WO2023061094A1 - 壳体、壳体制备方法及电子设备 - Google Patents

壳体、壳体制备方法及电子设备 Download PDF

Info

Publication number
WO2023061094A1
WO2023061094A1 PCT/CN2022/116567 CN2022116567W WO2023061094A1 WO 2023061094 A1 WO2023061094 A1 WO 2023061094A1 CN 2022116567 W CN2022116567 W CN 2022116567W WO 2023061094 A1 WO2023061094 A1 WO 2023061094A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
frosting
solution
treated
throwing
Prior art date
Application number
PCT/CN2022/116567
Other languages
English (en)
French (fr)
Inventor
祝鹏辉
杨啸
张世龙
王语鉴
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023061094A1 publication Critical patent/WO2023061094A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • H05K5/0243Mechanical details of casings for decorative purposes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching

Definitions

  • the present application relates to the field of electronic technology, and in particular to a shell, a method for preparing the shell, and electronic equipment.
  • the present application provides a casing, the casing has a predetermined surface, the predetermined surface has a plurality of protruding structures, the protruding structures have a plurality of reflective surfaces, and the predetermined surface
  • the range of surface roughness Ra is: 1.5 ⁇ m ⁇ Ra ⁇ 4.0 ⁇ m.
  • the present application provides a shell preparation method, the preparation method comprising:
  • the housing has a predetermined surface obtained from the surface to be treated, and the predetermined surface has a plurality of protruding structures, and the protruding structures have multiple A reflective surface, the range of surface roughness Ra of the preset surface is: 1.5 ⁇ m ⁇ Ra ⁇ 4.0 ⁇ m.
  • the present application provides an electronic device, and the electronic device includes the casing as described in the first aspect.
  • FIG. 1 is a schematic structural diagram of a housing provided in an embodiment of the present application.
  • Fig. 2 is a sectional view along line I-I among Fig. 1;
  • Fig. 3 is the enlarged schematic diagram of II place in Fig. 2;
  • Fig. 4 is the topography of the preset surface of the housing at III in Fig. 1 under a scanning microscope;
  • Fig. 5 is the top view figure in Fig. 4;
  • Fig. 6 is a schematic diagram of the size of the raised structure in Fig. 4;
  • Fig. 7 is an enlarged schematic view along II in Fig. 2 in another embodiment
  • FIG. 8 is a flow chart of a shell preparation method provided in an embodiment of the present application.
  • Fig. 9 is a schematic diagram of a glass substrate provided by an embodiment of the present application.
  • FIG. 10 is a schematic flow chart included in S120 in FIG. 8;
  • 11 to 13 are schematic diagrams of the reaction of the glass substrate through the various steps in S120 in sequence;
  • Fig. 14 is a schematic structural diagram after S130;
  • 15 is a schematic diagram when the angle A between the extending direction of the glass substrate and the vertical direction is equal to zero;
  • Fig. 16 is a schematic diagram showing that the angle A between the extending direction of the glass substrate and the vertical direction is -10°;
  • Fig. 17 is a schematic diagram showing that the angle A between the extending direction of the glass substrate and the vertical direction is +10°;
  • Fig. 18 is a flow chart of a shell preparation method provided in another embodiment of the present application.
  • FIG. 19 is a schematic flow chart included in S10 in FIG. 18;
  • Fig. 20 is a flow chart of a shell preparation method provided in another embodiment of the present application.
  • Fig. 21 is a flow chart of a shell preparation method provided in another embodiment of the present application.
  • Fig. 22 is a flow chart of a shell preparation method provided in another embodiment of the present application.
  • FIG. 23 is a schematic diagram of a glass substrate prior to polishing the concave surface
  • Figure 24 is a schematic diagram of a glass substrate after polishing a concave surface
  • Fig. 25 is a schematic diagram of the glass substrate after S1;
  • Fig. 26 is a schematic diagram of the glass substrate after S112;
  • Fig. 27 is a schematic diagram of the glass substrate after S120;
  • Fig. 28 is an enlarged schematic view at V in Fig. 27;
  • Fig. 29 is a schematic diagram of the glass substrate shown in Fig. 28 after S130;
  • FIG. 30 is a schematic diagram of the glass substrate shown in FIG. 29 after S2;
  • FIG. 31 is a schematic perspective view of an electronic device provided in an embodiment of the present application.
  • FIG. 32 is an exploded schematic view of the electronic device shown in FIG. 31 .
  • the present application provides a housing, wherein the housing has a preset surface, the preset surface has a plurality of protruding structures, the protruding structures have a plurality of reflective surfaces, and the preset
  • the range of surface roughness Ra is: 1.5 ⁇ m ⁇ Ra ⁇ 4.0 ⁇ m.
  • the range of roughness Ra of the preset surface is: 1.5 ⁇ m ⁇ Ra ⁇ 3.5 ⁇ m.
  • the distance L between the two furthest points on the orthographic projection of the raised structure on the preset surface is in the range of: 30 ⁇ m ⁇ L ⁇ 150 ⁇ m.
  • the height H of the raised structure is: 3 ⁇ m ⁇ H ⁇ 15 ⁇ m.
  • the raised structure is a quadrangular pyramid, and the quadrangular pyramid has four reflective surfaces, and the reflective surfaces are used to reflect light.
  • the present application provides a shell preparation method, wherein the preparation method includes:
  • the housing has a predetermined surface obtained from the surface to be treated, and the predetermined surface has a plurality of protruding structures, and the protruding structures have multiple A reflective surface, the range of surface roughness Ra of the preset surface is: 1.5 ⁇ m ⁇ Ra ⁇ 4.0 ⁇ m.
  • the glass substrate is soaked in the frosting solution and thrown to form a crystal film on the surface to be treated, including:
  • the glass substrate Soaking the glass substrate in the frosting solution and throwing the glass substrate, the glass substrate reacts with the frosting solution to generate crystal nuclei, and the crystal nuclei cover the surface to be treated;
  • the area of the surface to be treated that is not covered by the crystal nucleus continues to react with the frosting liquid to form crystals, and the crystals are adsorbed and grown on the crystal nucleus, and the crystals are used to inhibit the covering of the glass substrate.
  • the material reacts with the frosting solution;
  • a crystal film with a preset thickness is formed on the surface to be treated.
  • the frosting liquid includes:
  • weight percentage is 5% ⁇ 10% hydrofluoric acid
  • Ammonium bifluoride in the range of 35% to 50% by weight
  • weight percentage 20% ⁇ 35% hydrochloric acid
  • the weight percentage ranges from 5% to 10% water.
  • the said glass substrate is soaked in the frosting solution and thrown, including:
  • the glass substrate on the carrier, and make the range of the angle A between the extension direction of the glass substrate and the vertical direction be: -10° ⁇ A ⁇ 10°, and put the carrier and the The glass substrate is soaked in the frosting solution.
  • the said glass substrate is soaked in the frosting solution and thrown, including:
  • the range of the throwing velocity V when the glass substrate is soaked in the frosting solution and thrown is: 400mm/s ⁇ V ⁇ 2000mm/s.
  • the said glass substrate is soaked in the frosting solution and thrown, including:
  • the range of the throwing distance d when the glass substrate is soaked in the frosting solution and thrown is: 30mm ⁇ d ⁇ 150mm.
  • the said glass substrate is soaked in the frosting solution and thrown, including:
  • the range of the throwing frequency f when the glass substrate is soaked in the frosting solution is: 1 time/S ⁇ f ⁇ 5 times/S.
  • the glass substrate is soaked in the frosting solution and thrown, and the range of the total duration t is: 60S ⁇ t ⁇ 400S.
  • the said glass substrate is soaked in the frosting solution and thrown, including:
  • the glass substrate is thrown along the extending direction of the glass substrate.
  • the preparation method also includes:
  • the surface to be treated is cleaned with a cleaning solution.
  • cleaning the surface to be treated with a cleaning solution specifically includes:
  • the surface to be treated that has been cleaned by the acid solution is cleaned with water.
  • the present application provides an electronic device, the electronic device includes a housing, the housing has a predetermined surface, the predetermined surface has a plurality of protruding structures, and the protruding structures have a plurality of reflective On the surface, the range of the surface roughness Ra of the predetermined surface is: 1.5 ⁇ m ⁇ Ra ⁇ 4.0 ⁇ m.
  • the distance L between the two furthest points on the orthographic projection of the raised structure on the preset surface is in the range of: 30 ⁇ m ⁇ L ⁇ 150 ⁇ m.
  • the height H of the raised structure is: 3 ⁇ m ⁇ H ⁇ 15 ⁇ m.
  • the raised structure is a quadrangular pyramid, and the quadrangular pyramid has four reflective surfaces, and the reflective surfaces are used to reflect light.
  • the present application provides a casing 10, which can be applied to an electronic device 1 (see Fig. 31 and Fig. 32), and the electronic device 1 can be, but not limited to, a mobile phone, a computer and other devices with a casing 10 .
  • the casing 10 When the casing 10 is applied to the electronic device 1 , it may be, but not limited to, the back cover of the electronic device 1 .
  • the shell 10 may be a 2D shell, or a 2.5D shell or a 3D shell. It can be understood that the above introduction is an introduction to an application environment of the housing 10, and should not be construed as a limitation on the housing 10 provided in the embodiment of the present application. Please refer to Fig. 1, Fig. 2 and Fig. 3 together. Fig.
  • FIG. 1 is a schematic structural diagram of a housing provided by an embodiment of the present application
  • Fig. 2 is a cross-sectional view along the I-I line in Fig. 1
  • Fig. 3 is a point II in Fig. 2 magnified schematic diagram.
  • the casing 10 has a preset surface 110, the preset surface 110 has a plurality of raised structures 111, the raised structures 111 have a plurality of reflective surfaces 1111, and the surface roughness Ra of the preset surface 110 is The range is: 1.5 ⁇ m ⁇ Ra ⁇ 4.0 ⁇ m.
  • the housing 10 is made of glass.
  • the housing 10 is anti-glare glass (Anti-glare glass, AG).
  • the preset surface 110 may be one surface or multiple surfaces of all the surfaces of the housing 10 , and may also be a partial surface or all surfaces of one surface of the housing 10 .
  • the selection of the preset surface 110 is determined according to the decorative effect that the casing 10 needs to present.
  • the predetermined surface 110 is taken as an example of a surface of the housing 10 for illustration, which should not be construed as a limitation to the housing 10 provided in the embodiment of the present application. It should be noted that the so-called multiple means greater than or equal to two.
  • the multiple surfaces refer to more than or equal to two surfaces.
  • the predetermined surface 110 has a plurality of protruding structures 111, and the protruding structures 111 have a plurality of reflective surfaces 1111, and the reflective surfaces 1111 are used for reflecting light.
  • each of the reflective surfaces 1111 can reflect the light, and the degree of reflection of each reflective surface 1111 is the same as that of the reflective surface 1111.
  • the angle between the housing 10 and the light is related.
  • the reflection of light by part of the reflective surface 1111 is specular reflection, so that the housing 10 appears flashing; the reflection of light by the other part of the reflective surface 1111 is diffuse reflection, so that The housing 10 has a matte finish.
  • the part of the reflective surface 1111 reflects the light as a specular reflection, the reflected light can be reflected in a concentrated manner, and when it is incident on the human eye, it can be perceived by the human eye. Therefore, the housing 10 can show flashes.
  • the part of the reflective surface 1111 reflects light diffusely, the reflected light cannot be focused and reflected to human eyes, so the housing 10 presents a matte effect.
  • the reflective surface 1111 has a different ratio between the specularly reflected part of the light and the diffusely reflected part of the light, so that the casing 10 presents different flashing effects.
  • the reflective surface 1111 has a larger ratio of specular reflection of light to the portion of diffuse reflection of light, the casing 10 exhibits a stronger flash effect; on the contrary, when the reflective surface 1111 reflects light
  • the reflective surface 1111 includes a part for specular reflection of light and a part for diffuse reflection of light, so that the housing 10 can exhibit a low flicker effect. The flashing effect of the casing 10 will be described in detail later.
  • the range of the surface roughness Ra of the preset surface 110 is: 1.5 ⁇ m ⁇ Ra ⁇ 4.0 ⁇ m, for example, the value of the roughness Ra of the preset surface 110 can be 1.5 ⁇ m, 1.6 ⁇ m, 1.7 ⁇ m, 1.8 ⁇ m ⁇ m, 1.9 ⁇ m, 2.0 ⁇ m, 2.1 ⁇ m, 2.2 ⁇ m, 2.3 ⁇ m, 2.4 ⁇ m, 2.5 ⁇ m, 2.6 ⁇ m, 2.7 ⁇ m, 2.8 ⁇ m, 2.9 ⁇ m, 3.0 ⁇ m, 3.1 ⁇ m, 3.2 ⁇ m, 3.3 ⁇ m, 3.4 ⁇ m, One of 3.5 ⁇ m, 4.0 ⁇ m, etc.
  • the greater the surface roughness of the predetermined surface 110 the greater the reflection of light by the predetermined surface 110; correspondingly, the smaller the roughness of the predetermined surface 110, the greater the It is assumed that the reflection of the surface 110 to the light is smaller.
  • the greater the surface roughness of the preset surface 110 is, the weaker the touch experience of the preset surface 110 of the housing 10 is and the stronger the gritty feeling is; correspondingly, the preset The smaller the roughness of the surface 110 is, the stronger the touch experience of the preset surface 110 of the housing 10 is, and the weaker the sandy feeling is.
  • the surface roughness Ra of the preset surface 110 is less than 1.5 ⁇ m, on the one hand, the reflection of the preset surface 110 on the light irradiated to the preset surface 110 is small, and the reflective effect of the preset surface 110 It is not obvious, and the graininess of the preset surface 110 is not strong. Therefore, compared with the roughness Ra of the preset surface 110 Ra ⁇ 1.5 ⁇ m, the flashing effect of the preset surface 110 of the housing 10 provided by the embodiment of the present application with a roughness Ra ⁇ 1.5 ⁇ m is better than that of the preset surface 110 The flashing effect of the roughness Ra ⁇ 1.5 ⁇ m is good.
  • the casing 10 provided in the embodiment of the present application has a roughness Ra ⁇ 1.5 ⁇ m of the preset surface 110 , so the present application
  • the casing 10 provided by the embodiment is more attractive.
  • the surface roughness Ra of the preset surface 110 is greater than 4.0 ⁇ m, the reflectivity of the preset surface 110 is stronger, and the touch experience of the preset surface 110 has a stronger sandy feel, and even scratches appear. . Therefore, compared with the predetermined roughness Ra>4.0 of the surface 110 , the casing 10 provided by the embodiment of the present application has a weaker sparkle.
  • the range of surface roughness Ra of the preset surface 110 of the housing 10 is: 1.5 microns ( ⁇ m) ⁇ Ra ⁇ 4.0 microns ( ⁇ m), so that the preset The reflective effect of the surface 110 on the predetermined surface 110 is relatively good, that is, the predetermined surface 110 has a low degree of sparkle, therefore, the predetermined surface 110 of the housing 10 presents a low The flashing effect and good texture, and the touch experience is both delicate and sandy.
  • the reflective surface 1111 in the embodiment of the present application is used to reflect light, and the reflective surface 1111 can reflect visible light (or called visible light), and can also reflect invisible light (or called invisible light). Since the invisible light cannot be perceived by the human eye, the visible light can be perceived by the human eye. Therefore, the reflective effect of the preset surface 110 or the reflective effect of the housing 10 referred to in this application refers to the reflection effect on visible light. The effect presented by the reflection.
  • the so-called surface roughness refers to the unevenness of the processed surface with small spacing and small peaks and valleys.
  • the surface roughness of the preset surface 110 can be tested by a roughness tester, and the roughness tester can slide a certain distance on the preset surface 110 to detect the roughness of the preset surface 110 .
  • the preset surface 110 since the preset surface 110 has a plurality of convex structures 111, and the range of the surface roughness Ra of the preset surface 110 is: 1.5 ⁇ m ⁇ Ra ⁇ 4.0 ⁇ m, when light irradiates the housing 10, the reflective surface 1111 of the raised structure 111 reflects the light, so the housing 10 presents a low flickering effect and relatively Good texture, that is, the casing 10 provided by the embodiment of the present application has a good color-material-finishing (CMF) appearance decoration effect.
  • CMF color-material-finishing
  • the range of the surface roughness Ra of the preset surface 110 is: 1.5 ⁇ m ⁇ Ra ⁇ 4.0 ⁇ m, so that the preset surface 110 has a relatively high roughness, and has both a delicate feeling and a sandy texture in the touch experience. feel.
  • the range of roughness Ra of the predetermined surface 110 is: 1.5 ⁇ m ⁇ Ra ⁇ 3.5 ⁇ m.
  • the casing 10 can have a better low-flicker effect, and the preset surface 110 In terms of touch experience, it has a more comfortable delicate feeling and a sense of sand.
  • FIG. 4 is a topography view of the predetermined surface of the housing at III in FIG. 1 under a scanning microscope;
  • FIG. 5 is a top view topography view in FIG. 4 .
  • the protruding structure 111 is a quadrangular pyramid (also called a tetrahedron), and the quadrangular pyramid has four reflective surfaces 1111 for reflecting light.
  • the protruding structure 111 is a quadrangular pyramid, and when light hits the quadrangular pyramid, the four reflective surfaces 1111 can all reflect the light, so that the preset surface 110 of the housing 10 presents a low
  • the flashing effect and good texture, and the touch experience is both delicate and sandy.
  • the distance L between the two farthest points on the orthographic projection of the protruding structure 111 on the predetermined surface 110 is in the range of: 30 ⁇ m ⁇ L ⁇ 150 ⁇ m.
  • FIG. 6 is a schematic diagram of the dimensions of the protrusion structure in FIG. 4 .
  • two points farthest from each other are selected in the orthographic projection: the first point P1 and the second point P2, the first point P1 and the second point P2
  • the distance between the second points P2 is L, and the range of L is: 30 ⁇ m ⁇ L ⁇ 150 ⁇ m.
  • the range of L is: 30 ⁇ m ⁇ L ⁇ 150 ⁇ m, which can make the preset surface 110 of the casing 10 present a low-flicker flashing effect.
  • the distance L ⁇ 30 ⁇ m the matte effect of the casing 10 is more obvious.
  • the distance L>150 ⁇ m the flashing effect of the casing 10 is too flashy, so that the texture of the casing 10 is not good. Therefore, the distance between the first point and the second point of the raised structure 111 in the housing 10 provided in the embodiment of the present application is L, and the range of L is: 30 ⁇ m ⁇ L ⁇ 150 ⁇ m, which can be This makes the preset surface 110 of the housing 10 present a low-flicker flash effect and a better texture.
  • the height H of the protruding structure 111 is: 3 ⁇ m ⁇ H ⁇ 15 ⁇ m.
  • the height H of the protruding structure 111 is less than 3 ⁇ m, the reflective effect of the predetermined surface 110 of the housing 10 is close to a matte effect.
  • the height H of the protruding structure 111 is greater than 15 ⁇ m, the predetermined surface 110 of the casing 10 exhibits too strong a reflective effect.
  • the height H of the raised structure 111 is: 3 ⁇ m ⁇ H ⁇ 15 ⁇ m, which can make the predetermined surface 110 of the housing 10 present a low-shine flashing effect and a better texture.
  • the height H of the protruding structure 111 is: 4 ⁇ m ⁇ H ⁇ 10 ⁇ m.
  • the casing 10 can have a better low-flicker flash effect and a better texture.
  • the angle ⁇ between the reflective surface of the protruding structure 111 and the predetermined surface 110 satisfies: 1/5 ⁇ tan ⁇ 1/3.
  • the angle between the reflective surface of the raised structure 111 and the preset surface 110 is smaller, the shimmer of the preset surface 110 of the casing 10 is lower, that is, the less the preset surface 110 is. Glitter; when the angle between the reflective surface of the raised structure 111 and the preset surface 110 is larger, the shimmer of the preset surface 110 of the housing 10 is higher, that is, the preset surface 110 The more flashy.
