WO2023060789A1 - 混合动力系统、控制方法和车辆 - Google Patents

混合动力系统、控制方法和车辆 Download PDF

Info

Publication number
WO2023060789A1
WO2023060789A1 PCT/CN2022/070368 CN2022070368W WO2023060789A1 WO 2023060789 A1 WO2023060789 A1 WO 2023060789A1 CN 2022070368 W CN2022070368 W CN 2022070368W WO 2023060789 A1 WO2023060789 A1 WO 2023060789A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
transmission
motor
rotating shaft
engine
Prior art date
Application number
PCT/CN2022/070368
Other languages
English (en)
French (fr)
Inventor
叶远龙
张恒先
周之光
Original Assignee
奇瑞汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇瑞汽车股份有限公司 filed Critical 奇瑞汽车股份有限公司
Publication of WO2023060789A1 publication Critical patent/WO2023060789A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present application relates to the technical field of automobiles, in particular to a hybrid power system, a control method and a vehicle.
  • the related art provides a hybrid power system, including an engine, a motor, a speed change mechanism and a clutch, wherein the speed change mechanism has an input shaft and an output shaft connected through multiple sets of gear trains, and the output shaft of the engine and the output shaft of the motor are connected to the The input shaft is connected to the drive, and the output shaft is connected to the wheel, so that the engine and the motor can drive the vehicle in different gears.
  • the clutch is arranged between the output shaft and the input shaft of the engine, and is used to cut off or conduct the power transmission path between the engine and the speed change mechanism.
  • the axial dimension of the hybrid power system will be increased, and the hybrid power system will occupy more interior space of the vehicle, which is not conducive to the realization of lightweight design.
  • Embodiments of the present application provide a hybrid power system, a control method, and a vehicle.
  • the first aspect provides a hybrid power system, which includes: an engine, a first motor, a clutch and a continuously variable transmission device; the output shaft of the first motor is a hollow shaft; the clutch is inserted coaxially In the hollow shaft, the clutch includes a flywheel, a driven disc and a connecting shaft, the flywheel is circumferentially movably sleeved outside the connecting shaft, and the outer peripheral wall of the flywheel is connected with the inner wall of the hollow shaft , the driven plate is axially movably sleeved outside the connecting shaft and fixed circumferentially with the connecting shaft, there is a gap between the outer peripheral wall of the driven plate and the inner wall of the hollow shaft, and the driven plate
  • the moving plate is configured to be controllable to move axially along the connecting shaft to be connected to or separated from the flywheel, and the connecting shaft is drivingly connected to the output shaft of the engine;
  • the continuously variable transmission device includes a transmission A first rotating shaft and a second rotating shaft are connected, the first rotating shaft is
  • a first resistance-increasing structure is provided on the side of the flywheel opposite to the driven disc
  • a second resistance-increasing structure is provided on the side of the driven disc opposite to the flywheel.
  • both the first resistance increasing structure and the second resistance increasing structure are friction plates; or, the first resistance increasing structure includes a groove on the side of the flywheel, and the second resistance increasing structure
  • the structure includes a protrusion on the side of the driven plate, and the groove matches the protrusion.
  • the continuously variable transmission device is located between the engine and the first motor, the first rotating shaft is a hollow shaft, and the first rotating shaft is coaxially connected with the hollow shaft;
  • the hybrid The system also includes a transmission shaft, the transmission shaft is movably inserted in the first rotating shaft, the first end of the transmission shaft protrudes from the first rotating shaft and is coaxially connected with the connecting shaft, the transmission shaft The second end protrudes from the first rotating shaft and is coaxially connected with the output shaft of the engine.
  • the hybrid power system further includes a second electric motor, the output shaft of the second electric motor is in driving connection with the output shaft of the engine.
  • the continuously variable transmission further includes: a first transmission wheel, a second transmission wheel, a transmission belt, and an adjustment member; the first transmission wheel is coaxially sleeved outside the first rotating shaft, and the second transmission The wheels are coaxially set outside the second rotating shaft, and the transmission belt is simultaneously set outside the first transmission wheel and the second transmission wheel; the adjustment parts are respectively connected with the first transmission wheel and the second transmission wheel The transmission wheels are connected, and the adjustment member is used to adjust the transmission ratio between the first transmission wheel and the second transmission wheel.
