WO2023061047A1 - 壳体、其制备方法及电子设备 - Google Patents

壳体、其制备方法及电子设备 Download PDF

Info

Publication number
WO2023061047A1
WO2023061047A1 PCT/CN2022/113977 CN2022113977W WO2023061047A1 WO 2023061047 A1 WO2023061047 A1 WO 2023061047A1 CN 2022113977 W CN2022113977 W CN 2022113977W WO 2023061047 A1 WO2023061047 A1 WO 2023061047A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
housing
base material
frosting
housing body
Prior art date
Application number
PCT/CN2022/113977
Other languages
English (en)
French (fr)
Inventor
王语鉴
祝鹏辉
张世龙
杨啸
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023061047A1 publication Critical patent/WO2023061047A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • H05K5/0243Mechanical details of casings for decorative purposes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching

Definitions

  • the present application relates to the field of electronics, in particular to a shell, its preparation method and electronic equipment.
  • An embodiment of the present application provides a casing, which includes:
  • the housing body includes a plurality of protruding structures, the plurality of protruding structures are located on the surface of the housing body, and each of the protruding structures includes a plurality of reflective surfaces; the housing body The reflectance to visible light is greater than or equal to 60%, and the housing body is a glass body.
  • the embodiment of the present application also provides a method for preparing a casing, which includes:
  • the shell substrate is a glass substrate
  • the shell body includes a plurality of protruding structures located on the surface of the shell body, Each of the raised structures includes a plurality of reflective surfaces; the reflectivity of the housing body is greater than or equal to 60%.
  • an electronic device which includes:
  • the housing is used to carry the display assembly
  • the housing includes a housing body, the housing body includes a plurality of protruding structures, and the multiple protruding structures are located on the housing body On the surface, each of the raised structures includes a plurality of reflective surfaces; the reflectivity of the housing body to visible light is greater than or equal to 60%, and the housing body is a glass body; and
  • a circuit board assembly is arranged between the casing and the display assembly, and is electrically connected to the display assembly, and is used to control the display assembly to display.
  • FIG. 1 is a schematic perspective view of a housing according to an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional structural view of the casing along the A-A direction in FIG. 1 according to an embodiment of the present application.
  • FIG. 3 is an electron microscope image of a predetermined surface of a casing according to an embodiment of the present application.
  • Fig. 4 is a schematic cross-sectional structure diagram of a housing according to another embodiment of the present application along the direction A-A in Fig. 1 .
  • FIG. 5 is an enlarged view of the dotted frame I of the casing in FIG. 4 of the embodiment of the present application.
  • FIG. 6 is a schematic cross-sectional structure diagram of a housing according to another embodiment of the present application along the direction A-A in FIG. 1 .
  • Fig. 7 is a schematic flowchart of a method for preparing a housing according to another embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for preparing a housing according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for preparing a housing according to another embodiment of the present application.
  • Fig. 10 is a schematic flowchart of a method for preparing a housing according to another embodiment of the present application.
  • FIG. 11 is an electron microscope image of a predetermined surface of a shell manufactured in Example 1 of the present application.
  • FIG. 12 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a partial exploded structure of an electronic device according to an embodiment of the present application.
  • FIG. 14 is a circuit block diagram of an electronic device according to an embodiment of the present application.
  • the present application provides a casing, which includes:
  • the housing body includes a plurality of protruding structures, the plurality of protruding structures are located on the surface of the housing body, and each of the protruding structures includes a plurality of reflective surfaces; the housing The reflectivity of the body to visible light is greater than or equal to 60%, and the housing body is a glass body.
  • the light transmittance of the housing body to visible light is less than or equal to 20%; the haze of the housing body is greater than or equal to 97%.
  • the protruding structure is a quadrangular pyramid, and the plurality of reflective surfaces are four reflective surfaces.
  • the housing body has a predetermined surface
  • the plurality of protruding structures are located on the predetermined surface
  • the reflective surface is a plane
  • the range of the angle between the reflective surface and the predetermined surface is 120° to 150°.
  • the maximum height of the raised structures ranges from 15 ⁇ m to 25 ⁇ m, and the distance between two adjacent raised structures ranges from 15 ⁇ m to 25 ⁇ m.
  • the housing body has a predetermined surface, the plurality of protruding structures are located on the predetermined surface, and the protruding structures are within the longest distance of the area surrounded by the orthographic projection of the predetermined surface 40 ⁇ m to 160 ⁇ m; the preset surface roughness Ra is 1.8 ⁇ m to 3.5 ⁇ m.
  • the housing also includes:
  • the color layer is disposed on the surface of the shell body away from the raised structure
  • the bottom layer of the cover is arranged on the surface of the color layer away from the shell body.
  • the present application provides a method for preparing a casing, which includes:
  • the shell substrate is a glass substrate
  • the housing body includes a plurality of protruding structures, and the plurality of protruding structures are located on the surface of the housing body,
  • Each of the raised structures includes a plurality of reflective surfaces; the reflectivity of the housing body is greater than or equal to 60%.
  • said immersing said shell base material into said frosting solution comprising:
  • said immersing said shell base material into said frosting solution comprising:
  • the shell base material Immerse the shell base material in the frosting solution at a first speed along a preset direction, the first speed is greater than 1800mm/s, wherein the preset direction is the same as the extension direction of the shell base material
  • the angle is from 0° to 15°.
  • said method also includes:
  • the shell substrate is swung back and forth in the frosting solution.
  • said swinging said shell base material back and forth in said frosting liquid includes:
  • Swinging the shell base material in the frosting liquid at a second speed in a preset direction wherein the second speed is 2000mm/s to 2800mm/s, and the preset direction is the same as the The angle of the extension direction of the housing base material is 0° to 15°.
  • the amplitude of the back and forth swing is 5cm to 12cm, and the time of the back and forth swing is 10s to 30s.
  • the clamp for clamping the shell base material when swinging back and forth, when the shell base material swings to the position closest to the liquid level of the frosting liquid, the clamp for clamping the shell base material is located at the liquid level of the frosting liquid 8cm to 12cm below.
  • said method also includes:
  • the shell substrate is left standing in the frosting solution for 60s to 80s.
  • described frosting liquid comprises the component of following weight fraction:
  • the frosting liquid also includes 3% to 5% of a thickener, and the thickener is starch; the particle diameter of the barium sulfate is 100nm to 500nm.
  • the temperature of the frosting liquid is 10°C to 15°C.
  • said method before said immersing said housing base material in said frosting solution, said method also includes:
  • the shell base material is washed with water, pickled with water, washed with water, and cooled to a preset temperature, and the preset temperature is 10°C to 15°C.
  • the present application provides an electronic device, which includes:
  • the casing is used to carry the display assembly, the casing includes a casing body, the casing body includes a plurality of protrusion structures, and the plurality of protrusions
  • the structures are located on the surface of the housing body, each of the raised structures includes a plurality of reflective surfaces;
  • the housing body has a reflectivity of greater than or equal to 60% for visible light, and the housing body is a glass body;
  • a circuit board assembly is arranged between the casing and the display assembly, and is electrically connected to the display assembly, and is used to control the display assembly to display.
  • the glass substrate is etched with a frosting solution to form a pointed convex structure on the surface of the glass substrate to prepare frosted glass.
  • the pointed protrusion structure has a pyramid-like structure, the regularity of the pyramid-like structure is poor, and the surface of the similar pyramid-like structure is mostly incomplete (for example, by potholes), and the number of edges of each similar pyramid is different.
  • the glittering sand or pearlescent effect of the glittering sand structure formed at various positions on the glass surface is not uniform, which affects the appearance and visual effect, and makes the roughness of different positions on the frosted glass surface uneven, which in turn makes the feel of different positions different, affecting users. experience.
  • the frosted glass obtained by this method has a haze of 30% to 50%, and the glass consumes very little visible light. Therefore, this shows that most of the visible light incident on the surface of the frosted glass finally passes through the frosted glass. , the reflected visible light is limited, thus forming a pointed raised structure with a weaker flash sand or pearlescent effect, and the brightness of the flash point is lower.
  • the roughness Ra of the frosted surface obtained by this method is 0.6 ⁇ m to 1.2 ⁇ m. At this time, when the finger pulp touches the frosted surface, the contact area between the finger pulp and the frosted surface is relatively large, so there will be a rough feeling. .
  • the embodiment of the present application provides a casing, which includes: a casing body 10, the casing body 10 includes a plurality of protruding structures 12, and the plurality of protruding structures 12 are located On the surface of the housing body 10, each of the raised structures 12 includes a plurality of reflective surfaces 121; the reflectivity of the housing body 10 to visible light is greater than or equal to 60%, and the housing body 10 is made of glass ontology.
  • the housing body 10 has a predetermined surface 11 on which the plurality of protruding structures 12 are located.
  • plurality in this application refers to more than two or at least two positive integers, such as 2, 3, 4, 5, 6, 7, 8 and so on.
  • predetermined surface 11 in this application refers to the plane fitting of the lowest points of the gaps between all adjacent protruding structures 12 , and the fitted plane is the predetermined surface 11 .
  • protruding structure 12 in the present application refers to a structure formed by a protrusion protruding from the reference plane with the preset surface 11 as the reference plane.
  • the reflectivity of the housing body 10 to visible light may be, but not limited to, 60%, 63%, 65%, 68%, 70%, 72%, 75% and so on. Further, the reflectivity of the housing body 10 is greater than or equal to 65%. Furthermore, the reflectivity of the housing body 10 is greater than or equal to 70%. It should be noted that the “reflectivity” and “transmittance” in this embodiment both refer to the reflectivity and transmittance of visible light.
  • the transmittance of the housing body 10 to visible light is less than or equal to 20%; specifically, it may be, but not limited to, 20%, 18%, 15%, 12%, 10%, 8%, 5%. %wait. Further, the light transmittance of the casing 100 is less than or equal to 16%. Furthermore, the light transmittance of the housing 100 is less than or equal to 10%.
  • the haze of the housing body 10 is greater than or equal to 97%, specifically, it may be but not limited to 975, 98%, 99%, 99.5% and so on.
  • the plurality of raised structures 12 formed on the preset surface 11 of the housing body 10 are distributed over the entire preset surface 11, therefore, most of the visible light that does not pass through the housing body 10 is absorbed by the raised structures 12.
  • the reflective surface 121 performs specular reflection, and finally reflects the preset surface 11 , and less visible light is absorbed or consumed by the casing body 10 such as diffuse reflection. Therefore, when the light transmittance of the housing body 10 is lower and the haze is higher, it means that more visible light incident on the surface of the housing body 10 is reflected by the specular surface, so that the raised structure 12 of the housing body 10 has a brighter, Stronger grainy glitter or pearlescent effect.
  • a plurality of protruding structures 12 are arranged at intervals on the predetermined surface 11 .
  • Each protruding structure 12 forms a flash point or glitter sand on the housing body 10 , thereby forming a granular, dotted glitter or pearlescent effect on the predetermined surface 11 of the housing body 10 .
  • the casing 100 of the present application can be applied to portable electronic devices such as mobile phones, tablet computers, notebook computers, desktop computers, smart bracelets, smart watches, e-readers, and game consoles.
  • the casing 100 of the present application may be a back cover (battery cover), a middle frame, a decoration, etc. of an electronic device.
  • the casing 100 in the embodiment of the present application may be a 2D structure, a 2.5D structure, a 3D structure, or the like.
  • the housing body 10 has a 3D structure
  • the housing body 10 includes a bottom 13 and a side 14, the bottom 13 is connected to the side 14 by bending, and is an integral structure , the bottom 13 and the side 14 form an accommodating space 101 .
  • the bottom portion 13 is the back cover of the electronic device
  • the side portion 14 is the middle frame of the electronic device.
  • the housing 100 of the embodiment of the present application includes a housing body 10, and the housing body 10 includes a plurality of protruding structures 12, the plurality of protruding structures 12 are located on the surface of the housing body 10, each of the The raised structure 12 includes a plurality of reflective surfaces 121; the reflective surfaces 121 of the raised structure 12 can reflect the visible light incident on the surface of the housing body 10, and each reflective surface 121 forms a specular reflection, and the reflective surfaces 121 in different directions will The incident visible light is reflected in different directions, so that the surface of the manufactured housing 100 has dots of glittering sand or pearl effect in different directions, in other words, the surface of the housing body 10 has granular glittering effects in different directions.
  • the reflectivity of the housing body 10 is greater than or equal to 60%. This shows that most of the visible light incident on the surface of the housing body 10 is reflected by the reflective surface 121 of the raised structure 12, and a small part of the visible light penetrates through the housing body 10, thereby making the surface of the housing 100 brighter. , more shiny granular glitter sand or pearlescent effect. Furthermore, since the directions of the reflective surfaces 121 on the plurality of protruding structures 12 are different, the incident light from the same direction is reflected to different directions, thereby having an anti-glare effect.
  • the housing body 10 is a glass body.
  • the glass body may be, but not limited to, at least one of soda lime silicate glass, high aluminosilicate glass and the like.
  • the term "at least one" in this application means more than one, for example, 1, 2, 3, 4, 5, 6, 7, 8, etc.
  • the thickness of the shell body 10 is 0.3mm to 1mm; specifically, the thickness of the shell body 10 can be but not limited to 0.3mm, 0.4mm, 0.5mm, 0.6mm, 0.7mm, 0.8mm, 0.9mm mm, 1mm, etc.
  • the shell body 10 is too thin, it cannot play a supporting and protective role well, and the mechanical strength cannot well meet the requirements of the electronic device shell 100.
  • the shell body 10 is too thick, it will increase the The weight of the electronic device affects the feel of the electronic device, and the user experience is not good.
  • the roughness Ra of the preset surface 11 is 1.8 ⁇ m to 3.5 ⁇ m; specifically, it can be but not limited to 1.8 ⁇ m, 2.0 ⁇ m, 2.2 ⁇ m, 2.5 ⁇ m, 2.8 ⁇ m, 3.0 ⁇ m, 3.2 ⁇ m, 3.5 ⁇ m, etc.
  • the range of roughness Ra of the preset surface 11 is within this range, when the finger pulp touches the preset surface 11, the finger pulp basically only touches the tip portion of the raised structure 12, and the contact area between the finger pulp and the preset surface 11 At the same time, the raised structure 12 has a larger reflective surface 121 at this time, which can form a larger area of specular reflection, so that the glittering sand or pearlescent effect of the preset surface 11 is brighter and brighter. flash.
  • the contact area between the pulp of the finger and the preset surface 11 becomes larger (mainly in contact with the bottom of the raised structure 12), and the sense of roughness becomes stronger; when the roughness Ra is greater than 3.5 ⁇ m, the raised If the size of the structure 12 is too large, the distance between the adjacent raised structures 12 will increase, and the contact area between the pulp of the finger and the preset surface 11 will also increase (mainly the side of the raised structure 12, that is, the reflective surface 121), the sense of roughness will also become stronger.
  • the term "roughness" in this application refers to the average roughness unless otherwise specified.
  • the protruding structure 12 is a quadrangular pyramid
  • the plurality of reflective surfaces 121 are four reflective surfaces 121
  • the plurality of quadrangular pyramids are spaced or closely arranged on the preset surface 11 of the housing body 10 , so that dense glittering sand or pearl effect is formed on the predetermined surface 11 of the housing body 10 .
  • the protruding structures 12 on the preset surface 11 of the housing body 10 are all quadrangular pyramid structures, so that the tactility and roughness of each position of the preset surface 11 are relatively uniform, thereby having a better hand feeling.
  • the raised structure 12 of the reflective surface 121 when there are more reflective surfaces 121, the height of the formed raised structure 12 will be lower in the same time of etching or reaction, the roughness will be reduced, the smoothness will be reduced, and the hand feel will be bad; on the contrary, When the reflective surface 121 is less, the height of the raised structure 12 formed will be higher in the same time of etching or reaction, and the finger pulp can only touch the tip of the raised structure 12, and the contact between the finger and the preset surface 11 Smaller area, higher roughness, better smoothness, and better hand feeling.
  • the plurality of protruding structures 12 in the embodiment of the present application are all quadrangular pyramids, and the size (such as width) and shape of each quadrangular pyramid are relatively uniform.
  • the energy required for each position is similar, so the subject of The preset surface 11 of the present invention has a better smooth feeling, a better hand feeling, and the glitter sand or effect at each position is more uniform.
  • the reflective surface 121 is a plane, and the angle ⁇ between the reflective surface 121 and the preset surface 11 ranges from 120° to 150°; specifically, it may be But not limited to 120°, 125°, 130°, 135°, 140°, 145°, 150°, etc. If the angle ⁇ between the reflective surface 121 and the predetermined surface 11 is too large or too small, the viewing angle of the glittering sand on the surface of the shell body 10 will be reduced.
  • the angle between the reflective surface 121 and the preset surface 11 is too small (less than 120°), the brightness of the flash sand will be reduced; in addition, the smaller the angle between the reflective surface 121 and the preset surface 11 The sharper the tapered tip portion of the protruding structure 12 is, the stronger the scratching feel will be when touched, which affects the feel of the housing body 10 .
  • the angle ⁇ between the reflective surface 121 and the preset surface 11 is in the range of 120° to 150°, the raised structure 12 can have a strong flash and pearlescent effect, and at the same time have a better hand feeling.
  • the angle ⁇ between the reflective surface 121 and the predetermined surface 11 refers to an angle between a plane perpendicular to the reflective surface 121 and the predetermined surface 11 and an intersection line between the reflective surface 121 and the predetermined surface 11 .
  • the maximum height h of the raised structure 12 ranges from 15 ⁇ m to 25 ⁇ m; specifically, it may be but not limited to 15 ⁇ m, 16 ⁇ m, 18 ⁇ m, 20 ⁇ m, 23 ⁇ m, 25 ⁇ m, etc.
  • the maximum height h of the protruding structure 12 is too low (less than 15 ⁇ m), and the area of the reflective surface 121 is small, which reduces the glittering sand or pearlescent effect of the predetermined surface 11 .
  • the maximum height h of the raised structure 12 is too high (greater than 25 ⁇ m), then the angle of the reflective surface 121 is too small, and the sharper the tip of the raised structure 12, it will not only reduce the glittering sand or pearlescent effect, but also have a scratchy feel, affecting feel.
  • the maximum height h of the protruding structure 12 ranges from 15 ⁇ m to 25 ⁇ m, the protruding structure 12 can better present a granular, stronger and brighter glittering sand effect, and has a better hand feeling.
  • the distance d between two adjacent raised structures 12 ranges from 15 ⁇ m to 25 ⁇ m; specifically, it can be but not limited to 15 ⁇ m, 16 ⁇ m, 18 ⁇ m, 20 ⁇ m, 23 ⁇ m , 25 ⁇ m, etc.
  • the distance d between adjacent raised structures 12 is less than 15um, the dense growth between raised structures 12 and raised structures 12 will produce the general situation of small raised structures 12 (or called small grains), so that the raised structures 12
