WO2023060854A1 - 用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法 - Google Patents

用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法 Download PDF

Info

Publication number
WO2023060854A1
WO2023060854A1 PCT/CN2022/085816 CN2022085816W WO2023060854A1 WO 2023060854 A1 WO2023060854 A1 WO 2023060854A1 CN 2022085816 W CN2022085816 W CN 2022085816W WO 2023060854 A1 WO2023060854 A1 WO 2023060854A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
thick film
hours
electric field
tio
Prior art date
Application number
PCT/CN2022/085816
Other languages
English (en)
French (fr)
Inventor
张建义
刘胜军
段红杰
Original Assignee
河北普尼医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北普尼医疗科技有限公司 filed Critical 河北普尼医疗科技有限公司
Publication of WO2023060854A1 publication Critical patent/WO2023060854A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • C04B35/499Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides containing also titanates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade

Definitions

  • the invention belongs to the technical field of functional ceramic materials, and in particular relates to a ceramic thick film of a ceramic electrode used for treating tumors with an electric field and a preparation method thereof.
  • PMN-PT lead magnesium niobate titanate material system
  • perovskite structure is a relaxor ferroelectric material with high dielectric constant or piezoelectric coefficient.
  • MgNb 2 O 6 MgNb 2 O 6
  • the invention provides a ceramic thick film of a ceramic electrode used for treating tumors with an electric field and a preparation method thereof.
  • a method for preparing a ceramic thick film of a ceramic electrode for electric field treatment of tumors comprising the following steps:
  • the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3, the dispersant is triethyl phosphate, the binder is polyvinyl butyral, and the plasticizer is polyethylene glycol and dibutyl phthalate Mixing; the mass ratio of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate is 22%: 65.8%: 0.2%: 2%: 2.5%: 7.5%;
  • the grinding balls are zirconia balls.
  • the temperature of plastic ejection is 500°C-600°C, and the holding time is 3 hours.
  • step 2-5 in step 2-5), the sintering temperature is 1150°C-1250°C, the heating rate is 2°C/min-3°C/min, and the holding time is 2 hours.
  • a ceramic thick film of a ceramic electrode for electric field treatment of tumors is prepared by the aforementioned preparation method.
  • the relative permittivity of the ceramic thick film is greater than 20000, and the dielectric loss is less than 0.04.
  • it provides an application of a ceramic material used in a ceramic electrode for electric field treatment of tumors in a capacitor electrode.
  • the ceramic thick film of the ceramic electrode used for electric field treatment of tumors and its preparation method provided by the present invention through the optimization of doping elements and proportions, and the optimization of the specific operations of each step of the preparation method, a high dielectric constant film is obtained.
  • Ceramic thick film materials with low dielectric loss and dielectric properties have made outstanding contributions to the preparation of capacitive electrodes required for biomedical research and clinical applications.
  • the preparation method provided by the invention is simple and easy, suitable for popularization and use in a large area, and has a good application prospect.
  • Fig. 1 shows the XRD spectrum of a kind of ceramic thick film material prepared by the ceramic thick film preparation method of a kind of ceramic electrode for electric field treatment tumor provided by the present invention
  • Fig. 2 shows the hysteresis loop spectrum of a kind of ceramic thick film material prepared by adopting the ceramic thick film preparation method of a ceramic electrode for electric field therapy tumor provided by the present invention
  • Fig. 3 shows the XRD pattern of another kind of ceramic thick film material prepared by adopting the ceramic thick film preparation method of a ceramic electrode for electric field therapy tumor provided by the present invention
  • Fig. 4 shows the hysteresis loop diagram of another ceramic thick film material prepared by a ceramic thick film preparation method for a ceramic electrode used for electric field treatment of tumors provided by the present invention.
  • the present invention provides a method for preparing a ceramic thick film for a ceramic electrode used in treating tumors with an electric field.
  • the ceramic thick film has ferroelectric properties, and the method includes the following steps:
  • the two-step solid-phase method comprises:
  • the first step: MgNb 2 O 6 is synthesized by using MgO and Nb 2 O 5 as raw materials and keeping the temperature at 1000° C. to 1200° C. for 2 hours.
  • Step 2 After preparing MgNb 2 O 6 , use MgNb 2 O 6 , Pb 3 O 4 , TiO 2 , Nb 2 O 5 , Na 2 CO 3 , SrCO 3 , Sm 2 O 3 as raw materials, at 815°C ⁇ Preserve at 865°C for 4 hours to synthesize (1-x)Pb(Mg 1/3 Nb 2/3 )O 3 -xPb 1-y Sr 0.5y Na 0.25y Sm 0.25y TiO 3 , where, 0.055 ⁇ x ⁇ 0.135, 0 ⁇ y ⁇ 0.03, x and y are the number of moles.
  • the mass ratio of ceramic powder, grinding balls and deionized water is as follows:
  • the grinding ball is a zirconia ball, which is more suitable for ball milling the powder.
  • the cast slurry is prepared by using the synthesized powder. First, add appropriate amount of solvent and dispersant to the (1-x)Pb(Mg 1/3 Nb 2/3 )O 3 -xPb 1-y Sr 0.5y Na 0.25y Sm 0.25y TiO 3 powder and grind it finely for 24 hours ; Next, add plasticizer for ball milling for 15 minutes, then add binder, and continue ball milling for 24 hours. After ball milling, use vacuum method to remove air bubbles for 25 minutes to obtain casting slurry, and then use slurry tape casting to obtain cast film green embryo, which can first obtain cast film by using slurry tape casting, and then cast film Cutting and other processing are carried out to obtain a cast film green embryo with a specific shape.
  • the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3;
  • the dispersant is triethyl phosphate;
  • the binder is polyvinyl butyral;
  • the plasticizer is polyethylene glycol and dibutyl phthalate Mixture of esters.
  • the mass proportions of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate are 22%: 65.8%: 0.2%: 2%: 2.5%: 7.5%.
  • Laminate the casting film green embryos (generally stacked to 10 layers), pressurize at 3-5 MPa, hold the pressure for 30 minutes and then release the pressure. Then carry out plastic ejection, get rid of the organic matter in the casting film green embryo to obtain the biscuit.
  • the temperature of plastic discharge is 500°C ⁇ 600°C, and the holding time is 3 hours.
  • the sintering temperature is 1150°C-1250°C
  • the heating rate is 2°C/min-3°C/min
  • the holding time is 2 hours.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the composition of the ferroelectric material is: 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 ,
  • the first step is to synthesize MgNb 2 O 6 , and calculate the required MgO and Nb 2 O 5 raw materials according to the composition of the MgNb 2 O 6 chemical formula.
  • a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
  • the mixed raw materials are incubated at 1000-1200°C for 2 hours to synthesize MgNb 2 O 6 ;
  • the second step is to synthesize 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 ;
  • a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
  • the mixed raw materials were kept at 830°C-850°C for 4 hours to synthesize 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 .
  • the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3; the dispersant is triethyl phosphate; the binder is polyvinyl butyral; the plasticizer is polyethylene glycol and dibutyl phthalate. mix;
  • the mass proportions of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate are 22%: 65.8%: 0.2%: 2%: 2.5%: 7.5%.
  • the slurry is tape-cast to obtain a cast film green embryo.
  • the sintered material is smoothed, cleaned, dried, screen-printed with silver paste, dried again, and put into a box-type electric furnace to burn silver.
  • the silver firing condition is 650° C. for 30 minutes to obtain the ceramic thick film sample of the present invention covered with electrodes.
  • the phase structure of the material was tested by XRD. Refer to Figure 1 for test results.
  • the phase structure of the ceramic thick film material of the present invention is a perovskite structure.
  • test frequency 1kHz 10kHz 100kHz 1MHz Relative permittivity 22685 22630 22341 21071 Dielectric loss 0.0146 0.0157 0.0235 0.0335
  • the relative dielectric constant of the ferroelectric ceramic material of the invention is greater than 20000 at room temperature, and the dielectric loss is less than 0.04.
  • the ferroelectric properties were measured with a TF Analyzer 2000 hysteresis loop measuring instrument from aixACCT, Germany.
  • Figure 2 is the hysteresis loop of the measured ceramic thick film. Under the application of 90KV/cm, 1 Hz AC electric field, the sample will not be broken down.
  • the composition of the ferroelectric material is: 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 ,
  • the first step is to synthesize MgNb 2 O 6 , and calculate the required MgO and Nb 2 O 5 raw materials according to the composition of the MgNb 2 O 6 chemical formula.
  • a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
  • the mixed raw materials are incubated at 1000-1200°C for 2 hours to synthesize MgNb 2 O 6 ;
  • the second step is to synthesize 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 ;
  • a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
  • the mixed raw materials were kept at 830°C-850°C for 4 hours to synthesize 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 .