  • the first transmission wheel includes: a fixed ring, a movable ring, a limit ring and a sliding cylinder;
  • the fixed ring is fixedly sleeved outside the first rotating shaft, and the movable ring can The axial sliding is sleeved outside the first rotating shaft;
  • the limiting ring is fixedly sleeved outside the first rotating shaft, and the movable ring is located between the fixed ring and the limiting ring;
  • the sliding The cylinder is located on the end surface of the movable ring opposite to the limit ring, one end of the sliding cylinder is coaxially connected with the movable ring, the sliding cylinder is coaxially sleeved outside the limit ring, and the sliding cylinder
  • the inner wall of the inner wall is slidingly sealed with the outer wall of the limiting ring, and the sliding cylinder, the movable ring, the limiting ring and the first rotating shaft form an annular gap, and the first rotating shaft is provided with
  • a control method for a hybrid power system which is applicable to the hybrid power system as described above, and the control method includes: determining a power mode; controlling the engine, the first power mode according to the power mode The working state of the electric motor and the second electric motor, and the state of the clutch.
  • the control method when the power mode is a pure electric mode, includes: controlling the engine, the second motor does not work, controlling the clutch to disengage, and controlling the first motor to work; the power When the mode is a pure engine mode, the control method includes: controlling the engine to work, controlling the first motor and the second motor to not work, and controlling the clutch to engage; when the power mode is a hybrid drive mode, the The control method includes: controlling the operation of the engine, the first electric motor and the second electric motor, and controlling the engagement of the clutch.
  • control method includes: controlling the engine and the second motor to not work, controlling the first motor to generate electricity, and controlling the clutch to disengage.
  • a vehicle in a third aspect, includes the hybrid power system as described above.
  • the hybrid power system includes an engine, a first motor, a clutch and a continuously variable transmission device, wherein the continuously variable transmission device has a first rotating shaft and a second rotating shaft connected by transmission, and the output of the first rotating shaft and the first motor The shaft is connected by transmission, and the second rotating shaft is connected with the wheel by transmission, so that the first motor can transmit power to the wheel through the continuously variable transmission device to drive the vehicle.
  • the output shaft of the first motor is a hollow shaft
  • the clutch is coaxially inserted in the hollow shaft
  • the outer peripheral wall of the flywheel of the clutch is connected with the inner wall of the hollow shaft
  • the driven disc of the clutch is sleeved outside the connecting shaft.
  • the driven disk can move axially on the connecting shaft, and when the driven disk moves to fit the flywheel, the flywheel and the driven disk are connected so that the flywheel and the driven disk can rotate together to transmit power. Since the connecting shaft is connected with the output shaft of the engine, the engine can be connected with the continuously variable transmission through the clutch, and the power is transmitted to the wheels through the continuously variable transmission to drive the car.
  • the clutch Since the clutch is directly arranged inside the first motor, and the flywheel is connected to the inner wall of the output shaft of the first motor, the clutch and the output shaft of the first motor form an integral structure, which does not need to be reserved in other positions on the hybrid system.
  • the space used to install the clutch can reduce the axial size of the hybrid system and reduce the interior space occupied by the hybrid system to achieve lightweight design.
  • Fig. 1 is a schematic structural diagram of a hybrid power system provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of the assembly of a clutch and a first motor provided by an embodiment of the present application
  • Fig. 3 is a schematic structural diagram of a clutch provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a continuously variable transmission device provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a continuously variable transmission device provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of energy transfer of a hybrid system provided in an embodiment of the present application in pure electric mode
  • Fig. 7 is a schematic diagram of energy transfer of a hybrid system provided in an embodiment of the present application in pure engine mode
  • Fig. 8 is a schematic diagram of energy transfer of a hybrid system in a hybrid mode provided by an embodiment of the present application.
  • Fig. 9 is a schematic diagram of energy transfer of a hybrid system in a hybrid mode provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of energy transfer of a hybrid power system provided in an embodiment of the present application in an energy recovery mode.
  • Words such as “connected” or “connected” are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. “Up”, “Down”, “Left”, “Right”, “Top”, “Bottom” and so on are only used to indicate the relative positional relationship. When the absolute position of the described object changes, the relative positional relationship may also be Change accordingly.
  • Fig. 1 is a schematic structural diagram of a hybrid power system provided by an embodiment of the present application.
  • the hybrid power system includes: an engine 10 , a first motor 11 , a clutch 2 and a continuously variable transmission device 3 .
  • the output shaft of the first motor 11 is a hollow shaft 110, and the clutch 2 is coaxially inserted in the hollow shaft 110.
  • the clutch 2 includes a flywheel 21, a driven disc 22 and a connecting shaft 23, and the flywheel 21 moves circumferentially.
