WO2023060829A1 - 定子结构、电机结构、压缩机结构和制冷设备 - Google Patents

定子结构、电机结构、压缩机结构和制冷设备 Download PDF

Info

Publication number
WO2023060829A1
WO2023060829A1 PCT/CN2022/080022 CN2022080022W WO2023060829A1 WO 2023060829 A1 WO2023060829 A1 WO 2023060829A1 CN 2022080022 W CN2022080022 W CN 2022080022W WO 2023060829 A1 WO2023060829 A1 WO 2023060829A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
groove
slot
core
structure according
Prior art date
Application number
PCT/CN2022/080022
Other languages
English (en)
French (fr)
Inventor
李宏涛
于岚
邱小华
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Priority to JP2024521371A priority Critical patent/JP2024535566A/ja
Priority to KR1020247014406A priority patent/KR20240067970A/ko
Publication of WO2023060829A1 publication Critical patent/WO2023060829A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present application relates to the technical field of motors, in particular, to a stator structure, a motor structure, a compressor structure and a refrigeration device.
  • the current motor often produces noise due to improper design during operation, especially the high-frequency noise of the modulation wave of the input current is particularly obvious.
  • This application aims to solve at least one of the technical problems existing in the prior art or related art.
  • the embodiment of the first aspect of the present application provides a stator structure.
  • the embodiment of the second aspect of the present application provides a motor structure.
  • the embodiment of the third aspect of the present application provides a compressor structure.
  • the embodiment of the fourth aspect of the present application provides a refrigeration device.
  • the embodiment of the first aspect of the present application provides a stator structure, including: a stator core, the stator core includes a stator yoke and a plurality of stator teeth extending radially inward from the stator yoke; the first The groove is set on the side wall of the stator yoke away from the axis of the stator core; the second groove is set in the first groove, and the second groove is directed from the bottom of the first groove to the axis of the stator core Extending; wherein the depth of the first groove is not greater than half the thickness of the stator yoke, and the depth of the second groove is not greater than half the thickness of the stator yoke.
  • the stator structure provided according to the embodiment of the first aspect of the present application includes a stator core and two kinds of grooves arranged on the stator core, specifically the first groove and the second groove. It should be added that the stator iron
  • the core itself includes two conventional structures, namely stator yoke and stator teeth. The positional relationship between the two is that the stator teeth are set on the radial inner side of the stator yoke, that is, the stator yoke extends radially inward to form the stator teeth.
  • the first groove is used as a groove-shaped foundation, and is formed by the inward depression of the outer wall of the stator yoke, that is, the side wall away from the axis of the stator core, and the second The groove continues to be recessed inward on the basis of the first groove, that is, the second groove extends from the bottom of the first groove toward the axis of the stator core, thereby forming a setting scheme in which two layers of grooves are superimposed, Furthermore, on the one hand, noise can be suppressed, and on the other hand, the efficiency of the motor can be ensured. Further, the depth of the first groove and the depth of the second groove are not greater than half of the thickness of the stator yoke, so that the The improvement of motor noise, especially for high-frequency carrier noise, has a greatly reduced effect.
  • the thickness of the stator yoke is the dimension of the stator yoke in the radial direction of the stator core.
  • the depth of the first groove is the dimension extending radially inward from the outer edge of the stator core.
  • the groove width of the second groove is not greater than the groove width of the first groove.
  • the second groove includes: a first groove and a second groove; wherein, the first groove and the second groove are arranged at intervals along the circumference of the stator core, and on the end face of the stator core, the first groove The projected contour line is different from the projected contour line of the second slot.
  • the second groove mainly includes two kinds of grooves, the shapes of the two kinds of grooves are different, specifically, the contour lines projected on the end face of the stator core are different, and the first groove and the second groove are spaced apart. , because the first groove and the second groove are not connected and independent of each other, so that different first grooves and second grooves will be combined with the first groove to form different groove structures, and then in the first groove Under the joint action of the second groove, the high-frequency carrier noise that occurs during operation can be greatly improved.
  • the first groove is a rectangular groove
  • the second groove is an arc groove
  • the conventional structure is more convenient for processing and manufacturing.
  • the number of rectangular grooves is not less than three, and the sum of the numbers of arc-shaped grooves and rectangular grooves is equal to the first groove.
  • the projected contour line of the first groove specifically includes: the contour line of the groove bottom and the contour line of the groove wall respectively connected to one end of the contour line of the groove bottom; wherein, each groove wall The other end of the outline extends to the side wall of the stator yoke away from the axis of the stator core.
  • the projected contour line of the first groove is divided into a groove bottom contour line and two groove wall contour lines.
  • the groove bottom contour line The corresponding three-dimensional structure is the groove bottom of the first groove, and the three-dimensional structure corresponding to the contour line of the groove wall is the groove wall connected with the groove bottom, and the first groove can be formed through combination.
  • one end of the contour of the slot wall is connected to the contour of the bottom of the slot, but the other end directly extends to the outer wall of the stator yoke.
  • the included angle between the contour line of the groove bottom and the contour line of any groove wall is an obtuse angle.
  • the included angle between the two ends of the slot bottom contour line and the axis of the stator core is not greater than 360°/Q; wherein, Q is the number of stator teeth.
  • the corresponding relationship between the two is that the two ends of the slot bottom contour will form a certain position relative to the axis of the stator core. Because the stator teeth are evenly arranged, the angle formed between two adjacent stator teeth relative to the axis of the stator core is 360°/Q.
  • the angle corresponding to the contour line of the groove bottom Not greater than the angle formed by the stator teeth, that is, the width of the slot bottom contour line is limited, which reduces the possibility of damage to the motor performance caused by contact between two adjacent slot bottom contour lines, and is also beneficial to the slot wall contour line
  • the design is extended outward to ensure the reduction effect on high-frequency carrier noise.
  • the stator core specifically includes: a plurality of stator punches, and the plurality of stator punches are stacked along the axial direction of the stator core.
  • the stator core is formed by axially stacking a plurality of stator punches, and each stator punch is provided with a stator yoke, stator teeth and winding slots, and the stator teeth are arranged on the stator yoke
  • a winding slot is formed between two adjacent stator teeth, so that the stator winding can be wound on the winding slot, and a magnetic field can be generated on the rotor to realize the stator effect.
  • the material of the stator punching sheet is selected as silicon steel sheet or other soft magnetic material sheet, and the thickness is not greater than 0.35mm.
  • the depth of the first groove is not less than 0.2 times the thickness of the stator yoke; the depth of the second groove is not less than 0.2 times the thickness of the stator yoke.
  • the lower limit of the depth of the first groove and the second groove is limited to 0.2 times the thickness of the stator yoke to ensure an effective noise reduction effect during the working process, especially for high Noise reduction effect of frequency carrier.
  • the motor structure provided according to the embodiment of the second aspect of the present application includes the stator structure in any of the above embodiments; the rotor structure is coaxially arranged with the stator structure, and the rotor structure includes a rotor core and a permanent magnet arranged on the rotor core .
  • the motor structure includes two parts: the stator structure and the rotor structure.
  • the stator core when the stator teeth are wound with wires to arrange the stator windings in the winding slots, the rotor structure can be affected. To the normal magnetic field driving effect, and then realize the rotation of the rotor structure.