  • the reflective area of the raised structures 12 is reduced, and the effect of particle flash is weakened; when the distance d between adjacent raised structures 12 is greater than 25 ⁇ m, a plurality of raised structures 12 are scattered on the preset surface 11, and it is easy to form a local huge
  • the protruding structure 12 is easy to form an uneven phenomenon of partial flashing and partial non-flashing on the preset surface 12 .
  • the predetermined surface 11 of the housing body 10 can have a brighter and shinier granular glitter sand or pearlescent effect, It can also make the flashing sand or pearlescent effect of different positions on the preset surface 11 as consistent as possible, and better avoid the phenomenon of partial flashing and partial non-flickering.
  • the range of the longest distance s (that is, the size) of the area surrounded by the orthographic projection of the raised structure 12 on the predetermined surface 11 is 40 ⁇ m to 160 ⁇ m, that is, the protrusion
  • the maximum width of the structure 12 is 40 ⁇ m to 160 ⁇ m; specifically, but not limited to 40 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 100 ⁇ m, 120 ⁇ m, 1140 ⁇ m, 160 ⁇ m, etc.
  • the area of the reflective surface 121 on the raised structure 12 is relatively small, so that the glittering sand on the predetermined surface 11 or The pearlescent effect becomes weaker, thereby affecting the flash sand or pearlescent effect of the shell body 10 .
  • the longest distance s of the area surrounded by the projection is greater than 160 ⁇ m, the hand feeling of the housing body 10 will be affected, and the raised structure 12 is visible to the naked eye, which will affect the appearance of the housing body 10 .
  • the casing 100 of the embodiment of the present application further includes a color layer 30 .
  • the color layer 30 is disposed on the surface of the casing body 10 away from the predetermined surface 11 , so that the side of the predetermined surface 11 of the casing body 10 reveals a glittering sand or pearlescent effect with a color effect.
  • the color of the color layer 30 may be, but not limited to, one or more of red, orange, yellow, green, blue, cyan, purple, pink and the like.
  • the thickness of the color layer 30 is 20 ⁇ m to 50 ⁇ m; specifically, the thickness of the color layer 30 can be but not limited to 20 ⁇ m, 25 ⁇ m, 28 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, etc.
  • the color layer 30 is formed with colored ink through inkjet printing or the like. In some other embodiments, the color layer 30 is formed by photocuring colored photocurable glue (such as UV glue). In other embodiments, the color layer 30 is an optical coating layer.
  • the color layer 30 includes an optical coating layer of a first refractive index and an optical coating layer of a second refractive index alternately stacked in sequence, wherein the first refractive index is different from the second refractive index. Further, the optical coating layer includes one or more of In, Sn, TiO2, Ti3O5, NbO2, Nb2O3, Nb2O2, Nb2O5, SiO2, ZrO2 or other non-conductive oxides.
  • the total thickness of the optical coating layer may be but not limited to 10nm to 1000nm; specifically, it may be but not limited to 10nm, 50nm, 100nm, 200nm, 300nm, 400nm, 600nm, 800nm, 1000nm, etc.
  • the number of layers of the optical coating layer can be 3 to 15 layers, specifically, but not limited to 3 layers, 4 layers, 5 layers, 6 layers, 7 layers, 8 layers, 9 layers, 10th floor, 11th floor, 12th floor, 13th floor, 14th floor, 15th floor, etc.
  • each optical coating layer is 3nm to 140nm, specifically, but not limited to 3nm, 5nm, 8nm, 10nm, 15nm, 20nm, 25nm, 30nm, 35nm, 40nm, 50nm, 60nm, 70nm , 80nm, 90nm, 100nm, 110nm, 120nm, 130nm, 140nm, etc.
  • the optical coating layer may be formed by one or more of evaporation coating process, sputtering coating process, atomic layer deposition (ALD) technology and the like.
  • the casing 100 of the embodiment of the present application further includes a cover layer 50 .
  • the cover bottom layer 50 is disposed on the side of the housing body 10 away from the preset surface 11, so as to prevent the preset surface 11 side of the housing body 10 from being exposed when the housing 100 is applied to an electronic device.
  • the components inside the electronic equipment affect the visual effect of the electronic equipment.
  • the cover layer 50 is disposed on the surface of the color layer 30 away from the housing body 10 . In other embodiments, when the housing body 10 does not have the color layer 30 , the cover layer 50 is disposed on the surface of the housing body 10 away from the preset surface 11 .
  • the cover base layer 50 may be, but not limited to, a light-shielding ink that absorbs or reflects light.
  • the cover base layer 50 may be black, white or gray.
  • the thickness of the cover base layer 50 is 5 ⁇ m to 50 ⁇ m.
  • the thickness of the cover base layer 50 may be, but not limited to, 5 ⁇ m, 8 ⁇ m, 10 ⁇ m, 12 ⁇ m, 15 ⁇ m, 18 ⁇ m, 20 ⁇ m, 22 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, etc.
  • the cover layer 50 may be one layer, or multiple layers, such as 2 layers, 3 layers, 4 layers, or 5 layers stacked.
  • the cover bottom layer 50 When the cover bottom layer 50 is multi-layered, it has a better shielding effect than one layer.
  • the thickness of each cover layer 50 is 8 ⁇ m to 12 ⁇ m, specifically, but not limited to 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m and so on.
  • Each layer of cover bottom layer 50 can be formed by the following steps: apply light-shielding ink to the surface of the housing body 10 away from the preset surface 11 or the surface of the color layer 30 away from the housing body 10 , and heat it at 70°C to 80°C Bake for 30 minutes to 60 minutes to form the bottom layer 50 of the lid.
  • the housing 100 described in the above embodiments of the present application can be prepared by the following manufacturing method of the housing 100 .
  • the method for preparing the casing 100 of the embodiment of the present application will be described in detail below.
  • the embodiment of the present application also provides a method for preparing a casing 100, the casing 100 includes a casing body 10, and the method includes:
  • the housing substrate is a glass substrate
  • the glass substrate may be, but not limited to, at least one of a soda lime silicate glass substrate, a high aluminosilicate glass substrate, and the like.
  • the frosting solution includes hydrochloric acid, hydrofluoric acid, ammonium bifluoride, barium sulfate and water.
  • the barium sulfate acts as a nucleating agent, and when the glass substrate is immersed in the frosting solution, hydrofluoric acid reacts with silicon dioxide in the glass substrate to generate fluorosilicate, fluorosilicic acid Salts (such as potassium fluorosilicate, sodium fluorosilicate, ammonium fluorosilicate, etc.) crystallize at a temperature lower than the crystallization temperature and wrap around the outer surface of the nucleating agent (barium sulfate), thereby forming fluorine on the surface of the glass Silicate crystals, thereby preventing the silicon dioxide on the surface of the glass substrate covered by fluorosilicate crystals from continuing to react with hydrofluoric acid, while the silicon dioxide on the surface of the glass substrate not covered by fluorosilicate crystals continues to react with hydrofluoric acid
  • the hydrofluoric acid react
  • the frosting solution of the embodiment of the present application does not add fluorosilicate, so when the glass substrate is immersed in the frosting solution, it is necessary to generate fluorosilicate first, and then crystallize the fluorosilicate, so that the crystallization of the fluorosilicate With a relatively moderate speed, large pieces of quadrangular pyramid-shaped raised structures 12 can be better formed. Thus, the manufactured housing body 10 has more sparkle and stronger glitter sand or pearlescent effect.
  • the frosting liquid includes the following components by weight fraction: 26% to 30% of hydrochloric acid, 10% to 15% of hydrofluoric acid, 30% to 35% of ammonium bifluoride, 3% to 5% of sulfuric acid barium, and 15% to 20% water.
  • the weight fraction of hydrochloric acid may be, but not limited to, 26%, 27%, 28%, 29%, 30% and so on.
  • the weight fraction of hydrofluoric acid may be, but not limited to, 10%, 11%, 12%, 13%, 14%, 15%, etc.
  • the weight fraction of ammonium bifluoride can be, but not limited to, 30%, 31%, 32%, 3%, 34%, 35%, etc.
  • the weight fraction of barium sulfate can be, but not limited to, 3%, 4%, 5% and so on. Percentages, fractions and parts in this application all refer to percentage by weight, fraction by weight and parts by weight if not specified in detail.
  • the particle size of the barium sulfate is 100nm to 500nm; specifically, but not limited to, it can be 100nm, 150nm, 200nm, 250nm, 300nm, 350nm, 400nm, 450nm, 500nm, etc.
  • the particle size of barium sulfate is too small (less than 100nm)
  • the barium sulfate particles do not have a large enough surface energy to adsorb to the surface of the glass substrate, and act as a nucleating agent for fluorosilicate crystals, making it difficult to cover the surface of the glass substrate.
  • Fluorosilicate crystals thereby forming a quadrangular pyramid-shaped convex structure 12, in other words, the flash sand structure cannot be formed.
  • the particle size of barium sulfate is too large (greater than 500nm)
  • the barium sulfate particles tend to settle in the frosting solution and deposit on the bottom of the etching tank.
  • the glass substrate is immersed in the frosting solution, the glass substrate is generally located in the frosting solution.
  • barium sulfate particles In the middle part of the sand solution, barium sulfate particles cannot be adsorbed on the surface of the glass substrate, and there is no nucleating agent, so it is difficult to cover the surface of the glass substrate with fluorosilicate crystals, thereby forming a quadrangular pyramid-shaped convex structure 12, in other words, The glitter sand structure cannot be formed.
  • the particle size of the barium sulfate is 100nm to 500nm, the barium sulfate particles can be adsorbed on the surface of the glass substrate with sufficient surface energy, and the sedimentation speed of the barium sulfate can be reduced as much as possible.
  • the particle diameters in the examples of the present application refer to the average particle diameter unless otherwise specified.
  • the frosting solution further includes 3% to 5% of thickener, specifically, but not limited to 3%, 4%, 5% and so on.
  • the thickener is used to increase the viscosity of the frosting liquid and reduce the sedimentation speed of particles such as barium sulfate, so that there are relatively uniformly dispersed barium sulfate particles in the frosting liquid, and the preset surface 11 of the housing body 10 can better It forms a quadrangular pyramid-shaped flash sand structure, which has a better flash sand or pearlescent effect.
  • the thickener is starch.
  • the content of the thickener is too high (greater than 5%), the viscosity of the frosting solution is too high, which affects the reaction between the frosting solution and the shell substrate.
  • the content of the thickener is too small (less than 3%), the sedimentation of particles such as barium sulfate cannot be well prevented.
  • each of the raised structures 12 includes a plurality of reflective surfaces 121; the reflectivity of the housing body 10 is greater than or equal to 60%.
  • the frosting solution is placed in an etching tank (for example, an etching tank with a length of 1.3m, a width of 1.3m, and a depth of 1.2m, and the amount of frosting solution is 550kg).
  • the etching tank includes an automatic stirring device, a constant temperature device, and an automatic liquid suction and discharge device.
  • the automatic stirring device is turned on to make the overall concentration of the frosting solution more uniform, which can better prevent particles such as barium sulfate from settling.
  • the temperature of the frosting solution (that is, the temperature during frosting etching) is 10°C to 15°C; specifically, it can be but not limited to 10°C, 11°C, 12°C, 13°C, 14°C, 15°C, etc.
  • the temperature of the frosting solution is too high (greater than 15°C)
  • the activation energy of the etching reaction is large, and it is easy to form on the surface of the shell substrate (such as a glass substrate) with defects such as microcracks, chipping, and microbubbles.
  • Coarse crystal grains make the local flash sand or pearlescent effect of the preset surface 11 of the prepared shell body 10 strong, and the local flash sand or pearlescent effect is weak, which affects the quality of the preset surface 11 of the prepared shell body 10.
  • Visual effect When the temperature of the frosting solution is too low (less than 10°C), the reaction rate of silicon dioxide and hydrofluoric acid is too slow, which makes the formation rate of fluorosilicate slower, thereby reducing the amount of fluorosilicate on the surface of the shell substrate. The rate of formation of salt crystals, in turn, affects the flash sand structure formed on the surface of the shell substrate.
  • the immersing the shell base material in the frosting solution includes: immersing the shell base material in the frosting solution within 3 seconds along a preset direction, wherein the preset The angle between the direction and the extension direction of the shell substrate is 0° to 15°.
  • the shell substrate can enter the frosting solution within 1 second, 2 seconds, or 3 seconds.
  • the extending direction of the shell base material refers to the direction perpendicular to the thickness direction of the shell, in other words, the plane where the predetermined surface is located.
  • the shell base material has a 3D structure
  • the extending direction of the base material is to the extending direction of the bottom of the shell base material.
  • the angle between the preset direction and the extending direction of the casing substrate may be, but not limited to, 0°, 3°, 5°, 8°, 10°, 12°, 15°, etc.
  • the angle between the preset direction and the extending direction of the shell base material is 0°, the shell base material is vertically inserted into the frosting liquid perpendicular to the surface of the frosting liquid.
  • the contact area between the housing base material and the frosting liquid is small at the moment when the housing base material contacts the frosting liquid, The resistance received during insertion is smaller, which can better prevent the splashing of the frosting liquid during the insertion of the shell substrate (if it is placed horizontally, that is, the surface of the large surface of the shell substrate faces the frosting liquid, it is easy to cause the frosting fluid to splash).
  • the shell base material when the shell base material is a flat structure with adjacent long sides and short sides, the shell base material enters the frosting liquid along a preset direction, which can be the shell base material along the length
  • the sides enter in the direction facing the frosting liquid, or the short side of the shell base material enters in the direction facing the frosting liquid, which is not specifically limited in this application.
  • the immersing the shell base material in the frosting solution includes: immersing the shell base material in the frosting solution at a first speed along a preset direction, wherein the preset The angle between the setting direction and the extending direction of the housing base material is 0° to 15°.
  • the first speed is greater than 1800mm/s; specifically, the speed at which the shell substrate enters the frosting solution can be, but not limited to, 1801mm/s, 2000mm/s, 2500mm/s, 3000mm/s, 3500mm /s etc.
  • the angle between the preset direction and the extending direction of the casing substrate may be, but not limited to, 0°, 3°, 5°, 8°, 10°, 12°, 15°, etc.
  • the contact area between the housing base material and the frosting liquid is small at the moment when the housing base material contacts the frosting liquid, The resistance received during insertion is smaller, which can better prevent the splashing of the frosting liquid during the insertion of the shell substrate (if it is placed horizontally, that is, the surface of the large surface of the shell substrate faces the frosting liquid, it is easy to cause the frosting fluid to splash).
  • the shell substrate has a certain length, and the shell substrate enters the frosting solution within 3 seconds, or immerses in the frosting solution at a speed greater than 1800mm/s, which can shorten the penetration of the shell substrate into the frosting solution as much as possible.
  • the time of the sand solution so that the time difference for each part of the housing base material to soak in the frosting solution is as small as possible, and the shape and size of the raised structure 12 at each position of the preset surface 11 of the prepared housing body 10, etc.
  • the glitter sand or pearlescent effect is as consistent as possible from place to place. It is possible to better avoid the difference of glittering sand or pearlescent effects at different positions of the manufactured housing body 10 , so that the manufactured housing body 10 has a better visual effect.
  • housing body 10 For the detailed description of the housing body 10 , please refer to the description of the corresponding part of the above-mentioned embodiments, which will not be repeated here.
  • the embodiment of the present application also provides a method for preparing a casing 100 , the casing 100 includes a casing body 10 , and the method includes:
  • step S201 and step S202 in this embodiment please refer to the detailed description of the embodiment in FIG. 8 , which will not be repeated here.
  • each of the raised structures 12 includes a plurality of reflective surfaces 121 ; the reflectivity of the housing body 10 is greater than or equal to 60%.
  • the shell base material is oscillated back and forth in the frosting liquid at a second speed along a predetermined direction, so as to promote the formation of crystal nuclei (In other words, nucleation).
  • the angle between the predetermined direction and the extending direction of the housing substrate is 0° to 15°.
  • Swinging the shell substrate back and forth can provide kinetic energy for the formation of crystal nuclei on the surface of the shell substrate, which is beneficial to the nucleation on the surface of the shell substrate, thereby promoting the formation of fluorosilicate crystals on the surface of the shell substrate, and is conducive to the formation of four
  • the pyramid-shaped protruding structure 12 increases the nucleation speed and reduces the preparation time of the shell 100 .
  • nucleation in this application means that when the liquid phase is supercooled to the actual crystallization temperature, after a period of time, many small atomic groups arranged in an orderly manner begin to appear inside the liquid phase. When the small atomic groups reach a certain critical size, they become possible The crystal nuclei that exist stably and grow spontaneously, this process is called nucleation.
  • the second speed is 2000mm/s to 2800mm/s; specifically, it may be but not limited to 2000mm/s, 2200mm/s, 2400mm/s, 2500mm/s, 2600mm/s, 2800mm/s, etc.
  • the kinetic energy of nucleation (that is, the formation of crystal nuclei) is not enough, and the number of tetragonal pyramid-shaped crystals attached to the surface of the shell substrate (such as the glass surface) is not enough to achieve particle flash effect;
  • the second speed is 2800mm/s, the nucleation kinetic energy is high, and the nucleation on the surface of the shell substrate is dense, and each crystal nucleus is in a competitive relationship with each other during the generation process, which may easily cause the crystal growth space in a local area to be blocked, and the crystal cannot grow.
  • the amplitude of the swinging back and forth is 5cm to 12cm, specifically, but not limited to 5cm, 6cm, 7cm, 8cm, 9cm, 10cm, 11cm, 12cm and so on.
  • the amplitude of swinging back and forth is less than 5cm, the kinetic energy generated is not enough, so that the surface nucleation of the shell base material is insufficient, so that the size of the raised structure 12 on the surface of the shell body 10 that is finally formed is too small, and the flash sand formed Not sparkly enough to even form glitter sand.
  • the nucleating agent barium sulfate
  • the concentration of barium sulfate in the frosting solution near the bottom of the etching tank is relatively high , the concentration of barium sulfate in the frosting solution far away from the bottom of the etching groove is low.
  • the swing range is too large, the part of the shell substrate close to the bottom of the etching groove has more nucleation, and the part far away from the bottom of the etching groove has more nucleation.
  • the size of the protruding structure 12 in different positions of the shell body 10 produced is not uniform, and there are differences in the glittering sand or pearlescent effect at different positions.
  • Some areas may have glittering sand or pearlescent effect, and some areas may not have glittering sand Or the pearlescent effect, or the glittering sand or pearlescent effect in some areas is stronger, and the glittering sand or pearlescent effect in some areas is weaker, thus affecting the visual effect of the manufactured shell body 10 .
  • the clamp for clamping the shell base material when swinging back and forth, when the shell base material swings to the position closest to the liquid level of the frosting liquid, the clamp for clamping the shell base material is located at the liquid level of the frosting liquid 8cm to 12cm below; specifically, but not limited to, 8cm, 9cm, 10cm, 11cm, 12cm, etc. Particles such as barium sulfate in the frosting solution will partially settle, and there is a difference in the concentration of barium sulfate and other particles at the bottom of the etching tank and the position away from the bottom of the etching tank.
  • the reaction speed is faster, and the position where the concentration of particles such as barium sulfate is small (that is, the position away from the bottom of the etching groove), the reaction speed is slower. If the shell base material is placed at a position where the frosting liquid is too close to the bottom, it is not conducive to forming a relatively uniform raised structure 12 on the surface of the shell base material, so that the flashing of different positions of the shell body 10 made There are differences in sand or pearlescent effects, which affect the visual effect of the housing body 10 .
