WO2023060854A1 - 用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法 - Google Patents
用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法 Download PDFInfo
- Publication number
- WO2023060854A1 WO2023060854A1 PCT/CN2022/085816 CN2022085816W WO2023060854A1 WO 2023060854 A1 WO2023060854 A1 WO 2023060854A1 CN 2022085816 W CN2022085816 W CN 2022085816W WO 2023060854 A1 WO2023060854 A1 WO 2023060854A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceramic
- thick film
- hours
- electric field
- tio
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 88
- 230000005684 electric field Effects 0.000 title claims abstract description 35
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 20
- 239000000843 powder Substances 0.000 claims abstract description 52
- 239000000463 material Substances 0.000 claims abstract description 50
- 238000000498 ball milling Methods 0.000 claims abstract description 47
- 239000002002 slurry Substances 0.000 claims abstract description 33
- 239000011230 binding agent Substances 0.000 claims abstract description 32
- 239000002270 dispersing agent Substances 0.000 claims abstract description 31
- 239000002904 solvent Substances 0.000 claims abstract description 31
- 238000000227 grinding Methods 0.000 claims abstract description 26
- 239000004014 plasticizer Substances 0.000 claims abstract description 21
- 229920003023 plastic Polymers 0.000 claims abstract description 18
- 239000004033 plastic Substances 0.000 claims abstract description 18
- 238000005266 casting Methods 0.000 claims abstract description 15
- 238000005245 sintering Methods 0.000 claims abstract description 15
- 238000010532 solid phase synthesis reaction Methods 0.000 claims abstract description 13
- 238000010345 tape casting Methods 0.000 claims abstract description 6
- 239000002994 raw material Substances 0.000 claims description 88
- 239000000203 mixture Substances 0.000 claims description 71
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 40
- 239000008367 deionised water Substances 0.000 claims description 38
- 229910021641 deionized water Inorganic materials 0.000 claims description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 38
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 30
- 238000002156 mixing Methods 0.000 claims description 24
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 20
- 239000002202 Polyethylene glycol Substances 0.000 claims description 20
- 229920001223 polyethylene glycol Polymers 0.000 claims description 20
- 210000002257 embryonic structure Anatomy 0.000 claims description 19
- 210000001161 mammalian embryo Anatomy 0.000 claims description 12
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 11
- 239000005416 organic matter Substances 0.000 claims description 11
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 10
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical group CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 claims description 10
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000003786 synthesis reaction Methods 0.000 claims description 3
- 235000015895 biscuits Nutrition 0.000 abstract description 8
- 239000003990 capacitor Substances 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 229910019653 Mg1/3Nb2/3 Inorganic materials 0.000 abstract 1
- 229910010252 TiO3 Inorganic materials 0.000 abstract 1
- 238000010030 laminating Methods 0.000 abstract 1
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- 239000011777 magnesium Substances 0.000 description 55
- 239000011805 ball Substances 0.000 description 47
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 21
- 229910052709 silver Inorganic materials 0.000 description 21
- 239000004332 silver Substances 0.000 description 21
- 229910010293 ceramic material Inorganic materials 0.000 description 17
- 238000001035 drying Methods 0.000 description 16
- 239000000126 substance Substances 0.000 description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000010304 firing Methods 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000011160 research Methods 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 4
- 229910002114 biscuit porcelain Inorganic materials 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910002112 ferroelectric ceramic material Inorganic materials 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- ZBSCCQXBYNSKPV-UHFFFAOYSA-N oxolead;oxomagnesium;2,4,5-trioxa-1$l^{5},3$l^{5}-diniobabicyclo[1.1.1]pentane 1,3-dioxide Chemical compound [Mg]=O.[Pb]=O.[Pb]=O.[Pb]=O.O1[Nb]2(=O)O[Nb]1(=O)O2 ZBSCCQXBYNSKPV-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
- C04B35/497—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
- C04B35/499—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides containing also titanates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0408—Use-related aspects
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63448—Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63472—Condensation polymers of aldehydes or ketones
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63448—Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63488—Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6025—Tape casting, e.g. with a doctor blade
Definitions
- the invention belongs to the technical field of functional ceramic materials, and in particular relates to a ceramic thick film of a ceramic electrode used for treating tumors with an electric field and a preparation method thereof.
- PMN-PT lead magnesium niobate titanate material system
- perovskite structure is a relaxor ferroelectric material with high dielectric constant or piezoelectric coefficient.
- MgNb 2 O 6 MgNb 2 O 6
- the invention provides a ceramic thick film of a ceramic electrode used for treating tumors with an electric field and a preparation method thereof.
- a method for preparing a ceramic thick film of a ceramic electrode for electric field treatment of tumors comprising the following steps:
- the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3, the dispersant is triethyl phosphate, the binder is polyvinyl butyral, and the plasticizer is polyethylene glycol and dibutyl phthalate Mixing; the mass ratio of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate is 22%: 65.8%: 0.2%: 2%: 2.5%: 7.5%;
- the grinding balls are zirconia balls.
- the temperature of plastic ejection is 500°C-600°C, and the holding time is 3 hours.
- step 2-5 in step 2-5), the sintering temperature is 1150°C-1250°C, the heating rate is 2°C/min-3°C/min, and the holding time is 2 hours.
- a ceramic thick film of a ceramic electrode for electric field treatment of tumors is prepared by the aforementioned preparation method.
- the relative permittivity of the ceramic thick film is greater than 20000, and the dielectric loss is less than 0.04.
- it provides an application of a ceramic material used in a ceramic electrode for electric field treatment of tumors in a capacitor electrode.
- the ceramic thick film of the ceramic electrode used for electric field treatment of tumors and its preparation method provided by the present invention through the optimization of doping elements and proportions, and the optimization of the specific operations of each step of the preparation method, a high dielectric constant film is obtained.
- Ceramic thick film materials with low dielectric loss and dielectric properties have made outstanding contributions to the preparation of capacitive electrodes required for biomedical research and clinical applications.
- the preparation method provided by the invention is simple and easy, suitable for popularization and use in a large area, and has a good application prospect.
- Fig. 1 shows the XRD spectrum of a kind of ceramic thick film material prepared by the ceramic thick film preparation method of a kind of ceramic electrode for electric field treatment tumor provided by the present invention
- Fig. 2 shows the hysteresis loop spectrum of a kind of ceramic thick film material prepared by adopting the ceramic thick film preparation method of a ceramic electrode for electric field therapy tumor provided by the present invention
- Fig. 3 shows the XRD pattern of another kind of ceramic thick film material prepared by adopting the ceramic thick film preparation method of a ceramic electrode for electric field therapy tumor provided by the present invention
- Fig. 4 shows the hysteresis loop diagram of another ceramic thick film material prepared by a ceramic thick film preparation method for a ceramic electrode used for electric field treatment of tumors provided by the present invention.
- the present invention provides a method for preparing a ceramic thick film for a ceramic electrode used in treating tumors with an electric field.
- the ceramic thick film has ferroelectric properties, and the method includes the following steps:
- the two-step solid-phase method comprises:
- the first step: MgNb 2 O 6 is synthesized by using MgO and Nb 2 O 5 as raw materials and keeping the temperature at 1000° C. to 1200° C. for 2 hours.
- Step 2 After preparing MgNb 2 O 6 , use MgNb 2 O 6 , Pb 3 O 4 , TiO 2 , Nb 2 O 5 , Na 2 CO 3 , SrCO 3 , Sm 2 O 3 as raw materials, at 815°C ⁇ Preserve at 865°C for 4 hours to synthesize (1-x)Pb(Mg 1/3 Nb 2/3 )O 3 -xPb 1-y Sr 0.5y Na 0.25y Sm 0.25y TiO 3 , where, 0.055 ⁇ x ⁇ 0.135, 0 ⁇ y ⁇ 0.03, x and y are the number of moles.
