WO2021181487A1 - 排ガス浄化用触媒 - Google Patents

排ガス浄化用触媒 Download PDF

Info

Publication number
WO2021181487A1
WO2021181487A1 PCT/JP2020/010114 JP2020010114W WO2021181487A1 WO 2021181487 A1 WO2021181487 A1 WO 2021181487A1 JP 2020010114 W JP2020010114 W JP 2020010114W WO 2021181487 A1 WO2021181487 A1 WO 2021181487A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust gas
amount
gas purification
partition wall
Prior art date
Application number
PCT/JP2020/010114
Other languages
English (en)
French (fr)
Inventor
祐喬 永井
真吾 秋田
広樹 栗原
慶徳 遠藤
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN202080006583.2A priority Critical patent/CN113631267B/zh
Priority to US17/295,718 priority patent/US11745172B2/en
Priority to EP20886166.6A priority patent/EP4119225B1/en
Priority to JP2020536905A priority patent/JP6751831B1/ja
Priority to PCT/JP2020/010114 priority patent/WO2021181487A1/ja
Publication of WO2021181487A1 publication Critical patent/WO2021181487A1/ja

Links

Images

Classifications

    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0682Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0684Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a catalyst for purifying exhaust gas.
  • GDI direct injection engines
  • PM particulate Matter
  • GPF Gasoline Particulate Filter
  • Patent Document 1 describes an exhaust gas purification filter that is arranged in an exhaust passage of an internal combustion engine and collects particulate matter in exhaust gas discharged from the internal combustion engine, and is provided on a base material and the base material.
  • the catalyst layer includes a carrier and a metal catalyst, and in an electron microscopic observation image of a cross section of the catalyst layer, the equivalent circle diameter is 5 ⁇ m when the catalyst layer is 100%.
  • Exhaust gas purification filters are described in which larger pores occupy 45% or more.
  • GPF there are a case where almost the entire catalyst layer is formed in the partition wall (In-wall) and a case where at least a part of the catalyst layer is formed on the partition wall (On-wall).
  • On-wall is superior to In-wall in PM collection performance, while the partition wall of the GPF filter base material has a high porosity, so that a catalyst layer is formed in the partition wall of the filter base material (In-wall).
  • the adhesion to the catalyst layer is lowered and the peeling tends to be easy.
  • the GPF has a problem of achieving both PM collection performance and pressure loss (pressure loss) suppression performance regardless of whether it is In-wall or On-wall.
  • An object of the present invention is to solve the problems of the prior art, and to provide an exhaust gas purification catalyst that exhibits high PM collection performance while suppressing peeling of a catalyst layer and an increase in back pressure. Is the subject.
  • the present inventor diligently studied a configuration for suppressing peeling of the catalyst layer while obtaining PM collection performance and suppression of pressure loss. As a result, it was found that the above-mentioned problems can be solved by setting the ratio of pores close to a perfect circle in the cross section of the catalyst layer to a specific range and setting the amount of zirconium in the catalyst layer to a specific amount.
  • a base material and a catalyst portion provided on the base material are provided.
  • the catalyst portion has a plurality of voids and has a plurality of voids.
  • the base material is An inflow side cell consisting of a space in which the inflow side in the exhaust gas flow direction is open and the outflow side is closed, An outflow side cell consisting of a space in which the inflow side in the exhaust gas flow direction is blocked and the outflow side is open, It has a porous partition wall that separates the inflow side cell and the outflow side cell.
  • An exhaust gas purification catalyst in which the catalyst portion is provided on the surface of the partition wall facing the inflow side cell and / or the surface facing the outflow side cell.
  • the ratio of the total area of the voids satisfying (where S is the circumference of the void and S is the area of the void in the cross section) is more than 10% and 30% or less.
  • an exhaust gas purification catalyst in which the oxide-equivalent content (ZrO 2 amount) of the zirconium element in the catalyst portion is 35% by mass or more and 85% by mass or less.
  • an exhaust gas purification catalyst having a wall flow structure which has excellent PM collection performance while suppressing peeling and pressure loss of the catalyst layer. Further, according to the present invention, it is possible to provide a method capable of producing the exhaust gas purification catalyst by an industrially advantageous method.
  • FIG. 1 shows a schematic cross-sectional perspective view of an exhaust gas purification catalyst according to an embodiment of the present invention.
  • FIG. 2 is a view showing a cross section of a portion surrounded by a square in FIG. 1 along the axial direction of the base material.
  • FIG. 3 is a diagram showing an example of a sampling method for observing the cross section of the catalyst layer.
  • FIG. 4 is a diagram showing an example in which a provisional boundary line is drawn on the scanning electron microscope image of the catalyst portion on the partition wall.
  • FIG. 5 is a diagram showing another example in which a lane marking of the scanning electron microscope image of the catalyst portion on the partition wall is drawn.
  • FIG. 6 is a schematic diagram for explaining a method of measuring the porosity of an approximate perfect circle.
  • FIG. 7 is an enlarged view of a portion surrounded by a square in FIG.
  • FIG. 8 is a diagram in which the catalyst layer configuration is partially changed from FIG. 7.
  • FIGS. 1, 2, 7, and 8 An example of the exhaust gas purification catalyst 10 of the present embodiment is shown in FIGS. 1, 2, 7, and 8.
  • the exhaust gas purification catalyst 10 is provided in the exhaust path of a gasoline engine, particularly an internal combustion engine such as a GDI engine of a vehicle.
  • the exhaust gas purification catalyst 10 is used, for example, as a GPF.
  • the exhaust gas purification catalyst 10 has a base material 11 having a so-called wall flow structure.
  • the base material 11 various materials can be used.
  • a base material formed of ceramics such as cordierite and silicon carbide (SiC) can be preferably used.
  • the base material usually has a columnar shape as shown in FIG. 1, and is arranged in the exhaust path of the internal combustion engine so that the axial direction of the columnar column substantially coincides with the exhaust gas flow direction X.
  • FIG. 1 illustrates a base material having a cylindrical outer shape.
  • an elliptical pillar shape or a polygonal pillar shape may be adopted instead of the cylindrical shape.
  • the base material 11 extends along the exhaust gas flow direction X, and has an inflow side cell 21 formed of a space in which the inflow side of the flow direction X is open and the outflow side is closed, and the flow direction. It extends along X and has an outflow side cell 22 formed of a space in which the inflow side of the distribution direction X is closed and the outflow side is open.
  • the exhaust gas outflow side end located at the downstream end R2 in the exhaust gas flow direction X is closed by the sealing portion 24, and the exhaust gas inflow side end located at the upstream end R1 is open. doing.
  • the exhaust gas inflow side end located at the upstream end R1 is closed by the sealing portion 25, and the exhaust gas outflow side end located at the downstream end R2 is open.
  • the inflow side cell 21 and the outflow side cell 22 are capable of flowing gas, liquid, etc. from the opening end portion (hereinafter, also referred to as “opening portion”), and the closed sealing portion 24 and the sealing portion 25 are used to discharge exhaust gas. Distribution is blocked.
  • the inflow side cell 21 and the outflow side cell 22 are bottomed tubular spaces extending along the axial direction of the base material 11.
  • the cross-sectional shapes of the inflow side cell 21 and the outflow side cell 22 in the cross section orthogonal to the axial direction of the base material 11 are a rectangle such as a square, a parallelogram, a rectangle, and a trapezoid, and a polygon such as a triangle, a hexagon, and an octagon. It may have various geometric shapes such as a circular shape and an elliptical shape.
  • a porous partition wall 23 for partitioning the inflow side cell 21 and the adjacent outflow side cell 22 is formed.
  • the partition wall 23 constitutes an inner wall surface of the bottomed tubular inflow side cell 21 and the outflow side cell 22.
  • the partition wall 23 has a porous structure through which a gas such as exhaust gas can pass.
  • the thickness of the partition wall 23 is preferably, for example, 150 ⁇ m to 400 ⁇ m. When the thickness of the partition wall 23 between the inflow side cell 21 and the outflow side cell 22 is not constant, the “thickness” refers to the thickness of the thinnest portion.
  • the base material 11 may have the same or different area of the opening of one inflow side cell 21 at the inflow side end R1 and the area of the opening of one outflow side cell 22 at the outflow side end R2. You may be.
  • the "area of the opening” is the area of the face piece orthogonal to the exhaust gas flow direction.
  • the catalyst unit is a layered first catalyst unit 14 (hereinafter, “first catalyst”) provided at least on the upstream side of the exhaust gas flow direction X among the surfaces of the partition wall 23 facing the inflow side cell 21.
  • the layer 14 also referred to as “layer 14”
  • the layered second catalyst portion 15 (hereinafter, “second catalyst layer 15”) provided at least on the downstream side of the exhaust gas flow direction X among the surfaces of the partition wall 23 facing the outflow side cell 22. It is preferable to have PM collection performance and exhaust gas purification performance.
  • the first catalyst layer 14 is formed at least in a part from the upstream end in the exhaust gas flow direction to the downstream side by 20 mm in terms of PM collection performance and exhaust gas purification performance. It is preferable that the second catalyst layer 15 is formed at least in a part from the downstream end in the exhaust gas flow direction to the upstream side by 20 mm in terms of PM collection performance and exhaust gas purification performance.
  • the catalyst portion is also referred to as a “catalyst layer”, but the “catalyst layer” referred to below may correspond to either the first catalyst layer 14 or the second catalyst layer 15.
  • the length of the exhaust gas flow direction X of the exhaust gas purification catalyst is generally 50 mm or more and 200 mm or less.
  • the present invention has found that when the catalyst layer on the partition wall has a certain number of circular voids or more in a cross section orthogonal to the exhaust gas flow direction of the catalyst 10, peeling of the catalyst layer can be effectively suppressed.
  • the following are possible reasons for this.
  • the voids in the catalyst layer are usually obtained by adding a pore-forming agent to the catalyst layer-forming slurry and removing the pore-forming agent by firing. Since the pore-forming agent in the slurry having a diameter larger than the pore size of the partition wall is often used, it often exists in contact with the surface of the partition wall without entering the pores in the partition wall.
  • the circular voids have fewer contacts with the partition wall (base material) than the voids having other shapes such as needles and rectangles.
  • the spherical pore-forming agent that provides circular voids in the cross section of the catalyst 10 has a small surface area per unit volume and is less likely to aggregate in the slurry than the needle-shaped pore-forming agent, so that huge voids are formed in the catalyst layer. Is suppressed. In these respects, the presence of a certain amount of circular voids in the cross section of the catalyst 10 contributes to the suppression of peeling of the catalyst layer.
  • the catalyst 10 of the present embodiment has the same effect as the conventional voids in that the presence of voids in the cross section of the catalyst 10 suppresses pressure loss, and the voids have a circular shape. Further, the effect of being able to effectively suppress the peeling between the catalyst layer and the partition wall (base material) caused by the above is achieved.
  • the effect of the present invention is particularly effective in GPF applications in which it is highly necessary to provide voids in the catalyst layer to suppress pressure loss while maintaining high collection performance.
  • the exhaust gas purification catalyst 10 has an apparent area of the catalyst layer existing on the partition wall 23 in a cross section orthogonal to the exhaust gas flow direction (hereinafter, also referred to as “X direction” or “exhaust gas flow direction X”).
  • X direction also referred to as “exhaust gas flow direction X”.
  • L / ⁇ 2 ( ⁇ S) 1/2 ⁇ ⁇ 1.1 L is the circumference of the void in the cross section and S is the area of the void in the cross section
  • the ratio of the total area of the voids (hereinafter, also referred to as “circular void ratio”) is preferably more than 10% and 30% or less.
  • the apparent area of the catalyst layer existing on the partition wall 23 in the cross section refers to the entire area including the voids of the catalyst layer existing on the partition wall 23 in the cross section. Equation: The closer the value of L / ⁇ 2 ( ⁇ S) 1/2 ⁇ is to 1, the closer the shape is to a perfect circle, and the minimum value is 1. Therefore, the shape of the void whose value derived by the above equation is 1.1 or less is close to a perfect circle.
  • the voids satisfying the above formula will be referred to as approximate perfect circular voids.
  • the approximate perfect circular void has a circle-equivalent diameter of 1 ⁇ m or more.
  • the circular porosity is preferably the ratio of the total area of the voids that satisfy the above formula and have a circle-equivalent diameter of 1 ⁇ m or more and 60 ⁇ m or less.
  • the circle-equivalent diameter refers to the diameter when the voids are regarded as circles having the same area.
  • the circular porosity of the catalyst layer on the partition wall is more preferably 11% or more and 20% or less, and further preferably 12% or more and 15% or less.
  • the circular void ratio is controlled to a high range of more than 10% by controlling the oxide-equivalent content ratio (ZrO 2 amount) of the zirconium element in the catalyst layer to the range described later. Also, it is possible to prevent the catalyst layer from peeling off from the partition wall.
  • ZrO 2 is excellent in suppressing peeling of the catalyst part by increasing the content ratio of ZrO 2 in the catalyst layer is that ZrO 2 has a high melting point, a large bond divergence energy with oxygen, a high bending strength and fracture toughness, and a mechanical action. It seems that it is due to its strong resistance to zircium dioxide and little change in specific surface area before and after firing.
  • the circular porosity is preferably measured based on scanning electron microscope observation.
  • the position of the cross section of the exhaust gas purification catalyst 10 used for scanning electron microscope observation in the X direction is not limited, and can be observed in any cross section.
  • the method for measuring the circular porosity is as follows, for example.
  • a columnar sample S having a diameter of 25.4 mm and having a central axis parallel to the exhaust gas flow direction is hollowed out.
  • the columnar sample S has a length over the entire exhaust gas flow direction X of the exhaust gas purification catalyst 10.
  • the hollow position of the columnar sample S in the exhaust gas purification catalyst 10 on the plane orthogonal to the exhaust gas flow direction (see FIG. 3B).
  • the central axis of the hollowed portion is located at a position separated from the center C of the base material in the radial direction by 10% to 70% of the radial length in the plane.
  • the center of the base material on the plane is a point that bisects the maximum line segment that crosses the outer shape of the base material on the plane. Further, the radial length is halved of the maximum line segment.
  • the cross-sectional position of the exhaust gas purification catalyst 10 in the exhaust gas distribution direction X is not limited as described above.
  • the sealing portion 24 is located within 10 mm from the upstream end of the columnar sample S in the X direction and does not overlap with the sealing portion 25, or within 10 mm from the downstream end of the sample in the X direction.
  • the central portion of the sample S in the X direction may be used as an observation surface. These observation surfaces are exposed by cutting in a cross section orthogonal to the X direction. Resin is embedded and polished on the observation surface.
  • the thickness of the observation sample (length in the X direction) is preferably 10 mm from the viewpoint of ease of handling the sample.
  • two samples T and B in FIG. 3 (c)) for observing the positions t and b of 10 mm from each end on the upstream and downstream sides in the exhaust gas flow direction X and the exhaust gas flow direction.
  • An example of obtaining a sample (M in FIG. 3C) for observing the center position m at X is shown.
  • the observation surface is determined by observing the distribution of the partition wall component and the catalyst layer component by EPMA (Electron Probe Micro Analyzer) mapping, respectively.
  • the observation magnification is 40 to 1000 times (acceleration voltage 15 kV to 25 kV).
  • the base material component and the catalyst layer component used for determining the range of the catalyst layer on the partition wall may be specified by subjecting the base material and the catalyst layer in the exhaust gas purification catalyst 10 to fluorescent X-ray analysis or the like, respectively. For example, when the base material contains cordierite, observe the distribution of Si or Mg as the base material component.
  • the catalyst layer component include Al, Ce, Zr, Pt, Pd, Rh and the like.
  • the distribution range of the catalyst layer component and the partition wall component on the SEM image Identify the distribution range of.
  • the outer edge of the distribution range of the partition wall components identifies the "provisional boundary" of the catalyst layer on the partition wall, for example as shown in FIG.
  • the acceleration voltage for SEM observation is preferably 10 kV to 15 kV.
  • the longitudinal direction of the observation image and the EPMA observation image it is preferable that the longitudinal direction of the observation image (if the observation image is square, the direction of one side thereof) and the thickness direction of the catalyst layer are substantially orthogonal to each other.
  • the outer edge of the catalyst layer extends over the entire longitudinal direction of the observation image (or one side of the observation image if it is square). Select an image that extends along the longitudinal direction. For example, an image in which the catalyst layer exists only in a part of the longitudinal direction of the observation image due to the outer edge of the catalyst layer being bent in the middle of the longitudinal direction of the observation image is not selected. This is because such a bent portion has low exhaust gas permeability and a small contribution to pressure loss.
  • the outer edge of the distribution range of the partition wall component in the above-mentioned EPMA mapping is defined as the outer edge of the partition wall side in the catalyst layer on the partition wall in the SEM image. Further, the outer edge of the catalyst layer opposite to the partition wall is defined based on the difference in color between the catalyst layer and the base material and other parts. These outer edges are defined as "provisional boundaries," for example, as shown in FIG. Examples of the difference in color include the examples of FIGS. 4 and 5 in which the catalyst layer and the base material are white or gray, while the other parts are black.
  • the "provisional boundary line” can be defined by the image processing software for drawing the boundary line described later, and the selection threshold value can be set within the same range as described later.
  • the “provisional boundary line” is for defining the partition width described later and provisionally defining an approximate perfect circular void, and is not used for measuring the area of the catalyst layer.
  • S void area
  • L peripheral of the void
  • the image processing for specifying the shape of each void can be performed by the image processing software for drawing the boundary line, and as the image processing software for drawing the boundary line, for example, Pictbear (provided by Fenrir Inc.) is used. be able to.
  • the selection threshold is preferably 20 or more and 40 or less based on, for example, the color of a clear void portion.
  • the color of the clear void portion is the color of the portion other than the constituent components of the catalyst layer and the base material, and is usually black as shown in FIGS. 4 and 5.
  • the outer circumference of each void is preferably drawn using 20 points or more.
  • Image analysis software can be used to calculate the circumference L and area S of the void after drawing the boundary line, specifically, ImageJ (public domain), Photoshop (provided by Adobe Systems Incorporated) or AreaQ (provided by STEC Co., Ltd.) can be used.
  • the entire catalyst layer on the partition wall partitioned by the above-mentioned "provisional boundary line" is contained, satisfies L / ⁇ 2 ( ⁇ S) 1/2 ⁇ ⁇ 1.1, and has a circle-equivalent diameter of 1 ⁇ m.
  • each of the voids having a diameter of 60 ⁇ m or less is measured for 20 fields of view. For all of them, measure the circle-equivalent diameter. Then, for example, as shown in FIG. 5, the width is the same as the median diameter of the obtained circle-equivalent diameter (hereinafter, also referred to as “partition width”), and the SEM image of the catalyst cross section is parallel to the thickness direction of the catalyst layer. Draw a plurality of straight lines (hereinafter, also referred to as “partition lines”).
  • the 20 fields of view include the entire catalyst layer on the partition wall defined by the "provisional boundary line", and the circle-equivalent diameter is 1 ⁇ m or more and 60 ⁇ m or less, and L / ⁇ 2 ( ⁇ S) 1/2 ⁇ ⁇ . It means a visual field having at least one void satisfying 1.1, and does not include a visual field having no such void. Further, in a certain observation image, catalyst layers are tentatively formed on both sides of the partition wall, and both catalyst layers have a circle-equivalent diameter of 1 ⁇ m or more and 60 ⁇ m or less, and L / ⁇ 2 ( ⁇ S) 1/2 ⁇ ⁇ 1. When one or more voids satisfying 1. are contained, the measurement result for the catalyst layer having the larger area (the area surrounded by the edge of the observation image and the provisional boundary line) among the two catalyst layers is used. The other catalyst layer is excluded from the measurement.
  • the SEM observation image shall be measured in the field of view where the number of division lines according to the division width is 40 or less and 30 or more, and if it is not satisfied, the magnification is increased. Change and perform the following processing.
  • a line connecting the intersections of the partition wall outer edge and the partition line by the EPMA mapping described above with a straight line is a line defining the boundary between the partition wall and the catalyst layer (hereinafter, the above-mentioned "provisional boundary line”. It is also called “bulkhead boundary line” to distinguish it from "”.
  • a line connecting the intersections of the edge of the catalyst layer and the dividing line, which is determined by the difference in color described above, with a straight line is a line defining the boundary between the catalyst layer and its outside (hereinafter referred to as the above). It is also called “catalyst layer boundary line” to distinguish it from the “provisional boundary line”.
  • the area surrounded by the partition wall boundary line, the catalyst layer boundary line, and the two outermost division lines in the longitudinal direction is set as shown in FIG. 5, for example. , Determined as the apparent area of the catalyst layer.
  • the catalyst layer region on the partition wall is defined by the partition wall boundary line, the catalyst layer boundary line, and the two outermost dividing lines in the longitudinal direction. Reidentify as an area surrounded by (hereinafter, also referred to as an "apparent area” area). As the catalyst layer region on the partition wall is respecified in this way, it is newly included in the "apparent area” region instead of the "provisional boundary line” specified in (2) above. Respecify the voids having a circle-equivalent diameter of 1 ⁇ m or more and 60 ⁇ m or less and satisfying the above formula: L / ⁇ 2 ( ⁇ S) 1/2 ⁇ ⁇ 1.1 and their areas. At that time, the following approximation processing, which was not performed in the above-mentioned partition width specifying processing, is performed (see FIG. 6).