  • the rotor structure and the stator structure are coaxially arranged, and mainly include two parts: the rotor core and the permanent magnet. When the stator structure is energized to generate a vector magnetic field, the magnetic parts will rotate under the magnetic action, thereby realizing the movement of the rotor structure.
  • the axis of the stator core and the axis of the rotor core are collinear, and the stator teeth and permanent magnets are arranged around the axis, generally uniformly.
  • the projected contour of the permanent magnet is symmetrical with respect to the central axis of two adjacent stator teeth; wherein, the permanent magnet includes one or a combination of the following: a straight line segment and a curved line segment.
  • the permanent magnet includes any combination of three shapes, which can be a pure straight line segment.
  • the projected outline of the permanent magnet should be perpendicular to the central axis.
  • the permanent magnet can be a symmetrical straight line segment, or can be understood as a broken line segment.
  • there are more possibilities for projecting contour lines including but not limited to V-shape and W-shape.
  • the permanent magnet is a purely curved segment, but still needs to maintain a symmetrical shape, which can be a single arc or a combined shape of multiple arcs.
  • a fractional slot motor can be formed as a whole.
  • the magnetic poles can be effectively weakened
  • the high-order harmonic potential generated by the non-sinusoidal distribution of the magnetic field can also weaken the amplitude of the tooth harmonic potential and improve the waveform.
  • the pulse amplitude of the magnetic flux can be effectively reduced, thereby reducing the pulse vibration loss on the magnetic pole surface.
  • the embodiment of the third aspect of the present application provides a compressor structure, including: a casing; the motor structure according to the second aspect above is disposed in the casing.
  • the compressor structure provided by the embodiment includes a casing and a motor structure disposed in the casing, and the compressor structure is provided with the motor structure in the second aspect above, so it has the beneficial effects of the above motor structure, I won't repeat them here.
  • the embodiment of the fourth aspect of the present application provides a refrigerating device, comprising: a box body; and the compressor structure according to the above third aspect, disposed in the box body.
  • the refrigeration equipment provided by the embodiment includes a box body and a compressor structure arranged in the box body, and the refrigeration equipment is provided with the compressor structure in the third aspect above, so it has the beneficial effect of the above compressor structure , which will not be repeated here.
  • the refrigeration equipment includes but is not limited to refrigerators, freezers, air conditioners and other equipment with refrigeration functions.
  • Fig. 1 shows a schematic structural view of a stator structure according to an embodiment of the present application
  • Fig. 2 shows a schematic structural diagram of a motor structure according to an embodiment of the present application
  • Fig. 3 shows a partial structural schematic diagram of a stator structure according to an embodiment of the present application
  • Fig. 4 shows a schematic structural view of a stator core according to an embodiment of the present application
  • Fig. 5 shows a schematic structural diagram of a rotor core according to an embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of a motor structure according to an embodiment of the present application.
  • Fig. 7 shows a structural schematic diagram of a compressor structure according to an embodiment of the present application.
  • Fig. 8 shows a schematic structural diagram of a refrigeration device according to an embodiment of the present application.
  • 100 motor structure; 102: stator structure; 1022: stator core; 1023: stator yoke; 1024: stator teeth; 1026: first groove; 1027: groove bottom contour; 1028: groove wall contour; 1030: first Two grooves; 1031: first groove; 1032: second groove; 1034: stator punch; 104: rotor structure; 1042: rotor core; 1044: permanent magnet; 1046: rotor punch; 200: compressor structure; 202: shell; 300: refrigeration equipment; 302: box body.
  • a stator structure 102 proposed in this embodiment includes a stator core 1022 and two kinds of grooves arranged on the stator core 1022, specifically the first groove 1026 and the second groove
  • the stator core 1022 itself includes two conventional structures, namely the stator yoke 1023 and the stator teeth 1024. That is, the stator yoke 1023 extends radially inward to form stator teeth 1024 .
  • the first groove 1026 and the second groove 1030 the first groove 1026 serves as a groove-shaped foundation, and the outer wall of the stator yoke 1023, that is, the side wall away from the axis of the stator core 1022 faces inward.
  • the second groove 1030 continues to be recessed inward on the basis of the first groove 1026, that is, the second groove 1030 extends from the bottom of the first groove 1026 toward the axis of the stator core 1022, thereby Forming the setting scheme of two layers of grooves superimposed, on the one hand, it can suppress the noise, and on the other hand, it can also ensure the efficiency of the motor. Further, the depth of the first groove 1026 and the depth of the second groove 1030 are different. It is greater than half of the thickness of the stator yoke 1023 , thereby greatly reducing and improving motor noise, especially for high-frequency carrier noise, which has a greatly reducing effect.
  • the thickness of the stator yoke 1023 is the dimension of the stator yoke 1023 in the radial direction of the stator core 1022 .
  • the depth of the first groove 1026 is the dimension extending radially inward from the outer edge of the stator core 1022 .
  • the groove width of the second groove 1030 is not greater than the groove width of the first groove 1026 .
  • the stator core is formed by stacking a plurality of stator punches 1034 in the axial direction, and each stator punch is provided with a stator yoke, stator teeth and winding grooves, and the stator teeth are arranged On the stator yoke, a winding slot is formed between two adjacent stator teeth, so that the stator winding can be wound on the winding slot, and a magnetic field can be generated on the rotor to realize the stator effect.
  • stator punching sheet 1034 is selected as silicon steel sheet or other soft magnetic material sheet, and the thickness is not greater than 0.35mm.
  • the lower limit value of the depth of the first groove 1026 and the second groove 1030 is also defined as the stator yoke 0.2 times the thickness of 1023 to ensure effective noise reduction during work, especially for high-frequency carrier noise.
  • a stator structure 102 proposed in another embodiment of the present application includes a stator core 1022 and two kinds of grooves arranged on the stator core 1022 , specifically the first groove 1026 and the second groove 1030, what needs to be added is that the stator core 1022 itself includes two conventional structures, that is, the stator yoke 1023 and the stator teeth 1024, the positional relationship between the two is that the stator teeth 1024 are set on the diameter of the stator yoke 1023 Inwardly, that is, the stator yoke 1023 extends radially inwardly to form stator teeth 1024 .
  • the first groove 1026 and the second groove 1030 serves as a groove-shaped foundation, and the outer wall of the stator yoke 1023, that is, the side wall away from the axis of the stator core 1022 faces inward.
  • the second groove 1030 continues to be recessed inward on the basis of the first groove 1026, that is, the second groove 1030 extends from the bottom of the first groove 1026 toward the axis of the stator core 1022, thereby Forming the setting scheme of two layers of grooves superimposed, on the one hand, it can suppress the noise, and on the other hand, it can also ensure the efficiency of the motor.
  • the depth of the first groove 1026 and the depth of the second groove 1030 are different. It is greater than half of the thickness of the stator yoke 1023 , thereby greatly reducing and improving motor noise, especially for high-frequency carrier noise, which has a greatly reducing effect.
  • the thickness of the stator yoke 1023 is the dimension of the stator yoke 1023 in the radial direction of the stator core 1022 .
  • the depth of the first groove 1026 is the dimension extending radially inward from the outer edge of the stator core 1022 .
  • the groove width of the second groove 1030 is not greater than the groove width of the first groove 1026 .
  • the second groove 1030 mainly includes two kinds of grooves, the shapes of the two kinds of grooves are different, specifically, the contour lines projected on the end face of the stator core 1022 are different, and the first groove 1031 and the second groove 1032 are arranged at intervals, because the second The first groove 1031 and the second groove 1032 are not connected and are independent of each other, so that different first grooves 1031 and second grooves 1032 will be combined with the first groove 1026 to form different groove structures, and then in the first The joint action of the groove 1026 and the second groove 1030 can greatly improve the high-frequency carrier noise that occurs during operation.