- the mass ratio of ceramic powder, grinding balls and deionized water is as follows:
- the grinding ball is a zirconia ball, which is more suitable for ball milling the powder.
- the cast slurry is prepared by using the synthesized powder. First, add appropriate amount of solvent and dispersant to the (1-x)Pb(Mg 1/3 Nb 2/3 )O 3 -xPb 1-y Sr 0.5y Na 0.25y Sm 0.25y TiO 3 powder and grind it finely for 24 hours ; Next, add plasticizer for ball milling for 15 minutes, then add binder, and continue ball milling for 24 hours. After ball milling, use vacuum method to remove air bubbles for 25 minutes to obtain casting slurry, and then use slurry tape casting to obtain cast film green embryo, which can first obtain cast film by using slurry tape casting, and then cast film Cutting and other processing are carried out to obtain a cast film green embryo with a specific shape.
- the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3;
- the dispersant is triethyl phosphate;
- the binder is polyvinyl butyral;
- the plasticizer is polyethylene glycol and dibutyl phthalate Mixture of esters.
- the mass proportions of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate are 22%: 65.8%: 0.2%: 2%: 2.5%: 7.5%.
- Laminate the casting film green embryos (generally stacked to 10 layers), pressurize at 3-5 MPa, hold the pressure for 30 minutes and then release the pressure. Then carry out plastic ejection, get rid of the organic matter in the casting film green embryo to obtain the biscuit.
- the temperature of plastic discharge is 500°C ⁇ 600°C, and the holding time is 3 hours.
- the sintering temperature is 1150°C-1250°C
- the heating rate is 2°C/min-3°C/min
- the holding time is 2 hours.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- the composition of the ferroelectric material is: 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 ,
- the first step is to synthesize MgNb 2 O 6 , and calculate the required MgO and Nb 2 O 5 raw materials according to the composition of the MgNb 2 O 6 chemical formula.
- a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
- the mixed raw materials are incubated at 1000-1200°C for 2 hours to synthesize MgNb 2 O 6 ;
- the second step is to synthesize 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 ;
- a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
- the mixed raw materials were kept at 830°C-850°C for 4 hours to synthesize 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 .
- the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3; the dispersant is triethyl phosphate; the binder is polyvinyl butyral; the plasticizer is polyethylene glycol and dibutyl phthalate. mix;
- the mass proportions of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate are 22%: 65.8%: 0.2%: 2%: 2.5%: 7.5%.
- the slurry is tape-cast to obtain a cast film green embryo.
- the sintered material is smoothed, cleaned, dried, screen-printed with silver paste, dried again, and put into a box-type electric furnace to burn silver.
- the silver firing condition is 650° C. for 30 minutes to obtain the ceramic thick film sample of the present invention covered with electrodes.
- the phase structure of the material was tested by XRD. Refer to Figure 1 for test results.
- the phase structure of the ceramic thick film material of the present invention is a perovskite structure.
- test frequency 1kHz 10kHz 100kHz 1MHz Relative permittivity 22685 22630 22341 21071 Dielectric loss 0.0146 0.0157 0.0235 0.0335
- the relative dielectric constant of the ferroelectric ceramic material of the invention is greater than 20000 at room temperature, and the dielectric loss is less than 0.04.
- the ferroelectric properties were measured with a TF Analyzer 2000 hysteresis loop measuring instrument from aixACCT, Germany.
- Figure 2 is the hysteresis loop of the measured ceramic thick film. Under the application of 90KV/cm, 1 Hz AC electric field, the sample will not be broken down.
- the composition of the ferroelectric material is: 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 ,
- the first step is to synthesize MgNb 2 O 6 , and calculate the required MgO and Nb 2 O 5 raw materials according to the composition of the MgNb 2 O 6 chemical formula.
- a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
- the mixed raw materials are incubated at 1000-1200°C for 2 hours to synthesize MgNb 2 O 6 ;
- the second step is to synthesize 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 ;
- a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
- the mixed raw materials were kept at 830°C-850°C for 4 hours to synthesize 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 .
- the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3; the dispersant is triethyl phosphate; the binder is polyvinyl butyral; the plasticizer is polyethylene glycol and dibutyl phthalate. mix;
- the mass proportions of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate are 22%: 65.8%: 0.2%: 2%: 2.5%: 7.5%.
- the slurry is tape-cast to obtain a cast film green embryo.
- the sintered material is smoothed, cleaned, dried, screen-printed with silver paste, dried again, and put into a box-type electric furnace to burn silver.
- the silver firing condition is 650° C. for 30 minutes to obtain the ceramic thick film sample of the present invention covered with electrodes.
- the phase structure of the material was tested by XRD. Refer to Figure 3 for test results.
- the phase structure of the ceramic thick film material of the present invention is a perovskite structure.
- test frequency 1kHz 10kHz 100kHz 1MHz Relative permittivity 22107 21831 21374 20858 Dielectric loss 0.0135 0.0143 0.0216 0.0325
- the relative dielectric constant of the ferroelectric ceramic material of the invention is greater than 20000 at room temperature, and the dielectric loss is less than 0.04.
- Figure 4 is the measured ceramic hysteresis loop. Under the application of 75kV/cm, 1 Hz AC electric field, the sample will not be broken down.
- the composition of the ferroelectric material is: 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 ,
- the first step is to synthesize MgNb 2 O 6 : use MgO and Nb 2 O 5 as raw materials, and synthesize MgNb 2 O 6 at a temperature of 1000°C to 1200°C for 2 hours;
- the dielectric constant can only reach 15000, the dielectric loss is 0.045, and the maximum carrying electric field of the ferroelectric loop test is only 60kV/cm.
- the prepared ceramic bulk has lower dielectric constant and lower breakdown field strength.
- the composition of the ferroelectric material is: 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 ,
- the first step is to synthesize MgNb 2 O 6 , and calculate the required MgO and Nb 2 O 5 raw materials according to the composition of the MgNb 2 O 6 chemical formula.
- a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
- the mixed raw materials are incubated at 1000-1200°C for 2 hours to synthesize MgNb 2 O 6 ;
- the second step is to synthesize 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 ;
- a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
- the mixed raw materials were kept at 830°C-850°C for 4 hours to synthesize 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 .
- the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3; the dispersant is triethyl phosphate; the binder is polyvinyl butyral; the plasticizer is polyethylene glycol and dibutyl phthalate. mix.
- the mass proportions of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate are 32%: 55.8%: 0.2%: 2%: 2.5%: 7.5%.
- the slurry is tape-cast to obtain a cast film green embryo.
- the sintered ceramic material is smoothed, cleaned, dried, screen-printed with silver paste, dried again, and put into a box-type electric furnace to burn silver.
- the silver firing condition is 650° C. for 30 minutes to obtain a ceramic thick film sample covered with electrodes.
- the slurry formed in the preparation process has poor fluidity, is difficult to remove the film, and is easy to crack.
- the composition of the ferroelectric material is: 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 ,
- the first step is to synthesize MgNb 2 O 6 , and calculate the required MgO and Nb 2 O 5 raw materials according to the composition of the MgNb 2 O 6 chemical formula.
- a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
- the mixed raw materials are incubated at 1000-1200°C for 2 hours to synthesize MgNb 2 O 6 ;
- the second step is to synthesize 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 ;
- a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
- the mixed raw materials were kept at 830°C-850°C for 4 hours to synthesize 0.88Pb(Mg 1/3 Nb 2/3 )O 3 -0.12Pb 0.98 Sr 0.01 Na 0.005 Sm 0.005 TiO 3 .