  • the angle ⁇ between the reflective surface of the raised structure 111 and the preset surface 110 satisfies: 1/5 ⁇ tan ⁇ 1/3, so that the preset surface 110 of the housing 10 presents Low-shine flash effect and good texture, and has both a delicate and sandy feel in the touch experience.
  • the haze Wd of the casing 10 is: 85% ⁇ Wd ⁇ 95%.
  • the transmittance Tg of the casing 10 is: 5% ⁇ Tg ⁇ 15%.
  • the distance Jd between the center points O1 and O2 of two adjacent protruding structures 111 is: 50 ⁇ m ⁇ Jd ⁇ 200 ⁇ m (refer to FIG. 6 ).
  • At least one or more of the haze of the casing 10, the transmittance, and the distance Jd between the center points of two adjacent raised structures 111 match the structural parameters in front of the raised structures 111 (preset At least one or more of the surface roughness Ra of the surface 110, the distance L, the height H of the protrusion, the angle ⁇ , etc.) jointly make the housing 10 present a better low-flicker effect and a better texture .
  • FIG. 7 is an enlarged schematic diagram of the line II in FIG. 2 in another embodiment.
  • the housing 10 has a first surface 10a and a second surface 10b opposite to each other.
  • the predetermined surface 110 is the entirety of the first surface 10a, it can be understood that, in other manners, the predetermined surface 110 may be a part of the predetermined surface 110 .
  • the casing 10 also has an optical film layer 120 and a cover layer 130 .
  • the optical film layer 120 is disposed on the second surface 10 b
  • the cover layer 130 is disposed on a side of the optical film layer 120 away from the housing 10 .
  • the optical film layer 120 has a color, such as blue, yellow, green, gradient color and the like.
  • the optical film layer 120 may also have a preset pattern.
  • the arrangement of the optical film layer 120 makes the casing 10 have better color and texture.
  • the cover layer can be, but not limited to, ink or primer.
  • the arrangement of the cover bottom layer 130 can ensure that the casing 10 is light-tight, so that the casing 10 presents a better appearance when viewed from the side of the predetermined surface 110 .
  • the present application also provides a shell preparation method, which can prepare the shell 10 introduced in the previous embodiments, and the shell 10 introduced in the previous embodiments can be prepared by the shell preparation method provided in the present application. become.
  • FIG. 8 is a flowchart of a shell manufacturing method provided in an embodiment of the present application.
  • the preparation method includes S110, S120 and S130.
  • the details of S110, S120 and S130 are as follows.
  • FIG. 9 is a schematic diagram of a glass substrate provided by an embodiment of the present application.
  • the glass substrate 200 generally includes various oxides, such as SiO2, Na2O, K2O, Al2O3, MgO.
  • the glass substrate 200 may be a 2D glass substrate 200 , or a 2.5D glass substrate 200 , or a 3D glass substrate 200 .
  • the surface to be treated 200 a may be one surface or multiple surfaces of all surfaces of the glass substrate 200 , and may also be a partial surface of one surface or the entire surface of the glass substrate 200 .
  • the selection of the surface to be treated 200a is determined according to the decorative effect that the casing 10 prepared from the glass substrate 200 needs to present.
  • the surface to be treated 200 a is taken as an example of a surface of the glass substrate 200 , which should not be construed as a limitation to the glass substrate 200 provided in the embodiment of the present application. It should be noted that the so-called multiple means greater than or equal to two.
  • the multiple surfaces refer to more than or equal to two surfaces.
  • FIG. 10 is a schematic flowchart of S120 in FIG. 8 .
  • FIG. 11 to FIG. 13 are schematic diagrams of the reaction of the glass substrate through each step in S120 in sequence.
  • S120 specifically includes S121 , S122 and S123 , and S121 , S122 and S123 are described in detail as follows.
  • the area of the surface to be treated 200a not covered by the crystal nucleus 310 continues to react with the frosting liquid to form a crystal 320, and the crystal 320 is adsorbed on the crystal nucleus 310 to grow, and the crystal 320 It is used to prevent the covered glass substrate 200 from reacting with the frosting solution. Please also refer to FIG. 12 for the structure of the glass substrate 200 after S122 .
  • the area of the surface to be treated 200 a covered by the crystal nuclei 310 stops reacting with the frosting liquid due to the protection of the crystal nuclei 310 .
  • the area of the surface to be treated 200a not covered by the crystal nucleus 310 continues to react with the frosting solution to form crystals 320, the crystals 320 are adsorbed on the crystal nucleus 310 and grow laterally, and the crystals 320
  • the glass substrate 200 covered by the crystal 320 can be protected to suppress or even prevent the covered glass substrate 200 from reacting with the frosting liquid until the surface 200a of the glass substrate 200 to be treated has a preset thickness
  • the crystal film 300 covers.
  • the thickness of the part of the glass substrate 200 covered by the crystal nucleus 310 is the smallest. thick, while the thickness of the glass substrate 200 covered by the crystal 320 is thinner, and the thickness of the glass substrate 200 becomes thinner as it is farther away from the crystal nucleus 310 .
  • the shell 10 is usually prepared by spraying frosting liquid on the glass substrate 200. Since the frosting liquid contains additive particles, in order to spray the frosting liquid smoothly, the frosting liquid The additive particles in the paint should not be made too large, and the frosting liquid should not be made too viscous, otherwise the frosting liquid may block the spray nozzle of the spraying frosting liquid and cannot be sprayed out.
  • the glass substrate 200 is soaked in the frosting liquid, and there is no problem of the frosting liquid blocking the nozzle. Therefore, the auxiliary agent particles in the frosting liquid can be made smaller. Therefore, the housing 10 can be prepared with a sense of fineness and graininess in the touch experience.
  • the method for preparing the casing provided by the embodiment of the present application can obtain a higher roughness to the touch.
  • the shell preparation method provided by the embodiment of the present application soaks the glass substrate 200 in the frosting solution, so the surface 200a of the glass substrate 200 to be treated can fully contact with the frosting solution, which is beneficial to improve the performance of the frosting solution.
  • the efficiency of processing the surface 200a of the glass substrate 200 to be processed is determined.
  • the glass substrate 200 is thrown in the frosting liquid, so that the crystal nuclei 310 can be more distributed on the glass substrate 200.
  • the uniformity of the produced crystal film 300 can be made relatively consistent, and thus the thickness of the finally prepared raised structure 111 can be improved.
  • the size and structure meet the requirements. Further, if the glass substrate 200 is immersed in the frosting liquid without being thrown, the frosting liquid around the glass substrate 200 will react with the glass substrate 200, so that the The concentration of the reactant in the frosting liquid around the glass substrate 200 decreases, so that the concentration of the reactant in the frosting liquid around the glass substrate 200 is less than the concentration of the reactant farther away from the glass substrate 200, and thus makes all The growth rate of the crystal film 300 becomes slower.
  • the glass substrate 200 is soaked in the frosting solution and thrown, which can also make the concentration of the frosting solution more uniform everywhere, and then make the frosting solution
  • the concentration of the reactants in each part of the film is relatively balanced, thereby making the growth rate of the crystal film 300 faster and shortening the preparation time of the shell 10 .
  • the frosting solution includes: hydrofluoric acid (HF) in the range of 5% to 10% by weight; ammonium bifluoride (NH 4 HF 2 ) in the range of 35% to 50% by weight ; Hydrochloric acid (HCl) in the range of 20% to 35% by weight; Barium sulfate (BaSiO 2 ) in the range of 3% to 5% by weight; and Water in the range of 5% to 10% by weight.
  • HF hydrofluoric acid
  • NH 4 HF 2 ammonium bifluoride
  • HCl Hydrochloric acid
  • BaSiO 2 Barium sulfate
  • Water in the range of 5% to 10% by weight.
  • the selection of the percentage by weight of each component in the frosting liquid can affect the crystal form formed by the reaction between the frosting liquid and the glass substrate 200, and ultimately affect the raised structure formed on the preset surface 110 111 , the shape of the protruding structure 111 affects the flashing effect and touch of the housing 10 .
  • the selection of the weight percentages of the various components in the frosting liquid can also affect the yield of the manufactured shell 10 .
  • the frosting liquid selected in the embodiment of the present application can make the raised structure 111 of the preset surface 110 of the prepared shell 10 have a better shape, and the preset surface 110 of the shell 10 presents a low sparkle Excellent flashing effect and good texture, as well as delicate and sandy feeling in the touch experience, in addition, it makes the housing 10 have a higher yield rate when manufacturing.
  • the glass substrate 200 is placed in the frosting solution, and the hydrofluoric acid (HF) in the frosting solution reacts with the glass substrate 200 (containing SiO 2 ) to generate complex fluosilicic acid (H 2 SiF 6 ), see Reaction Formula (1), Reaction Formula (2) and Reaction Formula (3) for details.
  • complex fluosilicic acid refers to fluosilicic acid in a complex state.
  • the generated SiF 4 is gaseous and does not completely volatilize.
  • the reactions of the reaction formulas (2) and (3) mainly proceed to generate complex fluorosilicic acid (H 2 SiF 6 ).
  • reaction formulas (4), (5), and (6) reacts with various oxides in the glass substrate 200 to form fluorides
  • reaction formulas (4), (5), and (6) for details.
  • reaction formula (4), (5), (6), (7) are as follows in detail.
  • reaction formula (4), (5), (6), (7) can generate various cations (recorded as M+, be that M is Na ion, Al ion, Mg ion in the present embodiment, K ions, NH 4 ions, etc.).
  • M 2 SiF 6 The complex fluorosilicic acid (H 2 SiF 6 ) reacts with the cations in the frosting solution to generate M 2 SiF 6 , and the M 2 SiF 6 serves as the crystal nucleus 310 .
  • M 2 SiF 6 includes Na 2 SiF 6 , Al 2 Si 3 F 18 , MgSiF 6 , K 2 SiF 6 , (NH 4 ) 2 SiF 6 .
  • the area of the surface to be treated 200 a not covered by the crystal nuclei 310 continues to react with the frosting solution to form crystals 320 .
  • the area of the glass substrate 200 not covered by the crystal nuclei 310 continues to react with the hydrofluoric acid in the frosting solution to produce fluorosilicate (M 2 SiF 6 ), the Fluorosilicate is used as the crystal 320 .
  • the fluorosilicate may be, but not limited to, Na 2 SiF 6 , Al 2 Si 3 F 18 , MgSiF 6 , K 2 SiF 6 , (NH 4 ) 2 SiF 6 .
  • the frosting solution includes: hydrofluoric acid in a range of 6% to 8% by weight; ammonium bifluoride in a range of 42% to 45% by weight; and a range of 28% by weight -30% hydrochloric acid; 4% by weight barium sulfate; and 8% by weight water.
  • the selection of the percentage by weight of each component in the frosting liquid can affect the crystal form formed by the reaction between the frosting liquid and the glass substrate 200, and ultimately affect the raised structure formed on the preset surface 110 111 , the shape of the protruding structure 111 affects the flashing effect and touch of the housing 10 .
  • the selection of the weight percentages of the various components in the frosting liquid can also affect the yield of the manufactured shell 10 .
  • the frosting liquid selected in the embodiment of the present application can make the raised structure 111 of the preset surface 110 of the prepared shell 10 have a better shape, and the preset surface 110 of the shell 10 presents a better appearance. It has a low-shine flashing effect and better texture, and has both a delicate and sandy feel in the touch experience. In addition, it makes the casing 10 have a higher yield rate.
  • FIG. 14 is a schematic diagram of the structure after S130 .
  • the method of removing the crystal film 300 may be, but not limited to, removing the crystal film 300 with water, as long as the crystal film 300 can be removed without damaging the glass substrate 200 covered by the crystal film 300 .
  • the surface to be treated 200 a becomes the predetermined surface 110 , and the predetermined surface 110 has a raised structure 111 thereon.
  • the immersing the glass substrate 200 in the frosting solution and throwing it includes: placing the glass substrate 200 on the carrier 900 and making the extension of the glass substrate 200
  • the range of the angle A between the direction and the vertical direction is: -10° ⁇ A ⁇ 10°, and the carrier 900 and the glass substrate 200 are immersed in the frosting solution.
  • the so-called extending direction of the glass substrate 200 generally refers to the longitudinal direction of the glass substrate 200 .
  • the absolute value of the angle between the extension direction of the glass substrate 200 and the vertical direction is larger, the resistance of the frosting solution to the glass substrate 200 when immersed in the frosting solution is greater. , and even cause the frosting liquid to splash; correspondingly, when the absolute value of the angle between the extension direction of the glass substrate 200 and the vertical direction is smaller, the glass substrate 200 is immersed in the The smaller the resistance of the frosting liquid when it is in the frosting liquid, the less likely it is to cause the frosting liquid to splash.
  • the range of the angle A between the extension direction of the glass substrate 200 and the vertical direction is: -10° ⁇ A ⁇ 10°, which can make the resistance of the glass substrate 200 when soaked in the frosting solution relatively small. Small, and not easy to cause the frosting liquid to splash.
  • the value of the angle A between the extension direction of the glass substrate 200 and the vertical direction is -10°, or -8°, or -5°, or 0°, or 5°, or 8°, or 10°.
  • Figure 15 is a schematic diagram when the angle A between the extending direction of the glass substrate and the vertical direction is equal to zero.
  • FIG. 16 is a schematic diagram showing that the angle A between the extending direction of the glass substrate and the vertical direction is -10°.
  • the extending direction of the glass substrate is marked as D1
  • the vertical direction is marked as D2
  • the angle between D1 and D2 is angle A. It should be noted that, the extending direction of the glass substrate refers to the longitudinal direction of the glass substrate.
  • the range of the angle A between the extension direction of the glass substrate 200 and the vertical direction is: -10° ⁇ A ⁇ 10°, which can make the resistance of the glass substrate 200 when soaked in the frosting solution relatively small. Small, and not easy to cause the frosting liquid to splash.
  • the angle A between the extending direction of the glass substrate 200 and the vertical direction is equal to zero degrees.
  • the extending direction of the glass substrate 200 is the vertical direction.
  • the glass substrate 200 will suffer less resistance when soaked in the frosting solution, and it is not easy to cause the frosting solution to splash.
  • the glass substrate 200 may be placed on a carrier 900 (eg, a suction cup).
  • the suction cup may be, but not limited to, an acid-resistant polymer suction cup. Since the suction cup has a certain degree of flexibility, when the suction cup is adsorbed on the glass substrate 200, there may be problems when the glass substrate 200 is placed on the carrier 900.
  • the extension direction of 200 is not perpendicular to the vertical direction. When multiple glass substrates 200 are placed on the carrier 900 , the extending direction of each glass substrate 200 in the multiple glass substrates 200 may be the same or different.
  • the immersing the glass substrate 200 in the frosting solution and throwing includes: the throwing velocity V when the glass substrate 200 is immersed in the frosting solution and throwing The range is: 400mm/s ⁇ V ⁇ 2000mm/s.
  • the glass substrate 200 When the glass substrate 200 is thrown in the frosting liquid and the throwing speed is too small, such as V ⁇ 400mm/s, flow marks will be left on the surface of the final shell 10 and the color will be different. Wait bad. When the glass substrate 200 is placed in the frosting liquid and the throwing speed is too high, for example, when V>2000mm/s, the upper and lower ends of the glass substrate 200 will be distorted.
  • the size of the protruding structure 111 is relatively large, that is, the size of the protruding structure 111 in the prepared casing 10 is not uniform.
  • the range of V is: 400mm/s ⁇ V ⁇ 2000mm/s, which can make the protrusion structure 111 at the predetermined surface 110 of the prepared casing 10
  • the size is uniform, the reflective color difference everywhere is small or even no visible color difference to the naked eye.
  • the immersing the glass substrate 200 in the frosting solution and throwing includes: the throwing distance d when the glass substrate 200 is immersed in the frosting solution and thrown The range is: 30mm ⁇ d ⁇ 150mm.
  • the size of the protruding structures 111 on the predetermined surface 110 of the prepared shell 10 is not uniform.
  • the throwing distance d is too large, for example, d>150 mm, heterochromatic spots will appear on the preset surface 110 of the prepared casing 10 .
  • the range of the throwing distance d is: 30mm ⁇ d ⁇ 150mm, so that the size of the raised structures 111 on the predetermined surface 110 of the prepared shell 10 is uniform, each The reflective chromatic aberration is small or even without the effect of chromatic aberration visible to the naked eye.
  • the immersing the glass substrate 200 in the frosting solution and throwing includes: the throwing frequency f when the glass substrate 200 is immersed in the frosting solution and throwing The range is: 1 time/second (S) ⁇ f ⁇ 5 times/second (S).
  • the preset surface 110 of the prepared shell 10 will be There are regions where the protrusion structure 111 is not formed.
  • the throwing frequency f is relatively high, the raised structures 111 formed on the predetermined surface 110 of the casing 10 are likely to be uneven when the total duration t of the frosting process is constant. , when the light is irradiated onto the predetermined surface 110 , the reflective effect of the predetermined surface 110 is inconsistent.
  • the range of the throwing frequency f is: 1 time/second (S) ⁇ f ⁇ 5 times/second (S), so that the convexity of the prepared surface 110 of the prepared shell 10 is
  • the size of the structure 111 is uniform, and the reflective color difference is small or even no visible color difference to the naked eye.
  • the glass substrate 200 is soaked in the frosting solution and thrown, and the total duration t lasts in the range of: 60S ⁇ t ⁇ 400S.
  • the frosting solution may damage the formed crystal film 300 , and further damage the shape of the finally formed protruding structure 111 .
  • the range of the total duration t is: 60S ⁇ t ⁇ 400S, which can make the size of the raised structures 111 everywhere on the preset surface 110 of the prepared shell 10 uniform, and the convex The shape of the structure 111 will not be destroyed. Furthermore, the preset surface 110 of the prepared casing 10 presents a low-flicker effect and a good texture, and has both a delicate and sandy feeling in the touch experience.
  • the range of the angle B between the throwing direction of the glass substrate 200 in the frosting liquid and the extending direction of the glass substrate 200 is: -10° ⁇ B ⁇ 10°.
  • the glass substrate 200 When the absolute value of the angle between the throwing direction of the glass substrate 200 in the frosting liquid and the extending direction of the glass substrate 200 is larger, the glass substrate 200 will The greater the resistance of the frosting liquid when swinging in the liquid, it may even cause the splashing of the frosting liquid; correspondingly, when the throwing direction of the glass substrate 200 in the frosting liquid The greater the absolute value of the angle between the extending directions of the material 200, the smaller the resistance of the frosting liquid that the glass substrate 200 receives when it is immersed in the frosting liquid, and the less likely it is to cause the frosting liquid. Frosting fluid splattered.
