WO2023062777A1 - ロボット - Google Patents

ロボット Download PDF

Info

Publication number
WO2023062777A1
WO2023062777A1 PCT/JP2021/038048 JP2021038048W WO2023062777A1 WO 2023062777 A1 WO2023062777 A1 WO 2023062777A1 JP 2021038048 W JP2021038048 W JP 2021038048W WO 2023062777 A1 WO2023062777 A1 WO 2023062777A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
impeller
arm
base
speed reducer
Prior art date
Application number
PCT/JP2021/038048
Other languages
English (en)
French (fr)
Inventor
俊文 馬目
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2021/038048 priority Critical patent/WO2023062777A1/ja
Priority to JP2023553845A priority patent/JPWO2023062777A1/ja
Priority to CN202180102329.7A priority patent/CN117980116A/zh
Priority to KR1020247003987A priority patent/KR20240029076A/ko
Publication of WO2023062777A1 publication Critical patent/WO2023062777A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0054Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0075Means for protecting the manipulator from its environment or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears

Definitions

  • the present invention relates to robots, and more particularly to robots equipped with motors.
  • the above Japanese Patent Application Laid-Open No. 2017-226042 discloses a robot equipped with a motor.
  • the robot includes a base, a movable member, a speed reducer, and a cooling fan.
  • the base is fixed to the installation surface.
  • the movable member is configured to rotate with respect to the base.
  • the speed reducer is configured to reduce the speed of rotation of the motor to rotate the movable member.
  • the cooling fan is an electric fan.
  • the cooling fan is configured to circulate the generated airflow along the surface of the motor.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to suppress an increase in the number of parts required for cooling the motor and to reduce the complexity of the structure of the robot. Another object of the present invention is to provide a robot capable of suppressing degeneration.
  • a robot includes a motor, an input section rotated by the drive force of the motor, a speed reducer for transmitting the rotation from the input section by reducing speed, and an output section rotated by the drive force from the speed reducer.
  • a speed reducer including a base; a first arm rotatably attached to the base and rotated by output from an output portion of the speed reducer; a second arm rotatably attached to the first arm; , and an impeller that rotates together with the first arm or the speed reducer, and the impeller is configured to cool the motor by the wind generated by rotating together with the first arm or the speed reducer.
  • the impeller is configured to cool the motor by the wind generated by rotating together with the first arm or the speed reducer. This eliminates the need for wiring or the like for driving the impeller, thereby suppressing an increase in the number of parts required for cooling the motor and suppressing complication of the structure of the robot.
  • the impeller is preferably attached to the first arm and rotates together with the first arm, or is attached to the input portion of the speed reducer and is configured to rotate together with the input portion. ing.
  • the impeller can be rotated simply by attaching the impeller to the first arm or the input portion of the speed reducer, so a structure for rotating the impeller can be easily realized.
  • the impeller preferably includes a centrifugal impeller that rotates together with the first arm or an axial impeller that rotates together with the speed reducer.
  • wind can be generated by rotating the centrifugal impeller together with the first arm, or wind can be generated by rotating the axial impeller together with the speed reducer.
  • a structure for generating wind for cooling the motor can be easily realized.
  • the centrifugal impeller is preferably provided so as to surround the motor.
  • the motor can be evenly blown with air, so that the motor can be effectively cooled.
  • the input section has a through hole penetrating in the direction in which the rotation axis of the input section extends, and a hollow transmission for transmitting the driving force from the motor to the reduction section.
  • the centrifugal impeller which includes a shaft, is configured to cool the speed reducer by causing wind generated by rotating with the first arm to flow in the through hole of the transmission shaft.
  • the base is attached to the reduction gear, and the input section has a through hole penetrating in the direction in which the rotation axis of the input section extends. and includes a hollow transmission shaft for transmitting the driving force from the motor to the reduction section, and the axial flow impeller is disposed in the through hole of the transmission shaft.
  • the speed reducer can be cooled from the inside by the wind generated by the axial flow impeller, so that the speed reducer can be effectively cooled.
  • the axial impeller is arranged in the through hole of the transmission shaft, the size of the axial impeller is adjusted to match the size of the through hole. The size of the impeller can be reduced compared to the case of using the centrifugal impeller arranged outside.
  • the robot having the axial impeller arranged in the through-hole preferably further comprises wiring connected to the motor, and an insertion tube into which the wiring is inserted is arranged inside the axial impeller.
  • the wiring can be housed inside the speed reducer, unlike the case where the wiring is exposed outside the speed reducer, so that the exposure of the wiring can be reduced.
  • the first joint is a portion that connects the first arm and the base
  • the second joint is a portion that connects the first arm and the second arm.
  • the motor is attached to the base or the first arm in a state of being arranged in the inner space of the first arm attached to the second joint portion side of the base or the second arm, and the motor is attached to the base or the first arm.
  • the impeller is configured to blow air to the motor arranged in the inner space of the base or the first arm. With this configuration, even when the motor is arranged on the base or the second joint, the axial flow impeller can blow air against the motor, so the motor can be effectively cooled.
  • the robot having the axial impeller disposed in the through-hole preferably further includes a shaft cover covering the motor side of the through-hole of the transmission shaft in the direction in which the rotation axis of the input portion extends, the shaft cover comprising the axial flow impeller. It includes a speed reducer-side filter section that removes foreign matter in the air while causing air to flow from the outer space of the base to the inner space of the base through the through holes by the wind of the impeller. With this configuration, the air can be sent to the outer space of the base by the axial flow impeller while preventing foreign matter from entering the transmission shaft. Intrusion can be suppressed, and the speed reducer and the motor can be cooled.
  • the base communicates the external space of the base with the internal space of the base so that air flows from the external space of the base to the internal space of the base.
  • the base includes a base-side filter portion that removes foreign matter in the air.
  • the impeller is preferably configured to rotate coaxially with the rotation axis of the output section of the speed reducer. With this configuration, the impeller can be prevented from rotating eccentrically, so that the rotation of the impeller can be stabilized.
  • the impeller is attached to the first arm, the first arm is attached to the output part of the speed reducer, and the impeller and the speed reducer It is connected so that heat conduction is possible via 1 arm.
  • the robot according to the above aspect preferably further includes a motor holder that holds the motor in the airflow path of the impeller.
  • the motor can be stably blown with air, so that the motor can be effectively cooled.
  • the motor holder preferably includes convex cooling fins arranged in the air passage.
  • the motor can be cooled by the cooling fins of the motor holder, so the motor can be cooled more effectively.
  • the robot according to the above aspect preferably further includes a first joint portion that connects the first arm and the base, and a second joint portion that connects the first arm and the second arm,
  • the motor is arranged in the outer space of the base attached to the speed reducer or the first arm attached to the second joint portion side of the second arm. According to this structure, the motor can be cooled not only by the wind from the impeller but also by being exposed to the outside air, so that the motor can be cooled effectively.
  • the motor cover is further provided with a motor cover including a motor-side filter section that removes foreign substances in the air while allowing air to flow from the inner space of the base to the outer space of the base.
  • the motor and the motor cover are preferably in direct contact or in contact via a heat conductor. With this configuration, the heat of the motor can be radiated by the motor cover, so the motor can be effectively cooled.
  • the impeller when the impeller rotates in one of the rotation directions of the impeller, the impeller tilts in the other direction, and rotates in the other direction of rotation of the impeller.
  • the impeller rotates, it has plate-shaped movable blades that tilt in one direction.
  • the impeller preferably further has a stopper that holds the tilted posture of the movable blades.
  • FIG. 1 is a side view of a SCARA robot according to a first embodiment;
  • FIG. 1 is a plan view of a SCARA robot according to a first embodiment;
  • FIG. 2 is an enlarged cross-sectional view of a portion K in FIG. 1;
  • FIG. 3 is a plan view of the impeller of the SCARA robot according to the first embodiment; It is a cross-sectional view of the impeller of the SCARA robot according to the first embodiment.
  • FIG. 11 is an enlarged cross-sectional view of a joint portion connecting a base and a first arm of the SCARA robot according to the second embodiment;
  • FIG. 11 is an enlarged cross-sectional view of a joint portion connecting a base and a first arm of the SCARA robot according to the third embodiment;
  • FIG. 11 is an enlarged cross-sectional view of a joint portion connecting a base and a first arm of the SCARA robot according to the fourth embodiment
  • FIG. 14 is an enlarged cross-sectional view of a joint portion connecting a base and a first arm of the SCARA robot according to the fifth embodiment
  • FIG. 14 is an enlarged cross-sectional view of a joint portion connecting a base and a first arm of the SCARA robot according to the sixth embodiment
  • FIG. 20 is an enlarged cross-sectional view of a joint portion connecting the base and the first arm of the SCARA robot according to the seventh embodiment
  • FIG. 20 is an enlarged cross-sectional view of a joint portion connecting the base and the first arm of the SCARA robot according to the eighth embodiment
  • FIG. 20 is an enlarged cross-sectional view of a joint portion connecting the base and the first arm of the SCARA robot according to the ninth embodiment
  • FIG. 22 is an enlarged cross-sectional view of a joint portion connecting the base and the first arm of the SCARA robot according to the tenth embodiment
  • FIG. 22 is a cross-sectional view of the impeller of the SCARA robot according to the eleventh embodiment
  • FIG. 22 is a schematic diagram showing a state in which the impeller of the SCARA robot according to the eleventh embodiment rotates counterclockwise
  • FIG. 23 is a schematic diagram showing a state in which the impeller of the SCARA robot according to the eleventh embodiment rotates clockwise
  • FIG. 21 is a schematic diagram showing a state in which the rotation of the impeller is not stopped by the stopper of the SCARA robot according to the eleventh embodiment
  • FIG. 21 is a schematic diagram showing a state in which the rotation of the impeller is stopped by the stopper of the SCARA robot according to the eleventh embodiment
  • FIG. 21 is a schematic diagram showing a state in which the rotation of the impeller is not stopped by the stopper of the SCARA robot according to the twelfth embodiment
  • FIG. 22 is a schematic diagram showing a state in which the rotation of the impeller is stopped by the stopper of the SCARA robot according to the twelfth embodiment
  • FIG. 22 is a schematic diagram showing a state in which the movable blades of the SCARA robot according to the twelfth embodiment are tilted in one direction;
  • FIG. 24 is a schematic diagram showing a state in which the movable blades of the SCARA robot according to the twelfth embodiment are tilted in the other direction;
  • FIG. 22 is a schematic diagram showing a state in which the movable blades of the SCARA robot according to the first modified example of the twelfth embodiment are tilted in one direction;
  • FIG. 22 is a schematic diagram showing a state in which the movable blades of the SCARA robot according to the first modified example of the twelfth embodiment are tilted in the other direction;
  • FIG. 22 is a schematic diagram showing a state in which the movable blades of the SCARA robot according to the second modification of the twelfth embodiment are tilted in one direction;
  • FIG. 22 is a schematic diagram showing a state in which the movable blades of the SCARA robot according to the second modification of the twelfth embodiment are tilted in the other direction;
  • FIG. 22 is a schematic diagram showing a state in which the movable blades of the SCARA robot according to the third modified example of the twelfth embodiment are tilted in one direction;
  • FIG. 22 is a schematic diagram showing a state in which the movable blades of the SCARA robot according to the third modified example of the twelfth embodiment are tilted in the other direction;
  • FIG. 11 is a plan view showing a motor holder provided with fins in a SCARA robot according to a fourth modification of the first to twelfth embodiments;
  • FIG. 1 A configuration of a SCARA robot 100 according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • FIG. The SCARA robot 100 is an example of the "robot" in the claims.
  • the SCARA robot 100 is a robot whose arm moves horizontally.
  • the SCARA robot 100 includes a base 1, a first motor 2, a first reduction gear 3, a second motor 4, a second reduction gear 5, a third motor 6, a fourth motor 7, and a first arm. 8 , a second arm 9 , and a working part 10 .
  • the first motor 2 is an example of "motor” in the claims.
  • the first reduction gear 3 is an example of a "reduction gear” in the claims.
  • the base 1 is a base for fixing the SCARA robot 100 to the installation surface.
  • the first motor 2 is a driving source that generates driving force for driving the first arm 8 .
  • the first motor 2 is arranged in the outer space S1 of the base 1 attached to the first speed reducer 3 .
  • the first speed reducer 3 is configured to reduce the speed of rotation of the first motor 2 .
  • the second motor 4 is a driving source that generates driving force for driving the second arm 9 .
  • the second speed reducer 5 is configured to reduce the speed of rotation of the second motor 4 .
  • the third motor 6 is a drive source for driving a lifting device (not shown) that lifts and lowers the working unit 10 .
  • the fourth motor 7 is a drive source for driving a rotation drive device (not shown) that rotates the working unit 10 .
  • the first arm 8 is attached to the base 1 so as to be relatively rotatable.
  • the first arm 8 is configured to rotate about the rotation axis J ⁇ b>1 with respect to the base 1 when the rotation of the first motor 2 is reduced by the first speed reducer 3 and transmitted.
  • the second arm 9 is attached to the first arm 8 so as to be relatively rotatable.
  • the second arm 9 is configured to rotate about the rotation axis J ⁇ b>2 with respect to the first arm 8 by transmitting the rotation of the second motor 4 after being reduced by the second speed reducer 5 .
  • a first joint portion 8a is provided at a portion connecting the first arm 8 and the base 1. As shown in FIG. The first joint portion 8a is configured by joining together a portion of the base 1 on the first arm 8 side and a portion of the first arm 8 on the base 1 side. Further, a second joint portion 9a, which is a portion that connects the first arm 8 and the second arm 9, is provided. The second joint portion 9a is configured by connecting a portion of the first arm 8 on the second arm 9 side and a portion of the second arm 9 on the first arm 8 side.
  • the rotation of the first arm 8, the rotation of the second arm 9, the elevation by the lifting device (not shown), and the rotation by the rotary drive device (not shown) are combined.
  • a desired operation is performed by the operation unit 10 .
  • the SCARA robot 100 includes the base 1, the first motor 2, the first reduction gear 3, the first arm 8, the wiring 11, and the motor holder 12. , an oil seal 13 , a stay 14 , a clamp 15 , a grommet 16 and an impeller 17 .
  • the first reduction gear 3 is an eccentric oscillating reduction gear.
  • the first reduction gear 3 is an RV (Rotate Vector) reduction gear.
  • the first reduction gear 3 includes an input portion 31 , a reduction portion 32 , an output portion 33 and a carrier 34 .
  • the input section 31 is connected to the shaft 21 of the first motor 2 . Further, the input section 31 has an input gear. The input portion 31 is configured to rotate by the driving force of the first motor 2 .
  • the deceleration section 32 is configured to decelerate and transmit the rotation from the input section 31 .
  • the reduction section 32 has a spur gear 32a, an eccentric rotation section 32b, and an external gear section 32c.
  • the spur gear 32a is configured to transmit the driving force of the input portion 31 to the eccentric rotating portion 32b.
  • the spur gear 32a meshes with the input gear.
  • the spur gear 32a is arranged on the base 1 side of the eccentric rotating portion 32b in the direction in which the rotation axis J1 of the input portion 31 extends.
  • the eccentric rotating part 32b has a plurality (two or three) of crankshafts 132.
  • the rotation of the input portion 31 is reduced by the spur gear 32a and transmitted to the eccentric rotation portion 32b.
  • the external gear portion 32c has a plurality (two) of RV gears.
  • the external gear portion 32 c is swingably provided on the carrier 34 and swings with the rotation of the crankshaft 132 to decelerate and transmit the rotation of the crankshaft 132 to the output portion 33 .
  • the output part 33 is a case.
  • the output portion 33 is configured to rotate by the driving force from the deceleration portion 32 . That is, the output portion 33 is configured to rotate about the rotation axis J1 as the external gear portion 32c swings. As a result, the first arm 8 is rotated by the output from the output portion 33 of the first speed reducer 3 .
  • the carrier 34 is arranged inside the output section 33 .
  • the carrier 34 is attached to the base 1 so as not to rotate as the first arm 8 rotates.
  • the first motor 2 is attached to the carrier 34 .
  • the carrier 34 has a first carrier portion 34a and a second carrier portion 34b.
  • the first carrier portion 34a is provided on the side opposite to the side of the base 1 in the direction in which the rotation axis J1 of the eccentric rotating portion 32b extends.
  • One first motor 2 is attached to the first carrier portion 34a.
  • the first motor 2 is fixed to the first carrier portion 34a by being fastened through the motor holder 12 by the fastening member B1.
  • the second carrier portion 34b is connected to the first carrier portion 34a by a fastening member B2 and a pin (not shown).
  • the second carrier portion 34b is provided on the side of the base 1 in the direction in which the rotation axis J1 of the eccentric rotating portion 32b extends.
  • the second carrier portion 34b is attached to the base 1 . That is, the second carrier portion 34b is fixed to the base 1 by the fastening member B3.
  • the first motor 2 does not rotate as the first arm 8 rotates.
  • the first arm 8 is configured to rotate together with the output section 33 by being connected to the output section 33 .
  • the first arm 8 is attached to the output portion 33 by a fastening member B4.
  • the wiring 11 is a motor wiring connected to the first motor 2 .
  • the motor holder 12 is a frame made of metal such as aluminum.
  • the motor holder 12 is arranged on the side opposite to the base 1 of the first carrier portion 34a.
  • the motor holder 12 is attached to the carrier 34 while holding the first motor 2 . That is, the motor holder 12 holds the first motor 2 and is fastened to the first carrier portion 34a by the fastening member B1.
  • the first motor 2 is fastened to the motor holder 12 by a fastening member B5.
  • the first motor 2 is fixed to the carrier 34 via the motor holder 12 while being arranged in the outer space S ⁇ b>1 of the base 1 .
  • the first motor 2 is arranged on the opposite side of the motor holder 12 from the base 1 .
  • the motor holder 12 holds the first motor 2 in the air passage W of the impeller 17 .
  • the oil seal 13 is arranged between the motor holder 12 and the first arm 8 .
  • the oil seal 13 is arranged on the opposite side of the base 1 side between the motor holder 12 and the first arm 8 .
  • the stay 14 is fixed to the base 1 by a fastening member B6.
  • a stay 14 is provided to support the wiring 11 .
  • the stay 14 is formed with a through hole 14a for communicating the internal space S2 of the base 1 and the external space S1 of the base 1 with each other.
  • the clamp 15 is a member for attaching the wiring 11 to the stay 14 .
  • a grommet 16 is attached to the stay 14 to pass the wire 11 through the stay 14 .
  • Impeller 17 is a centrifugal impeller.
  • the centrifugal impeller sucks air from one side in the direction in which the rotation axis J1 extends and sends air outward in the radial direction both when it rotates clockwise and when it rotates counterclockwise. This is an impeller that generates wind.
  • the impeller 17 is configured to rotate together with the first arm 8.
  • the impeller 17 is attached to the first arm 8 and configured to rotate together with the first arm 8 .
  • the impeller 17 is configured to rotate coaxially with the rotation axis J ⁇ b>1 of the output portion 33 of the first reduction gear 3 .
  • the impeller 17 is configured to cool the first motor 2 with the wind generated by rotating together with the first arm 8 . That is, the impeller 17 is configured to cool the first motor 2 using relative movement of the first arm 8 with respect to the first motor 2 . Further, the impeller 17 and the first reduction gear 3 are connected via the first arm 8 so as to be heat conductive. Thereby, the heat transferred from the first speed reducer 3 is radiated from the impeller 17 . As a result, the first speed reducer 3 is cooled.
  • the impeller 17 sends out air along the same air path W both when the first arm 8 rotates clockwise and when it rotates counterclockwise.
  • the airflow path W is a path that flows from one side in the direction in which the rotation axis J1 extends toward the impeller 17 side and in a direction orthogonal to the rotation axis J1.
  • the impeller 17 is provided so as to surround the first motor 2 .
  • the first motor 2 is arranged in the blowing path W, the first motor 2 is cooled by the wind hitting the first motor 2 .
  • the impeller 17 is formed in an annular shape with a space in the center portion in the radial direction.
  • the impeller 17 includes a first mounting portion 17a, a second mounting portion 17b, and a plurality of (six) blade portions 17c.
  • the first attachment portion 17a is attached to a portion of each of the plurality of blade portions 17c on the side opposite to the base 1.
  • the second attachment portion 17b is attached to the base 1 side portion of each of the plurality of blade portions 17c.
  • Each of the blade portions 17c is an arc-shaped thin plate.
