、酸化鉄、酸化銅が挙げられる。これらに加えて、Ce以外の希土類元素の酸化物が挙げられる。また、酸素貯蔵成分以外の無機酸化物としては、アルミナ、チタニア、ジルコニア等が挙げられる。
 排ガス浄化触媒10が基材11上にコート層16として吸着層12及び他の層13を有する場合、基材11上のコート層16全体に対し、吸着層12の割合が20質量%以上であることが好ましく、20質量%以上50質量%以下であることがより好ましい。
 排ガス浄化触媒10が基材11上にコート層16として吸着層12及び他の層13を有する場合、基材11上に存在するコート層16の厚さ全体に対し、吸着層12の厚さの割合が20%以上で80%以下であることがより好ましい。吸着層12の厚さは上述した方法にて測定できる。またコート層16の厚さは吸着層12の厚さの測定方法に準じて測定できる。
 更に排ガス浄化触媒10の構成について説明する。
 HC吸着性能を一層高める点や高速運転時の排ガス浄化性能を高める点から、吸着層12が隔壁23に直接接触するように設けられている場合、隔壁23の内部ではなく、主に隔壁23の表面に存在することが好ましい。吸着層12が隔壁23の表面に主として存在しているとは、吸着層12が設けられた基材11の断面において、基材11の隔壁23の表面に存在する吸着層12の質量が隔壁23の内部に存在する吸着層12の質量よりも多いことをいう。例えば吸着層12が設けられた隔壁の断面を、走査型電子顕微鏡(日本電子株式会社製「JEM-ARM200F」)で観察するとともに、エネルギー分散型X線分析(EDS:Energy dispersive X-ray spectrometry)で分析し、基材11に存在する元素(例えばMg等)と吸着層12に存在する元素(例えばSiや、吸着層に存在する特定の元素)との境界をライン分析することや、電子線マイクロアナライザ(EPMA)により分析する方法等によって、表面に主に存在していることを確認できる。
 なお、吸着層12のX方向の長さは、基材11のX方向の長さの50%~100%であることが、剥離抑制を低減しつつHC吸着性能を高める点で好ましく、70%~100%であることが更に好ましい。吸着層12の長さは以下の方法にて測定することができる。すなわち、排ガス浄化触媒10を目視で観察し吸着層12の境界をそれぞれ特定して測長することが好ましい。この際には、例えば排ガス浄化触媒10の任意の10ヶ所について吸着層12を測長し、その平均値を吸着層12の長さとして求めることが好ましい。目視で吸着層12に係る排ガス流通方向における境界が判断できない場合には、排ガス浄化触媒における排ガス流通方向に沿う多数(例えば8~16か所)の位置における組成を分析し、各箇所における触媒活性成分の濃度に基づき特定することができる。各箇所における触媒活性成分の濃度は、例えば、蛍光X線分析(XRF)やICP発光分光分析(ICP-AES)により求めることができる。
 次いで、以下、本発明の排ガス浄化触媒の好ましい製造方法について説明する。
 本製造方法は、Siを含む吸着材(Si含有吸着材)と、
 L’/{2(πS’)1/2}≦1.05の真円度を有する粒子を個数基準で90%以上含み架橋樹脂からなる造孔剤(以下、単に「前記造孔剤」ともいう。)とを含有するスラリーを基材に塗工する工程、及び、
 基材に塗工した後の前記スラリーを焼成することにより、前記吸着材と、前記造孔剤の焼失によって形成される空隙とを含有する吸着層を、基材上に形成する工程
 を備える排ガス浄化触媒の製造方法であって、
 前記スラリーを回転数3000rpm以上8000rpm以下での撹拌後に、25℃における粘度2000cP以上100000cP以下とした状態で、基材に塗工する。
(但し、L’は造孔剤を走査型電子顕微鏡(SEM)で観察してなる像の外周長であり、S’は走査型電子顕微鏡で観察してなる像の面積である。)
 前記造孔剤は、「L’/{2(πS’)1/2}≦1.05の真円度」を有する粒子が、個数基準で90%以上である。このような構成であることにより、前記円形空隙率を有する排ガス浄化触媒10が得やすい。ここでいう真円度はSEMによる観察に基づいて測定される。観察サンプルは、カーボンテープを貼り付けたSEMサンプル台に対し、綿棒に付着させた粉末サンプルを上部から落とした後、余分な粉末をエアガンにて払い落とすことにより得られる。エアガンの吹付の条件としては、10cm離間した位置から、5気圧(ゲージ圧)の空気を1秒間吹き付けることが挙げられるが、これに限定されるものではない。
 SEM観察は5kV~15kVの加速電圧で、40倍~1000倍の観察倍率とすることが好ましい。任意の50個の造孔剤のSEM像を観察し、SEM像の外形が「L’/{2(πS’)1/2}≦1.05の真円度」を有するものの割合を求める。
 HC吸着性能及び剥離性能が得やすい点から、前記造孔剤のうち、「L’/{2(πS’)1/2}≦1.05の真円度」を有する造孔剤の割合は95%以上がより好ましく、98%以上が特に好ましい。
 前記造孔剤の材質としては、架橋性モノマーを含んだ、エチレン性不飽和結合を有するモノマーの重合体が挙げられ、架橋性のアクリル樹脂や架橋性スチレン樹脂を用いることができ、特に架橋ポリスチレン粒子、架橋ポリ(メタ)アクリル酸エステル粒子などを用いることができる。架橋ポリ(メタ)アクリル酸エステル粒子としては、架橋ポリ(メタ)アクリル酸メチル粒子、架橋ポリ(メタ)アクリル酸ブチル粒子等が挙げられる。造孔剤は架橋樹脂を用いることで、焼成時に形が崩れずに真円度の高い空隙を吸着層12中に残しやすい。