  • FIG. 6 (b) shows the provisional void shapes regarded as described above for ⁇ and ⁇ .
  • the ratio is more than 30%, the area and the perimeter are obtained as before without performing the above processing, and the above formula L / ⁇ 2 ( ⁇ S) 1/2 ⁇ ⁇ 1.1 is obtained. Determine if applicable.
  • the voids partially lost due to the partition wall boundary line, the catalyst layer boundary line, or the above-mentioned two outermost dividing lines in the longitudinal direction are other than the boundary line in the voids.
  • the same processing as for ⁇ and ⁇ is performed from the peripheral length (solid line length) and the boundary line portion (dotted line length) in the void.
  • the same treatment as for ⁇ and ⁇ is performed on the voids that are partially lost due to the lane markings.
  • the total area of the approximate perfect circular voids having a circle-equivalent diameter of 1 ⁇ m or more and 60 ⁇ m or less existing in the above-mentioned “apparent area” region is obtained.
  • the circular porosity obtained by observing a total of 20 visual fields obtained by observing one or more observation surfaces in one sample S may satisfy the above range.
  • the present invention when observing a plurality of observation surfaces at different positions in the exhaust gas flow direction X for 20 fields of view, if the circular porosity differs depending on the observation surface, if the circular porosity on any of the observation surfaces satisfies the above range, the present invention. It shall fall under the invention.
  • This also applies to the circle-equivalent diameter described later, the approximate number of circular voids per 1 mm, and the thickness of the catalyst portion with respect to the catalyst thickness. Further, the following aspects (A) or (B) are more preferable.
  • the average value of the circular porosity of the 10 visual fields on the upstream side and the average value of the circular porosity of the 10 visual fields on the downstream side are also preferably more than 10% and 30% or less, respectively. , 11% or more and 20% or less, and more preferably 12% or more and 15% or less.
  • the average value of the circle-equivalent diameters of the approximate perfect circular voids is 1 ⁇ m or more and 60 ⁇ m or less, and by setting this range. It is possible to suppress peeling, suppress pressure loss, and measure the circular porosity that contributes to PM collection performance. From the viewpoint of suppressing peeling, suppressing pressure loss, and further enhancing PM collection performance, the average value of the circle-equivalent diameter is preferably 5 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or more and 30 ⁇ m or less.
  • the average value of the circle-equivalent diameter of each of the approximately perfect circular voids having a circle-equivalent diameter of 1 ⁇ m or more and 60 ⁇ m or less is obtained for each visual field, and the average value of each visual field is obtained as the circular void ratio. It is obtained by averaging the 20 fields that were finally used.
  • the average number of approximate perfect circular voids having a circle-equivalent diameter of 1 ⁇ m or more and 60 ⁇ m or less per 1 mm 2 of the apparent area of the catalyst layer existing on the partition wall is preferably 250 or more from the viewpoint of suppressing pressure loss, which is 4000.
  • the number of pieces or less is preferable from the viewpoint of PM collection performance and peeling suppression.
  • the average number of approximate perfect circular voids having a circle-equivalent diameter of 1 ⁇ m or more and 60 ⁇ m or less per 1 mm 2 of the apparent area is more preferably 400 or more and 2000 or less, and more preferably 550 or more and 1000. It is even more preferable that the number is less than one.
  • the average number of approximate perfect circular voids having a circle-equivalent diameter of 1 ⁇ m or more and 60 ⁇ m or less per 1 mm 2 of the apparent area of the catalyst layer is the average value of 20 visual fields finally used to obtain the circular void ratio. be.
  • the average thickness of the catalyst layer on the partition wall is preferably 8% or more with respect to the average thickness of the partition wall from the viewpoint of PM collection performance, and preferably 20% or less from the viewpoint of suppressing pressure loss. From these points, the average thickness of the catalyst layer on the partition wall is more preferably 9% or more and 16% or less, and further preferably 10% or more and 12% or less with respect to the average thickness of the partition wall. preferable.
  • the average thickness of the catalyst layer on the partition wall is obtained by dividing the apparent area of the catalyst layer on the partition wall by the distance between the two outermost division lines in the longitudinal direction in the observation image. Ask for.
  • the average thickness of the partition wall is determined in one observation image with one outer edge of the partition wall (the above-mentioned partition wall boundary line) and the other outer edge of the partition wall (defined by the same method as the above-mentioned partition wall boundary line) and the observation image. It is obtained by dividing the area of the portion surrounded by the two outermost dividing lines in the longitudinal direction by the distance between the two outermost dividing lines in the longitudinal direction in the observation image. In this way, the ratio of the thickness of the catalyst layer on the partition wall to the thickness of the partition wall is obtained in each field of view. For the thickness ratio of each field of view, the average value in the 20 fields of view finally used to obtain the circular porosity is obtained and used as the above ratio.
  • the thickness of the partition wall is preferably 200 ⁇ m to 270 ⁇ m, more preferably 210 ⁇ m to 260 ⁇ m from the viewpoint of PM collection performance and pressure loss suppression.
  • a pore-forming agent having a specific shape, thermal decomposition start temperature, particle size distribution, and swelling degree in a solvent is used. If the amount of the pore-forming agent, the particle size of the pore-forming agent, the particle size of the metal oxide particles in the slurry, and the composition of the metal oxide (which affects the stability of the particle shape of the metal oxide) are appropriately adjusted. good. The same applies to the approximate number of perfect circular voids.
  • the mass of the catalyst unit for example, the first catalyst unit 14 may be controlled according to the amount of the catalytically active component, but the mass after drying is the first. It is preferable that the amount is 10 g or more per 1 L of the volume of the base material in which the catalyst portion 14 is formed from the viewpoint of improving the PM collection rate, and more preferably 20 g or more.
  • the mass of the first catalyst portion 14 after drying is 80 g or less per 1 L of the volume of the base material of the portion forming the first catalyst portion 14 from the viewpoint of reducing pressure loss and during high-speed operation. It is preferable in terms of improving the exhaust gas purification performance, and more preferably 60 g or less.
  • the mass of the second catalyst portion 15 may be controlled according to the amount of the catalytically active component, but the mass after drying shall be 20 g or more per 1 L of the volume of the base material of the portion forming the second catalyst portion 15. Is preferable in terms of improving the PM collection rate, and more preferably 30 g or more.
  • the mass of the second catalyst portion 15 after drying is 80 g or less per 1 L of the volume of the base material of the portion forming the second catalyst portion 15 from the viewpoint of reducing pressure loss and during high-speed operation. It is preferable in terms of improving the exhaust gas purification performance, and more preferably 60 g or less.
  • the volume of the base material referred to here is an apparent volume including the partition wall 23 of the base material, the first catalyst portion 14, the second catalyst portion 15, the pores in the partition wall 23, and the spaces in the cells 21 and 22.
  • the volume of the base material in the portion where the first catalyst portion 14 is formed can be obtained by "apparent volume of the base material x length L of the first catalyst portion 14 in the X direction 1 / length L of the base material 11 in the X direction". It is a volume.
  • the volume of the base material in the portion where the second catalyst portion 15 is formed is "apparent volume of the base material x length L2 of the second catalyst portion 15 in the X direction / length L of the base material 11 in the X direction". (See FIG. 2 for the symbols of L, L1 and L2).
  • the pore volume with a pore diameter of 5 to 500 nm derived from the pores in the catalyst layer is 0.020 cm 3 / g or more. It is preferably in the range of 0.20 cm 3 / g.
  • a mercury press-fitting method according to JIS R 1655: 2003 can be used, and an autopore IV9520 manufactured by Shimadzu Corporation can be used as the measuring device.
  • the catalyst part contains a catalytically active component.
  • the catalytically active component include platinum group metals, and specifically, any of platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir), and osmium (Os). Or one or more.
  • at least one catalytically active component contained in the first catalyst layer 14 and the second catalyst layer 15 is independently selected from platinum (Pt), palladium (Pd), and rhodium (Rh). It is preferably a seed.
  • the catalytically active components of both catalyst portions may be the same or different, but the second catalyst layer 15 is a catalyst.
  • the active ingredient it is preferable to contain a catalytically active ingredient other than the catalytically active ingredient contained in the first catalyst layer 14.
  • the first catalyst layer 14 contains a noble metal selected from platinum (Pt), palladium (Pd) and rhodium (Rh)
  • the second catalyst layer 15 contains platinum (Pt), palladium (Pd), and the like.
  • rhodium (Rh) rhodium (Rh) and contains a noble metal other than the noble metal contained in the first catalyst layer 14 in that harmful components of exhaust gas such as NO x , CO and HC can be efficiently purified.
  • either one of the first catalyst layer 14 and the second catalyst layer 15 contains rhodium (Rh), and in particular, the first catalyst layer 14 contains rhodium (Rh). Is more preferable to contain.
  • both the first catalyst layer 14 and the second catalyst layer 15 contain rhodium (Rh)
  • NO X purification can be performed, especially when two or more catalysts are arranged in the vehicle according to the exhaust gas flow method.
  • the catalyst of the present invention is preferable as the second and subsequent important catalysts (the second and subsequent catalysts from the upstream side when two or more exhaust gas purification catalysts are arranged along the exhaust gas flow direction). ..
  • the content ratio of the catalytically active component in the catalyst section is different in the first catalyst layer 14 and / or the second catalyst layer 15 from the viewpoint of exhaust gas purification performance and cost.
  • the total amount of the components is preferably 0.001% by mass or more and 25% by mass or less, more preferably 0.01% by mass or more and 20% by mass or less, and 0.05% by mass or more and 15% by mass or less. Is most preferable.
  • the amount of the catalytically active component can be measured, for example, by measuring the amount of noble metal in the solution obtained by completely dissolving the catalyst layer with ICP-AES.
  • the amount of the noble metal in the solution obtained by completely dissolving each catalyst layer and the base material is used in the solution obtained by completely dissolving only the base material. It can be measured by subtracting the amount of precious metal in.
  • the catalyst portion contains a catalyst-supporting component that supports the catalytically active component, from the viewpoint of efficiently exhibiting the exhaust gas purification performance of the catalytically active component.
  • the catalyst-supporting component here include metal oxide particles.
  • Specific examples of the metal oxide constituting the metal oxide particles include an inorganic oxide which is an oxygen storage component (hereinafter, also referred to as “OSC material”) and an inorganic oxide other than the oxygen storage component.
  • OSC material oxygen storage component
  • both the particles of the inorganic oxide which is the oxygen storage component and the particles of the inorganic oxide other than the oxygen storage component carry the catalytically active component.
  • the term "metal oxide particles" as used herein includes those in which metal oxide particles are bonded to each other by firing to form a sintered body.
  • the term "supported" on the metal oxide particles means that the catalytically active component is physically or chemically adsorbed or retained on the outer surface or the inner surface of the pores of the metal oxide particles.
  • the fact that the metal oxide particles carry the catalytically active component means that, for example, in the element mapping obtained by analyzing the cross section of the exhaust gas purification catalyst 10 with EDS, the metal oxide component and the catalytic activity By confirming that the components are present in the same region, it can be determined that the metal oxide particles "support" the catalytically active component.
  • the inorganic oxide as an oxygen storage component may be a metal oxide having a polyvalent state and having an ability to store oxygen.
  • CeO 2 or CZ material ceria containing Ce and Zr
  • -Zirconia composite oxide solid solution of CeO 2 and ZrO 2
  • iron oxide copper oxide.
  • oxides of rare earth elements other than Ce are preferably used from the viewpoint of thermal stability and the like.
  • oxides of rare earth elements other than Ce Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , Pr 6 O 11 , Nd 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 4 O 7 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 and Lu 2 O 3 .
  • CeO 2 -ZrO 2 is a solid solution of CeO 2 and ZrO 2.
  • the CeO 2 and ZrO 2 is in the solid solution, using X-ray diffraction apparatus (XRD), it can be confirmed by whether a single phase derived from the CeO 2 -ZrO 2 is formed.
  • Oxides of rare earth elements other than the above-mentioned Ce may be dissolved in CeO 2- ZrO 2.
  • inorganic oxides other than the oxygen storage component that can be contained in the catalyst portion include metal oxides other than the oxygen storage component, and examples include alumina, silica, silica-alumina, titania, and aluminosilicates.
  • alumina is preferably used from the viewpoint of excellent heat resistance.
  • the catalyst unit has the first catalyst layer 14 and the second catalyst layer 15
  • all the configurations related to the composition of the catalyst unit described above correspond to both the first catalyst layer 14 and the second catalyst unit 15. It is preferable to do so.
  • the catalyst unit in addition to the specific circular porosity, it is preferable that the content of the oxide in terms of zirconium element (ZrO 2 amount) is high.
  • ZrO 2 amount the content of the oxide in terms of zirconium element
  • the circular porosity is more than 10% and 30% or less, the pressure loss suppression and PM collection performance are excellent, but there are many thin parts in the catalyst portion, and the catalyst portion is in a relatively brittle state. Therefore, if the strength of the catalyst portion is weak, the adhesion of the catalyst portion to the base material may be lowered as an adverse effect of the pressure loss reduction, resulting in a specification lacking in practicality.
  • the present inventors have, by increasing the ZrO 2 amount in the catalyst portion which is partially thinned by a high circular porosity to be high adhesion to the catalyst portion to the substrate can be obtained I found it.
  • the reason why increasing the amount of ZrO 2 is excellent in suppressing the peeling of the catalyst part is that ZrO 2 has a high melting point, a large bond dissociation energy with oxygen, high bending strength and fracture toughness, and strong mechanical action before and after firing. It seems that it is due to the characteristic that the change in the specific surface area of is small.
  • the amount of ZrO 2 in the catalyst portion is preferably 35% by mass or more, more preferably 45% by mass or more, and particularly preferably 50% by mass or more.
  • the oxide-equivalent content (ZrO 2 amount) of the zirconium element in the catalyst portion is preferably 85% by mass or less. It is more preferably 75% by mass or less, and particularly preferably 65% by mass or less.
  • the cerium element is based on the oxide-equivalent content (ZrO 2 amount) of the zirconium element in the catalyst portion.
  • the mass ratio (CeO 2 amount / ZrO 2 amount) of the oxide-equivalent content (CeO 2 amount) is preferably 0.8 or less, more preferably 0.5 or less, and 0.3 or less. Is most preferable. In terms of OSC ability, it is preferable the lower limit of the amount of CeO 2 / ZrO 2 amount is 0.03 or more.
  • the mass ratio (ZrO 2 ) of the oxide-equivalent content (ZrO 2 amount) of the zirconium element to the oxide-equivalent content (Al 2 O 3 amount) of the aluminum element is preferably 1.5 or more, more preferably 2.5 or more, and particularly preferably 3.5 or more. In terms of OSC ability, it is preferable upper limit of ZrO 2 amount / Al 2 O 3 content is 10 or less.
  • the catalytic section is, when containing alumina and ceria, the catalyst unit, the content of the oxide in terms of aluminum element to (Al 2 O 3 weight), the content of the oxide equivalent of zirconium element (ZrO 2 amount)
  • the mass ratio ((ZrO 2 amount + CeO 2 amount) / Al 2 O 3 amount) of the total amount of the oxide-equivalent content (CeO 2 amount) of the cerium element is preferably 3.0 or more. It is more preferably 5.5 or more, and even more preferably 4.0 or more. From the viewpoint of OSC ability, the upper limit of (ZrO 2 amount + CeO 2 amount) / Al 2 O 3 amount is preferably 10 or less.
  • the oxide-equivalent content (CeO 2 content) of the cerium element in the catalyst portion is 5% by mass or more and 40% by mass or less, more preferably 10% by mass or more and 30%. It is less than mass%.
  • the oxide-equivalent content (ZrO 2 amount) of the zirconium element and the oxide-equivalent content (CeO 2 amount) of the cerium element in the catalyst portion referred to in the present specification are CeO 2 and ZrO 2 which are solid solutions.
  • the CeO 2 conversion amount of Ce constituting the ceria-zirconia composite oxide and the ZrO 2 conversion amount of Zr constituting the composite oxide are included.
  • the amount of CeO 2 and the amount of ZrO 2 can be measured, for example, by measuring the amounts of Ce and Zr in the solution obtained by completely dissolving the catalyst layer with ICP-AES and converting them into oxides.
  • the catalyst layer When the catalyst layer is contained in the partition wall of the base material, it is obtained by completely dissolving only the base material from the amount of Ce and Zr in the solution obtained by completely dissolving each catalyst layer and the base material. It can be measured by subtracting the amounts of Ce and Zr in the solution.
  • the content of the inorganic oxide other than the oxygen storage component in the catalyst portion is preferably 4% by mass or more and 50% by mass or less, more preferably 7% by mass, from the viewpoint of the balance between heat resistance, OSC and pressure loss suppression. % Or more and 30% by mass or less.
  • the oxide-equivalent content of the aluminum element (Al 2 O 3 amount) is determined by, for example, measuring the amount of aluminum in the solution obtained by completely dissolving the catalyst layer with ICP-AES and converting it into an oxide. Can be measured.
  • the amount of Al in the solution obtained by completely dissolving each catalyst layer and the base material is used in the solution obtained by completely dissolving only the base material. It can be measured by subtracting the amount of Al.
  • the catalyst part has the first catalyst layer 14 and the second catalyst layer 15, in the above configuration relating to the amount of ZrO 2, the amount of CeO 2 and / or the amount of Al 2 O 3 , the catalyst part is the first catalyst layer 14 and the first catalyst layer 14. It may correspond to only one of the two catalyst layers 15, or may correspond to both. Preferably, the following configurations are realized in both the first catalyst layer 14 and the second catalyst layer 15.
  • the first catalyst layer 14 is preferably present mainly on the surface of the partition wall 23, not inside the partition wall 23, from the viewpoint of further enhancing the PM collection performance and the exhaust gas purification performance during high-speed operation.
  • the fact that the first catalyst layer 14 is mainly present on the surface of the partition wall 23 means that the first catalyst layer existing on the surface of the partition wall 23 of the base material 11 in the cross section of the base material 11 on which the first catalyst layer 14 is provided. It means that the mass of 14 is larger than the mass of the first catalyst layer 14 existing inside the partition wall 23.
  • the cross section of the partition wall provided with the first catalyst layer 14 is observed with a scanning electron microscope (“JEM-ARM200F” manufactured by JEOL Ltd.), and energy dispersive X-ray (EDS: Energy dispersive X-ray) is observed.
  • JEM-ARM200F scanning electron microscope
  • EDS Energy dispersive X-ray
  • Analysis by spectrometry line analysis of the boundary between elements existing only in the substrate (for example, Si, Mg, etc.) and elements existing only in the catalyst layer (for example, Ce, Zr, etc.), and electron beam microanalyzer (for example, Ce, Zr, etc.) It can be confirmed that it is mainly present on the surface by a method or the like analyzed by EPMA).
  • the second catalyst layer 15 is mainly present on the surface of the partition wall 23, not inside the partition wall 23.
  • the length L1 of the first catalyst layer 14 in the X direction is 10% to 80% of the length L of the base material 11 in the X direction (see FIG. 2), which reduces the pressure loss. However, it is preferable in terms of suitable collection performance of PM, and more preferably 30% to 60%. Further, the length L2 of the second catalyst layer 15 in the X direction (see FIG. 2) is 30% to 90% of the length L of the base material 11 in the X direction, so that the PM can reduce the pressure loss. It is preferable from the viewpoint of enhancing the collection performance, and more preferably 50% to 80%.
  • the first catalyst layer 14 is preferably formed from the upstream end in the exhaust gas flow direction, and the second catalyst layer 15 is preferably formed from the downstream end.
  • the lengths of the first catalyst layer 14 and the second catalyst layer 15 can be measured by the following method. That is, the exhaust gas purification catalyst 10 is visually observed, the boundary between the first catalyst layer 14 and the boundary of the second catalyst layer 15 are specified, and the lengths of the first catalyst layer 14 and the second catalyst layer 15 are measured, respectively. It is preferable to do so. At this time, for example, the lengths of the first catalyst layer 14 and the second catalyst layer 15 are measured at arbitrary 10 locations of the exhaust gas purification catalyst 10, and the average value thereof is taken as the average value of the first catalyst layer 14 and the second catalyst layer 15. It is preferable to obtain it as a length.
  • the composition at 16 locations can be analyzed and identified based on the concentration of catalytically active components at each location.
  • concentration of the catalytically active component at each location can be determined by, for example, fluorescent X-ray analysis (XRF) or ICP emission spectroscopic analysis (ICP-AES).
  • the first catalyst layer 14 is formed so as to extend from the upstream end R1 in the X direction of the base material 11 to the downstream side in terms of both ease of manufacture and exhaust gas purification performance.
  • the second catalyst layer 15 is preferably formed so as to extend upstream from the downstream end R2 in the X direction of the base material 11. Further, as described later, when the second catalyst layer 15 has the lower layer 15A and the upper layer 15B, the lower layer 15A and the upper layer 15B move from the downstream end portion R2 in the X direction of the base material 11 to the upstream side. It is preferably formed by extending.
  • an inflow side cell consisting of a space in which the inflow side in the exhaust gas flow direction is open and the outflow side is closed
  • an outflow side consisting of a space in which the inflow side in the exhaust gas flow direction is closed and the outflow side is open.
  • a catalyst portion is formed on a base material having a cell and a porous partition wall separating the inflow side cell and the outflow side cell. Specifically, the surface of the partition wall facing the inflow side cell and / or the surface facing the outflow side cell is coated with a slurry for forming a catalyst portion containing a pore-forming agent, and then coated on the base material.