  • the impeller 17 is configured to cool the first motor 2 with the wind generated by rotating together with the first arm 8 . This eliminates the wiring 11 and the like for driving the impeller 17, thereby suppressing an increase in the number of parts required for cooling the first motor 2 and suppressing complication of the structure of the SCARA robot 100. be able to.
  • the impeller 17 is attached to the first arm 8 and configured to rotate together with the first arm 8 .
  • the impeller 17 can be rotated simply by attaching the impeller 17 to the first arm 8, so that a structure for rotating the impeller 17 can be easily realized.
  • the impeller 17 includes a centrifugal impeller that rotates together with the first arm 8, as described above.
  • the centrifugal impeller rotates together with the first arm 8 to generate wind, so a structure for generating wind for cooling the first motor 2 can be easily realized.
  • the centrifugal impeller is provided so as to surround the first motor 2 as described above. As a result, the wind can be evenly applied to the first motor 2, so that the first motor 2 can be effectively cooled.
  • the impeller 17 is configured to rotate coaxially with the rotation axis J1 of the output portion 33 of the first reduction gear 3 .
  • the impeller 17 can be prevented from rotating eccentrically, so that the rotation of the impeller 17 can be stabilized.
  • the impeller 17 is attached to the first arm 8 as described above.
  • the first arm 8 is attached to the output portion 33 of the first speed reducer 3 .
  • the impeller 17 and the first reduction gear 3 are connected via the first arm 8 so as to be heat conductive.
  • the SCARA robot 100 includes the motor holder 12 that holds the first motor 2 in the airflow path W of the impeller 17, as described above. As a result, the wind can be stably applied to the first motor 2, so that the first motor 2 can be effectively cooled.
  • the SCARA robot 100 connects the first joint portion 8a, which is the portion that connects the first arm 8 and the base 1, and the first arm 8 and the second arm 9. and a second joint portion 9a which is a part.
  • the first motor 2 is arranged in the outer space S1 of the base 1 attached to the first speed reducer 3 .
  • the first motor 2 can be cooled not only by the wind from the impeller 17 but also by being exposed to the outside air, so that the first motor 2 can be cooled more effectively.
  • the configuration of the SCARA robot 200 according to the second embodiment will be described with reference to FIG.
  • the first speed reducer 203 has a hollow transmission shaft 231a.
  • 2nd Embodiment detailed description is abbreviate
  • the configuration of the SCARA robot 200 according to the second embodiment of the present invention will be described with reference to FIG.
  • the SCARA robot 200 is an example of the "robot" in the claims.
  • the SCARA robot 200 is a robot whose arm moves horizontally.
  • the SCARA robot 200 includes a base 201, a first motor 2, a first reduction gear 203, a second motor 4 (see FIG. 1), a second reduction gear 5 (see FIG. 1), and a third motor 6 ( 1), a fourth motor 7 (see FIG. 1), a first arm 8, a second arm 9 (see FIG. 1), and a working section 10 (see FIG. 1).
  • the first motor 2 is an example of "motor” in the claims.
  • the first reduction gear 203 is an example of a "reduction gear" in the scope of claims.
  • the base 201 includes a base-side filter section 201a.
  • the base-side filter portion 201a is a slit.
  • the base-side filter section 201a allows the external space S1 of the base 201 and the internal space S2 of the base 201 to communicate with each other.
  • the base-side filter section 201a is configured to remove foreign matter in the air while allowing air to flow from the outer space S1 of the base 201 to the inner space S2 of the base 201.
  • the base-side filter section 201a may be a filter.
  • a first joint portion 208a is provided at a portion connecting the first arm 8 and the base 201.
  • a second joint portion 9a (see FIG. 1) that connects the first arm 8 and the second arm 9 is provided.
  • the SCARA robot 200 includes the base 201, the first motor 2, the first reducer 203, the first arm 8, the wiring 11, the motor holder 12, and the oil seal. 13 , a first stay 214 , a first clamp 215 , a shaft cover 216 , an impeller 17 , a second stay 218 and a second clamp 219 .
  • the first reducer 203 is an eccentric oscillating reducer.
  • the first reduction gear 203 is an RV reduction gear.
  • the first reduction gear 203 includes an input section 231 , a reduction section 32 , an output section 33 and a carrier 34 .
  • the input section 231 is configured to rotate by the driving force of the first motor 2 .
  • the input portion 231 has a hollow transmission shaft 231a.
  • the transmission shaft 231a has a through hole 231b penetrating in the direction in which the rotation axis J1 of the input portion 231 extends.
  • the transmission shaft 231 a is configured to transmit the driving force from the first motor 2 to the reduction section 32 .
  • the first stay 214 is fixed to the base 201 by a fastening member B6.
  • a first stay 214 is provided to support the wiring 11 .
  • the first clamp 215 is a member for attaching the wiring 11 to the first stay 214 .
  • Impeller 17 is a centrifugal impeller.
  • the impeller 17 is configured to cool the first reduction gear 203 by causing the wind generated by rotating together with the first arm 8 to flow through the through hole 231b of the transmission shaft 231a.
  • the airflow path W1 is a path along which air flows from the base 1 side in the direction in which the rotation axis J1 extends to the impeller 17 side and in a direction orthogonal to the rotation axis J1.
  • the air passage W2 passes through the through-hole 231b of the transmission shaft 231a from the side opposite to the base 1 side in the direction in which the rotation axis J1 extends, and extends toward the impeller 17 side and in a direction orthogonal to the rotation axis J1. It is a flowing path.
  • the shaft cover 216 covers the first motor 2 side in the direction in which the rotation axis J1 of the input portion 231 extends in the through hole 231b of the transmission shaft 231a.
  • the shaft cover 216 allows the wind from the impeller 17 to flow air from the internal space S2 of the base 201 to the external space S1 of the base 201 through the through hole 231b, and removes foreign substances in the air. contains.
  • the reducer-side filter portion 216a is a slit.
  • the structure which attached the grommet to the filter may be sufficient as the reduction gear side filter part 216a.
  • the second stay 218 is fixed to the base 201 by a fastening member B7.
  • a second stay 218 is provided to support the wiring 11 .
  • the second clamp 219 is a member for attaching the wiring 11 to the second stay 218 .
  • Other configurations of the second embodiment are the same as those of the first embodiment.
  • the impeller 17 is configured to cool the first motor 2 by the wind generated by rotating together with the first arm 8 .
  • an increase in the number of parts required for cooling the first motor 2 can be suppressed, and complication of the structure of the SCARA robot 200 can be suppressed.
  • the input section 31 has the through hole 231b penetrating in the direction in which the rotation axis J1 of the input section 231 extends. It includes a hollow transmission shaft 231 a that transmits the driving force from the first motor 2 to the reduction section 32 .
  • the centrifugal impeller is configured to cool the first reduction gear 3 by causing the wind generated by rotating together with the first arm 8 to flow through the through hole 231b of the transmission shaft 231a.
  • not only the first motor 2 but also the first reduction gear 3 can be cooled, so that temperature rise of the joint portions of the SCARA robot 200 can be effectively suppressed.
  • Other effects of the second embodiment are the same as those of the first embodiment.
  • the configuration of the SCARA robot 300 according to the third embodiment of the present invention will be described with reference to FIG.
  • the SCARA robot 300 is an example of a "robot" in the claims.
  • the SCARA robot 300 is a robot whose arm moves horizontally.
  • the SCARA robot 300 includes a base 301, a first motor 2, a first reduction gear 303, a second motor 4 (see FIG. 1), a second reduction gear 5 (see FIG. 1), and a third motor 6 ( 1), a fourth motor 7 (see FIG. 1), a first arm 8, a second arm 9 (see FIG. 1), and a working section 10 (see FIG. 1).
  • the first motor 2 is an example of "motor” in the claims.
  • the first reduction gear 303 is an example of a "reduction gear" in the scope of claims.
  • the base 301 includes a base-side filter section 301a.
  • the base-side filter portion 301a is a slit.
  • the base-side filter section 301a allows the external space S1 of the base 301 and the internal space S2 of the base 301 to communicate with each other.
  • the base-side filter section 301a is configured to allow air to flow from the outer space S1 of the base 301 to the inner space S2 of the base 301 while removing foreign substances in the air.
  • the base-side filter section 301a may be a filter.
  • a first joint portion 308a is provided at a portion connecting the first arm 8 and the base 301.
  • a second joint portion 9a (see FIG. 1) that connects the first arm 8 and the second arm 9 is provided.
  • the SCARA robot 300 includes the base 301, the first motor 2, the first reduction gear 303, the first arm 8, the wiring 11, the motor holder 12, and the oil seal. 13 , a stay 314 , a clamp 15 , an impeller 316 and an insertion tube 317 .
  • the first reducer 303 is an eccentric oscillating reducer.
  • the first reduction gear 303 is an RV reduction gear.
  • the first reduction gear 303 includes an input section 331 , a reduction section 32 , an output section 33 and a carrier 34 .
  • the input section 331 is configured to rotate by the driving force of the first motor 2 .
  • the input portion 331 has a hollow transmission shaft 331a.
  • the transmission shaft 331a has a through hole 331b penetrating in the direction in which the rotation axis J1 of the input portion 331 extends.
  • the transmission shaft 331 a is configured to transmit the driving force from the first motor 2 to the reduction section 32 .
  • the stay 314 is fixed to the motor holder 12 by a fastening member B6.
  • a stay 314 is provided to support the wiring 11 .
  • the stay 314 includes a speed reducer-side filter portion 314a that removes foreign matter in the air while flowing air from the outer space S1 of the base 301 to the inner space S2 of the base 301 through the through hole 331b by the wind of the impeller 316. I'm in.
  • the reducer-side filter portion 314a is a slit. Note that the reducer-side filter portion 314a may be a filter.
  • Impeller 316 is an axial impeller.
  • the axial flow impeller sucks air from one side in the direction in which the axis of rotation J1 extends and moves air toward the other side in the direction in which the axis of rotation J1 extends when it rotates clockwise or counterclockwise. It is an impeller that generates wind by sending air through
  • the impeller 316 is configured to rotate together with the first speed reducer 303 .
  • the impeller 316 is attached to the input portion 331 of the first reduction gear 303 and is configured to rotate together with the first reduction gear 303 .
  • the impeller 316 is configured to rotate coaxially with the rotation axis J ⁇ b>1 of the output portion 33 of the first reduction gear 303 .
  • the impeller 316 is configured to cool the first motor 2 and the first reduction gear 303 by the wind generated by rotating together with the first reduction gear 303 . That is, the impeller 316 is configured to cool the first motor 2 using relative movement of the first reduction gear 303 with respect to the first motor 2 . Further, the impeller 316 and the first speed reducer 303 are connected so as to be directly heat conductive. As a result, the heat transferred from the first speed reducer 303 is radiated from the impeller 316 .
  • the impeller 316 is configured to send out wind along the air duct W when rotating clockwise or counterclockwise.
  • the air passage W has a route from the base 301 side to the first motor 2 side in the direction in which the rotation axis J1 extends, and a route from the first motor 2 side to the base 301 side in the direction in which the rotation axis J1 extends. there is That is, the air duct W has two paths because the direction of the wind changes when the impeller 316 rotates clockwise or counterclockwise.
  • the impeller 316 is arranged in the through hole 331b of the transmission shaft 331a. As a result, air flows through the inside of the first reduction gear 303, so that the first reduction gear 303 is cooled. Also, the wind coming out of or drawn in from the impeller 316 hits the first motor 2 and cools the first motor 2 .
  • the insertion tube 317 is configured so that the wiring 11 is inserted.
  • the insertion tube 317 has a through hole 317a into which the wiring 11 is inserted.
  • the insertion tube 317 is arranged inside the impeller 316 .
  • Other configurations of the third embodiment are the same as those of the first embodiment.
  • the impeller 316 is configured to cool the first motor 2 by the wind generated by rotating together with the first reduction gear 303 .
  • an increase in the number of parts required for cooling the first motor 2 can be suppressed, and complication of the structure of the SCARA robot 300 can be suppressed.
  • the impeller 316 is attached to the input portion 331 of the first reduction gear 303 and configured to rotate together with the input portion 331 .
  • the impeller 316 can be rotated simply by attaching it to the input portion 331 of the first reduction gear 303, so that a structure for rotating the impeller 316 can be easily realized.
  • the base 301 is attached to the first reduction gear 303 as described above.
  • the input portion 331 has a through hole 331b penetrating in the direction in which the rotation axis J1 of the input portion 331 extends, and includes a hollow transmission shaft 331a that transmits the driving force from the first motor 2 to the reduction portion 32 .
  • the axial impeller is arranged in the through hole 331b of the transmission shaft 331a.
  • the size of the axial impeller is matched to the size of the through hole 331b.
  • the size of the impeller 316 can be reduced compared to the case of using a centrifugal impeller arranged outside the through-hole 331b of 331a.
  • the SCARA robot 300 includes the wiring 11 connected to the first motor 2 as described above.
  • An insertion tube 317 into which the wiring 11 is inserted is arranged inside the axial flow impeller.
  • the base 301 communicates the external space S1 of the base 301 with the internal space S2 of the base 301 so that the external space S1 of the base 301 communicates with the internal space S2 of the base 301. and a base-side filter portion 301a that removes foreign matter in the air while allowing air to flow.
  • the air can be sent from the internal space S2 of the base 301 to the external space S1 by means of the axial flow impeller while preventing foreign substances from entering the base 301. Intrusion can be suppressed, and the first speed reducer 303 and the first motor 2 can be cooled.
  • the stay 314 allows the air from the impeller 316 to flow from the outer space S1 of the base 301 to the inner space S2 of the base 301 through the through hole 331b. It includes a reducer-side filter portion 314a for removing foreign matter inside.
  • the air can be sent from the outer space S1 of the base 301 to the inner space S2 by the axial flow impeller while suppressing foreign matter from entering the base 301. Intrusion can be suppressed, and the first speed reducer 303 and the first motor 2 can be cooled.
  • Other effects of the third embodiment are the same as those of the first embodiment.
  • the configuration of the SCARA robot 400 according to the fourth embodiment of the present invention will be described with reference to FIG.
  • the SCARA robot 400 is an example of the "robot" in the claims.
  • the SCARA robot 400 is a robot whose arm moves horizontally.
  • the SCARA robot 400 includes a base 301, a first motor 2, a first reduction gear 303, a second motor 4 (see FIG. 1), a second reduction gear 5 (see FIG. 1), and a third motor 6 ( 1), a fourth motor 7 (see FIG. 1), a first arm 8, a second arm 9 (see FIG. 1), and a working section 10 (see FIG. 1).
  • the first motor 2 is an example of "motor” in the claims.
  • the first reduction gear 303 is an example of a "reduction gear" in the scope of claims.
  • a first joint portion 308a is provided at a portion connecting the first arm 8 and the base 301.
  • a second joint portion 9a (see FIG. 1) that connects the first arm 8 and the second arm 9 is provided.
  • the SCARA robot 400 includes the base 301, the first motor 2, the first reducer 303, the first arm 8, the wiring 11, the motor holder 12, and the oil seal. 13, a stay 14, a clamp 15, an impeller 416, and a shaft cover 417.
  • Impeller 416 is an axial impeller. Impeller 416 is configured to rotate together with first reduction gear 303 . The impeller 416 is attached to the input portion 331 of the first reduction gear 303 and is configured to rotate together with the first reduction gear 303 . The impeller 416 is configured to rotate coaxially with the rotation axis J ⁇ b>1 of the output portion 33 of the first reduction gear 303 .
  • the shaft cover 417 covers the first motor 2 side in the direction in which the rotation axis J1 of the input portion 331 extends in the through hole 331b of the transmission shaft 331a.
  • the shaft cover 417 has a reducer-side filter portion 417a.
  • the speed reducer-side filter portion 417a is configured to remove foreign matter in the air while flowing air from the outer space S1 of the base 301 to the inner space S2 of the base 301 via the through hole 331b by the wind of the impeller 416. ing.
  • the reducer-side filter portion 417a is a slit. Note that the reducer-side filter portion 417a may be a filter.
  • Other configurations of the fourth embodiment are the same as those of the first embodiment.
  • the impeller 416 is configured to cool the first motor 2 by the wind generated by rotating together with the first reduction gear 303 .
  • an increase in the number of parts required for cooling the first motor 2 can be suppressed, and complication of the structure of the SCARA robot 400 can be suppressed.
  • the SCARA robot 400 includes the shaft cover 417 that covers the first motor 2 side in the direction in which the rotation axis J1 of the input portion 331 extends in the through hole 331b of the transmission shaft 331a. ing.
  • the shaft cover 417 allows the wind of the axial impeller to flow air from the outer space S1 of the base 301 to the inner space S2 of the base 301 through the through hole 331b, and removes foreign substances in the air. 417a is included.
  • the air can be sent to the outer space S1 of the base 301 by the axial flow impeller while preventing foreign matter from entering the transmission shaft 331a. can be suppressed, and the first speed reducer 303 and the first motor 2 can be cooled.
  • Other effects of the fourth embodiment are the same as those of the third embodiment.
  • the SCARA robot 500 has a motor cover 517 unlike the fourth embodiment.
  • detailed description of the same configuration as in the fourth embodiment is omitted.
  • the configuration of the SCARA robot 500 according to the fifth embodiment of the present invention will be described with reference to FIG.
  • the SCARA robot 500 is an example of "robot” in the claims.
  • the SCARA robot 500 is a robot whose arm moves horizontally.
  • the SCARA robot 500 includes a base 301, a first motor 2, a first reduction gear 303, a second motor 4, a second reduction gear 5, a third motor 6, a fourth motor 7, and a first arm. 8 , a second arm 9 , and a working part 10 .
  • the first motor 2 is an example of "motor” in the claims.
  • the first reduction gear 303 is an example of a "reduction gear” in the scope of claims.
  • a first joint portion 308a is provided at a portion connecting the first arm 8 and the base 301.
  • a second joint portion 9a (see FIG. 1) that connects the first arm 8 and the second arm 9 is provided.
  • the SCARA robot 500 includes the base 301, the first motor 2, the first reducer 303, the first arm 8, the wiring 11, the motor holder 12, and the oil seal. 13 , stay 14 , clamp 15 , impeller 416 , motor cover 517 , and heat conductor 518 .
  • Impeller 416 is an axial impeller. Impeller 416 is configured to rotate together with first reduction gear 303 . The impeller 416 is attached to the input portion 331 of the first reduction gear 303 and is configured to rotate together with the first reduction gear 303 . The impeller 416 is configured to rotate coaxially with the rotation axis J ⁇ b>1 of the output portion 33 of the first reduction gear 303 .
  • the motor cover 517 is a housing that covers the first motor 2 .
  • the motor cover 517 includes a motor-side filter portion 517a.
  • the motor-side filter portion 517a is configured to allow air to flow from the outer space S1 of the base 301 to the inner space S2 of the base 301 while removing foreign substances in the air.
  • the motor-side filter portion 517a is a slit. Note that the motor-side filter portion 517a may be a filter.
  • the heat conductor 518 is configured to conduct heat from the first motor 2 to the motor cover 517 .
  • the first motor 2 and the motor cover 517 are connected via a heat conductor 518 .
  • Other configurations of the fifth embodiment are the same as those of the fourth embodiment.
  • the impeller 416 is configured to cool the first motor 2 by the wind generated by rotating together with the first reduction gear 303 .
  • an increase in the number of parts required for cooling the first motor 2 can be suppressed, and complication of the structure of the SCARA robot 500 can be suppressed.
  • the SCARA robot 500 covers the first motor 2 and allows air to flow from the outer space S1 of the base 301 to the inner space S2 of the base 301, while removing foreign matter in the air.
  • a motor cover 517 including a motor-side filter portion 517a is provided.
  • the first motor 2 and the motor cover 517 are in contact with each other via the heat conductor 518 as described above.
  • the heat of the first motor 2 can be radiated by the motor cover 517, so the first motor 2 can be effectively cooled.
  • Other effects of the fifth embodiment are the same as those of the fourth embodiment.
  • the configuration of the SCARA robot 600 according to the sixth embodiment of the present invention will be described with reference to FIG.
  • the SCARA robot 600 is an example of the "robot" in the claims.
  • the SCARA robot 600 is a robot whose arm moves horizontally.
  • the SCARA robot 600 includes a base 301, a first motor 2, a first reduction gear 303, a second motor 4, a second reduction gear 5, a third motor 6, a fourth motor 7, and a first arm. 8 , a second arm 9 , and a working part 10 .
  • the first motor 2 is an example of "motor” in the claims.
  • the first reduction gear 303 is an example of a "reduction gear” in the scope of claims.
  • a first joint portion 308a is provided at a portion connecting the first arm 8 and the base 301.
  • a second joint portion 9a (see FIG. 1) that connects the first arm 8 and the second arm 9 is provided.
  • the SCARA robot 600 includes the base 301, the first motor 2, the first reducer 303, the first arm 8, the wiring 11, the motor holder 12, and the oil seal. 13 , a stay 314 , a clamp 15 , an impeller 316 , an insertion tube 317 , a motor cover 617 and a heat conductor 618 .
  • Impeller 316 is an axial impeller. Impeller 316 is configured to rotate together with first reduction gear 303 . The impeller 316 is attached to the input portion 331 of the first reduction gear 303 and is configured to rotate together with the first reduction gear 303 . The impeller 316 is configured to rotate coaxially with the rotation axis J ⁇ b>1 of the output portion 33 of the first reduction gear 303 .
  • the motor cover 617 is a housing that covers the first motor 2 .
  • the motor cover 617 includes a motor-side filter portion 617a.
  • the motor-side filter portion 617a is configured to allow air to flow from the outer space S1 of the base 301 to the inner space S2 of the base 301 while removing foreign substances in the air.