  • the time for swinging back and forth is 10s to 30s; specifically, it may be but not limited to 10s, 12s, 15s, 18s, 20s, 23s, 25s, 28s, 30s, etc.
  • the time of swinging back and forth is too short (less than 10s), and the adsorption of barium sulfate crystal nuclei on the surface of the shell substrate (such as the glass surface) is insufficient and the amount of adsorption is small, which will easily cause the crystallization process (that is, the crystal nucleus growth process) to fall off and crystallize If there is less phenomenon, the obtained shell body 10 has a weak granular glitter sand effect or pearlescent effect, which affects the visual effect of the shell body 10 .
  • the time of swinging back and forth is too long (more than 30s), and the number of barium sulfate nuclei adsorbed on the surface of the shell substrate (such as the glass surface) is large.
  • the crystallization process it is easy to cause competition among the nuclei to form huge crystals, thereby
  • the large raised structure 12 is formed, so that the size and shape of the raised structure 12 on the surface of the shell body 10 are not uniform, and the local raised structure 12 is prone to be large, and the brightness and shininess are particularly high, and the local raised structure 12 is very small, and the brightness and flicker are particularly low, which affects the visual effect of the housing body 10 .
  • the barium sulfate crystal nucleus When the time of swinging back and forth is 10s to 30s, not only can the barium sulfate crystal nucleus be better adsorbed on the surface of the shell base material, but at the same time, it will not absorb too much, so that the raised surface of the shell body 10 made
  • the size and shape of the structure are relatively uniform, and it has better granular glitter sand or pearlescent effect.
  • the shell base material is swung back and forth in the frosting liquid, which can provide kinetic energy for the formation of crystal nuclei on the surface of the shell base material, thus It is beneficial to promote the nucleation on the surface of the shell base material and the formation of fluorosilicate crystals on the surface of the shell base material, so that the preset surface 11 of the prepared shell body 10 has square pyramids with relatively uniform distribution and size shaped protruding structure 12, and the reflectivity for visible light is greater than or equal to 60%, so that the preset surface 11 of the prepared shell body 10 has a stronger and more sparkling glittering sand or pearlescent effect.
  • the embodiment of the present application also provides a method for preparing a casing 100, the casing 100 includes a casing body 10, and the method includes:
  • a layer of acid-resistant ink or acid-resistant protective oil is sprayed or coated on the surface of the shell substrate except the surface to be treated to obtain a protective layer.
  • the protective layer can prevent the surface other than the surface to be treated from being corroded by the frosting solution.
  • the ink has good stability in the frosting solution and will not react with the frosting solution, and the flash sand is easy to remove after it is formed.
  • the shell base material has a 3D structure
  • the shell base material has a concave surface and a convex surface oppositely arranged
  • the convex surface is the surface to be treated
  • the acid-resistant protective ink is sprayed on the concave surface of the shell base material to form The protective layer.
  • the surface of the shell base material away from the surface to be treated is adsorbed on a jig with a suction cup jig, and sent to the first washing tank with a temperature of 20°C to 30°C by using a servo motor automatic transfer device, and along the predetermined Set the direction into the first washing tank for washing, swing the shell substrate along the preset direction, the swing time is 80s to 100s, the swing range is less than 10cm, and the swing speed is 550mm/s to 650mm/s.
  • the first water washing can wash away the dust and particles on the surface of the shell base material, and will wet the surface of the shell base material, so as to improve the activation effect of the subsequent pickling.
  • the swinging time of the first water washing may be, but not limited to, 80s, 85s, 90s, 95s, 100s and so on.
  • the swing speed of the first water washing may be, but not limited to, 550mm/s, 580mm/s, 600mm/s, 620mm/s, 650mm/s, etc.
  • the swing range of the first washing can be but not limited to 9.8 cm, 9 cm, 8 cm, 7 cm, 6 cm, 5 cm.
  • the temperature of the first washing tank may be, but not limited to, 20°C, 22°C, 25°C, 28°C, 30°C, etc. Swinging during the first water washing can provide kinetic energy to clean the dust and particles attached to the surface of the shell substrate (such as the glass surface).
  • the shell By adjusting the vibration time, vibration amplitude, and vibration speed, the shell can be removed with less energy.
  • the attachment on the surface of the substrate prevents the impact on the raised structure 12 on the surface of the manufactured casing 100 when frosting and etching the surface of the casing substrate in a later stage.
  • the shell base material out of the first water washing tank, put it into the first pickling tank along the preset direction for the first pickling, and swing the shell base material along the preset direction, and the swing time is 110s To 130s, the swing amplitude is less than 10cm, the swing speed is 850mm/s to 950mm/s, the first pickling tank contains the first pickling solution, and the temperature of the first pickling solution is 28°C to 32°C.
  • the first pickling is used to remove organic impurities, oil stains, alkaline attachments, etc. on the surface of the shell substrate, and to remove oxide impurities on the surface of the shell substrate, exposing the shell substrate body (glass body) to activate the shell surface of the substrate.
  • the swing time of the first pickling may be, but not limited to, 110s, 115, 120s, 125s, 130s and so on.
  • the swing speed of the first pickling can be, but not limited to, 850mm/s, 880mm/s, 900mm/s, 920mm/s, 950mm/s, etc.
  • the swing amplitude of the first pickling can be, but not limited to, 9.8 cm, 9 cm, 8 cm, 7 cm, 6 cm, 5 cm.
  • the temperature of the first pickling tank may be, but not limited to, 28°C, 29°C, 30°C, 31°C, 32°C and so on.
  • the first pickling tank is a pickling activation tank.
  • Swinging during the first pickling can provide kinetic energy to remove oil stains and alkaline deposits on the glass surface.
  • the energy can remove the surface attachment of the shell base material, and the temperature is slightly higher than room temperature, which can improve the activation efficiency. If the glass is not activated (or the activation is not complete), it will enter the frosting solution, because the surface oxide layer is blocked, and the surface is frosted. There are many by-products and the crystal adhesion is weak, and it is easy to fall off under the impact of kinetic energy, which affects the appearance effect of the final shell 100 .
  • the first pickling solution includes sulfuric acid with a mass concentration of 3% to 5%, nitric acid with a mass concentration of 5% to 7%, and hydrofluoric acid with a mass concentration of 8% to 10%.
  • the first pickling solution includes sulfuric acid with a mass concentration of 4%, nitric acid with a mass concentration of 6%, and hydrofluoric acid with a mass concentration of 9%.
  • the shell base material out of the first pickling tank, put it into the second water washing tank along the preset direction for water washing, and swing the shell base material along the preset direction to wash away the remaining
  • the pickling solution on the surface of the base material prevents the pickling solution remaining on the surface of the base material of the shell from continuing the secondary reaction on the surface to be treated of the base material of the shell, and the preset surface 11 is corroded too much or excessively corroded.
  • the swing time is 80s to 100s
  • the swing amplitude is less than 10cm
  • the swing speed is 550mm/s to 650mm/s
  • the temperature of the second washing tank is 20°C to 30°C.
  • the swing time of the second water washing may be, but not limited to, 80s, 85s, 90s, 95s, 100s and so on.
  • the swing speed of the second water washing may be, but not limited to, 550mm/s, 580mm/s, 600mm/s, 620mm/s, 650mm/s, etc.
  • the swing range of the second washing can be but not limited to 9.8cm, 9cm, 8cm, 7cm, 6cm, 5cm.
  • the temperature of the second washing tank may be, but not limited to, 20°C, 22°C, 25°C, 28°C, 30°C, and the like.
  • the purpose of the second water washing swing is to quickly clean the pickling liquid on the glass surface.
  • the shell base material is taken out from the second water washing tank, placed in a cooling tank along a preset direction, and left to stand for 80s to 100s, so as to cool the shell base material to a preset temperature.
  • the cooling tank includes cooling water, and the temperature of the cooling water is 10°C to 15°C.
  • the preset temperature is equal to the temperature of the frosting liquid, for example, the preset temperature is 10°C to 15°C.
  • the jig is located at a position 8 cm to 10 cm below the cooling water level.
  • the housing base material may be left standing for but not limited to 80s, 85s, 90s, 95s, 100s and so on.
  • the temperature of the cooling water may be, but not limited to, 10°C, 11°C, 12°C, 13°C, 14°C, 15°C, etc.
  • the preset temperature may be, but not limited to, 10°C, 11°C, 12°C, 13°C, 14°C, 15°C, etc.
  • the shell substrate Before etching, the shell substrate is cooled to a preset temperature (ie, the temperature during etching of the frosting solution), which can better prevent the shell substrate from being etched when the shell substrate is etched.
  • the temperature when entering the frosting liquid is too high, and reacts with the frosting liquid to generate too many by-products, which affects the shape and size of the raised structure 12 on the preset surface 11 of the shell body 10, thereby affecting the shell body 10 Glitter sand or pearl effect.
  • step S307 and step S308 please refer to the description of the corresponding part of the above embodiment, and details are not repeated here.
  • the shell body in the first intermediate state includes the protective layer, the shell body 10 and the crystallization layer which are sequentially stacked.
  • the crystal layer is formed on the predetermined surface 11 of the shell body 10 .
  • the standing time may be, but not limited to, 60s, 65s, 70s, 75s, 80s and so on.
  • the standing time is too short (less than 60s)
  • the crystal nucleus does not have enough time to fully grow up, and the granular flash sand or pearlescent effect of the shell 100 is not obvious;
  • the standing time is too long (greater than 80s)
  • the crystal growth on the preset surface of the shell body 10 is too large, and the giant crystal effect is easily formed in a local area, and the uniformity effect of the size of the raised structure on the surface of the shell 100 is poor, in other words, the uniformity of the flash sand is poor.
  • the standing time is 60s to 80s
  • the crystal nuclei have enough time to grow up without growing too large, thus forming a more uniform glittering sand effect.
  • the first intermediate shell body is taken out from the etching tank, and the etching solution remaining on the first intermediate shell body is removed by quick swing in the air, so as to prevent the intermediate body body from forming a secondary layer with the frosting solution.
  • Secondary reaction, transitional etching place the first intermediate shell body in the third washing tank along the preset direction, and let it stand for 80s to 100s in water at a temperature of 20°C to 30°C to remove the first intermediate Frosting liquid remaining on the surface of the state shell body.
  • the fixture is located 8cm to 10cm below the cooling water surface.
  • the standing time of the third water washing may be, but not limited to, 80s, 85s, 90s, 95s, 100s and so on.
  • the temperature of the third washing tank may be, but not limited to, 20°C, 22°C, 25°C, 28°C, 30°C, etc.
  • the first intermediate shell body is taken out from the third water washing tank, put into the second pickling tank along the preset direction for the second pickling, and swing the first intermediate shell along the preset direction
  • the main body the swing time is 110s to 130s, the swing amplitude is less than 10cm, the swing speed is 850mm/s to 950mm/s, the second pickling tank contains the second pickling solution, and the temperature of the second pickling solution is 20°C to 30°C.
  • the second pickling is used to remove crystals such as fluorosilicate on the surface of the shell body in the first intermediate state.
  • the swing time of the second pickling may be, but not limited to, 110s, 115, 120s, 125s, 130s and so on.
  • the swing speed of the second pickling can be, but not limited to, 850mm/s, 880mm/s, 900mm/s, 920mm/s, 950mm/s and so on.
  • the swing amplitude of the second pickling can be, but not limited to, 9.8 cm, 9 cm, 8 cm, 7 cm, 6 cm, 5 cm.
  • the temperature of the second pickling tank may be, but not limited to, 20°C, 22°C, 25°C, 28°C, 30°C and the like.
  • the swinging can make the fluorosilicate crystals dissolve in the dilute sulfuric acid better, so as to remove the crystals on the surface of the shell body 10 .
  • the second pickling solution includes an aqueous sulfuric acid solution with a mass concentration of 3%.
  • the second intermediate shell body is taken out from the second pickling tank, put into the fourth water washing tank along the preset direction, and the shell body 10 is swung along the preset direction to wash off the residue remaining in the shell. dilute sulfuric acid on the body body 10 surface.
  • the swing time is 80s to 100s
  • the swing amplitude is less than 10cm
  • the swing speed is 550mm/s to 650mm/s
  • the temperature of the fourth washing tank is 20°C to 30°C.
  • the swing time of the fourth water washing may be, but not limited to, 80s, 85s, 90s, 95s, 100s and so on.
  • the swing speed of the fourth water washing may be, but not limited to, 550mm/s, 580mm/s, 600mm/s, 620mm/s, 650mm/s, etc.
  • the swing amplitude of the fourth washing can be but not limited to 9.8cm, 9cm, 8cm, 7cm, 6cm, 5cm.
  • the temperature of the fourth washing tank may be, but not limited to, 20°C, 22°C, 25°C, 28°C, 30°C, etc.
  • the fourth water washing provides the function of swinging to further clean away the crystals that have not been dissolved by the second pickling tank; in addition, the fourth water washing tank can also wash off the acid on the glass surface to prevent people from being injured in later operations.
  • each of the raised structures 12 includes a plurality of reflective surfaces 121; the reflectivity of the housing body 10 is greater than or equal to 60%.
  • the second intermediate shell body is taken out from the fourth water washing tank, and placed in a strong alkali above 85° C. to remove the ink protective layer to obtain the shell body 10 .
  • the temperature for removing the protective layer may be, but not limited to, 85°C, 88°C, 88°C, 90°C, 93°C, 95°C, 100°C, and the like.
  • the strong base can be a solution with strong alkalinity such as potassium hydroxide aqueous solution or sodium hydroxide aqueous solution.
  • concentration of potassium hydroxide aqueous solution or sodium hydroxide aqueous solution is 8wt% to 32wt%, specifically, the concentration of potassium hydroxide aqueous solution or sodium hydroxide aqueous solution can be but not limited to be 8wt%, 10wt%, 12wt%, 15wt%, 18wt%, 20wt%, 23wt%, 25wt%, 28wt%, 30wt%, 32wt%, etc.
  • it can also be other alkaline solutions, which are not specifically limited in this application.
  • the embodiment of the present application also provides a method for preparing a casing 100, the casing 100 includes sequentially stacking the casing body 10, the color layer 30 and the bottom layer 50 of the cover, and the method includes:
  • each of the raised structures 12 includes a plurality of reflective surfaces 121; the reflectivity of the housing body 10 is greater than or equal to 60%;
  • step S401 to step S403 please refer to the description of the corresponding part of the above embodiment, and details are not repeated here.
  • ink or light-curable glue is used to print or spray a layer of ink or light-curable glue on the surface of the housing body 10 away from the predetermined surface 11 (ie, the raised structure 12 ), and after curing, A color layer 30 is formed.
  • one or more of In, Sn, TiO2, Ti3O5, NbO2, Nb2O3, Nb2O2, Nb2O5, SiO2, ZrO2 or other non-conductive oxides are used as materials, and the evaporation coating process, sputtering
  • An optical coating layer is formed as the color layer 30 by one or more of photolithography coating technology, atomic layer deposition (ALD) technology, and the like.
  • color layer 30 For the detailed description of the color layer 30 , please refer to the description of the corresponding part of the above embodiment, and details are not repeated here.
  • the light-shielding ink is coated on the surface of the color layer 30 and baked at 70° C. to 80° C. for 30 minutes to 60 minutes to form the cover layer 50 .
  • the casing 100 of the embodiment of the present application will be further described below through specific embodiments.
  • the casing 100 of each embodiment is prepared through the following steps:
  • step 1) vertically immerse the ink glass in the frosting solution in step 1) at the first speed;
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Hydrochloric acid (wt%) 26% 28% 30% 28% 28% 28% Hydrofluoric acid (wt%) 15% 10% 13% 13% 13% 13% Ammonium bifluoride (wt%) 33% 30% 35% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 33% 3
  • FIG. 11 is an electron microscope image of the predetermined surface 11 of the housing 100 manufactured in Example 1. Referring to FIG. 11
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Roughness Ra( ⁇ m) 2.6 2.5 2.6 2.8 3.5 1.8
  • Reflectivity(%) 63% 67% 64% 60% 82% 73% Transmittance (%) 18% 17% 16% 20% 9% 13% Haze (%) 98% 97.5% 98% 97% 97% 98%
  • the maximum height h, the longest distance s, and the distance between adjacent protrusion structures 12 of the various embodiments of the present application are obtained by measuring with an electron microscope.
  • the haze is measured by a haze meter
  • the light transmittance is measured by a light transmittance meter (wavelength: 550nm)
  • the roughness is measured by a roughness meter
  • the reflectance is measured by a visible light transmittance/reflectance tester (such as BTR-1S) Take measurements.
  • the embodiment of the present application further provides an electronic device 500 , which includes: a display assembly 510 , the housing 100 described in the embodiment of the present application, and a circuit board assembly 530 .
  • the display assembly 510 is used for display; the casing 100 is used to carry the display assembly 510; the circuit board assembly 530 is arranged between the display assembly 510 and the casing 100, and is connected to the display
  • the component 510 is electrically connected for controlling the display component 510 to display.
  • the housing 100 has an accommodating space 101, the circuit board assembly 530 is located in the accommodating space 101, and the display assembly 510 is also used to close the accommodating space 101; in other words, The casing 100 and the display assembly 510 form a closed accommodating space 101 .
  • the electronic device 500 in the embodiment of the present application may be, but not limited to, portable electronic devices such as mobile phones, tablet computers, notebook computers, desktop computers, smart bracelets, smart watches, e-readers, and game consoles.
  • the display component 510 may be, but not limited to, a liquid crystal display component, a light-emitting diode display component (LED display component), a micro light-emitting diode display component (Micro LED display component), a submillimeter light-emitting diode display component (Mini LED One or more of display components), organic light emitting diode display components (OLED display components), and the like.
  • LED display component light-emitting diode display component
  • Micro LED display component micro light-emitting diode display component
  • Mini LED One or more of display components submillimeter light-emitting diode display component
  • OLED display components organic light emitting diode display components
  • the circuit board assembly 530 may include a processor 531 and a memory 533 .
  • the processor 531 is electrically connected to the display component 510 and the memory 533 respectively.
  • the processor 531 is used to control the display component 510 to display, and the memory 533 is used to store the program code required for the operation of the processor 531, control the program code required by the display component 510, and the display of the display component 510 content etc.
  • the processor 531 includes one or more general-purpose processors 531, wherein the general-purpose processor 531 may be any type of device capable of processing electronic instructions, including a central processing unit (Central Processing Unit, CPU), a microprocessor , microcontrollers, main processors, controllers, and ASICs, etc.
  • the processor 531 is used to execute various types of digitally stored instructions, such as software or firmware programs stored in the memory 533, which enable the computing device to provide a wide variety of services.
  • the memory 533 can include a volatile memory (Volatile Memory), such as a Random Access Memory (Random Access Memory, RAM); the memory 533 can also include a non-volatile memory (Non-Volatile Memory, NVM), such as Read-only memory (Read-Only Memory, ROM), flash memory (Flash Memory, FM), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD).
  • NVM non-volatile Memory
  • ROM Read-only memory
  • flash memory Flash Memory
  • HDD Hard Disk Drive
  • SSD solid-state drive
  • the memory 533 may also include a combination of the above-mentioned kinds of memories.
  • references in this application to "an embodiment” and “an implementation” mean that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of a phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It is understood explicitly and implicitly by those skilled in the art that the embodiments described in this application can be combined with other embodiments.
  • the features, structures or characteristics described in the various embodiments of the present application can be combined arbitrarily without departing from the spirit and scope of the technical solution of the present application if there is no contradiction between them. the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