  • the slurry is fired to eliminate the pore-forming agent to form the catalyst portion having a plurality of voids.
  • 90% or more of the pore-forming agent has a roundness of L / ⁇ 2 ( ⁇ S) 1/2 ⁇ ⁇ 1.05, and the thermal decomposition start temperature of 200 ° C. or higher makes the circular porosity within the above range. It is preferable to do so.
  • the oxide-equivalent content (ZrO 2 amount) of the zirconium element in the solid content other than the pore-forming agent in the slurry is 35% by mass or more and 85% by mass or less.
  • the pore-forming agents added to the slurry for forming the catalyst portion in this production method 90 of the pore-forming agents having "roundness of L / ⁇ 2 ( ⁇ S) 1/2 ⁇ ⁇ 1.05" are based on the number. % Or more is preferable. With such a configuration, it is easy to obtain the exhaust gas purification catalyst 10 having the circular porosity. The roundness here is measured based on the observation by SEM. The observation sample is obtained by dropping the powder sample attached to the cotton swab from the upper part onto the SEM sample stand to which the carbon tape is attached, and then wiping off the excess powder with an air gun.
  • the conditions for blowing the air gun include, but are not limited to, blowing air at 5 atm (gauge pressure) for 1 second from a position 10 cm apart.
  • the SEM observation is preferably an acceleration voltage of 5 kV to 15 kV and an observation magnification of 40 times to 1000 times.
  • the pore-forming agent used in this production method preferably has a thermal decomposition start temperature of 200 ° C. or higher in the atmosphere.
  • a pore-forming agent having a high thermal decomposition temperature generally has a high degree of cross-linking of molecular chains. Due to this, voids having high roundness can be left in the catalyst portion without losing their shape during firing, and it is easy to manufacture the exhaust gas purification catalyst 10 having the above-mentioned circular porosity.
  • the thermal decomposition starting temperature of the pore-forming agent in the atmosphere is more preferably 250 ° C. or higher, and particularly preferably 270 ° C. or higher.
  • the upper limit of the thermal decomposition start temperature is preferably 550 ° C.
  • the thermal decomposition temperature is raised from room temperature to 500 ° C. in an atmospheric atmosphere, for example, and the thermal decomposition behavior is measured.
  • the heating rate can be, for example, 5 ° C./min to 20 ° C./min.
  • the thermal decomposition start temperature is the intersection of a line parallel to the horizontal axis passing through the mass before the start of test heating and a tangent line drawn so as to maximize the gradient between the bending points in the decomposition curve. In the following examples, the thermal decomposition start temperature in the atmosphere is simply referred to as "thermal decomposition start temperature".
  • the particle size at a cumulative volume of 10% measured by the laser diffraction type particle size distribution method was defined as D10
  • the particle size at a cumulative volume of 50% was defined as D50
  • the particle size at a cumulative volume of 90% was defined as D90.
  • the value of (D90-D10) / D50 is preferably 0.1 or more and 1.1 or less.
  • the value of (D90-D10) / D50 (hereinafter, also referred to as "monodispersity”) is a measure of the particle size distribution of the pore-forming agent, and the smaller the value of the monodispersity, the sharper the particle size distribution. It is a thing.
  • the pore-forming agent having a sharp particle size distribution has a high degree of cross-linking, it is more excellent in that the pore-forming agent is less deformed during firing due to thermal expansion, and the above-mentioned circular porosity can be easily obtained.
  • the pore-forming agent preferably has the above-mentioned monodispersity of 0.7 or less, and more preferably 0.3 or less.
  • the pore-forming agent preferably has a D50 of 5 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or more and 30 ⁇ m or less, from the viewpoint of obtaining the above-mentioned voids having a circle-equivalent diameter.
  • the pore-forming agent preferably has a D90 of 8 ⁇ m or more and 60 ⁇ m or less, and more preferably 15 ⁇ m or more and 40 ⁇ m or less from the viewpoint of monodispersity.
  • D10 is preferably 2 ⁇ m or more and 40 ⁇ m or less, and more preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the monodispersity and particle size can be measured using a laser diffraction / scattering type particle size / particle size distribution measuring device, for example, Microtrack HRA or Microtrack 3000 series manufactured by Microtrack Bell. For example, it can be measured as follows.
  • the pore-forming agent used in this production method has a low degree of swelling of the solvent. This is because a pore-forming agent having a low degree of swelling has a high degree of cross-linking.
  • the solvent absorption amount (g / g) per 1 g of the polymer after immersion at 50 ° C. for 48 hours is preferably 0.05 g / g or less with ethanol, and preferably 0.7 g / g or less with acetone.
  • 2-Methoxyethanol is preferably 0.15 g / g or less
  • toluene is preferably 0.15 g / g or less.
  • Examples of the material of the pore-forming agent include a polymer of a monomer having an ethylenically unsaturated bond containing a crosslinkable monomer, and a crosslinkable acrylic resin or a crosslinkable styrene resin can be used, particularly crosslinked polystyrene particles.
  • Crosslinked poly (meth) acrylic acid ester particles and the like can be used.
  • Examples of the crosslinked poly (meth) acrylate particles include crosslinked poly (meth) methyl acrylate particles and crosslinked poly (meth) butyl acrylate particles.
  • the amount of the pore-forming agent is preferably more than 15% by mass and 40% by mass or less, more preferably more than 20% by mass and 35% by mass or less, based on the solid content of the slurry for forming the catalyst portion excluding the pore-forming agent.
  • the slurry containing the pore-forming agent preferably further contains a catalytically active ingredient and metal oxide particles carrying the catalytically active ingredient.
  • the metal oxide particles include particles of the inorganic oxide which is the oxygen storage component described above and particles of the inorganic oxide other than the oxygen storage component as constituent components of the catalyst portion.
  • the particle size of the metal oxide particles in the catalyst portion is preferably 1 ⁇ m or more for D50 and 7 ⁇ m or more for D90 from the viewpoint of enhancing the dispersibility of the catalytically active component and enhancing the PM collection performance. Further, it is more preferable that D50 is 2 ⁇ m or more, and it is more preferable that D90 is 15 ⁇ m or more.
  • the upper limit of the particle size of the metal oxide particles is more preferably 40 ⁇ m or less in D50 and more preferably 80 ⁇ m or less in D90 of the metal oxide particles in the slurry from the viewpoint of enhancing the dispersibility of the catalytically active component.
  • the metal oxide particles D50 and D90 may have a particle size in which the catalytically active component is supported or a particle size in which the catalytically active component is not supported, and may be after the catalytically active component is supported and before being supported. In any of the above states, it may be equal to or more than or less than the above-mentioned preferable lower limit or upper limit.
  • the metal oxide particles D50 and D90 can be measured in the same manner as the pore-forming agents D50 and D90.
  • the catalytically active component may be mixed with metal oxide particles in the state of a water-soluble salt such as nitrate to obtain a slurry, which may be applied to the base material 11 and then dried or calcined.
  • the catalytically active component may be supported on the metal oxide particles in advance, and the metal oxide particles after the support may be used as a slurry.
  • the slurry has a solid content other than the pore-forming agent, which is the same as the preferable composition described for the catalyst portion of the exhaust gas purification catalyst 10. Therefore, in the slurry, the oxide-equivalent content (ZrO 2 amount) of the zirconium element is preferably 35 parts by mass or more and 85 parts by mass or less in 100 parts by mass of the solid component other than the pore-forming agent.
  • the slurry having the above components is applied to the surface of the partition wall facing the inflow side cell and / or the surface facing the outflow side cell.
  • a method of immersing the base material 11 on the upstream side in the exhaust gas flow direction in the slurry can be mentioned.
  • a method of immersing the base material 11 on the downstream side in the exhaust gas flow direction in the slurry can be mentioned.
  • the slurry may be sucked from the opposite side at the same time as the immersion.
  • the slurry coated on the base material is fired to eliminate the pore-forming agent to form the catalyst portion having a plurality of voids.
  • the firing temperature is preferably 350 to 550 ° C. in terms of preventing a decrease in catalytic activity and successfully firing the pore-forming agent.
  • the drying temperature is preferably 40 to 120 ° C. Baking is usually done in the atmosphere.
  • the exhaust gas purification catalyst 10 produced in this way makes use of its peeling prevention performance, PM collection performance and pressure loss prevention performance, and can be used as various exhaust gas purification catalysts for internal combustion engines powered by fossil fuels such as gasoline engines. It can be used for various purposes. Further, according to the present embodiment, it is possible to provide an exhaust gas purification method using such an exhaust gas purification catalyst 10. For example, by providing the exhaust gas purification catalyst 10 in the exhaust path of an internal combustion engine such as a gasoline engine, particularly a GDI engine of a vehicle, and using it as a GPF or the like, it is possible to satisfactorily purify the exhaust gas from the gasoline engine. ..
  • the exhaust gas purification catalyst 10 is preferably used as the second and subsequent catalysts from the upstream side when used in an exhaust gas purification device in which two or more exhaust gas purification catalysts are arranged along the exhaust gas flow direction. ..
  • the reason is that the amount of coating slurry is limited due to the characteristics of the filter catalyst, so when it is used as the first catalyst with a high heat load, deterioration tends to proceed, but by using the second and subsequent catalysts, it is possible. This is because high purification performance and PM collection performance can be maintained well.
  • Example 1 [1. Preparation of first slurry] CeO 2 -ZrO 2 solid solution powder (CeO 2 15 wt% to CeO 2 -ZrO 2 solid solution, ZrO 2 70 wt%, the oxide-containing 15 wt% of a rare earth element other than Ce) and were prepared alumina powder. CeO 2 -ZrO 2 mixture of a solid solution powder and the alumina powder was impregnated in an aqueous rhodium nitrate solution.
  • the ratio of roundness indicates the ratio based on the number of particles satisfying L / ⁇ 2 ( ⁇ S) 1/2 ⁇ ⁇ 1.05 among the particles of the spherical pore-forming agent.
  • the components other than the pore-forming agent of the solid of the slurry component is 100 parts by weight, CeO 2 -ZrO 2 solid solution powder 80 parts by weight, the alumina powder is 11 parts by weight of alumina sol was 3.0 parts by mass of zirconia sol Was 5.0 parts by mass, and Rh was 1.0 parts by mass in terms of metal.
  • the mass ratio of the pore-forming agent to the solid content of the slurry was 20%.
  • the D50 of the metal oxide in the slurry was 8 ⁇ m, and the D90 was 22 ⁇ m.
  • the SEM observation at the time of measuring the roundness of the pore-forming agent as a raw material was an acceleration voltage of 15 kV and an observation magnification of 600 times.
  • the base material 11 has the structure shown in FIG. 1 and has 300 cells / inch 2 cells extending in the axial direction partitioned by a partition wall having a thickness of 200 to 250 ⁇ m, and has a volume of 300 cells / inch 2.
  • the base material 11 having a diameter of 1.0 L and a total length of 91 mm was used.
  • the area of the opening of one inflow side cell 21 on the inflow side end face and the area of the opening of one outflow side cell 22 on the outflow side end face were substantially the same.
  • the upstream end of the base material 11 in the exhaust gas flow direction was immersed in the first slurry, sucked from the downstream side, and then dried at 70 ° C. for 10 minutes. As a result, a layer made of the solid content of the first slurry (first catalyst portion before firing) was formed on the surface of the partition wall 23 facing the inflow side cell 21.
  • the first catalyst portion 14 is a partition wall 23 on the inflow side cell 21 side from the upstream end portion R1 in the exhaust gas flow direction X to the downstream side up to 45% of the total length L. It was formed on the surface.
  • the mass of the first catalyst portion 14 with respect to the volume of the base material of the portion where the first catalyst portion 14 was formed was 52 g / L in terms of the mass after firing.
  • the second catalyst portion 15 of the exhaust gas purification catalyst 10 is formed on the surface of the partition wall 23 on the outflow side cell 22 side from the downstream end portion R2 in the exhaust gas flow direction X to the upstream side up to 70% of the total length L. Was there.
  • the mass of the second catalyst portion 15 with respect to the volume of the base material of the portion where the second catalyst portion 15 was formed was 52 g / L in terms of the mass after firing.
  • Example 2 In Example 1, for the pore-forming agent in the first slurry, the mass ratio of the pore-forming agent to the solid content of the slurry was changed to 30%. Exhaust gas purification catalyst 10 was obtained in the same manner as in Example 1 except for this point.
  • Example 3 Regarding the pore-forming agent in the first slurry in Example 1, the mass ratio of the pore-forming agent to the solid content of the slurry was changed to 40%. Exhaust gas purification catalyst 10 was obtained in the same manner as in Example 1 except for this point.
  • Exhaust gas purification catalyst 10 was obtained in the same manner as in Example 1 except for this point.
  • Example 6 In Example 1, the preparation of the first slurry was changed as follows. Exhaust gas purification catalyst 10 was obtained in the same manner as in Example 1 except for this point. (Modified slurry preparation process) Zirconia powder and alumina powder were prepared. Zirconia powder and alumina powder were mixed and impregnated in a rhodium nitrate aqueous solution.
  • a slurry was prepared by mixing 0.05 g / g of the mixture, 0 g / g of toluene, alumina sol, zirconia sol, and water as a liquid medium.
  • zirconia powder is 80 parts by mass
  • alumina powder is 11 parts by mass
  • alumina sol is 3.0 parts by mass
  • zirconia sol is 5.0 parts by mass.
  • Rh was 1.0 part by mass in terms of metal.
  • the D50 of the metal oxide in the slurry was 6 ⁇ m, and the D90 was 20 ⁇ m.
  • the mass ratio of the pore-forming agent to the solid content of the slurry was 15%.
  • Example 7 In Example 1, the preparation of the first slurry was changed as follows, and the amount of the catalyst portion was changed. Exhaust gas purification catalyst 10 was obtained in the same manner as in Example 1 except for this point. (Modified slurry preparation process) Zirconia powder and alumina powder were prepared. Zirconia powder and alumina powder were mixed and impregnated in an aqueous solution of rhodium nitrate and palladium nitrate.
  • a slurry was prepared by mixing barium hydroxide, alumina sol, zirconia sol, ceria sol, and water as a liquid medium.
  • the mass of the first catalyst portion with respect to the volume of the base material of the portion where the first catalyst portion was formed was 39 g / L in terms of the mass after firing.
  • the mass of the second catalyst portion with respect to the volume of the base material of the portion where the second catalyst portion was formed was 39 g / L in terms of the mass after firing.
  • Example 8> In Example 1, the preparation of the first slurry was changed as follows, and the amount of the catalyst portion was changed. Exhaust gas purification catalyst 10 was obtained in the same manner as in Example 1 except for this point. (Modified slurry preparation process) CeO 2 -ZrO 2 solid solution powder A (CeO 2 42 wt% to CeO 2 -ZrO 2 solid solution, ZrO 2 46 wt%, the oxide-containing 12 wt% of a rare earth element other than Ce) and different composition CeO 2 - ZrO 2 solid solution powder B (CeO 2 15 wt% to CeO 2 -ZrO 2 solid solution, ZrO 2 70 wt%, the oxide-containing 15 wt% of a rare earth element other than Ce) and were prepared alumina powder.
  • CeO 2 -ZrO 2 solid solution powder A CeO 2 42 wt% to CeO 2 -ZrO 2 solid solution, ZrO 2 46 wt%, the oxide-containing 12
  • CeO 2 -ZrO 2 mixture of a solid solution powder and the alumina powder was impregnated with rhodium nitrate and nitric acid aqueous solution of palladium.
  • a slurry was prepared by mixing barium hydroxide, alumina sol, zirconia sol, ceria sol, and water as a liquid medium.
  • the components other than the pore-forming agent of the solid of the slurry component is 100 parts by weight 40 parts by weight CeO 2 -ZrO 2 solid solution powder A
  • CeO 2 -ZrO 2 solid solution powder B is 27 parts by mass of alumina powder 17 parts by mass, barium hydroxide 5.6 parts by mass, alumina sol 3 parts by mass, zirconia sol 3.7 parts by mass, ceria sol 2.0 parts by mass, Rh 0.4 parts by mass in terms of metal, Pd It was 1.3 parts by mass in terms of metal.
  • the D50 of the metal oxide in the slurry was 20 ⁇ m, and the D90 was 35 ⁇ m.
  • the mass ratio of the pore-forming agent to the solid content of the slurry was 30%.
  • the mass of the first catalyst portion with respect to the volume of the base material of the portion where the first catalyst portion was formed was 39 g / L in terms of the mass after firing.
  • the mass of the second catalyst portion with respect to the volume of the base material of the portion where the second catalyst portion was formed was 39 g / L in terms of the mass after firing.
  • Example 9 In Example 1, the preparation of the first slurry was changed as follows. Exhaust gas purification catalyst 10 was obtained in the same manner as in Example 1 except for this point. (Modified slurry preparation process) Zirconia powder was prepared. Zirconia powder was impregnated in a mixed rhodium nitrate aqueous solution.
  • a slurry was prepared by mixing 0.05 g / g of the mixture, 0 g / g of toluene, alumina sol, zirconia sol, and water as a liquid medium.
  • the zirconia powder is 92.5 parts by mass
  • the alumina sol is 1.5 parts by mass
  • the zirconia sol is 5.0 parts by mass
  • Rh is a metal. It was 1.0 part by mass in terms of conversion.
  • the D50 of the metal oxide in the slurry was 7 ⁇ m, and the D90 was 20 ⁇ m.
  • the mass ratio of the pore-forming agent to the solid content of the slurry was 20%.
  • Example 1 In Example 1, the amount of the pore-forming agent in the first slurry was changed to 50% by mass with respect to the solid content of the slurry. Exhaust gas purification catalyst 10 was obtained in the same manner as in Example 1 except for this point.
  • Example 3 In Example 1, the amount of the pore-forming agent in the first slurry was changed to 10% by mass with respect to the solid content of the slurry. Exhaust gas purification catalyst was obtained in the same manner as in Example 1 except for this point.
  • Example 1 the preparation of the first slurry was changed as follows. Exhaust gas purification catalyst 10 was obtained in the same manner as in Example 1 except for this point. (Modified slurry preparation process) CeO 2- ZrO 2 solid solution powder (CeO 2- ZrO 2 solid solution contains 40% by mass of CeO 2 , 50% by mass of ZrO 2 , and 10% by mass of oxides of rare earth elements other than Ce) and alumina powder were prepared. The CeO 2- ZrO 2 solid solution powder and the alumina powder were mixed and impregnated in a rhodium nitrate aqueous solution.
  • a slurry was prepared by mixing barium hydroxide, alumina sol, zirconia sol, ceria sol, and water as a liquid medium.
  • the components other than the pore-forming agent of the solid of the slurry component is 100 parts by weight, CeO 2 -ZrO 2 solid solution powder 59 parts by weight, the alumina powder is 22 parts by weight, of barium hydroxide 9.0 parts by weight, Alumina sol was 3 parts by mass, zirconia sol was 3.0 parts by mass, ceria sol was 3.0 parts by mass, and Rh was 1.0 part by mass in terms of metal.
  • the mass ratio of the pore-forming agent to the solid content of the slurry was 50%.
  • Comparative Example 5 In Comparative Example 4, the pore-forming agent was changed to the same pore-forming agent used in Example 4, and the amount used was 25% by mass with respect to the solid content of the slurry. Exhaust gas purification catalyst was obtained in the same manner as in Comparative Example 4 except for this point.
  • Comparative Example 6 In Comparative Example 4, as a pore-forming agent in the first slurry, needle-shaped particles (material: cellulose) having an average diameter of 10 ⁇ m were used in an amount of 25% by mass based on the solid content of the slurry. Exhaust gas purification catalyst was obtained in the same manner as in Comparative Example 4 except for these points.
  • Example 8 In Example 1, the preparation of the first slurry was changed as follows. Exhaust gas purification catalyst 10 was obtained in the same manner as in Example 1 except for this point. (Modified slurry preparation process) Zirconia powder and alumina powder were prepared. Zirconia powder and alumina powder were mixed and impregnated in a rhodium nitrate aqueous solution.
  • a slurry was prepared by mixing 0.05 g / g of the mixture, 0 g / g of toluene, alumina sol, zirconia sol, and water as a liquid medium.
  • the zirconia powder is 85 parts by mass
  • the alumina powder is 6.0 parts by mass
  • the alumina sol is 3.0 parts by mass
  • the zirconia sol is 5.
  • 0 part by mass and Rh were 1.0 part by mass in terms of metal.
  • the mass ratio of the pore-forming agent to the solid content of the slurry was 20%.
  • the sample was set to a thickness portion 10 mm inward in the X direction from each observation surface in the same manner as in FIG. 3 (c).
  • the observation magnification of EPMA mapping was 300 times, and the acceleration voltage was 15 kV (when measuring Al, Ba, Ce, La, Mg, Si, Zr) and 25 kV (when measuring Pd, Rh, Pt).
  • the base material component element in the EPMA mapping was Si, and the catalyst layer component was Ce and Zr.
  • the observation magnification of the SEM when defining the partition width was the same as that of the EPMA mapping, and the acceleration voltage was 15 kV.
  • Pictbear was used as the boundary line drawing software, and the selection threshold was set to 30 based on the color of the clear void portion.
  • the results are shown in Table 1.
  • the average value of the 10-time circular porosity of the first catalyst part was 12% or more and 30% or less
  • the average value of the 10-time circular porosity of the second catalyst part was 10% or more and 30% or less in each case.
  • the exhaust gas purification catalyst 10 was fixed in a state of supporting the side surface so that the upstream end face in the exhaust gas flow direction faces upward. Air was sucked downward at a rate of 50 L / sec from below the exhaust gas purification catalyst 10 (below the downstream end face). The difference between the air pressure on the upstream measurement surface of the sample T and the air pressure on the downstream end surface of the sample T 10 seconds after the start of suction was determined as a pressure drop. In the evaluation of the pressure loss, a strict range of passing if it was less than 15 mmHG was set and evaluated.
  • each example ZrO 2 amount of the catalyst portion is 35 to 85 mass%, the pressure loss is low, the flaking rate of the catalyst layer is suppressed , PM collection rate is high.
  • Comparative Examples 1 to 3 having the same amount of ZrO 2 as in Examples Comparative Example 1 having a circular porosity of more than 30% has a large peeling rate and a circular porosity of 10% or less. Comparative Example 2 and the like have a large pressure loss.
  • Comparative Examples 4 and 8 in which the circular porosity is in the range of more than 10% and 30% or less, Comparative Example 4 in which the amount of ZrO 2 in the catalyst portion is less than 35% by mass is inferior in the peeling rate and ZrO 2 in the catalyst portion. In Comparative Example 8 in which the amount is more than 85% by mass, the pressure loss is too large. When the circular porosity is lowered in Comparative Example 4, the peeling rate can be suppressed, but the pressure loss becomes large (Comparative Example 5). In Comparative Examples 6 and 7 in which the amount of ZrO 2 was further increased and a needle-shaped pore-forming agent was used, the voids became needle-shaped and easily peeled off.