  • the motor-side filter portion 617a is a slit. Note that the motor-side filter portion 617a may be a filter.
  • the heat conductor 618 is configured to conduct heat from the first motor 2 to the motor cover 617 .
  • the first motor 2 and the motor cover 617 are connected via a heat conductor 618 .
  • Other configurations of the sixth embodiment are the same as those of the third embodiment.
  • the impeller 316 is configured to cool the first motor 2 by the wind generated by rotating together with the first reduction gear 303 .
  • an increase in the number of parts required for cooling the first motor 2 can be suppressed, and complication of the structure of the SCARA robot 600 can be suppressed.
  • Other effects of the sixth embodiment are the same as those of the third embodiment.
  • the configuration of the SCARA robot 700 according to the seventh embodiment of the present invention will be described with reference to FIG.
  • the SCARA robot 700 is an example of the "robot" in the claims.
  • the SCARA robot 700 is a robot whose arm moves horizontally.
  • the SCARA robot 700 includes a base 201, a first motor 2, a first reduction gear 203, a second motor 4 (see FIG. 1), a second reduction gear 5 (see FIG. 1), and a third motor 6 ( 1), a fourth motor 7 (see FIG. 1), a first arm 8, a second arm 9 (see FIG. 1), and a working section 10 (see FIG. 1).
  • the first motor 2 is an example of "motor” in the claims.
  • the first reduction gear 203 is an example of a "reduction gear" in the scope of claims.
  • a first joint portion 208a is provided at a portion connecting the first arm 8 and the base 201.
  • a second joint portion 9a (see FIG. 1) that connects the first arm 8 and the second arm 9 is provided.
  • the SCARA robot 700 includes the base 201, the first motor 2, the first reduction gear 203, the first arm 8, the wiring 11, the motor holder 12, and the oil seal. 13 , a first stay 214 , a first clamp 215 , a shaft cover 216 , an impeller 17 , a second stay 218 , a second clamp 219 and a motor cover 720 .
  • Impeller 17 is a centrifugal impeller.
  • the impeller 17 is configured to cool the first reduction gear 203 by causing the wind generated by rotating together with the first arm 8 to flow through the through hole 231b of the transmission shaft 231a.
  • the motor cover 720 is a housing that covers the first motor 2 .
  • the motor cover 720 is attached to the side of the impeller 17 opposite to the base 201 side.
  • the motor cover 720 includes a motor-side filter portion 720a.
  • the motor-side filter portion 720a is configured to allow air to flow from the internal space S2 of the base 201 to the external space S1 of the base 201 while removing foreign substances in the air.
  • the motor-side filter portion 720a is a slit. Note that the motor-side filter section 720a may be a filter.
  • Other configurations of the seventh embodiment are the same as those of the second embodiment.
  • the impeller 17 is configured to cool the first motor 2 by the wind generated by rotating together with the first arm 8 .
  • an increase in the number of parts required for cooling the first motor 2 can be suppressed, and complication of the structure of the SCARA robot 700 can be suppressed.
  • Other effects of the seventh embodiment are the same as those of the second embodiment.
  • the SCARA robot 800 has a motor cover 820 unlike the second embodiment.
  • detailed description of the same configuration as in the second embodiment is omitted.
  • the configuration of the SCARA robot 800 according to the eighth embodiment of the present invention will be described with reference to FIG.
  • the SCARA robot 800 is an example of the "robot" in the claims.
  • the SCARA robot 800 is a robot whose arm moves horizontally.
  • the SCARA robot 800 includes a base 201, a first motor 2, a first reduction gear 203, a second motor 4 (see FIG. 1), a second reduction gear 5 (see FIG. 1), and a third motor 6 ( 1), a fourth motor 7 (see FIG. 1), a first arm 8, a second arm 9 (see FIG. 1), and a working section 10 (see FIG. 1).
  • the first motor 2 is an example of "motor” in the claims.
  • the first reduction gear 203 is an example of a "reduction gear" in the scope of claims.
  • a first joint portion 208a is provided at a portion connecting the first arm 8 and the base 201.
  • a second joint portion 9a (see FIG. 1) that connects the first arm 8 and the second arm 9 is provided.
  • the SCARA robot 800 includes the base 201, the first motor 2, the first reducer 203, the first arm 8, the wiring 11, the motor holder 12, and the oil seal. 13 , a first stay 214 , a first clamp 215 , a shaft cover 216 , an impeller 17 , a second stay 218 , a second clamp 219 and a motor cover 820 .
  • Impeller 17 is a centrifugal impeller.
  • the impeller 17 is configured to cool the first reduction gear 203 by causing the wind generated by rotating together with the first arm 8 to flow through the through hole 231b of the transmission shaft 231a.
  • the motor cover 820 is a housing that covers the first motor 2 and the impeller 17 .
  • the motor cover 820 is attached to the side of the first arm 8 opposite to the base 201 side.
  • the motor cover 820 includes a motor-side filter portion 820a.
  • the motor-side filter portion 820a is configured to remove foreign substances in the air while allowing air to flow from the outer space S1 of the base 201 to the inner space S2 of the base 201.
  • the motor-side filter portion 820a is a slit. Note that the motor-side filter section 820a may be a filter.
  • Other configurations of the eighth embodiment are the same as those of the second embodiment.
  • the impeller 17 is configured to cool the first motor 2 by the wind generated by rotating together with the first arm 8 .
  • an increase in the number of parts required for cooling the first motor 2 can be suppressed, and complication of the structure of the SCARA robot 800 can be suppressed.
  • Other effects of the eighth embodiment are the same as those of the second embodiment.
  • the configuration of a SCARA robot 900 according to the ninth embodiment of the present invention will be described with reference to FIG.
  • the SCARA robot 900 is an example of "robot" in the claims.
  • the SCARA robot 900 is a robot whose arm moves horizontally.
  • the SCARA robot 900 includes a base 301, a first motor 2, a first reduction gear 903, a second motor 4 (see FIG. 1), a second reduction gear 5 (see FIG. 1), and a third motor 6 ( 1), a fourth motor 7 (see FIG. 1), a first arm 908, a second arm 9 (see FIG. 1), and a working portion 10 (see FIG. 1).
  • the first motor 2 is an example of "motor” in the claims.
  • the first reduction gear 903 is an example of a "reduction gear" in the scope of claims.
  • a first joint portion 308a is provided at a portion connecting the first arm 8 and the base 301.
  • a second joint portion 9a (see FIG. 1) that connects the first arm 8 and the second arm 9 is provided.
  • the first motor 2 is attached to the base 301.
  • the first motor 2 is fastened to the base 301 by a fastening member B1.
  • the first motor 2 is attached to the base 301 while being arranged in the internal space S2 of the base 301 .
  • the first motor 2 does not rotate as the first arm 908 rotates.
  • the SCARA robot 900 includes the base 301, the first motor 2, the first reducer 903, the first arm 908, and the impeller 416.
  • the first reducer 903 is an eccentric oscillating reducer.
  • the first reducer 903 is an RV reducer.
  • the first reduction gear 903 includes an input portion 331 , a reduction portion 32 , an outer case 933 and a carrier 934 .
  • the carrier 934 is an example of the “output unit” in the claims.
  • the outer case 933 is attached to the base 301 with a fastening member B2. As a result, the outer case 933 does not rotate due to the driving force from the deceleration section 32 .
  • the carrier 934 is arranged inside the outer case 933 .
  • the carrier 934 is configured to rotate the first arm 908 by being rotated by the driving force from the deceleration section 32 .
  • a carrier 934 is attached to the first arm 908 .
  • the carrier 934 has a first carrier portion 934a and a second carrier portion 934b.
  • the first carrier portion 934a is provided on the base 301 side in the direction in which the rotation axis J1 of the input portion 331 extends.
  • the second carrier portion 934b is connected to the first carrier portion 934a by a fastening member B3 and a pin (not shown).
  • the second carrier portion 934b is provided on the side opposite to the base 301 side in the direction in which the rotation axis J1 of the input portion 331 extends.
  • a second carrier portion 934 b is attached to the first arm 908 . That is, the second carrier portion 934b is fixed to the first arm 908 by the fastening member B4.
  • the first arm 908 is configured to rotate together with the carrier 934 when the carrier 934 is connected.
  • First arm 908 is attached to carrier 934 by fastening member B4.
  • the first arm 908 includes an arm-side filter section 981 .
  • the arm-side filter section 981 is configured to allow air to flow from the outer space S ⁇ b>1 of the base 301 to the inner space S ⁇ b>2 of the base 301 while removing foreign substances in the air.
  • the arm-side filter portion 981 is a slit. Note that the arm-side filter section 981 may be a filter.
  • Impeller 416 is an axial impeller. Impeller 416 is configured to rotate together with first speed reducer 903 . Thus, the impeller 416 is configured to blow air to the first motor 2 arranged in the internal space S ⁇ b>2 of the base 301 .
  • Other configurations of the ninth embodiment are the same as those of the fourth embodiment.
  • the impeller 416 is configured to cool the first motor 2 by the wind generated by rotating together with the first reduction gear 903 .
  • an increase in the number of parts required for cooling the first motor 2 can be suppressed, and complication of the structure of the SCARA robot 900 can be suppressed.
  • the SCARA robot 900 connects the first joint portion 308a, which is the portion that connects the first arm 8 and the base 301, and the first arm 8 and the second arm 9. and a second joint portion 9a which is a part.
  • the first motor 2 is attached to the base 301 while being arranged in the internal space S2 of the base 301 .
  • the axial flow impeller is configured to blow air to the first motor 2 arranged in the internal space S2 of the base 301 .
  • the first motor 2 can be cooled effectively because the air can be applied to the first motor 2 by the axial flow impeller. can.
  • Other effects of the ninth embodiment are the same as those of the fourth embodiment.
  • the configuration of the SCARA robot 1000 according to the tenth embodiment of the present invention will be described with reference to FIG.
  • the SCARA robot 1000 is an example of the "robot" in the claims.
  • the SCARA robot 1000 is a robot whose arm moves horizontally.
  • the SCARA robot 1000 includes a base 301, a first motor 2, a first reduction gear 1003, a second motor 4 (see FIG. 1), a second reduction gear 5 (see FIG. 1), and a third motor 6 ( 1), a fourth motor 7 (see FIG. 1), a first arm 908, a second arm 9 (see FIG. 1), and a working portion 10 (see FIG. 1).
  • the first motor 2 is an example of "motor” in the claims.
  • the first reduction gear 1003 is an example of a "reduction gear" in the claims.
  • a first joint portion 308a is provided at a portion connecting the first arm 8 and the base 301.
  • a second joint portion 9a (see FIG. 1) that connects the first arm 8 and the second arm 9 is provided.
  • the first reduction gear 1003 is a hollow reduction gear.
  • the first speed reducer 1003 is a harmonic speed reducer.
  • the first reducer 1003 includes an input portion 331, a fixed portion 1032 under the flexspline, and an output portion 1033 on the circular spline.
  • the input unit 331 is a wave generator.
  • the fixed portion 1032 is attached to the base 301 by a fastening member B1.
  • the output section 1033 is attached to the first arm 908 with a fastening member B2.
  • the output unit 1033 is configured to decelerate the rotation of the input unit 331 and output.
  • the output section 1033 also functions as a deceleration section. It should be noted that the output unit 1033 is an example of the "deceleration unit" in the scope of claims. Other configurations of the tenth embodiment are the same as those of the ninth embodiment.
  • the impeller 416 is configured to cool the first motor 2 by the wind generated by rotating together with the first reduction gear 1003 .
  • an increase in the number of parts required for cooling the first motor 2 can be suppressed, and complication of the structure of the SCARA robot 1000 can be suppressed.
  • Other effects of the tenth embodiment are the same as those of the ninth embodiment.
  • the configuration of the SCARA robot 1100 according to the eleventh embodiment will be described with reference to FIGS. 15 to 19.
  • FIG. in the eleventh embodiment unlike the first embodiment, the impeller 1117 includes movable blades 1117c.
  • detailed description of the same configuration as in the first embodiment is omitted.
  • the configuration of the SCARA robot 1100 according to the eleventh embodiment of the present invention will be described with reference to FIGS. 15 to 19.
  • FIG. The SCARA robot 1100 is an example of "robot" in the claims.
  • the SCARA robot 1100 is a robot whose arm moves horizontally.
  • the SCARA robot 1100 includes a base 1 (see FIG. 1), a first motor 2, a first reduction gear 3 (see FIG. 1), a second motor 4 (see FIG. 1), and a second reduction gear 5 (see FIG. 1), a third motor 6 (see FIG. 1), a fourth motor 7 (see FIG. 1), a first arm 8 (see FIG. 1), a second arm 9 (see FIG. 1), and a work 10 (see FIG. 1).
  • the first motor 2 is an example of "motor” in the claims.
  • the first reduction gear 3 is an example of a "reduction gear" in the claims.
  • the SCARA robot 1100 includes the base 1 (see FIG. 3), the first motor 2 (see FIG. 3), the first reduction gear 3 (see FIG. 3), and the first arm 8 (see FIG. 3). , wiring 11 (see FIG. 3), motor holder 12 (see FIG. 3), oil seal 13 (see FIG. 3), stay 14 (see FIG. 3), clamp 15 (see FIG. 3), grommet 16 (see FIG. 3) and an impeller 1117 .
  • Impeller 1117 is a centrifugal impeller.
  • the impeller 1117 includes a first mounting portion 17a, a second mounting portion 17b, a plurality (six) of movable blades 1117c, a plurality (six) of stoppers 1117d, and a plurality of stoppers 1117e.
  • the first attachment portion 17a is attached to a portion of each of the plurality of blade portions 17c on the side opposite to the base 1.
  • the second attachment portion 17b is attached to the base 1 side portion of each of the plurality of blade portions 17c.
  • each of the plurality of movable blades 1117c is configured to rotate around a rotation shaft 1171, which will be described later.
  • each of the plurality of movable vanes 1117c flows between the inertial force accompanying the rotation of the impeller 1117 and the plurality of movable vanes 1117c. It is configured to tilt in the other direction due to the fluid force of the wind.
  • each of movable vanes 1117c has an inertia force accompanying rotation of impeller 1117 and a force between the plurality of movable vanes 1117c. It is configured to tilt in one direction due to the fluid force of the wind flowing through it.
  • Each of the plurality of movable blades 1117c is formed in a thin plate shape.
  • the stopper 1117d is configured to hold the inclined posture of the corresponding movable blade 1117c. Specifically, the stopper 1117d has a rotation shaft 1171, a wedge 1172, a tension spring 1173, and a guide shaft 1174. As shown in FIG.
  • the rotation shaft 1171 is formed with a notch 1171a.
  • the notch 1171a is formed to match the shape of the wedge 1172 so that the wedge 1172 can be inserted.
  • the wedge 1172 is configured to restrict rotation of the rotating shaft 1171 by being inserted into the notch 1171a.
  • the wedge 1172 is a relatively heavy member, and moves outward in the radial direction of the impeller 1117 due to the centrifugal force associated with the rotation of the impeller 1117 .
  • the tension spring 1173 biases the wedge 1172 radially inward of the impeller 1117 .
  • the guide shaft 1174 guides the wedge 1172 to move the impeller 1117 radially outward and inward.
  • the stopper 1117e is configured to restrict rotation of the corresponding movable blade 1117c. As a result, the rotation of the movable blade 1117c is restricted and stopped by the stopper 1117e, so that the wedge 1172 can be inserted into the notch 1171a.
  • Other configurations of the eleventh embodiment are the same as those of the first embodiment.
  • the impeller 1117 is configured to cool the first motor 2 by the wind generated by rotating together with the first arm 8 .
  • an increase in the number of parts required for cooling the first motor 2 can be suppressed, and complication of the structure of the SCARA robot 1100 can be suppressed.
  • the impeller 1117 when the impeller 1117 rotates in one of the rotation directions of the impeller 1117, the impeller 1117 tilts in the other direction and rotates in the rotation direction of the impeller 1117.
  • the impeller 1117 rotates in the other direction, it has plate-like movable blades 1117c that tilt in one direction.
  • the impeller 1117 has the stopper 1117d that holds the tilted posture of the movable blade 1117c.
  • the air volume of the impeller 1117 can be more reliably kept substantially constant, so the cooling of the first motor 2 by the impeller 1117 can be performed more efficiently.
  • Other effects of the eleventh embodiment are the same as those of the first embodiment.
  • the configuration of the SCARA robot 1200 according to the twelfth embodiment of the present invention will be described with reference to FIGS.
  • the SCARA robot 1200 is an example of "robot" in the claims.
  • the SCARA robot 1200 is a robot whose arm moves horizontally.
  • the SCARA robot 1200 includes a base 301 (see FIG. 8), a first motor 2 (see FIG. 8), a first reducer 303 (see FIG. 8), a second motor 4 (see FIG. 1), and a second A reducer 5 (see FIG. 1), a third motor 6 (see FIG. 1), a fourth motor 7 (see FIG. 1), a first arm 8 (see FIG. 8), and a second arm 9 (see FIG. 1 ) and a working unit 10 (see FIG. 1).
  • the first motor 2 is an example of "motor” in the claims.
  • the first reduction gear 303 is an example of a "reduction gear” in the scope of claims.
  • the SCARA robot 1200 includes the base 301, the first motor 2, the first reducer 303, the first arm 8, the wiring 11 (see FIG. 8), and the motor holder 12 (see FIG. 8). , an oil seal 13 (see FIG. 8), a stay 14 (see FIG. 8), a clamp 15 (see FIG. 8), an impeller 1216, and a shaft cover 417 (see FIG. 8).
  • impeller 1216 is an axial impeller.
  • the impeller 1216 includes an outer frame 1216a, a rotating shaft 1216b, a plurality (two) of movable blades 1216c, a plurality (two) of stoppers 1216d, and a stopper 1216e.
  • the outer frame 1216a is a frame that accommodates a plurality of movable blades 1216c.
  • a plurality of movable blades 1216c are rotatably attached to the rotating shaft 1216b.
  • each of the plurality of movable blades 1216c is configured to rotate around a rotation shaft 1216b.
  • a weight M is attached to each of the plurality of movable blades 1216c.
  • the weight M is arranged on one side in the direction in which the rotating shaft 1216b extends.
  • each of the plurality of movable blades 1216c is configured to tilt in the other direction.
  • each of the plurality of movable blades 1216c when the impeller 1216 rotates in the other direction of the rotation direction of the impeller 1216, the inertial force accompanying the rotation of the impeller 1216 and the flow between the plurality of movable blades 1216c Due to the fluid force of the wind, the end of each of the plurality of movable blades 1216c on the side of the weight M moves in one of the rotation directions of the impeller 1216 . Thereby, each of the plurality of movable blades 1216c is configured to tilt in one direction.
  • Each of the plurality of movable blades 1216c is formed in a thin plate shape.
  • the weight M is attached to one side of the plurality of movable blades 1216c, the air flowing through the impeller 1216 is directed to the one side where the weight M is arranged among the directions in which the rotation shaft 1216b extends. It will flow towards you.
  • the stopper 1216d is configured to hold the tilted posture of the corresponding movable blade 1216c.
  • the stopper 1216d has a notch 1261, a wedge 1262, a spring 1263 and a shaft 1264.
  • the notch 1261 is formed in the outer frame 1216a.
  • the notch 1261 is formed to match the shape of the wedge 1262 so that the wedge 1262 can be inserted.
  • the wedge 1262 is configured to be inserted into the notch 1261 to restrict rotation of the movable blade 1216c.
  • the wedge 1262 moves outward in the radial direction of the impeller 1216 due to the centrifugal force applied to the mass of the movable blade 1216c due to the rotation of the rotary shaft 1216b.
  • Spring 1263 is attached to shaft 1264 .
  • the spring 1263 urges the movable vane 1216c inserted into the notch 1261 radially inward of the impeller 1216 .
  • Shaft 1264 is configured to position moveable vane 1216 c to insert wedge 1262 into notch 1261 .
  • the stopper 1216e is configured to restrict rotation of the corresponding movable blade 1216c. As a result, the rotation of the movable blade 1216c is restricted and stopped by the stopper 1216e, so that the wedge 1262 can be inserted into the notch 1261.
  • FIG. Other configurations of the twelfth embodiment are the same as those of the first embodiment.
  • the impeller 1216 is configured to cool the first motor 2 by the wind generated by rotating together with the first reduction gear 303 .
  • an increase in the number of parts required for cooling the first motor 2 can be suppressed, and complication of the structure of the SCARA robot 1200 can be suppressed.
  • Other effects of the twelfth embodiment are the same as those of the fourth embodiment.
  • the impeller 17 was attached to the first arm 8 in the joint structure connecting the base 1 and the first arm 8, but the present invention is not limited to this.
  • the impeller may be attached to the second arm in the joint structure connecting the first arm and the second arm.
  • the robot in the claims is the SCARA robot 100 (200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200) are described. Although shown, the invention is not so limited. In the present invention, the robot may be a vertical articulated robot or a single axis robot.
  • the weight M is attached to one side of the plurality of movable blades 1216c, so that the air flowing through the impeller 1216 is controlled by the weight M in the direction in which the rotation shaft 1216b extends.
  • the present invention is not limited to this.
  • the air flowing through the impeller 1316 is directed in the direction in which the rotation shaft extends. You may flow toward the other side which is the side where the weight M is arranged among them.
  • the present invention is not limited to this.
  • the length of one side of each of the plurality of movable vanes 1416c may be longer than the other side instead of attaching weights as in the second modification shown in FIGS.
  • the length of the other side of each of the plurality of movable vanes 1516c may be longer than the length of the one side.
  • the motor holder 12 has no cooling fins, but the present invention is not limited to this.
  • the SCARA robot 1600 may include a motor holder 1612 including convex cooling fins 1612a arranged in the air duct W, as in the fourth modification shown in FIG. As a result, since the first motor 2 can be cooled by the cooling fins 1612a of the motor holder 1612, the first motor 2 can be cooled more effectively.
  • the present invention is not limited to this.
  • the motor and the motor cover may be in direct contact. As a result, the motor can be cooled effectively by the motor cover.
  • the first reduction gear 3 (reduction gear) is an RV reduction gear, but the present invention is not limited to this.
  • the speed reducer may be a Cyclo speed reducer (registered trademark).