  • the range of the angle B between the throwing direction of the glass substrate 200 in the frosting liquid and the extending direction of the glass substrate 200 is: -10° ⁇ B ⁇ 10°, so that The glass substrate 200 receives less resistance when swinging in the frosting liquid, and it is not easy to cause the frosting liquid to splash out.
  • the value of the angle B between the throwing direction of the glass substrate 200 in the frosting liquid and the extending direction of the glass substrate 200 is -10°, or -8° , or -5°, or 0°, or 5°, or 8°, or 10°.
  • the soaking the glass substrate 200 in the frosting solution and throwing includes: throwing the glass substrate 200 along the extending direction of the glass substrate 200 .
  • the glass substrate 200 is thrown along the extending direction of the glass substrate 200, that is, the throwing direction of the glass substrate 200 and the extending direction of the glass substrate 200 are same.
  • the angle B between the throwing direction of the glass substrate 200 in the frosting liquid and the extending direction of the glass substrate 200 is equal to zero. It can be seen that throwing the glass substrate 200 along the extending direction of the glass substrate 200 can make the glass substrate 200 receive less resistance when thrown in the frosting liquid, And it is not easy to cause the frosting liquid to splash out.
  • the throwing direction can also be horizontal throwing (that is, left and right throwing), or circular throwing, as long as the glass substrate 200 can be placed in the frosting liquid Just toss.
  • the various parameters for the glass substrate 200 to be soaked in the frosting liquid and toss include: the angle A between the extension direction of the glass substrate 200 and the vertical direction, the throwing speed V, the throwing speed V, and the throwing speed.
  • Each of the above parameters can act independently, or any two or more can be combined.
  • the angle A is combined with the throwing speed V, or the angle A is combined with the throwing distance d, or the angle A is combined with the throwing frequency f, or the angle A is combined with the continuous total
  • the combination of duration t, or the combination of angle A and angle B, or the combination of throwing speed V and throwing distance d, or the combination of throwing speed V and throwing frequency f, or the combination of throwing speed V and the total duration t Either the throwing speed V is combined with the angle B, or the throwing distance d is combined with the throwing frequency f, or the throwing distance d is combined with the total duration t, or the throwing distance d is combined with the angle B, or the throwing frequency f Combine with the total duration t of the duration, or combine the total duration t of the duration with the angle B. and so on.
  • the angle A between the extension direction of the glass substrate 200 and the vertical direction, the throwing speed V, The throwing distance d, the throwing frequency f, and the total duration t are all
  • the temperature Tm at which the glass substrate 200 is soaked in the frosting solution and thrown is: 10°C ⁇ Tm ⁇ 30°C.
  • the reaction speed of the glass substrate 200 in the frosting liquid is too slow, and the manufacturing efficiency of the shell 10 is low.
  • the temperature Tm is too high (for example, Tm>30°C)
  • the reaction speed of the glass substrate 200 in the frosting solution is too fast, which easily causes corrosion spots (commonly known as mildew) on the prepared glass substrate 200. point), thereby reducing the yield of the casing 10 .
  • selecting 10° C. ⁇ Tm ⁇ 30° C. can make the casing 10 according to the glass substrate 200 have higher manufacturing efficiency and better quality.
  • FIG. 18 is a flow chart of a shell manufacturing method provided in another embodiment of the present application.
  • the shell preparation method includes S110, S10, S120, and S130.
  • S10 is also included between S110 and S120.
  • S110, S120, and S130 please refer to the previous description, and details will not be repeated here.
  • S10 is introduced in detail as follows.
  • Cleaning the surface 200a to be treated with a cleaning solution can remove impurities such as dust and oil stains on the surface 200a to be treated, so as to ensure the smooth progress of frosting treatment on the glass substrate 200 with the frosting solution , and the uniformity of the raised structure 111 obtained after frosting treatment on the surface to be treated 200a.
  • the cleaning solution may be, but not limited to, water, or an acid solution capable of degreasing (eg, hydrofluoric acid, nitric acid).
  • an acid solution capable of degreasing eg, hydrofluoric acid, nitric acid.
  • the method of cleaning the surface 200a to be treated with the cleaning solution may be, but not limited to, immersing the glass substrate 200 in the cleaning solution for cleaning, or spraying the glass substrate 200 with the cleaning solution.
  • the application is not limited, as long as the surface 200a to be treated can be cleaned.
  • the range of the angle C between the extending direction of the glass substrate 200 and the vertical direction is: -45° ⁇ C ⁇ 45° °, and soak the carrier 900 and the glass substrate 200 in the cleaning solution.
  • the absolute value of the angle between the extension direction of the glass substrate 200 and the vertical direction is greater, the resistance of the cleaning solution to the glass substrate 200 when immersed in the cleaning solution is greater, even cause the cleaning solution to splash; correspondingly, when the absolute value of the angle between the extension direction of the glass substrate 200 and the vertical direction is smaller, the glass substrate 200 will The smaller the resistance of the cleaning liquid, the less likely it is to cause the cleaning liquid to splash.
  • the range of the angle C between the extension direction of the glass substrate 200 and the vertical direction is: -45° ⁇ C ⁇ 45°, which can make the resistance of the glass substrate 200 less when immersed in the cleaning solution , and it is not easy to cause the cleaning solution to splash.
  • the range of the angle between the extension direction of the glass substrate 200 and the vertical direction is: -45° ⁇ C ⁇ 45°, which can make the cleaning liquid on the glass substrate 200 flow down quickly to prevent the glass substrate from Too much cleaning liquid remaining on the material 200 will affect the process of immersing the glass substrate 200 into the frosting solution for frosting treatment, reducing or even avoiding the glass substrate 200 being soaked in the frosting solution for frosting.
  • the predetermined surface 110 of the casing 10 obtained after the treatment presents visually visible abnormal colors, flow marks, etc., so that the prepared casing 10 has a better appearance.
  • the value of the angle C between the extension direction of the glass substrate 200 and the vertical direction is -45°, or -30°, or -15°, or 0°, or 15°, or 30°, or 45°.
  • the range of the angle C between the extending direction of the glass substrate 200 and the vertical direction is: -10° ⁇ C ⁇ 10°.
  • the range of the angle C between the extension direction of the glass substrate 200 and the vertical direction is: -10° ⁇ C ⁇ 10°, which can make the resistance of the glass substrate 200 less when immersed in the cleaning solution , and it is not easy to cause the cleaning solution to splash.
  • the range of the angle between the extension direction of the glass substrate 200 and the vertical direction is: -10° ⁇ C ⁇ 10°, so that the cleaning solution on the glass substrate 200 can flow down quickly to prevent the glass substrate from Too much cleaning liquid remaining on the material 200 will affect the process of immersing the glass substrate 200 into the frosting solution for frosting treatment, reducing or even avoiding the glass substrate 200 being soaked in the frosting solution for frosting.
  • the predetermined surface 110 of the casing 10 obtained after the treatment presents visually visible abnormal colors, flow marks, etc., so that the prepared casing 10 has a better appearance.
  • the angle C between the extending direction of the glass substrate 200 and the vertical direction is equal to zero degrees.
  • the extending direction of the glass substrate 200 is the vertical direction.
  • the glass substrate 200 will receive less resistance when soaked in the cleaning solution, and the cleaning solution will not easily be splashed. .
  • the angle C between the extension direction of the glass substrate 200 and the vertical direction is equal to zero degree, so that the cleaning liquid on the glass substrate 200 can flow down quickly, so as to avoid excessive cleaning liquid remaining on the glass substrate 200 It affects the process of immersing the glass substrate 200 in the frosting solution for frosting treatment, and reduces or even avoids the preheating of the shell 10 obtained after the glass substrate 200 is soaked in the frosting solution for frosting treatment.
  • the surface 110 is provided with visually visible different colors, flow marks, etc., so that the prepared casing 10 has a better appearance.
  • the S10 specifically includes S101, S102, and S103, and S101, S102, and S103 are described in detail as follows. Please refer to FIG. 19 , which is a schematic flowchart of S10 in FIG. 18 .
  • the method of cleaning the surface 200a to be treated with water may be, but not limited to, immersing the glass substrate 200 in a device (such as a tank) containing water for cleaning, or rinsing the glass substrate 200 with water. Clean by spraying etc.
  • the glass substrate 200 is placed on the carrier 900, and the carrier 900 and the glass substrate 200 are soaked together in a device filled with water for cleaning.
  • the water is selected as pure water.
  • the duration t1 during which the glass substrate 200 is soaked in the device filled with water can be selected as: 60 seconds (S) ⁇ t1 ⁇ 120 seconds (S).
  • the temperature when the glass substrate 200 is soaked in a device filled with water for cleaning can be selected as normal temperature (for example, 25° C.).
  • pre-cleaning can be performed on the surface 200 a of the glass substrate 200 to be treated.
  • the method of cleaning the surface 200a to be treated with an acid solution may be, but not limited to, immersing the glass substrate 200 in a device (such as a tank) containing an acid solution for cleaning, or putting the glass
  • the substrate 200 is cleaned with an acid that is easily sprayed.
  • the acid solution may be, but not limited to, one acid or a mixture of multiple acids.
  • the acid solution may include hydrofluoric acid and nitric acid.
  • the acid solution includes hydrofluoric acid (HF) with a weight percentage W 1 of 1% ⁇ W 1 ⁇ 5%, nitric acid (HNO3) with a weight percentage of W 2 of 3% ⁇ W2 ⁇ 10%. ), and water.
  • the duration t2 during which the glass substrate 200 is soaked in the device containing the acid solution can be selected as: 60 seconds (S) ⁇ t2 ⁇ 180 seconds (S).
  • the temperature when the glass substrate 200 is soaked in an acid solution for cleaning can be selected as normal temperature (for example, 25° C.).
  • the nitric acid in the acid solution can be used to clean the oil stain on the glass substrate 200 .
  • the hydrofluoric acid in the acid solution can activate the glass substrate 200, which facilitates the subsequent frosting process when the glass substrate 200 is soaked in the frosting solution.
  • the glass substrate 200 may be excessively corroded; when the weight percentage of the hydrofluoric acid in the acid solution is too low, the The acid solution does not sufficiently activate the glass substrate 200 .
  • the concentration of hydrofluoric acid and nitric acid in the acid solution in the present embodiment can be selected so that the glass substrate 200 will not be corroded excessively, the glass substrate 200 can be cleaned, and the glass substrate 200 can be properly activated.
  • the surface to be treated 200a that has been cleaned with an acid solution is cleaned with an aqueous solution, which can reduce or even avoid the impact on the subsequent cleaning of the glass substrate 200 when the acid solution remains on the surface to be treated 200a. Interference during frosting treatment in the frosting solution.
  • the duration t3 during which the glass substrate 200 is soaked in the device filled with water may be selected as follows: 60 seconds (S) ⁇ t3 ⁇ 120 seconds (S).
  • the temperature when the glass substrate 200 is soaked in a device filled with water for cleaning can be selected as normal temperature (for example, 25° C.).
  • the surface to be treated 200a can also be cleaned only with water; or only the surface to be treated 200a is cleaned with an acid solution; or the surface to be treated is first treated with an acid solution 200a for cleaning, and then use water to clean the surface 200a to be treated that has been cleaned with an acid solution, as long as the glass substrate 200 is cleaned.
  • FIG. 20 is a flowchart of a shell manufacturing method provided in another embodiment of the present application.
  • the shell preparation method includes S110, S10, S20, S120, and S130.
  • the casing preparation method further includes S20.
  • S110 , S10 , S120 , and S130 please refer to the previous description, and details will not be repeated here.
  • the detailed introduction of S20 is as follows.
  • Shaking the cleaned glass substrate 200 to get rid of the cleaning solution remaining on the glass substrate 200 can prevent the remaining cleaning solution on the glass substrate 200, thereby reducing or even avoiding the cleaning solution remaining on the to-be-treated glass substrate 200.
  • the predetermined surface 110 of the casing 10 obtained after the frosting treatment in the solution presents visually visible abnormal colors, flow marks, etc., so that the prepared casing 10 has a better appearance.
  • FIG. 21 is a flow chart of a shell manufacturing method provided in another embodiment of the present application.
  • the glass substrate 200 also includes a non-treated surface 200b.
  • the preparation method Before S120, immersing the glass substrate 200 in the frosting solution and throwing it to form a crystal film 300 on the surface 200a to be treated, the preparation method also includes S1 and S2.
  • the preparation method also includes that S1 and S2 can be combined into the shell preparation method provided in any of the preceding embodiments.
  • the preparation method includes S1, S110, S120, S130 and S2.
  • the preparation method includes S110, S1, S10, S120, S130 and S2.
  • the preparation method includes S110, S1, S10, S20, S120, S130 and S2.
  • the preparation method includes S110, S1, S10, S120, S130, and S2 as an example, which should not be construed as a limitation to the shell preparation method provided in the embodiment of the present application.
  • the preparation method includes S110, S1, S10, S120, S130, and S2.
  • S1 and S2 are described in detail as follows. For S110, S10, S120, and S130, please refer to the previous description, and will not be repeated here. .
  • the non-treated surface 200b refers to a surface that does not need to be treated by the frosting process. In other words, the non-treated surface 200b does not need to react with the frosting solution.
  • the material of the protective film 800 may be but not limited to ink. The ink can protect the non-treated surface 200b from being corroded by the frosting solution, and the ink has better stability and does not react with the frosting solution and the cleaning solution.
  • the casing 10 has a predetermined surface 110 obtained from the surface to be processed 200a, and the predetermined surface 110 has a plurality of convex structures 111 , the protruding structure 111 has a plurality of reflective surfaces 1111 , and the surface roughness Ra of the predetermined surface 110 is in the range of: 1.5 ⁇ m ⁇ Ra ⁇ 4.0 ⁇ m.
  • an alkaline stripper can be selected to remove the protective film 800 .
  • the glass substrate 200 is soaked in the alkaline release agent, the temperature Tc: 60° C. ⁇ Tc ⁇ 80° C., and the duration tc: 30 minutes ⁇ tc ⁇ 40 minutes.
  • FIG. 22 is a flowchart of a shell manufacturing method provided in another embodiment of the present application.
  • the shell preparation method is used to prepare a 2.5D shell or a 3D shell.
  • the S110 specifically includes S111 and S112, and the details of S111 and S112 are as follows. Among them, S111 is located before S1, and S112 is located after S1. Therefore, the specific descriptions of S111, S1 and S112 are as follows.
  • S110 specifically including S111 and S112 can be combined in the preparation method provided in any of the above embodiments. In this embodiment, the combination of S110 including S111 and S112 in the preparation method including S1, S120 and S130 is illustrated as an example.
  • FIG. 23 is a schematic diagram of the glass substrate before the concave surface is polished
  • FIG. 24 is a schematic diagram of the glass substrate after the concave surface is polished.
  • the glass substrate 200 is usually hot-bent to form a curved glass substrate 200, and the concave surface 21 of the curved glass substrate 200 has mold impressions 220 , the imprint will affect the strength of the glass substrate 200 . Therefore, polishing the concave surface 21 can remove the imprint 220 on the concave surface 21 , so that the glass substrate 200 has better strength.
  • FIG. 25 is a schematic diagram of the glass substrate after S1.
  • FIG. 26 is a schematic diagram of the glass substrate after S112 .
  • the glass substrate 200 is usually hot-bent to form a curved glass substrate 200, and the convex surface 22 of the curved glass substrate 200 also has mold impressions. 220. Since the convex surface 22 of the curved glass substrate 200 has mold impressions 220 , the impressions 220 will affect the strength of the glass substrate 200 . Therefore, polishing the convex surface 22 can remove the imprint 220 on the convex surface 22 , so that the glass substrate 200 has better strength.
  • FIG. 27 is a schematic diagram of the glass substrate after S120.
  • FIG. 28 is an enlarged schematic view at V in FIG. 27 .
  • FIG. 29 is a schematic view of the glass substrate shown in FIG. 28 after S130 .
  • FIG. 30 is a schematic view of the glass substrate shown in FIG. 29 after S2.
  • FIG. 31 is a perspective view of an electronic device provided by an embodiment of the present application
  • FIG. 32 is an exploded view of the electronic device shown in FIG. 31 .
  • the electronic device 1 may be, but not limited to, a mobile phone, a tablet computer and other devices with a casing 10 .
  • the preset surface 110 of the casing 10 constitutes a part of the appearance surface of the electronic device 1 .
  • the electronic device 1 includes a display screen 30 , a middle frame 70 , a circuit board 40 and a camera module 50 in addition to the casing 10 .
  • the casing 10 and the display screen 30 are respectively disposed on opposite sides of the middle frame 70 .
  • the middle frame 70 is used to bear the display screen 30 , and the sides of the middle frame 70 are exposed from the casing 10 and the display screen 30 .
  • the casing 10 and the middle frame 70 form an accommodating space for accommodating the circuit board 40 and the camera module 50 .
  • the casing 10 has a light-transmitting portion 20c, and the camera module 50 can take pictures through the light-transmitting portion 20c on the casing 10, that is, the camera module 50 in this embodiment is a rear camera module .
  • the light-transmitting portion 20c may be disposed on the display screen 30 , that is, the camera module 50 is a front-facing camera module.
  • the light-transmitting portion 20c is used as an opening for illustration. In other embodiments, the light-transmitting portion 20c may not be an opening, but a light-transmitting material, such as plastic, glass, etc. .
  • the electronic device 1 described in this embodiment is only a form of the electronic device 1 applied to the casing 10, and should not be construed as a limitation to the electronic device 1 provided in this application, nor should it be understood It is a limitation of the housing 10 provided by various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Casings For Electric Apparatus (AREA)
  • Surface Treatment Of Glass (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供一种壳体、壳体制备方法及电子设备。所述壳体具有预设表面,所述预设表面具有多个凸起结构,所述凸起结构具有多个反光面,所述预设表面的表面粗糙度Ra的范围为:1.5μm≤Ra≤4.0μm。本申请实施方式提供的壳体,由于所述预设表面具有多个凸起结构,当光线照射至所述壳体时,所述凸起结构的所述反光面对所述光线进行反射,因此,所述壳体呈现出闪光效果,即,本申请实施方式提供的壳体具有较好的CMF外观装饰效果。此外,所述预设表面的表面粗糙度Ra的范围为:1.5μm≤Ra≤4.0μm,从而使得所述预设表面具有较高的粗糙度,在触摸体验上兼具细腻感以及砂粒感。