 前記造孔剤は、大気中での熱分解開始温度が200℃以上であることが好ましい。熱分解温度が高い造孔剤は一般に分子鎖の架橋度が高い。このことに起因して、焼成時に形が崩れずに真円度の高い空隙を吸着層12中に残すことができる。造孔剤の大気中での熱分解開始温度は230℃以上であることがより好ましく、250℃以上であることが特に好ましい。熱分解開始温度の上限は、550℃以下であることが焼成時により造孔剤が確実に消失する点から好ましく、500℃以下であることがより好ましい。熱分解開始温度は例えば大気雰囲気下、室温から500℃まで昇温して、熱分解挙動を測定する。昇温速度は例えば5℃/min~20℃/minとすることができる。熱分解開始温度は、試験加熱開始前の質量を通る横軸に平行な線と、分解曲線における屈曲点間の勾配が最大となるように引いた接線との交点とする。以下実施例では、大気中での熱分解開始温度を単に「熱分解開始温度」と記載している。
 前記造孔剤は、レーザー回折式粒度分布法で測定した累積体積10%での粒径をD10とし、累積体積50%での粒径をD50とし、累積体積90%での粒径をD90とした場合、(D90-D10)/D50の値が、0.1以上1.1以下であることが好ましい。(D90-D10)/D50の値(以下、「単分散度」ともいう。)は、造孔剤の粒度分布の尺度となるものであり、単分散度の値が小さいほど粒度分布がシャープなものである。粒度分布がシャープな造孔剤は架橋度が高いことから、熱膨張に由来する焼成時の造孔剤の変形が少ない点で一層優れたものとなり、上述した円形空隙率が得やすい。この観点から造孔剤は前記の単分散度が0.7以下であることがより好ましく、0.3以下であることが特に好ましい。造孔剤は上述した円換算直径の空隙を得る点から、D50が5μm以上50μm以下であることが好ましく、10μm以上30μm以下であることがより好ましい。また前記造孔剤は、単分散度の点からD90が6μm以上60μm以下であることが好ましく、10μm以上30μm以下であることがより好ましい。同様の点からD10が1μm以上30μm以下であることが好ましく、2μm以上20μm以下であることがより好ましい。前記の単分散度や粒径はレーザー回折・散乱式粒子径・粒度分布測定装置、例えばマイクロトラック・ベル社製のマイクロトラックHRAやマイクロトラック3000シリーズ等を用いて測定できる。例えば以下のように測定することができる。すなわち、レーザー回折粒子径分布測定装置用自動試料供給機(マイクロトラック・ベル社製「Microtorac SDC」)を用い、造孔剤を水性分散媒に投入し、40%の流速中、40Wの超音波を360秒間照射した後、レーザー回折散乱式粒度分布計(マイクロトラック・ベル社製「マイクロトラックMT3300EXII」)を用いて測定する。測定条件は、「粒子屈折率」を1.5、「粒子形状」を真球形、「溶媒屈折率」を1.3、「セットゼロ」を30秒、「測定時間」を30秒、2回測定の平均値として求める。水性分散媒としては純水を用いる。
 前記造孔剤は、溶剤の膨潤度が低いことも好ましい。膨潤度が低い造孔剤は架橋度が高いからである。例えば50℃、48時間浸漬後のポリマー1g当りの溶剤吸収量(g/g)がエタノールで0.05g/g以下であることが好ましく、アセトンで0.7g/g以下であることが好ましく、2-メトキシエタノールで0.15g/g以下であることが好ましく、トルエンで0.15g/g以下であることが好ましい。
 本製造方法において、吸着層の形成に用いる全造孔剤中、前記造孔剤の割合は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であることが特に好ましい。
 前記造孔剤を含むスラリーは、更にSi含有吸着材の粒子を含有しており金属酸化物粒子を含有していることが好ましい。Si含有吸着材の粒子及びその他の金属酸化物粒子としては、吸着層12の構成成分として上述した無機酸化物の粒子が挙げられる。
 Si含有吸着材の粒子を含む金属酸化物粒子の粒径は触媒活性成分の分散性を高める点やHC吸着性能を高める点から、D50が3μm以上であることが好ましく、D90が10μm以上であることが好ましく、更にD50が3μm以上であることがより好ましく、D90が12μm以上であることがより好ましい。前記の金属酸化物粒子の粒径の上限は触媒活性成分の分散性を高める点から、スラリーにおける前記の金属酸化物粒子はD50が15μm以下であることがより好ましく、D90が30μm以下であることがより好ましい。
 前記の金属酸化物粒子のD50及びD90は造孔剤のD50及びD90と同様の方法にて測定できる。
 造孔剤を含むスラリー中の粒子の粒径としては、D50が2μm以上であることが好ましく、D90が8μm以上であることが好ましく、更にD50が3μm以上であることがより好ましく、D90が9μm以上であることがより好ましい。D50が40μm以下であることが好ましく、D90が120μm以下であることが好ましく、D50が30μm以下であることがより好ましく、D90が70μm以下であることがより好ましい。