  • the first groove 1031 is a rectangular groove
  • the second groove 1032 is an arc-shaped groove
  • the conventional structure is more convenient for processing and manufacturing.
  • the number of rectangular slots is not less than three, and the sum of the number of arc slots and rectangular slots is equal to the number of first grooves 1026 .
  • the number of rectangular slots is three, and the number of arc slots is Q-3.
  • a stator structure 102 proposed in another embodiment of the present application includes a stator core 1022 and two kinds of grooves arranged on the stator core 1022 , specifically the first groove 1026 and the second groove 1030, what needs to be added is that the stator core 1022 itself includes two conventional structures, that is, the stator yoke 1023 and the stator teeth 1024, the positional relationship between the two is that the stator teeth 1024 are set on the diameter of the stator yoke 1023 Inwardly, that is, the stator yoke 1023 extends radially inwardly to form stator teeth 1024 .
  • the first groove 1026 and the second groove 1030 serves as a groove-shaped foundation, and the outer wall of the stator yoke 1023, that is, the side wall away from the axis of the stator core 1022 faces inward.
  • the second groove 1030 continues to be recessed inward on the basis of the first groove 1026, that is, the second groove 1030 extends from the bottom of the first groove 1026 toward the axis of the stator core 1022, thereby Forming the setting scheme of two layers of grooves superimposed, on the one hand, it can suppress the noise, and on the other hand, it can also ensure the efficiency of the motor.
  • the depth of the first groove 1026 and the depth of the second groove 1030 are different. It is greater than half of the thickness of the stator yoke 1023 , thereby greatly reducing and improving motor noise, especially for high-frequency carrier noise, which has a greatly reducing effect.
  • the thickness of the stator yoke 1023 is the dimension of the stator yoke 1023 in the radial direction of the stator core 1022 .
  • the depth of the first groove 1026 is the dimension extending radially inward from the outer edge of the stator core 1022 .
  • the groove width of the second groove 1030 is not greater than the groove width of the first groove 1026 .
  • the projected contour line of the first groove 1026 is divided into a groove bottom contour line 1027 and two groove wall contour lines 1028.
  • the three-dimensional structure corresponding to the groove bottom contour line 1027 is the groove bottom of the first groove 1026
  • the three-dimensional structure corresponding to the groove wall contour line 1028 is the groove wall connected to the groove bottom, and the first groove 1026 can be formed through combination.
  • slot wall outline 1028 is connected to the slot bottom outline 1027 , but the other end directly extends to the outer wall of the stator yoke 1023 .
  • an obtuse angle is formed between the groove bottom contour 1027 and the groove wall contour 1028, so that the entire first groove 1026 is outwardly expanded, which is more conducive to reducing the sound of the carrier frequency band during operation. Effect.
  • the corresponding relationship between the two is that the two ends of the slot bottom contour line 1027 will be opposite to the axis of the stator core 1022 A certain angle is formed. Since the stator teeth 1024 are uniformly arranged, the angle formed between two adjacent stator teeth 1024 relative to the axis of the stator core 1022 is 360°/Q.
  • the angle corresponding to the line 1027 is not greater than the angle formed by the stator teeth 1024, that is, the width of the slot bottom contour line 1027 is limited, reducing the possibility of damage to the motor performance due to contact between two adjacent slot bottom contour lines 1027 It is also beneficial to the design that the groove wall outline 1028 is extended outwardly, so as to ensure the effect of reducing the high-frequency carrier noise.
  • the groove A (i.e. the first groove 1026) is composed of line 1 (i.e. groove bottom contour line 1027), line 2 and line 3 (i.e. groove wall contour line 1028), and line 1 Perpendicular to the tooth centerline, the distance between line 1 and the intersection of the outer circle of stator core 1022 and the centerline of stator tooth 1024 is L1, line 2 and line 1 intersect at point 1, the angle between line 2 and line 1 is ⁇ 1, and line 3 Intersect with line 1 at point 2, the angle between line 3 and line 1 is ⁇ 2, the angle between point 1, point 2 and the center of the circle is ⁇ 3, the groove B is a rectangle, the length is W, the width is L2, and the groove C is a circle An arc with radius R.
  • line 1 i.e. groove bottom contour line 1027
  • line 2 and line 3 i.e. groove wall contour line 1028
  • line 1 Perpendicular to the tooth centerline
  • the thickness y of the stator yoke 1023 and the above dimensions satisfy the formula: 0.2 ⁇ L1/y ⁇ 0.5; 0.2 ⁇ L2/y ⁇ 0.5; ⁇ 1>90°; ⁇ 2>90°; 0° ⁇ 2 ⁇ 360°/Q; the first concave
  • This application can improve the high-frequency carrier noise of motors and compressors.
  • a motor structure 100 which includes two parts: a stator structure 102 and a rotor structure 104, wherein, as shown in Figure 2, the stator structure 102 is the above-mentioned
  • the stator structure 102 when winding the stator teeth 1024 to set the stator winding in the winding slot, it can play a normal magnetic field driving effect on the rotor structure 104, In turn, the rotation of the rotor structure 104 is realized.
  • the rotor structure 104 is arranged coaxially with the stator structure 102, and mainly includes two parts: the rotor core 1042 and the permanent magnet 1044. When the stator structure 102 is energized to generate a vector magnetic field, the magnetic parts will rotate under the magnetic action, thereby realizing Movement of the rotor structure 104 .
  • stator core 1022 and the axis of the rotor core 1042 are collinear, and the stator teeth 1024 and the permanent magnets 1044 are arranged around the axis, generally uniformly.
  • the cross-sectional shape of the permanent magnet 1044 belongs to a symmetrical figure, so as to facilitate processing and installation.
  • the permanent magnet 1044 includes any combination of three shapes, and can be a pure straight line segment.
  • the permanent magnet 1044 The projected outline of the magnet 1044 should be perpendicular to the central axis.
  • the permanent magnet 1044 can be a symmetrical straight line segment, or can be understood as a broken line segment.
  • there are more possibilities for projecting contour lines including but not limited to V-shape, W-shape, etc.
  • the permanent magnet 1044 is a pure curve segment, but still needs to maintain a symmetrical shape at this time, which can be a single arc or a combination of multiple arcs.
  • a fractional slot motor By limiting the number of stator teeth 1024 to not more than twice the product of the number of pole pairs of the rotor and the number of phases of the motor, a fractional slot motor can be formed as a whole. Under the action of the fractional slot motor, the non-sinusoidal distribution of the magnetic pole magnetic field can be effectively weakened. The generated high-order harmonic potential can also weaken the amplitude of the tooth harmonic potential and improve the waveform. In addition, due to the use of the motor in the form of fractional slots, the pulse amplitude of the magnetic flux can be effectively reduced, thereby reducing the pulse vibration loss on the magnetic pole surface.
  • the rotor core is formed by axially stacking a plurality of rotor punches 1046, and the material of the rotor punches 1046 is silicon steel sheet or other soft magnetic material sheet, and the thickness is not more than 0.35mm.
  • the length of the rotor core is greater than or equal to the length of the stator core 1022 .
  • stator slots is not less than six.
  • stator slots the number of stator slots
  • rotor poles the number of motor phases satisfy: Q/2mp ⁇ 1.
  • the winding is composed of enameled wire.
  • stator core 1022 and the rotor core are made of laminated silicon steel sheets.
  • FIG. 7 another embodiment of the present application proposes a compressor structure 200, which includes a housing 202 and a motor structure 100 arranged in the housing 202, and the housing 202 is equipped with Therefore, the motor structure 100 has the beneficial effects of the above-mentioned motor structure 100, which will not be repeated here.
  • FIG. 8 another embodiment of the present application proposes a refrigeration device 300, which includes a box body 302 and a compressor structure 200 disposed in the box body 302.
  • the compressor structure 200 has the beneficial effects of the above-mentioned compressor structure 200, which will not be repeated here.
  • the cooling device 300 includes but not limited to refrigerators, freezers, air conditioners and other devices with a cooling function.
  • the noise of the motor can be greatly improved, especially for high-frequency carrier noise, it can greatly reduce the noise.
  • connection can be fixed connection, detachable connection, or integral connection; “connection” can be directly or indirectly through an intermediary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