  • the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3; the dispersant is triethyl phosphate; the binder is polyvinyl butyral; the plasticizer is polyethylene glycol and dibutyl phthalate. mix;
  • the mass proportions of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate are 22%: 65.8%: 0.2%: 2%: 2.5%: 7.5%.
  • the slurry is tape-cast to obtain a cast film green embryo.
  • the sintered material is smoothed, cleaned, dried, screen-printed with silver paste, dried again, and put into a box-type electric furnace to burn silver.
  • the silver firing condition is 650° C. for 30 minutes to obtain the ceramic thick film sample of the present invention covered with electrodes.
  • the phase structure of the material was tested by XRD. Refer to Figure 3 for test results.
  • the phase structure of the ceramic thick film material of the present invention is a perovskite structure.
  • test frequency 1kHz 10kHz 100kHz 1MHz Relative permittivity 22107 21831 21374 20858 Dielectric loss 0.0135 0.0143 0.0216 0.0325
  • the relative dielectric constant of the ferroelectric ceramic material of the invention is greater than 20000 at room temperature, and the dielectric loss is less than 0.04.
  • Figure 4 is the measured ceramic hysteresis loop. Under the application of 75kV/cm, 1 Hz AC electric field, the sample will not be broken down.
  • the composition of the ferroelectric material is: 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 ,
  • the first step is to synthesize MgNb 2 O 6 : use MgO and Nb 2 O 5 as raw materials, and synthesize MgNb 2 O 6 at a temperature of 1000°C to 1200°C for 2 hours;
  • the dielectric constant can only reach 15000, the dielectric loss is 0.045, and the maximum carrying electric field of the ferroelectric loop test is only 60kV/cm.
  • the prepared ceramic bulk has lower dielectric constant and lower breakdown field strength.
  • the composition of the ferroelectric material is: 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 ,
  • the first step is to synthesize MgNb 2 O 6 , and calculate the required MgO and Nb 2 O 5 raw materials according to the composition of the MgNb 2 O 6 chemical formula.
  • a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
  • the mixed raw materials are incubated at 1000-1200°C for 2 hours to synthesize MgNb 2 O 6 ;
  • the second step is to synthesize 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 ;
  • a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
  • the mixed raw materials were kept at 830°C-850°C for 4 hours to synthesize 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 .
  • the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3; the dispersant is triethyl phosphate; the binder is polyvinyl butyral; the plasticizer is polyethylene glycol and dibutyl phthalate. mix.
  • the mass proportions of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate are 32%: 55.8%: 0.2%: 2%: 2.5%: 7.5%.
  • the slurry is tape-cast to obtain a cast film green embryo.
  • the sintered ceramic material is smoothed, cleaned, dried, screen-printed with silver paste, dried again, and put into a box-type electric furnace to burn silver.
  • the silver firing condition is 650° C. for 30 minutes to obtain a ceramic thick film sample covered with electrodes.
  • the slurry formed in the preparation process has poor fluidity, is difficult to remove the film, and is easy to crack.
  • the composition of the ferroelectric material is: 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 ,
  • the first step is to synthesize MgNb 2 O 6 , and calculate the required MgO and Nb 2 O 5 raw materials according to the composition of the MgNb 2 O 6 chemical formula.
  • a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
  • the mixed raw materials are incubated at 1000-1200°C for 2 hours to synthesize MgNb 2 O 6 ;
  • the second step is to synthesize 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 ;
  • a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
  • the mixed raw materials were kept at 830°C-850°C for 4 hours to synthesize 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 .
  • the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3; the dispersant is triethyl phosphate; the binder is polyvinyl butyral; the plasticizer is polyethylene glycol and dibutyl phthalate. mix;
  • the mass proportions of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate are 15%: 72.88%: 0.2%: 2%: 2.5%: 7.5%.
  • the slurry is tape-cast to obtain a cast film green embryo.
  • the sintered ceramic material is smoothed, cleaned, dried, screen-printed with silver paste, dried again, and put into a box-type electric furnace to burn silver.
  • the silver firing condition is 650° C. for 30 minutes to obtain a ceramic thick film sample covered with electrodes.
  • the slurry formed during the preparation process has good fluidity, but there are pores on the surface of the thick film, the toughness of the thick film is poor, and it is difficult to remove the film.
  • the composition of the ferroelectric material is: 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 ,
  • the first step is to synthesize MgNb 2 O 6 , and calculate the required MgO and Nb 2 O 5 raw materials according to the composition of the MgNb 2 O 6 chemical formula.
  • a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
  • the mixed raw materials are incubated at 1000-1200°C for 2 hours to synthesize MgNb 2 O 6 ;
  • the second step is to synthesize 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 ;
  • a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
  • the mixed raw materials were kept at 830°C-850°C for 4 hours to synthesize 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 .
  • the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3; the dispersant is triethyl phosphate; the binder is polyvinyl butyral; the plasticizer is polyethylene glycol and dibutyl phthalate. mix;
  • the mass proportions of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate are 22%: 65.8%: 0.1%: 2.1%: 2.5%: 7.5%.
  • the sintered ceramic material is smoothed, cleaned, dried, screen-printed with silver paste, dried again, and put into a box-type electric furnace to burn silver.
  • the silver firing condition is 650° C. for 30 minutes to obtain a ceramic thick film sample covered with electrodes.
  • the resulting thick film has small particles and pores on the surface. Thick films have poor toughness and are difficult to release.
  • the composition of the ferroelectric material is: 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 ,
  • the first step is to synthesize MgNb 2 O 6 , and calculate the required MgO and Nb 2 O 5 raw materials according to the composition of the MgNb 2 O 6 chemical formula.
  • a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
  • the mixed raw materials are incubated at 1000-1200°C for 2 hours to synthesize MgNb 2 O 6 ;
  • the second step is to synthesize 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 ;
  • a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
  • the mixed raw materials were kept at 830°C-850°C for 4 hours to synthesize 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 .
  • the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3; the dispersant is triethyl phosphate; the binder is polyvinyl butyral; the plasticizer is polyethylene glycol and dibutyl phthalate. mix;
  • the mass proportions of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate are 22%: 65.8%: 0.2%: 2%: 1.5%: 8.5%.
  • the slurry is tape-cast to obtain a cast film green embryo.
  • the sintered ceramic material is smoothed, cleaned, dried, screen-printed with silver paste, dried again, and put into a box-type electric furnace to burn silver.
  • the silver firing condition is 650° C. for 30 minutes to obtain a ceramic thick film sample covered with electrodes.
  • the obtained film has microcracks on the surface, general plastic toughness, difficulty in stripping and easy cracking.
  • the composition of the ferroelectric material is: 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 ,
  • the first step is to synthesize MgNb 2 O 6 , and calculate the required MgO and Nb 2 O 5 raw materials according to the composition of the MgNb 2 O 6 chemical formula.
  • a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
  • the mixed raw materials are incubated at 1000-1200°C for 2 hours to synthesize MgNb 2 O 6 ;
  • the second step is to synthesize 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 ;
  • a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
  • the mixed raw materials were kept at 830°C-850°C for 4 hours to synthesize 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 .
  • the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3; the dispersant is triethyl phosphate; the binder is polyvinyl butyral; the plasticizer is polyethylene glycol and dibutyl phthalate. mix;
  • the mass proportions of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate are 22%: 65.8%: 0.2%: 2%: 3.5%: 6.5%.
  • the slurry is tape-cast to obtain a cast film green embryo.
  • the sintered ceramic material is polished, cleaned, dried, screen-printed with silver paste, dried again, and put into a box-type electric furnace to burn silver.
  • the silver firing condition is 650° C. for 30 minutes to obtain a ceramic thick film sample covered with electrodes.
  • the surface of the obtained film is uniform, but its plastic toughness is poor, it is difficult to release the film, and it is easy to crack.
  • the invention can obtain the ferroelectric thick-film ceramic material by selecting appropriate doping modification, utilizing a two-step synthesis method, casting and sintering.
  • the material has the characteristics of high dielectric constant and low dielectric loss, can be used to manufacture insulating capacitor electrodes, and has good application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)