 本発明者は、Si含有吸着材及び前記造孔剤を含むスラリーは、そのまま基材に塗工すると、剥離耐性が十分な排ガス浄化触媒が得られないこと、及び、上記の吸着層12中に上記の円形空隙率を有する排ガス浄化触媒を得難いことを見出した。そして、所定の回転数での撹拌後に所定粘度とした状態で、基材に塗工することで、剥離性能が高くHC吸着性能に優れた排ガス浄化触媒が得られ、また上記の円形空隙率を有する吸着層が得やすいことを知見した。これは次の理由によると考えられる。ゼオライト等のSi含有吸着材は疎水性であり,水を用いたスラリー中では凝集する傾向にある。また、架橋樹脂からなる真円状造孔剤も同様に疎水性である。このように、Si含有吸着材を、前記造孔剤と組み合わせた場合、撹拌状態が不十分であったり、粘度が所定値以下であると、造孔剤がスラリー中で十分に分散せず、大きな空隙を形成し、基材11又は他の層13に対する密着性を低下させてしまう。すなわち、従来、基材に浄化層を形成する際において浄化層形成用スラリーに造孔剤を添加する方法が知られているが、本発明者は、Si含有吸着材を含むスラリーに造孔剤を添加する際にも従来の方法を用いてしまうと、スラリー中において、疎水性であるSi含有吸着材と、同じく疎水性である造孔剤とが、相互に作用して凝集しやすくなってしまうとの知見を得た。これに対し、本発明者は、所定の撹拌状態とし、且つ使用粘度を適切な範囲に制御することにより、Si含有吸着材及び造孔剤の分散性が良好なものとなり、上記円形空隙率を有し剥離耐性及びHC吸着性能に優れた排ガス浄化触媒を首尾よく製造できることを見出した。この観点から、本製造方法では、回転数3000~8000rpmでの撹拌後に粘度2000~100000cPを満たす状態で基材に塗工されることが好ましい。回転数が3000rpm以上であり且つ粘度が2000cP以上であることで、上述した凝集抑制効果が得られる。また回転数8000rpm以下であることで造孔剤の物理的な破損を抑制しやすくなる。粘度100000cP以下であることで、スラリーの塗工性が得られる。これらの点からスラリーは前記の撹拌後に粘度3000~50000cPを満たす状態で基材に塗工されることがより好ましく、前記の撹拌後に粘度5000~20000cPを満たす状態で基材に塗工されることが特に好ましい。また、撹拌の回転数は5000~8000rpmがより好ましく、上記粘度測定時のスラリーの温度は例えば25℃である。更に、当該撹拌後の粘度とは、撹拌から30分以内に測定したものであることが好ましく、10分以内に測定したものであることが好ましい。当該粘度に調整するために増粘剤を用いてもよい。増粘剤としては、キサンタンガム、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、などが挙げられる。
 なお、攪拌時間は2500gのスラリーであれば、5~20分であることが好ましく、10~15分であることがより好ましい。好ましい撹拌時間は、スラリーの量を変更した場合には、スラリーの量を増減させた比率と比例させて増減させればよい。
 また、撹拌後のスラリーは粘度測定から60分以内に基材に塗工することが好ましい。ここでいう基材に塗工するとは、既に基材上に他の層13が形成されている場合は、当該他の層13上にスラリーを塗工することを含む。
 上記の粘度を得やすい点から、吸着層形成用スラリー中、造孔剤を除く固形分の量は20質量%以上40質量%以下が好ましく、25質量%以上35質量%以下がより好ましい。
 また、吸着層形成用スラリーの造孔剤を除く固形分に対する、造孔剤の量は例えば、10質量%以上、75質量%未満であることが好ましく、20質量%以上、60質量%以下であることがより好ましく、30質量%以上、50質量%以下であることが特に好ましい。
 第1工程では以上の構成成分を有するスラリーを前記隔壁に塗工する。スラリーを隔壁に塗布するためには、当該スラリーに基材の排ガス流通方向の一端部を浸漬させてスラリーを反対側から吸引する方法が挙げられるがこれに限定されない。スラリーを焼成前に乾燥する場合、乾燥温度は、40~120℃が好ましく挙げられる。焼成は通常大気中で行われる。焼成温度は、例えば350~550℃が好適に挙げられる。
 このように製造された排ガス浄化触媒10は、その剥離防止性能、HC吸着性能を活かし、ガソリンエンジンなど化石燃料を動力源とする内燃機関の排ガス浄化触媒として、種々の用途に用いることができる。また、本実施形態によれば、このような排ガス浄化触媒10を用いた排ガス浄化方法も提供することができる。例えば、排ガス浄化触媒10を、ガソリンエンジンなどの内燃機関の排気経路に設けて、HC吸着性能を活かすことで、ガソリンエンジンからの排ガスを良好に浄化することが可能となる。特に排ガス浄化触媒10は、排ガス流通方向に沿って2つ以上の排ガス浄化触媒を配置する排ガス浄化用装置において用いられる場合に、上流側から2つ目以降の触媒として用いられることが好ましい。その理由としては、有機物トラップ触媒の特性上、塗工スラリー量は制約されるため、熱負荷の高い1つ目の触媒として用いると劣化が進行しやすい一方、2つ目以降の触媒とすることで、高い浄化性能とHC吸着性能を良好に維持できるためである。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。なお、乾燥及び焼成はすべて大気中で行った。また以下の実施例の熱分解開始温度は何れも大気中で測定したものである。なお、以下でいう固形分は造孔剤を除く量である。また各実施例・比較例で増粘剤の添加条件(種類及び量)は同じとした。