- the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3; the dispersant is triethyl phosphate; the binder is polyvinyl butyral; the plasticizer is polyethylene glycol and dibutyl phthalate. mix;
- the mass proportions of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate are 15%: 72.88%: 0.2%: 2%: 2.5%: 7.5%.
- the slurry is tape-cast to obtain a cast film green embryo.
- the sintered ceramic material is smoothed, cleaned, dried, screen-printed with silver paste, dried again, and put into a box-type electric furnace to burn silver.
- the silver firing condition is 650° C. for 30 minutes to obtain a ceramic thick film sample covered with electrodes.
- the slurry formed during the preparation process has good fluidity, but there are pores on the surface of the thick film, the toughness of the thick film is poor, and it is difficult to remove the film.
- the composition of the ferroelectric material is: 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 ,
- the first step is to synthesize MgNb 2 O 6 , and calculate the required MgO and Nb 2 O 5 raw materials according to the composition of the MgNb 2 O 6 chemical formula.
- a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
- the mixed raw materials are incubated at 1000-1200°C for 2 hours to synthesize MgNb 2 O 6 ;
- the second step is to synthesize 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 ;
- a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
- the mixed raw materials were kept at 830°C-850°C for 4 hours to synthesize 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 .
- the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3; the dispersant is triethyl phosphate; the binder is polyvinyl butyral; the plasticizer is polyethylene glycol and dibutyl phthalate. mix;
- the mass proportions of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate are 22%: 65.8%: 0.1%: 2.1%: 2.5%: 7.5%.
- the sintered ceramic material is smoothed, cleaned, dried, screen-printed with silver paste, dried again, and put into a box-type electric furnace to burn silver.
- the silver firing condition is 650° C. for 30 minutes to obtain a ceramic thick film sample covered with electrodes.
- the resulting thick film has small particles and pores on the surface. Thick films have poor toughness and are difficult to release.
- the composition of the ferroelectric material is: 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 ,
- the first step is to synthesize MgNb 2 O 6 , and calculate the required MgO and Nb 2 O 5 raw materials according to the composition of the MgNb 2 O 6 chemical formula.
- a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
- the mixed raw materials are incubated at 1000-1200°C for 2 hours to synthesize MgNb 2 O 6 ;
- the second step is to synthesize 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 ;
- a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
- the mixed raw materials were kept at 830°C-850°C for 4 hours to synthesize 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 .
- the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3; the dispersant is triethyl phosphate; the binder is polyvinyl butyral; the plasticizer is polyethylene glycol and dibutyl phthalate. mix;
- the mass proportions of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate are 22%: 65.8%: 0.2%: 2%: 1.5%: 8.5%.
- the slurry is tape-cast to obtain a cast film green embryo.
- the sintered ceramic material is smoothed, cleaned, dried, screen-printed with silver paste, dried again, and put into a box-type electric furnace to burn silver.
- the silver firing condition is 650° C. for 30 minutes to obtain a ceramic thick film sample covered with electrodes.
- the obtained film has microcracks on the surface, general plastic toughness, difficulty in stripping and easy cracking.
- the composition of the ferroelectric material is: 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 ,
- the first step is to synthesize MgNb 2 O 6 , and calculate the required MgO and Nb 2 O 5 raw materials according to the composition of the MgNb 2 O 6 chemical formula.
- a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
- the mixed raw materials are incubated at 1000-1200°C for 2 hours to synthesize MgNb 2 O 6 ;
- the second step is to synthesize 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 ;
- a 30-mesh sieve is used to sieve the above-mentioned mixed raw materials.
- the mixed raw materials were kept at 830°C-850°C for 4 hours to synthesize 0.90Pb(Mg 1/3 Nb 2/3 )O 3 -0.10Pb 0.99 Sr 0.005 Na 0.0025 Sm 0.0025 TiO 3 .
- the solvent is a mixture of ethanol and toluene at a mass ratio of 2:3; the dispersant is triethyl phosphate; the binder is polyvinyl butyral; the plasticizer is polyethylene glycol and dibutyl phthalate. mix;