提供了一种定子结构(102)、电机结构(100)、压缩机结构(200)和制冷设备(300),其中,定子铁芯(1022)包括定子轭(1023)以及由定子轭(1023)沿径向向内延伸的多个定子齿(1024);第一凹槽(1026),设于定子轭(1023)远离定子铁芯(1022)的轴线的一侧侧壁;第二凹槽(1030),设于第一凹槽(1026)内,第二凹槽(1030)由第一凹槽(1026)的槽底朝向定子铁芯(1022)的轴线延伸;其中,第一凹槽(1026)的深度不大于定子轭(1023)的厚度的一半,且第二凹槽(1030)的深度不大于定子轭(1023)的厚度的一半。可极大的改善电机噪音,对于高频载波噪音而言,有极大地降低作用。

Description

定子结构、电机结构、压缩机结构和制冷设备
本申请要求于2021年10月14日提交中国国家知识产权局、申请号为“202111198762.3”、申请名称为“定子结构、电机结构、压缩机结构和制冷设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机技术领域,具体而言,涉及一种定子结构、一种电机结构、一种压缩机结构和一种制冷设备。
背景技术
当前电机,在运行过程中常常会因为设计不当产生噪音,尤其是输入电流的调制波的高频噪音尤为明显。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
有鉴于此,本申请第一方面的实施例提供了一种定子结构。
本申请第二方面的实施例提供了一种电机结构。
本申请第三方面的实施例提供了一种压缩机结构。
本申请第四方面的实施例提供了一种制冷设备。
为了实现上述目的,本申请第一方面的实施例提供了一种定子结构,包括:定子铁芯,定子铁芯包括定子轭以及由定子轭沿径向向内延伸的多个定子齿;第一凹槽,设于定子轭远离定子铁芯的轴线的一侧侧壁;第二凹槽,设于第一凹槽内,第二凹槽由第一凹槽的槽底朝向定子铁芯的轴线延伸;其中,第一凹槽的深度不大于定子轭的厚度的一半,且第二凹槽的深度不大于定子轭的厚度的一半。
根据本申请第一方面的实施例提供的定子结构,包括定子铁芯以及设置在定子铁芯上的两种凹槽,具体为第一凹槽和第二凹槽,需要补充的是,定子铁芯自身包括两种常规结构,即定子轭和定子齿,二者之间的位置关 系为定子齿设于定子轭的径向内侧,也即定子轭沿径向向内延伸形成定子齿。而对于第一凹槽和第二凹槽而言,第一凹槽作为槽状基础,由定子轭的外侧壁,也即远离定子铁芯的轴线的一侧侧壁向内凹陷形成,第二凹槽则是在第一凹槽的基础上继续向内凹陷,也即第二凹槽由第一凹槽的槽底朝向定子铁芯的轴线延伸,从而形成两层凹槽叠加的设置方案,进而一方面可对噪音起到抑制作用,另一方面还可保证电机效率,进一步地,第一凹槽的深度和第二凹槽的深度均不大于定子轭的厚度的一半,从而可极大的改善电机噪音,特别是对于高频载波噪音而言,有极大地降低作用。
其中,定子轭的厚度即为定子轭在定子铁芯的径向方向上的尺寸。
其中,第一凹槽的深度即为由定子铁芯的外缘沿径向向内延伸的尺寸。
进一步地,由于第二凹槽是在第一凹槽的基础上继续向内延伸形成的,故而一般地,第二凹槽的槽宽不大于第一凹槽的槽宽。
上述技术方案中,第二凹槽包括:第一槽和第二槽;其中,第一槽和第二槽沿定子铁芯的周向间隔设置,在定子铁芯的端面上,第一槽的投影轮廓线与第二槽的投影轮廓线不同。
在该技术方案中,第二凹槽主要包括两种槽,两种槽的形状不同,具具体为在定子铁芯的端面上投影轮廓线不同,同时第一槽和第二槽之间间隔设置,由于第一槽和第二槽之间并不连通,相互独立,以便于不同的第一槽和第二槽会分别与第一凹槽相结合形成不同的槽结构,进而在第一凹槽和第二凹槽的共同作用下可极大的改善在运行过程中出现的高频载波噪音。
上述技术方案中,第一槽为矩形槽,第二槽为弧形槽。
在该技术方案中,通过限制第一槽为矩形槽,第二槽为弧形槽,采用常规结构更便于加工制造。
进一步地,矩形槽的数量不小于三个,弧形槽和矩形槽的数量之和与第一凹槽相等。
上述技术方案中,在定子铁芯的端面上,第一凹槽的投影轮廓线具体包括:槽底轮廓线和分别与槽底轮廓线的一端相连的槽壁轮廓线;其中,每个槽壁轮廓线的另一端延伸至定子轭远离定子铁芯的轴线的一侧侧壁 上。
在该技术方案中,对于第一凹槽而言,对其形状进行限制,将第一凹槽的投影轮廓线分为槽底轮廓线以及两个槽壁轮廓线,可以理解,槽底轮廓线对应的立体结构即为第一凹槽的槽底,槽壁轮廓线对应的立体结构则为与槽底相连的槽壁,通过组合即可形成第一凹槽。
需要强调的是,槽壁轮廓线的一端与槽底轮廓线相连,但另一端会直接延伸至定子轭的外壁。
上述技术方案中,槽底轮廓线与任一槽壁轮廓线之间的夹角为钝角。
在该技术方案中,通过限制槽底轮廓线和槽壁轮廓线之间形成钝角,使得整个第一凹槽呈外扩型,更有利于在运行过程中对载波频段声音的降低效果。
上述技术方案中,槽底轮廓线的两端分别与定子铁芯的轴线之间的连线所呈的夹角不大于360°/Q;其中,Q为定子齿的数量。
在该技术方案中,通过限制槽底轮廓线所在位置与定子齿的位置相对应,二者之间的对应关系为,槽底轮廓线的两端相对于定子铁芯的轴线而言会形成一定的夹角,由于定子齿为均匀设置,故而相邻两个定子齿之间相对于定子铁芯的轴线所成的夹角即为360°/Q,通过限制上述槽底轮廓线对应的夹角不大于定子齿所成夹角,也即槽底轮廓线的宽度受限制,减少发生两个相邻的槽底轮廓线之间接触导致电机性能受损的可能性,同时也利于槽壁轮廓线呈外扩型延伸的设计,以保证对高频载波噪音的降低效果。
上述技术方案中,定子铁芯具体包括:多个定子冲片,多个定子冲片沿定子铁芯的轴向层叠设置。
在该技术方案中,定子铁芯是由多个定子冲片轴向层叠设置而成的,在每个定子冲片上均设置有定子轭、定子齿以及绕线槽,定子齿设置在定子轭上,相邻的两个定子齿之间形成有绕线槽,以便于定子绕组绕在绕线槽上,可对转子产生磁场,以实现定子作用。
进一步地,定子冲片的材质选为硅钢片或其他软磁材料片,厚度不大于0.35mm。
上述技术方案中,第一凹槽的深度不小于定子轭的厚度的0.2倍;第二凹槽的深度不小于定子轭的厚度的0.2倍。
在该技术方案中,通过限制第一凹槽和第二凹槽的深度下限值为定子轭的厚度的0.2倍,以保证在工作过程中可以起到有效的降噪效果,尤其是针对高频载波的降噪效果。
根据本申请第二方面实施例提供的电机结构,包括上述任一实施例中的定子结构;转子结构,与定子结构同轴设置,转子结构包括转子铁芯以及设于转子铁芯上的永磁体。