 各実施例及び比較例において、スラリーの撹拌条件は以下とした。
(撹拌条件)
 スラリー2500gを、直径15cmの円筒状容器の15cmの高さまで入れ、長さ4cmの十字型の撹拌羽を有する機械式撹拌機を用いて、10分間撹拌する。
 またスラリーの粘度は、撹拌後10分以内に、25℃でBrооkfield社製デジタル粘度計(型番:DV-E)を用いて測定した。スピンドルは比較例4と5がLV-2(62番)、実施例6と8がLV-4(64番)、それ以外はすべてLV-3(63番)を用いた。回転数12rpmとし、回転開始から5回転以上回転した状態の粘度を測定した。
 各実施例において、吸着層中の細孔に由来する細孔直径1~300nmの細孔容積は0.05cm/g~0.3cm/gの範囲内であった。
 また各実施例において、スラリー中の粒子の粒径の測定方法は、上述した造孔剤の粒径方法と同様とした。ただし、スラリー中の粒子の水切りはせず、水性分散液に造孔剤を分散させた分散液の代わりに、スラリーをそのままレーザー回折粒子径分布測定装置用自動試料供給機に供給して超音波処理を行った。
<実施例1>
〔1.吸着層形成用スラリーの調製〕
 ゼオライト粉末(BEA型、SiO/Alモル比=40、リン原子2.3質量%、ジルコニウム原子6.6質量%)及びアルミナ粉末を用意した。ゼオライト粉末とアルミナ粉末を混合し、固形分が30質量%となるように純水中に含浸させた。
 次いで、この懸濁液に、球状造孔剤(架橋ポリ(メタ)アクリル酸メチル粒子、D50=20μm、D90=22μm、D10=18μm、単分散度=0.165、熱分解開始温度=250℃、真円度の割合:95%、50℃、48時間浸漬後のポリマー1g当りの溶剤吸収量(g/g)がエタノールで0.02g/g、アセトンで0.24g/g、2-メトキシエタノールで0.05g/g、トルエンで0g/g)と、ベーマイト粉末と、アルミナゾルとを混合し、増粘剤を添加した。さらに、上記撹拌条件にて、回転数7000rpmにて10分間撹拌を行い、吸着層形成用スラリーを調製した。吸着層形成用スラリー粘度は、6800cPであった。真円度の割合は、球状造孔剤の粒子のうち、L/{2(πS)1/2}≦1.05を満たす粒子の個数基準の割合を示す。スラリーの固形分のうち造孔剤以外の成分を100質量部としたときに、ゼオライト粉末は60質量部、アルミナ粉末は30質量部、ベーマイト粉末は5質量部、アルミナゾルは5質量部であった。スラリー固形分に対する造孔剤の質量比率は30%であった。増粘剤の量は上記所定の粘度となるものとした。スラリー中のD50は9μm、D90は18μmであった。原料となる造孔剤の真円度測定の際のSEM観察は15kVの加速電圧で、300倍の観察倍率とした。
〔2.吸着部前駆層(焼成前の吸着部)の形成〕
 基材として、厚さが80~100μmの隔壁で区画された軸方向に延びるセルを、軸方向と直交する面において、600セル/inch2有し、体積が0.174L、全長30mmであるフロースルー基材を用いた。
 吸着層形成用スラリー中に基材の一方の端面から排ガス流通方向全長に対し10%から50%までの部分を浸漬させ、もう一方の端面から吸引した。吸引した面に対しても同様に吸着層形成用スラリーを浸漬させ、もう一方の端面から吸引した。その後、90℃で10分乾燥させることにより吸着層形成用スラリーの固形分からなる吸着部前駆層を形成した。
〔3.焼成〕
 その後、基材を、450℃で1時間にわたり焼成した。これにより、基材上に吸着部が形成されてなる実施例1の排ガス浄化触媒を得た。
 実施例1の排ガス浄化触媒において、吸着部は、排ガス流通方向Xの全長Lの範囲にかけて隔壁表面に形成されていた。吸着部が形成された部分の基材の体積に対する吸着部の質量は焼成後の質量で97.9g/Lであった。
 <実施例2>
 実施例1において、吸着層形成用スラリーにおける造孔剤について、スラリーの固形分に対する造孔剤の質量比率を10%に変更した。上記撹拌条件にて、回転数7000rpmにて10分間撹拌を行い、吸着層形成用スラリーを調製した。吸着層形成用スラリーの粘度は7500cPであった。スラリー中のD50は8μm、D90は17μmであった。その点以外は実施例1と同様として排ガス浄化触媒を得た。
 <実施例3>
 実施例1において、吸着層形成用スラリーにおける造孔剤について、スラリーの固形分に対する造孔剤の質量比率を20%に変更した。上記撹拌条件にて、回転数7000rpmにて10分間撹拌を行い、吸着層形成用スラリーを調製した。吸着層形成用スラリーの粘度は7300cPであった。スラリー中のD50は9μm、D90は18μmであった。その点以外は実施例1と同様として排ガス浄化触媒を得た。
 <実施例4>
 実施例1において、吸着層形成用スラリーにおける造孔剤について、スラリーの固形分に対する造孔剤の質量比率を40%に変更した。上記撹拌条件にて、回転数7500rpmにて10分間撹拌を行い、吸着層形成用スラリーを調製した。吸着層形成用スラリーの粘度は6300cPであった。スラリー中のD50は10μm、D90は20μmであった。その点以外は実施例1と同様として排ガス浄化触媒を得た。
 <実施例5>