- the mass proportions of powder, solvent, dispersant, binder, polyethylene glycol and dibutyl phthalate are 22%: 65.8%: 0.2%: 2%: 3.5%: 6.5%.
- the slurry is tape-cast to obtain a cast film green embryo.
- the sintered ceramic material is polished, cleaned, dried, screen-printed with silver paste, dried again, and put into a box-type electric furnace to burn silver.
- the silver firing condition is 650° C. for 30 minutes to obtain a ceramic thick film sample covered with electrodes.
- the surface of the obtained film is uniform, but its plastic toughness is poor, it is difficult to release the film, and it is easy to crack.
- the invention can obtain the ferroelectric thick-film ceramic material by selecting appropriate doping modification, utilizing a two-step synthesis method, casting and sintering.
- the material has the characteristics of high dielectric constant and low dielectric loss, can be used to manufacture insulating capacitor electrodes, and has good application prospects.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
Abstract
本发明涉及一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法,制备方法包括以下步骤:采用两步固相法合成(1-x)Pb(Mg 1/3Nb 2/3)O 3-xPb 1-ySr 0.5yNa 0.25ySm 0.25yTiO 3粉体,其中,0.055≤x≤0.135,0≤y≤0.03,x、y为摩尔数;利用合成好的粉体制备流延浆料:在粉体中加入适量的溶剂和分散剂细磨24小时;加入增塑剂球磨15分钟后,再加入粘结剂持续球磨24小时;将浆料流延成型获得流延膜生胚;将流延膜生胚叠层,加压,然后排塑获得素坯;对素坯进行烧结,获得陶瓷厚膜材料。陶瓷厚膜材料具有高介电常数和低损耗,适合制作导通交流电的电容电极。
Description
本发明属于功能陶瓷材料技术领域,具体地说,涉及一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法。
已经有生物医学实验证明,在特定交流频率下,施加交变电压可以有效抑制特定异常细胞的生长[Cancer Research,vol.64,pp3288-3295,2004;PNAS,vol.104,pp10152-10157,2007]。如果直接利用金属电极施加电场到人体,在传导电流的作用下,人体细胞内的带电矿物离子会出现迁移,导致细胞内离子浓度的变化,这对于人体是有害的[PNAS,vol.104,pp10152-10157,2007]。另外由于高传导电流会直接与人体的生命安全有关,利用金属电极施加电场进行医学研究及治疗,电压不可过高,施加电压受限。
根据物理学原理,纯电容对于传导电流是绝缘的,对交流电场是导通的,所以在临床施加交流电压的实验中,如果利用绝缘的电容作为电极施加交流电压,就可以避免人体内出现传导电流,从而避免传导电流对细胞的副作用。此外,一般治疗情况下通过电容电极施加在人体的电场是局部区域的,只有局部区域受到电场作用。由于电容的绝缘性质,没有传导电流通过加电场的人体区域。相对于金属导体电极,绝缘电容电极具有更高的安全性。
基于以上原理,国外已经有成功的利用绝缘电容电极施加交流电场进行生物医学与临床实验的案例。他们优选的介电材料为PMN-PT(铌镁酸铅钛酸铅材料体系)家族的一种铁电陶瓷材料,该材料对应的相对介电常数大于5000。在特定的电场频率下,电场可以有效地抑制动物及人体中的肿瘤细胞生长[PNAS,vol.104,pp10152-10157,2007]。
由于电容的容抗与电容材料的介电常数成反比[电工学,上册,电子技术,第五版,秦曾煌主编,第108页],所以利用高介电常数的介电材料制作的电容,容抗会更小。另外,介电损耗高的材料会在电场下发热。因此,采用高介电常数而且低损耗的材料,可以更加有效的将电场通过低容抗的电容电极片加在直接需要研究或治疗的人体部位。基于以上应用背景,寻找有高介电常数材料制作合适电容电极,以满足国内生物医学研究或临床应用就显得极为迫切。
一般而言,铁电材料具有高的介电常数。钙钛矿结构的PMN-PT(铌镁酸铅钛酸铅材料体系)是具有高介电常数或高压电系数的弛豫铁电材料。为了得到具有钙钛矿结构的PMN-PT陶瓷材料,需要事先合成的MgNb
2O
6为前驱体,然后与其他原料混合,合成得到 具有钙钛矿结构的PMN-PT的具体成分[Materials Research Bulletin,vol.17,pp1245-1250,1982;Journal of the American Ceramic Society,vol.82,pp797-818,1999]。
基于PMN-PT体系中成分在MPB(准同晶相界)的弛豫铁电材料具有优良的压电性能,[Journal of the American Ceramic Society,vol.82,pp797-818,1999,Nature Materials,vol.17,pp349-354,2018;Science,vol.364,pp264-268,2019]。大量的基于PMN-PT体系的研究关注MPB相界的成分,研究开发压电材料。对于介电电容应用的材料,对应的成分需要偏离MPB相界,研究相对较少。另外与块体材料相比,介电厚膜具有集成化,小型化,均匀化等方面的优势。有必要研究铁电厚膜材料的制备方法以满足使用要求。
发明内容
本发明提供了一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法。
根据本发明的一个方面,提供一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法,所述制备方法包括如下步骤:
1)采用两步固相法合成(1-x)Pb(Mg
1/3Nb
2/3)O
3-xPb
1-ySr
0.5yNa
0.25ySm
0.25yTiO
3,其中,0.055≤x≤0.135,0≤y≤0.03,x、y为摩尔数:
1-1)以MgO,Nb
2O
5为原料,在1000℃~1200℃的温度下保温2小时合成MgNb
2O
6;
1-2)以MgNb
2O
6,Pb
3O
4,TiO
2,Nb
2O
5,Na
2CO
3,SrCO
3,Sm
2O
3为原料,在815℃~865℃的温度下保温4小时,合成(1-x)Pb(Mg
1/3Nb
2/3)O
3-xPb
1-ySr
0.5yNa
0.25ySm
0.25yTiO
3粉体,其中,0.055≤x≤0.135,0≤y≤0.03,x、y为摩尔数;
步骤1-2)中采用湿式球磨法混料,其中,陶瓷粉体、磨球、去离子水的质量比如下,陶瓷粉体:磨球:去离子水=1:2:0.7,混料球磨时间为6小时;
2)利用所述步骤1)中合成好的粉体制备流延浆料:
2-1)在(1-x)Pb(Mg
1/3Nb
2/3)O
3-xPb
1-ySr
0.5yNa
0.25ySm
0.25yTiO
3粉体中加入适量的溶剂和分散剂细磨24小时;
2-2)加入增塑剂球磨15分钟后,再加入粘结剂持续球磨24小时;
其中,溶剂为乙醇和甲苯以质量比2:3的混合,分散剂为磷酸三乙酯,粘结剂为聚乙烯醇缩丁醛,增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合;粉体、溶剂、分散剂、粘结剂、聚乙二醇和邻苯二甲酸二丁酯的质量比例为22%:65.8%:0.2%:2%:2.5%:7.5%;
2-3)将浆料流延成型获得流延膜生胚;
2-4)将流延膜生胚叠层,加压,然后进行排塑,排除所述流延膜生胚中的有机物质获得素坯;
2-5)对所述素坯进行烧结,获得陶瓷厚膜材料。
根据本发明的一个具体实施方式,在步骤1-2)中,所述磨球为氧化锆球。
根据本发明的一个具体实施方式,在步骤2-4)中,排塑的温度为500℃~600℃,保温时间为3小时。
根据本发明的又一个具体实施方式,在步骤2-5)中,烧结温度为1150℃~1250℃,升温速率为2℃/min~3℃/min,保温时间为2小时。
根据本发明的另一个方面,提供了一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜,所述陶瓷厚膜通过前述制备方法制备。
根据本发明的另一个具体实施方式,在室温条件下,当频率处于1kHz~1MHz频率范围内时,所述陶瓷厚膜的相对介电常数大于20000,介电损耗小于0.04。
根据本发明的另一个方面,提供了一种用于电场治疗肿瘤的陶瓷电极的陶瓷材料在电容电极中的应用。
本发明提供的用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法,通过对掺杂元素与配比的优化,以及对制备方法各步骤具体操作的优化,获得了具有高介电常数与低介电损耗且具备介电性能的陶瓷厚膜材料,为制备包括生物医学研究和临床应用所需要的电容电极做出了卓越贡献。且本发明提供的制备方法简单易行,适合大面积推广使用,有良好的应用前景。
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1所示为采用本发明提供的一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法制备的一种陶瓷厚膜材料的XRD图谱;
图2所示为采用本发明提供的一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法制备的一种陶瓷厚膜材料的电滞回线图谱;