Abstract

排ガス浄化用触媒(10)の基材(11)は流入側セル(21)と、流出側セル(22)と、該流入側セルと該流出側セルとを隔てる多孔質の隔壁(23)とを有し、前記隔壁における、前記流入側セルに臨む面及び/又は前記流出側セルに臨む面に触媒部(14、15)が設けられており、排ガス流通方向に直交する断面において、隔壁上に存在する前記触媒部の見掛けの面積に対して、式:L/{2(πS)1/2}≦1.1 (Lは断面における空隙の周長であり、Sは断面における空隙の面積である)を満たす空隙の面積の総和の割合が10%超30%以下であり、触媒部における、ジルコニウム元素の酸化物換算の含有量(ZrO量)が35質量%以上85質量%以下である。

Description

排ガス浄化用触媒
 本発明は、排ガス浄化用触媒に関する。
 ガソリンエンジンなどの内燃機関に関しては年々厳しくなる燃費基準に対応するために、直噴エンジン(Gasoline Direct Injection engine、以下「GDI」ともいう。)の採用が広がっている。GDIは低燃費及び高出力である一方で、従来のポート噴射式エンジンに比べて排ガス中の粒子状物質(Particulate Matter、以下「PM」ともいう。ススを含む。)の排出量が5~10倍以上であることが知られている。このPM排出に関する環境規制に対応するため、GDI等のガソリンエンジン搭載車両においてもディーゼルエンジン搭載車両のようにPM捕集能を有するフィルタ(Gasoline Particulate Filter、以下「GPF」ともいう。)の設置が求められている。
 一般に排ガス浄化用触媒の搭載スペースは限られていることから、上述のフィルタにPd、Pt、Rh等の貴金属三元触媒を担持させて、PMの捕集とともに窒素酸化物(NOx)、一酸化炭素(CO)、炭化水素(HC)等の浄化を行うフィルタ触媒が近年用いられている。
 例えば特許文献1には、内燃機関の排気通路に配置され、該内燃機関から排出される排ガス中の粒子状物質を捕集する排ガス浄化フィルタであって、基材と、該基材上に設けられた触媒層と、を備え、前記触媒層は、担体と金属触媒とを含み、前記触媒層の断面の電子顕微鏡観察画像において、前記触媒層を100%としたときに、円相当径が5μmよりも大きな大細孔が45%以上を占めている、排ガス浄化フィルタが記載されている。
US2019/299139A1
 従来、GPFには、触媒層のほぼ全体を隔壁内に形成する場合(In-wall)と、少なくとも一部の触媒層を隔壁上に形成する場合(On-wall)とが存在する。On-wallはIn-wallに比べてPM捕集性能に優れている一方、GPFのフィルタ基材は隔壁が高気孔率であるため、フィルタ基材の隔壁内への触媒層の形成(In-wall)に比べて触媒層との密着性が低下して剥離しやすくなる傾向にある。更に、GPFにはIn-wallであってもOn-wallであってもPM捕集性能と圧力損失(圧損)抑制性能の両立という課題が存在する。
 前記従来技術では隔壁上に相対的に大きな細孔を高い割合で有する触媒層を形成することでPM捕集性能と圧損抑制性能の両立という課題を解決しようとしているが、触媒層を剥離抑制するための構成について検討していない。
 本発明は、前記従来技術の有する問題点の解決を目的としたものであり、触媒層の剥離と背圧上昇を抑制しつつ、高いPM捕集性能を発現する排ガス浄化用触媒を提供することを課題としたものである。
 本発明者は、PM捕集性能と圧損の抑制を得ながら触媒層の剥離を抑制するための構成について鋭意検討した。その結果、触媒層の断面において真円に近い細孔の割合を特定範囲とするとともに触媒層中のジルコニウム量を特定量とすることで、前記課題が解決できるとの知見を得た。
 本発明は前記知見に基づくものであり、
 基材と該基材に設けられた触媒部とを備え、
 前記触媒部が複数の空隙を有し、
 前記基材は、
  排ガス流通方向の流入側が開口し且つ流出側が閉塞されている空間からなる流入側セルと、
  排ガス流通方向の流入側が閉塞されており且つ流出側が開口している空間からなる流出側セルと、
  該流入側セルと該流出側セルとを隔てる多孔質の隔壁とを有し、
 前記隔壁における、前記流入側セルに臨む面及び/又は前記流出側セルに臨む面に前記触媒部が設けられている排ガス浄化用触媒であって、
 排ガス流通方向に直交する断面において、前記隔壁上に存在する前記触媒部の見掛けの面積に対して、式:L/{2(πS)1/2}≦1.1(Lは前記断面における前記空隙の周長であり、Sは前記断面における前記空隙の面積である)を満たす前記空隙の面積の総和の割合が10%超30%以下であり、
 前記触媒部における、ジルコニウム元素の酸化物換算の含有量(ZrO量)が35質量%以上85質量%以下である、排ガス浄化用触媒を提供するものである。
 本発明によれば、触媒層の剥離と圧損を抑制しつつ優れたPM捕集性能を有する、ウォールフロー構造を有する排ガス浄化用触媒を提供することができる。また、本発明によれば、前記排ガス浄化用触媒を産業上有利な方法で製造できる方法を提供できる。
図1は、本発明の一実施形態である排ガス浄化用触媒の模式断面斜視図を示す。 図2は、図1において四角で囲まれた部分について基材の軸方向に沿う断面を示した図である。 図3は、触媒層の断面を観察するためのサンプリング方法の一例を示した図である。 図4は、隔壁上の触媒部の走査型電子顕微鏡像に暫定的な境界線を引いた例を示す図である。 図5は、隔壁上の触媒部の走査型電子顕微鏡像の区画線を引いた別の例を示す図である。 図6は、近似真円状の空隙率の測定方法を説明するための模式図である。 図7は、図2において四角で囲まれた部分を拡大して示した図である。 図8は、図7から触媒層構成を一部変更した図である。
 以下本発明を、その好ましい実施形態に基づき説明するが、本発明は下記実施形態に限定されない。
 本実施形態の排ガス浄化用触媒10の例を図1、図2、図7及び図8に示す。
 排ガス浄化用触媒10は、ガソリンエンジン、特に車両のGDIエンジンなどの内燃機関の排気経路に設けられている。排ガス浄化用触媒10は、例えばGPFとして用いられる。
 図1に示すように、排ガス浄化用触媒10は、いわゆるウォールフロー構造を有する基材11を有する。基材11は、種々の材料のものを用いることができる。例えば、コージェライト、炭化ケイ素(SiC)等のセラミックス等から形成された基材を好適に採用することができる。基材は、通常、図1に示すように柱状を有しており、柱状の軸方向が排ガス流通方向Xと略一致するように、内燃機関の排気経路に配置されている。図1には、外形が円柱形状である基材が例示される。ただし、基材全体の外形については、円柱形に代えて、楕円柱形、多角柱形を採用してもよい。
 図1に示すように、基材11は、排ガス流通方向Xに沿って延びるとともに、該流通方向Xの流入側が開口し且つ流出側が閉塞されている空間からなる流入側セル21と、該流通方向Xに沿って延びるとともに、該流通方向Xの流入側が閉塞されており且つ流出側が開口している空間からなる流出側セル22とを有している。
 流入側セル21は、排ガス流通方向Xの下流側端部R2に位置する排ガス流出側端部が封止部24で閉塞されており、上流側端部R1に位置する排ガス流入側端部が開口している。流出側セル22は、上流側端部R1に位置する排ガス流入側端部が封止部25で閉塞されており、下流側端部R2に位置する排ガス流出側端部が開口している。流入側セル21及び流出側セル22は、開口端部(以下、「開口部」ともいう)から気体や液体等の流通が可能であり、閉塞した封止部24及び封止部25では排ガスの流通が遮断されている。流入側セル21及び流出側セル22は基材11の軸方向に沿って延びる有底筒状の空間である。基材11の軸方向と直交する断面における流入側セル21及び流出側セル22の断面形状は、正方形、平行四辺形、長方形、台形などの矩形、三角形、六角形、八角形などの多角形、円形、楕円形など種々の幾何学形状であってよい。
 流入側セル21と、隣接する流出側セル22との間には、これらを区画する多孔質の隔壁23が形成されている。隔壁23は、有底筒状の流入側セル21と流出側セル22の内側壁を構成している。隔壁23は、排ガス等の気体が通過可能な多孔質構造である。隔壁23の厚みとしては例えば150μm~400μmが好ましい。流入側セル21と流出側セル22との間の隔壁23の厚みが一定でない場合は、「厚み」とは最も薄い部分の厚みを指す。
 基材11は、流入側端部R1における一つの流入側セル21の開口部面積と、流出側端部R2における一つの流出側セル22の開口部の面積とが同じであってもよく、異なっていてもよい。「開口部の面積」とは、排ガス流通方向と直交する面体の面積である。
 基材11には、触媒活性成分を有する触媒部が担持されている。図2に示すように、触媒部は、隔壁23の流入側セル21に臨む面のうち、排ガス流通方向Xの上流側に少なくとも設けられた層状の第一触媒部14(以下、「第一触媒層14」ともいう。)と、隔壁23の流出側セル22に臨む面のうち、少なくとも排ガス流通方向Xの下流側に設けられた層状の第二触媒部15(以下、「第二触媒層15」ともいう。)を有していることがPM捕集性能及び排ガス浄化性能の点で好ましい。第一触媒層14は、排ガス流通方向の上流端から20mm下流側までの少なくとも一部において形成されていることがPM捕集性能、排ガス浄化性能の点で好ましい。第二触媒層15は排ガス流通方向の下流端から20mm上流側までの少なくとも一部において形成されていることがPM捕集性能、排ガス浄化性能の点で好ましい。以下、触媒部を「触媒層」とも記載するが、以下でいう「触媒層」は第一触媒層14及び第二触媒層15の何れに該当してもよい。なお、排ガス浄化用触媒の排ガス流通方向Xの長さは一般に50mm以上200mm以下である。
 本発明者は、隔壁上の触媒層が触媒10の排ガス流通方向に直交する断面において円状の空隙を一定以上有する場合、触媒層の剥離を効果的に抑制できることを見出した。この理由としては以下の事項が考えられる。
 触媒層中の空隙は通常、触媒層形成用スラリーに造孔剤を添加し、焼成により造孔剤を除去して得られる。スラリー中の造孔剤は、隔壁細孔径よりも大きい径を有するものが頻繁に用いられることから、隔壁中の細孔に入り込まずに隔壁表面と接して存在することが多い。触媒10の前記断面において円状の空隙は、針状や矩形状などの他の形状の空隙に比して隔壁(基材)との接点が少ない。また触媒10の前記断面に円状の空隙をもたらす球状の造孔剤は、単位体積当たりの表面積が小さく針状の造孔剤よりスラリー中で凝集しづらいため触媒層中に巨大な空隙ができることが抑制される。これらの点で触媒10の前記断面において円形の空隙が一定量存在することは、触媒層の剥離の抑制に寄与する。従って触媒10の前記断面において円状の空隙が一定量存在する触媒層では、圧損を抑制させながら触媒層と隔壁(基材)との剥離を効果的に抑制できる。すなわち、本実施形態の触媒10は、触媒10の前記断面に空隙が存在することで圧損を抑制させるという従来の空隙と同様の作用効果を奏しながら、空隙の形状が円形であることによって、空隙に起因する触媒層と隔壁(基材)との剥離を効果的に抑制することができるという作用効果を更に奏するものである。本発明の効果は特に高捕集性能を維持しながら、触媒層に空隙を設けて圧損を抑制する必要が高いGPFの用途において効果的なものである。
 具体的には、排ガス浄化用触媒10は、排ガス流通方向(以下「X方向」又は「排ガス流通方向X」ともいう。)に直交する断面において、隔壁23上に存在する触媒層の見掛けの面積に対して、式:L/{2(πS)1/2}≦1.1(Lは前記断面における前記空隙の周長であり、Sは前記断面における前記空隙の面積である)を満たす前記空隙の面積の総和の割合(以下、「円形空隙率」ともいう。)が好ましくは10%超30%以下である。
 前記断面における隔壁23上に存在する触媒層の見掛けの面積とは、前記断面における隔壁23上に存在する触媒層の空隙を含めた全体の面積を指す。
 式:L/{2(πS)1/2}の値は1に近いほど真円に近い形状であり、最小値は1である。従って前記式で導き出される値が1.1以下の空隙の形状は真円に近いものとなる。以下、前記式を満たす空隙を近似真円状の空隙という。なお、画像処理に基づいて円形空隙率を測定する都合上、近似真円状の空隙はその円換算直径が1μm以上であることが好ましい。このため円形空隙率は、具体的には、前記式を満たし、且つ円換算直径が1μm以上60μm以下である空隙の面積の総和の割合であることが好ましい。ここで円換算直径とは、空隙を同面積の円と見なした場合の直径を指す。
 円形空隙率を10%超とすることで、圧損をより低下させることができる。また円形空隙率を30%以下とすることで隔壁から触媒層が剥離しにくくなりPM捕集性能の低下を抑制できる。これらの観点から、隔壁上の触媒層における円形空隙率は11%以上20%以下であることがより好ましく、12%以上15%以下であることが更に一層好ましい。なお、本実施形態においては、触媒層におけるジルコニウム元素の酸化物換算の含有割合(ZrO量)を、後述する範囲に制御することにより、円形空隙率を10%超という高い範囲に制御した場合においても、触媒層が隔壁から剥離することを防止できる。触媒層中におけるZrOの含有割合を高めることで触媒部の剥離抑制に優れる理由は、ZrOの融点が高く、酸素との結合乖離エネルギーが大きく、曲げ強さや破壊靱性が高く機械的な作用に強いことや焼成前後での比表面積の変化が少ない、といった特性によるとみられる。
 円形空隙率の測定方法は、走査型電子顕微鏡観察に基づいて行うことが好ましい。走査型電子顕微鏡観察に供する排ガス浄化用触媒10の断面のX方向位置に限定はなく、任意の箇所の断面において観察することができる。円形空隙率の測定方法は例えば以下の通りである。
(1)サンプリング
 排ガス浄化用触媒10において、図3(a)のように、排ガス流通方向と平行な中心軸を有する直径25.4mmの円柱状サンプルSをくり抜く。この円柱状サンプルSは、排ガス浄化用触媒10の排ガス流通方向Xの全体に亘る長さを有する。排ガス流通方向と直交する平面(図3(b)参照)において、排ガス浄化用触媒10における円柱状サンプルSのくり抜き位置に特に制限はない。図3(b)のように、前記平面において、基材の中心Cから径方向外側に向けて、その径方向長さの10%~70%離間した位置に前記くり抜き部分の中心軸が位置することが、1つの触媒で複数の円柱状サンプルSを採取できる点から好ましい。なお前記平面における基材の中心は、前記平面における基材の外形を横断する最大の線分を二等分する点とする。また前記の径方向長さとは、前記の最大の線分の二分の一とする。
 排ガス流通方向Xにおける排ガス浄化用触媒10の断面位置は上述した通り限定されない。例えば、前記の円柱状サンプルSのX方向の上流端から10mm以内であって封止部25と重ならない上流側の位置、又はサンプルのX方向の下流端から10mm以内であって封止部24と重ならない下流側の位置とすると、第一触媒層又は第二触媒層の断面を観察しやすい。しかし、サンプルSのX方向中央部分を観察面として用いてもよい。これらの観察面はX方向と直交する断面で切断することで露出させる。観察面には、樹脂の埋め込み及び研磨を行う。なお、観察サンプルの厚さ(X方向長さ)は10mmとすることがサンプルの取り扱い易さ等から好ましい。図3(c)では、排ガス流通方向Xにおける上下流側の各端部からそれぞれ10mmの位置t及びbを観察するための2つのサンプル(図3(c)のT及びB)並びに排ガス流通方向Xにおける中心位置mを観察するためのサンプル(図3(c)のM)を得る例を示している。
(2)触媒層と接する隔壁外縁の特定
 前記の観察面を、EPMA(Electron Probe Micro Analyzer)マッピングにより隔壁成分及び触媒層成分の分布をそれぞれ観察して判定する。観察倍率は40~1000倍とする(加速電圧15kV~25kV)。隔壁上の触媒層の範囲確定に用いる基材成分及び触媒層成分としては、排ガス浄化用触媒10における基材及び触媒層をそれぞれ蛍光X線分析等に供することで特定すればよい。例えば基材がコージェライトを含む場合は基材成分としてSi又はMgの分布を観察する。触媒層成分としては例えばAl、Ce、Zr、Pt、Pd、Rh等が挙げられる。同一サンプルの同じ位置を、EPMAマッピングと同倍率で走査型電子顕微鏡(SEM)により画像撮影し、先のEPMAマッピング画像と照合することにより、SEM画像上での触媒層成分の分布範囲及び隔壁成分の分布範囲を特定する。隔壁成分の分布範囲の外縁により、例えば図4に示すように、隔壁上の触媒層の「暫定的な境界線」を特定する。SEM観察の加速電圧は10kV~15kVとすることが好ましい。
 SEM観察像及びEPMA観察像においては、観察像の長手方向(観察像が正方形である場合はその一辺の方向)と、触媒層の厚さ方向が略直交していることが好ましい。触媒層のSEM観察像及びEPMA観察像は、触媒層の外縁(隔壁と反対側の外縁)が観察像の長手方向(観察像が正方形である場合はその一辺の方向)の全体に亘って、当該長手方向に沿って延びている像を選択する。例えば触媒層の外縁が観察像の長手方向の途中で屈曲していることに起因して触媒層が観察像の長手方向の一部のみに存在する像は、選択しない。このような屈曲箇所は、排ガス透過性が低く、圧損への寄与が小さいためである。
(3)区画幅の特定
 上述したEPMAマッピングにおける隔壁成分の分布範囲の外縁が、SEM像にて隔壁上の触媒層における隔壁側の外縁として規定される。また触媒層及び基材とそれら以外の部分との色の違いに基づき、触媒層における隔壁と反対側の外縁が規定される。これらの外縁は、例えば図4に示すように、「暫定的な境界線」として規定される。色の違いの例としては触媒層及び基材が白色又は灰色であるのに対し、それら以外の部分は黒色となっている図4及び図5の例が挙げられる。「暫定的な境界線」は、後述する境界線描画用の画像処理ソフトウェアにより規定することができ、選択閾値の設定も後述と同様の範囲内とすることができる。「暫定的な境界線」は、後述する区画幅を規定するとともに暫定的に近似真円状の空隙を規定するためのものであり、触媒層面積の測定には使用しない。