  • the ground is sleeved outside the connecting shaft 23, and the outer peripheral wall of the flywheel 21 is connected with the inner wall of the hollow shaft 110.
  • the driven disc 22 is axially movably sleeved outside the connecting shaft 23 and is circumferentially fixed with the connecting shaft 23.
  • the driven disc 22 There is a gap between the outer peripheral wall and the inner wall of the hollow shaft 110.
  • the driven disc 22 is configured to move axially along the connecting shaft 23 in a controllable manner so as to be connected or separated from the flywheel 21.
  • the connecting shaft 23 is connected to the output shaft of the engine 10. Drive connection.
  • the continuously variable transmission device 3 includes a first rotating shaft 31 and a second rotating shaft 32 in transmission connection, the first rotating shaft 31 is in transmission connection with the hollow shaft 110 , and the second rotation shaft 32 is in transmission connection with the wheels 62 .
  • the hybrid power system provided by the embodiment of the present application includes an engine 10, a first motor 11, a clutch 2 and a continuously variable transmission device 3, wherein the continuously variable transmission device 3 has a first rotating shaft 31 and a second rotating shaft 32 connected by transmission, and the first The rotating shaft 31 is in drive connection with the output shaft of the first motor 11, and the second rotating shaft 32 is in drive connection with the wheels 62, so that the first motor 11 can transmit power to the wheels 62 through the continuously variable transmission device 3 to drive the vehicle.
  • the output shaft of the first motor 11 is a hollow shaft 110
  • the clutch 2 is coaxially inserted in the hollow shaft 110
  • the outer peripheral wall of the flywheel 21 of the clutch 2 is connected with the inner wall of the hollow shaft 110
  • the driven of the clutch 2 The disc 22 is sleeved outside the connecting shaft 23, and the driven disc 22 can move axially on the connecting shaft 23, and when the driven disc 22 moves to fit with the flywheel 21, the flywheel 21 and the driven disc 22 are connected so that The flywheel 21 and the driven disc 22 can rotate together to transmit power. Since the connecting shaft 23 is in transmission connection with the output shaft of the engine 10, the engine 10 can be connected with the continuously variable transmission 3 through the clutch 2, and the power is transmitted to the wheels 62 through the continuously variable transmission 3 to drive the vehicle.
  • the clutch 2 is directly arranged in the inside of the first motor 11, and the flywheel 21 of the clutch 2 is connected with the inner wall of the output shaft of the first motor 11, the output shaft of the clutch 2 and the first motor 11 is formed into an integral structure like this.
  • a space for installing the clutch 2 is reserved at other positions on the hybrid system, thereby reducing the axial size of the hybrid system and reducing the interior space of the vehicle occupied by the hybrid system to achieve a lightweight design.
  • Fig. 2 is a schematic diagram of the assembly of a clutch and a first motor provided by the embodiment of the present application.
  • a first resistance-increasing structure 210 is provided on the opposite side of the flywheel 21 to the driven disc 22
  • a second resistance-increasing structure 220 is provided on the opposite side of the driven disc 22 to the flywheel 21.
  • the first resistance increasing structure 210 and the second resistance increasing structure 220 cooperate with each other to connect the flywheel 21 and the driven disc 22 .
  • the first resistance increasing structure 210 can increase the roughness of the side surface of the flywheel 21
  • the second resistance increasing structure 220 can increase the roughness of the side surface of the driven disc 22 .
  • the driven disc 22 moves to be attached to the driven disc 22 under control, because the roughness of the sides of the flywheel 21 and the driven disc 22 is increased by the resistance-increasing structure, thereby increasing the size of the flywheel 21 and the driven disc 22. 22, so that the flywheel 21 and the driven disk 22 are connected, that is, when one of the flywheel 21 and the driven disk 22 rotates, the other of the flywheel 21 and the driven disk 22 will also follow the rotation to transmit power.
  • both the first resistance increasing structure 210 and the second resistance increasing structure 220 are friction plates. Friction sheets are attached to the sides of the flywheel 21 and the driven disc 22 to increase the roughness of the sides of the flywheel 21 and the driven disc 22 .
  • both the first resistance increasing structure 210 and the second resistance increasing structure 220 may have multiple friction plates.
  • the friction plates can be evenly distributed on the side of the flywheel 21 in the circumferential direction, so that the friction plates can be more evenly arranged on the side of the flywheel 21, which can effectively improve the friction between the flywheel 21 and the driven disk 22. connection reliability.
  • FIG. 3 is a schematic structural diagram of a clutch provided in an embodiment of the present application.