Abstract

本发明涉及一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法,制备方法包括以下步骤:采用两步固相法合成(1-x)Pb(Mg 1/3Nb 2/3)O 3-xPb 1-ySr 0.5yNa 0.25ySm 0.25yTiO 3粉体,其中,0.055≤x≤0.135,0≤y≤0.03,x、y为摩尔数;利用合成好的粉体制备流延浆料:在粉体中加入适量的溶剂和分散剂细磨24小时;加入增塑剂球磨15分钟后,再加入粘结剂持续球磨24小时;将浆料流延成型获得流延膜生胚;将流延膜生胚叠层,加压,然后排塑获得素坯;对素坯进行烧结,获得陶瓷厚膜材料。陶瓷厚膜材料具有高介电常数和低损耗,适合制作导通交流电的电容电极。

Description

用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法 技术领域
本发明属于功能陶瓷材料技术领域,具体地说,涉及一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法。
背景技术
已经有生物医学实验证明,在特定交流频率下,施加交变电压可以有效抑制特定异常细胞的生长[Cancer Research,vol.64,pp3288-3295,2004;PNAS,vol.104,pp10152-10157,2007]。如果直接利用金属电极施加电场到人体,在传导电流的作用下,人体细胞内的带电矿物离子会出现迁移,导致细胞内离子浓度的变化,这对于人体是有害的[PNAS,vol.104,pp10152-10157,2007]。另外由于高传导电流会直接与人体的生命安全有关,利用金属电极施加电场进行医学研究及治疗,电压不可过高,施加电压受限。
根据物理学原理,纯电容对于传导电流是绝缘的,对交流电场是导通的,所以在临床施加交流电压的实验中,如果利用绝缘的电容作为电极施加交流电压,就可以避免人体内出现传导电流,从而避免传导电流对细胞的副作用。此外,一般治疗情况下通过电容电极施加在人体的电场是局部区域的,只有局部区域受到电场作用。由于电容的绝缘性质,没有传导电流通过加电场的人体区域。相对于金属导体电极,绝缘电容电极具有更高的安全性。
基于以上原理,国外已经有成功的利用绝缘电容电极施加交流电场进行生物医学与临床实验的案例。他们优选的介电材料为PMN-PT(铌镁酸铅钛酸铅材料体系)家族的一种铁电陶瓷材料,该材料对应的相对介电常数大于5000。在特定的电场频率下,电场可以有效地抑制动物及人体中的肿瘤细胞生长[PNAS,vol.104,pp10152-10157,2007]。
由于电容的容抗与电容材料的介电常数成反比[电工学,上册,电子技术,第五版,秦曾煌主编,第108页],所以利用高介电常数的介电材料制作的电容,容抗会更小。另外,介电损耗高的材料会在电场下发热。因此,采用高介电常数而且低损耗的材料,可以更加有效的将电场通过低容抗的电容电极片加在直接需要研究或治疗的人体部位。基于以上应用背景,寻找有高介电常数材料制作合适电容电极,以满足国内生物医学研究或临床应用就显得极为迫切。
一般而言,铁电材料具有高的介电常数。钙钛矿结构的PMN-PT(铌镁酸铅钛酸铅材料体系)是具有高介电常数或高压电系数的弛豫铁电材料。为了得到具有钙钛矿结构的PMN-PT陶瓷材料,需要事先合成的MgNb 2O 6为前驱体,然后与其他原料混合,合成得到 具有钙钛矿结构的PMN-PT的具体成分[Materials Research Bulletin,vol.17,pp1245-1250,1982;Journal of the American Ceramic Society,vol.82,pp797-818,1999]。
基于PMN-PT体系中成分在MPB(准同晶相界)的弛豫铁电材料具有优良的压电性能,[Journal of the American Ceramic Society,vol.82,pp797-818,1999,Nature Materials,vol.17,pp349-354,2018;Science,vol.364,pp264-268,2019]。大量的基于PMN-PT体系的研究关注MPB相界的成分,研究开发压电材料。对于介电电容应用的材料,对应的成分需要偏离MPB相界,研究相对较少。另外与块体材料相比,介电厚膜具有集成化,小型化,均匀化等方面的优势。有必要研究铁电厚膜材料的制备方法以满足使用要求。
发明内容
本发明提供了一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法。
根据本发明的一个方面,提供一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法,所述制备方法包括如下步骤:
1)采用两步固相法合成(1-x)Pb(Mg 1/3Nb 2/3)O 3-xPb 1-ySr 0.5yNa 0.25ySm 0.25yTiO 3,其中,0.055≤x≤0.135,0≤y≤0.03,x、y为摩尔数:
1-1)以MgO,Nb 2O 5为原料,在1000℃~1200℃的温度下保温2小时合成MgNb 2O 6
1-2)以MgNb 2O 6,Pb 3O 4,TiO 2,Nb 2O 5,Na 2CO 3,SrCO 3,Sm 2O 3为原料,在815℃~865℃的温度下保温4小时,合成(1-x)Pb(Mg 1/3Nb 2/3)O 3-xPb 1-ySr 0.5yNa 0.25ySm 0.25yTiO 3粉体,其中,0.055≤x≤0.135,0≤y≤0.03,x、y为摩尔数;
步骤1-2)中采用湿式球磨法混料,其中,陶瓷粉体、磨球、去离子水的质量比如下,陶瓷粉体:磨球:去离子水=1:2:0.7,混料球磨时间为6小时;
2)利用所述步骤1)中合成好的粉体制备流延浆料:
2-1)在(1-x)Pb(Mg 1/3Nb 2/3)O 3-xPb 1-ySr 0.5yNa 0.25ySm 0.25yTiO 3粉体中加入适量的溶剂和分散剂细磨24小时;
2-2)加入增塑剂球磨15分钟后,再加入粘结剂持续球磨24小时;
其中,溶剂为乙醇和甲苯以质量比2:3的混合,分散剂为磷酸三乙酯,粘结剂为聚乙烯醇缩丁醛,增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合;粉体、溶剂、分散剂、粘结剂、聚乙二醇和邻苯二甲酸二丁酯的质量比例为22%:65.8%:0.2%:2%:2.5%:7.5%;
2-3)将浆料流延成型获得流延膜生胚;
2-4)将流延膜生胚叠层,加压,然后进行排塑,排除所述流延膜生胚中的有机物质获得素坯;
2-5)对所述素坯进行烧结,获得陶瓷厚膜材料。
根据本发明的一个具体实施方式,在步骤1-2)中,所述磨球为氧化锆球。
根据本发明的一个具体实施方式,在步骤2-4)中,排塑的温度为500℃~600℃,保温时间为3小时。
根据本发明的又一个具体实施方式,在步骤2-5)中,烧结温度为1150℃~1250℃,升温速率为2℃/min~3℃/min,保温时间为2小时。
根据本发明的另一个方面,提供了一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜,所述陶瓷厚膜通过前述制备方法制备。
根据本发明的另一个具体实施方式,在室温条件下,当频率处于1kHz~1MHz频率范围内时,所述陶瓷厚膜的相对介电常数大于20000,介电损耗小于0.04。
根据本发明的另一个方面,提供了一种用于电场治疗肿瘤的陶瓷电极的陶瓷材料在电容电极中的应用。
本发明提供的用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法,通过对掺杂元素与配比的优化,以及对制备方法各步骤具体操作的优化,获得了具有高介电常数与低介电损耗且具备介电性能的陶瓷厚膜材料,为制备包括生物医学研究和临床应用所需要的电容电极做出了卓越贡献。且本发明提供的制备方法简单易行,适合大面积推广使用,有良好的应用前景。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1所示为采用本发明提供的一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法制备的一种陶瓷厚膜材料的XRD图谱;
图2所示为采用本发明提供的一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法制备的一种陶瓷厚膜材料的电滞回线图谱;
图3所示为采用本发明提供的一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法制备的另一种陶瓷厚膜材料的XRD图谱;
图4所示为采用本发明提供的一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法制备的另一种陶瓷厚膜材料的电滞回线图谱。
具体实施方式
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。
本发明提供的一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法,陶瓷厚膜具备铁电性能,方法包括如下步骤:
步骤S101:
采用两步固相法合成(1-x)Pb(Mg 1/3Nb 2/3)O 3-xPb 1-ySr 0.5yNa 0.25ySm 0.25yTiO 3;其中,0.055≤x≤0.135,0≤y≤0.03,x、y为摩尔数。
所述两步固相法包括:
第一步:以MgO,Nb 2O 5为原料,在1000℃~1200℃的温度下保温2小时合成MgNb 2O 6