Description

壳体、壳体制备方法及电子设备
本申请要求2021年10月15日递交的申请名称为“壳体、壳体制备方法及电子设备”的申请号为202111207830.8的在先申请优先权,上述在先申请的内容以引用的方式并入本文本中。
技术领域
本申请涉及电子技术领域,尤其涉及一种壳体、壳体制备方法及电子设备。
背景技术
随着技术的发展,手机和平板电脑等电子设备已经成为了人们不可或缺的工具。消费者在面对琳琅满目的电子设备时,不仅需要考虑电子设备的功能是否满足自身需求,电子设备的壳体的外观也是左右消费者是否选购的重要因素之一。相关技术中的壳体的外观效果相对单一,无法满足用户对壳体的外观效果的丰富追求。
发明内容
第一方面,本申请提供一种壳体,所述壳体具有预设表面,所述预设表面具有多个凸起结构,所述凸起结构具有多个反光面,所述预设表面的表面粗糙度Ra的范围为:1.5μm≤Ra≤4.0μm。
第二方面,本申请提供一种壳体制备方法,所述制备方法包括:
提供玻璃基材,所述玻璃基材包括待处理表面;
将所述玻璃基材浸泡于蒙砂液中并进行抛动,以在待处理表面形成晶体膜;以及
去除所述晶体膜,以得到壳体,其中,所述壳体具有由所述待处理表面得到的预设表面,且所述预设表面具有多个凸起结构,所述凸起结构具有多个反光面,所述预设表面的表面粗糙度Ra的范围为:1.5μm≤Ra≤4.0μm。
第三方面,本申请提供一种电子设备,所述电子设备包括如第一方面所述的壳体。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施方式提供的壳体的结构示意图;
图2为图1中沿着I-I线的剖视图;
图3为图2中II处的放大示意图;
图4为图1中III处的壳体的预设表面在扫描显微镜下的形貌图;
图5为图4中的俯视形貌图;
图6为图4中凸起结构的尺寸示意图;
图7为另一实施方式中图2中沿II处的放大示意图;
图8为本申请一实施方式提供的壳体制备方法的流程图;
图9为本申请一实施方式提供的玻璃基材的示意图;
图10为图8中S120所包括的流程示意图;
图11至图13依次为玻璃基材经过S120中的各个步骤的反应示意图;
图14为经过S130之后的结构示意图;
图15为所述玻璃基材的延伸方向与所述竖直方向的角度A等于零度时的示意图;
图16为所述玻璃基材的延伸方向与所述竖直方向的角度A为-10°的示意图;
图17为所述玻璃基材的延伸方向与所述竖直方向的角度A为+10°的示意图;
图18为本申请另一实施方式提供的壳体制备方法的流程图;
图19为图18中S10所包括的流程示意图;
图20为本申请又一实施方式提供的壳体制备方法的流程图;
图21为本申请另一实施方式提供的壳体制备方法的流程图;
图22为本申请另一实施方式提供的壳体制备方法的流程图;
图23为对凹面进行抛光之前的玻璃基材的示意图;
图24为对凹面进行抛光之后的玻璃基材的示意图;
图25为经过S1之后的玻璃基材的示意图;
图26为经过S112之后的玻璃基材的示意图;
图27为经过S120之后的玻璃基材的示意图;
图28为图27中V处的放大示意图;
图29为图28中所示的玻璃基材经过S130之后的示意图;
图30为图29中所示的玻璃基材经过S2之后的示意图;
图31为本申请一实施方式提供的电子设备的立体示意图;
图32为图31中所示的电子设备的分解示意图。
具体实施方式
第一方面,本申请提供一种壳体,其中,所述壳体具有预设表面,所述预设表面具有多个凸起结构,所述凸起结构具有多个反光面,所述预设表面的表面粗糙度Ra的范围为:1.5μm≤Ra≤4.0μm。
其中,所述预设表面的粗糙度Ra的范围为:1.5μm≤Ra≤3.5μm。
其中,所述凸起结构在所述预设表面上的正投影上相距最远的两点之间的距离L的范围为:30μm≤L≤150μm。
其中,所述凸起结构的高度H为:3μm≤H≤15μm。
其中,所述凸起结构为四棱锥,所述四棱锥具有四个反光面,所述反光面用于反射光线。
第二方面,本申请提供一种壳体制备方法,其中,所述制备方法包括:
提供玻璃基材,所述玻璃基材包括待处理表面;
将所述玻璃基材浸泡于蒙砂液中并进行抛动,以在待处理表面形成晶体膜;以及
去除所述晶体膜,以得到壳体,其中,所述壳体具有由所述待处理表面得到的预设表面,且所述预设表面具有多个凸起结构,所述凸起结构具有多个反光面,所述预设表面的表面粗糙度Ra的范围为:1.5μm≤Ra≤4.0μm。
其中,所述将所述玻璃基材浸泡于蒙砂液中并进行抛动,以在待处理表面形成晶体膜,包括:
将玻璃基材浸泡于蒙砂液中并进行玻璃基材抛动,所述玻璃基材与所述蒙砂液发生反应,生成晶核,所述晶核覆盖在所述待处理表面;
所述待处理表面中未被所述晶核覆盖的区域继续与所述蒙砂液发生反应生成晶体,所述晶体吸附于所述晶核上生长,所述晶体用于抑制被覆盖的玻璃基材与所述蒙砂液发生反应;以及
经过总时长t,在所述待处理表面形成预设厚度的晶体膜。
其中,所述蒙砂液包括:
重量百分比的范围为5%~10%的氢氟酸;
重量百分比的范围为35%~50%的氟化氢铵;
重量百分比的范围为20%~35%的盐酸;
重量百分比的范围为3%~5%的硫酸钡;以及
重量百分比的范围为5%~10%水。
其中,所述将所述玻璃基材浸泡于蒙砂液中并进行抛动,包括:
将玻璃基材放入承载件上,并使得所述玻璃基材的延伸方向与竖直方向之间的角度A的范围为:-10°≤A≤10°,并将所述承载件及所述玻璃基材浸泡于所述蒙砂液中。
其中,所述将所述玻璃基材浸泡于蒙砂液中并进行抛动,包括:
将玻璃基材浸泡于蒙砂液中并进行抛动时的抛动速度V的范围为:400mm/s≤V≤2000mm/s。
其中,所述将所述玻璃基材浸泡于蒙砂液中并进行抛动,包括:
将玻璃基材浸泡于蒙砂液中并进行抛动时的抛动距离d的范围为:30mm≤d≤150mm。
其中,所述将所述玻璃基材浸泡于蒙砂液中并进行抛动,包括:
将玻璃基材浸泡于蒙砂液中并进行抛动时的抛动频率f的范围为:1次/S≤f≤5次/S。
其中,所述将所述玻璃基材浸泡于蒙砂液中并进行抛动,持续的总时长t的范围为:60S≤t≤400S。
其中,所述将所述玻璃基材浸泡于蒙砂液中并进行抛动,包括:
将所述玻璃基材沿着所述玻璃基材的延伸方向进行抛动。
其中,在所述提供玻璃基材之后,及将所述玻璃基材浸泡于蒙砂液中并进行抛动之前,所述制备方法还包括:
用清洗液对所述待处理表面进行清洗。
其中,用清洗液对所述待处理表面进行清洗,具体包括:
用水对所述待处理表面进行清洗;
用酸溶液对所述待处理表面进行清洗;以及
用水对经过酸溶液清洗过的所述待处理表面进行清洗。
第三方面,本申请提供一种电子设备,所述电子设备包括壳体,所述壳体具有预设表面,所述预设表面具有多个凸起结构,所述凸起结构具有多个反光面,所述预设表面的表面粗糙度Ra的范围为:1.5μm≤Ra≤4.0μm。
其中,所述凸起结构在所述预设表面上的正投影上相距最远的两点之间的距离L的范围为:30μm≤L≤150μm。
其中,所述凸起结构的高度H为:3μm≤H≤15μm。
其中,所述凸起结构为四棱锥,所述四棱锥具有四个反光面,所述反光面用于反射光线。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
本申请提供一种壳体10,所述壳体10可应用于电子设备1(参见图31及图32),所述电子设备1可以为但不仅限于为手机、电脑等具有壳体10的设备。所述壳体10应用于电子设备1时,可以为但不仅限于为电子设备1的后盖。所述壳体10可以为2D壳体、或者2.5D壳体或者3D壳体。可以理解地,上述介绍为对壳体10的一种应用环境的介绍,不应当理解为对本申请实施方式提供的壳体10的限定。请一并参阅图1、图2及图3,图1为本申请一实施方式提供的壳体的结构示意图;图2为图1中沿着I-I线的剖视图;图3为图2中II处的放大示意图。所述壳体10具有预设表面110,所述预设表面110具有多个凸起结构111,所述凸起结构111具有多个反光面1111,所述预设表面110的表面粗糙度Ra的范围为:1.5μm≤Ra≤4.0μm。
在一实施方式中,所述壳体10的材质为玻璃。比如,所述壳体10为防眩光玻璃(Anti-glare glass,AG)。
所述预设表面110可以为所述壳体10的所有表面的一个表面或者多个表面,也可以为所述壳体10中一个表面的部分表面,或者全部表面。所述预设表面110的选取根据所述壳体10需要呈现出来的装饰效果来定。在本实施方式的示意图中,以所述预设表面110为所述壳体10的一个表面为例进行示意,不应当理解为对本申请实施方式提供的壳体10的限定。需要说明的是,所谓多个,是指大于等于两个。所述多个表面,是指大于或等于两个表面。
所述预设表面110具有多个凸起结构111,所述凸起结构111具有多个反光面1111,所述反光面1111用于反射光线。当光线照射至所述凸起结构111的所述反光面1111上时,每个所述反光面1111均可对所述光线进行反射,每个反光面1111对所述光线进行反射的反射程度与所述壳体10与所述光线之间的角度相关。
在本实施方式中,所述反光面1111的部分对光线的反射为镜面反射,使得所述壳体10呈现出闪光;所述反光面1111的另外部分对所述光线的反射为漫反射,使得所述壳体10呈现出哑光。具体地,当所述反光面1111的部分对光线的反射为镜面反射时,被反射的光线可较为聚集地被反射,当入射至人眼时,可被人眼察觉,因此,所述壳体10可呈现出闪光。当所述反光面1111的部分对光线的反射为漫反射时,被反射的光线不能聚焦地被反射至人眼,因此,所述壳体10呈现出哑光效果。
所述反光面1111对所述光线进行镜面反射的部分与对光线进行漫反射的部分的之间的比值不同,使得所述壳体10呈现出不同的闪光效果。当所述反光面1111对光线进行镜面反射的部分与对光线进行漫反射的部分的比值越大,则所述壳体10呈现出的闪光效果越强;反之,当所述反光面1111对光线进行镜面反射的部分与对光线进行漫反射的部分的比值越小,则所述壳体10呈现出的闪光效果越弱。本申请实施方式中,所述反光面1111包括对光线进行镜面发射的部分以及对光线进行漫反射的部分,因此,可使得所述壳体10呈现出低闪的效果。所述壳体10的闪光效果稍后详细介绍。
所述预设表面110的表面粗糙度Ra的范围为:1.5μm≤Ra≤4.0μm,比如,所述预设表面110的粗糙度Ra的取值可以为1.5μm,1.6μm,1.7μm,1.8μm,1.9μm,2.0μm,2.1μm,2.2μm,2.3μm,2.4μm,2.5μm,2.6μm,2.7μm,2.8μm,2.9μm,3.0μm,3.1μm,3.2μm,3.3μm,3.4μm,3.5μm,4.0μm等中的一种。
通常而言,所述预设表面110的表面粗糙度越大,则所述预设表面110对光线的反射越大;相应地,所述预设表面110的粗糙度越小,则所述预设表面110对光线的反射越小。相应地,所述预设表面110的表面粗糙度越大,则所述壳体10的所述预设表面110在触摸体验上细腻感越弱且砂粒感越强;相应地,所述预设表面110的粗糙度越小,则所述壳体10的所述预设表面110在触摸体验上细腻感越强且砂粒感越弱。
当所述预设表面110的表面粗糙度Ra小于1.5μm时,一方面所述预设表面110对照射至所述预设表面110的光线的反射较小,所述预设表面110的反光效果不明显,且所述预设表面110的砂粒感不强。因此,相较于预设表面110的粗糙度Ra<1.5μm而言,本申请实施方式提供的壳体10的所述预设表面110的粗糙度Ra≥1.5μm的闪光效果比预设表面110的粗糙度Ra<1.5μm的闪光效果好。换而言之,相较于预设表面110的粗糙度Ra<1.5μm而言,本申请实施方式提供的壳体10由于所述预设表面110的粗糙度Ra≥1.5μm,因此,本申请实施方式提供的壳体10更闪。当所述预设表面110的表面粗糙度Ra大于4.0μm时,所述预设表面110的反光度越强,且所述预设表面110在触摸体验上的砂粒感较强,甚至出现刮手。因此,相较于预设表面110的粗糙度Ra>4.0而言,本申请实施方式提供的壳体10闪光度较弱。综上所述,本申请实施方式提供的壳体10的所述预设表面110的表面粗糙度Ra的范围为:1.5微米(μm)≤Ra≤4.0微米(μm),从而使得所述预设表面110对照射至所述预设表面110的反光效果相对较好,即使得所述预设表面110具有较低的闪光度,因此,所述壳体10的所述预设表面110呈现出低闪的闪光效果以及较好的质感,且在触摸体验上兼具细腻感以及砂粒感。
需要说明的是,本申请实施方式中所述反光面1111用于反射光线,所述反光面1111可反射可见光线(或称为可见光),也可反射不可见光线(或称为不可见光)。而由于所述不可见光不能被人眼察觉,可见光可被人眼察觉,因此,本申请中所指的所述预设表面110的反光效果或者所述壳体10的反光效果,是指对可见光的反射而呈现的效果。
需要说明的是,所谓表面粗糙度(surface roughness),是指加工表面具有较小间距和微小峰谷的不平度。表面粗糙度越小,则表面越光滑;反之,表面粗糙度越大,则表面越不光滑。所述预设表面110的表面粗糙度可由粗糙度测试仪器测试出来,所述粗糙度测试仪器可在所述预设表面110滑动一段距离,即可探测出所述预设表面110的粗糙度。
综上所述,本申请实施方式提供的壳体10,由于所述预设表面110具有多个凸起结构111,且所述预设表面110的表面粗糙度Ra的范围为:1.5μm≤Ra≤4.0μm,当光线照射至所述壳体10时,所述凸起结构111的所述反光面1111对所述光线进行反射,因此,所述壳体10呈现出低闪的闪光效果以及较好的质感,即,本申请实施方式提供的壳体10具有较好的色彩-材料-工艺(Color-Material-Finishing,CMF)外观装饰效果。此外,所述预设表面110的表面粗糙度Ra的范围为:1.5μm≤Ra≤4.0μm,从而使得所述预设表面110具有较高的粗糙度,在触摸体验上兼具细腻感以及砂粒感。
在一实施方式中,所述预设表面110的粗糙度Ra的范围为:1.5μm≤Ra≤3.5μm。
当所述预设表面110的粗糙度Ra的范围为:1.5μm≤Ra≤3.5μm时,可使得所述壳体10呈现出更好的低闪闪光效果,且还使得所述预设表面110在触摸体验上兼具更舒适的细腻感以及砂粒感。
请参阅图4及图5,图4为图1中III处的壳体的预设表面在扫描显微镜下的形貌图;图5为图4中的俯视形貌图。在本实施方式中,所述凸起结构111为四棱锥(也称为四面体),所述四棱锥具有四个反光面1111,所述反光面1111用于反射光线。
所述凸起结构111为四棱锥,当光线照射至所述四棱锥时,四个反光面1111均可对所述光线进行反射,使得所述壳体10的所述预设表面110呈现出低闪的闪光效果以及较好的质感,且在触摸体验上兼具细腻感以及砂粒感。
在一实施方式中,所述凸起结构111在所述预设表面110上的正投影上相距最远的两点之间的距离L的范围为:30μm≤L≤150μm。