本申请提供一种壳体、其制备方法及电子设备。本申请实施例的壳体包括:壳体本体,所述壳体本体包括多个凸起结构,所述多个凸起结构位于所述壳体本体的表面,每个所述凸起结构包括多个反射面;所述壳体本体对可见光的反射率大于或等于60%,所述壳体本体为玻璃本体。本申请实施例的壳体具有更亮、更闪的颗粒状闪光砂或珠光效果。

Description

壳体、其制备方法及电子设备 技术领域
本申请涉及电子领域,具体涉及一种壳体、其制备方法及电子设备。
背景技术
随着技术的发展及生活水平的提高,人们对于电子设备的外观视觉效果提出了更高的要求,然而,现有的电子设备的外观表现力不够,不能很好的满足消费者的需求。
发明内容
本申请实施例提供了一种壳体,其包括:
壳体本体,所述壳体本体包括多个凸起结构,所述多个凸起结构位于所述壳体本体的表面,每个所述凸起结构包括多个反射面;所述壳体本体对可见光的反射率大于或等于60%,所述壳体本体为玻璃本体。
此外,本申请实施例还提供了一种壳体的制备方法,其包括:
提供壳体基材及蒙砂液,其中,所述壳体基材为玻璃基材;以及
将所述壳体基材浸入所述蒙砂液,以得到壳体本体,其中,所述壳体本体包括多个凸起结构,所述多个凸起结构位于所述壳体本体的表面,每个所述凸起结构包括多个反射面;所述壳体本体的反射率大于或等于60%。
此外,本申请还实施例提供一种电子设备,其包括:
显示组件;
壳体,所述壳体用于承载所述显示组件,所述壳体包括壳体本体,所述壳体本体包括多个凸起结构,所述多个凸起结构位于所述壳体本体的表面上,每个所述凸起结构包括多个反射面;所述壳体本体对可见光的反射率大于或等于60%,所述壳体本体为玻璃本体;以及
电路板组件,所述电路板组件设置于所述壳体与显示组件之间,且与所述显示组件电连接,用于控制所述显示组件进行显示。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例的壳体的立体结构示意图。
图2是本申请一实施例的壳体沿图1中A-A方向的剖视结构示意图。
图3是本申请一实施例的壳体的预设表面的电子显微镜图。
图4是本申请又一实施例的壳体沿图1中A-A方向的剖视结构示意图。
图5是本申请图4实施例的壳体的虚线框I的放大图。
图6是本申请又一实施例的壳体沿图1中A-A方向的剖视结构示意图。
图7是本申请又一实施例的壳体的制备方法流程示意图。
图8是本申请一实施例的壳体的制备方法流程示意图。
图9是本申请又一实施例的壳体的制备方法流程示意图。
图10是本申请又一实施例的壳体的制备方法流程示意图。
图11是本申请具体实施例1制得的壳体的预设表面的电子显微镜图。
图12是本申请实施例的电子设备的结构示意图。
图13是本申请实施例的电子设备的部分爆炸结构示意图。
图14是本申请实施例的电子设备的电路框图。
附图标记说明:
100-壳体,101-容置空间,10-壳体本体,11-预设表面,12-凸起结构,121-反射面,13-底部,14-侧部,30-颜色层,50-盖底层,500-电子设备,510-显示组件,530-电路板组件,531-处理器,533-存储器。
具体实施方式
第一方面,本申请提供一种壳体,其包括:
壳体本体,所述壳体本体包括多个凸起结构,所述多个凸起结构位于所述壳体本体的表面上,每个所述凸起结构包括多个反射面;所述壳体本体对可见光的反射率大于或等于60%,所述壳体本体为玻璃本体。
其中,所述壳体本体对可见光的透光率小于或等于20%;所述壳体本体的雾度大于或等于97%。
其中,所述凸起结构为四棱锥,所述多个反射面为四个反射面。
其中,所述壳体本体具有预设表面,所述多个凸起结构位于所述预设表面上,所述反射面为平面,所述反射面与所述预设表面之间的角度的范围为120°至150°。
其中,沿垂直于所述壳体本体的方向上,所述凸起结构的最大高度的范围为15μm至25μm,相邻的两个凸起结构之间的间距的范围为15μm至25μm。
其中,所述壳体本体具有预设表面,所述多个凸起结构位于所述预设表面上,所述凸起结构在所述预设表面的正投影所围区域的最长距离的范围为40μm至160μm;所述预设表面的粗糙度Ra为1.8μm至3.5μm。
其中,所述壳体还包括:
颜色层;所述颜色层设置于所述壳体本体远离所述凸起结构的表面;以及
盖底层;所述盖底层设置于所述颜色层远离所述壳体本体的表面。
第二方面,本申请提供一种壳体的制备方法,其包括:
提供壳体基材及蒙砂液,其中,所述壳体基材为玻璃基材;以及
将所述壳体基材浸入所述蒙砂液;以得到壳体本体,其中,所述壳体本体包括多个凸起结构,所述多个凸起结构位于所述壳体本体的表面,每个所述凸起结构包括多个反射面;所述壳体本体的反射率大于或等于60%。
其中,所述将所述壳体基材浸入所述蒙砂液;包括:
将所述壳体基材沿预设方向,在3s内浸入所述蒙砂液,其中,所述预设方向与所述壳体基材的延伸方向的角度为0°至15°。
其中,所述将所述壳体基材浸入所述蒙砂液;包括:
将所述壳体基材沿预设方向,以第一速度浸入所述蒙砂液,所述第一速度大于1800mm/s,其中,所述预设方向与所述壳体基材的延伸方向的角度为0°至15°。
其中,所述将所述壳体基材浸入所述蒙砂液之后,所述方法还包括:
将所述壳体基材在所述蒙砂液来回摆动。
其中,所述将所述壳体基材在所述蒙砂液来回摆动,包括:
将所述壳体基材沿预设方向,以第二速度在所述蒙砂液中来回摆动,其中,所述第二速度为2000mm/s至2800mm/s,所述预设方向与所述壳体基材的延伸方向的角度为0°至15°。
其中,所述来回摆动的幅度为5cm至12cm,所述来回摆动的时间为10s至30s。
其中,来回摆动时,当所述壳体基材摆动至离所述蒙砂液的液面最近的位置时,用于夹持所述壳体基材的夹具位于所述蒙砂液的液面之下8cm至12cm的位置。
其中,在所述将所述壳体基材在所述蒙砂液来回摆动之后,所述方法还包括:
将所述壳体基材于所述蒙砂液中静置60s至80s。
其中,所述蒙砂液包括以下重量分数的组分:
26%至30%的盐酸;
10%至15%的氢氟酸;
30%至35%的氟化氢铵;
3%至5%的硫酸钡;以及
15%至20%的水。
其中,所述蒙砂液还包括3%至5%的增稠剂,所述增稠剂为淀粉;所述硫酸钡的粒径为100nm至 500nm。
其中,所述蒙砂液的温度为10℃至15℃。
其中,所述将所述壳体基材浸入所述蒙砂液之前,所述方法还包括:
将所述壳体基材进行水洗、酸洗、水洗,并冷却至预设温度,所述预设温度为10℃至15℃。
第三方面,本申请提供一种电子设备,其包括:
显示组件;
本申请第一方面所述的壳体,所述壳体用于承载所述显示组件,所述壳体包括壳体本体,所述壳体本体包括多个凸起结构,所述多个凸起结构位于所述壳体本体的表面上,每个所述凸起结构包括多个反射面;所述壳体本体对可见光的反射率大于或等于60%,所述壳体本体为玻璃本体;以及
电路板组件,所述电路板组件设置于所述壳体与显示组件之间,且与所述显示组件电连接,用于控制所述显示组件进行显示。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
下面将结合附图,对本申请实施例中的技术方案进行描述。
需要说明的是,为便于说明,在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。
相关技术中,为了使玻璃表面具有闪光砂或珠光效果,采用蒙砂液对玻璃基材进行刻蚀,以在玻璃基材表面形成尖状的凸起结构,制备蒙砂玻璃。虽然,该尖状凸起结构具有类似棱锥的结构,但是该类似棱锥的结构的规整性差,类似类棱锥的表面大多不完整(例如由坑洼),且每个类似棱锥的棱边的数量不一,使得玻璃表面各个位置形成的闪光砂结构的闪光砂或珠光效果不均一影响外观视觉效果,且使得蒙砂玻璃表面不同位置的粗糙度不均一,进而使得不同位置的手感有差异,影响用户体验。此外,该方法得到的蒙砂玻璃的雾度为30%至50%,玻璃对于可见光的消耗时很少的,因此,这说明大部分入射至蒙砂玻璃表面的可见光最终透过了蒙砂玻璃,被反射的可见光有限,从而形成的尖状的凸起结构的闪光砂或珠光效果较弱,闪光点的亮度较低。再者,该方法得到的蒙砂表面的粗糙度Ra为0.6μm至1.2μm,此时,手指指腹触摸蒙砂表面时,指腹与蒙砂表面的接触面积较大,从而会有粗糙感。
请参见图1至图4,本申请实施例提供了一种壳体,其包括:壳体本体10,所述壳体本体10包括多个凸起结构12,所述多个凸起结构12位于所述壳体本体10的表面上,每个所述凸起结构12包括多个反射面121;所述壳体本体10对可见光的反射率大于或等于60%,所述壳体本体10为玻璃本体。
可选地,壳体本体10具有预设表面11,所述多个凸起结构12位于所述预设表面11上。
本申请术语“多个”指两个以上或至少两个的正整数,例如2个、3个、4个、5个、6个、7个、8个等。
本申请术语“预设表面11”指将所有相邻的凸起结构12之间的间隙的最低点,进行平面拟合,拟合得到的平面为预设表面11。
本申请术语“凸起结构12”指以预设表面11为基准面,凸出于基准面的凸出部形成的结构。
可选地,所述壳体本体10对可见光的反射率可以为但不限于为60%、63%、65%、68%、70%、72%、75%等。进一步地,所述壳体本体10的反射率大于或等于65%。更进一步地,所述壳体本体10的反射率大于或等于70%。需要说明的是,本实施例的“反射率”、“透过率”均指对可见光的反射率和透过率。
可选地,所述壳体本体10对可见光的透光率小于或等于20%;具体地,可以为但不限于为20%、18%、15%、12%、10%、8%、5%等。进一步地,所述壳体100的透光率小于或等于16%。更进一步地,所述壳体100的透光率小于或这等于10%等。可选地,所述壳体本体10的雾度大于或等于97%,具体地,可以为但不限于为975、98%、99%、99.5%等。当壳体本体10的预设表面11形成的多个凸起结构12分布于整个预设表面11,因此,未透过壳体本体10的可见光中,大部分的可见光被凸起结构12上的反射面121进行了镜面反射,最终反射出预设表面11,发生漫反射等被壳体本体10吸收或消耗掉的可见光较少。因此,当壳体本体10的透光率越低,雾度越高,说明入射至壳体本体10表面的可见光越多被镜面反射,从而使得壳体本体10的凸起结构12具有更亮、更强的颗粒状闪光或珠光效果。
可选地,多个凸起结构12间隔设置于预设表面11。每个凸起结构12在壳体本体10上形成一个闪光点或闪光砂,从而在壳体本体10的预设表面11上形成颗粒状的,星星点点的闪光或珠光效果。
本申请的壳体100可以应用于手机、平板电脑、笔记本电脑、台式电脑、智能手环、智能手表、电子阅读器、游戏机等便携式电子设备。可选地,本申请的壳体100可以为电子设备的后盖(电池盖)、中框、装饰件等。本申请实施例的壳体100可以为2D结构、2.5D结构、3D结构等。如图4所示,可选地,所述壳体本体10为3D结构,所述壳体本体10包括底部13及侧部14,所述底部13与侧部14弯折相连,且为一体结构,所述底部13与侧部14围合成容置空间101。在一具体实施例中,所述底部13为电子设备的后盖,所述侧部14为电子设备的中框。
本申请实施例的壳体100包括壳体本体10,所述壳体本体10包括多个凸起结构12,所述多个凸起结构12位于所述壳体本体10的表面,每个所述凸起结构12包括多个反射面121;凸起结构12的反射面121可以对入射至壳体本体10表面的可见光进行反射,每个反射面121形成一个镜面反射,不同方向的反射面121将入射的可见光反射至不同的方向,从而使得制得的壳体100的表面不同方向具有星星点点的闪光砂或珠光效果,换言之,壳体本体10的表面具有不同方向的颗粒状的闪光效果。此外,所述壳体本体10的反射率大于或等于60%。这说明大部分入射至壳体本体10的表面的可见光,都被凸起结构12的反射面121进行的反射,少部分可见光穿透过壳体本体10,从而使得壳体100的表面具有更亮、更闪的颗粒状的闪光砂或珠光效果。再者,由于多个凸起结构12上的多个反射面121的方向不同,将同一个方向入射的光反射至不同的方向,从而具有防眩光效果。
可选地,所述壳体本体10为玻璃本体。所述玻璃本体可以为但不限于为钠钙硅酸盐玻璃、高铝硅酸盐玻璃等中的至少一种。本申请术语“至少一种”指一种以上,例如可以为1种、2种、3种、4种、5种、6种、7种、8种等。
可选地,壳体本体10的厚度为0.3mm至1mm;具体地,壳体本体10的厚度可以为但不限于为0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1mm等。当壳体本体10太薄时,不能很好的起到支撑和保护作用,且机械强度不能很好的满足电子设备壳体100的要求,当壳体本体10的太厚时,则增加电子设备的重量,影响电子设备的手感,用户体验不好。
在一些实施例中,所述预设表面11的粗糙度Ra为1.8μm至3.5μm;具体地,可以为但不限于为1.8μm、2.0μm、2.2μm、2.5μm、2.8μm、3.0μm、3.2μm、3.5μm等。当预设表面11的粗糙度Ra范围处于这个范围时,手指指腹触摸预设表面11时,指腹基本只接触到凸起结构12的尖端部分,手指指腹与预设表面11的接触面积减小,触感更为光滑,同时,此时的凸起结构12具有较大的反射面121,可以形成更大面积的镜面反射,从而使得预设表面11的闪光砂或珠光效果更亮、更闪。当粗糙度Ra小于1.8μm时,则手指指腹与预设表面11的接触面积变大(主要接触凸起结构12的底部),粗糙感变强;当粗糙度Ra大于3.5μm时,凸起结构12的尺寸过大,相邻凸起结构12之间的间距会增大,则手指指腹与预设表面11的接触面积也会变大(主要为凸起结构12的侧面,即反射面121),粗糙感也会变强。本申请术语“粗糙度”如未特别说明均指平均粗糙度。
在一些实施例中,所述凸起结构12为四棱锥,所述多个反射面121为四个反射面121,多个四棱锥间隔或紧密的排布于壳体本体10的预设表面11,以使得壳体本体10的预设表面11上形成密密麻麻的闪光砂或珠光效果。壳体本体10的预设表面11上的凸起结构12均为四棱锥结构,这样使得预设表面11各个位置的触感及粗糙感较为均一,从而具有更好的手感。每个凸起结构12上的反射面121越多, 相邻的反射面121与反射面121之间的棱线越多,在进行晶体生长的时候需要更多的能量,才能长出具有更多反射面121的凸起结构12,当反射面121较多时,刻蚀或反应相同的时间,形成的凸起结构12的高度会更低,粗糙度降低、光滑感降低、手感不好;反之,反射面121较少时,刻蚀或反应相同的时间,形成的凸起结构12的高度会更高,手指指腹触摸只能触摸到凸起结构12的尖端,手指与预设表面11的接触面积更小,粗糙度较高、光滑感更好、具有更好的手感。本申请实施例的多个凸起结构12均为四棱锥,且每个四棱锥的尺寸(如宽度)、形状较为均一,进行刻蚀时,每个位置需要的能量相近,从而制得的课题的预设表面11具有更好的光滑感,手感更好,且各个位置的闪光砂或效果更均一。
请参见图5,在一些实施例中,所述反射面121为平面,所述反射面121与所述预设表面11之间的角度α的范围为120°至150°;具体地,可以为但不限于为120°、125°、130°、135°、140°、145°、150°等。反射面121与所述预设表面11之间的角度α太大或太小均会降低壳体本体10表面的闪光砂的可视角度。当反射面121与所述预设表面11之间的角度太小(小于120°),还会使得闪光砂的亮度降低;此外,反射面121与所述预设表面11之间的角度越小,凸起结构12的锥形尖端部分越尖,触摸时,刮手感越强,影响壳体本体10的手感。当所述反射面121与所述预设表面11之间的角度α的范围为120°至150°可以使得凸起结构12具有较强的闪光和珠光效果,同时又具有较好的手感。反射面121与所述预设表面11之间的角度α指同时垂直于反射面121及预设表面11的平面,与反射面121与所述预设表面11的相交线之间的角度。
请参见图5,在一些实施例中,沿垂直于所述预设表面11的方向上,所述凸起结构12的最大高度h的范围为15μm至25μm;具体地,可以为但不限于为15μm、16μm、18μm、20μm、23μm、25μm等。凸起结构12的最大高度h太低(小于15μm),反射面121的面积较小,则降低了预设表面11的闪光砂或珠光效果。凸起结构12的最大高度h太高(大于25μm)则反射面121的角度太小,凸起结构12的尖端部分越尖锐,则不仅会降低闪光砂或珠光效果,还会有刮手感,影响手感。当凸起结构12的最大高度h的范围为15μm至25μm,则可以使得凸起结构12更好的呈现出颗粒状的,更强、更亮的闪光砂效果,又具有较好的手感。
请参见图5,在一些实施例中,相邻的两个凸起结构12之间的间距d的范围为15μm至25μm;具体地,可以为但不限于为15μm、16μm、18μm、20μm、23μm、25μm等。当相邻的凸起结构12之间的间距d小于15um时,凸起结构12与凸起结构12间密集生长,将产生普遍小凸起结构12(或者称小晶粒)的情况,使得凸起结构12的反射面积减小,颗粒闪光效果减弱;当相邻的凸起结构12之间的间距d大于25μm,多个凸起结构12在预设表面11上较为分散,容易形成局部巨大的凸起结构12,在预设表面12上容易形成局部闪,局部不闪的不均匀现象。当相邻的两个凸起结构12之间的间距d的范围为15μm至25μm时,既可以使壳体本体10的预设表面11具有更亮、更闪的颗粒状闪光砂或珠光效果,又可以使得预设表面11不同位置的闪光砂或珠光效果尽可能一致,更好的避免局部闪、局部不闪的现象。
请参见图5,在一些实施例中,所述凸起结构12在所述预设表面11的正投影所围区域的最长距离s的范围(即尺寸)为40μm至160μm,也就是凸起结构12的最大宽度为40μm至160μm;具体地,可以为但不限于为40μm、60μm、70μm、80μm、100μm、120μm、1140μm、160μm等。当凸起结构12在所述预设表面11的正投影所围区域的最长距离s小于40μm时,凸起结构12上的反射面121的面积较小,使得预设表面11的闪光砂或珠光效果变弱,从而影响壳体本体10的闪光砂或珠光效果。凸起结构12在所述预设表面11的正投影所围区域的最长距离s越大闪光砂或珠光效果越好,但是,当所述凸起结构12在所述预设表面11的正投影所围区域的最长距离s大于160μm时,影响壳体本体10的手感,且凸起结构12人体肉眼可见,会影响壳体本体10的外观效果。