  • the first resistance increasing structure 210 includes a groove on the side of the flywheel 21
  • the second resistance increasing structure 220 includes a protrusion on the side of the driven disc 22
  • the groove matches the protrusion.
  • the driven disc 22 moves toward the flywheel 21 on the connecting shaft 23, so that the protrusion on the driven disc 22 is against the side of the flywheel 21.
  • the output power of the engine can be controlled to drive the connecting shaft 23 to drive the driven disc 22 to rotate, so that when the protrusion of the driven disc 22 rotates to be opposite to the groove, the protrusion will sink into the groove, thereby turning the The driven disc 22 and the flywheel 21 are connected together to transmit power.
  • the driven disc 22 is now controlled to move away from the flywheel 21 on the connecting shaft 23, so that the protrusion on the driven disc 22 is disengaged from the groove of the flywheel 21, thereby the driven disc 22 Separate from flywheel 21 to interrupt power transmission.
  • the first resistance-increasing structure may be a protrusion
  • the second resistance-increasing structure may be a groove, which is not limited in this embodiment of the present application.
  • the continuously variable transmission device 3 is located between the engine 10 and the first motor 11 , the first rotating shaft 31 is a hollow shaft, and the first rotating shaft 31 is coaxially connected with the hollow shaft 110 .
  • the hybrid power system also includes a transmission shaft 4, which is movably inserted in the first rotating shaft 31, and the first end of the transmission shaft 4 protrudes from the first rotating shaft 31 and is coaxially connected with the connecting shaft 23.
  • the second end of the transmission shaft 4 protrudes from the second rotating shaft 32 and is coaxially connected with the output shaft of the engine 10 .
  • the first rotating shaft 31 of the continuously variable transmission device 3 is set as a hollow shaft
  • the transmission shaft 4 is inserted in the first rotating shaft 31 and the two ends of the transmission shaft 4 pass through the first rotating shaft 31 respectively, and the two ends of the transmission shaft 4 are respectively It is coaxially connected with the driven disc 22 of the engine 10 and the clutch 2, so as to realize the purpose of transmitting the power of the engine 10 to the clutch 2, and then the power of the engine 10 can be transmitted to the continuously variable transmission device 3 through the clutch 2, so that the The power is transmitted to the wheels 62 to drive the vehicle.
  • the assembly method in which the continuously variable transmission device 3 is set outside the transmission shaft 4 avoids setting the continuously variable transmission device 3 and the engine 10 on the opposite side of the first motor 11, and can reduce the shaft of the hybrid power system.
  • the size of the engine 10, the continuously variable transmission device 3 and the first electric motor 11 are distributed more compactly, reducing the interior space of the vehicle occupied by the hybrid power system.
  • the hybrid power system further includes a second electric motor 12 , the output shaft of the second electric motor 12 is in drive connection with the output shaft of the engine 10 .
  • the second motor 12 is the same as the engine 10, and is connected to the connecting shaft 23, so that the power can be transmitted to the continuously variable transmission device 3, and the power can be transmitted to the wheels 62 to drive the vehicle.
  • this assembly method enables the second electric motor 12 to share the clutch 2 with the engine 10 , thereby avoiding the need to separately configure the clutch 2 for the second electric motor 12 , and reducing the overall size of the hybrid power system without saving costs.
  • the second motor 12 may be connected to the output shaft of the engine 10 through a gear train, wherein the input gear of the gear train is coaxially connected with the output shaft of the second motor 12, and the output gear of the gear train is connected to the output shaft of the engine 10.
  • the output shaft is connected coaxially.
  • the gear train includes at least an input gear and an output gear, and the input gear and the output gear can be directly meshed to realize the transmission connection of the input gear and the output gear.
  • At least one connecting gear may also be provided between the input gear and the output gear. For example, when only one connecting gear is provided, the connecting gear meshes with the input gear and the output gear respectively to realize the transmission connection of the input gear and the output gear.
  • the specific number of gears in the gear train can be determined according to actual needs. Since the number of gears in the gear train will affect the transmission ratio of the gear train, the number of gears in the gear train can be adjusted in combination with the power demand of the vehicle.
  • the power system further includes: a transmission gear and a differential 61, the transmission gear is coaxially connected with the second rotating shaft 32, the input gear of the differential 61 meshes with the transmission gear, and the differential 61
  • the output shaft of the output shaft is connected with the wheel 62 transmissions.