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

このロボット(100)は、モータ(2)と、減速機(3)と、ベース(1)と、第1アーム(8)と、第2アーム(9)と、第1アーム(8)または減速機(3)とともに回転する羽根車(17)とを備える。羽根車(17)は、第1アーム(8)または減速機(3)とともに回転して発生させた風により、モータ(2)を冷却するように構成されている。

Description

ロボット
 この発明は、ロボットに関し、特に、モータを備えるロボットに関する。
 従来、モータを備えるロボットが知られている。このようなロボットは、たとえば、特開2017-226042号公報に開示されている。
 上記特開2017-226042号公報には、モータを備えるロボットが開示されている。ロボットは、ベースと、可動部材と、減速機と、冷却ファンとを備えている。ベースは、設置面に固定されている。可動部材は、ベースに対して回動するように構成されている。減速機は、モータの回転を減速させて可動部材を回動させるように構成されている。冷却ファンは、電動ファンである。冷却ファンは、発生させた気流をモータの表面に沿って流通させるように構成されている。
特開2017-226042号公報
 しかしながら、上記特開2017-226042号公報のロボットでは、冷却ファンが電動ファンであるので、冷却ファンを駆動させるための配線などが必要になる。したがって、上記特開2017-226042号公報のロボットでは、モータを冷却するために電動の冷却ファンを用いることに起因して、配線などロボットの部品点数が増加するとともに、配線の取り回しなどロボットの構造が複雑化する。このため、上記特開2017-226042号公報のロボットでは、モータの冷却のために必要な部品点数の増加を抑制するとともに、ロボットの構造の複雑化を抑制することが望まれている。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、モータの冷却のために必要な部品点数の増加を抑制するとともに、ロボットの構造の複雑化を抑制することが可能なロボットを提供することである。
 この発明の一の局面によるロボットは、モータと、モータの駆動力により回転する入力部と、入力部からの回転を減速して伝達する減速部と、減速部からの駆動力により回転する出力部とを含む減速機と、ベースと、ベースに相対回転可能に取り付けられ、減速機の出力部からの出力により回転する第1アームと、第1アームに相対回転可能に取り付けられた第2アームと、第1アームまたは減速機とともに回転する羽根車とを備え、羽根車は、第1アームまたは減速機とともに回転して発生させた風により、モータを冷却するように構成されている。
 この発明の一の局面によるロボットでは、上記のように、羽根車は、第1アームまたは減速機とともに回転して発生させた風により、モータを冷却するように構成されている。これにより、羽根車を駆動させるための配線などが必要ないので、モータの冷却のために必要な部品点数の増加を抑制するとともに、ロボットの構造の複雑化を抑制することができる。
 上記一の局面によるロボットにおいて、好ましくは、羽根車は、第1アームに取り付けられて第1アームとともに回転するか、または、減速機の入力部に取り付けられて入力部とともに回転するように構成されている。このように構成すれば、羽根車を第1アームまたは減速機の入力部に取り付けるだけで羽根車を回転させることができるので、羽根車を回転させる構造を容易に実現することができる。
 上記一の局面によるロボットにおいて、好ましくは、羽根車は、第1アームとともに回転する遠心羽根車、または、減速機とともに回転する軸流羽根車を含む。このように構成すれば、遠心羽根車が第1アームとともに回転することにより風を発生させることができるか、または、軸流羽根車が減速機とともに回転することにより風を発生させることができるので、モータを冷却するための風を発生させる構造を容易に実現することができる。
 この場合、好ましくは、遠心羽根車は、モータの回りを囲むように設けられている。このように構成すれば、モータに満遍なく風を当てることができるので、モータを効果的に冷却することができる。
 上記モータを取り囲む遠心羽根車を備えるロボットにおいて、好ましくは、入力部は、入力部の回転軸線の延びる方向に貫通する貫通孔を有し、モータからの駆動力を減速部に伝達する中空の伝達軸を含み、遠心羽根車は、第1アームとともに回転して発生させた風により伝達軸の貫通孔内に風を流すことによって、減速機を冷却するように構成されている。このように構成すれば、モータだけでなく減速機も冷却することができるので、ロボットの関節部分の温度上昇を効果的に抑制することができる。
 上記遠心羽根車または軸流羽根車を含む羽根車を備えるロボットにおいて、好ましくは、ベースは、減速機に取り付けられており、入力部は、入力部の回転軸線の延びる方向に貫通する貫通孔を有し、モータからの駆動力を減速部に伝達する中空の伝達軸を含み、軸流羽根車は、伝達軸の貫通孔に配置されている。このように構成すれば、軸流羽根車により発生する風により減速機を内側から冷却することができるので、減速機を効果的に冷却することができる。また、軸流羽根車は、伝達軸の貫通孔内に配置されていることにより、軸流羽根車の大きさが貫通孔の大きさに合うような大きさになるので、伝達軸の貫通孔外に配置される遠心羽根車を用いる場合と比較して、羽根車を小型化することができる。
 上記軸流羽根車を貫通孔に配置するロボットにおいて、好ましくは、モータに接続される配線をさらに備え、軸流羽根車の内側には、配線が挿入される挿入管が配置されている。このように構成すれば、配線を減速機の外側に出す場合と異なり、配線を減速機内に収めることができるので、配線の露出を減少させることができる。
 上記軸流羽根車を貫通孔に配置するロボットにおいて、好ましくは、第1アームとベースとを繋ぐ部分である第1関節部と、第1アームと第2アームとを繋ぐ部分である第2関節部とをさらに備え、モータは、ベースまたは第2アームの第2関節部側に取り付けられた第1アームの内部空間に配置された状態で、ベースまたは第1アームに取り付けられており、軸流羽根車は、ベースまたは第1アームの内部空間に配置された状態のモータに送風するように構成されている。このように構成すれば、モータをベースまたは第2関節部に配置した場合でも、軸流羽根車によりモータに風を当てることができるので、モータを効果的に冷却することができる。
 上記軸流羽根車を貫通孔に配置するロボットにおいて、好ましくは、伝達軸の貫通孔における入力部の回転軸線の延びる方向のモータ側を覆う軸用カバーをさらに備え、軸用カバーは、軸流羽根車の風により貫通孔を介してベースの外部空間からベースの内部空間へと空気を流しつつ、空気中の異物を除く減速機側フィルタ部を含む。このように構成すれば、異物が伝達軸内に侵入することを抑制しつつ、軸流羽根車によりベースの外部空間に風を送ることができるので、異物がベースまたは第1アームの内部空間に侵入することを抑制することができるとともに、減速機およびモータを冷却することができる。
 上記軸流羽根車を貫通孔に配置するロボットにおいて、好ましくは、ベースは、ベースの外部空間と、ベースの内部空間とを連通させ、ベースの外部空間からベースの内部空間へと空気を流しつつ、空気中の異物を除くベース側フィルタ部を含む。このように構成すれば、異物がベース内に侵入することを抑制しつつ、軸流羽根車によりベースの内部空間から外部空間に風を送ることができるので、異物がベースまたは第1アームの内部空間に侵入することを抑制することができるとともに、減速機およびモータを冷却することができる。
 上記一の局面によるロボットにおいて、好ましくは、羽根車は、減速機の出力部の回転軸線と同軸回りに回転するように構成されている。このように構成すれば、羽根車が偏心して回転しないようにすることができるので、羽根車の回転を安定させることができる。
 上記一の局面によるロボットにおいて、好ましくは、羽根車は、第1アームに取り付けられており、第1アームは、減速機の出力部に取り付けられており、羽根車と、減速機とは、第1アームを介して熱伝導可能に接続されている。このように構成すれば、羽根車によりモータだけでなく減速機も冷却することができるので、ロボットの関節部分の温度上昇を効果的に抑制することができる。
 上記一の局面によるロボットにおいて、好ましくは、羽根車の送風路にモータを保持するモータホルダをさらに備える。このように構成すれば、モータに安定して風を当てることができるので、モータを効果的に冷却することができる。
 この場合、好ましくは、モータホルダは、送風路に配置された凸状の冷却フィンを含む。このように構成すれば、モータをモータホルダの冷却フィンにより冷却することができるので、モータをより効果的に冷却することができる。
 上記一の局面によるロボットにおいて、好ましくは、第1アームとベースとを繋ぐ部分である第1関節部と、第1アームと第2アームとを繋ぐ部分である第2関節部とをさらに備え、モータは、減速機に取り付けられたベースまたは第2アームの第2関節部側に取り付けられた第1アームの外部空間に配置されている。このように構成すれば、羽根車からの風だけでなくモータを外気に触れさせて冷却することができるので、モータを効果的に冷却することができる。
 この場合、好ましくは、モータを覆い、ベースの内部空間からベースの外部空間へと空気を流しつつ、空気中の異物を除くモータ側フィルタ部を含むモータカバーをさらに備える。このように構成すれば、モータに異物が付着することを抑制することができるとともに、モータに風を当てることができるので、モータを効果的に冷却することができる。
 上記モータカバーを備えるロボットにおいて、好ましくは、モータと、モータカバーとは、直接接触しているか、または、熱伝導体を介して接触している。このように構成すれば、モータカバーによりモータの熱を放熱することができるので、モータを効果的に冷却することができる。
 上記一の局面によるロボットにおいて、好ましくは、羽根車は、羽根車の回転方向のうちの一方向に羽根車が回転する際、他方向に傾くとともに、羽根車の回転方向のうちの他方向に羽根車が回転する際、一方向に傾く板状の可動羽根を有する。このように構成すれば、羽根車の回転方向に関わらず、回転速度が同じであれば、羽根車の風量を略一定にすることができるので、羽根車によるモータの冷却を効率的に行うことができる。
 この場合、好ましくは、羽根車は、可動羽根の傾いた姿勢を保持するストッパをさらに有する。このように構成すれば、羽根車の風量をより確実に略一定にすることができるので、羽根車によるモータの冷却をより効率的に行うことができる。
 本発明によれば、上記のように、モータの冷却のために必要な部品点数の増加を抑制するとともに、ロボットの構造の複雑化を抑制することができる。
第1実施形態によるスカラロボットの側面図である。 第1実施形態によるスカラロボットの平面図である。 図1のK部分の拡大断面図である。 第1実施形態によるスカラロボットの羽根車の平面図である。 第1実施形態によるスカラロボットの羽根車の断面図である。 第2実施形態によるスカラロボットのベースと第1アームとを繋ぐ関節部分の拡大断面図である。 第3実施形態によるスカラロボットのベースと第1アームとを繋ぐ関節部分の拡大断面図である。 第4実施形態によるスカラロボットのベースと第1アームとを繋ぐ関節部分の拡大断面図である。 第5実施形態によるスカラロボットのベースと第1アームとを繋ぐ関節部分の拡大断面図である。 第6実施形態によるスカラロボットのベースと第1アームとを繋ぐ関節部分の拡大断面図である。 第7実施形態によるスカラロボットのベースと第1アームとを繋ぐ関節部分の拡大断面図である。 第8実施形態によるスカラロボットのベースと第1アームとを繋ぐ関節部分の拡大断面図である。 第9実施形態によるスカラロボットのベースと第1アームとを繋ぐ関節部分の拡大断面図である。 第10実施形態によるスカラロボットのベースと第1アームとを繋ぐ関節部分の拡大断面図である。 第11実施形態によるスカラロボットの羽根車の断面図である。 第11実施形態によるスカラロボットの羽根車が反時計回りに回転した状態を示した模式図である。 第11実施形態によるスカラロボットの羽根車が時計回りに回転した状態を示した模式図である。 第11実施形態によるスカラロボットのストッパにより羽根車の回転が止められていない状態を示した模式図である。 第11実施形態によるスカラロボットのストッパにより羽根車の回転が止められた状態を示した模式図である。 第12実施形態によるスカラロボットのストッパにより羽根車の回転が止められていない状態を示した模式図である。 第12実施形態によるスカラロボットのストッパにより羽根車の回転が止められた状態を示した模式図である。 第12実施形態によるスカラロボットの可動羽根が一方向に傾いた状態を示した模式図である。 第12実施形態によるスカラロボットの可動羽根が他方向に傾いた状態を示した模式図である。 第12実施形態の第1変形例によるスカラロボットの可動羽根が一方向に傾いた状態を示した模式図である。 第12実施形態の第1変形例によるスカラロボットの可動羽根が他方向に傾いた状態を示した模式図である。 第12実施形態の第2変形例によるスカラロボットの可動羽根が一方向に傾いた状態を示した模式図である。 第12実施形態の第2変形例によるスカラロボットの可動羽根が他方向に傾いた状態を示した模式図である。 第12実施形態の第3変形例によるスカラロボットの可動羽根が一方向に傾いた状態を示した模式図である。 第12実施形態の第3変形例によるスカラロボットの可動羽根が他方向に傾いた状態を示した模式図である。 第1~12実施形態の第4変形例によるスカラロボットにおいて、フィンが設けられたモータホルダを示した平面図である。
 以下、本発明を具体化した実施形態を図面に基づいて説明する。
[第1実施形態]
 図1~図5を参照して、本発明の第1実施形態によるスカラロボット100の構成について説明する。なお、スカラロボット100は、請求の範囲の「ロボット」の一例である。
(スカラロボットの構成)
 図1および図2に示すように、スカラロボット100は、水平方向にアームが動作するロボットである。スカラロボット100は、ベース1と、第1モータ2と、第1減速機3と、第2モータ4と、第2減速機5と、第3モータ6と、第4モータ7と、第1アーム8と、第2アーム9と、作業部10とを備えている。なお、第1モータ2は、請求の範囲の「モータ」の一例である。また、第1減速機3は、請求の範囲の「減速機」の一例である。
 ベース1は、スカラロボット100を設置面に固定するための基台である。第1モータ2は、第1アーム8を駆動させるための駆動力を発生させる駆動源である。第1モータ2は、第1減速機3に取り付けられたベース1の外部空間S1に配置されている。第1減速機3は、第1モータ2の回転を減速させるように構成されている。第2モータ4は、第2アーム9を駆動させるための駆動力を発生させる駆動源である。第2減速機5は、第2モータ4の回転を減速させるように構成されている。第3モータ6は、作業部10を昇降させる昇降装置(図示せず)を駆動させるための駆動源である。第4モータ7は、作業部10を回転させる回転駆動装置(図示せず)を駆動させるための駆動源である。
 第1アーム8は、ベース1に相対回転可能に取り付けられている。第1アーム8は、第1モータ2の回転が第1減速機3により減速されて伝達することによって、ベース1に対して回動軸線J1回りに回動するように構成されている。第2アーム9は、第1アーム8に相対回転可能に取り付けられている。第2アーム9は、第2モータ4の回転が第2減速機5により減速されて伝達することによって、第1アーム8に対して回動軸線J2回りに回動するように構成されている。
 ここで、第1アーム8とベース1とを繋ぐ部分には、第1関節部8aが設けられている。第1関節部8aは、ベース1の第1アーム8側の部分と、第1アーム8のベース1側の部分とを繋ぎ合わせることにより、構成されている。また、第1アーム8と第2アーム9とを繋ぐ部分である第2関節部9aが設けられている。第2関節部9aは、第1アーム8の第2アーム9側の部分と、第2アーム9の第1アーム8側の部分とを繋ぎ合わせることにより、構成されている。
 このように、スカラロボット100では、第1アーム8の回動、第2アーム9の回動、昇降装置(図示せず)による昇降、および、回転駆動装置(図示せず)による回転を組み合わせて、作業部10により所望の作業が行われる。
〈ベースと第1アームとを接続する関節構造〉
 第1実施形態のスカラロボット100では、図3に示すように、第1アーム8が回転することに伴って後述する羽根車17が回転することにより、第1モータ2が冷却される。このような、ベース1と第1アーム8とを接続する関節構造(第1関節部8a)の詳細について、以下に説明する。
 図3および図4に示すように、スカラロボット100は、上記ベース1と、上記第1モータ2と、上記第1減速機3と、上記第1アーム8と、配線11と、モータホルダ12と、オイルシール13と、ステー14と、クランプ15と、グロメット16と、羽根車17とを備えている。
 第1減速機3は、偏心揺動減速機である。特に、第1減速機3は、RV(Rotate Vector)減速機である。第1減速機3は、入力部31と、減速部32と、出力部33と、キャリア34とを含んでいる。
 入力部31は、第1モータ2のシャフト21が接続されている。また、入力部31は、入力ギヤを有している。入力部31は、第1モータ2の駆動力により回転するように構成されている。
 減速部32は、入力部31からの回転を減速して伝達するように構成されている。具体的には、減速部32は、平歯車32aと、偏心回転部32bと、外歯歯車部32cとを有している。
 平歯車32aは、入力部31の駆動力を偏心回転部32bに伝達するように構成されている。平歯車32aは、入力ギヤと噛み合っている。平歯車32aは、入力部31の回転軸線J1の延びる方向において、偏心回転部32bのベース1側に配置されている。
 偏心回転部32bは、複数(2つまたは3つ)のクランクシャフト132を有している。偏心回転部32bには、入力部31の回転が平歯車32aにより減速されて伝達されている。外歯歯車部32cは、複数(2つ)のRVギヤを有している。外歯歯車部32cは、キャリア34に揺動可能に設けられた状態で、クランクシャフト132の回転により揺動して出力部33にクランクシャフト132の回転を減速させて伝達している。出力部33は、ケースである。出力部33は、減速部32からの駆動力により回転するように構成されている。すなわち、出力部33は、外歯歯車部32cの揺動に伴って、回転軸線J1回りを回動するように構成されている。これにより、第1アーム8が、第1減速機3の出力部33からの出力により回動する。
 図3に示すように、キャリア34は、出力部33の内側に配置されている。キャリア34は、第1アーム8の回転に伴って回転しないようにベース1に取り付けられている。また、第1モータ2は、キャリア34に取り付けられている。
 具体的には、キャリア34は、第1キャリア部34aと、第2キャリア部34bとを有している。第1キャリア部34aは、偏心回転部32bの回転軸線J1の延びる方向におけるベース1側とは逆側に設けられている。第1キャリア部34aには、1つの第1モータ2が取り付けられている。第1モータ2は、締結部材B1によりモータホルダ12を介して締結されることによって、第1キャリア部34aに固定されている。第2キャリア部34bは、締結部材B2およびピン(図示せず)などにより第1キャリア部34aに連結されている。第2キャリア部34bは、偏心回転部32bの回転軸線J1の延びる方向におけるベース1側に設けられている。第2キャリア部34bは、ベース1に取り付けられている。すなわち、第2キャリア部34bは、締結部材B3によりベース1に固定されている。
 これらにより、第1モータ2は、第1アーム8の回転に伴って回転しない。
 第1アーム8は、出力部33が接続されることにより、出力部33とともに回転するように構成されている。第1アーム8は、締結部材B4により出力部33に取り付けられている。このように、ベース1には、第1アーム8が第1減速機3を介して取り付けられている。配線11は、第1モータ2に接続されるモータ用配線である。
 モータホルダ12は、アルミニウムなどの金属製のフレームである。モータホルダ12は、第1キャリア部34aのベース1とは逆側に配置されている。モータホルダ12は、第1モータ2を保持した状態で、キャリア34に取り付けられている。すなわち、モータホルダ12は、第1モータ2を保持した状態で、締結部材B1により第1キャリア部34aに締結されている。モータホルダ12には、締結部材B5により第1モータ2が締結されている。第1モータ2は、ベース1の外部空間S1に配置された状態で、キャリア34にモータホルダ12を介して固定されている。第1モータ2は、モータホルダ12のベース1とは逆側に配置されている。このようにして、モータホルダ12は、羽根車17の送風路Wに第1モータ2を保持している。