 「暫定的な境界線」によって区画された隔壁上の触媒層において、各空隙のS(空隙面積)とL(空隙の周長)を測定し、円換算直径が1μm以上60μm以下及び前記式:L/{2(πS)1/2}≦1.1に該当するか否かを判断する。各空隙の形状を特定するための画像処理は、境界線描画用の画像処理ソフトウェアにより行うことができ、境界線描画用の画像処理ソフトウェアとしては、例えばPictbear(提供元:フェンリル株式会社)を用いることができる。選択閾値としては例えば明確な空隙部位の色を基準として20以上40以下が好ましい。明確な空隙部位の色とは、触媒層の構成成分及び基材以外の部分の色であり、図4及び図5に示すように、通常黒色である。各空隙の外周は20ポイント以上を用いて描画されることが好ましい。境界線描画を行った後における空隙の周長L及び面積Sの計算には、画像解析ソフトウェアを用いることができ、具体的にはImageJ(パブリックドメイン)、Photoshop(提供元:Adobe Systems Incorporated)又はAreaQ(提供元:エステック株式会社)を用いることができる。上述した「暫定的な境界線」で区画された隔壁上の触媒層中に、その全体が含まれ、L/{2(πS)1/2}≦1.1を満たし且つ円換算直径が1μm以上60μm以下である空隙のそれぞれの面積を、20視野分測定する。それら全てについて、各々円換算直径を測定する。次いで、例えば図5に示すように、得られた円換算直径のメディアン径と同じ幅(以下、「区画幅」ともいう。)で、触媒断面のSEM像に、触媒層の厚さ方向と平行な直線(以下、「区画線」ともいう。)を複数本引く。20視野とは、「暫定的な境界線」に区画された隔壁上の触媒層にその全体が含まれ、円換算直径が1μm以上60μm以下、且つL/{2(πS)1/2}≦1.1を満たす空隙を少なくとも一つ有する視野を意味し、そのような空隙を有しない視野は含めないものとする。また、ある観察像において、仮に隔壁の両面上にそれぞれ触媒層が形成されており、両方の触媒層とも円換算直径が1μm以上60μm以下、且つL/{2(πS)1/2}≦1.1を満たす空隙を1以上含有する場合には、2つの触媒層のうち面積(観察像の端縁及び暫定的な境界線で囲まれた面積)が大きな触媒層についての測定結果を用い、他方の触媒層については測定の対象外とする。
(4)隔壁上における触媒層の見掛け面積の特定
 SEM観察像は、前記の区画幅による区画線数が40本以下30本以上となる視野で測定するものとし、それを満たさない場合は倍率を変更して以下の処理を行う。図5に示すように、上述したEPMAマッピングによる隔壁外縁と区画線との交点を直線で結んだ線を、隔壁と触媒層との境界を画定する線(以下、上記の「暫定的な境界線」と区別して「隔壁境界線」ともいう。)とする。隔壁と反対側において、上述した色の違いにより判別される触媒層の端縁と区画線との交点を直線で結んだ線を、触媒層とその外部との境界を画定する線(以下、上記の「暫定的な境界線」と区別して「触媒層境界線」ともいう。)とする。
 観察像における、隔壁境界線と、触媒層境界線と、長手方向の最も外側の2本の区画線(図5において太字の区画線)とに囲まれた面積を、例えば図5のようにして、触媒層の見掛け面積として確定する。
(5)近似真円状の空隙面積の特定
 次いで、隔壁上の触媒層領域を、前記の隔壁境界線と、前記触媒層境界線と、前記の長手方向で最も外側の2本の区画線とに囲まれた領域(以下、「見掛けの面積」の領域ともいう。)として特定し直す。このように隔壁上の触媒層領域を特定し直すのに伴い、上記(2)において特定した「暫定的な境界線」内の代わりに、新たに「見掛けの面積」の領域内に含まれ、円換算直径が1μm以上60μm以下且つ前記式:L/{2(πS)1/2}≦1.1を満たす空隙及びその面積を特定し直す。その際、上述した区画幅の特定処理においては行わなかった以下の近似処理を行う(図6参照)。
 図6(a)のα及びβのように、一部突起又は欠損を有しているために、実際の周長及び面積によってはL/{2(πS)1/2}≦1.1に該当しない略円状の空隙については以下のように処理する。突起部分又は欠損部分以外の周長(図6(a)の実線長)に対し、それらの両端をつなぐ点線長(図6(a)の点線長)の比率が30%以下である場合には、当該点線及び実線に囲まれた範囲を空隙とみなす。点線及び実線に囲まれた面積及びそれらの線の合計である周長について、L/{2(πS)1/2}≦1.1に該当するか否かを判断し、該当する場合は当該実線と点線で囲まれた部分を当該空隙の形状とみなし、円形空隙率の計算に算入する。α及びβについて前記のようにみなした仮の空隙形状を図6(b)に示す。一方、前記の比率が30%超である場合には、上記処理を行わず、従来通りに面積と周長を求め、前述の式L/{2(πS)1/2}≦1.1に該当するかどうか判定する。図6(a)のγ及びδのように、隔壁境界線、触媒層境界線又は前述した長手方向最外側の2本の区画線により一部が欠損する空隙については、空隙における境界線以外の周長(実線長)と、空隙における境界線部分(点線長)とから、α及びβと同様の処理を行う。また区画線により一部が欠損する空隙についてもα及びβと同様の処理を行う。
 以上の処理により、隔壁上の触媒層について、前記の「見掛けの面積」の領域内に存在する、1μm以上60μm以下の円換算直径を有する近似真円状の空隙の面積の総和を求め、当該総和の隔壁上の触媒層の見掛け面積に対する比を求める。各視野においてそれぞれこの比を算出し、20視野分の平均値として円形空隙率を求める。なお、上記の領域の特定し直しに伴い、何れかの視野において、「見掛けの面積」の領域内で1μm以上60μm以下の円換算直径を有する近似真円状の空隙が存在しないこととなった場合には、新たな別の視野について先に求めた区画幅による区画線を引き、且つEPMA観察像を用い先に述べた手順で「見掛けの面積」の領域を特定する。そして「見掛けの面積」の領域において1μm以上60μm以下の円換算直径を有する近似真円状の空隙が1つ以上存在する20視野での平均値を求めることとする。
 本発明では一つのサンプルSにおける一つ以上の観察面を観察した合計20視野を観察して得られた円形空隙率が、前記範囲を満たせばよい。例えば排ガス流通方向Xにおいて異なる位置の複数の観察面をそれぞれ20視野観察したときに、観察面によって円形空隙率が異なる場合、何れかの観察面における円形空隙率が前記の範囲を満たせば、本発明に該当するものとする。このことは、後述する円換算直径及び1mm当たりの近似真円状空隙数、及び触媒厚さに対する触媒部の厚さについても同様である。更に以下の(A)又は(B)の態様がより好ましい。
(A)上述したサンプルSのX方向の上流端から10mm以内であって封止部25と重ならない上流側の位置の観察面及びサンプルSのX方向の下流端から10mm以内であって封止部24と重ならない下流側の位置の観察面の何れかの20視野を観察したときに、円形空隙率が前記範囲を満たす。
(B)前記上流側の位置の観察面の10視野及び前記下流側の位置の観察面の10視野の合計20視野を観察したときに、円形空隙率が前記範囲を満たす。
 なお、(B)の態様の場合、上流側の10視野の円形空隙率の平均値及び前記下流側の10視野の円形空隙率の平均値も、それぞれ10%超30%以下であることが好ましく、11%以上20%以下であることがより好ましく、12%以上15%以下であることがより好ましい。
 「隔壁境界線」及び「触媒層境界線」により区画される隔壁上の触媒層において、近似真円状の空隙の円換算直径の平均値は1μm以上60μm以下であり、この範囲とすることにより、剥離抑制や圧損抑制、PM捕集性能に寄与する円形空隙率の測定が可能となる。剥離抑制や圧損抑制、PM捕集性能を一層高める観点から、前記の円換算直径の平均値は、5μm以上50μm以下であることが好ましく、10μm以上30μm以下であることがより好ましい。円換算直径の平均値は、1μm以上60μm以下の円換算直径を有する近似真円状の空隙それぞれの円換算直径の平均値を視野ごとに求め、各視野の平均値を、円形空隙率を求めるのに最終的に用いた20視野分で平均することで得られる。
 隔壁上に存在する触媒層の見掛け面積1mm2あたり、1μm以上60μm以下の円換算直径を有する近似真円状の空隙の平均数は250個以上であることが、圧損抑制の点で好ましく、4000個以下であることがPM捕集性能及び剥離抑制の点で好ましい。これらの観点から、前記の見掛け面積1mm2あたり、1μm以上60μm以下の円換算直径を有する近似真円状の空隙の平均数は400個以上2000個以下であることがより好ましく、550個以上1000個以下であることが更に一層好ましい。触媒層の見掛け面積1mm2あたりの、1μm以上60μm以下の円換算直径を有する近似真円状の空隙の平均数は、円形空隙率を求めるのに最終的に用いた20視野分の平均値である。
 隔壁上の触媒層の平均厚さは、隔壁の平均厚さに対して、8%以上であることがPM捕集性能の点で好ましく、20%以下であることが圧損抑制の点で好ましい。これらの点から、隔壁上の触媒層の平均厚さは、隔壁の平均厚さに対して、9%以上16%以下であることがより好ましく、10%以上12%以下であることが更に一層好ましい。なお、隔壁上の触媒層の平均厚さは、一の観察像において、隔壁上の触媒層の見掛け面積を、該観察像における長手方向の最外側の2本の区画線間の距離で割ることで求める。また隔壁の平均厚さは、一の観察像において、隔壁の一方の外縁(上述した隔壁境界線)及び隔壁の他方の外縁(上述した隔壁境界線と同様の方法で画定する)と観察像における長手方向の最外側の2本の区画線とに囲まれた部分の面積を、該観察像における長手方向の最外側の2本の区画線間の距離で割ることにより求める。このようにして各視野において隔壁の厚さに対する隔壁上の触媒層の厚さの比率を求める。各視野の厚さ比率について、円形空隙率を求めるのに最終的に用いた20視野における平均値を求め、前記の比率とする。また隔壁の厚みはPM捕集性能及び圧損抑制の点から、200μm~270μmが好ましく、210μm~260μmがより好ましい。
 上述した円形空隙率を得るためには、後述する好適な排ガス浄化用触媒の製造方法において、造孔剤として特定の形状と熱分解開始温度、粒度分布及び溶剤中の膨潤度を有するものを用い、造孔剤の量、造孔剤の粒径、スラリー中の金属酸化物の粒子の粒径、金属酸化物の組成(金属酸化物の粒子形状の安定性に影響する)を適宜調整すればよい。近似真円状空隙数も同様である。
 PM捕集率及び圧損抑制効果をより一層高める点から、触媒部、例えば第一触媒部14の質量は、触媒活性成分の量に応じて制御すればよいが、乾燥後の質量で、第一触媒部14を形成した部分の基材の体積1Lあたり10g以上であることがPM捕集率の向上などの点で好ましく、特に20g以上であることがより好ましい。第一触媒部14の質量は、乾燥後の質量で、第一触媒部14を形成した部分の基材の体積1Lあたり80g以下であることが圧力損失の低減の観点、及び、高速運転時の排ガス浄化性能の向上などの点で好ましく、60g以下であることがより好ましい。第二触媒部15の質量は、触媒活性成分の量に応じて制御すればよいが、乾燥後の質量で、第二触媒部15を形成した部分の基材の体積1Lあたり20g以上であることがPM捕集率の向上などの点で好ましく、30g以上であることがより好ましい。第二触媒部15の質量は、乾燥後の質量で、第二触媒部15を形成した部分の基材の体積1Lあたり80g以下であることが圧力損失の低減の観点、及び、高速運転時の排ガス浄化性能の向上などの点で好ましく、60g以下であることがより好ましい。
 ここでいう基材の体積は、基材の隔壁23、第一触媒部14、第二触媒部15、隔壁23中の空孔、セル21及び22内の空間を含めた見掛けの体積である。第一触媒部14を形成した部分における基材の体積とは「基材の見掛けの体積×第一触媒部14のX方向の長さL1/基材11のX方向の長さL」により求まる体積である。同様に、第二触媒部15を形成した部分における基材の体積とは「基材の見掛けの体積×第二触媒部15のX方向の長さL2/基材11のX方向の長さL」により求まる体積である(L、L1及びL2の符号について図2を参照)。
 更に一層効果的に、圧損抑制、剥離抑制、PM捕集率のバランスを図る点から、触媒層中の細孔に由来する細孔直径5~500nmの細孔容積は0.020cm/g~0.20cm/gの範囲内であることが好ましい。上記細孔容積の測定方法としては、例えばJIS R 1655:2003に準じた水銀圧入法を用い、測定装置として株式会社島津製作所製オートポアIV9520を用いることができる。
 触媒部は触媒活性成分を含有している。触媒活性成分としては白金族金属が挙げられ、具体的には、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)及びオスミウム(Os)のうちの何れか1種又は2種以上が挙げられる。排ガス浄化性能の観点から、第一触媒層14及び第二触媒層15に含まれる触媒活性成分は、それぞれ独立して、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)から選ばれる少なくとも1種であることが好ましい。触媒部が第一触媒層14及び第二触媒層15を含有する場合、両触媒部の触媒活性成分は同一であってもよく、それぞれ異なっていてもよいが、第二触媒層15は、触媒活性成分として第一触媒層14に含まれる触媒活性成分以外の触媒活性成分を含有することが好ましい。例えば、第一触媒層14が、白金(Pt)、パラジウム(Pd)及びロジウム(Rh)から選ばれる貴金属を含有し、且つ、第二触媒層15が、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)から選ばれるとともに第一触媒層14の含有する貴金属以外の貴金属を含有していることが、NOx、CO、HCといった排ガス有害成分を効率的に浄化できる点で特に好ましい。特にNOx浄化性能を高める点から、第一触媒層14及び第二触媒層15の何れか一方が、ロジウム(Rh)を含有することがより好ましく、特に第一触媒層14がロジウム(Rh)を含有することが更に好ましい。第一触媒層14及び第二触媒層15の両方がロジウム(Rh)を含有している場合、特に車両に排ガス流通方法に沿って2つ以上の触媒を配置する場合に、NOの浄化が重要な2つ目以降の触媒(排ガス流通方向に沿って2つ以上の排ガス浄化用触媒を配置する場合における、上流側から2つ目以降の触媒)として本発明の触媒が好適となるため好ましい。
 触媒部、例えば第一触媒層14及び/又は第二触媒層15における触媒活性成分の含有割合は、排ガス浄化性能及びコストの点から、第一触媒層14及び又は第二触媒層15において、それぞれ、全成分量の中で0.001質量%以上25質量%以下であることが好ましく、0.01質量%以上20質量%以下であることがより好ましく、0.05質量%以上15質量%以下であることが最も好ましい。
 触媒活性成分の量は、例えば、触媒層を全溶解して得られる溶液中の貴金属の量をICP-AESで測定することにより測定できる。
 なお、基材の隔壁内に触媒層が含まれる場合には、各触媒層及び基材を全溶解して得られる溶液中の貴金属の量から、基材のみを全溶解して得られる溶液中の貴金属の量を差し引くことにより測定できる。
 触媒部の好ましい組成について、更に説明する。
 触媒部は、触媒活性成分を担持する触媒担持成分を含有することが、触媒活性成分による排ガス浄化性能を効率よく発揮する点で好ましい。ここでいう触媒担持成分としては、金属酸化物粒子が挙げられる。金属酸化物粒子を構成する金属酸化物としては、具体的には、酸素貯蔵成分(以下「OSC材料」ともいう。)である無機酸化物や、酸素貯蔵成分以外の無機酸化物が挙げられる。触媒部において、酸素貯蔵成分である無機酸化物の粒子と酸素貯蔵成分以外の無機酸化物の粒子との両方が触媒活性成分を担持していることが好ましい。
 なお、本明細書において金属酸化物粒子という場合、焼成により金属酸化物粒子同士が結合して焼結体となったものも含む。
 本明細書中、触媒活性成分が金属酸化物粒子に「担持されている」とは、金属酸化物粒子の外表面又は細孔内表面に触媒活性成分が物理的又は化学的に吸着又は保持されている状態をいう。具体的には、金属酸化物粒子が触媒活性成分を担持していることは、例えば排ガス浄化用触媒10の断面をEDSで分析して得られた元素マッピングにて、金属酸化物成分と触媒活性成分とが同じ領域に存在することを確認することで、金属酸化物粒子が触媒活性成分を「担持」していると判断できる。
 酸素貯蔵成分である無機酸化物としては、多価状態を有する金属酸化物であって酸素を貯蔵する能力を有するものであればよく、例えば、CeOやCZ材(Ce及びZrを含有するセリア-ジルコニア複合酸化物や、CeOとZrOとの固溶体)、酸化鉄、酸化銅が挙げられる。これらに加えて、Ce以外の希土類元素の酸化物が熱的安定性の観点等から好ましく用いられる。Ce以外の希土類元素の酸化物としては、Sc、Y、La、Pr11、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuが挙げられる。
 CeO2-ZrO2はCeO2とZrO2との固溶体である。CeO2及びZrO2が固溶体となっていることは、X線回折装置(XRD)を用い、CeO2-ZrO2に由来する単相が形成されているか否かにより確認することができる。CeO2-ZrO2には前記のCe以外の希土類元素の酸化物が固溶していてもよい。
 触媒部に含まれうる酸素貯蔵成分以外の無機酸化物としては、酸素貯蔵成分以外の金属酸化物が挙げられ、アルミナ、シリカ、シリカ-アルミナ、チタニア、アルミノシリケート類が挙げられる。特にアルミナが耐熱性に優れるという観点で好ましく用いられる。
 触媒部が第一触媒層14及び第二触媒層15を有する場合、上記で説明した触媒部の組成に係る構成は何れも、第一触媒層14及び第二触媒部15の両方に対して該当することが好ましい。
 前記触媒部は特定の円形空隙率に加え、ジルコニウム元素の酸化物換算の含有量(ZrO量)が高いことが好ましい。円形空隙率が10%超30%以下である場合、圧損抑制及びPM捕集性能に優れる一方で、触媒部中に薄い箇所が多く存在し、比較的脆い状態となる。そのため、触媒部の強度が弱い場合、圧損低下の弊害として触媒部の基材への密着性の低下を引き起こし、実用性に欠けた仕様となってしまう恐れがある。これに対し、本発明者は、高い円形空隙率によって部分的に薄層化した触媒部においてZrO量を高めることで、基材への触媒部への高い密着性が得られることすることを見出した。ZrO量を高めることで触媒部の剥離抑制に優れる理由はZrOの融点が高く、酸素との結合乖離エネルギーが大きく、曲げ強さや破壊靱性が高く機械的な作用に強いことや焼成前後での比表面積の変化が少ない、といった特性によるとみられる。具体的には、触媒部中のZrO量は35質量%以上であることが好ましく、45質量%以上であることがより好ましく、特に好ましくは50質量%以上である。また触媒部におけるCeOの量を確保してOSC能を高める点から、前記触媒部における、ジルコニウム元素の酸化物換算の含有量(ZrO量)は、85質量%以下であることが好ましく、75質量%以下であることがより好ましく、65質量%以下であることが特に好ましい。