  • the input gear of the differential 61 meshes with the transmission gear installed on the second shaft 32 , so as to receive the power transmitted from the second shaft 32 to achieve the purpose of driving the wheels 62 to rotate.
  • the differential 61 enables the wheels 62 connected to the output shaft of the differential 61 to rotate at different rotational speeds.
  • the turning radius of the inner wheel 62 of the automobile is different from that of the outer wheel 62 of the automobile, and the turning radius of the outer wheel 62 will be greater than the turning radius of the inner wheel 62.
  • the differential 61 can be used to make the two wheels 62 roll at different rotational speeds, thereby realizing the difference in the rotational speeds of the two wheels 62 .
  • the power supply assembly 5 includes: a battery 51 and two inverters 52, the two inverters 52 are respectively connected to the battery 51, and the first motor 11 and the two inverters 52 One connection, the second electric machine 12 is connected to the other of the two inverters 52 .
  • the battery 51 is a rechargeable battery 51
  • the inverter 52 is arranged on the output circuit of the battery 51 , and is used to convert the direct current output by the battery 51 into three-phase alternating current to drive the first motor 11 or the second motor 12 .
  • Fig. 4 is a schematic structural diagram of a continuously variable transmission device provided by an embodiment of the present application.
  • the continuously variable transmission device 3 also includes: a first transmission wheel 33, a second transmission wheel 34, a transmission belt 35 and an adjustment member 36, the first transmission wheel 33 is coaxially sleeved outside the first rotating shaft 31, and the second The transmission wheel 34 is coaxially sleeved on the outside of the second rotating shaft 32 , and the transmission belt 35 is sleeved on the outside of the first transmission wheel 33 and the second transmission wheel 34 at the same time.
  • the adjustment member 36 is respectively connected with the first transmission wheel 33 and the second transmission wheel 34 , and the adjustment member 36 is used for adjusting the transmission ratio between the first transmission wheel 33 and the second transmission wheel 34 .
  • the first transmission wheel 33 and the second transmission wheel 34 are respectively installed outside the first rotating shaft 31 and the second rotating shaft 32, and the transmission belt 35 is used to cover the first transmission wheel 33 and the second transmission wheel 34, So that the first transmission wheel 33 , the second transmission wheel 34 and the transmission belt 35 form a transmission form of belt transmission. Therefore, the power on the first rotating shaft 31 can be transmitted to the second rotating shaft 32 through the transmission belt 35 to drive the vehicle.
  • the continuously variable transmission device 3 is also provided with an adjustment member 36, which can adjust the transmission ratio between the first transmission wheel 33 and the second transmission wheel 34, so as to realize stepless speed regulation, so that the engine 10 and the first motor 11 A variety of different gears can be used to drive the car. Compared with using a synchronizer to shift gears, using the continuously variable transmission device 3 can realize more different gear modes without taking up too much space, and the gear shifting process of the continuously variable transmission device 3 is smoother and less impactful, which is convenient drive.
  • the first transmission wheel 33 includes: a fixed ring 301 and a movable ring 302 , the fixed ring 301 is fixedly fitted outside the first rotating shaft 31 , and the movable ring 302 can slide along the axial direction of the first rotating shaft 31
  • the ground is sleeved outside the first rotating shaft 31.
  • the end face opposite to the movable ring 302 on the fixed ring 301 is a first conical surface 303
  • the end face opposite to the fixed ring 301 of the movable ring 302 is a second conical surface 304. From the inside of the fixed ring 301 In the direction from the edge to the outer edge of the fixing ring 301 , the distance between the first conical surface 303 and the second conical surface 304 gradually increases, and the transmission belt 35 is a rigid member.
  • the adjusting member 36 is connected with the movable ring 302 , and the adjusting member 36 is configured to control the axial movement of the movable ring 302 on the first rotating shaft 31 and lock the movable ring 302 on the first rotating shaft 31 .
  • the structure of the second transmission wheel 34 is the same as that of the first transmission wheel 33 .
  • both the fixed ring 301 and the movable ring 302 of the second transmission wheel 34 are fitted outside the second shaft 32 , and the adjustment member 36 of the second transmission wheel 34 is used to adjust the second transmission wheel 34
  • the movable ring 302 moves axially on the second rotating shaft 32 .
  • this continuously variable transmission device 3 works, by adjusting the position of the movable ring 302 of the first transmission wheel 33 on the first rotating shaft 31 and the position of the movable ring 302 of the second transmission wheel 34 on the second rotating shaft 32, the change can be realized.
  • the transmission ratio of the continuously variable transmission device 3 is used to accelerate or decelerate the driving vehicle.