进一步地,在选取原料MgO和Nb 2O 5之后,需要按照MgNb 2O 6的化学计量比进行配料;随后,采用湿式球磨法对上述原料进行混料操作;混料后,对混合材料进行烘干;最后,在1000℃~1200℃的温度下保温2小时合成MgNb 2O 6。更为优选的,在1150℃的温度下进行保温,得到的MgNb 2O 6更为优质。
第二步:制备好MgNb 2O 6后,以MgNb 2O 6,Pb 3O 4,TiO 2,Nb 2O 5,Na 2CO 3,SrCO 3,Sm 2O 3为原料,在815℃~865℃的温度下保温4小时,合成(1-x)Pb(Mg 1/3Nb 2/3)O 3-xPb 1-ySr 0.5yNa 0.25ySm 0.25yTiO 3,其中,0.055≤x≤0.135,0≤y≤0.03,x、y为摩尔数。
采用湿式球磨法混料,陶瓷粉体、磨球、去离子水的质量比如下:
陶瓷粉体:磨球:去离子水=1:2:0.7,混料球磨时间为6小时。
优选的,磨球为氧化锆球更适合对粉体进行球磨操作。
步骤S102:
利用合成好的粉体制备流延浆料。首先在(1-x)Pb(Mg 1/3Nb 2/3)O 3-xPb 1-ySr 0.5yNa 0.25ySm 0.25yTiO 3粉体中加入适量的溶剂和分散剂细磨24小时;其次加入增塑剂球磨15分钟,然后再加入粘结剂,持续球磨24小时。球磨完毕后,利用真空法去除气泡25分钟得到流延浆料,然后利用浆料流延成型获得流延膜生胚,其可先通过利用浆料流延成型获得流延膜,再对流延膜进行裁剪等处理得到具有特定形状的流延膜生胚。
优选的,溶剂为乙醇和甲苯以质量比2:3的混合;分散剂为磷酸三乙酯;粘结剂为聚乙烯醇缩丁醛;增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合。
优选的,其中粉体,溶剂,分散剂,粘结剂,聚乙二醇和邻苯二甲酸二丁酯的质量比例为22%:65.8%:0.2%:2%:2.5%:7.5%。
步骤S103:
将流延膜生胚叠层(一般叠层到10层),加压3~5兆帕,保压30分钟后卸压。然后进行排塑,排除所述流延膜生胚中的有机物质获得素坯。排塑的温度为500℃~600℃,保温时间为 3小时。
对排塑后的素坯进行烧结,获得陶瓷厚膜材料。烧结温度为1150℃~1250℃,升温速率为2℃/min~3℃/min,保温时间为2小时。
下面以两个具体实施例来进一步阐述本发明提供的技术方案。
实施例l:
铁电材料组成为:0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3
第一,两步固相法合成:
0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3
第一步合成MgNb 2O 6,按MgNb 2O 6化学式组成计算所需的MgO,Nb 2O 5原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:1.5:0.8;
混合6~8小时,使各组分混合均匀。
进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在1000-1200℃保温2小时合成MgNb 2O 6
第二步合成0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3
按0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3的化学式组成计算所需的MgNb 2O 6,Pb 3O 4,TiO 2,Li 2CO 3,Na 2CO 3,SrCO 3,Sm 2O 3的原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.7;
混合6~8小时,使各组分混合均匀。
之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在830℃~850℃保温4小时,合成0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3
第二,利用合成好的粉体制备流延浆料。
首先在0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3粉体中加入适量的溶剂和分散剂细磨24小时;其次加入增塑剂球磨15分钟,然后再加入粘结剂,持续球磨24小时。球磨完毕后,利用真空法去除气泡25分钟得到流延浆料。
其中溶剂为乙醇和甲苯以质量比2:3的混合;分散剂为磷酸三乙酯;粘结剂为聚乙烯醇缩丁醛;增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合;
其中粉体,溶剂,分散剂,粘结剂,聚乙二醇和邻苯二甲酸二丁酯的质量比例为22%: 65.8%:0.2%:2%:2.5%:7.5%。
第三,将浆料流延成型获得流延膜生胚。
第四,将流延膜叠生胚叠10层,加压5兆帕,保持30分钟后卸压,然后在525℃保温3小时排塑,排除所述流延膜生胚中的有机物质获得素坯;
第五,将素坯放入氧化铝坩埚中密闭烧结,用具有相同组分的陶瓷粉料将坯体覆盖,盖上磨口盖,以3℃/min的升温速率升至1220℃,保温2小时,随炉冷却后得到陶瓷材料样品。
第六,将烧结好的材料磨平、清洗,烘干,丝网印刷银浆,再烘干,放入厢式电炉烧银。烧银条件为650℃保温30分钟,得到覆有电极的本发明的陶瓷厚膜样品。利用XRD测试材料相结构。测试结果参照图1。本发明的陶瓷厚膜材料的相结构为钙钛矿结构。
第七,对烧结的本发明的陶瓷厚膜样品进行介电性能及强场下铁电特性测试。介电性能由精密阻抗分析仪(Agilent 4294A,美国Agilent公司产品)测试得到,参考表1。
表1:室温下(25℃)样品的相对介电常数与介电损耗
测试频率 1kHz 10kHz 100kHz 1MHz
相对介电常数 22685 22630 22341 21071
介电损耗 0.0146 0.0157 0.0235 0.0335
在1kHz到1MHz的频率范围内,本发明的铁电陶瓷材料在室温下相对介电常数大于20000,介电损耗小于0.04。铁电特性利用德国aixACCT公司的TF Analyzer 2000电滞回线测量仪测量。图2为测量得到的陶瓷厚膜的电滞回线。施加90KV/cm,1赫兹的交流电场下,样品不被击穿。
实施例2:
铁电材料组成为:0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3
第一,两步固相法合成:
0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3
第一步合成MgNb 2O 6,按MgNb 2O 6化学式组成计算所需的MgO,Nb 2O 5原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:1.5:0.8;
混合6~8小时,使各组分混合均匀。
进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在1000-1200℃保温2小时合成MgNb 2O 6
第二步合成0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3
按0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3的化学式组成计算所需的MgNb 2O 6,Pb 3O 4,TiO 2,Li 2CO 3,Na 2CO 3,SrCO 3,Sm 2O 3的原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.7;
混合6~8小时,使各组分混合均匀。
之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在830℃~850℃保温4小时,合成0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3
第二,利用合成好的粉体制备流延浆料。
首先在0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3粉体中加入适量的溶剂和分散剂细磨24小时;其次加入增塑剂球磨15分钟,然后再加入粘结剂,持续球磨24小时。球磨完毕后,利用真空法去除气泡25分钟得到流延浆料。
其中溶剂为乙醇和甲苯以质量比2:3的混合;分散剂为磷酸三乙酯;粘结剂为聚乙烯醇缩丁醛;增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合;
其中粉体,溶剂,分散剂,粘结剂,聚乙二醇和邻苯二甲酸二丁酯的质量比例为22%:65.8%:0.2%:2%:2.5%:7.5%。
第三,将浆料流延成型获得流延膜生胚。
第四,将流延膜叠生胚叠10层,加压5兆帕,保持30分钟后卸压,然后在525℃保温3小时排塑,排除所述流延膜生胚中的有机物质获得素坯。
第五,将素坯放入氧化铝坩埚中密闭烧结,用具有相同组分的陶瓷粉料将坯体覆盖,盖上磨口盖,以3℃/min的升温速率升至1220℃,保温2小时,随炉冷却后得到陶瓷材料样品。
第六,将烧结好的材料磨平、清洗,烘干,丝网印刷银浆,再烘干,放入厢式电炉烧银。烧银条件为650℃保温30分钟,得到覆有电极的本发明的陶瓷厚膜样品。利用XRD测试材料相结构。测试结果参照图3。本发明的陶瓷厚膜材料的相结构为钙钛矿结构。
第七,对烧结的本发明的陶瓷厚膜样品进行介电性能及强场下铁电特性测试。介电性能由精密阻抗分析仪(Agilent 4294A,美国Agilent公司产品)测试得到,参考表2。
表2:室温下(25℃)实施例2样品的相对介电常数与介电损耗
测试频率 1kHz 10kHz 100kHz 1MHz
相对介电常数 22107 21831 21374 20858