 実施例1において、吸着層形成用スラリーにおける造孔剤について、スラリーの固形分に対する造孔剤の質量比率を50%に変更した。上記撹拌条件にて、回転数7500rpmにて10分間撹拌を行い、吸着層形成用スラリーを調製した。吸着層形成用スラリーの粘度は5500cPであった。スラリー中のD50は12μm、D90は23μmであった。その点以外は実施例1と同様として排ガス浄化触媒を得た。
<実施例6>
 実施例1において、吸着層形成用スラリーにおける造孔剤を球状造孔剤(架橋ポリ(メタ)アクリル酸メチル粒子、D50=5μm、D90=7μm、D10=3μm、単分散度=0.120、熱分解開始温度=250℃、真円度の割合:95%、50℃、48時間浸漬後のポリマー1g当りの溶剤吸収量(g/g)がエタノールで0.03g/g、アセトンで0.43g/g、2-メトキシエタノールで0.08g/g、トルエンで0.02g/g)に変更した。スラリー固形分に対する造孔剤の質量比率は50%に変更した。上記撹拌条件にて、回転数7500rpmにて10分間撹拌を行い、吸着層形成用スラリーを調製した。吸着層形成用のスラリーの粘度は19800cPであった。スラリー中のD50は5μm、D90は12μmであった。その点以外は実施例1と同様として排ガス浄化触媒を得た。
 <実施例7>
 実施例1において、吸着層形成用スラリーにおける造孔剤を球状造孔剤(架橋ポリ(メタ)アクリル酸メチル粒子、D50=50μm、D90=80μm、D10=28μm、単分散度=1.039、熱分解開始温度=250℃、真円度の割合:90%、50℃、48時間浸漬後のポリマー1g当りの溶剤吸収量(g/g)がエタノールで0.04g/g、アセトンで0.66g/g、2-メトキシエタノールで0.12g/g、トルエンで0.12g/g)に変更した。スラリー固形分に対する造孔剤の質量比率は20%に変更した。上記撹拌条件にて、回転数7000rpmにて10分間撹拌を行い、吸着層形成用スラリーを調製した。吸着層形成用スラリーの粘度は4800cPであった。スラリー中のD50は28μm、D90は85μmであった。その点以外は実施例1と同様として排ガス浄化触媒を得た。
<実施例8>
 実施例1において、ゼオライト、アルミナ粉末、アルミナゾル、ベーマイトゾルをそれぞれ同じ割合で増量してスラリーの固形分を32質量%とし、上記撹拌条件にて、回転数7000rpmにて10分間撹拌を行い、吸着層形成用スラリーを調製した。吸着層形成用スラリーの粘度は11000cPであった。スラリー中のD50は8μm、D90は19μmであった。吸着部が形成された部分の基材の体積に対する吸着部の質量は焼成後の質量で120.3g/Lであった。その点以外は実施例1と同様として排ガス浄化触媒を得た。
 <実施例9>
 実施例1において、吸着層形成用スラリーにおける粉末ゼオライトをMSE型ゼオライト(SiO/Alモル比=200)に変更した。上記撹拌条件にて、回転数7500rpmにて10分間撹拌を行い、吸着層形成用スラリーを調製した。吸着層形成用スラリーの粘度は8800cPであった。スラリー中のD50は9μm、D90は19μmであった。その点以外は実施例1と同様として排ガス浄化触媒を得た。
<実施例10>
〔1.上層形成用スラリーの調製〕
 CeO―ZrO固溶体粉末(CeO―ZrO固溶体中にCeO40質量%、ZrO50質量%、Ce以外の希土類元素の酸化物10質量%を含有)及びアルミナ粉末を用意した。CeO―ZrO固溶体粉末とアルミナ粉末とを混合し、硝酸パラジウム水溶液中に含浸させた。
 次いで、この懸濁液にアルミナゾルと、ジルコニアゾルと、液媒として水と、を混合して、「他の層」の例として上層のスラリーを調製した。
〔2.上層の積層〕
 実施例1において吸着層前駆層を形成後の基材に対し、上記の上層形成用スラリーを一方の端面から排ガス流通方向全長に対し10%から50%までの部分を浸漬させ、もう一方の端面から吸引した。吸引した面に対しても同様に他の層形成用スラリーを浸漬させ、もう一方の端面から吸引した。その後、90℃で10分乾燥させることにより上層形成用スラリーの固形分からなる上層前駆層を形成した。
 実施例1と同様に焼成を行い、基材上に吸着部と上層が形成されてなる排ガス浄化触媒を得た。吸着部が形成された部分の基材の体積に対する吸着部の質量は焼成後の質量で200.8g/Lであった。また吸着層及び上層からなるコート層の厚さは48.22μmであった。
 <比較例1>
 実施例1において、吸着層形成用スラリーに造孔剤を添加しなかった。上記撹拌条件にて、回転数7000rpmにて10分間撹拌を行い、吸着層形成用スラリーを調製した。吸着層形成用スラリー粘度は9800cPであった。スラリー中のD50は7μm、D90は16μmであった。その点以外は実施例1と同様として排ガス浄化触媒を得た。
 <比較例2>
 実施例1において、吸着層形成用スラリーにおける造孔剤について、スラリーの固形分に対する造孔剤の質量比率を75%に変更した。上記撹拌条件にて、回転数7000rpmにて10分間撹拌を行い、吸着層形成用スラリーを調製した。吸着層形成用スラリー粘度は3800cPであった。スラリー中のD50は15μm、D90は25μmであった。その点以外は実施例1と同様として排ガス浄化触媒を得た。
 <比較例3>