 例えば、CeO及びZrOとを含有する触媒部においては、効果的に剥離防止を図る点から、前記触媒部における、ジルコニウム元素の酸化物換算の含有量(ZrO量)に対する、セリウム元素の酸化物換算の含有量(CeO量)の質量比(CeO量/ZrO量)が、0.8以下であることが好ましく、0.5以下であることがより好ましく、0.3以下であることが最も好ましい。OSC能の点から、CeO量/ZrO量の下限は0.03以上であることが好ましい。
 更に、前記触媒部が、アルミナを含む場合、アルミニウム元素の酸化物換算の含有量(Al量)に対する、ジルコニウム元素の酸化物換算の含有量(ZrO量)の質量比(ZrO量/Al量)が、1.5以上であることが好ましく、2.5以上であることがより好ましく、3.5以上であることが特に好ましい。OSC能の点から、ZrO量/Al量の上限は10以下であることが好ましい。
 更に、前記触媒部が、アルミナ及びセリアを含む場合、触媒部における、アルミニウム元素の酸化物換算の含有量(Al量)に対する、ジルコニウム元素の酸化物換算の含有量(ZrO量)及びセリウム元素の酸化物換算の含有量(CeO量)の合計量の質量比((ZrO量+CeO量)/Al量)は、3.0以上であることが好ましく、3.5以上であることがより好ましく、4.0以上であることが更に一層好ましい。OSC能の点から、(ZrO量+CeO量)/Al量の上限は10以下であることが好ましい。
 なお通常、ZrOは粒子形状が安定しやすい一方で、Alは粒子形状が不安定である傾向がある。このことから一般にZrO/Al比が大きい組成では、当該比率が小さい組成に比べて円形空隙率が大きくなりやすい傾向がある。
 耐熱性とOSCとのバランスの観点から、触媒部中のセリウム元素の酸化物換算の含有量(CeO量)は、5質量%以上40質量%以下であり、更に好ましくは10質量%以上30質量%以下である。
 本明細書でいう触媒部中のジルコニウム元素の酸化物換算の含有量(ZrO量)及びセリウム元素の酸化物換算の含有量(CeO量)は、固溶体となっているCeO2やZrO2の量をそれぞれ含むほか、セリア-ジルコニア複合酸化物を構成するCeのCeO2換算量及び該複合酸化物を構成するZrのZrO2換算量をそれぞれ含む。これらCeO2量及びZrO2量は、例えば、触媒層を全溶解して得られる溶液中のCe及びZrの量をICP-AESで測定し、酸化物換算することにより測定できる。
 なお、基材の隔壁内に触媒層が含まれる場合には、各触媒層及び基材を全溶解して得られる溶液中のCe及びZrの量から、基材のみを全溶解して得られる溶液中のCe及びZrの量を差し引くことにより測定できる。
 触媒部中における酸素貯蔵成分以外の無機酸化物の含有量は、耐熱性とOSCと、圧損抑制とのバランスの観点から、好ましくは4質量%以上50質量%以下であり、更に好ましくは7質量%以上30質量%以下である。例えばアルミニウム元素の酸化物換算の含有量(Al量)は、例えば、触媒層を全溶解して得られる溶液中のアルミニウムの量をICP-AESで測定し、酸化物換算することにより測定できる。
 なお、基材の隔壁内に触媒層が含まれる場合には、各触媒層及び基材を全溶解して得られる溶液中のAlの量から、基材のみを全溶解して得られる溶液中のAlの量を差し引くことにより測定できる。
 触媒部が第一触媒層14及び第二触媒層15を有する場合、ZrO量、CeO量及び/又はAl量に係る上記の構成は、触媒部が第一触媒層14及び第二触媒層15の一方のみに該当するのであってもよく、両方に該当するのであってもよい。好ましくは、第一触媒層14及び第二触媒層15の両方において以下の構成が実現されている。
 更に排ガス浄化用触媒10の構成について説明する。
 PM捕集性能を一層高める点や高速運転時の排ガス浄化性能を高める点から、第一触媒層14は、隔壁23の内部ではなく、主に隔壁23の表面に存在することが好ましい。第一触媒層14が隔壁23の表面に主として存在しているとは、第一触媒層14が設けられた基材11の断面において、基材11の隔壁23の表面に存在する第一触媒層14の質量が隔壁23の内部に存在する第一触媒層14の質量よりも多いことをいう。例えば第一触媒層14が設けられた隔壁の断面を、走査型電子顕微鏡(日本電子株式会社製「JEM-ARM200F」)で観察するとともに、エネルギー分散型X線分析(EDS:Energy dispersive X-ray spectrometry)で分析し、基材にのみ存在する元素(例えばSi、Mg等)と触媒層にのみ存在する元素(例えばCe、Zr等)との境界をライン分析することや、電子線マイクロアナライザ(EPMA)により分析する方法等によって、表面に主に存在していることを確認できる。同様に、第二触媒層15は、隔壁23の内部ではなく、主に隔壁23の表面に存在することが好ましい。
 第一触媒層14のX方向の長さL1(図2参照)は、基材11のX方向の長さL(図2参照)の10%~80%であることが、圧力損失を低減しつつPMの好適な捕集性能の点で好ましく、30%~60%であることが更に好ましい。また、第二触媒層15のX方向の長さL2(図2参照)は、基材11のX方向の長さLの30%~90%であることが、圧力損失を低減しつつPMの捕集性能を高める点で好ましく、50%~80%であることが更に好ましい。なお、第一触媒層14は排ガス流通方向の上流側端部から形成されることが好ましく、第二触媒層15は下流側端部から形成されることが好ましい。
 第一触媒層14のX方向の長さL1と、第二触媒層15のX方向の長さL2との合計長さL1+L2は、基材11のX方向の長さLを超えることが、排ガス浄化性能を高める点で好ましく、(L1+L2)/L=1.05以上であることが好ましく、1.10以上であることがより好ましい。
 第一触媒層14及び第二触媒層15の長さは以下の方法にて測定することができる。すなわち、排ガス浄化用触媒10を目視で観察し、第一触媒層14の境界と、第二触媒層15の境界とをそれぞれ特定し、第一触媒層14及び第二触媒層15をそれぞれ測長することが好ましい。この際には、例えば排ガス浄化用触媒10の任意の10ヶ所について第一触媒層14及び第二触媒層15を測長し、その平均値を、第一触媒層14及び第二触媒層15の長さとして求めることが好ましい。目視で第一触媒層14、第二触媒層15、下層15A及び/又は上層15Bに係る排ガス流通方向における境界が判断できない場合には、排ガス浄化用触媒における排ガス流通方向に沿う多数(例えば8~16か所)の位置における組成を分析し、各箇所における触媒活性成分の濃度に基づき特定することができる。各箇所における触媒活性成分の濃度は、例えば、蛍光X線分析(XRF)やICP発光分光分析(ICP-AES)により求めることができる。
 第一触媒層14は、基材11のX方向の上流側端部R1から下流側に延びて形成されていることが、製造容易性と排ガス浄化性能との両立の点で好ましく、同様に、第二触媒層15は、基材11のX方向の下流側端部R2から上流側に延びて形成されていることが好ましい。更に、第二触媒層15が後述するように、第二触媒層15が下層15A及び上層15Bを有する場合、下層15A及び上層15Bが基材11のX方向の下流側端部R2から上流側に延びて形成されていることが好ましい。
 次いで、以下、本発明の排ガス浄化用触媒の好ましい製造方法について説明する。
 本製造方法は、排ガス流通方向の流入側が開口し且つ流出側が閉塞されている空間からなる流入側セルと、排ガス流通方向の流入側が閉塞されており且つ流出側が開口している空間からなる流出側セルと、該流入側セルと該流出側セルとを隔てる多孔質の隔壁とを有する基材において触媒部を形成する。具体的には、前記隔壁における前記流入側セルに臨む面及び/又は前記流出側セルに臨む面に、造孔剤を含む触媒部形成用スラリーを塗工した後、前記基材に塗工された前記スラリーを焼成して前記造孔剤を消失させて、複数の空隙を有する前記触媒部を形成する。造孔剤は90%以上がL/{2(πS)1/2}≦1.05の真円度を有し、熱分解開始温度200℃以上であることが、円形空隙率を上記範囲とするために好ましい。また前記スラリーにおける造孔剤以外の固形分中、ジルコニウム元素の酸化物換算の含有量(ZrO量)が35質量%以上85質量%以下であることが好ましい。
 本製造方法において触媒部形成用スラリーに添加する造孔剤のうち、「L/{2(πS)1/2}≦1.05の真円度」を有する造孔剤は、個数基準で90%以上であることが好ましい。このような構成であることにより、前記円形空隙率を有する排ガス浄化用触媒10が得やすい。ここでいう真円度はSEMによる観察に基づいて測定される。観察サンプルは、カーボンテープを貼り付けたSEMサンプル台に対し、綿棒に付着させた粉末サンプルを上部から落とした後、余分な粉末をエアガンにて払い落とすことにより得られる。エアガンの吹付の条件としては、10cm離間した位置から、5気圧(ゲージ圧)の空気を1秒間吹き付けることが挙げられるが、これに限定されるものではない。
 SEM観察は5kV~15kVの加速電圧で、40倍~1000倍の観察倍率とすることが好ましい。任意の50個の造孔剤のSEM像を観察し、SEM像の外形が「L/{2(πS)1/2}≦1.05の真円度」を有するものの割合を求める。
 前記の円形空隙率をより得やすい点から、造孔剤のうち、「L/{2(πS)1/2}≦1.05の真円度」を有する造孔剤の割合は95%以上がより好ましく、98%以上が特に好ましい。
 本製造方法で用いる造孔剤は、大気中での熱分解開始温度が200℃以上であることが好ましい。熱分解温度が高い造孔剤は一般に分子鎖の架橋度が高い。このことに起因して、焼成時に形が崩れずに真円度の高い空隙を触媒部中に残すことができ、前記の円形空隙率を有する排ガス浄化用触媒10を製造しやすい。造孔剤の大気中での熱分解開始温度は250℃以上であることがより好ましく、270℃以上であることが特に好ましい。熱分解開始温度の上限は、550℃以下であることが焼成時により造孔剤が確実に消失する点から好ましく、500℃以下であることがより好ましい。熱分解温度は例えば大気雰囲気下、室温から500℃まで昇温して、熱分解挙動を測定する。昇温速度は例えば5℃/min~20℃/minとすることができる。熱分解開始温度は、試験加熱開始前の質量を通る横軸に平行な線と、分解曲線における屈曲点間の勾配が最大となるように引いた接線との交点とする。以下実施例では、大気中での熱分解開始温度を単に「熱分解開始温度」と記載している。
 造孔剤は、レーザー回折式粒度分布法で測定した累積体積10%での粒径をD10とし、累積体積50%での粒径をD50とし、累積体積90%での粒径をD90とした場合、(D90-D10)/D50の値が、0.1以上1.1以下であることが好ましい。(D90-D10)/D50の値(以下、「単分散度」ともいう。)は、造孔剤の粒度分布の尺度となるものであり、単分散度の値が小さいほど粒度分布がシャープなものである。粒度分布がシャープな造孔剤は架橋度が高いことから、熱膨張に由来する焼成時の造孔剤の変形が少ない点で一層優れたものとなり、上述した円形空隙率が得やすい。この観点から造孔剤は前記の単分散度が0.7以下であることが好ましく、0.3以下であることがより好ましい。造孔剤は上述した円換算直径の空隙を得る点から、D50が5μm以上50μm以下であることが好ましく、10μm以上30μm以下であることがより好ましい。また造孔剤は、単分散度の点からD90が8μm以上60μm以下であることが好ましく、15μm以上40μm以下であることがより好ましい。同様の点からD10が2μm以上40μm以下であることが好ましく、5μm以上20μm以下であることがより好ましい。前記の単分散度や粒径はレーザー回折・散乱式粒子径・粒度分布測定装置、例えばマイクロトラック・ベル社製のマイクロトラックHRAやマイクロトラック3000シリーズ等を用いて測定できる。例えば以下のように測定することができる。すなわち、レーザー回折粒子径分布測定装置用自動試料供給機(マイクロトラック・ベル社製「Microtorac SDC」)を用い、金属酸化物粒子を水性分散媒に投入し、40%の流速中、40Wの超音波を360秒間照射した後、レーザー回折散乱式粒度分布計(マイクロトラック・ベル社製「マイクロトラックMT3300EXII」)を用いて測定する。測定条件は、「粒子屈折率」を1.5、「粒子形状」を真球形、「溶媒屈折率」を1.3、「セットゼロ」を30秒、「測定時間」を30秒、2回測定の平均値として求める。水性分散媒としては純水を用いる。
 本製造方法で用いる造孔剤は、溶剤の膨潤度が低いことも好ましい。膨潤度が低い造孔剤は架橋度が高いからである。例えば50℃、48時間浸漬後のポリマー1g当りの溶剤吸収量(g/g)がエタノールで0.05g/g以下であることが好ましく、アセトンで0.7g/g以下であることが好ましく、2-メトキシエタノールで0.15g/g以下であることが好ましく、トルエンで0.15g/g以下であることが好ましい。
 造孔剤の材質としては、架橋性モノマーを含んだ、エチレン性不飽和結合を有するモノマーの重合体が挙げられ、架橋性のアクリル樹脂や架橋性スチレン樹脂を用いることができ、特に架橋ポリスチレン粒子、架橋ポリ(メタ)アクリル酸エステル粒子などを用いることができる。架橋ポリ(メタ)アクリル酸エステル粒子としては、架橋ポリ(メタ)アクリル酸メチル粒子、架橋ポリ(メタ)アクリル酸ブチル粒子等が挙げられる。
 触媒部形成用スラリーの造孔剤を除く固形分に対して、造孔剤の量は15質量%超40質量%以下が好ましく、20質量%超35質量%以下がより好ましい。
 前記の造孔剤を含むスラリーは、更に触媒活性成分と、触媒活性成分を担持する金属酸化物粒子を含有していることが好ましい。金属酸化物粒子としては、触媒部の構成成分として上述した酸素貯蔵成分である無機酸化物の粒子及び酸素貯蔵成分以外の無機酸化物の粒子が挙げられる。
 触媒部における金属酸化物粒子の粒径は触媒活性成分の分散性を高める点やPM捕集性能を高める点から、D50が1μm以上であることが好ましく、D90が7μm以上であることが好ましく、更にD50が2μm以上であることがより好ましく、D90が15μm以上であることがより好ましい。金属酸化物粒子の粒径の上限は触媒活性成分の分散性を高める点から、スラリーにおける金属酸化物粒子はD50が40μm以下であることがより好ましく、D90が80μm以下であることがより好ましい。
 金属酸化物粒子のD50及びD90は、触媒活性成分を担持した状態の粒径であっても、触媒活性成分担持前の状態の粒径であってもよく、触媒活性成分を担持後及び担持前の何れかの状態において、前記の好ましい下限以上或いは上限以下であればよい。金属酸化物粒子のD50及びD90は造孔剤のD50及びD90と同様の方法にて測定できる。
 触媒活性成分は、硝酸塩などの水溶性塩の状態で金属酸化物粒子と混合してスラリーを得、これらを基材11に塗布した後、乾燥又は焼成を行ってもよい。或いは、触媒活性成分は、予め金属酸化物粒子に担持させ、担持後の金属酸化物粒子をスラリーとしてもよい。
 前記スラリーは、造孔剤以外の固形分の組成が、前記排ガス浄化用触媒10の触媒部について述べた好ましい組成と同様であることが好ましい。従って前記スラリーは、造孔剤以外の固形分の成分100質量部中、ジルコニウム元素の酸化物換算の含有量(ZrO量)が35質量部以上85質量部以下であることが好ましい。
 第1工程では以上の構成成分を有するスラリーを前記隔壁における前記流入側セルに臨む面及び/又は前記流出側セルに臨む面に塗工する。スラリーを隔壁における流入側セルに臨む面に塗布するためには、当該スラリーに基材11の排ガス流通方向上流側を浸漬させる方法が挙げられる。又は流出側セルに臨む面に塗布するためには、当該スラリーに基材11の排ガス流通方向下流側を浸漬させる方法が挙げられる。当該浸漬と同時にスラリーを反対側から吸引してもよい。
 第2工程では前記基材に塗工されたスラリーを焼成して前記造孔剤を消失させて、複数の空隙を有する前記触媒部を形成する。焼成温度は350~550℃が触媒活性の低下の防止や造孔剤を首尾よく焼成させる点などで好ましい。スラリーを焼成前に乾燥する場合、乾燥温度は、40~120℃が好ましく挙げられる。焼成は通常大気中で行われる。
 このように製造された排ガス浄化用触媒10は、その剥離防止性能、PM捕集性能と圧損防止性能を活かし、ガソリンエンジンなど化石燃料を動力源とする内燃機関の排ガス浄化用触媒として、種々の用途に用いることができる。また、本実施形態によれば、このような排ガス浄化用触媒10を用いた排ガス浄化方法も提供することができる。例えば、排ガス浄化用触媒10を、ガソリンエンジン、特に車両のGDIエンジンなどの内燃機関の排気経路に設けて、GPF等として用いることで、ガソリンエンジンからの排ガスを良好に浄化することが可能となる。特に排ガス浄化用触媒10は、排ガス流通方向に沿って2つ以上の排ガス浄化用触媒を配置する排ガス浄化用装置において用いられる場合に、上流側から2つ目以降の触媒として用いられることが好ましい。その理由としては、フィルタ触媒の特性上、塗工スラリー量は制約されるため、熱負荷の高い1つ目の触媒として用いると劣化が進行しやすい一方、2つ目以降の触媒とすることで、高い浄化性能とPM捕集性能を良好に維持できるためである。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、係る実施例に制限されない。なお、乾燥及び焼成はすべて大気中で行った。また以下の実施例の熱分解開始温度は何れも大気中で測定したものである。なお、以下に記載の固形分に対する造孔剤の量は、全て造孔剤を除く固形分に対する量を指す。
<実施例1>
〔1.第1のスラリーの調製〕
 CeO2-ZrO2固溶体粉末(CeO2-ZrO2固溶体中にCeO215質量%、ZrO70質量%、Ce以外の希土類元素の酸化物15質量%を含有)及びアルミナ粉末を用意した。CeO-ZrO固溶体粉末とアルミナ粉末とを混合し、硝酸ロジウム水溶液中に含浸させた。
 次いで、この混合液に、球状造孔剤(架橋ポリ(メタ)アクリル酸メチル粒子、D50=20μm、D90=22μm、D10=18μm、単分散度=0.165、熱分解開始温度=250℃、真円度の割合:95%、50℃、48時間浸漬後のポリマー1g当りの溶剤吸収量(g/g)がエタノールで0.02g/g、アセトンで0.24g/g、2-メトキシエタノールで0.05g/g、トルエンで0g/g)と、アルミナゾルと、ジルコニアゾルと、液媒として水と、を混合して、第1のスラリーを調製した。なお、真円度の割合は、球状造孔剤の粒子のうち、L/{2(πS)1/2}≦1.05を満たす粒子の個数基準の割合を示す。スラリーの固形分のうち造孔剤以外の成分を100質量部としたときに、CeO2-ZrO2固溶体粉末が80質量部、アルミナ粉末は11質量部、アルミナゾルは3.0質量部、ジルコニアゾルは5.0質量部、Rhは金属換算で1.0質量部であった。スラリーの固形分に対する造孔剤の質量比率は20%であった。スラリー中の金属酸化物のD50は8μm、D90は22μmであった。原料となる造孔剤の真円度測定の際のSEM観察は15kVの加速電圧で、600倍の観察倍率とした。