根据本申请提供的电机结构,包括定子结构和转子结构两个部分,其中,对于定子铁芯而言,在将定子齿上绕线以在绕线槽内设置定子绕组时,可对转子结构起到正常的磁场驱动作用,进而实现转子结构的旋转。具体地,转子结构与定子结构同轴设置,主要包括转子铁芯以及永磁体两个部分,在定子结构通电产生矢量磁场时,磁性件会在磁作用下发生转动,从而实现转子结构的移动。
需要说明的是,定子铁芯的轴线与转子铁芯的轴线共线,定子齿和永磁体均为绕该轴线布置的,一般来说都是均匀设置。
上述技术方案中,在转子铁芯的端面上,永磁体的投影轮廓线关于相邻两个定子齿的中心轴线对称;其中,永磁体包括以下之一或其组合:直线段、曲线段。
在该技术方案中,通过限制永磁体的截面形状属于对称图形,以便于加工和安装,具体地,永磁体包括三种形状的任意组合,可以为纯直线段,此时,在限制对称的情况下,永磁体的投影轮廓线应垂直于中心轴线。另一种情况下,永磁体可以为对称的直线段,或者可以理解为折线段,此时投影轮廓线的可能性较多,包括但不限于V形、W形等。再一种情况下,永磁体为纯曲线段,此时仍需要保持对称形状,可以为单弧线,也可以为多弧线的组合形状。
当然,还可以为曲线段和直线段的组合,只要是对称结构即可。
上述技术方案中,定子齿的数量Q与永磁体的极对数p以及电机结构的相数m之间的关系为:
Figure PCTCN2022080022-appb-000001
在该技术方案中,通过限制定子齿的数量不大于转子的极对数和电机相数的乘积的2倍,从而可使得整体形成分数槽电机,在分数槽电机的作用下,可有效削弱磁极磁场非正弦分布所产生的高次谐波电势,同时还可削弱齿谐波电势的幅值,改善波形。此外,由于采用分数槽形势的电机,还可有效减小磁通的脉振幅值,进而减少磁极表面的脉振损耗。
本申请第三方面的实施例提供了一种压缩机结构,包括:壳体;如上述第二方面的电机结构,设于壳体内。
根据本申请第三方面实施例提供的压缩机结构,包括壳体以及设于壳体内的电机结构,压缩机结构内设有上述第二方面中的电机结构,故而具有上述电机结构的有益效果,在此不再赘述。
本申请第四方面的实施例提供了一种制冷设备,包括:箱体;如上述第三方面的压缩机结构,设于箱体内。
根据本申请第四方面实施例提供的制冷设备,包括箱体以及设于箱体内的压缩机结构,制冷设备内设有上述第三方面中的压缩机结构,故而具有上述压缩机结构的有益效果,在此不再赘述。
其中,制冷设备包括但不限于冰箱、冰柜、空调等具有制冷功能的设备。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
图1示出了根据本申请的一个实施例的定子结构的结构示意图;
图2示出了根据本申请的一个实施例的电机结构的结构示意图;
图3示出了根据本申请的一个实施例的定子结构的局部结构示意图;
图4示出了根据本申请的一个实施例的定子铁芯的结构示意图;
图5示出了根据本申请的一个实施例的转子铁芯的结构示意图;
图6示出了根据本申请的一个实施例的电机结构的结构示意图;
图7示出了根据本申请的一个实施例的压缩机结构的结构示意图;
图8示出了根据本申请的一个实施例的制冷设备的结构示意图。
其中,图1至图8中附图标记与部件名称之间的对应关系为:
100:电机结构;102:定子结构;1022:定子铁芯;1023:定子轭;1024:定子齿;1026:第一凹槽;1027:槽底轮廓线;1028:槽壁轮廓线;1030:第二凹槽;1031:第一槽;1032:第二槽;1034:定子冲片;104:转子结构;1042:转子铁芯;1044:永磁体;1046:转子冲片;200:压缩机结构;202:壳体;300:制冷设备;302:箱体。
具体实施方式
为了能够更清楚地理解本申请的实施例的上述目的、特征和优点,下面结合附图和具体实施方式对本申请的实施例进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请的实施例还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不限于下面公开的具体实施例的限制。
下面参照图1至图8描述根据本申请的一些实施例。
如图1和图2所示,本实施例提出的一种定子结构102,包括定子铁芯1022以及设置在定子铁芯1022上的两种凹槽,具体为第一凹槽1026和第二凹槽1030,需要补充的是,定子铁芯1022自身包括两种常规结构,即定子轭1023和定子齿1024,二者之间的位置关系为定子齿1024设于定子轭1023的径向内侧,也即定子轭1023沿径向向内延伸形成定子齿1024。而对于第一凹槽1026和第二凹槽1030而言,第一凹槽1026作为槽状基础,由定子轭1023的外侧壁,也即远离定子铁芯1022的轴线的一侧侧壁向内凹陷形成,第二凹槽1030则是在第一凹槽1026的基础上继续向内凹陷,也即第二凹槽1030由第一凹槽1026的槽底朝向定子铁芯1022的轴线延伸,从而形成两层凹槽叠加的设置方案,进而一方面可对噪音起到抑制作用,另一方面还可保证电机效率,进一步地,第一凹槽1026的深度和第二 凹槽1030的深度均不大于定子轭1023的厚度的一半,从而可减少极大的改善电机噪音,特别是对于高频载波噪音而言,有极大地降低作用。
其中,定子轭1023的厚度即为定子轭1023在定子铁芯1022的径向方向上的尺寸。
其中,第一凹槽1026的深度即为由定子铁芯1022的外缘沿径向向内延伸的尺寸。
进一步地,由于第二凹槽1030是在第一凹槽1026的基础上继续向内延伸形成的,故而一般地,第二凹槽1030的槽宽不大于第一凹槽1026的槽宽。
进一步地,如图4所示,定子铁芯是由多个定子冲片1034轴向层叠设置而成的,在每个定子冲片上均设置有定子轭、定子齿以及绕线槽,定子齿设置在定子轭上,相邻的两个定子齿之间形成有绕线槽,以便于定子绕组绕在绕线槽上,可对转子产生磁场,以实现定子作用。
进一步地,定子冲片1034的材质选为硅钢片或其他软磁材料片,厚度不大于0.35mm。
在一个具体的实施例中,除了上述限定第一凹槽1026和第二凹槽1030的深度上限值,还限定了第一凹槽1026和第二凹槽1030的深度下限值为定子轭1023的厚度的0.2倍,以保证在工作过程中可以起到有效的降噪效果,尤其是针对高频载波的降噪效果。