 実施例1において、吸着層形成用スラリーにおける造孔剤について、平均直径28μmの針状粒子(材質:セルロース)をスラリー固形分に対し30質量%用いた。上記撹拌条件にて、回転数7000rpmにて10分間撹拌を行い、吸着層形成用スラリーを調製した。吸着層形成用スラリーの粘度は5800cPであった。スラリー中のD50は9μm、D90は18μmであった。それらの点以外は実施例1と同様として排ガス浄化触媒を得た。
<比較例4>
 実施例1において、上記撹拌条件にて、回転数1500rpmにて10分間撹拌を行い、吸着層形成用スラリーを調製した。吸着層形成用スラリーの粘度は1500cPであった。スラリー中のD50は10μm、D90は20μmであった。それらの点以外は実施例1と同様として排ガス浄化触媒を得た。
<比較例5>
 実施例1において、スラリーの固形分を25質量%とし、上記撹拌条件にて、回転数3000rpmにて10分間撹拌を行い、吸着層形成用スラリーを調製した。吸着層形成用スラリー粘度は800cPであった。スラリー中のD50は11μm、D90は19μmであった。それらの点以外は実施例1と同様として排ガス浄化触媒を得た。
(円形空隙率(%)、見掛け面積1mmあたり1μm以上60μm以下の円換算直径を有する近似真円状の空隙の平均数(個)、近似真円状空隙の円換算直径(μm)、円換算直径の標準偏差σ(μm)、円換算直径に対する標準偏差の割合(%)、吸着層厚み[μm]等)
 実施例1~10及び比較例1~5で得られた排ガス浄化触媒について、20視野における近似真円状空隙の円換算直径のメディアン径を区画幅とする前記の方法にて、円形空隙率を始め表1に示す各種パラメーターを測定した。サンプリング方法は前記と同様とした。サンプル観察面は排ガス流通方向Xにおける上流側端部及び下流側端部からそれぞれ5mm以上離れた任意の位置とし、その観察面における合計20視野を観察した。サンプルは、図4(c)と同様に各観察面からX方向10mmを厚さ部分とした。EPMAマッピングの観察倍率は300倍、加速電圧は15kV(Al、Ba、Ce、La、Mg、Si、Zrの測定時)及び25kV(Pd、Rh、Ptの測定時)とした。EPMAマッピングにおける基材成分元素はMgとし、吸着部成分元素はSi及びAlとした。区画幅を規定する際のSEMの観察倍率はEPMAマッピングと同じとし、加速電圧は15kVとした。なお各種パラメーター測定時の区画幅は暫定的に求めた円換算直径の平均値の0.75倍とした。結果を表1に示す。
 (剥離率)
 円形空隙率を求める場合と同様に、排ガス浄化触媒をその排ガス流通方向に沿ってくり抜いた円柱状サンプルを用いた。得られた円柱状サンプルの長手方向(排ガス流通方向Xと同じ)は30mmとなっている。剥離試験は、排ガス流通方向が水平になる向きに設置された円柱状サンプルの一方の端面に向けて、該端面と10cm離間した位置から、エアガンにて6気圧(ゲージ圧)の空気を10秒間吹き付けた。もう一方の端面に対しても同様の処理を施した。各処理後のサンプルの重量減少率(=(噴射前重量-噴射後重量)/噴射前重量×100(%))を求め、3%未満ならA、3%以上5%未満ならB、5%以上10%未満ならC、10%以上ならDとした。
 (炭化水素の吸着量/脱離量の測定)
 実施例及び比較例で得られた排ガス浄化触媒を、触媒評価装置(堀場製作所社製、SIGUシリーズ)に設置し下記に示す組成の評価用ガスを、昇温反応法にて50℃から500℃まで50℃/分で加熱し、流量25mL/分、及び62.5mL/分で流通しながら炭化水素の脱離量(=吸着量)を測定した。脱離量は評価ガス中の炭化水素の合計量(イソオクタン、プロピレン、トルエン)を測定した。脱離量は排ガス分析装置(堀場製作所社製、MEXA-ONE)を用いて測定した。なお、比較例2~5の排ガス浄化触媒は、剥離率が高く、測定中に吸着層が剥離して装置を汚染してしまうおそれがあったため、炭化水素の吸着量/脱離量の測定は行わなかった。
 (評価ガス組成)評価用ガスは下記に示す組成となっている。二酸化炭素:14.00体積%、酸素:0.49体積%、イソオクタン:24ppmC、一酸化窒素:500ppm(体積基準)、一酸化炭素:0.50体積%、水素:0.17体積%、プロピレン:240ppmC、トルエン:840ppmC、水:10.00体積%
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、円形空隙率が5%超30%以下である各実施例は、吸着層の剥離率が抑制され、HC吸着量が高い。またHC吸着試験において、62.5ml/分と25ml/分の吸着量比が流量比である2.5倍に近く、高速で排ガスが流通する場合においても、十分な吸着性能を有することが判る。
 これに対し、造孔剤を用いずに円形空隙率が0%である比較例1は、剥離評価は良好であるが、HC吸着性能に劣る。また円形空隙率が30%超である比較例2は、剥離耐性が得られない。同様に針状の造孔剤を用いた比較例3は、空隙が針状となり剥離しやすいものとなる。また、比較例4、5の通りスラリー粘度が所定の範囲を満たさない場合、円形空隙率が本願発明に含まれず、また剥離性能に劣る結果となった。
 本発明によれば、Si含有吸着材を有する吸着部におけるHC吸着性能の向上と高い耐剥離性能との両立が可能な排ガス浄化触媒を提供することができる。また、本発明によれば、Si含有吸着材を有する吸着部におけるHC吸着性能の向上と高い耐剥離性能との両立が可能な排ガス浄化触媒を産業上有利な方法で製造できる排ガス浄化触媒の方法を提供できる。
 