介电损耗 0.0135 0.0143 0.0216 0.0325
在1kHz到1MHz的频率范围内,本发明的铁电陶瓷材料在室温下相对介电常数大于20000,介电损耗小于0.04。图4为测量得到的陶瓷电滞回线。施加75kV/cm,1赫兹的交流电场下,样品不被击穿。
对比例1:
铁电材料组成为:0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3
第一、采用固相法合成:
0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3
第一步合成MgNb 2O 6:以MgO,Nb 2O 5为原料,在1000℃~1200℃的温度下保温2小时合成MgNb 2O 6,;
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量为原料:磨球:去离子水=1:1.5:0.8;混合6~8小时,使各组分混合均匀。之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
第二步合成0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3
以MgNb 2O 6,Pb 3O 4,TiO 2,Nb 2O 5,Na 2CO 3,SrCO 3,Sm 2O 3为原料,在830℃~850℃的温度下保温4小时,合成0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量为原料:磨球:去离子水=1:2:0.7;混合6~8小时,使各组分混合均匀。之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作,混合后的原料在830℃~850℃保温4小时,合成0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3粉体。
第二,对所述步骤1)中合成好的0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3粉体进行细磨,细磨24小时后添加粘结剂造粒并压制成型以得到素坯。
第三,将压制成型的素坯在650℃保温2小时,排除素坯中的有机物质,排塑速率不超过3℃/min。
第四,将排塑后样品放入氧化铝坩埚中密闭烧结,为防止铅组分的挥发,用具有相 同组分的粉料将坯体覆盖,盖上磨口盖,以5℃/min的升温速率升至1235-1250℃,保温2小时,随炉冷却后得到致密成品陶瓷。
第五,将烧结好的成品磨平、清洗,烘干。上电极,测试介电性能和铁电回线。介电常数仅可达到15000,介电损耗为0.045,铁电回线测试最高承载电场仅为60kV/cm。与陶瓷厚膜材料相比,制备得到的陶瓷块体介电常数较低,击穿场强较低。
对比例2:
铁电材料组成为:0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3
第一,两步固相法合成:
0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3
第一步合成MgNb 2O 6,按MgNb 2O 6化学式组成计算所需的MgO,Nb 2O 5原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:1.5:0.8;
混合6~8小时,使各组分混合均匀。
进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在1000-1200℃保温2小时合成MgNb 2O 6
第二步合成0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3
按0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3的化学式组成计算所需的MgNb 2O 6,Pb 3O 4,TiO 2,Li 2CO 3,Na 2CO 3,SrCO 3,Sm 2O 3的原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.7;
混合6~8小时,使各组分混合均匀。
之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在830℃~850℃保温4小时,合成0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3
第二,利用合成好的粉体制备流延浆料。
首先在0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3粉体中加入适量的溶剂和分散剂细磨24小时;其次加入增塑剂球磨15分钟,然后再加入粘结剂,持续球磨24小时。球磨完毕后,利用真空法去除气泡25分钟得到流延浆料。
其中溶剂为乙醇和甲苯以质量比2:3的混合;分散剂为磷酸三乙酯;粘结剂为聚乙烯醇缩丁醛;增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合。
其中粉体,溶剂,分散剂,粘结剂,聚乙二醇和邻苯二甲酸二丁酯的质量比例为32%:55.8%:0.2%:2%:2.5%:7.5%。
第三,将浆料流延成型获得流延膜生胚。
第四,将流延膜叠生胚叠10层,加压5兆帕,保持30分钟后卸压,然后在525℃保温3小时排塑,排除所述流延膜生胚中的有机物质获得素坯。
第五,将素坯放入氧化铝坩埚中密闭烧结,用具有相同组分的陶瓷粉料将坯体覆盖,盖上磨口盖,以3℃/min的升温速率升至1220℃,保温2小时,随炉冷却后得到陶瓷材料样品。
第六,将烧结好的陶瓷材料磨平、清洗,烘干,丝网印刷银浆,再烘干,放入厢式电炉烧银。烧银条件为650℃保温30分钟,得到覆有电极的陶瓷厚膜样品。
制备过程中形成的浆料流动性差,难于脱膜,容易开裂。
对比例3:
铁电材料组成为:0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3
第一,两步固相法合成:
0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3
第一步合成MgNb 2O 6,按MgNb 2O 6化学式组成计算所需的MgO,Nb 2O 5原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:1.5:0.8;
混合6~8小时,使各组分混合均匀。
进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在1000-1200℃保温2小时合成MgNb 2O 6
第二步合成0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3
按0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3的化学式组成计算所需的MgNb 2O 6,Pb 3O 4,TiO 2,Li 2CO 3,Na 2CO 3,SrCO 3,Sm 2O 3的原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.7;
混合6~8小时,使各组分混合均匀。
之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在830℃~850℃保温4小时,合成0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3
第二,利用合成好的粉体制备流延浆料。
首先在0.88Pb(Mg 1/3Nb 2/3)O 3-0.12Pb 0.98Sr 0.01Na 0.005Sm 0.005TiO 3粉体中加入适量的溶剂和分散剂细磨24小时;其次加入增塑剂球磨15分钟,然后再加入粘结剂,持续球磨24小时。球磨完毕后,利用真空法去除气泡25分钟得到流延浆料。。
其中溶剂为乙醇和甲苯以质量比2:3的混合;分散剂为磷酸三乙酯;粘结剂为聚乙烯醇缩丁醛;增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合;
其中粉体,溶剂,分散剂,粘结剂,聚乙二醇和邻苯二甲酸二丁酯的质量比例为15%:72.88%:0.2%:2%:2.5%:7.5%。
第三,将浆料流延成型获得流延膜生胚。
第四,将流延膜叠生胚叠10层,加压5兆帕,保持30分钟后卸压,然后在525℃保温3小时排塑,排除所述流延膜生胚中的有机物质获得素坯。
第五,将素坯放入氧化铝坩埚中密闭烧结,用具有相同组分的陶瓷粉料将坯体覆盖,盖上磨口盖,以3℃/min的升温速率升至1220℃,保温2小时,随炉冷却后得到陶瓷材料样品。
第六,将烧结好的陶瓷材料磨平、清洗,烘干,丝网印刷银浆,再烘干,放入厢式电炉烧银。烧银条件为650℃保温30分钟,得到覆有电极的陶瓷厚膜样品。
制备过程中形成的浆料流动性好,但是厚膜表面有气孔,厚膜韧性差,脱膜困难。
对比例4:
铁电材料组成为:0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3
第一,两步固相法合成:
0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3
第一步合成MgNb 2O 6,按MgNb 2O 6化学式组成计算所需的MgO,Nb 2O 5原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:1.5:0.8;
混合6~8小时,使各组分混合均匀。