如图1和图2所示,本申请的另一实施例提出的一种定子结构102,包括定子铁芯1022以及设置在定子铁芯1022上的两种凹槽,具体为第一凹槽1026和第二凹槽1030,需要补充的是,定子铁芯1022自身包括两种常规结构,即定子轭1023和定子齿1024,二者之间的位置关系为定子齿1024设于定子轭1023的径向内侧,也即定子轭1023沿径向向内延伸形成定子齿1024。而对于第一凹槽1026和第二凹槽1030而言,第一凹槽1026作为槽状基础,由定子轭1023的外侧壁,也即远离定子铁芯1022的轴线的一侧侧壁向内凹陷形成,第二凹槽1030则是在第一凹槽1026的基础上继续向内凹陷,也即第二凹槽1030由第一凹槽1026的槽底朝向定子铁芯1022的轴线延伸,从而形成两层凹槽叠加的设置方案,进而一方面可对噪 音起到抑制作用,另一方面还可保证电机效率,进一步地,第一凹槽1026的深度和第二凹槽1030的深度均不大于定子轭1023的厚度的一半,从而可减少极大的改善电机噪音,特别是对于高频载波噪音而言,有极大地降低作用。
其中,定子轭1023的厚度即为定子轭1023在定子铁芯1022的径向方向上的尺寸。
其中,第一凹槽1026的深度即为由定子铁芯1022的外缘沿径向向内延伸的尺寸。
进一步地,由于第二凹槽1030是在第一凹槽1026的基础上继续向内延伸形成的,故而一般地,第二凹槽1030的槽宽不大于第一凹槽1026的槽宽。
第二凹槽1030主要包括两种槽,两种槽的形状不同,具体为在定子铁芯1022的端面上投影轮廓线不同,同时第一槽1031和第二槽1032之间间隔设置,由于第一槽1031和第二槽1032之间并不连通,相互独立,以便于不同的第一槽1031和第二槽1032会分别与第一凹槽1026相结合形成不同的槽结构,进而在第一凹槽1026和第二凹槽1030的共同作用下可极大的改善在运行过程中出现的高频载波噪音。
在一个具体的实施例中,第一槽1031为矩形槽,第二槽1032为弧形槽,采用常规结构更便于加工制造。
进一步地,矩形槽的数量不小于三个,弧形槽和矩形槽的数量之和与第一凹槽1026的数量相等。
更进一步地,矩形槽的数量为三个,弧形槽的数量为Q-3个。
如图1和图2所示,本申请的另一实施例提出的一种定子结构102,包括定子铁芯1022以及设置在定子铁芯1022上的两种凹槽,具体为第一凹槽1026和第二凹槽1030,需要补充的是,定子铁芯1022自身包括两种常规结构,即定子轭1023和定子齿1024,二者之间的位置关系为定子齿1024设于定子轭1023的径向内侧,也即定子轭1023沿径向向内延伸形成定子齿1024。而对于第一凹槽1026和第二凹槽1030而言,第一凹槽1026作为槽状基础,由定子轭1023的外侧壁,也即远离定子铁芯1022的轴线 的一侧侧壁向内凹陷形成,第二凹槽1030则是在第一凹槽1026的基础上继续向内凹陷,也即第二凹槽1030由第一凹槽1026的槽底朝向定子铁芯1022的轴线延伸,从而形成两层凹槽叠加的设置方案,进而一方面可对噪音起到抑制作用,另一方面还可保证电机效率,进一步地,第一凹槽1026的深度和第二凹槽1030的深度均不大于定子轭1023的厚度的一半,从而可减少极大的改善电机噪音,特别是对于高频载波噪音而言,有极大地降低作用。
其中,定子轭1023的厚度即为定子轭1023在定子铁芯1022的径向方向上的尺寸。
其中,第一凹槽1026的深度即为由定子铁芯1022的外缘沿径向向内延伸的尺寸。
进一步地,由于第二凹槽1030是在第一凹槽1026的基础上继续向内延伸形成的,故而一般地,第二凹槽1030的槽宽不大于第一凹槽1026的槽宽。
如图3所示,对于第一凹槽1026而言,对其形状进行限制,将第一凹槽1026的投影轮廓线分为槽底轮廓线1027以及两个槽壁轮廓线1028,可以理解,槽底轮廓线1027对应的立体结构即为第一凹槽1026的槽底,槽壁轮廓线1028对应的立体结构则为与槽底相连的槽壁,通过组合即可形成第一凹槽1026。
需要强调的是,槽壁轮廓线1028的一端与槽底轮廓线1027相连,但另一端会直接延伸至定子轭1023的外壁。
在一个具体的实施例中,限制槽底轮廓线1027和槽壁轮廓线1028之间形成钝角,使得整个第一凹槽1026呈外扩型,更有利于在运行过程中对载波频段声音的降低效果。
更进一步地,通过限制槽底轮廓线1027所在位置与定子齿1024的位置相对应,二者之间的对应关系为,槽底轮廓线1027的两端相对于定子铁芯1022的轴线而言会形成一定的夹角,由于定子齿1024为均匀设置,故而相邻两个定子齿1024之间相对于定子铁芯1022的轴线所成的夹角即为360°/Q,通过限制上述槽底轮廓线1027对应的夹角不大于定子齿1024所 成夹角,也即槽底轮廓线1027的宽度受限制,减少发生两个相邻的槽底轮廓线1027之间接触导致电机性能受损的可能性,同时也利于槽壁轮廓线1028呈外扩型延伸的设计,以保证对高频载波噪音的降低效果。
更具体地,如图2所示,凹槽A(即第一凹槽1026)由线1(即槽底轮廓线1027)、线2和线3(即槽壁轮廓线1028)构成,线1垂直于齿中心线,线1和定子铁芯1022外圆与定子齿1024中心线交点的距离为L1,线2与线1相交于点1,线2与线1的夹角为α1,线3和线1相交于点2,线3与线1夹角为α2,点1、点2与圆心的夹角为α3,凹槽B为矩形,长度为W,宽度为L2,凹槽C为圆弧,半径为R。定子轭1023厚度y与上述尺寸满足公式:0.2≤L1/y≤0.5;0.2≤L2/y≤0.5;α1>90°;α2>90°;0°<α2<360°/Q;第一凹槽1026均匀的分布在定子轭1023外侧,第二凹槽1030均匀分布在第一凹槽1026之间,且N1=3;N2=Q-3其中:定子轭1023厚度y,单位mm、L1单位mm、L2单位mm、α1单位为°、α2单位为°、定子槽数Q、第一凹槽1026个数N1、第二凹槽1030个数N2。本申请可以改善电机和压缩机的高频载波噪音。
如图5和图6所示,本申请的另一实施例提出的一种电机结构100,包括定子结构102和转子结构104两个部分,其中,如图2所示,定子结构102即为上述任一实施例所提及的结构,对于定子铁芯1022而言,在将定子齿1024上绕线以在绕线槽内设置定子绕组时,可对转子结构104起到正常的磁场驱动作用,进而实现转子结构104的旋转。具体地,转子结构104与定子结构102同轴设置,主要包括转子铁芯1042以及永磁体1044两个部分,在定子结构102通电产生矢量磁场时,磁性件会在磁作用下发生转动,从而实现转子结构104的移动。
需要说明的是,定子铁芯1022的轴线与转子铁芯1042的轴线共线,定子齿1024和永磁体1044均为绕该轴线布置的,一般来说都是均匀设置。