图3所示为采用本发明提供的一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法制备的另一种陶瓷厚膜材料的XRD图谱;
图4所示为采用本发明提供的一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法制备的另一种陶瓷厚膜材料的电滞回线图谱。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。
本发明提供的一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法,陶瓷厚膜具备铁电性能,方法包括如下步骤:
步骤S101:
采用两步固相法合成(1-x)Pb(Mg
1/3Nb
2/3)O
3-xPb
1-ySr
0.5yNa
0.25ySm
0.25yTiO
3;其中,0.055≤x≤0.135,0≤y≤0.03,x、y为摩尔数。
所述两步固相法包括:
第一步:以MgO,Nb
2O
5为原料,在1000℃~1200℃的温度下保温2小时合成MgNb
2O
6。
进一步地,在选取原料MgO和Nb
2O
5之后,需要按照MgNb
2O
6的化学计量比进行配料;随后,采用湿式球磨法对上述原料进行混料操作;混料后,对混合材料进行烘干;最后,在1000℃~1200℃的温度下保温2小时合成MgNb
2O
6。更为优选的,在1150℃的温度下进行保温,得到的MgNb
2O
6更为优质。
第二步:制备好MgNb
2O
6后,以MgNb
2O
6,Pb
3O
4,TiO
2,Nb
2O
5,Na
2CO
3,SrCO
3,Sm
2O
3为原料,在815℃~865℃的温度下保温4小时,合成(1-x)Pb(Mg
1/3Nb
2/3)O
3-xPb
1-ySr
0.5yNa
0.25ySm
0.25yTiO
3,其中,0.055≤x≤0.135,0≤y≤0.03,x、y为摩尔数。
采用湿式球磨法混料,陶瓷粉体、磨球、去离子水的质量比如下:
陶瓷粉体:磨球:去离子水=1:2:0.7,混料球磨时间为6小时。
优选的,磨球为氧化锆球更适合对粉体进行球磨操作。
步骤S102:
利用合成好的粉体制备流延浆料。首先在(1-x)Pb(Mg
1/3Nb
2/3)O
3-xPb
1-ySr
0.5yNa
0.25ySm
0.25yTiO
3粉体中加入适量的溶剂和分散剂细磨24小时;其次加入增塑剂球磨15分钟,然后再加入粘结剂,持续球磨24小时。球磨完毕后,利用真空法去除气泡25分钟得到流延浆料,然后利用浆料流延成型获得流延膜生胚,其可先通过利用浆料流延成型获得流延膜,再对流延膜进行裁剪等处理得到具有特定形状的流延膜生胚。
优选的,溶剂为乙醇和甲苯以质量比2:3的混合;分散剂为磷酸三乙酯;粘结剂为聚乙烯醇缩丁醛;增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合。
优选的,其中粉体,溶剂,分散剂,粘结剂,聚乙二醇和邻苯二甲酸二丁酯的质量比例为22%:65.8%:0.2%:2%:2.5%:7.5%。
步骤S103:
将流延膜生胚叠层(一般叠层到10层),加压3~5兆帕,保压30分钟后卸压。然后进行排塑,排除所述流延膜生胚中的有机物质获得素坯。排塑的温度为500℃~600℃,保温时间为 3小时。
对排塑后的素坯进行烧结,获得陶瓷厚膜材料。烧结温度为1150℃~1250℃,升温速率为2℃/min~3℃/min,保温时间为2小时。
下面以两个具体实施例来进一步阐述本发明提供的技术方案。
实施例l:
铁电材料组成为:0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3,
第一,两步固相法合成:
0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3,
第一步合成MgNb
2O
6,按MgNb
2O
6化学式组成计算所需的MgO,Nb
2O
5原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:1.5:0.8;
混合6~8小时,使各组分混合均匀。
进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在1000-1200℃保温2小时合成MgNb
2O
6;
第二步合成0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3;
按0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3的化学式组成计算所需的MgNb
2O
6,Pb
3O
4,TiO
2,Li
2CO
3,Na
2CO
3,SrCO
3,Sm
2O
3的原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.7;
混合6~8小时,使各组分混合均匀。
之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在830℃~850℃保温4小时,合成0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3。
第二,利用合成好的粉体制备流延浆料。
首先在0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3粉体中加入适量的溶剂和分散剂细磨24小时;其次加入增塑剂球磨15分钟,然后再加入粘结剂,持续球磨24小时。球磨完毕后,利用真空法去除气泡25分钟得到流延浆料。
其中溶剂为乙醇和甲苯以质量比2:3的混合;分散剂为磷酸三乙酯;粘结剂为聚乙烯醇缩丁醛;增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合;
其中粉体,溶剂,分散剂,粘结剂,聚乙二醇和邻苯二甲酸二丁酯的质量比例为22%: 65.8%:0.2%:2%:2.5%:7.5%。
第三,将浆料流延成型获得流延膜生胚。
第四,将流延膜叠生胚叠10层,加压5兆帕,保持30分钟后卸压,然后在525℃保温3小时排塑,排除所述流延膜生胚中的有机物质获得素坯;
第五,将素坯放入氧化铝坩埚中密闭烧结,用具有相同组分的陶瓷粉料将坯体覆盖,盖上磨口盖,以3℃/min的升温速率升至1220℃,保温2小时,随炉冷却后得到陶瓷材料样品。
第六,将烧结好的材料磨平、清洗,烘干,丝网印刷银浆,再烘干,放入厢式电炉烧银。烧银条件为650℃保温30分钟,得到覆有电极的本发明的陶瓷厚膜样品。利用XRD测试材料相结构。测试结果参照图1。本发明的陶瓷厚膜材料的相结构为钙钛矿结构。
第七,对烧结的本发明的陶瓷厚膜样品进行介电性能及强场下铁电特性测试。介电性能由精密阻抗分析仪(Agilent 4294A,美国Agilent公司产品)测试得到,参考表1。
表1:室温下(25℃)样品的相对介电常数与介电损耗
测试频率 | 1kHz | 10kHz | 100kHz | 1MHz |
相对介电常数 | 22685 | 22630 | 22341 | 21071 |
介电损耗 | 0.0146 | 0.0157 | 0.0235 | 0.0335 |
在1kHz到1MHz的频率范围内,本发明的铁电陶瓷材料在室温下相对介电常数大于20000,介电损耗小于0.04。铁电特性利用德国aixACCT公司的TF Analyzer 2000电滞回线测量仪测量。图2为测量得到的陶瓷厚膜的电滞回线。施加90KV/cm,1赫兹的交流电场下,样品不被击穿。
实施例2:
铁电材料组成为:0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3,
第一,两步固相法合成:
0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3,
第一步合成MgNb
2O
6,按MgNb
2O
6化学式组成计算所需的MgO,Nb
2O
5原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:1.5:0.8;
混合6~8小时,使各组分混合均匀。
进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在1000-1200℃保温2小时合成MgNb
2O
6;
第二步合成0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3;
按0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3的化学式组成计算所需的MgNb
2O
6,Pb
3O
4,TiO
2,Li
2CO
3,Na
2CO
3,SrCO
3,Sm
2O
3的原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.7;
混合6~8小时,使各组分混合均匀。
之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在830℃~850℃保温4小时,合成0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3。
第二,利用合成好的粉体制备流延浆料。
首先在0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3粉体中加入适量的溶剂和分散剂细磨24小时;其次加入增塑剂球磨15分钟,然后再加入粘结剂,持续球磨24小时。球磨完毕后,利用真空法去除气泡25分钟得到流延浆料。
其中溶剂为乙醇和甲苯以质量比2:3的混合;分散剂为磷酸三乙酯;粘结剂为聚乙烯醇缩丁醛;增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合;
其中粉体,溶剂,分散剂,粘结剂,聚乙二醇和邻苯二甲酸二丁酯的质量比例为22%:65.8%:0.2%:2%:2.5%:7.5%。
第三,将浆料流延成型获得流延膜生胚。
第四,将流延膜叠生胚叠10层,加压5兆帕,保持30分钟后卸压,然后在525℃保温3小时排塑,排除所述流延膜生胚中的有机物质获得素坯。
第五,将素坯放入氧化铝坩埚中密闭烧结,用具有相同组分的陶瓷粉料将坯体覆盖,盖上磨口盖,以3℃/min的升温速率升至1220℃,保温2小时,随炉冷却后得到陶瓷材料样品。
第六,将烧结好的材料磨平、清洗,烘干,丝网印刷银浆,再烘干,放入厢式电炉烧银。烧银条件为650℃保温30分钟,得到覆有电极的本发明的陶瓷厚膜样品。利用XRD测试材料相结构。测试结果参照图3。本发明的陶瓷厚膜材料的相结构为钙钛矿结构。
第七,对烧结的本发明的陶瓷厚膜样品进行介电性能及强场下铁电特性测试。介电性能由精密阻抗分析仪(Agilent 4294A,美国Agilent公司产品)测试得到,参考表2。