进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在1000-1200℃保温2小时合成MgNb 2O 6
第二步合成0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3
按0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3的化学式组成计算所需的MgNb 2O 6,Pb 3O 4,TiO 2,Li 2CO 3,Na 2CO 3,SrCO 3,Sm 2O 3的原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.7;
混合6~8小时,使各组分混合均匀。
之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在830℃~850℃保温4小时,合成0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3
第二,利用合成好的粉体制备流延浆料。
首先在0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3粉体中加入适量的溶剂和分散剂细磨24小时;其次加入增塑剂球磨15分钟,然后再加入粘结剂,持续球磨24小时。球磨完毕后,利用真空法去除气泡25分钟得到流延浆料。
其中溶剂为乙醇和甲苯以质量比2:3的混合;分散剂为磷酸三乙酯;粘结剂为聚乙烯醇缩丁醛;增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合;
其中粉体,溶剂,分散剂,粘结剂,聚乙二醇和邻苯二甲酸二丁酯的质量比例为22%:65.8%:0.1%:2.1%:2.5%:7.5%。
第三,将浆料流延成型获得流延膜生胚;
第四,将流延膜叠生胚叠10层,加压5兆帕,保持30分钟后卸压,然后在525℃保温3小时排塑,排除所述流延膜生胚中的有机物质获得素坯;
第五,将素坯放入氧化铝坩埚中密闭烧结,用具有相同组分的陶瓷粉料将坯体覆盖,盖上磨口盖,以3℃/min的升温速率升至1220℃,保温2小时,随炉冷却后得到陶瓷材料样品。
第六,将烧结好的陶瓷材料磨平、清洗,烘干,丝网印刷银浆,再烘干,放入厢式电炉烧银。烧银条件为650℃保温30分钟,得到覆有电极的陶瓷厚膜样品。
得到的厚膜表面有小颗粒和气孔。厚膜韧性差,脱膜困难。
对比例5:
铁电材料组成为:0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3
第一,两步固相法合成:
0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3
第一步合成MgNb 2O 6,按MgNb 2O 6化学式组成计算所需的MgO,Nb 2O 5原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:1.5:0.8;
混合6~8小时,使各组分混合均匀。
进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在1000-1200℃保温2小时合成MgNb 2O 6
第二步合成0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3
按0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3的化学式组成计算所需的MgNb 2O 6,Pb 3O 4,TiO 2,Li 2CO 3,Na 2CO 3,SrCO 3,Sm 2O 3的原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.7;
混合6~8小时,使各组分混合均匀。
之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在830℃~850℃保温4小时,合成0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3
第二,利用合成好的粉体制备流延浆料。
首先在0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3粉体中加入适量的溶剂和分散剂细磨24小时;其次加入增塑剂球磨15分钟,然后再加入粘结剂,持续球磨24小时。球磨完毕后,利用真空法去除气泡25分钟得到流延浆料。
其中溶剂为乙醇和甲苯以质量比2:3的混合;分散剂为磷酸三乙酯;粘结剂为聚乙烯醇缩丁醛;增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合;
其中粉体,溶剂,分散剂,粘结剂,聚乙二醇和邻苯二甲酸二丁酯的质量比例为22%:65.8%:0.2%:2%:1.5%:8.5%。
第三,将浆料流延成型获得流延膜生胚。
第四,将流延膜叠生胚叠10层,加压5兆帕,保持30分钟后卸压,然后在525℃保温3小时排塑,排除所述流延膜生胚中的有机物质获得素坯;
第五,将素坯放入氧化铝坩埚中密闭烧结,用具有相同组分的陶瓷粉料将坯体覆盖,盖上磨口盖,以3℃/min的升温速率升至1220℃,保温2小时,随炉冷却后得到陶瓷材料样品。
第六,将烧结好的陶瓷材料磨平、清洗,烘干,丝网印刷银浆,再烘干,放入厢式电炉烧银。烧银条件为650℃保温30分钟,得到覆有电极的陶瓷厚膜样品。
得到的膜表面有微裂纹,塑性韧性一般,脱膜困难,容易开裂。
对比例6:
铁电材料组成为:0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3
第一,两步固相法合成:
0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3
第一步合成MgNb 2O 6,按MgNb 2O 6化学式组成计算所需的MgO,Nb 2O 5原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:1.5:0.8;
混合6~8小时,使各组分混合均匀。
进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在1000-1200℃保温2小时合成MgNb 2O 6
第二步合成0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3
按0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3的化学式组成计算所需的MgNb 2O 6,Pb 3O 4,TiO 2,Li 2CO 3,Na 2CO 3,SrCO 3,Sm 2O 3的原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.7;
混合6~8小时,使各组分混合均匀。
之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在830℃~850℃保温4小时,合成0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3
第二,利用合成好的粉体制备流延浆料。
首先在0.90Pb(Mg 1/3Nb 2/3)O 3-0.10Pb 0.99Sr 0.005Na 0.0025Sm 0.0025TiO 3粉体中加入适量的溶剂和分散剂细磨24小时;其次加入增塑剂球磨15分钟,然后再加入粘结剂,持续球磨24小时。球磨完毕后,利用真空法去除气泡25分钟得到流延浆料。
其中溶剂为乙醇和甲苯以质量比2:3的混合;分散剂为磷酸三乙酯;粘结剂为聚乙烯醇缩丁醛;增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合;
其中粉体,溶剂,分散剂,粘结剂,聚乙二醇和邻苯二甲酸二丁酯的质量比例为22%:65.8%:0.2%:2%:3.5%:6.5%。
第三,将浆料流延成型获得流延膜生胚。
第四,将流延膜叠生胚叠10层,加压5兆帕,保持30分钟后卸压,然后在525℃保温3小时排塑,排除所述流延膜生胚中的有机物质获得素坯;
第五,将素坯放入氧化铝坩埚中密闭烧结,用具有相同组分的陶瓷粉料将坯体覆盖,盖上磨口盖,以3℃/min的升温速率升至1220℃,保温2小时,随炉冷却后得到陶瓷材料样品。
第六,将烧结好的陶瓷材料磨平、清洗,烘干,丝网印刷银浆,再烘干,放入厢式 电炉烧银。烧银条件为650℃保温30分钟,得到覆有电极的陶瓷厚膜样品。
得到的膜表面均匀,但是塑性韧性差,脱膜困难,容易开裂。
另外,与采用授权公告号为CN106946569B的中国发明专利公开的制备陶瓷材料(1-x)Pb(Mg 1/3Nb 2/3)O 3-xPb 1-yLi 0.5yNa 0.5yTi 1-yO 3来进行后续流延成型得到的陶瓷厚膜相比,本发明得到的陶瓷厚膜性能更优。
本发明通过选择合适掺杂改性,利用两步合成法,流延成型,烧结,可以得到铁电厚膜陶瓷材料。该材料具有高介电常数与低介电损耗的特点,可用于制造绝缘的电容电极,具有良好的应用前景。
虽然关于示例实施例及其优点已经详细说明,应当理解在不脱离本发明的精神和所附权利要求限定的保护范围的情况下,可以对这些实施例进行各种变化、替换和修改。
此外,本发明的应用范围不局限于说明书中描述的特定实施例的工艺、机构、制造、物质组成、手段、方法及步骤。从本发明的公开内容,作为本领域的普通技术人员将容易地理解,对于目前已存在或者以后即将开发出的工艺、机构、制造、物质组成、手段、方法或步骤,其中它们执行与本发明描述的对应实施例大体相同的功能或者获得大体相同的结果,依照本发明可以对它们进行应用。因此,本发明所附权利要求旨在将这些工艺、机构、制造、物质组成、手段、方法或步骤包含在其保护范围内。