  • the movable ring 302 of the first transmission wheel 33 can be controlled to gradually approach the fixed ring 301 through the adjusting member, so that the distance between the movable ring 302 and the fixed ring 301 is gradually reduced, because the movable ring 302 and the fixed ring 301
  • the end faces of the fixed ring 301 close to each other are all conical surfaces, therefore, the first conical surface 303 and the second conical surface 304 will squeeze the rigid transmission belt 35, so that the rigid transmission belt 35 moves away from the central axis of the fixed ring 301 .
  • the winding radius of the transmission belt 35 sleeved on the first transmission wheel 33 becomes larger, see R1 in FIG. 4 to FIG. 5 .
  • the adjusting member can control the movable ring 302 of the second transmission wheel 34 to gradually move away from the fixed ring 301 through the adjusting member, so that the distance between the movable ring 302 and the fixed ring 301 increases gradually, because the movable ring 302 and the fixed ring 301
  • the end faces close to each other are all conical surfaces, therefore, the first conical surface 303 and the second conical surface 304 no longer squeeze the transmission belt 35, so that the transmission belt 35 moves towards the direction close to the central axis of the fixed ring 301, so as to rest on the on two conical faces.
  • the winding radius of the transmission belt 35 sleeved on the second transmission wheel 34 becomes smaller, see R2 in FIG. 2 to FIG. 3 .
  • the deceleration process is similar to the acceleration process, and will not be described in detail in this embodiment of the present application.
  • the movable ring 302 on the first transmission wheel 33 and the movable ring 302 on the second transmission wheel 34 are respectively located on two sides of the transmission belt 35 .
  • the fixed rings 301 are clamped respectively on both sides of the transmission belt 35, and the transmission belt 35 is limited by the fixed rings 301, so as to prevent the position of the transmission belt 35 from shifting after multiple speed changes of the transmission belt 35, so as to ensure that the continuously variable transmission device 3 connection reliability.
  • the first transmission wheel 33 also includes a limit ring 305 , the limit ring 305 is fixedly sleeved outside the first rotating shaft 31 , and the movable ring 302 is located between the fixed ring 301 and the limit ring 305 between.
  • the end surface of the movable ring 302 opposite to the limit ring 305 is provided with a sliding cylinder 306, one end of the sliding cylinder 306 is coaxially connected with the movable ring 302, and the sliding cylinder 306 is coaxially sleeved outside the limit ring 305 , the inner wall of the sliding cylinder 306 is slidably sealed with the outer wall of the limiting ring 305 .
  • the sliding cylinder 306, the movable ring 302, the limit ring 305 and the first rotating shaft 31 encircle an annular gap 307, and the first rotating shaft 31 is provided with a hydraulic oil passage 308 communicating with the annular gap 307.
  • the piece 36 is used to inject hydraulic oil into the hydraulic oil passage 308 .
  • the adjustment member 36 may be a hydraulic delivery mechanism, for example, the adjustment member 36 may be a hydraulic pump.
  • the oil outlet of the hydraulic pump communicates with the hydraulic oil passage 308, so that hydraulic oil can be injected into the annular gap 307 through the hydraulic oil passage 308. After the hydraulic oil enters the annular gap 307, the movable ring 302 can be pushed to move axially.
  • hydraulic oil can be injected into the annular gap 307 of the first transmission wheel 33 and the annular gap 307 of the second transmission wheel 34 at the same time.
  • the pressure is higher than the oil pressure of the hydraulic oil injected into the annular gap 307 of the second transmission wheel 34 .
  • the movable ring 302 of the first transmission wheel 33 will squeeze the transmission belt 35 and move up under the promotion of the high-pressure oil.
  • the transmission belt 35 on the second transmission wheel 34 also moves up, thereby reducing the transmission ratio and realizing the purpose of accelerated driving.
  • a sealing ring may be provided between the sliding cylinder 306 and the limiting ring 305 to improve the sealing between the sliding cylinder 306 and the limiting ring 305 to avoid leakage of hydraulic oil.
  • the outer peripheral wall of the limiting ring 305 can be provided with an annular groove, and a sealing ring is hooped in the annular groove, so that when the sliding cylinder 306 moves axially, the inner wall of the sliding cylinder 306 is always in contact with the sealing ring, thereby ensuring that the sliding cylinder 306 is in contact with the limiting ring. Sealing between bit rings 305.
  • the embodiment of the present application provides a control method for a hybrid power system, which is suitable for the above-mentioned hybrid power system.