请参见图6,在一些实施例中,本申请实施例的壳体100还包括颜色层30。所述颜色层30设置于所述壳体本体10远离所述预设表面11的表面,以使得所述壳体本体10的预设表面11侧显露具有颜色效果的闪光砂或珠光效果。
可选地,所述颜色层30的颜色可以为不限于为红色、橙色、黄色、绿色、蓝色、青色、紫色、粉色等中的一种或多种。可选地,颜色层30厚度为20μm至50μm;具体地,颜色层30的厚度可以为 但不限于为20μm、25μm、28μm、30μm、35μm、40μm、45μm、50μm等。
在一些实施例中,所述颜色层30由带有颜色的油墨经喷墨打印等方式形成。在另一些实施例中,所述颜色层30由带颜色的光固化胶水(例如UV胶水)经光固化形成。在另一些实施例中,所述颜色层30为光学镀膜层。所述颜色层30包括依次交替层叠设置的第一折射率的光学镀膜层及第二折射率的光学镀膜层,其中,第一折射率与第二折射率不同。进一步的,所述光学镀膜层包括In、Sn、TiO2、Ti3O5、NbO2、Nb2O3、Nb2O2、Nb2O5、SiO2、ZrO2或者其他不导电氧化物等中的一种或多种。可选地,光学镀膜层的总厚度可以为但不限于为10nm至1000nm;具体地,可以为但不限于为10nm、50nm、100nm、200nm、300nm、400nm、600nm、800nm、1000nm等。在一实施例中,光学镀膜层的层数可以为3层至15层,具体地,可以为但不限于为3层、4层、5层、6层、7层、8层、9层、10层、11层、12层、13层、14层、15层等。可选地,每层光学镀膜层的厚度为3nm至140nm,具体地,可以为但不限于为3nm、5nm、8nm、10nm、15nm、20nm、25nm、30nm、35nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、110nm、120nm、130nm、140nm等。可选地,光学镀膜层可以采用蒸发镀膜工艺、溅射镀膜工艺、原子层沉积(ALD)技术等中的一种或多种形成。
请参见图6,在一些实施例中,本申请实施例的壳体100还包括盖底层50。所述盖底层50设置于所述壳体本体10远离所述预设表面11的一侧,以防止所述壳体100应用于电子设备时,所述壳体本体10的预设表面11侧显露电子设备内部的零部件,影响电子设备的视觉效果。
在一些实施例中,当壳体100还包括颜色层30时,所述盖底层50设置于所述颜色层30远离所述壳体本体10的表面。在另一些实施例中,当壳体本体10不具有颜色层30时,所述盖底层50设置于所述壳体本体10远离所述预设表面11的表面。
可选地,盖底层50可以为但不限于为对光具有吸收或反射作用的遮光油墨。可选地,盖底层50可以为黑色、白色或灰色。可选地,盖底层50的厚度为5μm至50μm,具体地,盖底层50的厚度可以为但不限于为5μm、8μm、10μm、12μm、15μm、18μm、20μm、22μm、25μm、30μm、35μm、40μm、45μm、50μm等。可选地,盖底层50可以为一层,也可以为多层,例如为2层、3层、4层、或5层层叠设置。当盖底层50为多层时、相较于一层具有更好的遮挡效果。可选地,每层盖底层50的厚度为8μm至12μm,具体地,可以为但不限于为8μm、9μm、10μm、11μm、12μm等。每层盖底层50可以通过以下步骤形成:将遮光油墨涂布至壳体本体10远离所述预设表面11的表面或颜色层30远离所述壳体本体10的表面,于70℃至80℃下烘烤30min至60min,形成盖底层50。
本申请上述各个实施例所描述的壳体100可以通过以下壳体100的制备方法进行制备。下面对本申请实施例的壳体100的制备方法进行详细描述。
请参见图7,本申请实施例还提供一种壳体100的制备方法,所述壳体100包括壳体本体10,所述方法包括:
S201,提供壳体基材及蒙砂液;以及
可选地,所述壳体基材为玻璃基材,所述玻璃基材可以为但不限于为钠钙硅酸盐玻璃基材、高铝硅酸盐玻璃基材等中的至少一种。
可选地,所述蒙砂液包括盐酸、氢氟酸、氟化氢铵、硫酸钡及水。在所述蒙砂液中,所述硫酸钡作用形核剂,当玻璃基材浸入蒙砂液时,氢氟酸与玻璃基材中的二氧化硅发生反应生成氟硅酸盐,氟硅酸盐(如氟硅酸钾、氟硅酸纳、氟硅酸铵等)在低于结晶温度的温度下发生结晶,包裹于形核剂(硫酸钡)的外表面,从而在玻璃的表面形成氟硅酸盐晶体,从而阻止被氟硅酸盐晶体覆盖的玻璃基材表面的二氧化硅继续与氢氟酸反应,而未被氟硅酸盐晶体覆盖的玻璃基材表面的二氧化硅继续与氢氟酸发生反应,从而在壳体基材表面形成凹凸不平的结构(即凸起结构12)。当在蒙砂液中添加氟硅酸盐时,当玻璃基材浸入蒙砂液时,蒙砂液中就已经存在大量的氟硅酸盐,因此,一开始就快速发生结晶,覆盖于玻璃基材的表面,过早的使玻璃表面覆盖有氟硅酸盐晶体,从而使得制得的壳体本体10表面凸起结构12的闪光砂或珠光效果较弱,甚至没有闪光砂或珠光效果。本申请实施例的蒙砂液未添加氟硅酸盐,从而当玻璃基材浸入蒙砂液时,需要先生成氟硅酸盐,再发生氟硅酸盐的结晶,使得氟硅酸盐的结晶具有较为适中的速度,可以更好的形成大片的四棱锥状的凸起结构12。从而使得制得的壳体本体10具有更闪、 更强的闪光砂或珠光效果。
二氧化硅与蒙砂液的化学反应方程式具体如下:
4HF+SiO2→SiF 4+2H 2O
SiF 4+2HF→H 2SiF 6
H 2SiF 6+2NH 4 +→(NH 4) 2SiF 6+2H +
进一步地,所述蒙砂液包括以下重量分数的组分:26%至30%的盐酸、10%至15%的氢氟酸、30%至35%的氟化氢铵、3%至5%的硫酸钡、以及15%至20%的水。具体地,盐酸的重量分数可以为但不限于为26%、27%、28%、29%、30%等。氢氟酸的重量分数可以为但不限于为10%、11%、12%、13%、14%、15%等。氟化氢铵的重量分数可以为但不限于为30%、31%、32%、3%、34%、35%等。硫酸钡的重量分数可以为但不限于为3%、4%、5%等。本申请中的百分比,分数、份数如未详细说明均指重量百分比、重量分数、重量份数。
可选地,所述硫酸钡的粒径为100nm至500nm;具体地,可以为但不限于为100nm、150nm、200nm、250nm、300nm、350nm、400nm、450nm、500nm等。当硫酸钡的粒径太小(小于100nm)时,则硫酸钡颗粒没有足够大的表面能吸附到玻璃基材表面,充当氟硅酸盐结晶的形核剂,难以在玻璃基材的表面覆盖氟硅酸盐晶体,从而形成四棱锥状的凸起结构12,换言之,无法形成闪光砂结构。当硫酸钡的粒径太大(大于500nm)时,硫酸钡颗粒在蒙砂液中容易发生沉降,沉积于刻蚀槽槽底,当玻璃基材浸入蒙砂液时,玻璃基材一般位于蒙砂液的中间部分,硫酸钡颗粒无法吸附于玻璃基材的表面,没有形核剂,难以在玻璃基材的表面覆盖氟硅酸盐晶体,从而形成四棱锥状的凸起结构12,换言之,无法形成闪光砂结构。当硫酸钡的粒径为100nm至500nm时,既可以使得硫酸钡颗粒具有足够大的表面能吸附于玻璃基材的表面,又可以尽可能的降低硫酸钡沉降的速度。本申请实施例的粒径如未特别指明,均指平均粒径。
在一些实施例中,所述蒙砂液还包括3%至5%的增稠剂,具体地,可以为但不限于为3%、4%、5%等。所述增稠剂用于增加蒙砂液的粘度,降低硫酸钡等颗粒沉降的速度,使得蒙砂液中具有较为均匀分散的硫酸钡颗粒,壳体本体10的预设表面11可以更好地形成四棱锥状的闪光砂结构,具有更好的闪光砂或珠光效果。可选地,所述增稠剂为淀粉。当增稠剂含量太高(大于5%)时,蒙砂液的粘度太高,影响蒙砂液与壳体基材的反应。当增稠剂的含量太少(小于3%)时,不能很好的防止硫酸钡等颗粒沉降。
S202,将所述壳体基材浸入所述蒙砂液,以得到壳体本体10,其中,所述壳体本体10包括多个凸起结构12,所述多个凸起结构12位于所述壳体本体10的表面,每个所述凸起结构12包括多个反射面121;所述壳体本体10的反射率大于或等于60%。
具体地,将蒙砂液放置于刻蚀槽(例如长度为1.3m、宽度为1.3m、深度为1.2m的刻蚀槽,蒙砂液用量为550kg)中。可选地,刻蚀槽包括自动搅拌装置、恒温装置以及自动吸液和排液装置。在进行刻蚀时,自动搅拌装置开启,以使得蒙砂液的整体浓度更为均匀,可以更好的防止硫酸钡等颗粒发生沉降。
可选地,所述蒙砂液的温度(即进行蒙砂刻蚀时的温度)为10℃至15℃;具体地,可以为但不限于为10℃、11℃、12℃、13℃、14℃、15℃等。当蒙砂液的温度过高(大于15℃)时,刻蚀反应的活化能大,容易的壳体基材(如玻璃基材)表面具有微裂纹、崩边、微气泡等缺陷的位置形成粗大的晶粒,使得制得的壳体本体10的预设表面11局部的闪光砂或珠光效果强,局部的闪光砂或珠光效果弱,影响制得的壳体本体10的预设表面11的视觉效果。当蒙砂液的温度过低(小于10℃)时,二氧化硅与氢氟酸的反应速度过慢,使得氟硅酸盐的生成速度较慢,从而降低了壳体基材表面氟硅酸盐晶体的形成的速度,进而影响壳体基材表面形成的闪光砂结构。
可选地,所述将所述壳体基材浸入所述蒙砂液;包括:将所述壳体基材沿预设方向,在3s内浸入所述蒙砂液,其中,所述预设方向与所述壳体基材的延伸方向的角度为0°至15°。例如,壳体基材可以在1秒、2秒、3秒内进入所述蒙砂液。当壳体基材为2D结构时,所述壳体基材的延伸方向指垂直于壳体厚度方向的方向,换言之,预设表面所在的平面。当壳体基材为3D结构时,则所述基材的延伸 方向至壳体基材底部的延伸方向。
可选地,预设方向与所述壳体基材的延伸方向的角度可以为但不限于为0°、3°、5°、8°、10°、12°、15°等。当预设方向与所述壳体基材的延伸方向的角度为0°时,壳体基材垂直蒙砂液的表面垂直插入蒙砂液。当预设方向与所述壳体基材的延伸方向的角度为0°至15°时,在壳体基材接触蒙砂液的瞬间,壳体基材与蒙砂液的接触面积较小,插入时受到的阻力更小,可以更好的防止壳体基材插入过程中,蒙砂液发生飞溅现象(如果水平放入,即壳体基材大表面的表面面向蒙砂液插入,则容易造成蒙砂液飞溅)。
在一具体实施例中,壳体基材为扁平状结构,具有相邻的长边侧面和短边侧面时,壳体基材沿预设方向进入蒙砂液,可以为壳体基材沿长边侧面面向蒙砂液的方向进入,也可以为壳体基材短边侧面面向蒙砂液的方向进入,对此本申请不作具体限定。
可选地,所述将所述壳体基材浸入所述蒙砂液;包括:将所述壳体基材沿预设方向,以第一速度浸入所述蒙砂液,其中,所述预设方向与所述壳体基材的延伸方向的角度为0°至15°。可选地,第一速度大于1800mm/s;具体地,壳体基材进入所述蒙砂液的速度可以为但不限于为1801mm/s、2000mm/s、2500mm/s、3000mm/s、3500mm/s等。可选地,预设方向与所述壳体基材的延伸方向的角度可以为但不限于为0°、3°、5°、8°、10°、12°、15°等。当预设方向与所述壳体基材的延伸方向的角度为0°至15°时,在壳体基材接触蒙砂液的瞬间,壳体基材与蒙砂液的接触面积较小,插入时受到的阻力更小,可以更好的防止壳体基材插入过程中,蒙砂液发生飞溅现象(如果水平放入,即壳体基材大表面的表面面向蒙砂液插入,则容易造成蒙砂液飞溅)。
通常壳体基材具有一定的长度,壳体基材在3秒内进入所述蒙砂液,或者以大于1800mm/s的速度浸入所述蒙砂液可以尽可能的缩短壳体基材浸入蒙砂液的时间,从而使壳体基材的每个部位浸泡蒙砂液的时间差尽可能小,制得的壳体本体10的预设表面11的各个位置的凸起结构12的形状、尺寸等尽可能相同,各个位置的闪光砂或珠光效果尽可能一致。可以更好的避免制得的壳体本体10的不同位置的闪光砂或珠光效果的差异,使得制得的壳体本体10具有更好的视觉效果。
关于壳体本体10的详细描述,请参见上述实施例对应部分的描述,在此不再赘述。
请参见图8,本申请实施例还提供一种壳体100的制备方法,所述壳体100包括壳体本体10,所述方法包括:
S201,提供壳体基材及蒙砂液;
S202,将所述壳体基材浸入所述蒙砂液,以及
本实施例步骤S201及步骤S202的详细描述请参见图8实施例的详细描述,在此不再赘述。
S203,将所述壳体基材在所述蒙砂液来回摆动,以得到壳体本体10,其中,所述壳体本体10包括多个凸起结构12,所述多个凸起结构12位于所述壳体本体10的表面,每个所述凸起结构12包括多个反射面121;所述壳体本体10的反射率大于或等于60%。
可选地,将所述壳体基材沿预设方向,以第二速度在所述蒙砂液中来回摆动,以促进硫酸钡及氟硅酸盐在壳体基材的表面形成晶核(换言之,形核)。其中,所述预设方向与所述壳体基材的延伸方向的角度为0°至15°。当壳体基材沿预设方向来回摆动时,摆动时蒙砂液对壳体基材的阻力更小,可以更好的防止蒙砂液飞溅。将壳体基材来回摆动,可以为壳体基材表面形成晶核提供动能,有利于壳体基材表面形核,进而促进壳体基材表面氟硅酸盐晶体的形成,有利于形成四棱锥状的凸起结构12,提高了形核速度,降低了壳体100的制备时间。
本申请术语“形核”指当液相过冷至实际结晶温度后,经过一段时间,在液相内部开始出现许多有序排列的小原子团,当小原子团达到某一临界尺寸后,就成为可以稳定存在并自发长大的晶核,这一过程称形核。
可选地,第二速度为2000mm/s至2800mm/s;具体地,可以为但不限于为2000mm/s、2200mm/s、2400mm/s、2500mm/s、2600mm/s、2800mm/s等。第二速度低于2000mm/s时,形核(即形成晶核)的动能不够,壳体基材表面(如玻璃表面)依附硫酸钡形核四棱锥状晶体的数量不够,不足以达到颗粒闪光的效果;第二速度2800mm/s时,形核动能高,壳体基材表面形核密集,每个晶核在生成过程中互相 处于竞争关系,易造成局部区域晶体生长空间受阻,晶体无法长大,局部区域晶体巨大,使得制得的壳体本体10表面的凸起结构12的尺寸和形状不均一,局部区域特别亮、特别闪,局部区域不够亮、不够闪,影响制得的壳体100的视觉效果。当第二速度为2000mm/s至2800mm/s时,既可以为形核提供足够的动能,又可以使得吸附于壳体基材表面的形成数量和密度较为均匀、适中,从而使得制得的壳体本体10表面形成更为均匀的四棱锥状的颗粒状闪光砂或珠光效果。
可选地,所述来回摆动的幅度为5cm至12cm,具体地,可以为但不限于为5cm、6cm、7cm、8cm、9cm、10cm、11cm、12cm等。当来回摆动的幅度小于5cm时,则产生的动能不够,使得壳体基材表面形核不足,从而使得最终形成的壳体本体10的表面的凸起结构12的尺寸太小,形成的闪光砂不够闪,甚至无法形成闪光砂。当来回摆动的幅度大于12cm时,由于蒙砂液在刻蚀槽中时,形核剂(硫酸钡)通常会发生部分沉降,使得靠近刻蚀槽底部的蒙砂液中硫酸钡的浓度较高,远离刻蚀槽底部的蒙砂液中硫酸钡的浓度较低,当摆动幅度太大时,壳体基材靠近刻蚀槽底部的部分形核较多,远离刻蚀槽底部的部分形核较少,从而使得制得的壳体本体10不同位置的凸起结构12的尺寸不均匀,不同位置上闪光砂或珠光效果存在差异,可能部分区域有闪光砂或珠光效果,部分区域没有闪光砂或珠光效果,或者部分区域的闪光砂或珠光效果较强,部分区域的闪光砂或珠光效果较弱,从而影响制得的壳体本体10的视觉效果。
可选地,来回摆动时,当壳体基材摆动至离所述蒙砂液的液面最近的位置时,用于夹持所述壳体基材的夹具位于所述蒙砂液的液面之下8cm至12cm的位置;具体地,可以为但不限于为8cm、9cm、10cm、11cm、12cm等。蒙砂液中硫酸钡等颗粒会部分发生沉降,刻蚀槽底部与远离刻蚀槽底部的位置的硫酸钡等颗粒的浓度存在差异,硫酸钡等颗粒浓度较高的位置(即靠近刻蚀槽底部的位置),反应速度更快,硫酸钡等颗粒浓度较小的位置(即远离刻蚀槽底部的位置),反应速度更慢。如果壳体基材放置于蒙砂液太靠近底部的位置,这样不利于在壳体基材的表面形成尺寸和形状较为均匀的凸起结构12,使得制得的壳体本体10不同位置的闪光砂或珠光效果存在差异,影响壳体本体10的视觉效果。
可选地,所述来回摆动的时间为10s至30s;具体地,可以为但不限于为10s、12s、15s、18s、20s、23s、25s、28s、30s等。来回摆动的时间太短(低于10s),硫酸钡晶核吸附于壳体基材表面(如玻璃表面)不充分且吸附数量少,容易造成后期结晶过程(即晶核生长过程)脱落和结晶少的现象,使得得到的壳体本体10的颗粒状闪光砂效果或珠光效果较弱,影响壳体本体10的视觉效果。来回摆动的时间太长(高于30s)硫酸钡晶核吸附于壳体基材表面(如玻璃表面)数量多,结晶过程中,容易造成各个晶核之间竞争生长,形成巨大的晶体,从而形成大的凸起结构12,使得制得的壳体本体10表面的凸起结构12的尺寸和形状不均一,容易出现局部凸起结构12很大,亮度和闪度特别高,局部凸起结构12很小,亮度和闪度特别低的现象,影响壳体本体10的视觉效果。当来回摆动时间为10s至30s时,不仅可以使得硫酸钡晶核较好的吸附于壳体基材的表面,同时,又不会吸附过多,使得制得的壳体本体10表面的凸起结构尺寸及形状较为均一,具有更好的颗粒状的闪光砂或珠光效果。
本实施例与上述实施例相同特征部分的详细描述请参见上述实施例,在此不再赘述。
本申请实施例的壳体100的制备方法,在壳体基材浸入蒙砂液后,将壳体基材在蒙砂液中来回摆动,可以为壳体基材表面形成晶核提供动能,这样有利于促进壳体基材表面的形核,促进壳体基材表面氟硅酸盐晶体的形成,从而使得制得的壳体本体10的预设表面11具有分布及尺寸均较为均匀的四棱锥状凸起结构12,且对于可见光的反射率大于或等于60%,从而使得制得的壳体本体10的预设表面11具有更强、更闪的星星点点点的闪光砂或珠光效果。
请参见图9,本申请实施例还提供一种壳体100的制备方法,所述壳体100包括壳体本体10,所述方法包括:
S301,提供壳体基材;
关于壳体基材的详细描述请参见上述实施例对应部分的描述,在此不再赘述。
S302,在壳体基材除待处理表面之外的表面形成保护层;
可选地,在壳体基材除待处理表面之外的表面喷涂或涂覆一层耐酸性油墨层或耐酸性保护油,得到保护层。保护层可以防止待处理表面之外的表面被蒙砂液腐蚀,油墨在蒙砂液中具有较好的稳定性,不 会与蒙砂液发生反应,且闪光砂形成后容易去除。