 オイルシール13は、モータホルダ12と、第1アーム8との間に配置されている。オイルシール13は、モータホルダ12と、第1アーム8との間のうちのベース1側とは逆側の部分に配置されている。ステー14は、ベース1に締結部材B6により固定されている。ステー14は、配線11を支持するために設けられている。ステー14には、ベース1の内部空間S2と、ベース1の外部空間S1とを連通させるための貫通孔14aが形成されている。クランプ15は、配線11をステー14に取り付けるための部材である。グロメット16は、ステー14に配線11を通すためにステー14に取り付けられている。
〈羽根車〉
 羽根車17は、遠心羽根車である。遠心羽根車とは、時計回りに回転した場合および反時計回りに回転した場合の両方において、回転軸線J1の延びる方向の一方側から空気を吸い込み、かつ、径方向の外側に向かって空気を送り出すことにより、風を発生させる羽根車である。
 羽根車17は、第1アーム8とともに回転するように構成されている。羽根車17は、第1アーム8に取り付けられて第1アーム8とともに回転するように構成されている。羽根車17は、第1減速機3の出力部33の回転軸線J1と同軸回りに回転するように構成されている。
 羽根車17は、第1アーム8とともに回転して発生させた風により、第1モータ2を冷却するように構成されている。すなわち、羽根車17は、第1モータ2に対する第1アーム8の相対移動を利用して、第1モータ2を冷却するように構成されている。また、羽根車17と、第1減速機3とは、第1アーム8を介して熱伝導可能に接続されている。これにより、第1減速機3から伝わった熱は、羽根車17から放熱される。この結果、第1減速機3が、冷却される。
 図4および図5に示すように、羽根車17は、第1アーム8が時計回りに回転した場合および反時計回りに回転した場合の両方において、同様の送風路Wを辿って風を送り出すように構成されている。送風路Wは、回転軸線J1の延びる方向の一方側から羽根車17側に向かうとともに、回転軸線J1に直交する方向に向かって流れる経路である。
 ここで、羽根車17は、第1モータ2の回りを囲むように設けられている。これにより、第1モータ2は送風路Wに配置されているので、第1モータ2に風が当たり第1モータ2が冷却されることになる。
 羽根車17は、径方向の中央部分に空間を有する環状に形成されている。羽根車17は、第1取付部17aと、第2取付部17bと、複数(6枚)の羽根部17cとを含んでいる。第1取付部17aは、複数の羽根部17cの各々のベース1とは逆側の部分に取り付けられている。第2取付部17bは、複数の羽根部17cの各々のベース1側の部分に取り付けられている。複数の羽根部17cの各々は、円弧状の薄板である。
(第1実施形態の効果)
 第1実施形態では、以下のような効果を得ることができる。
 第1実施形態では、上記のように、羽根車17は、第1アーム8とともに回転して発生させた風により、第1モータ2を冷却するように構成されている。これにより、羽根車17を駆動させるための配線11などが必要ないので、第1モータ2の冷却のために必要な部品点数の増加を抑制するとともに、スカラロボット100の構造の複雑化を抑制することができる。
 また、第1実施形態では、上記のように、羽根車17は、第1アーム8に取り付けられて第1アーム8とともに回転するように構成されている。これにより、羽根車17を第1アーム8に取り付けるだけで羽根車17を回転させることができるので、羽根車17を回転させる構造を容易に実現することができる。
 また、第1実施形態では、上記のように、羽根車17は、第1アーム8とともに回転する遠心羽根車を含んでいる。これにより、遠心羽根車が第1アーム8とともに回転することにより風を発生させることができるので、第1モータ2を冷却するための風を発生させる構造を容易に実現することができる。
 また、第1実施形態では、上記のように、遠心羽根車は、第1モータ2の回りを囲むように設けられている。これにより、第1モータ2に満遍なく風を当てることができるので、第1モータ2を効果的に冷却することができる。
 また、第1実施形態では、上記のように、羽根車17は、第1減速機3の出力部33の回転軸線J1と同軸回りに回転するように構成されている。これにより、羽根車17が偏心して回転しないようにすることができるので、羽根車17の回転を安定させることができる。
 また、第1実施形態では、上記のように、羽根車17は、第1アーム8に取り付けられている。第1アーム8は、第1減速機3の出力部33に取り付けられている。羽根車17と、第1減速機3とは、第1アーム8を介して熱伝導可能に接続されている。これにより、羽根車17により第1モータ2だけでなく第1減速機3も冷却することができるので、スカラロボット100の関節部分の温度上昇を効果的に抑制することができる。
 また、第1実施形態では、上記のように、スカラロボット100は、羽根車17の送風路Wに第1モータ2を保持するモータホルダ12を備えている。これにより、第1モータ2に安定して風を当てることができるので、第1モータ2を効果的に冷却することができる。
 また、第1実施形態では、上記のように、スカラロボット100は、第1アーム8とベース1とを繋ぐ部分である第1関節部8aと、第1アーム8と第2アーム9とを繋ぐ部分である第2関節部9aとを備えている。第1モータ2は、第1減速機3に取り付けられたベース1の外部空間S1に配置されている。これにより、羽根車17からの風だけでなく第1モータ2を外気に触れさせて冷却することができるので、第1モータ2をより効果的に冷却することができる。
[第2実施形態]
 図6を参照して、第2実施形態によるスカラロボット200の構成について説明する。第2実施形態では、第1実施形態とは異なり、第1減速機203が、中空の伝達軸231aを有している。なお、第2実施形態では、第1実施形態と同じ構成については、詳細な説明を省略する。
 図6を参照して、本発明の第2実施形態によるスカラロボット200の構成について説明する。なお、スカラロボット200は、請求の範囲の「ロボット」の一例である。
(スカラロボットの構成)
 図6に示すように、スカラロボット200は、水平方向にアームが動作するロボットである。スカラロボット200は、ベース201と、第1モータ2と、第1減速機203と、第2モータ4(図1参照)と、第2減速機5(図1参照)と、第3モータ6(図1参照)と、第4モータ7(図1参照)と、第1アーム8と、第2アーム9(図1参照)と、作業部10(図1参照)とを備えている。なお、第1モータ2は、請求の範囲の「モータ」の一例である。また、第1減速機203は、請求の範囲の「減速機」の一例である。
 ベース201は、ベース側フィルタ部201aを含んでいる。ベース側フィルタ部201aは、スリットである。ベース側フィルタ部201aは、ベース201の外部空間S1と、ベース201の内部空間S2とを連通させている。ベース側フィルタ部201aは、ベース201の外部空間S1からベース201の内部空間S2へと空気を流しつつ、空気中の異物を除くように構成されている。なお、ベース側フィルタ部201aは、フィルタであってもよい。
 ここで、第1アーム8とベース201とを繋ぐ部分には、第1関節部208aが設けられている。また、第1アーム8と第2アーム9とを繋ぐ部分である第2関節部9a(図1参照)が設けられている。
〈ベースと第1アームとを接続する関節構造〉
 第2実施形態のスカラロボット200では、図6に示すように、第1アーム8が回転することに伴って後述する羽根車17が回転することにより、第1モータ2が冷却される。このような、ベース201と第1アーム8とを接続する関節構造(第1関節部208a)の詳細について、以下に説明する。
 図6に示すように、スカラロボット200は、上記ベース201と、上記第1モータ2と、上記第1減速機203と、上記第1アーム8と、配線11と、モータホルダ12と、オイルシール13と、第1ステー214と、第1クランプ215と、軸用カバー216と、羽根車17と、第2ステー218と、第2クランプ219と、を備えている。
 第1減速機203は、偏心揺動減速機である。特に、第1減速機203は、RV減速機である。第1減速機203は、入力部231と、減速部32と、出力部33と、キャリア34とを含んでいる。
 入力部231は、第1モータ2の駆動力により回転するように構成されている。入力部231は、中空の伝達軸231aを有している。伝達軸231aは、入力部231の回転軸線J1の延びる方向に貫通する貫通孔231bを有している。伝達軸231aは、第1モータ2からの駆動力を減速部32に伝達するように構成されている。
 第1ステー214は、ベース201に締結部材B6により固定されている。第1ステー214は、配線11を支持するために設けられている。第1クランプ215は、配線11を第1ステー214に取り付けるための部材である。
〈羽根車〉
 羽根車17は、遠心羽根車である。羽根車17は、第1アーム8とともに回転して発生させた風により伝達軸231aの貫通孔231b内に風を流すことによって、第1減速機203を冷却するように構成されている。ここで、送風路W1は、回転軸線J1の延びる方向のベース1側から羽根車17側に向かうとともに、回転軸線J1に直交する方向に向かって流れる経路である。また、送風路W2は、回転軸線J1の延びる方向のベース1側とは逆側から伝達軸231aの貫通孔231bを通って羽根車17側に向かうとともに、回転軸線J1に直交する方向に向かって流れる経路である。
〈その他の構成〉
 軸用カバー216は、伝達軸231aの貫通孔231bにおける入力部231の回転軸線J1の延びる方向の第1モータ2側を覆っている。軸用カバー216は、羽根車17の風により貫通孔231bを介してベース201の内部空間S2からベース201の外部空間S1へと空気を流しつつ、空気中の異物を除く減速機側フィルタ部216aを含んでいる。減速機側フィルタ部216aは、スリットである。なお、減速機側フィルタ部216aは、フィルターにグロメットを取り付けた構成でもよい。
 第2ステー218は、ベース201に締結部材B7により固定されている。第2ステー218は、配線11を支持するために設けられている。第2クランプ219は、配線11を第2ステー218に取り付けるための部材である。なお、第2実施形態のその他の構成は、上記第1実施形態の構成と同様である。
(第2実施形態の効果)
 第2実施形態では、上記第1実施形態と同様に、羽根車17は、第1アーム8とともに回転して発生させた風により、第1モータ2を冷却するように構成されている。これにより、第1モータ2の冷却のために必要な部品点数の増加を抑制するとともに、スカラロボット200の構造の複雑化を抑制することができる。
 また、第2実施形態では、上記のように、入力部31は、入力部231の回転軸線J1の延びる方向に貫通する貫通孔231bを有している。第1モータ2からの駆動力を減速部32に伝達する中空の伝達軸231aを含んでいる。遠心羽根車は、第1アーム8とともに回転して発生させた風により伝達軸231aの貫通孔231b内に風を流すことによって、第1減速機3を冷却するように構成されている。これにより、第1モータ2だけでなく第1減速機3も冷却することができるので、スカラロボット200の関節部分の温度上昇を効果的に抑制することができる。なお、第2実施形態のその他の効果は、上記第1実施形態の効果と同様である。
[第3実施形態]
 図7を参照して、第3実施形態によるスカラロボット300の構成について説明する。第3実施形態では、第1実施形態とは異なり、羽根車316が、軸流羽根車である。なお、第3実施形態では、第1実施形態と同じ構成については、詳細な説明を省略する。
 図7を参照して、本発明の第3実施形態によるスカラロボット300の構成について説明する。なお、スカラロボット300は、請求の範囲の「ロボット」の一例である。
(スカラロボットの構成)
 図7に示すように、スカラロボット300は、水平方向にアームが動作するロボットである。スカラロボット300は、ベース301と、第1モータ2と、第1減速機303と、第2モータ4(図1参照)と、第2減速機5(図1参照)と、第3モータ6(図1参照)と、第4モータ7(図1参照)と、第1アーム8と、第2アーム9(図1参照)と、作業部10(図1参照)とを備えている。なお、第1モータ2は、請求の範囲の「モータ」の一例である。また、第1減速機303は、請求の範囲の「減速機」の一例である。
 ベース301は、ベース側フィルタ部301aを含んでいる。ベース側フィルタ部301aは、スリットである。ベース側フィルタ部301aは、ベース301の外部空間S1と、ベース301の内部空間S2とを連通させている。ベース側フィルタ部301aは、ベース301の外部空間S1からベース301の内部空間S2へと空気を流しつつ、空気中の異物を除くように構成されている。なお、ベース側フィルタ部301aは、フィルタであってもよい。
 ここで、第1アーム8とベース301とを繋ぐ部分には、第1関節部308aが設けられている。また、第1アーム8と第2アーム9とを繋ぐ部分である第2関節部9a(図1参照)が設けられている。
〈ベースと第1アームとを接続する関節構造〉
 第3実施形態のスカラロボット300では、図7に示すように、第1減速機303が回転することに伴って後述する羽根車316が回転することにより、第1モータ2および第1減速機303が冷却される。このような、ベース301と第1アーム8とを接続する関節構造(第1関節部308a)の詳細について、以下に説明する。
 図7に示すように、スカラロボット300は、上記ベース301と、上記第1モータ2と、上記第1減速機303と、上記第1アーム8と、配線11と、モータホルダ12と、オイルシール13と、ステー314と、クランプ15と、羽根車316と、挿入管317とを備えている。
 第1減速機303は、偏心揺動減速機である。特に、第1減速機303は、RV減速機である。第1減速機303は、入力部331と、減速部32と、出力部33と、キャリア34とを含んでいる。
 入力部331は、第1モータ2の駆動力により回転するように構成されている。入力部331は、中空の伝達軸331aを有している。伝達軸331aは、入力部331の回転軸線J1の延びる方向に貫通する貫通孔331bを有している。伝達軸331aは、第1モータ2からの駆動力を減速部32に伝達するように構成されている。
 ステー314は、モータホルダ12に締結部材B6により固定されている。ステー314は、配線11を支持するために設けられている。ステー314は、羽根車316の風により貫通孔331bを介してベース301の外部空間S1からベース301の内部空間S2へと空気を流しつつ、空気中の異物を除く減速機側フィルタ部314aを含んでいる。減速機側フィルタ部314aは、スリットである。なお、減速機側フィルタ部314aは、フィルタであってもよい。
〈羽根車〉
 羽根車316は、軸流羽根車である。軸流羽根車とは、時計回りに回転した場合または反時計回りの回転した場合において、回転軸線J1の延びる方向の一方側から空気を吸い込み、かつ、回転軸線J1の延びる方向の他方側に向かって空気を送り出すことにより、風を発生させる羽根車である。
 羽根車316は、第1減速機303とともに回転するように構成されている。羽根車316は、第1減速機303の入力部331に取り付けられて第1減速機303とともに回転するように構成されている。羽根車316は、第1減速機303の出力部33の回転軸線J1と同軸回りに回転するように構成されている。
 羽根車316は、第1減速機303とともに回転して発生させた風により、第1モータ2および第1減速機303を冷却するように構成されている。すなわち、羽根車316は、第1モータ2に対する第1減速機303の相対移動を利用して、第1モータ2を冷却するように構成されている。また、羽根車316と、第1減速機303とは、直接的に熱伝導可能に接続されている。これにより、第1減速機303から伝わった熱は、羽根車316から放熱される。
 図7に示すように、羽根車316は、時計回りに回転した場合または反時計回りに回転した場合において、送風路Wを辿って風を送り出すように構成されている。送風路Wは、回転軸線J1の延びる方向のベース301側から第1モータ2側に向かう経路、および、回転軸線J1の延びる方向の第1モータ2側からベース301側に向かう経路を有している。すなわち、送風路Wは、羽根車316が時計回りに回転した場合または反時計回りに回転した場合において、風の方向が変わるので、2つの経路を有している。
 ここで、羽根車316は、伝達軸331aの貫通孔331bに配置されている。これにより、第1減速機303内を風が通るので、第1減速機303が冷却されることになる。また、羽根車316から出た、または、引き込まれた風が、第1モータ2に当たり第1モータ2が冷却されることになる。
〈挿入管〉
 挿入管317は、配線11が挿入されるように構成されている。挿入管317は、配線11が挿入される貫通孔317aを有している。挿入管317は、羽根車316の内側に配置されている。なお、第3実施形態のその他の構成は、上記第1実施形態の構成と同様である。
(第3実施形態の効果)
 第3実施形態では、上記第1実施形態と同様に、羽根車316は、第1減速機303とともに回転して発生させた風により、第1モータ2を冷却するように構成されている。これにより、第1モータ2の冷却のために必要な部品点数の増加を抑制するとともに、スカラロボット300の構造の複雑化を抑制することができる。
 また、第3実施形態では、上記のように、羽根車316は、第1減速機303の入力部331に取り付けられて入力部331とともに回転するように構成されている。これにより、第1減速機303の入力部331に取り付けるだけで羽根車316を回転させることができるので、羽根車316を回転させる構造を容易に実現することができる。
 また、第3実施形態では、上記のように、ベース301は、第1減速機303に取り付けられている。入力部331は、入力部331の回転軸線J1の延びる方向に貫通する貫通孔331bを有し、第1モータ2からの駆動力を減速部32に伝達する中空の伝達軸331aを含んでいる。軸流羽根車は、伝達軸331aの貫通孔331bに配置されている。これにより、軸流羽根車により発生する風により第1減速機303を内側から冷却することができるので、第1減速機303を効果的に冷却することができる。また、軸流羽根車は、伝達軸331aの貫通孔331b内に配置されていることにより、軸流羽根車の大きさが貫通孔331bの大きさに合うような大きさになるので、伝達軸331aの貫通孔331b外に配置される遠心羽根車を用いる場合と比較して、羽根車316を小型化することができる。
 また、第3実施形態では、上記のように、スカラロボット300は、第1モータ2に接続される配線11を備えている。軸流羽根車の内側には、配線11が挿入される挿入管317が配置されている。これにより、配線11を第1減速機303の外側に出す場合と異なり、配線11を第1減速機303内に収めることができるので、配線11の露出を減少させることができる。
 また、第3実施形態では、上記のように、ベース301は、ベース301の外部空間S1と、ベース301の内部空間S2とを連通させ、ベース301の外部空間S1からベース301の内部空間S2へと空気を流しつつ、空気中の異物を除くベース側フィルタ部301aを含む。これにより、異物がベース301内に侵入することを抑制しつつ、軸流羽根車によりベース301の内部空間S2から外部空間S1に風を送ることができるので、異物がベース301の内部空間S2に侵入することを抑制することができるとともに、第1減速機303および第1モータ2を冷却することができる。
 また、第3実施形態では、上記のように、ステー314は、羽根車316の風により貫通孔331bを介してベース301の外部空間S1からベース301の内部空間S2へと空気を流しつつ、空気中の異物を除く減速機側フィルタ部314aを含む。これにより、異物がベース301内に侵入することを抑制しつつ、軸流羽根車によりベース301の外部空間S1から内部空間S2に風を送ることができるので、異物がベース301の内部空間S2に侵入することを抑制することができるとともに、第1減速機303および第1モータ2を冷却することができる。なお、第3実施形態のその他の効果は、上記第1実施形態の効果と同様である。
[第4実施形態]
 図8を参照して、第4実施形態によるスカラロボット400の構成について説明する。第4実施形態では、第3実施形態とは異なり、スカラロボット400には、挿入管が設けられていない。なお、第4実施形態では、第3実施形態と同じ構成については、詳細な説明を省略する。
 図8を参照して、本発明の第4実施形態によるスカラロボット400の構成について説明する。なお、スカラロボット400は、請求の範囲の「ロボット」の一例である。
(スカラロボットの構成)