Claims (17)

  1.  基材と、該基材に設けられてSiを含む吸着材を含有する吸着部と、を備える排ガス浄化触媒であって、
     前記吸着部は複数の空隙を有し、
     排ガス流通方向と直交する断面において,前記基材上に存在する前記吸着部の見掛け面積に対して,該吸着部中における下記式を満たす空隙の面積の総和の割合が5%超30%以下である排ガス浄化触媒。
     式:L/{2(πS)1/2}≦1.1
     但し、上記式において、Lは前記断面における前記空隙の周長であり、Sは前記断面における前記空隙の面積である。
  2.  前記Siを含む吸着材がゼオライトである、請求項1に記載の排ガス浄化触媒。
  3.  前記ゼオライトが、10員環及び12員環のうち少なくとも一種の細孔構造を有するゼオライトである請求項2に記載の排ガス浄化触媒。
  4.  前記ゼオライトが、BEA型、MSE型、MFI型及びYFI型から選択される少なくとも一種のゼオライトである請求項2又は3に記載の排ガス浄化触媒。
  5.  前記吸着部のゼオライトの含有率が10質量%以上90質量%以下である、請求項2又は3に記載の排ガス浄化触媒。
  6.  前記吸着部が、Pt、Pd及びRhから選ばれる少なくとも1種の貴金属を有する、請求項1~3の何れか1項に記載の排ガス浄化触媒。
  7.  前記吸着部の厚みに対する前記割合の値が、0.20%/μm以上1.00%/μm以下である、請求項1~3の何れか1項に記載の排ガス浄化触媒。
  8.  前記吸着部に存在し,且つ前記式を満たす空隙の円換算直径の平均値が,1μm以上60μm以下である、請求項1~3の何れか1項に記載の排ガス浄化触媒。
  9.  前記吸着部に存在し,且つ前記式を満たす空隙の数の平均値が前記吸着部の断面積1mmあたり200個以上800個以下である、請求項1~3の何れか1項に記載の排ガス浄化触媒。
  10.  前記吸着部に存在し,且つ前記式を満たす空隙の円換算直径の標準偏差が、円換算直径の平均値の25%未満である、請求項1~3の何れか1項に記載の排ガス浄化触媒。
  11.  前記基材がフロースルー基材である、請求項1~3の何れか1項に記載の排ガス浄化触媒。
  12.  前記吸着部としてSiを含む吸着材を含有する吸着層を有し、更に、触媒活性成分を含む浄化層を有する、請求項1~3の何れか1項に記載の排ガス浄化触媒。
  13.  前記吸着部が、全コート量に対し、20質量%以上50質量%以下を占める、請求項1~3の何れか1項に記載の排ガス浄化触媒。
  14.  前記吸着部としてSiを含む吸着材を含有する吸着層を有し、該吸着層の厚さが、基材上の全コート層の厚さの20%以上80%以下を占める、請求項1~3の何れか1項に記載の排ガス浄化触媒。
  15.  排ガス流路に排ガス浄化触媒を2つ以上備える排ガス浄化システムであって、請求項1~3の何れか1項に記載の排ガス浄化触媒を、排ガス流通方向の上流から2つ目以降の触媒として有する、排ガス浄化システム。
  16.  Siを含む吸着材と、
     L’/{2(πS’)1/2}≦1.05の真円度を有する粒子を個数基準で90%以上含み架橋樹脂からなる造孔剤と、水とを含有するスラリーを基材に塗工する工程、及び、
     基材に塗工した後の前記スラリーを焼成することにより、前記吸着材と、前記造孔剤の焼失によって形成される空隙とを含有する吸着層を、基材上に形成する工程
     を備える排ガス浄化触媒の製造方法であって、
     前記スラリーを回転数3000rpm以上8000rpm以下での撹拌後に、25℃における粘度2000cP以上100000cP以下とした状態で、基材に塗工する、排ガス浄化触媒の製造方法。
     但し、上記式において、L’は前記造孔剤を走査型電子顕微鏡で観察してなる像における該造孔剤の外周長であり、S’は前記造孔剤を走査型電子顕微鏡で観察してなる像における該造孔剤の面積である。
  17.  前記スラリーにおける造孔剤の量が、スラリー中の造孔剤を除く固形分100質量部に対し、10質量部以上60質量部以下である、請求項16に記載の排ガス浄化触媒の製造方法。
     