在一具体实施例中,壳体基材为3D结构,壳体基材具有相对设置的凹面和凸面,凸面为待处理表面,在壳体基材的凹面上喷涂耐酸性的保护油墨,以形成保护层。
S303,将所述壳体基材进行第一水洗;
可选地,将壳体基材的远离待处理表面的表面吸附于带吸盘治具的夹具上,利用伺服电机自动传送装置送至具有温度为20℃至30℃第一水洗槽,并沿预设方向放入第一水洗槽中进行水洗,沿预设方向摆动壳体基材,摆动时间为80s至100s,摆动幅度小于10cm,摆动速度为550mm/s至650mm/s。第一水洗可以清洗掉壳体基材表面的灰尘和颗粒物,并将湿润所述壳体基材表面,以提高后续酸洗的活化效果。具体地,第一水洗的摆动时间可以为但不限于为80s、85s、90s、95s、100s等。第一水洗的摆动速度可以为但不限于为550mm/s、580mm/s、600mm/s、620mm/s、650mm/s等。第一水洗的摆动幅度可以为但不限于为9.8cm、9cm、8cm、7cm、6cm、5cm。第一水洗槽的温度可以为但不限于为20℃、22℃、25℃、28℃、30℃等。第一水洗时进行摆动可以提供动能,清洁壳体基材表面(如玻璃表面)附着的灰尘和颗粒物,通过振动时间、振动幅度、振动速度的调节,使得用较小的能量就能去除壳体基材表面的附着物,防止后期对壳体基材表面蒙砂刻蚀时,对制得的壳体100表面的凸起结构12造成影响。
S304,将所述壳体基材进行第一酸洗;
可选地,将壳体基材从第一水洗槽中取出,沿预设方向放入第一酸洗槽中进行第一酸洗,并沿预设方向摆动壳体基材,摆动时间为110s至130s,摆动幅度小于10cm,摆动速度为850mm/s至950mm/s,第一酸洗槽中包括第一酸洗液,所述第一酸洗液的温度为28℃至32℃。第一酸洗用于去除壳体基材表面的有机杂质、油污、碱性附着物等,并去除壳体基材表面的氧化物杂质,露出壳体基材本体(玻璃本体),以活化壳体基材的表面。具体地,第一酸洗的摆动时间可以为但不限于为110s、115、120s、125s、130s等。第一酸洗的摆动速度可以为但不限于为850mm/s、880mm/s、900mm/s、920mm/s、950mm/s等。第一酸洗的摆动幅度可以为但不限于为9.8cm、9cm、8cm、7cm、6cm、5cm。第一酸洗槽的温度可以为但不限于为28℃、29℃、30℃、31、32℃等。第一酸洗槽为酸洗活化槽,第一酸洗时进行摆动可以提供动能,以去除玻璃表面油污和碱性附着物,通过振动时间、振动幅度、振动速度的调节,使得用较小的能量就能去除壳体基材表面附着物,温度略高于室温,可提高活化效率,若玻璃未活化(或活化未完全)进入就进入蒙砂液中,因表面氧化层阻隔,表面蒙砂副产物较多且结晶附着力较弱,容易受动能冲击脱落,影响最终制得的壳体100的外观效果。
可选地,第一酸洗液包括质量浓度为3%至5%的硫酸、质量浓度为5%至7%的硝酸及质量浓度为8%至10%的氢氟酸。在一具体实施例中,第一酸洗液包括质量浓度为4%的硫酸、质量浓度为6%的硝酸及质量浓度为9%的氢氟酸。
S305,将所述壳体基材进行第二水洗;
可选地,将壳体基材从第一酸洗槽中取出,沿预设方向放入第二水洗槽中进行水洗,并沿预设方向摆动壳体基材,以洗掉残留在壳体基材表面的酸洗液,防止壳体基材表面残留的酸洗液继续壳体基材的待处理表面进行二次反应,预设表面11被腐蚀过多或过渡腐蚀。其中,摆动时间为80s至100s,摆动幅度小于10cm,摆动速度为550mm/s至650mm/s,第二水洗槽的温度为20℃至30℃。具体地,第二水洗的摆动时间可以为但不限于为80s、85s、90s、95s、100s等。第二水洗的摆动速度可以为但不限于为550mm/s、580mm/s、600mm/s、620mm/s、650mm/s等。第二水洗的摆动幅度可以为但不限于为9.8cm、9cm、8cm、7cm、6cm、5cm。第二水洗槽的温度可以为但不限于为20℃、22℃、25℃、28℃、30℃等。第二水洗摆动的目的是快速使玻璃表面酸洗液清洗干净,通过振动时间、振动幅度、振动速度的调节,使得用最小的能量消耗,达到较好的去除效果,第二水洗若清洗速度慢易产生二次活化,腐蚀较多玻璃本体,产生较多酸洗副产物,对蒙砂效果均匀性及结晶的附着力会有较大影响,从而影响制得的壳体本体100表面的凸起结构12均匀性。
S306,将所述壳体基材冷却至预设温度;
可选地,将壳体基材从第二水洗槽中取出,沿预设方向放入冷却槽中,静置80s至100s,以将壳体基材降温至预设温度。可选地,冷却槽包括冷却水,冷却水的温度为10℃至15℃。可选地,预设温度 与蒙砂液的温度相等,例如预设温度为10℃至15℃。在一具体实施例中,当壳体基材位于冷却槽时,夹具位于冷却水液面之下8cm至10cm的位置。具体地,冷却时,壳体基材静置的时间可以为但不限于为80s、85s、90s、95s、100s等。冷却水的温度可以为但不限于为10℃、11℃、12℃、13℃、14℃、15℃等。预设温度可以为但不限于为10℃、11℃、12℃、13℃、14℃、15℃等。
在进行刻蚀之前,先将壳体基材冷却至预设温度(即蒙砂液刻蚀时的温度),这样可以更好的防止进行壳体基材刻蚀时,壳体基材刚开始进入蒙砂液时的温度过高,与蒙砂液反应生成过多的副产物,影响形成的壳体本体10的预设表面11的凸起结构12的形状和尺寸,从而影响壳体本体10的闪光砂或珠光效果。
S307,将所述壳体基材浸入所述蒙砂液;
关于蒙砂液的详细描述请参见上述实施例对应部分的描述,在此不再赘述。
S308,将所述壳体基材在所述蒙砂液来回摆动;
步骤S307及步骤S308的详细描述请参见上述实施例对应部分的描述,在此不再赘述。
S309,将所述壳体基材于所述蒙砂液中静置60s至80s,以形成第一中间态壳体本体;
可选地,停止来回摆动,将所述壳体基材于所述蒙砂液中静置60s至80s,以使晶核具有足够的时间充分长大形成覆盖于待处理表面的晶体,以在壳体基材的表面形成多个四棱锥状的凸起结构12。可以理解的是,第一中间态壳体本体包括依次层叠设置的保护层、壳体本体10及结晶物层。结晶物层形成于壳体本体10的预设表面11上。
具体地,静置时间可以为但不限于为60s、65s、70s、75s、80s等。当静置时间太短(小于60s)时,晶核没有足够的时间充分长大,制得的壳体100的颗粒状闪光砂或珠光效果不明显;当静置时间太长(大于80s),壳体本体10预设表面的晶体生长过大,局部区域容易形成巨晶效果,制得的壳体100表面的凸起结构尺寸的均匀性效果较差,换言之,闪光砂的均匀性较差。当静置时间为60s至80s时,使得晶核具有足够的时间长大,又不会长得过大,从而形成更为均匀的闪光砂效果。
S310,将所述第一中间态壳体本体进行第三水洗;
可选地,将所述第一中间态壳体本体从刻蚀槽中取出,在空中快速摇摆去除第一中间态壳体本体上残留的蚀刻液,防止中间态体本体与蒙砂液发生二次反应、被过渡刻蚀,沿预设方向将第一中间态壳体本体放置于第三水洗槽中,于温度为20℃至30℃的水中,静置80s至100s,以去除第一中间态壳体本体表面残留的蒙砂液。此时,夹具位于冷却水液面之下8cm至10cm的位置。具体地,第三水洗的静置时间可以为但不限于为80s、85s、90s、95s、100s等。第三水洗槽的温度可以为但不限于为20℃、22℃、25℃、28℃、30℃等。
S311,进行第二酸洗,去除第一中间态壳体本体表面的结晶物,以得到第二中间态壳体本体;
可选地,将第一中间态壳体本体从第三水洗槽中取出,沿预设方向放入第二酸洗槽中进行第二酸洗,并沿预设方向摆动第一中间态壳体本体,摆动时间为110s至130s,摆动幅度小于10cm,摆动速度为850mm/s至950mm/s,第二酸洗槽中包括第二酸洗液,所述第二酸洗液的温度为20℃至30℃。第二酸洗用于去除第一中间态壳体本体表面的氟硅酸盐等结晶物。具体地,第二酸洗的摆动时间可以为但不限于为110s、115、120s、125s、130s等。第二酸洗的摆动速度可以为但不限于为850mm/s、880mm/s、900mm/s、920mm/s、950mm/s等。第二酸洗的摆动幅度可以为但不限于为9.8cm、9cm、8cm、7cm、6cm、5cm。第二酸洗槽的温度可以为但不限于为20℃、22℃、25℃、28℃、30℃等。第二酸洗时,摆动可以使氟硅酸盐晶体更好的溶解于稀硫酸中,以去除壳体本体10表面的结晶物。
可选地,第二酸洗液包括质量浓度为3%的硫酸水溶液。
S312,将第二中间态壳体本体进行第四水洗;以及
可选地,将第二中间态壳体本体从第二酸洗槽中取出,沿预设方向放入第四水洗槽中,并沿预设方向摆动壳体本体10,以洗掉残留在壳体本体10表面的稀硫酸。其中,摆动时间为80s至100s,摆动幅度小于10cm,摆动速度为550mm/s至650mm/s,第四水洗槽的温度为20℃至30℃。具体地,第四水洗的摆动时间可以为但不限于为80s、85s、90s、95s、100s等。第四水洗的摆动速度可以为但不限于为550mm/s、580mm/s、600mm/s、620mm/s、650mm/s等。第四水洗的摆动幅度可以为但不限于为9.8cm、 9cm、8cm、7cm、6cm、5cm。第四水洗槽的温度可以为但不限于为20℃、22℃、25℃、28℃、30℃等。第四水洗时摆动提供功能进一步清洗掉,未被第二酸洗槽溶尽的结晶物;除此之外第四水洗槽还可以洗掉玻璃表面的酸液,防止后期作业使人受伤。
S313,将第二中间态壳体本体进行碱洗,以得到壳体本体,其中,所述壳体本体10包括多个凸起结构12,所述多个凸起结构12位于所述壳体本体10的表面,每个所述凸起结构12包括多个反射面121;所述壳体本体10的反射率大于或等于60%。
具体地,将第二中间态壳体本体从第四水洗槽中取出,放入85℃以上的强碱中,以去除油墨保护层,得到壳体本体10。具体地,去除保护层的温度可以为但不限于为85℃、88℃、88℃、90℃、93℃、95℃、100℃等。
可选地,强碱可以为氢氧化钾水溶液或氢氧化钠水溶液等具有强碱性的溶液。进一步地,氢氧化钾水溶液或氢氧化钠水溶液的浓度为8wt%至32wt%,具体地,氢氧化钾水溶液或氢氧化钠水溶液的浓度可以为但不限于为8wt%、10wt%、12wt%、15wt%、18wt%、20wt%、23wt%、25wt%、28wt%、30wt%、32wt%等。此外,还可以为其它碱性溶液,本申请不作具体限定。
本实施例与上述实施例相同特征部分的详细描述请参见上述实施例,在此不再赘述。
请参见图10,本申请实施例还提供一种壳体100的制备方法,所述壳体100包括依次层叠设置壳体本体10、颜色层30及盖底层50,所述方法包括:
S401,提供壳体基材及蒙砂液;
S402,将所述壳体基材浸入所述蒙砂液;
S403,将所述壳体基材在所述蒙砂液来回摆动,以得到壳体本体10,其中,所述壳体本体10包括多个凸起结构12,所述多个凸起结构12位于所述壳体本体的表面,每个所述凸起结构12包括多个反射面121;所述壳体本体10的反射率大于或等于60%;
关于步骤S401至步骤S403的详细描述,请参见上述实施例对应部分的描述,在此不再赘述。
S404,在所述壳体本体10远离所述凸起结构12的表面形成颜色层30;以及
在一些实施例中,采用油墨或光固化胶水在壳体本体10远离所述预设表面11(即凸起结构12)的表面打印或喷涂一层油墨层或光固化胶水层,经固化后,形成颜色层30。
在另一些实施例中,以In、Sn、TiO2、Ti3O5、NbO2、Nb2O3、Nb2O2、Nb2O5、SiO2、ZrO2或者其他不导电氧化物等中的一种或多种为材料,采用蒸发镀膜工艺、溅射镀膜工艺、原子层沉积(ALD)技术等中的一种或多种形成光学镀膜层,作为颜色层30。
关于颜色层30的详细描述,请参见上述实施例对应部分的描述,在此不再赘述。
S405,在所述颜色层30远离所述壳体本体的表面形成盖底层50。
可选地,将遮光油墨涂布于颜色层30的表面,于70℃至80℃下烘烤30min至60min,形成盖底层50。
本实施例与上述实施例相同特征部分的详细描述请参见上述实施例,在此不再赘述。
以下通过具体实施例对本申请实施例的壳体100做进一步的描述。
实施例1至实施例6
各实施例的壳体100通过以下步骤进行制备:
1)配置蒙砂液:按下表1各蒙砂液组分的重量含量分别称取盐酸、氢氟酸、氟氢化铵、硫酸钡、淀粉及水,于常温下搅拌均匀,熟化25小时,得到蒙砂液;其中,硫酸钡的粒径为200nm;
2)在玻璃除待处理表面之外的表面喷涂油墨层,并进行水洗、酸洗等步骤,得到油墨玻璃;
3)将油墨玻璃以第一速度竖直浸入步骤1)中的蒙砂液中;
4)将油墨玻璃沿预设方向,以第二速度在所述蒙砂液中来回摆动;
5)停止来回摆动,静置一段时间;
6)去除结晶物及油墨层,以得到本实施例的壳体100。
以上各实施例的壳体100的制备过程的工艺条件如下表1所示。
表1实施例1至实施例6制备壳体过程中的工艺参数
示例 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
盐酸(wt%) 26% 28% 30% 28% 28% 28%
氢氟酸(wt%) 15% 10% 13% 13% 13% 13%
氟氢化铵(wt%) 33% 30% 35% 33% 33% 33%
硫酸钡(wt%) 3% 4% 5% 4% 4% 4%
淀粉(wt%) 5% 4% 3% 4% 4% 4%
蒙砂液温度(℃) 13 13 13 15 13 10
第一速度(mm/s) 2000 2000 2000 1850 2000 2500
第二速度(mm/s) 2400 2400 2400 2400 2000 2800
摆动时间(s) 20 20 20 20 30 10
摆动振幅(cm) 10 10 10 5 8 12
静置时间(s) 70 70 70 70 80 60
对以上各实施例得到的壳体100的各项性能参数进行测试,测试结构如下表2所示。其中,附图11为实施例1制得的壳体100的预设表面11的电子显微镜图。
表2实施例1至实施例6制得的壳体的性能参数
示例 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
凸起结构最大高度h(μm) 17 17 19 20 25 15
凸起结构最长距离s(μm) 108 102 99 104 160 70
相邻凸起结构间距d(μm) 23 25 15 19 22 19
粗糙度Ra(μm) 2.6 2.5 2.6 2.8 3.5 1.8
反射率(%) 63% 67% 64% 60% 82% 73%
透过率(%) 18% 17% 16% 20% 9% 13%
雾度(%) 98% 97.5% 98% 97% 97% 98%
表2中测量得到的壳体的各个性能参数值均为平均数值。
本申请各实施例的凸起结构12的最大高度h、最长距离s及相邻凸起结构12之间的间距通过电子显微镜测量得到。雾度采用雾度计进行测量,透光率采用透光率仪(波长为550nm)进行测量,粗糙度采用粗糙度仪进行测量,反射率采用可见光透/反射率测试仪(例如BTR-1S)进行测量。
请参见图12至13,本申请实施例还提供一种电子设备500,其包括:显示组件510、本申请实施例所述的壳体100以及电路板组件530。所述显示组件510用于显示;所述壳体100用于承载所述显示组件510;所述电路板组件530设置于所述显示组件510与所述壳体100之间,且与所述显示组件510电连接,用于控制所述显示组件510进行显示。在一些实施例中,所述壳体100具有容置空间101,所述电路板组件530位于所述容置空间101内,所述显示组件510还用于闭合所述容置空间101;换言之,所述壳体100与所述显示组件510围合成闭合的容置空间101。
本申请实施例的电子设备500可以为但不限于为手机、平板电脑、笔记本电脑、台式电脑、智能手环、智能手表、电子阅读器、游戏机等便携式电子设备。
关于壳体100的详细描述,请参见上述实施例对应部分的描述,在此不再赘述。
可选地,所述显示组件510可以为但不限于为液晶显示组件、发光二极管显示组件(LED显示组件)、微发光二极管显示组件(Micro LED显示组件)、次毫米发光二极管显示组件(Mini LED显示组件)、有机发光二极管显示组件(OLED显示组件)等中的一种或多种。
请一并参见图14,可选地,电路板组件530可以包括处理器531及存储器533。所述处理器531分别与所述显示组件510及存储器533电连接。所述处理器531用于控制所述显示组件510进行显示,所述存储器533用于存储所述处理器531运行所需的程序代码,控制显示组件510所需的程序代码、显示组件510的显示内容等。
可选地,处理器531包括一个或者多个通用处理器531,其中,通用处理器531可以是能够处理电子指令的任何类型的设备,包括中央处理器(Central Processing Unit,CPU)、微处理器、微控制器、主处 理器、控制器以及ASIC等等。处理器531用于执行各种类型的数字存储指令,例如存储在存储器533中的软件或者固件程序,它能使计算设备提供较宽的多种服务。
可选地,存储器533可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器533也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory,FM)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD)。存储器533还可以包括上述种类的存储器的组合。
在本申请中提及“实施例”“实施方式”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现所述短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。此外,还应该理解的是,本申请各实施例所描述的特征、结构或特性,在相互之间不存在矛盾的情况下,可以任意组合,形成又一未脱离本申请技术方案的精神和范围的实施例。
最后应说明的是,以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (20)