进一步地,永磁体1044的截面形状属于对称图形,以便于加工和安装,具体地,永磁体1044包括三种形状的任意组合,可以为纯直线段,此时,在限制对称的情况下,永磁体1044的投影轮廓线应垂直于中心轴线。另一种情况下,永磁体1044可以为对称的直线段,或者可以理解为折线段,此 时投影轮廓线的可能性较多,包括但不限于V形、W形等。再一种情况下,永磁体1044为纯曲线段,此时仍需要保持对称形状,可以为单弧线,也可以为多弧线的组合形状。
当然,还可以为曲线段和直线段的组合,只要是对称结构即可。
更进一步地,定子齿1024的数量Q与永磁体的极对数p以及电机结构100的相数m之间的关系为:
Figure PCTCN2022080022-appb-000002
通过限制定子齿1024的数量不大于转子的极对数和电机相数的乘积的2倍,从而可使得整体形成分数槽电机,在分数槽电机的作用下,可有效削弱磁极磁场非正弦分布所产生的高次谐波电势,同时还可削弱齿谐波电势的幅值,改善波形。此外,由于采用分数槽形势的电机,还可有效减小磁通的脉振幅值,进而减少磁极表面的脉振损耗。
其中,进一步地,如图5所示,转子铁芯是由多个转子冲片1046轴向层叠设置而成的,转子冲片1046的材质选为硅钢片或其他软磁材料片,厚度不大于0.35mm。
进一步地,转子铁芯长度大于或等于定子铁芯1022长度。
进一步地,定子槽数Q不小于6。
进一步地,转子极对数p≥2。
进一步地,定子槽数、转子极数和电机相数满足:Q/2mp<1。
进一步地,绕组由漆包线组成。
进一步地,定子铁芯1022和转子铁芯均由硅钢片层叠而成。
如图7所示,本申请的另一实施例提出的一种压缩机结构200,包括壳体202以及设于壳体202内的电机结构100,壳体202内设有上述任一实施例中的电机结构100,故而具有上述电机结构100的有益效果,在此不再赘述。
如图8所示,本申请的另一实施例提出的一种制冷设备300,包括箱体302以及设于箱体302内的压缩机结构200,制冷设备300内设有上述实施例五的压缩机结构200,故而具有上述压缩机结构200的有益效果, 在此不再赘述。
其中,制冷设备300包括但不限于冰箱、冰柜、空调等具有制冷功能的设备。
根据本申请提供的定子结构、电机结构、压缩机结构和制冷设备,可极大的改善电机噪音,特别是对于高频载波噪音而言,有极大地降低作用。
在本申请中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种定子结构,其中,包括:
    定子铁芯,所述定子铁芯包括定子轭以及由所述定子轭沿径向向内延伸的多个定子齿;
    第一凹槽,设于所述定子轭远离所述定子铁芯的轴线的一侧侧壁;
    第二凹槽,设于所述第一凹槽内,所述第二凹槽由所述第一凹槽的槽底朝向所述定子铁芯的轴线延伸;
    其中,所述第一凹槽的深度不大于所述定子轭的厚度的一半,且所述第二凹槽的深度不大于所述定子轭的厚度的一半。
  2. 根据权利要求1所述的定子结构,其中,所述第二凹槽包括:
    第一槽和第二槽;
    其中,所述第一槽和所述第二槽沿所述定子铁芯的周向间隔设置,在所述定子铁芯的端面上,所述第一槽的投影轮廓线与所述第二槽的投影轮廓线不同。
  3. 根据权利要求2所述的定子结构,其中,所述第一槽为矩形槽,所述第二槽为弧形槽。
  4. 根据权利要求1至3中任一项所述的定子结构,其中,在所述定子铁芯的端面上,所述第一凹槽的投影轮廓线具体包括:
    槽底轮廓线和分别与所述槽底轮廓线的一端相连的槽壁轮廓线;
    其中,每个所述槽壁轮廓线的另一端延伸至所述定子轭远离所述定子铁芯的轴线的一侧侧壁上。
  5. 根据权利要求4所述的定子结构,其中,所述槽底轮廓线与任一所述槽壁轮廓线之间的夹角为钝角。
  6. 根据权利要求4所述的定子结构,其中,所述槽底轮廓线的两端分别与所述定子铁芯的轴线之间的连线所呈的夹角不大于360°/Q;
    其中,Q为所述定子齿的数量。
  7. 根据权利要求1至6中任一项所述的定子结构,其中,所述定子铁芯包括多个定子冲片,多个所述定子冲片沿所述定子铁芯的轴向层叠设置。
  8. 根据权利要求1至6中任一项所述的定子结构,其中,
    所述第一凹槽的深度不小于所述定子轭的厚度的0.2倍;
    所述第二凹槽的深度不小于所述定子轭的厚度的0.2倍。
  9. 一种电机结构,其中,包括:
    如权利要求1至8中任一项所述的定子结构;
    转子结构,与所述定子结构同轴设置,所述转子结构包括转子铁芯以及设于所述转子铁芯上的永磁体。
  10. 根据权利要求9所述的电机结构,其中,在所述转子铁芯的端面上,所述永磁体的投影轮廓线关于相邻两个所述定子齿的中心轴线对称;
    其中,所述永磁体包括以下之一或其组合:直线段、折线段、曲线段。
  11. 根据权利要求9所述的电机结构,其中,
    所述定子结构中定子齿的数量Q与所述永磁体的数量p以及所述电机结构的相数m之间的关系为:
    Figure PCTCN2022080022-appb-100001
  12. 一种压缩机结构,其中,包括:
    壳体;
    如权利要求9至11中任一项所述的电机结构,设于所述壳体内。
  13. 一种制冷设备,其中,包括:
    箱体;
    如权利要求12所述的压缩机结构,设于所述箱体内。
PCT/CN2022/080022 2021-10-14 2022-03-09 定子结构、电机结构、压缩机结构和制冷设备 WO2023060829A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024521371A JP2024535566A (ja) 2021-10-14 2022-03-09 ステータ構造、モータ構造、コンプレッサ構造、及び冷凍装置
KR1020247014406A KR20240067970A (ko) 2021-10-14 2022-03-09 스테이터 구조, 모터 구조, 압축기 구조 및 냉동 기기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111198762.3A CN113872348B (zh) 2021-10-14 2021-10-14 定子结构、电机结构、压缩机结构和制冷设备
CN202111198762.3 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023060829A1 true WO2023060829A1 (zh) 2023-04-20