 図8に示すように、スカラロボット400は、水平方向にアームが動作するロボットである。スカラロボット400は、ベース301と、第1モータ2と、第1減速機303と、第2モータ4(図1参照)と、第2減速機5(図1参照)と、第3モータ6(図1参照)と、第4モータ7(図1参照)と、第1アーム8と、第2アーム9(図1参照)と、作業部10(図1参照)とを備えている。なお、第1モータ2は、請求の範囲の「モータ」の一例である。また、第1減速機303は、請求の範囲の「減速機」の一例である。
 ここで、第1アーム8とベース301とを繋ぐ部分には、第1関節部308aが設けられている。また、第1アーム8と第2アーム9とを繋ぐ部分である第2関節部9a(図1参照)が設けられている。
〈ベースと第1アームとを接続する関節構造〉
 第4実施形態のスカラロボット400では、図8に示すように、第1減速機303が回転することに伴って後述する羽根車416が回転することにより、第1モータ2が冷却される。このような、ベース301と第1アーム8とを接続する関節構造(第1関節部308a)の詳細について、以下に説明する。
 図8に示すように、スカラロボット400は、上記ベース301と、上記第1モータ2と、上記第1減速機303と、上記第1アーム8と、配線11と、モータホルダ12と、オイルシール13と、ステー14と、クランプ15と、羽根車416と、軸用カバー417とを備えている。
〈羽根車〉
 羽根車416は、軸流羽根車である。羽根車416は、第1減速機303とともに回転するように構成されている。羽根車416は、第1減速機303の入力部331に取り付けられて第1減速機303とともに回転するように構成されている。羽根車416は、第1減速機303の出力部33の回転軸線J1と同軸回りに回転するように構成されている。
〈軸用カバー〉
 軸用カバー417は、伝達軸331aの貫通孔331bにおける入力部331の回転軸線J1の延びる方向の第1モータ2側を覆っている。軸用カバー417は、減速機側フィルタ部417aを有している。減速機側フィルタ部417aは、羽根車416の風により貫通孔331bを介してベース301の外部空間S1からベース301の内部空間S2へと空気を流しつつ、空気中の異物を除くように構成されている。減速機側フィルタ部417aは、スリットである。なお、減速機側フィルタ部417aは、フィルタであってもよい。なお、第4実施形態のその他の構成は、上記第1実施形態の構成と同様である。
(第4実施形態の効果)
 第4実施形態では、上記第3実施形態と同様に、羽根車416は、第1減速機303とともに回転して発生させた風により、第1モータ2を冷却するように構成されている。これにより、第1モータ2の冷却のために必要な部品点数の増加を抑制するとともに、スカラロボット400の構造の複雑化を抑制することができる。
 また、第4実施形態では、上記のように、スカラロボット400は、伝達軸331aの貫通孔331bにおける入力部331の回転軸線J1の延びる方向の第1モータ2側を覆う軸用カバー417を備えている。軸用カバー417は、軸流羽根車の風により貫通孔331bを介してベース301の外部空間S1からベース301の内部空間S2へと空気を流しつつ、空気中の異物を除く減速機側フィルタ部417aを含んでいる。これにより、異物が伝達軸331a内に侵入することを抑制しつつ、軸流羽根車によりベース301の外部空間S1に風を送ることができるので、異物がベース301の内部空間S2に侵入することを抑制することができるとともに、第1減速機303および第1モータ2を冷却することができる。なお、第4実施形態のその他の効果は、上記第3実施形態の効果と同様である。
[第5実施形態]
 図9を参照して、第5実施形態によるスカラロボット500の構成について説明する。第5実施形態では、第4実施形態とは異なり、スカラロボット500が、モータカバー517を備えている。なお、第5実施形態では、第4実施形態と同じ構成については、詳細な説明を省略する。
 図9を参照して、本発明の第5実施形態によるスカラロボット500の構成について説明する。なお、スカラロボット500は、請求の範囲の「ロボット」の一例である。
(スカラロボットの構成)
 図9に示すように、スカラロボット500は、水平方向にアームが動作するロボットである。スカラロボット500は、ベース301と、第1モータ2と、第1減速機303と、第2モータ4と、第2減速機5と、第3モータ6と、第4モータ7と、第1アーム8と、第2アーム9と、作業部10とを備えている。なお、第1モータ2は、請求の範囲の「モータ」の一例である。また、第1減速機303は、請求の範囲の「減速機」の一例である。
 ここで、第1アーム8とベース301とを繋ぐ部分には、第1関節部308aが設けられている。また、第1アーム8と第2アーム9とを繋ぐ部分である第2関節部9a(図1参照)が設けられている。
〈ベースと第1アームとを接続する関節構造〉
 第5実施形態のスカラロボット500では、図9に示すように、第1減速機303が回転することに伴って後述する羽根車416が回転することにより、第1モータ2が冷却される。このような、ベース301と第1アーム8とを接続する関節構造(第1関節部308a)の詳細について、以下に説明する。
 図9に示すように、スカラロボット500は、上記ベース301と、上記第1モータ2と、上記第1減速機303と、上記第1アーム8と、配線11と、モータホルダ12と、オイルシール13と、ステー14と、クランプ15と、羽根車416と、モータカバー517と、熱伝導体518を備えている。
〈羽根車〉
 羽根車416は、軸流羽根車である。羽根車416は、第1減速機303とともに回転するように構成されている。羽根車416は、第1減速機303の入力部331に取り付けられて第1減速機303とともに回転するように構成されている。羽根車416は、第1減速機303の出力部33の回転軸線J1と同軸回りに回転するように構成されている。
〈モータカバー〉
 モータカバー517は、第1モータ2を覆う筐体である。モータカバー517は、モータ側フィルタ部517aを含んでいる。モータ側フィルタ部517aは、ベース301の外部空間S1からベース301の内部空間S2へと空気を流しつつ、空気中の異物を除くように構成されている。モータ側フィルタ部517aは、スリットである。なお、モータ側フィルタ部517aは、フィルタであってもよい。
〈熱伝導体〉
 熱伝導体518は、第1モータ2の熱をモータカバー517に熱伝導させるように構成されている。ここで、第1モータ2と、モータカバー517とは、熱伝導体518を介して接続されている。なお、第5実施形態のその他の構成は、上記第4実施形態の構成と同様である。
(第5実施形態の効果)
 第5実施形態では、上記第3実施形態と同様に、羽根車416は、第1減速機303とともに回転して発生させた風により、第1モータ2を冷却するように構成されている。これにより、第1モータ2の冷却のために必要な部品点数の増加を抑制するとともに、スカラロボット500の構造の複雑化を抑制することができる。
 また、第5実施形態では、上記のように、スカラロボット500は、第1モータ2を覆い、ベース301の外部空間S1からベース301の内部空間S2へと空気を流しつつ、空気中の異物を除くモータ側フィルタ部517aを含むモータカバー517を備えている。これにより、第1モータ2に異物が付着することを抑制することができるとともに、第1モータ2に風を当てることができるので、第1モータ2を効果的に冷却することができる。
 また、第5実施形態では、上記のように、第1モータ2と、モータカバー517とは、熱伝導体518を介して接触している。これにより、モータカバー517により第1モータ2の熱を放熱することができるので、第1モータ2を効果的に冷却することができる。なお、第5実施形態のその他の効果は、上記第4実施形態の効果と同様である。
[第6実施形態]
 図10を参照して、第6実施形態によるスカラロボット600の構成について説明する。第6実施形態では、第3実施形態とは異なり、スカラロボット600が、モータカバー617を備えている。なお、第6実施形態では、第3実施形態と同じ構成については、詳細な説明を省略する。
 図10を参照して、本発明の第6実施形態によるスカラロボット600の構成について説明する。なお、スカラロボット600は、請求の範囲の「ロボット」の一例である。
(スカラロボットの構成)
 図10に示すように、スカラロボット600は、水平方向にアームが動作するロボットである。スカラロボット600は、ベース301と、第1モータ2と、第1減速機303と、第2モータ4と、第2減速機5と、第3モータ6と、第4モータ7と、第1アーム8と、第2アーム9と、作業部10とを備えている。なお、第1モータ2は、請求の範囲の「モータ」の一例である。また、第1減速機303は、請求の範囲の「減速機」の一例である。
 ここで、第1アーム8とベース301とを繋ぐ部分には、第1関節部308aが設けられている。また、第1アーム8と第2アーム9とを繋ぐ部分である第2関節部9a(図1参照)が設けられている。
〈ベースと第1アームとを接続する関節構造〉
 第6実施形態のスカラロボット600では、図10に示すように、第1減速機303が回転することに伴って後述する羽根車316が回転することにより、第1モータ2および第1減速機303が冷却される。このような、ベース301と第1アーム8とを接続する関節構造(第1関節部308a)の詳細について、以下に説明する。
 図10に示すように、スカラロボット600は、上記ベース301と、上記第1モータ2と、上記第1減速機303と、上記第1アーム8と、配線11と、モータホルダ12と、オイルシール13と、ステー314と、クランプ15と、羽根車316と、挿入管317と、モータカバー617と、熱伝導体618とを備えている。
〈羽根車〉
 羽根車316は、軸流羽根車である。羽根車316は、第1減速機303とともに回転するように構成されている。羽根車316は、第1減速機303の入力部331に取り付けられて第1減速機303とともに回転するように構成されている。羽根車316は、第1減速機303の出力部33の回転軸線J1と同軸回りに回転するように構成されている。
〈モータカバー〉
 モータカバー617は、第1モータ2を覆う筐体である。モータカバー617は、モータ側フィルタ部617aを含んでいる。モータ側フィルタ部617aは、ベース301の外部空間S1からベース301の内部空間S2へと空気を流しつつ、空気中の異物を除くように構成されている。モータ側フィルタ部617aは、スリットである。なお、モータ側フィルタ部617aは、フィルタであってもよい。
〈熱伝導体〉
 熱伝導体618は、第1モータ2の熱をモータカバー617に熱伝導させるように構成されている。ここで、第1モータ2と、モータカバー617とは、熱伝導体618を介して接続されている。なお、第6実施形態のその他の構成は、上記第3実施形態の構成と同様である。
(第6実施形態の効果)
 第6実施形態では、上記第3実施形態と同様に、羽根車316は、第1減速機303とともに回転して発生させた風により、第1モータ2を冷却するように構成されている。これにより、第1モータ2の冷却のために必要な部品点数の増加を抑制するとともに、スカラロボット600の構造の複雑化を抑制することができる。なお、第6実施形態のその他の効果は、上記第3実施形態の効果と同様である。
[第7実施形態]
 図11を参照して、第7実施形態によるスカラロボット700の構成について説明する。第7実施形態では、第2実施形態とは異なり、スカラロボット700が、モータカバー720を備えている。なお、第7実施形態では、第2実施形態と同じ構成については、詳細な説明を省略する。
 図11を参照して、本発明の第7実施形態によるスカラロボット700の構成について説明する。なお、スカラロボット700は、請求の範囲の「ロボット」の一例である。
(スカラロボットの構成)
 図11に示すように、スカラロボット700は、水平方向にアームが動作するロボットである。スカラロボット700は、ベース201と、第1モータ2と、第1減速機203と、第2モータ4(図1参照)と、第2減速機5(図1参照)と、第3モータ6(図1参照)と、第4モータ7(図1参照)と、第1アーム8と、第2アーム9(図1参照)と、作業部10(図1参照)とを備えている。なお、第1モータ2は、請求の範囲の「モータ」の一例である。また、第1減速機203は、請求の範囲の「減速機」の一例である。
 ここで、第1アーム8とベース201とを繋ぐ部分には、第1関節部208aが設けられている。また、第1アーム8と第2アーム9とを繋ぐ部分である第2関節部9a(図1参照)が設けられている。
〈ベースと第1アームとを接続する関節構造〉
 第7実施形態のスカラロボット700では、図11に示すように、第1アーム8が回転することに伴って後述する羽根車17が回転することにより、第1モータ2が冷却される。このような、ベース201と第1アーム8とを接続する関節構造(第1関節部208a)の詳細について、以下に説明する。
 図11に示すように、スカラロボット700は、上記ベース201と、上記第1モータ2と、上記第1減速機203と、上記第1アーム8と、配線11と、モータホルダ12と、オイルシール13と、第1ステー214と、第1クランプ215と、軸用カバー216と、羽根車17と、第2ステー218と、第2クランプ219と、モータカバー720とを備えている。
〈羽根車〉
 羽根車17は、遠心羽根車である。羽根車17は、第1アーム8とともに回転して発生させた風により伝達軸231aの貫通孔231b内に風を流すことによって、第1減速機203を冷却するように構成されている。
〈モータカバー〉
 モータカバー720は、第1モータ2を覆う筐体である。モータカバー720は、羽根車17のベース201側とは逆側に取り付けられている。モータカバー720は、モータ側フィルタ部720aを含んでいる。モータ側フィルタ部720aは、ベース201の内部空間S2からベース201の外部空間S1へと空気を流しつつ、空気中の異物を除くように構成されている。モータ側フィルタ部720aは、スリットである。なお、モータ側フィルタ部720aは、フィルタであってもよい。なお、第7実施形態のその他の構成は、上記第2実施形態の構成と同様である。
(第7実施形態の効果)
 第7実施形態では、上記第2実施形態と同様に、羽根車17は、第1アーム8とともに回転して発生させた風により、第1モータ2を冷却するように構成されている。これにより、第1モータ2の冷却のために必要な部品点数の増加を抑制するとともに、スカラロボット700の構造の複雑化を抑制することができる。なお、第7実施形態のその他の効果は、上記第2実施形態の効果と同様である。
[第8実施形態]
 図12を参照して、第8実施形態によるスカラロボット800の構成について説明する。第8実施形態では、第2実施形態とは異なり、スカラロボット800が、モータカバー820を備えている。なお、第8実施形態では、第2実施形態と同じ構成については、詳細な説明を省略する。
 図12を参照して、本発明の第8実施形態によるスカラロボット800の構成について説明する。なお、スカラロボット800は、請求の範囲の「ロボット」の一例である。
(スカラロボットの構成)
 図12に示すように、スカラロボット800は、水平方向にアームが動作するロボットである。スカラロボット800は、ベース201と、第1モータ2と、第1減速機203と、第2モータ4(図1参照)と、第2減速機5(図1参照)と、第3モータ6(図1参照)と、第4モータ7(図1参照)と、第1アーム8と、第2アーム9(図1参照)と、作業部10(図1参照)とを備えている。なお、第1モータ2は、請求の範囲の「モータ」の一例である。また、第1減速機203は、請求の範囲の「減速機」の一例である。
 ここで、第1アーム8とベース201とを繋ぐ部分には、第1関節部208aが設けられている。また、第1アーム8と第2アーム9とを繋ぐ部分である第2関節部9a(図1参照)が設けられている。
〈ベースと第1アームとを接続する関節構造〉
 第8実施形態のスカラロボット800では、図12に示すように、第1アーム8が回転することに伴って後述する羽根車17が回転することにより、第1モータ2が冷却される。このような、ベース201と第1アーム8とを接続する関節構造(第1関節部208a)の詳細について、以下に説明する。
 図12に示すように、スカラロボット800は、上記ベース201と、上記第1モータ2と、上記第1減速機203と、上記第1アーム8と、配線11と、モータホルダ12と、オイルシール13と、第1ステー214と、第1クランプ215と、軸用カバー216と、羽根車17と、第2ステー218と、第2クランプ219と、モータカバー820とを備えている。
〈羽根車〉
 羽根車17は、遠心羽根車である。羽根車17は、第1アーム8とともに回転して発生させた風により伝達軸231aの貫通孔231b内に風を流すことによって、第1減速機203を冷却するように構成されている。
〈モータカバー〉
 モータカバー820は、第1モータ2および羽根車17を覆う筐体である。モータカバー820は、第1アーム8のベース201側とは逆側に取り付けられている。モータカバー820は、モータ側フィルタ部820aを含んでいる。モータ側フィルタ部820aは、ベース201の外部空間S1からベース201の内部空間S2へと空気を流しつつ、空気中の異物を除くように構成されている。モータ側フィルタ部820aは、スリットである。なお、モータ側フィルタ部820aは、フィルタであってもよい。なお、第8実施形態のその他の構成は、上記第2実施形態の構成と同様である。
(第8実施形態の効果)
 第8実施形態では、上記第2実施形態と同様に、羽根車17は、第1アーム8とともに回転して発生させた風により、第1モータ2を冷却するように構成されている。これにより、第1モータ2の冷却のために必要な部品点数の増加を抑制するとともに、スカラロボット800の構造の複雑化を抑制することができる。なお、第8実施形態のその他の効果は、上記第2実施形態の効果と同様である。
[第9実施形態]
 図13を参照して、第9実施形態によるスカラロボット900の構成について説明する。第9実施形態では、第4実施形態とは異なり、スカラロボット900には、挿入管が設けられていない。なお、第9実施形態では、第4実施形態と同じ構成については、詳細な説明を省略する。
 図13を参照して、本発明の第9実施形態によるスカラロボット900の構成について説明する。なお、スカラロボット900は、請求の範囲の「ロボット」の一例である。
(スカラロボットの構成)
 図13に示すように、スカラロボット900は、水平方向にアームが動作するロボットである。スカラロボット900は、ベース301と、第1モータ2と、第1減速機903と、第2モータ4(図1参照)と、第2減速機5(図1参照)と、第3モータ6(図1参照)と、第4モータ7(図1参照)と、第1アーム908と、第2アーム9(図1参照)と、作業部10(図1参照)とを備えている。なお、第1モータ2は、請求の範囲の「モータ」の一例である。また、第1減速機903は、請求の範囲の「減速機」の一例である。
 ここで、第1アーム8とベース301とを繋ぐ部分には、第1関節部308aが設けられている。また、第1アーム8と第2アーム9とを繋ぐ部分である第2関節部9a(図1参照)が設けられている。
〈ベースと第1アームとを接続する関節構造〉
 第9実施形態のスカラロボット900では、第1減速機903が回転することに伴って後述する羽根車416が回転することにより、第1モータ2が冷却される。このような、ベース301と第1アーム908とを接続する関節構造(第1関節部308a)の詳細について、以下に説明する。
 第1モータ2は、ベース301に取り付けられている。第1モータ2は、締結部材B1によりベース301に締結されている。このように、第1モータ2は、ベース301の内部空間S2に配置された状態で、ベース301に取り付けられている。これにより、第1モータ2は、第1アーム908の回転に伴って回転しない。
 スカラロボット900は、上記ベース301と、上記第1モータ2と、上記第1減速機903と、上記第1アーム908と、羽根車416とを備えている。
 第1減速機903は、偏心揺動減速機である。特に、第1減速機903は、RV減速機である。第1減速機903は、入力部331と、減速部32と、外側ケース933と、キャリア934とを含んでいる。なお、キャリア934は、請求の範囲の「出力部」の一例である。
 外側ケース933は、締結部材B2によりベース301に取り付けられている。これにより、外側ケース933は、減速部32からの駆動力により回転しない。
 キャリア934は、外側ケース933の内側に配置されている。キャリア934は、減速部32からの駆動力により回転することによって、第1アーム908を回転させるように構成されている。キャリア934は、第1アーム908に取り付けられている。