  1. 一种壳体,其特征在于,包括:
    壳体本体,所述壳体本体包括多个凸起结构,所述多个凸起结构位于所述壳体本体的表面上,每个所述凸起结构包括多个反射面;所述壳体本体对可见光的反射率大于或等于60%,所述壳体本体为玻璃本体。
  2. 根据权利要求1所述的壳体,其特征在于,所述壳体本体对可见光的透光率小于或等于20%;所述壳体本体的雾度大于或等于97%。
  3. 根据权利要求1所述的壳体,其特征在于,所述凸起结构为四棱锥,所述多个反射面为四个反射面。
  4. 根据权利要求1所述的壳体,其特征在于,所述壳体本体具有预设表面,所述多个凸起结构位于所述预设表面上,所述反射面为平面,所述反射面与所述预设表面之间的角度的范围为120°至150°。
  5. 根据权利要求1所述的壳体,其特征在于,沿垂直于所述壳体本体的方向上,所述凸起结构的最大高度的范围为15μm至25μm,相邻的两个凸起结构之间的间距的范围为15μm至25μm。
  6. 根据权利要求1-5任一项所述的壳体,其特征在于,所述壳体本体具有预设表面,所述多个凸起结构位于所述预设表面上,所述凸起结构在所述预设表面的正投影所围区域的最长距离的范围为40μm至160μm;所述预设表面的粗糙度Ra为1.8μm至3.5μm。
  7. 根据权利要求1-5任一项所述的壳体,其特征在于,所述壳体还包括:
    颜色层;所述颜色层设置于所述壳体本体远离所述凸起结构的表面;以及
    盖底层;所述盖底层设置于所述颜色层远离所述壳体本体的表面。
  8. 一种壳体的制备方法,其特征在于,包括:
    提供壳体基材及蒙砂液,其中,所述壳体基材为玻璃基材;以及
    将所述壳体基材浸入所述蒙砂液;以得到壳体本体,其中,所述壳体本体包括多个凸起结构,所述多个凸起结构位于所述壳体本体的表面,每个所述凸起结构包括多个反射面;所述壳体本体的反射率大于或等于60%。
  9. 根据权利要求8所述的壳体的制备方法,其特征在于,所述将所述壳体基材浸入所述蒙砂液;包括:
    将所述壳体基材沿预设方向,在3s内浸入所述蒙砂液,其中,所述预设方向与所述壳体基材的延伸方向的角度为0°至15°。
  10. 根据权利要求8所述的壳体的制备方法,其特征在于,所述将所述壳体基材浸入所述蒙砂液;包括:
    将所述壳体基材沿预设方向,以第一速度浸入所述蒙砂液,所述第一速度大于1800mm/s,其中,所述预设方向与所述壳体基材的延伸方向的角度为0°至15°。
  11. 根据权利要求8所述的壳体的制备方法,其特征在于,所述将所述壳体基材浸入所述蒙砂液之 后,所述方法还包括:
    将所述壳体基材在所述蒙砂液来回摆动。
  12. 根据权利要求11所述的壳体的制备方法,其特征在于,所述将所述壳体基材在所述蒙砂液来回摆动,包括:
    将所述壳体基材沿预设方向,以第二速度在所述蒙砂液中来回摆动,其中,所述第二速度为2000mm/s至2800mm/s,所述预设方向与所述壳体基材的延伸方向的角度为0°至15°。
  13. 根据权利要求12所述的壳体的制备方法,其特征在于,所述来回摆动的幅度为5cm至12cm,所述来回摆动的时间为10s至30s。
  14. 根据权利要求11所述的壳体的制备方法,其特征在于,来回摆动时,当所述壳体基材摆动至离所述蒙砂液的液面最近的位置时,用于夹持所述壳体基材的夹具位于所述蒙砂液的液面之下8cm至12cm的位置。
  15. 根据权利要求11所述的壳体的制备方法,其特征在于,在所述将所述壳体基材在所述蒙砂液来回摆动之后,所述方法还包括:
    将所述壳体基材于所述蒙砂液中静置60s至80s。
  16. 根据权利要求8-15任一项所述的壳体的制备方法,其特征在于,所述蒙砂液包括以下重量分数的组分:
    26%至30%的盐酸;
    10%至15%的氢氟酸;
    30%至35%的氟化氢铵;
    3%至5%的硫酸钡;以及
    15%至20%的水。
  17. 根据权利要求16所述的壳体的制备方法,其特征在于,所述蒙砂液还包括3%至5%的增稠剂,所述增稠剂为淀粉;所述硫酸钡的粒径为100nm至500nm。
  18. 根据权利要求8-15、17任一项所述的壳体的制备方法,其特征在于,所述蒙砂液的温度为10℃至15℃。
  19. 根据权利要求8-15、17任一项所述的壳体的制备方法,其特征在于,所述将所述壳体基材浸入所述蒙砂液之前,所述方法还包括:
    将所述壳体基材进行水洗、酸洗、水洗,并冷却至预设温度,所述预设温度为10℃至15℃。
  20. 一种电子设备,其特征在于,包括:
    显示组件;
    壳体,所述壳体用于承载所述显示组件,所述壳体包括壳体本体,所述壳体本体包括多个凸起结构,所述多个凸起结构位于所述壳体本体的表面上,每个所述凸起结构包括多个反射面;所述壳体本体对可见光的反射率大于或等于60%,所述壳体本体为玻璃本体;以及
    电路板组件,所述电路板组件设置于所述壳体与显示组件之间,且与所述显示组件电连接,用于控制所述显示组件进行显示。
PCT/CN2022/113977 2021-10-15 2022-08-22 壳体、其制备方法及电子设备 WO2023061047A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111205846.5A CN113966114B (zh) 2021-10-15 2021-10-15 壳体、其制备方法及电子设备
CN202111205846.5 2021-10-15