表2:室温下(25℃)实施例2样品的相对介电常数与介电损耗
测试频率 | 1kHz | 10kHz | 100kHz | 1MHz |
相对介电常数 | 22107 | 21831 | 21374 | 20858 |
介电损耗 | 0.0135 | 0.0143 | 0.0216 | 0.0325 |
在1kHz到1MHz的频率范围内,本发明的铁电陶瓷材料在室温下相对介电常数大于20000,介电损耗小于0.04。图4为测量得到的陶瓷电滞回线。施加75kV/cm,1赫兹的交流电场下,样品不被击穿。
对比例1:
铁电材料组成为:0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3,
第一、采用固相法合成:
0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3;
第一步合成MgNb
2O
6:以MgO,Nb
2O
5为原料,在1000℃~1200℃的温度下保温2小时合成MgNb
2O
6,;
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量为原料:磨球:去离子水=1:1.5:0.8;混合6~8小时,使各组分混合均匀。之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
第二步合成0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3:
以MgNb
2O
6,Pb
3O
4,TiO
2,Nb
2O
5,Na
2CO
3,SrCO
3,Sm
2O
3为原料,在830℃~850℃的温度下保温4小时,合成0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3;
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量为原料:磨球:去离子水=1:2:0.7;混合6~8小时,使各组分混合均匀。之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作,混合后的原料在830℃~850℃保温4小时,合成0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3粉体。
第二,对所述步骤1)中合成好的0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3粉体进行细磨,细磨24小时后添加粘结剂造粒并压制成型以得到素坯。
第三,将压制成型的素坯在650℃保温2小时,排除素坯中的有机物质,排塑速率不超过3℃/min。
第四,将排塑后样品放入氧化铝坩埚中密闭烧结,为防止铅组分的挥发,用具有相 同组分的粉料将坯体覆盖,盖上磨口盖,以5℃/min的升温速率升至1235-1250℃,保温2小时,随炉冷却后得到致密成品陶瓷。
第五,将烧结好的成品磨平、清洗,烘干。上电极,测试介电性能和铁电回线。介电常数仅可达到15000,介电损耗为0.045,铁电回线测试最高承载电场仅为60kV/cm。与陶瓷厚膜材料相比,制备得到的陶瓷块体介电常数较低,击穿场强较低。
对比例2:
铁电材料组成为:0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3,
第一,两步固相法合成:
0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3,
第一步合成MgNb
2O
6,按MgNb
2O
6化学式组成计算所需的MgO,Nb
2O
5原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:1.5:0.8;
混合6~8小时,使各组分混合均匀。
进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在1000-1200℃保温2小时合成MgNb
2O
6;
第二步合成0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3;
按0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3的化学式组成计算所需的MgNb
2O
6,Pb
3O
4,TiO
2,Li
2CO
3,Na
2CO
3,SrCO
3,Sm
2O
3的原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.7;
混合6~8小时,使各组分混合均匀。
之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在830℃~850℃保温4小时,合成0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3。
第二,利用合成好的粉体制备流延浆料。
首先在0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3粉体中加入适量的溶剂和分散剂细磨24小时;其次加入增塑剂球磨15分钟,然后再加入粘结剂,持续球磨24小时。球磨完毕后,利用真空法去除气泡25分钟得到流延浆料。
其中溶剂为乙醇和甲苯以质量比2:3的混合;分散剂为磷酸三乙酯;粘结剂为聚乙烯醇缩丁醛;增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合。
其中粉体,溶剂,分散剂,粘结剂,聚乙二醇和邻苯二甲酸二丁酯的质量比例为32%:55.8%:0.2%:2%:2.5%:7.5%。
第三,将浆料流延成型获得流延膜生胚。
第四,将流延膜叠生胚叠10层,加压5兆帕,保持30分钟后卸压,然后在525℃保温3小时排塑,排除所述流延膜生胚中的有机物质获得素坯。
第五,将素坯放入氧化铝坩埚中密闭烧结,用具有相同组分的陶瓷粉料将坯体覆盖,盖上磨口盖,以3℃/min的升温速率升至1220℃,保温2小时,随炉冷却后得到陶瓷材料样品。
第六,将烧结好的陶瓷材料磨平、清洗,烘干,丝网印刷银浆,再烘干,放入厢式电炉烧银。烧银条件为650℃保温30分钟,得到覆有电极的陶瓷厚膜样品。
制备过程中形成的浆料流动性差,难于脱膜,容易开裂。
对比例3:
铁电材料组成为:0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3,
第一,两步固相法合成:
0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3,
第一步合成MgNb
2O
6,按MgNb
2O
6化学式组成计算所需的MgO,Nb
2O
5原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:1.5:0.8;
混合6~8小时,使各组分混合均匀。
进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在1000-1200℃保温2小时合成MgNb
2O
6;
第二步合成0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3;
按0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3的化学式组成计算所需的MgNb
2O
6,Pb
3O
4,TiO
2,Li
2CO
3,Na
2CO
3,SrCO
3,Sm
2O
3的原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.7;
混合6~8小时,使各组分混合均匀。
之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在830℃~850℃保温4小时,合成0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3。
第二,利用合成好的粉体制备流延浆料。
首先在0.88Pb(Mg
1/3Nb
2/3)O
3-0.12Pb
0.98Sr
0.01Na
0.005Sm
0.005TiO
3粉体中加入适量的溶剂和分散剂细磨24小时;其次加入增塑剂球磨15分钟,然后再加入粘结剂,持续球磨24小时。球磨完毕后,利用真空法去除气泡25分钟得到流延浆料。。
其中溶剂为乙醇和甲苯以质量比2:3的混合;分散剂为磷酸三乙酯;粘结剂为聚乙烯醇缩丁醛;增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合;
其中粉体,溶剂,分散剂,粘结剂,聚乙二醇和邻苯二甲酸二丁酯的质量比例为15%:72.88%:0.2%:2%:2.5%:7.5%。
第三,将浆料流延成型获得流延膜生胚。
第四,将流延膜叠生胚叠10层,加压5兆帕,保持30分钟后卸压,然后在525℃保温3小时排塑,排除所述流延膜生胚中的有机物质获得素坯。
第五,将素坯放入氧化铝坩埚中密闭烧结,用具有相同组分的陶瓷粉料将坯体覆盖,盖上磨口盖,以3℃/min的升温速率升至1220℃,保温2小时,随炉冷却后得到陶瓷材料样品。
第六,将烧结好的陶瓷材料磨平、清洗,烘干,丝网印刷银浆,再烘干,放入厢式电炉烧银。烧银条件为650℃保温30分钟,得到覆有电极的陶瓷厚膜样品。
制备过程中形成的浆料流动性好,但是厚膜表面有气孔,厚膜韧性差,脱膜困难。
对比例4:
铁电材料组成为:0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3,
第一,两步固相法合成:
0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3,
第一步合成MgNb
2O
6,按MgNb
2O
6化学式组成计算所需的MgO,Nb
2O
5原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:1.5:0.8;
混合6~8小时,使各组分混合均匀。
进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在1000-1200℃保温2小时合成MgNb
2O
6;
第二步合成0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3;
按0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3的化学式组成计算所需的MgNb
2O
6,Pb
3O
4,TiO
2,Li
2CO
3,Na
2CO
3,SrCO
3,Sm
2O
3的原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.7;