〔2.焼成前の第一触媒部の形成〕
 基材11として、図1に示す構造を有し、厚さが200~250μmの隔壁で区画された軸方向に延びるセルを、軸方向と直交する面において、300セル/inch2有し、体積が1.0L、全長91mmである基材11を用いた。基材11は、流入側端面における一つの流入側セル21の開口部の面積と、流出側端面における一つの流出側セル22の開口部の面積とが概ね同じであった。
 第1のスラリー中に基材11の排ガス流通方向の上流側端部を浸漬し、下流側から吸引した後に70℃で10分乾燥させた。これにより隔壁23における流入側セル21に臨む面に、第1のスラリーの固形分からなる層(焼成前の第一触媒部)を形成した。
〔3.焼成前の第二触媒部の形成〕
 乾燥後の基材11の排ガス流通方向の下流側端部を、第1のスラリー中に浸漬し、上流側から吸引した後に70℃で10分乾燥させた。これにより隔壁23における流出側セル22に臨む面に、第1のスラリーの固形分からなる層(焼成前の第二触媒部)を形成した。
〔4.焼成〕
 その後、基材11を、450℃で1時間にわたり焼成した。これにより、基材11上に第一触媒部14及び第二触媒部15が形成されてなる実施例1の排ガス浄化用触媒10を得た。
 実施例1の排ガス浄化用触媒において、第一触媒部14は、排ガス流通方向Xの上流側端部R1から下流側に全長Lの45%までの範囲にかけて、流入側セル21側の隔壁23の表面に形成されていた。第一触媒部14が形成された部分の基材の体積に対する第一触媒部14の質量は焼成後の質量で52g/Lであった。排ガス浄化用触媒10の第二触媒部15は、排ガス流通方向Xの下流側端部R2から上流側に全長Lの70%までの範囲にかけて、流出側セル22側の隔壁23の表面に形成されていた。第二触媒部15が形成された部分の基材の体積に対する第二触媒部15の質量は焼成後の質量で52g/Lであった。
 <実施例2>
 実施例1において、第1のスラリーにおける造孔剤について、スラリーの固形分に対する造孔剤の質量比率を30%に変更した。その点以外は実施例1と同様として排ガス浄化用触媒10を得た。
 <実施例3>
 実施例1において第1のスラリーにおける造孔剤について、スラリーの固形分に対する造孔剤の質量比率を40%に変更した。その点以外は実施例1と同様として排ガス浄化用触媒10を得た。
 <実施例4>
 実施例1において、造孔剤として、D50=5μmの球状粒子(材質:架橋ポリ(メタ)アクリル酸メチル粒子、D90=7μm、D10=3μm、単分散度=0.120、熱分解開始温度=250℃、真円度の割合:95%、50℃、48時間浸漬後のポリマー1g当りの溶剤吸収量(g/g)がエタノールで0.03g/g、アセトンで0.43g/g、2-メトキシエタノールで0.08g/g、トルエンで0.02g/g)を用いた。また、スラリーの固形分に対する造孔剤の質量比率を50%に変更した。その点以外は実施例1と同様として排ガス浄化用触媒10を得た。
 <実施例5>
 実施例1において、造孔剤として、D50=50μmの球状粒子(材質:架橋ポリ(メタ)アクリル酸メチル粒子、D90=80μm、D10=28μm、単分散度=1.039、熱分解開始温度=250℃、真円度の割合:90%、50℃、48時間浸漬後のポリマー1g当りの溶剤吸収量(g/g)がエタノールで0.04g/g、アセトンで0.66g/g、2-メトキシエタノールで0.12g/g、トルエンで0.12g/g)に変更した。その点以外は実施例1と同様として排ガス浄化用触媒10を得た。
 <実施例6>
 実施例1において第1のスラリーの調製を以下の通りに変更した。その点以外は実施例1と同様として排ガス浄化用触媒10を得た。
 (変更したスラリーの調製工程)
 ジルコニア粉末及びアルミナ粉末を用意した。ジルコニア粉末とアルミナ粉末とを混合し、硝酸ロジウム水溶液中に含浸させた。
 次いで、この混合液に、球状造孔剤(架橋ポリ(メタ)アクリル酸メチル粒子、D50=20μm、D90=22μm、D10=18μm、単分散度=0.165、熱分解開始温度=250℃、真円度の割合:95%、50℃、48時間浸漬後のポリマー1g当りの溶剤吸収量(g/g)がエタノールで0.02g/g、アセトンで0.24g/g、2-メトキシエタノールで0.05g/g、トルエンで0g/g)と、アルミナゾルと、ジルコニアゾルと、液媒として水と、を混合して、スラリーを調製した。スラリーの固形分のうち造孔剤以外の成分を100質量部としたときに、ジルコニア粉末が80質量部、アルミナ粉末は11質量部、アルミナゾルは3.0質量部、ジルコニアゾルは5.0質量部、Rhは金属換算で1.0質量部であった。スラリー中の金属酸化物のD50は6μm、D90は20μmであった。スラリーの固形分に対する造孔剤の質量比率は15%であった。
 <実施例7>
 実施例1において第1のスラリーの調製を以下の通りに変更し、また触媒部の量を変更した。その点以外は実施例1と同様として排ガス浄化用触媒10を得た。
 (変更したスラリーの調製工程)
 ジルコニア粉末及びアルミナ粉末を用意した。ジルコニア粉末とアルミナ粉末とを混合し、硝酸ロジウム及び硝酸パラジウム水溶液中に含浸させた。
 次いで、この混合液に、球状造孔剤(架橋ポリ(メタ)アクリル酸メチル粒子、D50=20μm、D90=22μm、D10=18μm、単分散度=0.165、熱分解開始温度=250℃、真円度の割合:95%、50℃、48時間浸漬後のポリマー1g当りの溶剤吸収量(g/g)がエタノールで0.02g/g、アセトンで0.24g/g、2-メトキシエタノールで0.05g/g、トルエンで0g/g)と、水酸化バリウム、アルミナゾルと、ジルコニアゾルと、セリアゾル、液媒として水と、を混合して、スラリーを調製した。スラリーの固形分のうち造孔剤以外の成分を100質量部としたときに、ジルコニア粉末が75質量部、アルミナ粉末は8.7質量部、水酸化バリウムは5.9質量部、アルミナゾルは3.0質量部、ジルコニアゾルは3.7質量部、セリアゾルは2.0質量部、Rhは金属換算で0.4質量部、Pdは金属換算で1.3質量部であった。スラリー中の金属酸化物のD50は10μm、D90は25μmであった。スラリーの固形分に対する造孔剤の質量比率は30%であった。また、第一触媒部が形成された部分の基材の体積に対する第一触媒部の質量は焼成後の質量で39g/Lであった。第二触媒部が形成された部分の基材の体積に対する第二触媒部の質量は焼成後の質量で39g/Lであった。
 <実施例8>
  実施例1において第1のスラリーの調製を以下の通りに変更し、また触媒部の量を変更した。その点以外は実施例1と同様として排ガス浄化用触媒10を得た。
 (変更したスラリーの調製工程)
 CeO-ZrO固溶体粉末A(CeO-ZrO固溶体中にCeO42質量%、ZrO46質量%、Ce以外の希土類元素の酸化物12質量%を含有)と組成の異なるCeO-ZrO固溶体粉末B(CeO-ZrO固溶体中にCeO15質量%、ZrO70質量%、Ce以外の希土類元素の酸化物15質量%を含有)及びアルミナ粉末を用意した。CeO-ZrO固溶体粉末とアルミナ粉末とを混合し、硝酸ロジウム及び硝酸パラジウム水溶液中に含浸させた。
 次いで、この混合液に、球状造孔剤(架橋ポリ(メタ)アクリル酸メチル粒子、D50=20μm、D90=22μm、D10=18μm、単分散度=0.165、熱分解開始温度=250℃、真円度の割合:95%、50℃、48時間浸漬後のポリマー1g当りの溶剤吸収量(g/g)がエタノールで0.02g/g、アセトンで0.24g/g、2-メトキシエタノールで0.05g/g、トルエンで0g/g)と、水酸化バリウムと、アルミナゾルと、ジルコニアゾルと、セリアゾル、液媒として水と、を混合して、スラリーを調製した。スラリーの固形分のうち造孔剤以外の成分を100質量部としたときに、CeO-ZrO固溶体粉末Aが40質量部、CeO-ZrO固溶体粉末Bが27質量部、アルミナ粉末は17質量部、水酸化バリウムは5.6質量部、アルミナゾルは3質量部、ジルコニアゾルは3.7質量部、セリアゾルは2.0質量部、Rhは金属換算で0.4質量部、Pdは金属換算で1.3質量部であった。スラリー中の金属酸化物のD50は20μm、D90は35μmであった。スラリーの固形分に対する造孔剤の質量比率は30%であった。また、第一触媒部が形成された部分の基材の体積に対する第一触媒部の質量は焼成後の質量で39g/Lであった。第二触媒部が形成された部分の基材の体積に対する第二触媒部の質量は焼成後の質量で39g/Lであった。
 <実施例9>
 実施例1において第1のスラリーの調製を以下の通りに変更した。その点以外は実施例1と同様として排ガス浄化用触媒10を得た。
 (変更したスラリーの調製工程)
 ジルコニア粉末を用意した。ジルコニア粉末を混合硝酸ロジウム水溶液中に含浸させた。
 次いで、この混合液に、球状造孔剤(架橋ポリ(メタ)アクリル酸メチル粒子、D50=20μm、D90=22μm、D10=18μm、単分散度=0.165、熱分解開始温度=250℃、真円度の割合:95%、50℃、48時間浸漬後のポリマー1g当りの溶剤吸収量(g/g)がエタノールで0.02g/g、アセトンで0.24g/g、2-メトキシエタノールで0.05g/g、トルエンで0g/g)と、アルミナゾルと、ジルコニアゾルと、液媒として水と、を混合して、スラリーを調製した。スラリーの固形分のうち造孔剤以外の成分を100質量部としたときに、ジルコニア粉末が92.5質量部、アルミナゾルは1.5質量部、ジルコニアゾルは5.0質量部、Rhは金属換算で1.0質量部であった。スラリー中の金属酸化物のD50は7μm、D90は20μmであった。スラリーの固形分に対する造孔剤の質量比率は20%であった。
 <比較例1>
 実施例1において、第1のスラリーにおける造孔剤の量をスラリーの固形分に対し50質量%に変更した。その点以外は実施例1と同様として排ガス浄化用触媒10を得た。
 <比較例2>
 実施例1において造孔剤をスラリーに添加しなかった。その点以外は実施例1と同様として排ガス浄化用触媒を得た。
 <比較例3>
 実施例1において、第1のスラリーにおける造孔剤の量をスラリーの固形分に対し10質量%に変更した。その点以外は実施例1と同様として排ガス浄化用触媒を得た。
 <比較例4>
 実施例1において第1のスラリーの調製を以下の通りに変更した。その点以外は実施例1と同様として排ガス浄化用触媒10を得た。
 (変更したスラリーの調製工程)
 CeO2-ZrO2固溶体粉末(CeO2-ZrO2固溶体中にCeO240質量%、ZrO250質量%、Ce以外の希土類元素の酸化物10質量%を含有)及びアルミナ粉末を用意した。CeO2-ZrO2固溶体粉末とアルミナ粉末とを混合し、硝酸ロジウム水溶液中に含浸させた。
 次いで、この混合液に、球状造孔剤(架橋ポリ(メタ)アクリル酸メチル粒子、D50=20μm、D90=22μm、D10=18μm、単分散度=0.165、熱分解開始温度=250℃、真円度の割合:95%、50℃、48時間浸漬後のポリマー1g当りの溶剤吸収量(g/g)がエタノールで0.02g/g、アセトンで0.24g/g、2-メトキシエタノールで0.05g/g、トルエンで0g/g)と、水酸化バリウム、アルミナゾルと、ジルコニアゾルと、セリアゾルと、液媒として水と、を混合して、スラリーを調製した。スラリーの固形分のうち造孔剤以外の成分を100質量部としたときに、CeO2-ZrO2固溶体粉末が59質量部、アルミナ粉末は22質量部、水酸化バリウムは9.0質量部、アルミナゾルは3質量部、ジルコニアゾルは3.0質量部、セリアゾル3.0質量部、Rhは金属換算で1.0質量部であった。スラリーの固形分に対する造孔剤の質量比率は50%であった。
 <比較例5>
 比較例4において、造孔剤として、実施例4で用いたものと同じ造孔剤に変更し、使用量を、スラリー固形分に対し25質量%とした。その点以外は比較例4と同様にして、排ガス浄化用触媒を得た。
 <比較例6>
 比較例4において第1のスラリーにおける造孔剤として、平均直径10μmの針状粒子(材質:セルロース)をスラリー固形分に対し25質量%用いた。それらの点以外は比較例4と同様として排ガス浄化用触媒を得た。
 <比較例7>
 比較例4において第1のスラリーにおける造孔剤として、平均直径28μmの針状粒子(材質:セルロース)をスラリー固形分に対し25質量%用いた。それらの点以外は比較例4と同様として排ガス浄化用触媒を得た。
 <比較例8>
 実施例1において第1のスラリーの調製を以下の通りに変更した。その点以外は実施例1と同様として排ガス浄化用触媒10を得た。
 (変更したスラリーの調製工程)
 ジルコニア粉末及びアルミナ粉末を用意した。ジルコニア粉末とアルミナ粉末とを混合し、硝酸ロジウム水溶液中に含浸させた。
 次いで、この混合液に、球状造孔剤(架橋ポリ(メタ)アクリル酸メチル粒子、D50=20μm、D90=22μm、D10=18μm、単分散度=0.165、熱分解開始温度=250℃、真円度の割合:95%、50℃、48時間浸漬後のポリマー1g当りの溶剤吸収量(g/g)がエタノールで0.02g/g、アセトンで0.24g/g、2-メトキシエタノールで0.05g/g、トルエンで0g/g)と、アルミナゾルと、ジルコニアゾルと、液媒として水と、を混合して、スラリーを調製した。スラリーの固形分のうち造孔剤以外の成分を100質量部としたときに、ジルコニア粉末が85質量部、アルミナ粉末は6.0質量部、アルミナゾルは3.0質量部、ジルコニアゾルは5.0質量部、Rhは金属換算で1.0質量部であった。スラリーの固形分に対する造孔剤の質量比率は20%であった。
(円形空隙率、近似真円状空隙の円換算直径、1mm当たりの近似真円状空隙数、隔壁厚さに対する触媒部の厚さ)
 実施例1~9及び比較例1~8で得られた排ガス浄化用触媒について、20視野における近似真円状空隙の円換算直径のメディアン径を区画幅とする前記の方法にて、円形空隙率を始め表1に示す各種パラメータを測定した。サンプリング方法は前記と同様とした。サンプル観察面は排ガス流通方向Xにおける上流側端部及び下流側端部からそれぞれ10mmの位置とし、上流側端部から10mmの位置の観察面における10視野と、下流側端部から10mmの位置の観察面における10視野における合計20視野を観察した。サンプルは、図3(c)と同様に各観察面からX方向内側10mmの厚さ部分とした。EPMAマッピングの観察倍率は300倍、加速電圧は15kV(Al、Ba、Ce、La、Mg、Si、Zrの測定時)及び25kV(Pd、Rh、Ptの測定時)とした。EPMAマッピングにおける基材成分元素はSiとし、触媒層成分はCe及びZrとした。区画幅を規定する際のSEMの観察倍率はEPMAマッピングと同じとし、加速電圧は15kVとした。境界線描画ソフトにはPictbearを用い、選択閾値は明確な空隙部位の色を基準に30とした。結果を表1に示す。なお、各実施例1~9において、第一触媒部の10回の円形空隙率の平均値は何れも12%以上30%以下であり、第二触媒部の10回の円形空隙率の平均値は何れも10%以上30%以下であった。
 (CeO/ZrO質量比、(CeO+ZrO)/Al質量比、ZrO含有率(質量%)及びZrO/Al質量比)
 実施例1~9及び比較例1~8で得られた排ガス浄化用触媒のうちサンプルSのくりぬき部分とは異なる部位において、下流側端部から触媒のX方向全長の20%上流までの部位を切り出した。このサンプルに基づき、上記方法にて第二触媒部の組成を測定した。結果を表1に示す。なお、触媒の溶解には硝酸及び王水を用いた。
 また各実施例における触媒層の細孔に由来する細孔直径5~500nmの細孔容積を上記の方法にて測定したところ、何れも0.020cm/g~0.20cm/gの範囲内であった。
 更に、以下の方法で圧力損失、触媒層の剥離率、PM捕集率を評価した。結果を表1に示す。
 (剥離率)
 円形空隙率を求める場合と同様に、排ガス浄化用触媒10をその排ガス流通方向に沿ってくり抜いた円柱状サンプルを用いた。得られた円柱状サンプルの長手方向(排ガス流通方向Xと同じ)の両端部からそれぞれ10mmの部分を金鋸で切り落とし、上流側及び下流側の測定面を露出させた。上流側測定面から30mmまでの部分である上流側測定面サンプル(以下「サンプルT」ともいう。)と、下流側測定面から30mmまでの部分である下流側測定面サンプル(以下「サンプルB」ともいう。)を切り出した。剥離試験は、排ガス流通方向が水平になる向きに設置されたサンプルTの上流側測定面に向けて、該上流側測定面と10cm離間した位置から、エアガンにて6気圧(ゲージ圧)の空気を10秒間吹き付けた。サンプルBの下流側測定面に対しても同様の処理を施した。サンプルT及びサンプルBそれぞれの重量減少率(=(噴射前重量-噴射後重量)/噴射前重量×100(%))を求め、平均した。平均値が3%未満ならA、3%以上6%未満ならB、6%以上10%未満ならC、10%以上ならDとした。
 (圧力損失)
 排ガス浄化用触媒10を排ガス流通方向上流端面が上方を向くようにその側面を支持する状態で固定した。排ガス浄化用触媒10の下方(下流側端面の下方)から空気を50L/secの速度で下側に吸引した。吸引開始から10秒後におけるサンプルTの上流側測定面の空気圧と、サンプルTの下流側端面の空気圧との差分を圧損として求めた。圧力損失の評価においては、15mmHG未満であれば合格という厳しい範囲を設定し、評価した。
 (PM捕集率)
 排ガス浄化用触媒10を用いたガソリンエンジン車両を、国際調和排ガス試験モード(WLTC)の運転条件に従って運転した。運転開始から、589秒までの低速運転時、運転開始589秒から1022秒までの中速運転時、運転開始1022秒から1477秒までの高速運転時、運転開始から1477秒から1800秒までの超高速運転時のそれぞれにおける排ガス浄化用触媒10を通過した排ガス中のPM粒子数(PNcat)を測定した。更に、エンジンから直接排出されるPM粒子数(PNall)を測定し、下記式によりPM捕集率を求めた。
PM捕集率(%)=100-(PNcat/PNall)×100
(PM捕集率測定条件)
・評価車両:1.5L直噴ターボエンジン
・使用ガソリン:認証試験用燃料
・PM測定装置:堀場製作所社製
Figure JPOXMLDOC01-appb-T000001