     
PCT/JP2022/037150 2021-10-14 2022-10-04 排ガス浄化触媒及びその製造方法 WO2023063174A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22880870.5A EP4417309A1 (en) 2021-10-14 2022-10-04 Exhaust gas cleaning catalyst and production method therefor
JP2023554431A JPWO2023063174A1 (ja) 2021-10-14 2022-10-04
CN202280063662.6A CN117999126A (zh) 2021-10-14 2022-10-04 废气净化催化剂及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021169144 2021-10-14
JP2021-169144 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023063174A1 true WO2023063174A1 (ja) 2023-04-20

Family

ID=85988592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037150 WO2023063174A1 (ja) 2021-10-14 2022-10-04 排ガス浄化触媒及びその製造方法

Country Status (4)

Country Link
EP (1) EP4417309A1 (ja)
JP (1) JPWO2023063174A1 (ja)
CN (1) CN117999126A (ja)
WO (1) WO2023063174A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072693A (ja) * 2007-09-20 2009-04-09 Honda Motor Co Ltd 多孔質触媒を含むディーゼルパティキュレートフィルタ
JP2016073958A (ja) * 2014-10-09 2016-05-12 イビデン株式会社 ハニカム触媒
JP2017523040A (ja) * 2014-07-31 2017-08-17 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 触媒を製造するための方法及び触媒物品
WO2017178801A1 (en) 2016-04-11 2017-10-19 Johnson Matthey Public Limited Company Method of coating a substrate with a particle stabilized foam
US20190099749A1 (en) 2017-09-29 2019-04-04 Cataler Corporation Exhaust gas purification catalyst
EP3623048A1 (en) 2017-05-11 2020-03-18 Cataler Corporation Exhaust gas purification catalyst device
WO2020100830A1 (ja) * 2018-11-12 2020-05-22 ユミコア日本触媒株式会社 ディーゼルエンジンの排気ガス浄化用触媒、その製造方法およびそれを用いた排気ガス浄化方法
JP6751831B1 (ja) 2020-03-09 2020-09-09 三井金属鉱業株式会社 排ガス浄化用触媒
WO2021029098A1 (ja) 2019-08-09 2021-02-18 三井金属鉱業株式会社 排ガス浄化用触媒及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072693A (ja) * 2007-09-20 2009-04-09 Honda Motor Co Ltd 多孔質触媒を含むディーゼルパティキュレートフィルタ
JP2017523040A (ja) * 2014-07-31 2017-08-17 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 触媒を製造するための方法及び触媒物品
JP2016073958A (ja) * 2014-10-09 2016-05-12 イビデン株式会社 ハニカム触媒
WO2017178801A1 (en) 2016-04-11 2017-10-19 Johnson Matthey Public Limited Company Method of coating a substrate with a particle stabilized foam
EP3623048A1 (en) 2017-05-11 2020-03-18 Cataler Corporation Exhaust gas purification catalyst device
US20190099749A1 (en) 2017-09-29 2019-04-04 Cataler Corporation Exhaust gas purification catalyst
WO2020100830A1 (ja) * 2018-11-12 2020-05-22 ユミコア日本触媒株式会社 ディーゼルエンジンの排気ガス浄化用触媒、その製造方法およびそれを用いた排気ガス浄化方法
WO2021029098A1 (ja) 2019-08-09 2021-02-18 三井金属鉱業株式会社 排ガス浄化用触媒及びその製造方法
JP6751831B1 (ja) 2020-03-09 2020-09-09 三井金属鉱業株式会社 排ガス浄化用触媒

Also Published As

Publication number Publication date
EP4417309A1 (en) 2024-08-21
CN117999126A (zh) 2024-05-07
JPWO2023063174A1 (ja) 2023-04-20

Similar Documents

Publication Publication Date Title
JP4826207B2 (ja) 排ガス浄化触媒及び排ガス浄化触媒の製造方法
JP6055447B2 (ja) 小型エンジンのパラジウム触媒物および製造方法
JP4918857B2 (ja) 金属酸化物ナノ多孔体、それを得るための被覆組成物、及びそれらの製造方法
JP6396922B2 (ja) 中空微小球触媒担体及びその製造方法
JP6733073B2 (ja) 排ガス浄化触媒
CN112916037B (zh) 包含具有特定粒度分布的金属氧化物载体粒子的催化剂组合物
KR100993975B1 (ko) 배기 가스 정화용 촉매 및 그 제조 방법
WO2021029098A1 (ja) 排ガス浄化用触媒及びその製造方法
JP2019513078A (ja) コア/シェル炭化水素トラップ触媒および製作方法
CN111801163B (zh) 废气净化催化剂
WO2010023919A1 (ja) 排気ガス浄化用触媒及びこれを用いた排気ガス浄化方法
JP2018513781A (ja) 担持されたパラジウムをアルミナ不含層中に有する自動車用触媒
WO2021181487A1 (ja) 排ガス浄化用触媒
JP2020508845A (ja) コロイド状白金族金属ナノ粒子を含む触媒組成物
CN112584928B (zh) 废气净化催化剂用多孔结构体和使用其的废气净化催化剂以及废气净化方法
JP2010017648A (ja) 排ガス浄化用触媒の製造方法
WO2023063174A1 (ja) 排ガス浄化触媒及びその製造方法
KR20170125904A (ko) 연소 엔진을 위한 백금-함유 촉매
JP2023544487A (ja) 微粒子を濾過するための触媒物品及びその使用
JP2006346597A (ja) 排ガス浄化用触媒担体、排ガス浄化用触媒、及び排ガス浄化用触媒担体の製造方法
WO2024203562A1 (ja) 排ガス浄化用触媒及びその製造方法
JP4805031B2 (ja) 排ガス浄化触媒、その製造方法及び使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880870

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554431

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280063662.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022880870

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022880870

Country of ref document: EP

Effective date: 20240514