混合6~8小时,使各组分混合均匀。
之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在830℃~850℃保温4小时,合成0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3。
第二,利用合成好的粉体制备流延浆料。
首先在0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3粉体中加入适量的溶剂和分散剂细磨24小时;其次加入增塑剂球磨15分钟,然后再加入粘结剂,持续球磨24小时。球磨完毕后,利用真空法去除气泡25分钟得到流延浆料。
其中溶剂为乙醇和甲苯以质量比2:3的混合;分散剂为磷酸三乙酯;粘结剂为聚乙烯醇缩丁醛;增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合;
其中粉体,溶剂,分散剂,粘结剂,聚乙二醇和邻苯二甲酸二丁酯的质量比例为22%:65.8%:0.1%:2.1%:2.5%:7.5%。
第三,将浆料流延成型获得流延膜生胚;
第四,将流延膜叠生胚叠10层,加压5兆帕,保持30分钟后卸压,然后在525℃保温3小时排塑,排除所述流延膜生胚中的有机物质获得素坯;
第五,将素坯放入氧化铝坩埚中密闭烧结,用具有相同组分的陶瓷粉料将坯体覆盖,盖上磨口盖,以3℃/min的升温速率升至1220℃,保温2小时,随炉冷却后得到陶瓷材料样品。
第六,将烧结好的陶瓷材料磨平、清洗,烘干,丝网印刷银浆,再烘干,放入厢式电炉烧银。烧银条件为650℃保温30分钟,得到覆有电极的陶瓷厚膜样品。
得到的厚膜表面有小颗粒和气孔。厚膜韧性差,脱膜困难。
对比例5:
铁电材料组成为:0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3,
第一,两步固相法合成:
0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3,
第一步合成MgNb
2O
6,按MgNb
2O
6化学式组成计算所需的MgO,Nb
2O
5原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:1.5:0.8;
混合6~8小时,使各组分混合均匀。
进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在1000-1200℃保温2小时合成MgNb
2O
6;
第二步合成0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3;
按0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3的化学式组成计算所需的MgNb
2O
6,Pb
3O
4,TiO
2,Li
2CO
3,Na
2CO
3,SrCO
3,Sm
2O
3的原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.7;
混合6~8小时,使各组分混合均匀。
之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在830℃~850℃保温4小时,合成0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3。
第二,利用合成好的粉体制备流延浆料。
首先在0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3粉体中加入适量的溶剂和分散剂细磨24小时;其次加入增塑剂球磨15分钟,然后再加入粘结剂,持续球磨24小时。球磨完毕后,利用真空法去除气泡25分钟得到流延浆料。
其中溶剂为乙醇和甲苯以质量比2:3的混合;分散剂为磷酸三乙酯;粘结剂为聚乙烯醇缩丁醛;增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合;
其中粉体,溶剂,分散剂,粘结剂,聚乙二醇和邻苯二甲酸二丁酯的质量比例为22%:65.8%:0.2%:2%:1.5%:8.5%。
第三,将浆料流延成型获得流延膜生胚。
第四,将流延膜叠生胚叠10层,加压5兆帕,保持30分钟后卸压,然后在525℃保温3小时排塑,排除所述流延膜生胚中的有机物质获得素坯;
第五,将素坯放入氧化铝坩埚中密闭烧结,用具有相同组分的陶瓷粉料将坯体覆盖,盖上磨口盖,以3℃/min的升温速率升至1220℃,保温2小时,随炉冷却后得到陶瓷材料样品。
第六,将烧结好的陶瓷材料磨平、清洗,烘干,丝网印刷银浆,再烘干,放入厢式电炉烧银。烧银条件为650℃保温30分钟,得到覆有电极的陶瓷厚膜样品。
得到的膜表面有微裂纹,塑性韧性一般,脱膜困难,容易开裂。
对比例6:
铁电材料组成为:0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3,
第一,两步固相法合成:
0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3,
第一步合成MgNb
2O
6,按MgNb
2O
6化学式组成计算所需的MgO,Nb
2O
5原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:1.5:0.8;
混合6~8小时,使各组分混合均匀。
进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在1000-1200℃保温2小时合成MgNb
2O
6;
第二步合成0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3;
按0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3的化学式组成计算所需的MgNb
2O
6,Pb
3O
4,TiO
2,Li
2CO
3,Na
2CO
3,SrCO
3,Sm
2O
3的原料。
采用湿式球磨法混料,其中,原料、磨球以及去离子水的质量比如下:
原料:磨球:去离子水=1:2:0.7;
混合6~8小时,使各组分混合均匀。
之后,进行烘干,并于烘干后过筛。优选30目筛对上述混合原料进行过筛操作。
混合后的原料在830℃~850℃保温4小时,合成0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3。
第二,利用合成好的粉体制备流延浆料。
首先在0.90Pb(Mg
1/3Nb
2/3)O
3-0.10Pb
0.99Sr
0.005Na
0.0025Sm
0.0025TiO
3粉体中加入适量的溶剂和分散剂细磨24小时;其次加入增塑剂球磨15分钟,然后再加入粘结剂,持续球磨24小时。球磨完毕后,利用真空法去除气泡25分钟得到流延浆料。
其中溶剂为乙醇和甲苯以质量比2:3的混合;分散剂为磷酸三乙酯;粘结剂为聚乙烯醇缩丁醛;增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合;
其中粉体,溶剂,分散剂,粘结剂,聚乙二醇和邻苯二甲酸二丁酯的质量比例为22%:65.8%:0.2%:2%:3.5%:6.5%。
第三,将浆料流延成型获得流延膜生胚。
第四,将流延膜叠生胚叠10层,加压5兆帕,保持30分钟后卸压,然后在525℃保温3小时排塑,排除所述流延膜生胚中的有机物质获得素坯;
第五,将素坯放入氧化铝坩埚中密闭烧结,用具有相同组分的陶瓷粉料将坯体覆盖,盖上磨口盖,以3℃/min的升温速率升至1220℃,保温2小时,随炉冷却后得到陶瓷材料样品。
第六,将烧结好的陶瓷材料磨平、清洗,烘干,丝网印刷银浆,再烘干,放入厢式 电炉烧银。烧银条件为650℃保温30分钟,得到覆有电极的陶瓷厚膜样品。
得到的膜表面均匀,但是塑性韧性差,脱膜困难,容易开裂。
另外,与采用授权公告号为CN106946569B的中国发明专利公开的制备陶瓷材料(1-x)Pb(Mg
1/3Nb
2/3)O
3-xPb
1-yLi
0.5yNa
0.5yTi
1-yO
3来进行后续流延成型得到的陶瓷厚膜相比,本发明得到的陶瓷厚膜性能更优。
本发明通过选择合适掺杂改性,利用两步合成法,流延成型,烧结,可以得到铁电厚膜陶瓷材料。该材料具有高介电常数与低介电损耗的特点,可用于制造绝缘的电容电极,具有良好的应用前景。
虽然关于示例实施例及其优点已经详细说明,应当理解在不脱离本发明的精神和所附权利要求限定的保护范围的情况下,可以对这些实施例进行各种变化、替换和修改。
此外,本发明的应用范围不局限于说明书中描述的特定实施例的工艺、机构、制造、物质组成、手段、方法及步骤。从本发明的公开内容,作为本领域的普通技术人员将容易地理解,对于目前已存在或者以后即将开发出的工艺、机构、制造、物质组成、手段、方法或步骤,其中它们执行与本发明描述的对应实施例大体相同的功能或者获得大体相同的结果,依照本发明可以对它们进行应用。因此,本发明所附权利要求旨在将这些工艺、机构、制造、物质组成、手段、方法或步骤包含在其保护范围内。
Claims (7)
- 一种用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法,其特征在于,所述制备方法包括如下步骤:1)采用两步固相法合成(1-x)Pb(Mg 1/3Nb 2/3)O 3-xPb 1-ySr 0.5yNa 0.25ySm 0.25yTiO 3,其中,0.055≤x≤0.135,0≤y≤0.03,x、y为摩尔数:1-1)以MgO,Nb 2O 5为原料,在1000℃~1200℃的温度下保温2小时合成MgNb 2O 6;1-2)以MgNb 2O 6,Pb 3O 4,TiO 2,Nb 2O 5,Na 2CO 3,SrCO 3,Sm 2O 3为原料,在815℃~865℃的温度下保温4小时,合成(1-x)Pb(Mg 1/3Nb 2/3)O 3-xPb 1-ySr 0.5yNa 0.25ySm 0.25yTiO 3粉体,其中,0.055≤x≤0.135,0≤y≤0.03,x、y为摩尔数;步骤1-2)中采用湿式球磨法混料,其中,陶瓷粉体、磨球、去离子水的质量比如下,陶瓷粉体:磨球:去离子水=1:2:0.7,混料球磨时间为6小时;2)利用所述步骤1)中合成好的粉体制备流延浆料:2-1)在(1-x)Pb(Mg 1/3Nb 2/3)O 3-xPb 1-ySr 0.5yNa 0.25ySm 0.25yTiO 3粉体中加入适量的溶剂和分散剂细磨24小时;2-2)加入增塑剂球磨15分钟后,再加入粘结剂持续球磨24小时;其中,溶剂为乙醇和甲苯以质量比2:3的混合,分散剂为磷酸三乙酯,粘结剂为聚乙烯醇缩丁醛,增塑剂为聚乙二醇和邻苯二甲酸二丁酯的混合;粉体、溶剂、分散剂、粘结剂、聚乙二醇和邻苯二甲酸二丁酯的质量比例为22%:65.8%:0.2%:2%:2.5%:7.5%;2-3)将浆料流延成型获得流延膜生胚;2-4)将流延膜生胚叠层,加压,然后排塑,排除所述流延膜生胚中的有机物质获得素坯;2-5)对所述素坯进行烧结,获得陶瓷厚膜材料。