 表1に示す通り、円形空隙率が10%超30%以下であり、触媒部のZrO量が35~85質量%である各実施例は、圧損が低く、触媒層の剥離率が抑制され、PM捕集率が高い。
 これに対し、実施例と同様のZrO量を有する比較例1~3のうち、円形空隙率が30%超である比較例1は、剥離率が大きく、円形空隙率が10%以下である比較例2等は圧損が大きい。円形空隙率が10%超30%以下の範囲である比較例4及び8のうち、触媒部のZrO量が35質量%未満である比較例4は、剥離率に劣り、触媒部のZrO量が85質量%超である比較例8は、圧損が大きすぎる。比較例4において円形空隙率を低下させると剥離率は抑制できるが圧損が大きくなる(比較例5)。ZrO量を更に針状の造孔剤を用いた比較例6及び7は、空隙が針状となり、剥離しやすいものとなる。
 10 排ガス浄化用触媒
 11 基材
 14 第一触媒層
 15 第二触媒層
 21 流入側セル
 22 流出側セル
 23 隔壁

Claims (9)

  1.  基材と該基材に設けられた触媒部とを備え、
     前記触媒部が複数の空隙を有し、
     前記基材は、
      排ガス流通方向の流入側が開口し且つ流出側が閉塞されている空間からなる流入側セルと、
      排ガス流通方向の流入側が閉塞されており且つ流出側が開口している空間からなる流出側セルと、
      該流入側セルと該流出側セルとを隔てる多孔質の隔壁とを有し、
     前記隔壁における、前記流入側セルに臨む面及び/又は前記流出側セルに臨む面に前記触媒部が設けられている排ガス浄化用触媒であって、
     排ガス流通方向に直交する断面において、前記隔壁上に存在する前記触媒部の見掛けの面積に対して、式:L/{2(πS)1/2}≦1.1(Lは前記断面における前記空隙の周長であり、Sは前記断面における前記空隙の面積である)を満たす前記空隙の面積の総和の割合が10%超30%以下であり、
     前記触媒部における、ジルコニウム元素の酸化物換算の含有量(ZrO量)が35質量%以上85質量%以下である、排ガス浄化用触媒。
  2.  前記触媒部における、ジルコニウム元素の酸化物換算の含有量(ZrO量)に対する、セリウム元素の酸化物換算の含有量(CeO量)の質量比(CeO量/ZrO量)が、0.8以下である、請求項1に記載の排ガス浄化用触媒。
  3.  前記触媒部における、アルミニウム元素の酸化物換算の含有量(Al量)に対する、ジルコニウム元素の酸化物換算の含有量(ZrO量)の質量比(ZrO量/Al量)が、1.5以上である、請求項1又は2に記載の排ガス浄化用触媒。
  4.  前記触媒部における、アルミニウム元素の酸化物換算の含有量(Al量)に対する、ジルコニウム元素の酸化物換算の含有量(ZrO量)およびセリウム元素の酸化物換算の含有量(CeO量)の合計量の質量比((ZrO量+CeO量)/Al量)が、3.0以上である、請求項1~3の何れか1項に記載の排ガス浄化用触媒。
  5.  前記隔壁上に存在し且つ前記式を満たす空隙の円換算直径の平均値が、1μm以上60μm以下である、請求項1~4の何れか1項に記載の排ガス浄化用触媒。
  6.  前記隔壁上に存在する前記触媒部において、前記式を満たす空隙の数の平均値が触媒層の断面における掛け面積1mmあたり250個以上4000個以下である、請求項1~5の何れか1項記載の排ガス浄化用触媒。
  7.  前記触媒部は、
     排ガス流通方向の上流端から20mm下流側までの少なくとも一部において、前記隔壁の前記流入側セルに臨む面に形成された第一触媒部、及び/又は、
     排ガス流通方向の下流端から20mm上流側までの少なくとも一部において、前記隔壁の前記流出側セルに臨む面に形成された第二触媒部を有する、請求項1~6の何れか1項に記載の排ガス浄化用触媒。
  8.  前記第一触媒部の排ガス流通方向における長さが前記触媒の全長の10%以上80%以下であり、
     前記第二触媒部の排ガス流通方向における長さが前記触媒の全長の30%以上90%以下である、請求項7に記載の排ガス浄化用触媒。
  9.  排ガス流通方向に沿って2つ以上の排ガス浄化用触媒を配置する排ガス浄化用装置であって、上流側から2つ目以降の触媒として請求項1~8の何れか1項に記載の排ガス浄化用触媒を用いる、排ガス浄化用装置。
PCT/JP2020/010114 2020-03-09 2020-03-09 排ガス浄化用触媒 WO2021181487A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080006583.2A CN113631267B (zh) 2020-03-09 2020-03-09 废气净化用催化剂
US17/295,718 US11745172B2 (en) 2020-03-09 2020-03-09 Exhaust gas purification catalyst
EP20886166.6A EP4119225B1 (en) 2020-03-09 2020-03-09 Exhaust gas purification catalyst
JP2020536905A JP6751831B1 (ja) 2020-03-09 2020-03-09 排ガス浄化用触媒
PCT/JP2020/010114 WO2021181487A1 (ja) 2020-03-09 2020-03-09 排ガス浄化用触媒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/010114 WO2021181487A1 (ja) 2020-03-09 2020-03-09 排ガス浄化用触媒

Publications (1)

Publication Number Publication Date
WO2021181487A1 true WO2021181487A1 (ja) 2021-09-16

Family

ID=72333490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010114 WO2021181487A1 (ja) 2020-03-09 2020-03-09 排ガス浄化用触媒

Country Status (5)

Country Link
US (1) US11745172B2 (ja)
EP (1) EP4119225B1 (ja)
JP (1) JP6751831B1 (ja)
CN (1) CN113631267B (ja)
WO (1) WO2021181487A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047933A1 (ja) * 2021-09-22 2023-03-30 三井金属鉱業株式会社 排ガス浄化用触媒

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039649A1 (ja) * 2018-08-22 2020-02-27 三井金属鉱業株式会社 排ガス浄化用触媒
WO2023063174A1 (ja) 2021-10-14 2023-04-20 三井金属鉱業株式会社 排ガス浄化触媒及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009000663A (ja) * 2007-06-25 2009-01-08 Honda Motor Co Ltd 排ガス浄化フィルタ及びその製造方法
JP2010001184A (ja) * 2008-06-20 2010-01-07 Nippon Soken Inc 排ガスフィルタの製造方法
US20110005211A1 (en) * 2007-10-09 2011-01-13 Sud-Chemie Ag Coating of substrates ensuring a high porosity with simutaneously high abrasion resistance of the coating
JP2017082745A (ja) * 2015-10-30 2017-05-18 株式会社キャタラー 排ガス浄化装置
US20190299139A1 (en) 2016-06-02 2019-10-03 Cataler Corporation Exhaust gas purification filter

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026844A1 (ja) * 2005-08-31 2007-03-08 Ngk Insulators, Ltd. ハニカム触媒体、ハニカム触媒体製造用のプレコート担体及びハニカム触媒体の製造方法
JP2007289926A (ja) * 2006-03-31 2007-11-08 Ngk Insulators Ltd ハニカム構造体及びハニカム触媒体
JP5649945B2 (ja) * 2009-12-25 2015-01-07 日本碍子株式会社 表面捕集層付き担体及び触媒担持表面捕集層付き担体
JP5903205B2 (ja) * 2010-01-04 2016-04-13 株式会社キャタラー 排ガス浄化用触媒
JP5588893B2 (ja) 2011-02-23 2014-09-10 日東電工株式会社 偏光板およびその製造方法
CN203303960U (zh) 2013-06-08 2013-11-27 陕西瑞科新材料股份有限公司 一种用于多尼培南合成的空心八角星形催化剂
JP6219796B2 (ja) * 2014-09-04 2017-10-25 日本碍子株式会社 ハニカムフィルタ
US10792615B2 (en) * 2015-03-30 2020-10-06 Basf Corporation Catalyzed filters with end coating for lean engine exhaust
DE102017106374A1 (de) * 2016-04-01 2017-10-05 Johnson Matthey Public Limited Company Abgasreinigungsfilter
JP6738185B2 (ja) 2016-04-07 2020-08-12 株式会社キャタラー 排ガス浄化装置
JP6637008B2 (ja) * 2017-09-29 2020-01-29 株式会社キャタラー 排ガス浄化用触媒
JP2019118857A (ja) * 2017-12-28 2019-07-22 トヨタ自動車株式会社 排ガス浄化触媒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009000663A (ja) * 2007-06-25 2009-01-08 Honda Motor Co Ltd 排ガス浄化フィルタ及びその製造方法
US20110005211A1 (en) * 2007-10-09 2011-01-13 Sud-Chemie Ag Coating of substrates ensuring a high porosity with simutaneously high abrasion resistance of the coating
JP2010001184A (ja) * 2008-06-20 2010-01-07 Nippon Soken Inc 排ガスフィルタの製造方法
JP2017082745A (ja) * 2015-10-30 2017-05-18 株式会社キャタラー 排ガス浄化装置
US20190299139A1 (en) 2016-06-02 2019-10-03 Cataler Corporation Exhaust gas purification filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047933A1 (ja) * 2021-09-22 2023-03-30 三井金属鉱業株式会社 排ガス浄化用触媒

Also Published As

Publication number Publication date
EP4119225B1 (en) 2024-01-03
CN113631267B (zh) 2022-07-15
US11745172B2 (en) 2023-09-05
EP4119225A4 (en) 2023-03-22
EP4119225A1 (en) 2023-01-18
JPWO2021181487A1 (ja) 2021-09-16
CN113631267A (zh) 2021-11-09
JP6751831B1 (ja) 2020-09-09
US20220401939A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
JP6876876B1 (ja) 排ガス浄化用触媒及びその製造方法
CN112055615B (zh) 废气净化用催化剂
EP3778018B1 (en) Exhaust gas purification device
WO2021181487A1 (ja) 排ガス浄化用触媒
WO2014119749A1 (ja) 排ガス浄化用触媒及び該触媒を用いた排ガス浄化方法
JP6130424B2 (ja) 排ガス浄化用触媒
JP6771119B2 (ja) 排ガス浄化触媒
CN107405615B (zh) 废气净化用催化剂
JP6130423B2 (ja) 排ガス浄化用触媒
JP6243372B2 (ja) 排ガス浄化用触媒
JP2007144290A (ja) 排ガス浄化触媒及び排ガス浄化触媒の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020536905

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020886166

Country of ref document: EP

Effective date: 20221010