  • the control method includes: determining the speed change mode, the speed change mode includes an acceleration mode and a deceleration mode; controlling the adjustment member 36 according to the speed change mode Hydraulic oil is injected into the annular gap 307 of the first transmission wheel 33 and the annular gap 307 of the second transmission wheel 34 .
  • the control adjustment member 36 injects the first hydraulic oil into the annular gap 307 of the first transmission wheel 33, and the control adjustment member 36 injects the first hydraulic oil into the annular gap 307 of the second transmission wheel 34.
  • Two hydraulic oils the oil pressure of the first hydraulic oil is greater than the oil pressure of the second hydraulic oil.
  • the movable ring 302 of the first transmission wheel 33 will gradually approach the fixed ring 301, and the conical surface of the movable ring 302 and the fixed ring 301 Under the action, the rigid transmission belt 35 will move away from the central axis of the fixing ring 301 .
  • the winding radius of the transmission belt 35 sleeved on the first transmission wheel 33 becomes larger, see R1 in FIG. 2 to FIG. 3 .
  • the control adjustment member 36 injects the third hydraulic oil into the annular gap 307 of the first transmission wheel 33, and the control adjustment member 36 injects the third hydraulic oil into the annular gap 307 of the second transmission wheel 34.
  • the oil pressure of the third hydraulic oil is lower than the oil pressure of the fourth hydraulic oil.
  • the movable ring 302 of the first transmission wheel 33 will gradually approach the fixed ring 301, and the conical surface of the movable ring 302 and the fixed ring 301 Under the action, the rigid transmission belt 35 will move away from the central axis of the fixing ring 301 . At this time, the winding radius of the transmission belt 35 sleeved on the second transmission wheel 34 becomes larger.
  • the transmission belt 35 will be pulled. Since the end face of the transmission belt 35 clamped by the movable ring 302 and the fixed ring 301 is a conical surface, the transmission belt 35 will exert pressure on the conical surface, so that the movable ring 302 of the first transmission wheel 33 will gradually move away from the fixed ring. 301. During the process, the winding radius of the transmission belt 35 sleeved on the first transmission wheel 33 becomes smaller.
  • the embodiment of the present application provides a control method for a hybrid power system, which is suitable for the above-mentioned hybrid power system.
  • the control method includes: determining the power mode; controlling the engine 10, the first motor 11 and the second motor 12 according to the power mode The working status of the clutch 2 and the status of the clutch 2.
  • the power mode includes a pure electric mode, a pure engine mode, a hybrid driving mode or an energy recovery mode.
  • Fig. 6 is a schematic diagram of energy transfer of a hybrid power system provided in an embodiment of the present application in pure electric mode.
  • the control method includes: controlling the engine 10 and the second motor 12 not to work, controlling the clutch 2 to be in a disengaged state, and controlling the first motor 11 to work.
  • the vehicle is driven by the first motor 11 to run.
  • the power supply assembly 5 is discharged, and the inverter 52 converts the DC power into a three-phase AC power to drive the output shaft of the first motor 11 to rotate, and the first motor 11 converts electrical energy into mechanical energy, and the mechanical energy passes through the first rotating shaft 31,
  • the second rotating shaft 32 and the differential gear 61 are transmitted to the wheels 62 to realize the driving mode of the vehicle driven solely by the first motor 11 .
  • the vehicle may also be driven by the first electric motor 11 to run in reverse gear.
  • the engine 10 and the second motor 12 do not work, and the first motor 11 reverses to realize reversing.
  • the energy transfer path can be seen in Figure 6.
  • Fig. 7 is a schematic diagram of energy transfer of a hybrid power system provided in an embodiment of the present application in pure engine mode. As shown in FIG. 7 , when the power mode of the hybrid system is switched to the pure engine 10 mode, the control method includes: controlling the first motor 11 and the second motor 12 to not work, controlling the clutch 2 to be in the engaged state, and controlling the engine 10 to work.
  • the vehicle is driven by the engine 10 to run.
  • the power of the engine 10 is transmitted to the continuously variable transmission device 3 through the clutch 2, and then transmitted to the wheels 62 through the first rotating shaft 31, the second rotating shaft 32 and the differential 61 of the continuously variable transmission device 3, so as to realize the driving mode of the vehicle driven solely by the engine 10 .
  • Fig. 8 is a schematic diagram of energy transfer of a hybrid system provided in an embodiment of the present application in a hybrid mode.
  • the control method includes: controlling the engine 10 to drive the second motor 12 to generate electricity, controlling the clutch 2 to be in a disengaged state, and controlling the first motor 11 to work.