- 根据权利要求1所述的用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法,其特征在于,在步骤1-2)中,所述磨球为氧化锆球。
- 根据权利要求1所述的用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法,其特征在于,在步骤2-4)中,排塑的温度为500℃~600℃,保温时间为3小时。
- 根据权利要求1所述的用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜制备方法,其特征在于,在步骤2-5)中,烧结温度为1150℃~1250℃,升温速率为2℃/min~3℃/min,保温时间为2小时。
- 一种由权利要求1-4任一项所述的方法制备的用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜。
- 根据权利要求5所述的用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜,其特征在于,在室温条件下,当频率处于1kHz~1MHz频率范围内时,所述陶瓷厚膜的相对介电常数大于 20000,介电损耗小于0.04。
- 权利要求5所述用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜在电容电极中的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111200498.2A CN113636840B (zh) | 2021-10-15 | 2021-10-15 | 用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法 |
CN202111200498.2 | 2021-10-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023060854A1 true WO2023060854A1 (zh) | 2023-04-20 |
Family
ID=78426945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/085816 WO2023060854A1 (zh) | 2021-10-15 | 2022-04-08 | 用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113636840B (zh) |
WO (1) | WO2023060854A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113636840B (zh) * | 2021-10-15 | 2022-01-11 | 北京国械堂科技发展有限责任公司 | 用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000072547A (ja) * | 1998-08-31 | 2000-03-07 | Kyocera Corp | 誘電体磁器組成物および積層型磁器コンデンサ |
CN101805185A (zh) * | 2010-03-19 | 2010-08-18 | 江苏工业学院 | 一种制备铌镁酸铅钛酸铅弛豫铁电陶瓷的方法 |
CN110342935A (zh) * | 2019-06-20 | 2019-10-18 | 广东捷成科创电子股份有限公司 | 一种Sm改性铌镁酸铅-钛酸铅基压电铁电厚膜材料及其制备方法 |
CN110642623A (zh) * | 2019-10-11 | 2020-01-03 | 广东工业大学 | 一种铌镁酸铅-钛酸铅厚膜陶瓷及其制备方法与应用 |
CN113636840A (zh) * | 2021-10-15 | 2021-11-12 | 北京国械堂科技发展有限责任公司 | 用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5030604A (en) * | 1989-10-27 | 1991-07-09 | Industrial Technology Research Institute | Preparation method for Pb[(Znx Mg1-x)1/3 Nb2/3 ]O3 |
CN102757232A (zh) * | 2012-07-17 | 2012-10-31 | 西北工业大学 | 铌镁酸铅-钛酸铅陶瓷的制备方法 |
CN106946569B (zh) * | 2017-02-24 | 2020-05-26 | 北京国械堂科技发展有限责任公司 | 一种可用于生物医学研究和临床应用的陶瓷电极材料及元件 |
CN112745117A (zh) * | 2020-12-29 | 2021-05-04 | 西安交通大学 | 一种织构化压电陶瓷叠层驱动器及其制备方法 |
-
2021
- 2021-10-15 CN CN202111200498.2A patent/CN113636840B/zh active Active
-
2022
- 2022-04-08 WO PCT/CN2022/085816 patent/WO2023060854A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000072547A (ja) * | 1998-08-31 | 2000-03-07 | Kyocera Corp | 誘電体磁器組成物および積層型磁器コンデンサ |
CN101805185A (zh) * | 2010-03-19 | 2010-08-18 | 江苏工业学院 | 一种制备铌镁酸铅钛酸铅弛豫铁电陶瓷的方法 |
CN110342935A (zh) * | 2019-06-20 | 2019-10-18 | 广东捷成科创电子股份有限公司 | 一种Sm改性铌镁酸铅-钛酸铅基压电铁电厚膜材料及其制备方法 |
CN110642623A (zh) * | 2019-10-11 | 2020-01-03 | 广东工业大学 | 一种铌镁酸铅-钛酸铅厚膜陶瓷及其制备方法与应用 |
CN113636840A (zh) * | 2021-10-15 | 2021-11-12 | 北京国械堂科技发展有限责任公司 | 用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113636840A (zh) | 2021-11-12 |
CN113636840B (zh) | 2022-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111763082B (zh) | 一种钛酸锶钡基介质陶瓷材料及其制备方法和应用 | |
CN109626988B (zh) | 高压电响应和高居里温度的压电陶瓷材料及其制备方法 | |
CN105742057A (zh) | 层叠陶瓷电容器 | |
KR101268487B1 (ko) | 비스무스(Bi)계 복합 페로브스카이트 무연 압전 세라믹스 및 그 제조 방법 | |
CN113461423B (zh) | 用于电场治疗肿瘤的陶瓷电极的陶瓷材料及其制备方法 | |
CN106946569B (zh) | 一种可用于生物医学研究和临床应用的陶瓷电极材料及元件 | |
CN108546125B (zh) | 一种面向高温环境应用的压电陶瓷材料及其制备方法 | |
JP2022528586A (ja) | 複合相巨大誘電体セラミック材料及びその製造方法 | |
CN105801112A (zh) | Nd、Al共掺杂取代Ba0.4Sr0.6TiO3巨介电陶瓷及其制备方法 | |
CN103214238A (zh) | 一种钛酸锶钡基介电温度稳定型陶瓷电容器材料的制备方法 | |
CN113666741B (zh) | 一种钒掺杂铌酸钠压电陶瓷及其制备方法 | |
Lee et al. | Microwave dielectric properties and microstructures of Nb2O5-Zn0. 95Mg0. 05TiO3+ 0.25 TiO2 ceramics with Bi2O3 addition | |
WO2023060854A1 (zh) | 用于电场治疗肿瘤的陶瓷电极的陶瓷厚膜及其制备方法 | |
CN1219721C (zh) | 粗陶瓷粉及其制造方法、用粗陶瓷粉制造的介电陶瓷,和使用介电陶瓷的单片陶瓷电子元件 | |
CN114349506A (zh) | 一种低损耗高介电常数铌镁酸铅-钛酸铅介质陶瓷材料制备方法及其应用 | |
CN116003129A (zh) | 铌酸钾钠基陶瓷及其制备方法和应用 | |
Zhang et al. | Study on the structure and dielectric properties of BaO–SiO2–B2O3 glass-doped (Ba, Sr) TiO3 ceramics | |
TWI245750B (en) | Method for producing raw material powder for dielectric ceramic, dielectric ceramic, and multiplayer ceramic capacitor | |
JP7522654B2 (ja) | 誘電性無機組成物 | |
CN111825451B (zh) | 稀土元素Tm掺杂的铌酸银反铁电陶瓷材料及其制备方法 | |
CN112430084A (zh) | 一种高耐电场强度、高储能密度的nbt-bt基驰豫铁电陶瓷薄膜材料及其制备方法 | |
CN114716243B (zh) | 一种高温稳定型钛酸铋钠-钛酸锶基介电储能陶瓷材料及其制备与应用 | |
CN114573339B (zh) | 高储能密度无铅高熵钙钛矿陶瓷、制备方法、及电容器 | |
CN114573338B (zh) | 一种高储能密度介电陶瓷的制备方法及应用 | |
KR20200110946A (ko) | 낮은 유전손실을 갖는 유전체의 제조방법 및 이에 따라 제조되는 유전체 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22879804 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22879804 Country of ref document: EP Kind code of ref document: A1 |