Claims (7)

  1. 一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法,其特征在于,所述制备方法包括如下步骤:
    1)采用两步固相法合成(1-x)Pb(Mg 1/3Nb 2/3)O 3-xPb 1-ySr 0.5yNa 0.25ySm 0.25yTiO 3,其中,0.055≤x≤0.135,0≤y≤0.03,x、y为摩尔数:
    1-1)以MgO,Nb 2O 5为原料,在1000℃~1200℃的温度下保温2小时合成MgNb 2O 6
    1-2)以MgNb 2O 6,Pb 3O 4,TiO 2,Nb 2O 5,Na 2CO 3,SrCO 3,Sm 2O 3为原料,在815℃~865℃的温度下保温4小时,合成(1-x)Pb(Mg 1/3Nb 2/3)O 3-xPb 1-ySr 0.5yNa 0.25ySm 0.25yTiO 3粉体,其中,0.055≤x≤0.135,0≤y≤0.03,x、y为摩尔数;
    步骤1-2)中采用湿式球磨法混料,其中,陶瓷粉体、磨球、去离子水的质量比如下,陶瓷粉体:磨球:去离子水=1:2:0.7,混料球磨时间为6小时;
    2)利用所述步骤1)中合成好的粉体制备流延浆料:
    2-1)在(1-x)Pb(Mg 1/3Nb 2/3)O 3-xPb 1-ySr 0.5yNa 0.25ySm 0.25yTiO 3粉体中加入适量的溶剂和分散剂细磨24小时;
    2-2)加入增塑剂球磨15分钟后,再加入粘结剂持续球磨24小时;
    其中,溶剂为乙醇和甲苯以质量比2:3的混合,分散剂为磷酸三乙酯,粘结剂为聚乙烯醇缩丁醛,增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合;粉体、溶剂、分散剂、粘结剂、聚乙二醇和邻苯二甲酸二丁酯的质量比例为22%:65.8%:0.2%:2%:2.5%:7.5%;
    2-3)将浆料流延成型获得流延膜生胚;
    2-4)将流延膜生胚叠层,加压,然后排塑,排除所述流延膜生胚中的有机物质获得素坯;
    2-5)对所述素坯进行烧结,获得陶瓷厚膜材料。
  2. 根据权利要求1所述的用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法,其特征在于,在步骤1-2)中,所述磨球为氧化锆球。
  3. 根据权利要求1所述的用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法,其特征在于,在步骤2-4)中,排塑的温度为500℃~600℃,保温时间为3小时。
  4. 根据权利要求1所述的用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法,其特征在于,在步骤2-5)中,烧结温度为1150℃~1250℃,升温速率为2℃/min~3℃/min,保温时间为2小时。
  5. 一种由权利要求1-4任一项所述的方法制备的用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜。
  6. 根据权利要求5所述的用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜,其特征在于,在室温条件下,当频率处于1kHz~1MHz频率范围内时,所述陶瓷厚膜的相对介电常数大于 20000,介电损耗小于0.04。
  7. 权利要求5所述用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜在电容电极中的应用。
PCT/CN2022/085816 2021-10-15 2022-04-08 用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法 WO2023060854A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111200498.2A CN113636840B (zh) 2021-10-15 2021-10-15 用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法
CN202111200498.2 2021-10-15