请一并参阅图6,图6为图4中凸起结构的尺寸示意图。所述凸起结构111在所述预设表面110上的正投影,在所述正投影中选取距离最远的两个点:第一点P1及第二点P2,所述第一点P1及所述第二点P2之间的距离为L,所述L的范围为:30μm≤L≤150μm。
所述L的范围为:30μm≤L≤150μm,可使得所述壳体10的所述预设表面110呈现出低闪的闪光效果。当所述距离L<30μm时,所述壳体10呈现出的哑光效果较为明显。当所述距离L>150μm时,所述壳体10的闪光效果太闪而使得所述壳体10呈现出来的质感不佳。因此,本申请实施方式中提供的壳体10中所述凸起结构111的第一点及所述第二点之间的距离为L,所述L的范围为:30μm≤L≤150μm,可使得所述壳体10的所述预设表面110呈现出低闪的闪光效果以及较好的质感。
在一实施方式中,请一并参阅图3,所述凸起结构111的高度H为:3μm≤H≤15μm。
在所述凸起结构111的形态一定的情况下,所述凸起结构111的高度越高,则所述凸起结构111的反射效果越好,呈现出来的闪光效果越强;反之,在凸起结构111的形态一定的情况下,所述凸起结构111的高度越小,则所述凸起结构111的反射效果越好,呈现出来的闪光效果越弱。当所述凸起结构111的高度H<3μm时,所述壳体10的所述预设表面110呈现出的反光效果接近哑光效果。当所述凸起结构111的高度H大于15μm时,所述壳体10的所述预设表面110呈现出的反光效果太强。本申请实施方式中所述凸起结构111的高度H为:3μm≤H≤15μm,可使得所述壳体10的预设表面110呈现出低闪的闪光效果以及较好的质感。
可选地,所述凸起结构111的高度H为:4μm≤H≤10μm。当所述凸起结构111的高度为:4μm≤H≤10μm时,可使得所述壳体10具有更优的低闪的闪光效果以及更好的质感。
在一实施方式中,请一并参阅图3,所述凸起结构111的反射面与所述预设表面110之间的角度θ满足:1/5≤tanθ≤1/3。
当所述凸起结构111的反射面与所述预设表面110之间的角度越小,所述壳体10的预设表面110的闪光度越低,即,所述预设表面110越不闪;当所述凸起结构111的反射面与所述预设表面110之间的角度越大,所述壳体10的预设表面110的闪光度越高,即,所述预设表面110越闪。本实施方式中凸起结构111的反射面与所述预设表面110之间的角度θ满足:1/5≤tanθ≤1/3,使得所述壳体10的所 述预设表面110呈现出低闪的闪光效果以及较好的质感,且在触摸体验上兼具细腻感以及砂粒感。
在一种实施方式中,所述壳体10的雾度Wd为:85%≤Wd≤95%。所述壳体10的透过率Tg为:5%≤Tg≤15%。相邻的两个凸起结构111的中心点O1及O2之间的距离Jd为:50μm≤Jd≤200μm(请参阅图6)。
所述壳体10雾度、透过率及相邻的两个凸起结构111的中心点之间的距离Jd中的至少一个或多个配合所述凸起结构111前面的结构参数(预设表面110的表面粗糙度Ra、距离L、凸起的高度H、角度θ等中的至少一个或多个)共同使得所述壳体10呈现出更好的低闪闪光效果以及更好的的质感。
请一并参阅图2及图7,图7为另一实施方式中图2中沿II处的放大示意图。在本实施方式中,所述壳体10具有相背的第一表面10a及第二表面10b。所述预设表面110为所述第一表面10a的全部,可以理解为,在其他方式中,所述预设表面110可以为所述预设表面110的部分表面。所述壳体10还具有光学膜层120及盖底层130。所述光学膜层120设置于所述第二表面10b,所述盖底层130设置于所述光学膜层120背离所述壳体10的一侧。所述光学膜层120具有颜色,比如,蓝色、黄色、绿色、渐变色等。所述光学膜层120中还可具有预设图案。所述光学膜层120的设置使得所述壳体10具有较好的颜色及质感。所述盖体层可以为但不仅限于为油墨或者底漆。所述盖底层130的设置可保证所述壳体10不透光,进而使得所述壳体10自所述预设表面110的一侧观察时,呈现较好的外观效果。
本申请还提供一种壳体制备方法,所述壳体制备方法可制备前面各个实施方式介绍的壳体10,前面各个实施方式中介绍的壳体10可由本申请提供的壳体制备方法制备而成。
请参阅图8,图8为本申请一实施方式提供的壳体制备方法的流程图。所述制备方法包括S110、S120以及S130。S110、S120以及S130详细介绍如下。
S110、提供玻璃基材200,所述玻璃基材200包括待处理表面200a。请一并参阅图9,图9为本申请一实施方式提供的玻璃基材的示意图。所述玻璃基材200中通常包括多种氧化物,比如SiO2、Na2O、K2O、Al2O3、MgO。
所述玻璃基材200可以为2D玻璃基材200、或者2.5D玻璃基材200、或者3D玻璃基材200。所述待处理表面200a可以为所述玻璃基材200的所有表面的一个表面或者多个表面,也可以为所述玻璃基材200中一个表面的部分表面,或者全部表面。所述待处理表面200a的选取根据所述玻璃基材200制备出来的壳体10需要呈现出来的装饰效果来定。在本实施方式的示意图中,以所述待处理表面200a为所述玻璃基材200的一个表面为例进行示意,不应当理解为对本申请实施方式提供的玻璃基材200的限定。需要说明的是,所谓多个,是指大于等于两个。所述多个表面,是指大于或等于两个表面。
S120、将所述玻璃基材200浸泡于蒙砂液中并进行抛动,以在待处理表面200a形成晶体膜300。以及请一并参阅图10至图13,图10为图8中S120所包括的流程示意图。图11至图13依次为玻璃基材经过S120中的各个步骤的反应示意图。
具体地,请参阅图10,S120具体包括S121、S122及S123,S121、S122及S123详细介绍如下。
S121、将玻璃基材200浸泡于蒙砂液中并进行玻璃基材200抛动,所述玻璃基材200与所述蒙砂液发生反应,生成晶核310(也称为晶种),所述晶核310覆盖在所述待处理表面200a。经过S121之后的玻璃基材200的结构具体请参阅图11。
S122、所述待处理表面200a中未被所述晶核310覆盖的区域继续与所述蒙砂液发生反应生成晶体320,所述晶体320吸附于所述晶核310上生长,所述晶体320用于抑制被覆盖的玻璃基材200与所述蒙砂液发生反应。经过S122之后的玻璃基材200的结构请一并参阅图12。
S123、经过总时长t,在所述待处理表面200a形成预设厚度的晶体膜300。
经过S123之后的玻璃基材200的结构请一并参阅图13。所述待处理表面200a被所述晶核310覆盖的区域由于所述晶核310的保护,停止与所述蒙砂液发生反应。所述待处理表面200a中未被所述晶核310覆盖的区域继续与所述蒙砂液发生反应生成晶体320,所述晶体320吸附于所述晶核310上横向生长,且所述晶体320可保护所述晶体320覆盖的玻璃基材200,用于抑制甚至阻止被覆盖的玻璃基材200与所述蒙砂液发生反应,直至所述玻璃基材200待处理表面200a都被预设厚度的晶体膜300覆盖。由于所述晶核310覆盖的区域先停止与蒙砂液发生反应,生成晶体320的区域后停止与蒙砂液发生反应, 因此,所述晶核310覆盖的玻璃基材200的部分的厚度最厚,而所述晶体320覆盖的玻璃基材200的部分的厚度较薄,且距离所述晶核310越远所述玻璃基材200的厚度越薄。
相关技术中,通常采用向所述玻璃基材200上喷淋蒙砂液的方式制备壳体10,由于蒙砂液中含有助剂颗,为了能够将蒙砂液顺利喷淋出来,蒙砂液中的助剂颗粒不能做的太大,且蒙砂液不能做的太粘稠,否则可能会出现蒙砂液堵住喷淋蒙砂液的喷头而无法喷出。本申请实施方式提供的壳体制备方法,将所述玻璃基材200浸泡于蒙砂液中,不存在蒙砂液堵住喷头的问题,因此,蒙砂液中的助剂颗粒可做得较大,进而可制备出在触摸体验上兼具细腻感以及砂粒感的壳体10。即,相较于喷淋方式制备壳体10而言,本申请实施方式提供的壳体制备方法可获得更高粗糙度的触感。此外,本申请实施方式提供的壳体制备方法将玻璃基材200浸泡于蒙砂液中,因此,所述玻璃基材200的待处理表面200a能够与蒙砂液充分接触,有利于提升对所述玻璃基材200的待处理表面200a进行加工的效率。此外,本申请实施方式提供的壳体制备方法在制备时,将所述玻璃基材200在蒙砂液中进行抛动,可使得所述晶核310在所述玻璃基材200上分布得较为均匀,且使得所述晶核310对所述晶体320的吸附效果更加均匀,使得最终生成的晶体膜300的均匀性较为一致,进而使得最终制备出来的凸起结构111的尺寸及结构形态符合要求。此外,将所述玻璃基材200浸泡于蒙砂液中并将所述玻璃基材200进行抛动,可使得所述玻璃基材200在所述蒙砂液中的减薄反应和抑制减薄反应这两种反应达到平衡,防止所述减薄反应或者所述抑制减薄反应占据上风导致生成晶体膜300的均匀性不一致。倘若生成的晶体膜300的均匀性不一致,则,最终制备出来的凸起结构111的尺寸及结构形态不符合要求。因此,本申请实施方式通过将所述玻璃基材200浸泡入所述蒙砂液中并进行抛动,可使得生产的晶体膜300均匀性较为一致,进而使得最终制备出来的凸起结构111的尺寸及结构形态符合要求。进一步地,倘若将所述玻璃基材200浸泡入所述蒙砂液中不进行抛动,则,所述玻璃基材200周围的蒙砂液与所述玻璃基材200发生反应,使得所述玻璃基材200周围的蒙砂液中反应物的浓度下降,使得玻璃基材200周围的蒙砂液中的反应物的浓度小于距离玻璃基材200较远处的反应物的浓度,进而使得所述晶体膜300的生长速度变慢。本申请实施方式提供的制备方法将所述玻璃基材200浸泡入所述蒙砂液中并进行抛动,还可使得所述蒙砂液各处的浓度更加均匀,进而使得所述蒙砂液中各处的反应物的浓度较为均衡,进而使得所述晶体膜300的生长速度较快,缩短所述壳体10的制备时长。
在一实施方式中,所述蒙砂液包括:重量百分比的范围为5%~10%的氢氟酸(HF);重量百分比的范围为35%~50%的氟化氢铵(NH 4HF 2);重量百分比的范围为20%~35%的盐酸(HCl);重量百分比的范围为3%~5%的硫酸钡(BaSiO 2);以及重量百分比的范围为5%~10%水。
所述蒙砂液中的各个成分之间的重量百分比的选取均可影响所述蒙砂液与玻璃基材200反应生成的晶形,最终影响在所述预设表面110形成的所述凸起结构111的形态,所述凸起结构111的形态影响到所述壳体10的闪光效果以及触感。此外,所述蒙砂液中的各个成分之间的重量百分比的选取还可影响制备出来的所述壳体10的良率。本申请实施方式中选取的蒙砂液可使得制备出来的壳体10的预设表面110的凸起结构111具有较好的形态,所述壳体10的所述预设表面110呈现出低闪的闪光效果以及较好的质感,且在触摸体验上兼具细腻感以及砂粒感,此外,使得制备所述壳体10时具有较高的良率。
将所述玻璃基材200放置于所述蒙砂液中,所述蒙砂液中的氢氟酸(HF)与玻璃基材200(含有SiO 2)发生反应生成络合氟硅酸(H 2SiF 6),具体见反应式(1)、反应式(2)及反应式(3)。需要说明的是,所谓络合氟硅酸,是指络合状态的氟硅酸。
4HF+SiO 2=SiF 4+2H 2O  (1)
3SiF 4+3H 2O=H 2SiO 3+2H 2SiF 6  (2)
SiF 4+2HF=H 2SiF 6  (3)
在反应式(1)中,生成的SiF 4是气态,并不会全部挥发,主要进行反应式(2)及反应式(3)的反应,生成络合氟硅酸(H 2SiF 6)。
另,所述蒙砂液中的氢氟酸(HF)与所述玻璃基材200中的各种氧化物发生反应生成氟化物,具体请参见反应式(4)、(5)、(6)、(7),反应式(4)、(5)、(6)、(7)详细如下。
Na 2O+2HF=2NaF+H 2O  (4)
Al 2O 3+6HF=2AlF 3+3H 2O  (5)
MgO+2HF=2MgF 2+H 2O  (6)
K 2O+2HF=2KF+H 2O  (7)
由此可见,经过反应式(4)、(5)、(6)、(7),可生成各种阳离子(记为M+,在本实施方式中为M为Na离子、Al离子、Mg离子、K离子、NH 4离子等)。
络合氟硅酸(H 2SiF 6)与蒙砂液中的阳离子发生反应生成M 2SiF 6,所述M 2SiF 6作为所述晶核310。其中,M 2SiF 6包括Na 2SiF 6、Al 2Si 3F 18、MgSiF 6、K 2SiF 6、(NH 4) 2SiF 6
所述待处理表面200a中未被所述晶核310覆盖的区域继续与所述蒙砂液发生反应生成晶体320。具体地,所述玻璃基材200中未被所述晶核310覆盖的区域继续与所述蒙砂液中的氢氟酸发生反应,产生了氟硅酸盐(M 2SiF 6),所述氟硅酸盐作为所述晶体320。所述氟硅酸盐可以为但不仅限于Na 2SiF 6、Al 2Si 3F 18、MgSiF 6、K 2SiF 6、(NH 4) 2SiF 6
具体地,见反应式(8)、(9)、(10)、(11)、及(12)。
2NaF+SiF 4=Na 2SiF 6  (8)
2AlF 3+3SiF 4=Al 2Si 3F 18  (9)
MgF 2+SiF 4=MgSiF 6  (10)
2KF+SiF 4=K 2SiF 6  (11)
2NH4+SiF 4=(NH 4) 2SiF 6  (12)
在另一实施方式中,所述蒙砂液包括:重量百分比的范围为6%~8%的氢氟酸;重量百分比的范围为42%~45%的氟化氢铵;重量百分比的范围为28%~30%的盐酸;重量百分比为4%硫酸钡;以及重量百分比为8%的水。
所述蒙砂液中的各个成分之间的重量百分比的选取均可影响所述蒙砂液与玻璃基材200反应生成的晶形,最终影响在所述预设表面110形成的所述凸起结构111的形态,所述凸起结构111的形态影响到所述壳体10的闪光效果以及触感。此外,所述蒙砂液中的各个成分之间的重量百分比的选取还可影响制备出来的所述壳体10的良率。本申请实施方式中选取的蒙砂液可使得制备出来的壳体10的预设表面110的凸起结构111具有较好的形态,所述壳体10的所述预设表面110呈现出更好的低闪的闪光效果以及更好的质感,且在触摸体验上兼具细腻感以及砂粒感,此外,使得制备所述壳体10时具有更高的良率。
S130、去除所述晶体膜300,以得到壳体10,其中,所述壳体10具有由所述待处理表面200a得到的预设表面110,且所述预设表面110具有多个凸起结构111,所述凸起结构111具有多个反光面1111,所述预设表面110的表面粗糙度Ra的范围为:1.5μm≤Ra≤4.0μm。请一并参阅图14,图14为经过S130之后的结构示意图。
去除所述晶体膜300的方式可以为但不仅限于用水将所述晶体膜300去除,只要能够将所述晶体膜300去除且不伤害所述晶体膜300覆盖的玻璃基材200即可。将所述晶体膜300去除之后,则所述待处理表面200a变为所述预设表面110,所述预设表面110上具有凸起结构111。
下面将S120中将所述玻璃基材200浸泡于蒙砂液中并进行抛动的各个参数进行详细说明。在一实施方式中,所述将所述玻璃基材200浸泡于蒙砂液中并进行抛动,包括:将玻璃基材200放入承载件900上,并使得所述玻璃基材200的延伸方向与竖直方向之间的角度A的范围为:-10°≤A≤10°,并将所述承载件900及所述玻璃基材200浸泡于所述蒙砂液中。