 具体的には、キャリア934は、第1キャリア部934aと、第2キャリア部934bとを有している。第1キャリア部934aは、入力部331の回転軸線J1の延びる方向におけるベース301側に設けられている。第2キャリア部934bは、締結部材B3およびピン(図示せず)などにより第1キャリア部934aに連結されている。第2キャリア部934bは、入力部331の回転軸線J1の延びる方向におけるベース301側とは逆側に設けられている。第2キャリア部934bは、第1アーム908に取り付けられている。すなわち、第2キャリア部934bは、締結部材B4により第1アーム908に固定されている。
 第1アーム908は、キャリア934が接続されることにより、キャリア934とともに回転するように構成されている。第1アーム908は、締結部材B4によりキャリア934に取り付けられている。第1アーム908は、アーム側フィルタ部981を含んでいる。アーム側フィルタ部981は、ベース301の外部空間S1からベース301の内部空間S2へと空気を流しつつ、空気中の異物を除くように構成されている。アーム側フィルタ部981は、スリットである。なお、アーム側フィルタ部981は、フィルタであってもよい。
〈羽根車〉
 羽根車416は、軸流羽根車である。羽根車416は、第1減速機903とともに回転するように構成されている。これにより、羽根車416は、ベース301の内部空間S2に配置された状態の第1モータ2に送風するように構成されている。なお、第9実施形態のその他の構成は、上記第4実施形態の構成と同様である。
(第9実施形態の効果)
 第9実施形態では、上記第4実施形態と同様に、羽根車416は、第1減速機903とともに回転して発生させた風により、第1モータ2を冷却するように構成されている。これにより、第1モータ2の冷却のために必要な部品点数の増加を抑制するとともに、スカラロボット900の構造の複雑化を抑制することができる。
 また、第9実施形態では、上記のように、スカラロボット900は、第1アーム8とベース301とを繋ぐ部分である第1関節部308aと、第1アーム8と第2アーム9とを繋ぐ部分である第2関節部9aとを備えている。第1モータ2は、ベース301の内部空間S2に配置された状態で、ベース301に取り付けられている。軸流羽根車は、ベース301の内部空間S2に配置された状態の第1モータ2に送風するように構成されている。これにより、第1モータ2をベース301の内部空間S2に配置した場合でも、軸流羽根車により第1モータ2に風を当てることができるので、第1モータ2を効果的に冷却することができる。なお、第9実施形態のその他の効果は、上記第4実施形態の効果と同様である。
[第10実施形態]
 図14を参照して、第10実施形態によるスカラロボット1000の構成について説明する。第10実施形態では、第9実施形態とは異なり、スカラロボット1000は、減速機としてハーモニック減速機を備えている。なお、第10実施形態では、第9実施形態と同じ構成については、詳細な説明を省略する。
 図14を参照して、本発明の第10実施形態によるスカラロボット1000の構成について説明する。なお、スカラロボット1000は、請求の範囲の「ロボット」の一例である。
(スカラロボットの構成)
 図14に示すように、スカラロボット1000は、水平方向にアームが動作するロボットである。スカラロボット1000は、ベース301と、第1モータ2と、第1減速機1003と、第2モータ4(図1参照)と、第2減速機5(図1参照)と、第3モータ6(図1参照)と、第4モータ7(図1参照)と、第1アーム908と、第2アーム9(図1参照)と、作業部10(図1参照)とを備えている。なお、第1モータ2は、請求の範囲の「モータ」の一例である。また、第1減速機1003は、請求の範囲の「減速機」の一例である。
 ここで、第1アーム8とベース301とを繋ぐ部分には、第1関節部308aが設けられている。また、第1アーム8と第2アーム9とを繋ぐ部分である第2関節部9a(図1参照)が設けられている。
〈ベースと第1アームとを接続する関節構造〉
 第10実施形態のスカラロボット1000では、第1減速機1003が回転することに伴って後述する羽根車416が回転することにより、第1モータ2が冷却される。このような、ベース301と第1アーム908とを接続する関節構造(第1関節部308a)の詳細について、以下に説明する。
 第1減速機1003は、中空減速機である。特に、第1減速機1003は、ハーモニック減速機である。第1減速機1003は、入力部331と、フレクスプライン下の固定部1032と、サーキュラスプライン上の出力部1033とを含んでいる。
 入力部331は、ウェーブジェネレータである。固定部1032は、締結部材B1によりベース301に取り付けられている。出力部1033は、締結部材B2により第1アーム908に取り付けられている。出力部1033は、入力部331の回転を減速して出力するように構成されている。このように、出力部1033は、減速部の機能を兼ねている。なお、出力部1033は、請求の範囲の「減速部」の一例である。また、第10実施形態のその他の構成は、上記第9実施形態の構成と同様である。
(第10実施形態の効果)
 第10実施形態では、上記第9実施形態と同様に、羽根車416は、第1減速機1003とともに回転して発生させた風により、第1モータ2を冷却するように構成されている。これにより、第1モータ2の冷却のために必要な部品点数の増加を抑制するとともに、スカラロボット1000の構造の複雑化を抑制することができる。なお、第10実施形態のその他の効果は、上記第9実施形態の効果と同様である。
[第11実施形態]
 図15~図19を参照して、第11実施形態によるスカラロボット1100の構成について説明する。第11実施形態では、第1実施形態とは異なり、羽根車1117が、可動羽根1117cを含んでいる。なお、第11実施形態では、第1実施形態と同じ構成については、詳細な説明を省略する。
 図15~図19を参照して、本発明の第11実施形態によるスカラロボット1100の構成について説明する。なお、スカラロボット1100は、請求の範囲の「ロボット」の一例である。
(スカラロボットの構成)
 スカラロボット1100は、水平方向にアームが動作するロボットである。スカラロボット1100は、ベース1(図1参照)と、第1モータ2と、第1減速機3(図1参照)と、第2モータ4(図1参照)と、第2減速機5(図1参照)と、第3モータ6(図1参照)と、第4モータ7(図1参照)と、第1アーム8(図1参照)と、第2アーム9(図1参照)と、作業部10(図1参照)とを備えている。なお、第1モータ2は、請求の範囲の「モータ」の一例である。また、第1減速機3は、請求の範囲の「減速機」の一例である。
〈ベースと第1アームとを接続する関節構造〉
 第11実施形態のスカラロボット1100では、図15に示すように、第1アーム8が回転することに伴って後述する羽根車1117が回転することにより、第1モータ2が冷却される。このような、ベース1と第1アーム8とを接続する関節構造の詳細について、以下に説明する。
 スカラロボット1100は、上記ベース1(図3参照)と、上記第1モータ2(図3参照)と、上記第1減速機3(図3参照)と、上記第1アーム8(図3参照)と、配線11(図3参照)と、モータホルダ12(図3参照)と、オイルシール13(図3参照)と、ステー14(図3参照)と、クランプ15(図3参照)と、グロメット16(図3参照)と、羽根車1117とを備えている。
〈羽根車〉
 羽根車1117は、遠心羽根車である。羽根車1117は、第1取付部17aと、第2取付部17bと、複数(6枚)の可動羽根1117cと、複数(6つ)のストッパ1117dと、複数のストッパ1117eとを含んでいる。
 第1取付部17aは、複数の羽根部17cの各々のベース1とは逆側の部分に取り付けられている。第2取付部17bは、複数の羽根部17cの各々のベース1側の部分に取り付けられている。
 図16および図17に示すように、複数の可動羽根1117cの各々は、後述する回動軸1171回りに回動するように構成されている。複数の可動羽根1117cの各々は、羽根車1117の回転方向のうちの一方向に羽根車1117が回転する際、羽根車1117の回転に伴う慣性力および複数の可動羽根1117cの互いの間を流れる風の流体力により、他方向に傾くように構成されている。また、複数の可動羽根1117cの各々は、羽根車1117の回転方向のうちの他方向に羽根車1117が回転する際、羽根車1117の回転に伴う慣性力および複数の可動羽根1117cの互いの間を流れる風の流体力により、一方向に傾くように構成されている。複数の可動羽根1117cの各々は、薄板状に形成されている。
 ストッパ1117dは、対応する可動羽根1117cの傾いた姿勢を保持するように構成されている。具体的には、ストッパ1117dは、回動軸1171と、くさび1172と、引張ばね1173と、ガイド用軸1174とを有している。
 図18および図19に示すように、回動軸1171には、切り欠き1171aが形成されている。切り欠き1171aは、くさび1172が挿入可能なように、くさび1172の形状に合わせて形成されている。くさび1172は、切り欠き1171aに挿入されることにより、回動軸1171の回動を規制するように構成されている。くさび1172は、比較的重い部材であり、羽根車1117の回転に伴う遠心力により、羽根車1117の径方向の外側に向かって移動する。引張ばね1173は、くさび1172を羽根車1117の径方向の内側に向かって付勢している。ガイド用軸1174は、くさび1172を羽根車1117の径方向の外側および内側への移動をガイドしている。
 また、図16および図17に示すように、ストッパ1117eは、対応する可動羽根1117cの回転を規制するように構成されている。これにより、ストッパ1117eにより可動羽根1117cの回転が規制されて止められるので、くさび1172が切り欠き1171aに挿入可能になる。なお、第11実施形態のその他の構成は、上記第1実施形態の構成と同様である。
(第11実施形態の効果)
 第11実施形態では、上記第1実施形態と同様に、羽根車1117は、第1アーム8とともに回転して発生させた風により、第1モータ2を冷却するように構成されている。これにより、第1モータ2の冷却のために必要な部品点数の増加を抑制するとともに、スカラロボット1100の構造の複雑化を抑制することができる。
 また、第11実施形態では、上記のように、羽根車1117は、羽根車1117の回転方向のうちの一方向に羽根車1117が回転する際、他方向に傾くとともに、羽根車1117の回転方向のうちの他方向に羽根車1117が回転する際、一方向に傾く板状の可動羽根1117cを有している。これにより、羽根車1117の回転方向に関わらず、回転速度が同じであれば、羽根車1117の風量を略一定にすることができるので、羽根車1117による第1モータ2の冷却を効率的に行うことができる。
 また、第11実施形態では、上記のように、羽根車1117は、可動羽根1117cの傾いた姿勢を保持するストッパ1117dを有している。これにより、羽根車1117の風量をより確実に略一定にすることができるので、羽根車1117による第1モータ2の冷却をより効率的に行うことができる。なお、第11実施形態のその他の効果は、上記第1実施形態の効果と同様である。
[第12実施形態]
 図20~図23を参照して、第12実施形態によるスカラロボット1200の構成について説明する。第12実施形態では、第4実施形態とは異なり、羽根車1216は、可動羽根1216cを含んでいる。なお、第12実施形態では、第4実施形態と同じ構成については、詳細な説明を省略する。
 図20~図23を参照して、本発明の第12実施形態によるスカラロボット1200の構成について説明する。なお、スカラロボット1200は、請求の範囲の「ロボット」の一例である。
(スカラロボットの構成)
 スカラロボット1200は、水平方向にアームが動作するロボットである。スカラロボット1200は、ベース301(図8参照)と、第1モータ2(図8参照)と、第1減速機303(図8参照)と、第2モータ4(図1参照)と、第2減速機5(図1参照)と、第3モータ6(図1参照)と、第4モータ7(図1参照)と、第1アーム8(図8参照)と、第2アーム9(図1参照)と、作業部10(図1参照)とを備えている。なお、第1モータ2は、請求の範囲の「モータ」の一例である。また、第1減速機303は、請求の範囲の「減速機」の一例である。
〈ベースと第1アームとを接続する関節構造〉
 第12実施形態のスカラロボット1200では、第1減速機303が回転することに伴って後述する羽根車1216が回転することにより、第1モータ2が冷却される。このような、ベース301と第1アーム8とを接続する関節構造の詳細について、以下に説明する。
 スカラロボット1200は、上記ベース301と、上記第1モータ2と、上記第1減速機303と、上記第1アーム8と、配線11(図8参照)と、モータホルダ12(図8参照)と、オイルシール13(図8参照)と、ステー14(図8参照)と、クランプ15(図8参照)と、羽根車1216と、軸用カバー417(図8参照)とを備えている。
〈羽根車〉
 図20および図21に示すように、羽根車1216は、軸流羽根車である。羽根車1216は、外枠1216aと、回動軸1216bと、複数(2枚)の可動羽根1216cと、複数(2つ)のストッパ1216dと、ストッパ1216eとを含んでいる。
 外枠1216aは、複数の可動羽根1216cを収容するフレームである。回動軸1216bには、複数の可動羽根1216cが回転可能に取り付けられている。
 図22および図23に示すように、複数の可動羽根1216cの各々は、回動軸1216b回りに回動するように構成されている。複数の可動羽根1216cの各々には、重りMが取り付けられている。重りMは、回動軸1216bの延びる方向の一方側に配置されている。
 複数の可動羽根1216cでは、羽根車1216の回転方向のうちの一方向に羽根車1216が回転する際、羽根車1216の回転に伴う慣性力および複数の可動羽根1216cの互いの間を流れる風の流体力により、複数の可動羽根1216cの各々の重りM側の端部が、羽根車1216の回転方向のうちの他方向に移動する。これにより、複数の可動羽根1216cの各々は、他方向に傾くように構成されている。また、複数の可動羽根1216cでは、羽根車1216の回転方向のうちの他方向に羽根車1216が回転する際、羽根車1216の回転に伴う慣性力および複数の可動羽根1216cの互いの間を流れる風の流体力により、複数の可動羽根1216cの各々の重りM側の端部が、羽根車1216の回転方向のうちの一方向に移動する。これにより、複数の可動羽根1216cの各々は、一方向に傾くように構成されている。複数の可動羽根1216cの各々は、薄板状に形成されている。
 これにより、重りMが複数の可動羽根1216cの一方側に取り付けられていることにより、羽根車1216を流れる空気は、回動軸1216bの延びる方向のうち重りMが配置された側の一方側に向かって流れることになる。
 図20および図21に示すように、ストッパ1216dは、対応する可動羽根1216cの傾いた姿勢を保持するように構成されている。具体的には、ストッパ1216dは、切り欠き1261と、くさび1262と、ばね1263と、シャフト1264とを有している。
 切り欠き1261は、外枠1216aに形成されている。切り欠き1261は、くさび1262が挿入可能なように、くさび1262の形状に合わせて形成されている。くさび1262は、切り欠き1261に挿入されることにより、可動羽根1216cの回動を規制するように構成されている。くさび1262は、回動軸1216bの回転に伴う可動羽根1216cの質量にかかる遠心力により、羽根車1216の径方向の外側に向かって移動する。ばね1263は、シャフト1264に取り付けられている。ばね1263は、切り欠き1261に挿入された状態の可動羽根1216cを羽根車1216の径方向の内側に向かって付勢している。シャフト1264は、くさび1262を切り欠き1261に挿入するために、可動羽根1216cの位置決めを行うように構成されている。
 また、図22および図23に示すように、ストッパ1216eは、対応する可動羽根1216cの回転を規制するように構成されている。これにより、ストッパ1216eにより可動羽根1216cの回転が規制されて止められるので、くさび1262が切り欠き1261に挿入可能になる。なお、第12実施形態のその他の構成は、上記第1実施形態の構成と同様である。
(第12実施形態の効果)
 第12実施形態では、上記第4実施形態と同様に、羽根車1216は、第1減速機303とともに回転して発生させた風により、第1モータ2を冷却するように構成されている。これにより、第1モータ2の冷却のために必要な部品点数の増加を抑制するとともに、スカラロボット1200の構造の複雑化を抑制することができる。なお、第12実施形態のその他の効果は、上記第4実施形態の効果と同様である。
[変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記第1、第2、第7および第8実施形態では、ベース1と第1アーム8とを接続する関節構造において羽根車17を第1アーム8に取り付ける例を示したが、本発明はこれに限られない。本発明では、第1アームと第2アームとを接続する関節構造において羽根車を第2アームに取り付けてもよい。
 また、上記第1~12実施形態では、請求の範囲の「ロボット」が、スカラロボット100(200、300、400、500、600、700、800、900、1000、1100、1200)である例を示したが、本発明はこれに限られない。本発明では、ロボットは、垂直多関節ロボットまたは単軸ロボットであってもよい。
 また、上記第12実施形態では、重りMが複数の可動羽根1216cの一方側に取り付けられていることにより、羽根車1216を流れる空気を、回動軸1216bの延びる方向のうち重りMが配置された側の一方側に向かって流す例を示したが、本発明はこれに限られない。本発明では、図24および図25に示す第1変形例のように、重りMを複数の可動羽根1316cの他方側に取り付けることにより、羽根車1316を流れる空気を、回動軸の延びる方向のうち重りMが配置された側である他方側に向かって流してもよい。
 また、上記第12実施形態では、複数の可動羽根1216cの各々には、重りMが取り付けられている例を示したが、本発明はこれに限られない。本発明では、図26および図27に示す第2変形例のように、重りを付ける代わりに、複数の可動羽根1416cの各々の一方側の長さを他方側よりも長くしてもよい。また、図28および図29に示す第3変形例のように、重りを付ける代わりに、複数の可動羽根1516cの各々の他方側の長さを一方側よりも長くしてもよい。
 また、上記第1~第8実施形態では、モータホルダ12は、冷却フィンを有していない例を示したが、本発明はこれに限られない。本発明では、図30に示す第4変形例のように、スカラロボット1600は、送風路Wに配置された凸状の冷却フィン1612aを含むモータホルダ1612を備えていてもよい。これにより、第1モータ2をモータホルダ1612の冷却フィン1612aにより冷却することができるので、第1モータ2をより効果的に冷却することができる。
 また、上記第5実施形態では、第1モータ2(モータ)と、モータカバー517とは、熱伝導体518を介して接触している例を示したが、本発明はこれに限られない。本発明では、モータと、モータカバーとは、直接接触していてもよい。これにより、モータカバーによりモータを冷却することができるので、モータを効果的に冷却することができる。
 また、上記第1~第9、第11および第12実施形態では、第1減速機3が(減速機)は、RV減速機である例を示したが、本発明はこれに限られない。本発明では、減速機は、サイクロ減速機(登録商標)であってもよい。
 1、201、301 ベース
 2 第1モータ(モータ)
 3、203、303、903、1003 第1減速機(減速機)
 8、908 第1アーム
 8a、208a、308a 第1関節部
 9 第2アーム
 9a 第2関節部
 11 配線
 12、1612 モータホルダ
 17、316、416、1117、1216、1316 羽根車
 31、231、331 入力部
 32 減速部
 33、1033 出力部
 100、200、300、400、500、600、700、800、900、1000、1100、1200、1600 スカラロボット
 201a ベース側フィルタ部
 216 軸用カバー
 216a、314a、417a 減速機側フィルタ部
 231a、331a 伝達軸
 231b、331b 貫通孔
 301a ベース側フィルタ部
 317 挿入管
 417 軸用カバー
 417a 減速機側フィルタ部
 517、617、720、820 モータカバー
 517a、617a、720a、820a モータ側フィルタ部
 518、618 熱伝導体
 1117c、1216c、1316c、1416c、1516c 可動羽根
 1117d、1216d ストッパ
 1612a 冷却フィン
 J1 回転軸線
 S1 外部空間
 S2 内部空間
 W、W1、W2 送風路
    