Publications (1)

Publication Number Publication Date
WO2023060854A1 true WO2023060854A1 (zh) 2023-04-20

Family

ID=78426945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085816 WO2023060854A1 (zh) 2021-10-15 2022-04-08 用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法

Country Status (2)

Country Link
CN (1) CN113636840B (zh)
WO (1) WO2023060854A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113636840B (zh) * 2021-10-15 2022-01-11 北京国械堂科技发展有限责任公司 用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072547A (ja) * 1998-08-31 2000-03-07 Kyocera Corp 誘電体磁器組成物および積層型磁器コンデンサ
CN101805185A (zh) * 2010-03-19 2010-08-18 江苏工业学院 一种制备铌镁酸铅钛酸铅弛豫铁电陶瓷的方法
CN110342935A (zh) * 2019-06-20 2019-10-18 广东捷成科创电子股份有限公司 一种Sm改性铌镁酸铅-钛酸铅基压电铁电厚膜材料及其制备方法
CN110642623A (zh) * 2019-10-11 2020-01-03 广东工业大学 一种铌镁酸铅-钛酸铅厚膜陶瓷及其制备方法与应用
CN113636840A (zh) * 2021-10-15 2021-11-12 北京国械堂科技发展有限责任公司 用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030604A (en) * 1989-10-27 1991-07-09 Industrial Technology Research Institute Preparation method for Pb[(Znx Mg1-x)1/3 Nb2/3 ]O3
CN102757232A (zh) * 2012-07-17 2012-10-31 西北工业大学 铌镁酸铅-钛酸铅陶瓷的制备方法
CN106946569B (zh) * 2017-02-24 2020-05-26 北京国械堂科技发展有限责任公司 一种可用于生物医学研究和临床应用的陶瓷电极材料及元件
CN112745117A (zh) * 2020-12-29 2021-05-04 西安交通大学 一种织构化压电陶瓷叠层驱动器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072547A (ja) * 1998-08-31 2000-03-07 Kyocera Corp 誘電体磁器組成物および積層型磁器コンデンサ
CN101805185A (zh) * 2010-03-19 2010-08-18 江苏工业学院 一种制备铌镁酸铅钛酸铅弛豫铁电陶瓷的方法
CN110342935A (zh) * 2019-06-20 2019-10-18 广东捷成科创电子股份有限公司 一种Sm改性铌镁酸铅-钛酸铅基压电铁电厚膜材料及其制备方法
CN110642623A (zh) * 2019-10-11 2020-01-03 广东工业大学 一种铌镁酸铅-钛酸铅厚膜陶瓷及其制备方法与应用
CN113636840A (zh) * 2021-10-15 2021-11-12 北京国械堂科技发展有限责任公司 用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法

Also Published As

Publication number Publication date
CN113636840A (zh) 2021-11-12
CN113636840B (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
CN111763082B (zh) 一种钛酸锶钡基介质陶瓷材料及其制备方法和应用
CN109626988B (zh) 高压电响应和高居里温度的压电陶瓷材料及其制备方法
CN105742057A (zh) 层叠陶瓷电容器
KR101268487B1 (ko) 비스무스(Bi)계 복합 페로브스카이트 무연 압전 세라믹스 및 그 제조 방법
CN113461423B (zh) 用于电场治疗肿瘤的陶瓷电极的陶瓷材料及其制备方法
CN106946569B (zh) 一种可用于生物医学研究和临床应用的陶瓷电极材料及元件
CN108546125B (zh) 一种面向高温环境应用的压电陶瓷材料及其制备方法
JP2022528586A (ja) 複合相巨大誘電体セラミック材料及びその製造方法
CN105801112A (zh) Nd、Al共掺杂取代Ba0.4Sr0.6TiO3巨介电陶瓷及其制备方法
CN103214238A (zh) 一种钛酸锶钡基介电温度稳定型陶瓷电容器材料的制备方法
CN113666741B (zh) 一种钒掺杂铌酸钠压电陶瓷及其制备方法
Lee et al. Microwave dielectric properties and microstructures of Nb2O5-Zn0. 95Mg0. 05TiO3+ 0.25 TiO2 ceramics with Bi2O3 addition
WO2023060854A1 (zh) 用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法
CN1219721C (zh) 粗陶瓷粉及其制造方法、用粗陶瓷粉制造的介电陶瓷,和使用介电陶瓷的单片陶瓷电子元件
CN114349506A (zh) 一种低损耗高介电常数铌镁酸铅-钛酸铅介质陶瓷材料制备方法及其应用
CN116003129A (zh) 铌酸钾钠基陶瓷及其制备方法和应用
Zhang et al. Study on the structure and dielectric properties of BaO–SiO2–B2O3 glass-doped (Ba, Sr) TiO3 ceramics
TWI245750B (en) Method for producing raw material powder for dielectric ceramic, dielectric ceramic, and multiplayer ceramic capacitor
JP7522654B2 (ja) 誘電性無機組成物
CN111825451B (zh) 稀土元素Tm掺杂的铌酸银反铁电陶瓷材料及其制备方法
CN112430084A (zh) 一种高耐电场强度、高储能密度的nbt-bt基驰豫铁电陶瓷薄膜材料及其制备方法
CN114716243B (zh) 一种高温稳定型钛酸铋钠-钛酸锶基介电储能陶瓷材料及其制备与应用
CN114573339B (zh) 高储能密度无铅高熵钙钛矿陶瓷、制备方法、及电容器
CN114573338B (zh) 一种高储能密度介电陶瓷的制备方法及应用
KR20200110946A (ko) 낮은 유전손실을 갖는 유전체의 제조방법 및 이에 따라 제조되는 유전체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22879804

Country of ref document: EP

Kind code of ref document: A1