所谓所述玻璃基材200的延伸方向,通常是指所述玻璃基材200的长度方向。当所述玻璃基材200的延伸方向与竖直方向之间的角度的绝对值越大,则所述玻璃基材200在浸泡入所述蒙砂液中时受到的蒙砂液的阻力越大,甚至造成所述蒙砂液溅出;相应地,当所述玻璃基材200的延伸方向与竖直方向之间的角度的绝对值越小,则所述玻璃基材200在浸泡入所述蒙砂液中时受到的蒙砂液的阻力越小,则,越不容易造成所述蒙砂液溅出。
所述玻璃基材200的延伸方向与竖直方向的角度A的范围为:-10°≤A≤10°,可使得所述玻璃基材 200浸泡于所述蒙砂液中时受到的阻力较小,且不容易造成所述蒙砂液溅出。可选地,所述玻璃基材200的延伸方向与竖直方向的角度A的取值为-10°,或者-8°,或者-5°,或者0°,或者5°,或者8°,或者10°。请一并参阅图15、图16及图17。图15为所述玻璃基材的延伸方向与所述竖直方向的角度A等于零度时的示意图。图16为所述玻璃基材的延伸方向与所述竖直方向的角度A为-10°的示意图。图17为所述玻璃基材的延伸方向与所述竖直方向的角度A为+10°的示意图。在本实施方式中,所述玻璃基材的延伸方向标记为D1,所述竖直方向标记为D2,D1和D2之间的角度为角度A。需要说明的是,所述玻璃基材的延伸方向,是指所述玻璃基材的长度方向。
所述玻璃基材200的延伸方向与竖直方向的角度A的范围为:-10°≤A≤10°,可使得所述玻璃基材200浸泡于所述蒙砂液中时受到的阻力较小,且不容易造成所述蒙砂液溅出。
在一实施方式中,所述玻璃基材200的延伸方向与所述竖直方向的角度A等于零度。换而言之,所述玻璃基材200的延伸方向为所述竖直方向。当所述玻璃基材200的延伸方向为所述竖直方向时,可使得所述玻璃基材200浸泡于所述蒙砂液中时受到的阻力更小,且不容易造成所述蒙砂液溅出。
需要说明的是,在所述壳体制备方法中,可将玻璃基材200放入承载件900(比如,吸盘)上。所述吸盘可以为但不仅限于耐酸腐蚀的高分子吸盘。由于所述吸盘具有一定的柔软性,因此,所述吸盘吸附所述玻璃基材200上时,有可能会存在所述玻璃基材200放置在所述承载件900上时,所述玻璃基材200的延伸方向和竖直方向不垂直的情况。当多个玻璃基材200放入所述承载件900上时,所述多个玻璃基材200中的每个玻璃基材200的延伸方向可以相同,也可以不同。
在一实施方式中,所述将所述玻璃基材200浸泡于蒙砂液中并进行抛动,包括:将玻璃基材200浸泡于蒙砂液中并进行抛动时的抛动速度V的范围为:400mm/s≤V≤2000mm/s。
将所述玻璃基材200在所述蒙砂液中并进行抛动时的抛动速度过小时,比如V<400mm/s时,则会导致最终生成的壳体10的表面留下流痕异色等不良。将所述玻璃基材200在所述蒙砂液中并进行抛动时的抛动速度过大时,比如V>2000mm/s时,则会使得所述玻璃基材200的上下两端的产生的凸起结构111的尺寸较大,即,使得制备出来的壳体10中的凸起结构111的大小不均匀。
本申请实施方式提供的壳体制备方法中,V的范围为:400mm/s≤V≤2000mm/s,可使得制备出来的壳体10的所述预设表面110各处的凸起结构111的大小均匀、各处的反光色差较小甚至无肉眼可视的色差等效果。
在一实施方式中,所述将所述玻璃基材200浸泡于蒙砂液中并进行抛动,包括:将玻璃基材200浸泡于蒙砂液中并进行抛动时的抛动距离d的范围为:30mm≤d≤150mm。
当所述抛动距离d过小时,比如,d<30mm,则制备出来的壳体10的所述预设表面110各处的凸起结构111的大小不均匀。当所述抛动距离d过大时,比如,d>150mm,则制备出来的壳体10的所述预设表面110会出现异色点。
本申请实施方式提供的制备方法中,抛动距离d的范围为:30mm≤d≤150mm,使得制备出来的壳体10的所述预设表面110各处的凸起结构111的大小均匀、各处的反光色差较小甚至无肉眼可视的色差等效果。
在一实施方式中,所述将所述玻璃基材200浸泡于蒙砂液中并进行抛动,包括:将玻璃基材200浸泡于蒙砂液中并进行抛动时的抛动频率f的范围为:1次/秒(S)≤f≤5次/秒(S)。
当所述抛动频率f较小时(比如,小于1次/S),在蒙砂工序持续的总时长t不变的情况下,会使得制备出来的壳体10的所述预设表面110中存在没有形成凸起结构111的区域。当所述抛动频率f较大时,在蒙砂工序持续的总时长t不变的情况下,容易造成所述壳体10的所述预设表面110各处形成的凸起结构111不均匀,当光线照射至所述预设表面110时,所述预设表面110各处的反光效果不一致。
本申请实施方式中,抛动频率f的范围为:1次/秒(S)≤f≤5次/秒(S),使得制备出来的壳体10的所述预设表面110各处的凸起结构111的大小均匀、各处的反光色差较小甚至无肉眼可视的色差等效果。
在一实施方式中,所述将所述玻璃基材200浸泡于蒙砂液中并进行抛动,持续的总时长t的范围为:60S≤t≤400S。
当持续的总时长t太小时(比如,t<60S),则会使得制备出来的壳体10的所述预设表面110中存在没有形成凸起结构111的区域。当持续的总时长t太大时(比如,t>400S),则所述蒙砂液会对可能会破坏已经形成的晶体膜300,进而破坏最终生成的凸起结构111的形态。
在本申请实施方式中,持续的总时长t的范围为:60S≤t≤400S,可使得制备出来的壳体10的所述预设表面110各处的凸起结构111的大小均匀,且凸起结构111的形态不会被破坏。进而使得制备出来的壳体10的所述预设表面110呈现出低闪的闪光效果以及较好的质感,且在触摸体验上兼具细腻感以及砂粒感。
在一实施方式中,将所述玻璃基材200在所述蒙砂液中的抛动方向与所述玻璃基材200之间的延伸方向之间的角度B的范围为:-10°≤B≤10°。
当所述玻璃基材200在所述蒙砂液中的抛动方向与所述玻璃基材200的延伸方向之间的角度的绝对值越大,则所述玻璃基材200在所述蒙砂液中摆动时受到的蒙砂液的阻力越大,甚至造成所述蒙砂液溅出;相应地,当所述玻璃基材200在所述蒙砂液中的抛动方向与所述玻璃基材200的延伸方向之间的角度的绝对值越大,则所述玻璃基材200在浸泡入所述蒙砂液中时受到的蒙砂液的阻力越小,则,越不容易造成所述蒙砂液溅出。
将所述玻璃基材200在所述蒙砂液中的抛动方向与所述玻璃基材200之间的延伸方向之间的角度B的范围为:-10°≤B≤10°,可使得所述玻璃基材200在所述蒙砂液中摆动时受到的阻力较小,且不容易造成所述蒙砂液溅出。可选地,所述玻璃基材200在所述蒙砂液中的抛动方向与所述玻璃基材200之间的延伸方向之间的角度B的取值为-10°,或者-8°,或者-5°,或者0°,或者5°,或者8°,或者10°。
在一实施方式中,所述将所述玻璃基材200浸泡于蒙砂液中并进行抛动,包括:将所述玻璃基材200沿着所述玻璃基材200的延伸方向进行抛动。
在本实施方式中,将所述玻璃基材200沿着所述玻璃基材200的延伸方向进行抛动,即,所述玻璃基材200的抛动方向与所述玻璃基材200的延伸方向相同。换而言之,将所述玻璃基材200在所述蒙砂液中的抛动方向与所述玻璃基材200之间的延伸方向之间的角度B等于零。由此可见,将所述玻璃基材200沿着所述玻璃基材200的延伸方向进行抛动,可使得所述玻璃基材200在所述蒙砂液中抛动时受到的阻力较小,且不容易造成所述蒙砂液溅出。
可以理解地,当所述玻璃基材200的延伸方向为竖直方向,且当所述玻璃基材200在所述蒙砂液中的抛动方向与所述玻璃基材200之间的延伸方向之间的角度B等于零时,所述抛动方向为上下抛动。
可以理解地,在其他实施方式中,所述抛动方向也可以为水平抛动(即左右抛动),或者环形抛动,只要实现能够将所述玻璃基材200在所述蒙砂液中抛动即可。
需要说明的是,所述玻璃基材200浸泡于蒙砂液中并进行抛动的各个参数包括:玻璃基材200的延伸方向与竖直方向之间的角度A、抛动速度V、抛动距离d、抛动频率f、持续的总时长t、抛动方向与玻璃基材200延伸方向之间的角度B。上述各个参数之间单独作用,也可任意两个或多个结合。当上述各个参数之间任意两个结合时,比如,角度A和抛动速度V结合,或者角度A和抛动距离d结合,或者角度A和抛动频率f结合,或者角度A和持续的总时长t结合,或者,角度A与角度B结合,或者抛动速度V和抛动距离d结合,或者抛动速度V和抛动频率f结合,或者抛动速度V和持续的总时长t结合,或者抛动速度V与角度B结合,或者抛动距离d与抛动频率f结合,或者抛动距离d与持续的总时长t结合,或者抛动距离d与角度B集合,或者抛动频率f和持续的总时长t结合,或者持续的总时长t与角度B结合。以此类推。在一种实施方式中,所述玻璃基材200浸泡于蒙砂液中并进行抛动的各个参数中的玻璃基材200的延伸方向与竖直方向之间的角度A、抛动速度V、抛动距离d、抛动频率f、持续的总时长t均结合在一起。
需要说明的是,在一实施方式中,将所述玻璃基材200浸泡于蒙砂液中并进行抛动的温度Tm为:10℃≤Tm≤30℃。
当温度Tm太低时(比如,Tm<10℃),所述玻璃基材200在所述蒙砂液中的反应速度太慢,所述壳体10的制备效率较低。当温度Tm太高时(比如,Tm>30℃),则所述玻璃基材200在所述蒙砂液中的反应速度过快,容易使得制备出来的玻璃基材200产生腐蚀点(俗称霉点),从而降低壳体10 的良率。
在本实施方式中,选取10℃≤Tm≤30℃,可使得根据所述玻璃基材200制备所述壳体10时具有较高的制备效率,以及较好的质量。
请一并参阅图18,图18为本申请另一实施方式提供的壳体制备方法的流程图。在本实施方式中,所述壳体制备方法包括S110、S10、S120、S130。换而言之,在所述S110及S120之间还包括S10,S110、S120及S130请参阅前面描述,在此不再赘述,S10详细介绍如下。
S10、用清洗液对所述待处理表面200a进行清洗。
用清洗液对所述待处理表面200a进行清洗,可去除所述待处理表面200a上的灰尘、油渍等杂质,保证用所述蒙砂液对所述玻璃基材200进行蒙砂处理的顺利进行,以及在所述待处理表面200a上进行蒙砂处理后得到的凸起结构111的均匀性。
所述清洗液可以为但不仅限于为水、可以去油污的酸溶液(比如,氢氟酸、硝酸)。
用清洗液对所述待处理表面200a进行清洗的方式可以为但不仅限于将玻璃基材200浸泡入清洗液中进行清洗,或者用清洗液对玻璃基材200进行喷淋的方式进行清洗,本申请不做限定,只要满足能够将所述待处理表面200a清洗干净即可。
在一实施方式中,将玻璃基材200浸泡入清洗液中进行清洗时,将所述玻璃基材200的延伸方向与竖直方向之间的角度C的范围为:-45°≤C≤45°,并将所述承载件900及所述玻璃基材200浸泡于所述清洗液中。
当所述玻璃基材200的延伸方向与竖直方向之间的角度的绝对值越大,则所述玻璃基材200在浸泡入所述清洗液中时受到的清洗液的阻力越大,甚至造成所述清洗液溅出;相应地,当所述玻璃基材200的延伸方向与竖直方向之间的角度的绝对值越小,则所述玻璃基材200在浸泡入所述清洗液中时受到的清洗液的阻力越小,则,越不容易造成所述清洗液溅出。
所述玻璃基材200的延伸方向与竖直方向的角度C的范围为:-45°≤C≤45°,可使得所述玻璃基材200浸泡于所述清洗液中时受到的阻力较小,且不容易造成所述清洗液溅出。此外,所述玻璃基材200的延伸方向与竖直方向的角度的范围为:-45°≤C≤45°,可使得所述玻璃基材200上的清洗液快速流下,以免所述玻璃基材200上残留过多的清洗液对所述玻璃基材200浸泡到所述蒙砂液中进行蒙砂处理的工序造成影响,减小甚至避免玻璃基材200浸泡于蒙砂液中进行蒙砂处理后得到的壳体10的预设表面110上呈现目视可见的异色,流痕等,使得制备出来的壳体10具有较好的外观效果。
可选地,所述玻璃基材200的延伸方向与竖直方向的角度C的取值为-45°,或者-30°,或者-15°,或者0°,或者15°,或者30°,或者45°。
在一种实施方式中,所述玻璃基材200的延伸方向与竖直方向的角度C的范围为:-10°≤C≤10°。所述玻璃基材200的延伸方向与竖直方向的角度C的范围为:-10°≤C≤10°,可使得所述玻璃基材200浸泡于所述清洗液中时受到的阻力较小,且不容易造成所述清洗液溅出。此外,所述玻璃基材200的延伸方向与竖直方向的角度的范围为:-10°≤C≤10°,可使得所述玻璃基材200上的清洗液快速流下,以免所述玻璃基材200上残留过多的清洗液对所述玻璃基材200浸泡到所述蒙砂液中进行蒙砂处理的工序造成影响,减小甚至避免玻璃基材200浸泡于蒙砂液中进行蒙砂处理后得到的壳体10的预设表面110上呈现目视可见的异色,流痕等,使得制备出来的壳体10具有较好的外观效果。
在一实施方式中,所述玻璃基材200的延伸方向与所述竖直方向的角度C等于零度。换而言之,所述玻璃基材200的延伸方向为所述竖直方向。当所述玻璃基材200的延伸方向为所述竖直方向时,可使得所述玻璃基材200浸泡于所述清洗液中时受到的阻力更小,且不容易造成所述清洗液溅出。
此外,所述玻璃基材200的延伸方向与竖直方向的角度C等于零度,可使得所述玻璃基材200上的清洗液快速流下,以免所述玻璃基材200上残留过多的清洗液对所述玻璃基材200浸泡到所述蒙砂液中进行蒙砂处理的工序造成影响,减小甚至避免玻璃基材200浸泡于蒙砂液中进行蒙砂处理后得到的壳体10的预设表面110上呈现目视可见的异色,流痕等,使得制备出来的壳体10具有较好的外观效果。
具体地,在一实施方式中,所述S10具体包括S101、S102及S103,S101、S102及S103详细介绍如下。请参阅图19,图19为图18中S10所包括的流程示意图。
S101、用水对所述待处理表面200a进行清洗。
用水对所述待处理表面200a进行清洗的方式可以为但不仅限于为将所述玻璃基材200浸泡于盛放有水的装置(比如槽)内进行清洗,或者将所述玻璃基材200用水进行喷淋等方式进行清洗。在一种实施方式中,将玻璃基材200放入承载件900上,并将所述承载件900及所述玻璃基材200一同浸泡于盛放有水的装置内进行清洗。为了保证清洗效果,水选取为纯水。所述玻璃基材200浸泡于盛放有水的装置内所持续的时长t1可选为:60秒(S)≤t1≤120秒(S)。所述玻璃基材200浸泡于盛放有水的装置清洗时的温度可以选取为常温(比如,25℃)。当所述玻璃基材200浸泡于盛放有水的装置内,可对玻璃基材200的所述待处理表面200a上的进行预清洁。
S102、用酸溶液对所述待处理表面200a进行清洗。
用酸溶液对所述待处理表面200a进行清洗的方式可以为但不仅限于为将所述玻璃基材200浸泡于盛放有酸溶液的装置(比如,槽)内进行清洗,或者将所述玻璃基材200用酸容易进行喷淋的方式进行清洗。所述酸溶液可以为但不仅限于包括一种酸或多种酸的混合液。举例而言,所述酸溶液可以包括氢氟酸及硝酸。在一实施方式中,所述酸溶液包括重量百分比W 1为:1%≤W 1≤5%的氢氟酸(HF),重量百分比W 2为:3%≤W2≤10%的硝酸(HNO3)、以及水。所述玻璃基材200浸泡于盛放有酸溶液的装置内所持续的时长t2可选为:60秒(S)≤t2≤180秒(S)。所述玻璃基材200浸泡于盛放有酸溶液的装置清洗时的温度可以选取为常温(比如,25℃)。