Publications (1)

Publication Number Publication Date
WO2023061047A1 true WO2023061047A1 (zh) 2023-04-20

Family

ID=79464712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113977 WO2023061047A1 (zh) 2021-10-15 2022-08-22 壳体、其制备方法及电子设备

Country Status (2)

Country Link
CN (2) CN113966114B (zh)
WO (1) WO2023061047A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113973456B (zh) * 2021-10-15 2023-06-09 Oppo广东移动通信有限公司 壳体、壳体制备方法及电子设备
CN113966114B (zh) * 2021-10-15 2023-05-30 Oppo广东移动通信有限公司 壳体、其制备方法及电子设备
CN114349360A (zh) * 2022-02-23 2022-04-15 Oppo广东移动通信有限公司 制备玻璃基材的方法、玻璃基材、壳体组件以及电子设备
CN116693208A (zh) * 2022-02-28 2023-09-05 康宁股份有限公司 经涂覆的纹理化玻璃制品及其制造方法
CN115724592B (zh) * 2022-10-11 2024-04-12 广东山之风环保科技有限公司 一种家居触控面板玻璃ag效果蒙砂液及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201688324U (zh) * 2010-04-09 2010-12-29 王立义 一种光学反射罩
CN110467354A (zh) * 2019-08-27 2019-11-19 Oppo广东移动通信有限公司 蒙砂玻璃及其制备方法、玻璃后盖和电子设备
CN210760013U (zh) * 2019-06-10 2020-06-16 南昌欧菲光科技有限公司 壳体、保护壳及电子设备
CN111614816A (zh) * 2020-05-25 2020-09-01 Oppo广东移动通信有限公司 壳体、壳体的制备方法及电子设备
CN111756896A (zh) * 2020-06-02 2020-10-09 Oppo广东移动通信有限公司 玻璃壳体组件及其制作方法和电子设备
CN113966114A (zh) * 2021-10-15 2022-01-21 Oppo广东移动通信有限公司 壳体、其制备方法及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201688324U (zh) * 2010-04-09 2010-12-29 王立义 一种光学反射罩
CN210760013U (zh) * 2019-06-10 2020-06-16 南昌欧菲光科技有限公司 壳体、保护壳及电子设备
CN110467354A (zh) * 2019-08-27 2019-11-19 Oppo广东移动通信有限公司 蒙砂玻璃及其制备方法、玻璃后盖和电子设备
WO2021036369A1 (zh) * 2019-08-27 2021-03-04 Oppo广东移动通信有限公司 壳体组件及其制备方法和电子设备
CN111614816A (zh) * 2020-05-25 2020-09-01 Oppo广东移动通信有限公司 壳体、壳体的制备方法及电子设备
CN111756896A (zh) * 2020-06-02 2020-10-09 Oppo广东移动通信有限公司 玻璃壳体组件及其制作方法和电子设备
CN113966114A (zh) * 2021-10-15 2022-01-21 Oppo广东移动通信有限公司 壳体、其制备方法及电子设备

Also Published As

Publication number Publication date
CN116583053A (zh) 2023-08-11
CN113966114A (zh) 2022-01-21
CN113966114B (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2023061047A1 (zh) 壳体、其制备方法及电子设备
US9279912B2 (en) Anti-glare glass article and display system
US8778496B2 (en) Anti-glare glass sheet having compressive stress equipoise and methods thereof
JP5890760B2 (ja) 光散乱機能および反射抑制機能を有する光入射面を備えたガラス板
US10690818B2 (en) Anti-glare substrates with a uniform textured surface and low sparkle and methods of making the same
CN103534219B (zh) 防眩光表面处理方法及其制品
JP2013525253A (ja) 防眩表面処理方法およびその物品
TW201934515A (zh) 具抗刮擦性的紋理化基於玻璃之製品及其製作方法
WO2021238349A1 (zh) 壳体组件及其制备方法和电子设备
JP2015534096A (ja) 散乱性埋込防眩層を有するディスプレイ素子
KR20220016088A (ko) 텍스처링된 유리 물품 및 이를 제조하는 방법
WO2023061094A1 (zh) 壳体、壳体制备方法及电子设备
JPS6321241A (ja) 艶消しガラスおよびその製造法
CN111606573B (zh) 带有凹凸形状的玻璃基体及其制造方法
CN114585177A (zh) 壳体组件、其制备方法、透明基材、及电子设备
TWM613876U (zh) 觸摸屏結構
JP2024029823A (ja) 基板の製造方法及びその製造方法により製造された基板
JPH0351801A (ja) 低反射膜及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879994

Country of ref document: EP

Kind code of ref document: A1