Claims (19)

  1.  モータと、
     前記モータの駆動力により回転する入力部と、前記入力部からの回転を減速して伝達する減速部と、前記減速部からの駆動力により回転する出力部とを含む減速機と、
     ベースと、
     前記ベースに相対回転可能に取り付けられ、前記減速機の前記出力部からの出力により回転する第1アームと、
     前記第1アームに相対回転可能に取り付けられた第2アームと、
     前記第1アームまたは前記減速機とともに回転する羽根車とを備え、
     前記羽根車は、前記第1アームまたは前記減速機とともに回転して発生させた風により、前記モータを冷却するように構成されている、ロボット。
  2.  前記羽根車は、前記第1アームに取り付けられて前記第1アームとともに回転するか、または、前記減速機の前記入力部に取り付けられて前記入力部とともに回転するように構成されている、請求項1に記載のロボット。
  3.  前記羽根車は、前記第1アームとともに回転する遠心羽根車、または、前記減速機とともに回転する軸流羽根車を含む、請求項1または2に記載のロボット。
  4.  前記遠心羽根車は、前記モータの回りを囲むように設けられている、請求項3に記載のロボット。
  5.  前記入力部は、前記入力部の回転軸線の延びる方向に貫通する貫通孔を有し、前記モータからの駆動力を前記減速部に伝達する中空の伝達軸を含み、
     前記遠心羽根車は、前記第1アームとともに回転して発生させた風により前記伝達軸の前記貫通孔内に風を流すことによって、前記減速機を冷却するように構成されている、請求項4に記載のロボット。
  6.  前記ベースは、前記減速機に取り付けられており、
     前記入力部は、前記入力部の回転軸線の延びる方向に貫通する貫通孔を有し、前記モータからの駆動力を前記減速部に伝達する中空の伝達軸を含み、
     前記軸流羽根車は、前記伝達軸の前記貫通孔に配置されている、請求項3に記載のロボット。
  7.  前記モータに接続される配線をさらに備え、
     前記軸流羽根車の内側には、前記配線が挿入される挿入管が配置されている、請求項6に記載のロボット。
  8.  前記第1アームと前記ベースとを繋ぐ部分である第1関節部と、
     前記第1アームと前記第2アームとを繋ぐ部分である第2関節部とをさらに備え、
     前記モータは、前記ベースまたは前記第2アームの前記第2関節部側に取り付けられた前記第1アームの内部空間に配置された状態で、前記ベースまたは前記第1アームに取り付けられており、
     前記軸流羽根車は、前記ベースまたは前記第1アームの内部空間に配置された状態の前記モータに送風するように構成されている、請求項6または7に記載のロボット。
  9.  前記伝達軸の前記貫通孔における前記入力部の回転軸線の延びる方向の前記モータ側を覆う軸用カバーをさらに備え、
     前記軸用カバーは、前記軸流羽根車の風により前記貫通孔を介して前記ベースの外部空間から前記ベースの内部空間へと空気を流しつつ、空気中の異物を除く減速機側フィルタ部を含む、請求項6~8のいずれか1項に記載のロボット。
  10.  前記ベースは、前記ベースの外部空間と、前記ベースの内部空間とを連通させ、前記ベースの外部空間から前記ベースの内部空間へと空気を流しつつ、空気中の異物を除くベース側フィルタ部を含む、請求項6~9のいずれか1項に記載のロボット。
  11.  前記羽根車は、前記減速機の前記出力部の回転軸線と同軸回りに回転するように構成されている、請求項1~10のいずれか1項に記載のロボット。
  12.  前記羽根車は、前記第1アームに取り付けられており、
     前記第1アームは、前記減速機の前記出力部に取り付けられており、
     前記羽根車と、前記減速機とは、前記第1アームを介して熱伝導可能に接続されている、請求項1~11のいずれか1項に記載のロボット。
  13.  前記羽根車の送風路に前記モータを保持するモータホルダをさらに備える、請求項1~12のいずれか1項に記載のロボット。
  14.  前記モータホルダは、前記送風路に配置された凸状の冷却フィンを含む、請求項13に記載のロボット。
  15.  前記第1アームと前記ベースとを繋ぐ部分である第1関節部と、
     前記第1アームと前記第2アームとを繋ぐ部分である第2関節部とをさらに備え、
     前記モータは、前記減速機に取り付けられた前記ベースまたは前記第2アームの前記第2関節部側に取り付けられた前記第1アームの外部空間に配置されている、請求項1~7のいずれか1項に記載のロボット。
  16.  前記モータを覆い、前記ベースの外部空間から前記ベースの内部空間へと空気を流しつつ、空気中の異物を除くモータ側フィルタ部を含むモータカバーをさらに備える、請求項15に記載のロボット。
  17.  前記モータと、前記モータカバーとは、直接接触しているか、または、熱伝導体を介して接触している、請求項16に記載のロボット。
  18.  前記羽根車は、前記羽根車の回転方向のうちの一方向に前記羽根車が回転する際、他方向に傾くとともに、前記羽根車の回転方向のうちの他方向に前記羽根車が回転する際、一方向に傾く板状の可動羽根を有する、請求項1~17のいずれか1項に記載のロボット。
  19.  前記羽根車は、前記可動羽根の傾いた姿勢を保持するストッパをさらに有する、請求項18に記載のロボット。
        
PCT/JP2021/038048 2021-10-14 2021-10-14 ロボット WO2023062777A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/038048 WO2023062777A1 (ja) 2021-10-14 2021-10-14 ロボット
JP2023553845A JPWO2023062777A1 (ja) 2021-10-14 2021-10-14
CN202180102329.7A CN117980116A (zh) 2021-10-14 2021-10-14 机器人
KR1020247003987A KR20240029076A (ko) 2021-10-14 2021-10-14 로봇

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038048 WO2023062777A1 (ja) 2021-10-14 2021-10-14 ロボット

Publications (1)

Publication Number Publication Date
WO2023062777A1 true WO2023062777A1 (ja) 2023-04-20

Family

ID=85987328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038048 WO2023062777A1 (ja) 2021-10-14 2021-10-14 ロボット

Country Status (4)

Country Link
JP (1) JPWO2023062777A1 (ja)
KR (1) KR20240029076A (ja)
CN (1) CN117980116A (ja)
WO (1) WO2023062777A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04256595A (ja) * 1991-02-08 1992-09-11 Hitachi Ltd 産業用ロボット装置
JPH10337685A (ja) * 1997-06-05 1998-12-22 Yamaha Motor Co Ltd スカラ型ロボットの冷却装置
JP2009024868A (ja) * 2007-06-20 2009-02-05 Honda Motor Co Ltd 電動アクチュエータ
JP2015212001A (ja) * 2014-05-07 2015-11-26 セイコーエプソン株式会社 ロボット
JP2020069577A (ja) * 2018-10-31 2020-05-07 日本電産サンキョー株式会社 産業用ロボット
WO2020136890A1 (ja) * 2018-12-28 2020-07-02 ヤマハ発動機株式会社 多関節ロボット
JP2020203363A (ja) * 2019-06-19 2020-12-24 セイコーエプソン株式会社 ロボット

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6444946B2 (ja) 2016-06-23 2018-12-26 ファナック株式会社 ロボット

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04256595A (ja) * 1991-02-08 1992-09-11 Hitachi Ltd 産業用ロボット装置
JPH10337685A (ja) * 1997-06-05 1998-12-22 Yamaha Motor Co Ltd スカラ型ロボットの冷却装置
JP2009024868A (ja) * 2007-06-20 2009-02-05 Honda Motor Co Ltd 電動アクチュエータ
JP2015212001A (ja) * 2014-05-07 2015-11-26 セイコーエプソン株式会社 ロボット
JP2020069577A (ja) * 2018-10-31 2020-05-07 日本電産サンキョー株式会社 産業用ロボット
WO2020136890A1 (ja) * 2018-12-28 2020-07-02 ヤマハ発動機株式会社 多関節ロボット
JP2020203363A (ja) * 2019-06-19 2020-12-24 セイコーエプソン株式会社 ロボット

Also Published As

Publication number Publication date
KR20240029076A (ko) 2024-03-05
JPWO2023062777A1 (ja) 2023-04-20
CN117980116A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
JP5462064B2 (ja) 産業用ロボット
US20100186534A1 (en) Parallel robot
WO2017070982A1 (zh) 一种电机、云台及飞行器
US10821598B2 (en) Robot and robot system
JP2005125489A (ja) スカラタイプのロボット
KR100336374B1 (ko) 산업용로보트의관절부구동구조
KR102206699B1 (ko) 산업용 로봇
JP5270449B2 (ja) ロボットの関節構造、及びそれを備えるロボット
JP2017503666A (ja) 電子デバイス製造において基板を搬送するためのロボット装置、駆動アセンブリ、及び方法
US20190203825A1 (en) Actuator
JP2006167847A (ja) ロボットの関節構造
JP2010094749A (ja) 多関節ロボット及びロボットシステム
WO2023062777A1 (ja) ロボット
JPWO2018055752A1 (ja) 減速機付きモータ及び産業用ロボット
US11986952B2 (en) Vertical articulated robot
WO2023062776A1 (ja) ロボット
JP2017226028A (ja) 手首ユニットとロボット
KR100206539B1 (ko) 로봇의 손목 기구
JP6850799B2 (ja) アーム駆動装置
JP2006007355A (ja) ロボットの手首装置
JPH06791A (ja) ロボットの手首機構
JP2011183525A (ja) ロボットの制振装置
JP4662705B2 (ja) 人型ロボットの腰ヨー軸駆動装置
JPH10337685A (ja) スカラ型ロボットの冷却装置
JP2666573B2 (ja) 多軸ロボットの手首駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247003987

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247003987

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023553845

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180102329.7

Country of ref document: CN