本实施方式中,酸溶液中的硝酸可用于清洗所述玻璃基材200上的油污。酸溶液中的氢氟酸可对所述玻璃基材200进行活化,便于后续将所述玻璃基材200浸泡入所述蒙砂液中时的蒙砂工序的进行。
当所述酸溶液中的氢氟酸的重量百分比过高时,可能对所述玻璃基材200进行过度腐蚀;当所述酸溶液中的氢氟酸的重量百分比过低时,可能使得所述酸溶液对所述玻璃基材200的活化不足。
当所述酸溶液中的硝酸的重量百分比过低时,对所述玻璃基材200的清洗速度不快,甚至无法将所述玻璃基材200清洗干净;当所述酸溶液中的硝酸的重量百分比过高时,则容易挥发,造成污染。
本实施方式中的酸溶液中氢氟酸以及硝酸的浓度选取可兼顾不将玻璃基材200进行过度腐蚀、可将玻璃基材200清洗干净、以及将玻璃基材200进行适度活化的作用。
S103、用水对经过酸溶液清洗过的所述待处理表面200a进行清洗。
本实施方式中,用水溶液对经过酸溶液清洗过的所述待处理表面200a进行清洗,可减小甚至避免酸溶液残留在所述待处理表面200a上时对后续将清洗后玻璃基材200放入蒙砂液中进行蒙砂处理时的干扰。
在S3中,所述玻璃基材200浸泡于盛放有水的装置内所持续的时长t3可选为:60秒(S)≤t3≤120秒(S)。所述玻璃基材200浸泡于盛放有水的装置清洗时的温度可以选取为常温(比如,25℃)。
可以理解地,在其他实施方式中,也可仅用水对所述待处理表面200a进行清洗;或者仅用酸溶液对所述待处理表面200a进行清洗;或者先用酸溶液对所述待处理表面200a进行清洗,再用水对经过酸溶液清洗过的所述待处理表面200a进行清洗,只要满足将所述玻璃基材200清洗干净即可。
请一并参阅图20,图20为本申请又一实施方式提供的壳体制备方法的流程图。在本实施方式中,所述壳体制备方法包括S110、S10、S20、S120、S130。换而言之,在所述S10之后,所述壳体制备方法还包括S20。S110、S10、S120及S130请参阅前面描述,在此不再赘述,S20详细介绍如下。
S20、对清洗之后的玻璃基材200进行甩动,以甩掉所述玻璃基材200上残留的清洗液。
对清洗后的玻璃基材200进行甩动,甩掉玻璃基材200上残留的清洗液,可防止所述玻璃基材200上残留清洗液,进而可减小甚至避免清洗液残留在所述待处理表面200a上时对玻璃基材200放入蒙砂液中进行蒙砂处理时的干扰。以免所述玻璃基材200上残留过多的清洗液对所述玻璃基材200浸泡到所述蒙砂液中进行蒙砂处理的工序造成影响,减小甚至避免玻璃基材200浸泡于蒙砂液中进行蒙砂处理后得到的壳体10的预设表面110上呈现目视可见的异色,流痕等,使得制备出来的壳体10具有较好的外观效果。
请一并参阅图21,图21为本申请另一实施方式提供的壳体制备方法的流程图。所述玻璃基材200还包括非处理表面200b,在S120、将所述玻璃基材200浸泡于蒙砂液中并进行抛动,以在待处理表面 200a形成晶体膜300之前,所述制备方法还包括S1及S2。所述制备方法还包括S1及S2可结合到前面任意实施方式提供的壳体制备方法中。举例而言,在一实施方式中,所述制备方法包括S1、S110、S120、S130及S2。在另一实施方式中,所述制备方法包括S110、S1、S10、S120、S130及S2。在又一实施方式中,所述制备方法包括S110、S1、S10、S20、S120、S130及S2。在本实施方式的示意中,以所述制备方法包括S110、S1、S10、S120、S130及S2为例进行示意,不应当理解为对本申请实施方式提供的壳体制备方法的限定。具体地,在本实施方式中,所述制备方法包括S110、S1、S10、S120、S130及S2,S1及S2详细描述如下,S110、S10、S120及S130请参阅前面描述,在此不再赘述。
S110、提供玻璃基材200,所述玻璃基材200包括待处理表面200a。
S1、将所述非处理表面200b用保护膜800进行保护。所谓非处理表面200b,即,不需要进行蒙砂工序处理的表面。换而言之,所述非处理表面200b无需与所述蒙砂液进行反应。所述保护膜800的材质可以为但不仅限于为油墨。所述油墨可以保护所述非处理表面200b不被蒙砂液腐蚀,且所述油墨具有较佳的稳定性,不与所述蒙砂液、清洗液发生反应。
S10、用清洗液对所述待处理表面200a进行清洗。
S120、将所述玻璃基材200浸泡于蒙砂液中并进行抛动,以在待处理表面200a形成晶体膜300。
S130、去除所述晶体膜300,以得到壳体10,其中,所述壳体10具有由所述待处理表面200a得到的预设表面110,且所述预设表面110具有多个凸起结构111,所述凸起结构111具有多个反光面1111,所述预设表面110的表面粗糙度Ra的范围为:1.5μm≤Ra≤4.0μm。
S2、去除所述保护膜800。
在一实施方式中,可选取碱性脱膜剂对所述保护膜800进行去除。举例而言,将玻璃基材200浸泡入碱性脱膜剂中,温度Tc:60℃≤Tc≤80℃,持续时间tc:30分钟≤tc≤40分钟。
请一并参阅图22,图22为本申请另一实施方式提供的壳体制备方法的流程图。在本实施方式中,所述壳体制备方法用于制备2.5D壳体或3D壳体。所述S110具体包括S111及S112,S111及S112详细介绍如下。其中,S111位于S1之前,S112位于S1之后。因此,S111、S1及S112的具体描述如下。S110具体包括S111及S112可结合于前面任意实施方式提供的制备方法中,在本实施方式中,以S110包括S111及S112结合到包括S1、S120及S130的制备方法中为例进行示意。
S111、制备出具有凹面21及凸面22的曲面玻璃基材200,且对所述凹面21进行抛光,抛光后的所述凹面21为非处理表面200b。请一并参阅图23及图24,图23为对凹面进行抛光之前的玻璃基材的示意图;图24为对凹面进行抛光之后的玻璃基材的示意图。
通常而言,2.5D壳体及3D壳体在制备时,通常将所述玻璃基材200进行热弯加工而成曲面玻璃基材200,曲面玻璃基材200的凹面21上具有模具的印痕220,所述印痕会影响所述玻璃基材200的强度。因此,将所述凹面21进行抛光,可去除所述凹面21上的印痕220,进而使得所述玻璃基材200具有较好的强度。
S1、将所述非处理表面200b用保护膜800进行保护。请一并参阅图25,图25为经过S1之后的玻璃基材的示意图。
S112、将所述凸面22进行抛光,以形成所述玻璃基材200,抛光后的所述凸面22为所述待处理表面200a。请一并参阅图26,图26为经过S112之后的玻璃基材的示意图。
常而言,2.5D壳体及3D壳体在制备时,通常将所述玻璃基材200进行热弯加工而成曲面玻璃基材200,曲面玻璃基材200的凸面22上也具有模具的印痕220。由于曲面玻璃基材200的凸面22面上具有模具的印痕220,所述印痕220会影响所述玻璃基材200的强度。因此,将所述凸面22进行抛光,可去除所述凸面22上的印痕220,进而使得所述玻璃基材200具有较好的强度。
S120、将所述玻璃基材200浸泡于蒙砂液中并进行抛动,以在待处理表面200a形成晶体膜300。请一并参阅图27及图28,图27为经过S120之后的玻璃基材的示意图。图28为图27中V处的放大示意图。
S130、去除所述晶体膜300,以得到壳体10,其中,所述壳体10具有由所述待处理表面200a得到的预设表面110,且所述预设表面110具有多个凸起结构111,所述凸起结构111具有多个反光面1111, 所述预设表面110的表面粗糙度Ra的范围为:1.5μm≤Ra≤4.0μm。请参阅图29,图29为图28中所示的玻璃基材经过S130之后的示意图。
S2、去除所述保护膜800。去除所述保护膜800之后,得到所述壳体10。请参阅图30,图30为图29中所示的玻璃基材经过S2之后的示意图。
本申请还提供了一种电子设备1,下面结合附图对本申请提供的电子设备1进行详细描述。请一并参阅图31及图32,图31为本申请一实施方式提供的电子设备的立体示意图;图32为图31中所示的电子设备的分解示意图。所述电子设备1可以为但不仅限于为手机、平板电脑等具有壳体10的设备。所述壳体10请参阅前面描述,在此不再赘述。在本实施方式中,所述壳体10的所述预设表面110构成所述电子设备1的部分外观面。
在本实施方式中,所述电子设备1除了包括壳体10还包括显示屏30、中框70、电路板40及摄像头模组50。所述壳体10与所述显示屏30分别设置于所述中框70相背的两侧。所述中框70用于承载所述显示屏30,且所述中框70的侧面显露于所述壳体10与所述显示屏30。所述壳体10与所述中框70形成收容空间,用于收容所述电路板40与所述摄像头模组50。所述壳体10上具有透光部20c,所述摄像头模组50可通过所述壳体10上的透光部20c拍摄,即,本实施方式中的摄像头模组50为后置摄像头模组。可以理解地,在其他实施方式中,所述透光部20c可设置在所述显示屏30上,即,所述摄像头模组50为前置摄像头模组。在本实施方式的示意图中,以所述透光部20c为开口进行示意,在其他实施方式中,所述透光部20c可不为开口,而是为透光的材质,比如,塑料、玻璃等。
可以理解地,本实施方式中所述的电子设备1仅仅为所述壳体10所应用的电子设备1的一种形态,不应当理解为对本申请提供的电子设备1的限定,也不应当理解为对本申请各个实施方式提供的壳体10的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种壳体,其中,所述壳体具有预设表面,所述预设表面具有多个凸起结构,所述凸起结构具有多个反光面,所述预设表面的表面粗糙度Ra的范围为:1.5μm≤Ra≤4.0μm。
  2. 如权利要求1所述的壳体,其中,所述预设表面的粗糙度Ra的范围为:1.5μm≤Ra≤3.5μm。
  3. 如权利要求1所述的壳体,其中,所述凸起结构在所述预设表面上的正投影上相距最远的两点之间的距离L的范围为:30μm≤L≤150μm。
  4. 如权利要求1所述的壳体,其中,所述凸起结构的高度H为:3μm≤H≤15μm。
  5. 如权利要求1所述的壳体,其中,所述凸起结构为四棱锥,所述四棱锥具有四个反光面,所述反光面用于反射光线。
  6. 一种壳体制备方法,其中,所述制备方法包括:
    提供玻璃基材,所述玻璃基材包括待处理表面;
    将所述玻璃基材浸泡于蒙砂液中并进行抛动,以在待处理表面形成晶体膜;以及
    去除所述晶体膜,以得到壳体,其中,所述壳体具有由所述待处理表面得到的预设表面,且所述预设表面具有多个凸起结构,所述凸起结构具有多个反光面,所述预设表面的表面粗糙度Ra的范围为:1.5μm≤Ra≤4.0μm。
  7. 如权利要求6所述的壳体制备方法,其中,所述将所述玻璃基材浸泡于蒙砂液中并进行抛动,以在待处理表面形成晶体膜,包括:
    将玻璃基材浸泡于蒙砂液中并进行玻璃基材抛动,所述玻璃基材与所述蒙砂液发生反应,生成晶核,所述晶核覆盖在所述待处理表面;
    所述待处理表面中未被所述晶核覆盖的区域继续与所述蒙砂液发生反应生成晶体,所述晶体吸附于所述晶核上生长,所述晶体用于抑制被覆盖的玻璃基材与所述蒙砂液发生反应;以及
    经过总时长t,在所述待处理表面形成预设厚度的晶体膜。
  8. 如权利要求6所述的壳体制备方法,其中,所述蒙砂液包括:
    重量百分比的范围为5%~10%的氢氟酸;
    重量百分比的范围为35%~50%的氟化氢铵;
    重量百分比的范围为20%~35%的盐酸;
    重量百分比的范围为3%~5%的硫酸钡;以及
    重量百分比的范围为5%~10%水。
  9. 如权利要求6所述的壳体制备方法,其中,所述将所述玻璃基材浸泡于蒙砂液中并进行抛动,包括:
    将玻璃基材放入承载件上,并使得所述玻璃基材的延伸方向与竖直方向之间的角度A的范围为:-10°≤A≤10°,并将所述承载件及所述玻璃基材浸泡于所述蒙砂液中。
  10. 如权利要求6所述的壳体制备方法,其中,所述将所述玻璃基材浸泡于蒙砂液中并进行抛动,包括:
    将玻璃基材浸泡于蒙砂液中并进行抛动时的抛动速度V的范围为:400mm/s≤V≤2000mm/s。
  11. 如权利要求6所述的壳体制备方法,其中,所述将所述玻璃基材浸泡于蒙砂液中并进行抛动,包括:
    将玻璃基材浸泡于蒙砂液中并进行抛动时的抛动距离d的范围为:30mm≤d≤150mm。
  12. 如权利要求6所述的壳体制备方法,其中,所述将所述玻璃基材浸泡于蒙砂液中并进行抛动,包括:
    将玻璃基材浸泡于蒙砂液中并进行抛动时的抛动频率f的范围为:1次/S≤f≤5次/S。
  13. 如权利要求6所述的壳体制备方法,其中,所述将所述玻璃基材浸泡于蒙砂液中并进行抛动,持续的总时长t的范围为:60S≤t≤400S。
  14. 如权利要求6所述的壳体制备方法,其中,所述将所述玻璃基材浸泡于蒙砂液中并进行抛动,包括:
    将所述玻璃基材沿着所述玻璃基材的延伸方向进行抛动。
  15. 如权利要求6所述的壳体制备方法,其中,在所述提供玻璃基材之后,及将所述玻璃基材浸泡于蒙砂液中并进行抛动之前,所述制备方法还包括:
    用清洗液对所述待处理表面进行清洗。
  16. 如权利要求15所述的壳体制备方法,其中,用清洗液对所述待处理表面进行清洗,具体包括:
    用水对所述待处理表面进行清洗;
    用酸溶液对所述待处理表面进行清洗;以及
    用水对经过酸溶液清洗过的所述待处理表面进行清洗。
  17. 一种电子设备,其中,所述电子设备包括壳体,所述壳体具有预设表面,所述预设表面具有多个凸起结构,所述凸起结构具有多个反光面,所述预设表面的表面粗糙度Ra的范围为:1.5μm≤Ra≤4.0μm。
  18. 如权利要求17所述的电子设备,其中,所述凸起结构在所述预设表面上的正投影上相距最远的两点之间的距离L的范围为:30μm≤L≤150μm。
  19. 如权利要求17所述的电子设备,其中,所述凸起结构的高度H为:3μm≤H≤15μm。
  20. 如权利要求17所述的电子设备,其中,所述凸起结构为四棱锥,所述四棱锥具有四个反光面,所述反光面用于反射光线。
PCT/CN2022/116567 2021-10-15 2022-09-01 壳体、壳体制备方法及电子设备 WO2023061094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111207830.8 2021-10-15
CN202111207830.8A CN113973456B (zh) 2021-10-15 2021-10-15 壳体、壳体制备方法及电子设备