Family

ID=78999353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080022 WO2023060829A1 (zh) 2021-10-14 2022-03-09 定子结构、电机结构、压缩机结构和制冷设备

Country Status (4)

Country Link
JP (1) JP2024535566A (zh)
KR (1) KR20240067970A (zh)
CN (1) CN113872348B (zh)
WO (1) WO2023060829A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872349B (zh) * 2021-10-14 2023-01-31 广东美芝制冷设备有限公司 定子结构、电机结构、压缩机结构和制冷设备
CN113872348B (zh) * 2021-10-14 2023-11-17 广东美芝制冷设备有限公司 定子结构、电机结构、压缩机结构和制冷设备
WO2024016217A1 (zh) * 2022-07-20 2024-01-25 华为技术有限公司 定子、定子组件和旋转变压器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010011851A1 (en) * 1998-11-20 2001-08-09 Group Art Unit 2834 Stator of AC generator for use in vehicle and method of manufacturing the same
CN1508938A (zh) * 2002-12-19 2004-06-30 松下电器产业株式会社 电机
CN205846909U (zh) * 2016-06-30 2016-12-28 广东美芝制冷设备有限公司 用于永磁电机的定子、永磁电机和压缩机
CN109923757A (zh) * 2016-11-28 2019-06-21 日立江森自控空调有限公司 永久磁铁式旋转电机及使用永久磁铁式旋转电机的压缩机
CN211530869U (zh) * 2020-01-30 2020-09-18 Lg电子株式会社 电动机及具备其的压缩机
CN111697729A (zh) * 2020-07-16 2020-09-22 珠海格力节能环保制冷技术研究中心有限公司 电机、压缩机及制冷设备
CN112701813A (zh) * 2020-12-24 2021-04-23 珠海格力电器股份有限公司 定子和永磁电机
CN113872350A (zh) * 2021-10-14 2021-12-31 广东美芝制冷设备有限公司 定子结构、电机结构、压缩机结构和制冷设备
CN113872348A (zh) * 2021-10-14 2021-12-31 广东美芝制冷设备有限公司 定子结构、电机结构、压缩机结构和制冷设备
CN113872349A (zh) * 2021-10-14 2021-12-31 广东美芝制冷设备有限公司 定子结构、电机结构、压缩机结构和制冷设备
CN113872351A (zh) * 2021-10-14 2021-12-31 广东美芝制冷设备有限公司 定子结构、电机结构、压缩机结构和制冷设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204156622U (zh) * 2014-11-14 2015-02-11 广东美芝制冷设备有限公司 定子冲片、电机和压缩机
CN107482805B (zh) * 2017-07-31 2019-07-30 广东威灵电机制造有限公司 电机定子铁芯和压缩机
CN110504767A (zh) * 2018-05-16 2019-11-26 上海海立电器有限公司 一种定子铁芯及电机
CN109672312A (zh) * 2019-01-30 2019-04-23 浙江博阳压缩机有限公司 永磁同步电机
CN214314758U (zh) * 2021-01-27 2021-09-28 安徽威灵汽车部件有限公司 定子铁芯、定子、电机、电动助力转向系统和车辆

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010011851A1 (en) * 1998-11-20 2001-08-09 Group Art Unit 2834 Stator of AC generator for use in vehicle and method of manufacturing the same
CN1508938A (zh) * 2002-12-19 2004-06-30 松下电器产业株式会社 电机
CN205846909U (zh) * 2016-06-30 2016-12-28 广东美芝制冷设备有限公司 用于永磁电机的定子、永磁电机和压缩机
CN109923757A (zh) * 2016-11-28 2019-06-21 日立江森自控空调有限公司 永久磁铁式旋转电机及使用永久磁铁式旋转电机的压缩机
CN211530869U (zh) * 2020-01-30 2020-09-18 Lg电子株式会社 电动机及具备其的压缩机
CN111697729A (zh) * 2020-07-16 2020-09-22 珠海格力节能环保制冷技术研究中心有限公司 电机、压缩机及制冷设备
CN112701813A (zh) * 2020-12-24 2021-04-23 珠海格力电器股份有限公司 定子和永磁电机
CN113872350A (zh) * 2021-10-14 2021-12-31 广东美芝制冷设备有限公司 定子结构、电机结构、压缩机结构和制冷设备
CN113872348A (zh) * 2021-10-14 2021-12-31 广东美芝制冷设备有限公司 定子结构、电机结构、压缩机结构和制冷设备
CN113872349A (zh) * 2021-10-14 2021-12-31 广东美芝制冷设备有限公司 定子结构、电机结构、压缩机结构和制冷设备
CN113872351A (zh) * 2021-10-14 2021-12-31 广东美芝制冷设备有限公司 定子结构、电机结构、压缩机结构和制冷设备

Also Published As

Publication number Publication date
KR20240067970A (ko) 2024-05-17
CN113872348A (zh) 2021-12-31
CN113872348B (zh) 2023-11-17
JP2024535566A (ja) 2024-09-30

Similar Documents

Publication Publication Date Title
WO2023060829A1 (zh) 定子结构、电机结构、压缩机结构和制冷设备
WO2023060830A1 (zh) 定子结构、电机结构、压缩机结构和制冷设备
CN113872350B (zh) 定子结构、电机结构、压缩机结构和制冷设备
CN113872351B (zh) 定子结构、电机结构、压缩机结构和制冷设备
WO2022110303A1 (zh) 定子冲片、定子铁芯、电机、压缩机和制冷设备
CN210246575U (zh) 电机、压缩机及制冷设备
WO2019184392A1 (zh) 电机、压缩机及制冷设备
CN110932422B (zh) 电机、压缩机及制冷设备
US9748807B2 (en) Motor
JP2019115157A (ja) 電動機用ステータ、電動機、及び回転圧縮機
CN216216113U (zh) 电机结构、压缩机结构和制冷设备
WO2023045264A1 (zh) 转子结构、电机结构和电子装置
CN112583143B (zh) 定子铁芯、定子、永磁同步电机、压缩机和制冷设备
CN213602456U (zh) 定子冲片、定子铁芯、永磁同步电机、压缩机和制冷设备
JP2008067456A (ja) コア、分割ステータおよびステータ
CN113872352B (zh) 电机结构、压缩机结构和制冷设备
JP6223568B2 (ja) 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
US20190044400A1 (en) Rotor, interior permanent magnet motor, and compressor
US20220085708A1 (en) Motor, compressor, and refrigeration device
WO2019175927A1 (ja) 電動機、圧縮機、送風機、及び冷凍空調装置
CN221042431U (zh) 转子冲片、电机、压缩机和制冷设备
CN221783935U (zh) 转子冲片、转子、电机、压缩机、及制冷设备
CN221614702U (zh) 一种定子组件、永磁同步电机及压缩机
WO2022110305A1 (zh) 定子铁芯、定子、永磁同步电机、压缩机和制冷设备
WO2021035877A1 (zh) 转子、电机、压缩机及制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024521371

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247014406

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22879780

Country of ref document: EP

Kind code of ref document: A1