Publications (1)

Publication Number Publication Date
WO2023061094A1 true WO2023061094A1 (zh) 2023-04-20

Family

ID=79587530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116567 WO2023061094A1 (zh) 2021-10-15 2022-09-01 壳体、壳体制备方法及电子设备

Country Status (2)

Country Link
CN (2) CN113973456B (zh)
WO (1) WO2023061094A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113973456B (zh) * 2021-10-15 2023-06-09 Oppo广东移动通信有限公司 壳体、壳体制备方法及电子设备
CN114423205B (zh) * 2022-01-28 2024-02-06 Oppo广东移动通信有限公司 壳体、其制备方法及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216542A (ja) * 2012-04-09 2013-10-24 Mitsubishi Gas Chemical Co Inc ガラス用エッチング液およびテクスチャー付きガラス基板の製造方法
CN111614816A (zh) * 2020-05-25 2020-09-01 Oppo广东移动通信有限公司 壳体、壳体的制备方法及电子设备
CN112028495A (zh) * 2020-07-27 2020-12-04 江西沃格光电股份有限公司 蒙砂玻璃及其制备方法
WO2021036369A1 (zh) * 2019-08-27 2021-03-04 Oppo广东移动通信有限公司 壳体组件及其制备方法和电子设备
CN113966114A (zh) * 2021-10-15 2022-01-21 Oppo广东移动通信有限公司 壳体、其制备方法及电子设备
CN113973456A (zh) * 2021-10-15 2022-01-25 Oppo广东移动通信有限公司 壳体、壳体制备方法及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756896B (zh) * 2020-06-02 2021-10-01 Oppo广东移动通信有限公司 玻璃壳体组件及其制作方法和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216542A (ja) * 2012-04-09 2013-10-24 Mitsubishi Gas Chemical Co Inc ガラス用エッチング液およびテクスチャー付きガラス基板の製造方法
WO2021036369A1 (zh) * 2019-08-27 2021-03-04 Oppo广东移动通信有限公司 壳体组件及其制备方法和电子设备
CN111614816A (zh) * 2020-05-25 2020-09-01 Oppo广东移动通信有限公司 壳体、壳体的制备方法及电子设备
CN112028495A (zh) * 2020-07-27 2020-12-04 江西沃格光电股份有限公司 蒙砂玻璃及其制备方法
CN113966114A (zh) * 2021-10-15 2022-01-21 Oppo广东移动通信有限公司 壳体、其制备方法及电子设备
CN113973456A (zh) * 2021-10-15 2022-01-25 Oppo广东移动通信有限公司 壳体、壳体制备方法及电子设备

Also Published As

Publication number Publication date
CN113973456A (zh) 2022-01-25
CN113973456B (zh) 2023-06-09
CN116567971A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2023061094A1 (zh) 壳体、壳体制备方法及电子设备
US20220144693A1 (en) Housing assembly, preparation method therefor, and electronic device
US8778496B2 (en) Anti-glare glass sheet having compressive stress equipoise and methods thereof
KR101707422B1 (ko) 커버글라스 및 이의 제조 방법
US9279912B2 (en) Anti-glare glass article and display system
WO2022062227A1 (zh) 玻璃盖板及其制备方法
CN113966114B (zh) 壳体、其制备方法及电子设备
WO2021238349A1 (zh) 壳体组件及其制备方法和电子设备
CN113045208A (zh) 超薄玻璃层及其制备方法、盖板
KR20150126317A (ko) 커버글라스 및 이의 제조 방법
CN114585177B (zh) 壳体组件、其制备方法、透明基材、及电子设备
JP2024029823A (ja) 基板の製造方法及びその製造方法により製造された基板
KR20150126571A (ko) 커버글라스 및 이의 제조 방법
KR20150125908A (ko) 커버글라스 및 이의 제조 방법
KR20150125909A (ko) 커버글라스 및 이의 제조 방법
CN116477844A (zh) 一种闪光玻璃及其制备方法和电子设备壳体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880038

Country of ref document: EP

Kind code of ref document: A1