  • the engine 10 runs in the high-efficiency zone to drive the second motor 12 to generate electricity, and the generated electric energy is supplied to the first electric motor 11 to drive the vehicle, and the excess electric energy is stored in the power supply assembly 5 .
  • the power generation is insufficient, it is supplemented by the power supply component 5 , and the second motor 12 and the power supply component 5 jointly meet the power demand of the first motor 11 .
  • the power output by the first motor 11 is transmitted to the wheels 62 through the first rotating shaft 31 , the second rotating shaft 32 and the differential 61 of the continuously variable transmission device 3 to drive the vehicle.
  • Fig. 9 is a schematic diagram of energy transfer of a hybrid power system provided in an embodiment of the present application in a hybrid power mode.
  • the control method includes: controlling the engine 10 , the first motor 11 and the second motor 12 to work, and controlling the clutch 2 to be in the engaged state.
  • the vehicle is jointly driven by the engine 10 , the first motor 11 and the second motor 12 .
  • the power supply assembly 5 is discharged, and the inverter 52 converts the DC power into a three-phase AC power to drive the output shafts of the first motor 11 and the second motor 12 to rotate, and the second motor 12 is in the power generation or electric state according to the vehicle speed and torque demand.
  • the power of the engine 10 and the second motor 12 is transmitted to the first rotating shaft 31 of the continuously variable transmission device 3 through the clutch 2, the second rotating shaft 32 and the differential 61 are transmitted to the wheels 62, and the power of the first motor 11 is transmitted to the wheel 62 through the continuously variable transmission device. 3, the first rotating shaft 31, the second rotating shaft 32 and the differential 61 are transmitted to the wheels 62 to realize the mode in which the three power sources jointly drive the vehicle.
  • Fig. 10 is a schematic diagram of energy transfer of a hybrid power system provided in an embodiment of the present application in an energy recovery mode.
  • the control method includes: controlling the engine 10 and the second motor 12 to not work, controlling the clutch 2 to be in a disengaged state, and controlling the first motor 11 to generate electricity.
  • the vehicle In this mode, the vehicle is in a coasting or braking condition, and the wheels 62 provide reverse torque to transmit part of the kinetic energy of the vehicle to the first motor 11 via the differential 61, the second shaft 32, and the first shaft 31 to be converted into
  • the electric energy is stored in the power supply assembly 5 for backup, so as to realize the energy recovery function of the first motor 11 .
  • An embodiment of the present application provides a vehicle, which includes the hybrid power system as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

本申请提供了一种混合动力系统、控制方法和车辆,该混合动力系统包括:发动机、第一电机、离合器和无级变速装置;第一电机的输出轴为空心轴;离合器同轴插装在空心轴内,离合器包括飞轮、从动盘和连接轴,飞轮周向活动地套装在连接轴外,且飞轮的外周壁与空心轴的内壁相连,从动盘轴向活动地套装在连接轴外且与连接轴周向固定,从动盘的外周壁与空心轴的内壁分离,从动盘被配置为可操控地沿连接轴轴向移动,以与飞轮贴合相连或分离,连接轴与发动机的输出轴传动连接;无级变速装置包括传动连接的第一转轴和第二转轴,第一转轴与空心轴传动连接,第二转轴与车轮传动连接。

Description

混合动力系统、控制方法和车辆
本申请要求2021年10月12日提交的申请号为202111186832.3、发明名称为“混合动力系统和控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车技术领域,特别涉及一种混合动力系统、控制方法和车辆。
背景技术
传统汽车大多使用化石燃料(如汽油、柴油等)为发动机提供动力,其排出的尾气会对环境造成污染。因此,使用无污染的新能源(如电能)为汽车提供动力是刻不容缓的,因而配置有混合动力系统的新能源汽车是发展的趋势。
相关技术提供了一种混合动力系统,包括发动机、电机、变速机构和离合器,其中,变速机构具有通过多组齿轮系传动连接的输入转轴和输出转轴,发动机的输出轴和电机的输出轴均与输入转轴传动连接,输出转轴与车轮传动连接,以实现发动机和电机采用不同挡位驱动车辆行驶的目的。离合器则设置在发动机的输出轴和输入转轴之间,用于隔断或导通发动机和变速机构之间的动力传递路径。
然而,在变速机构的输入转轴上设置离合器后,会增大混合动力系统的轴向尺寸,会使混合动力系统占用汽车较多的内部空间,不利于实现轻量化设计。
发明内容
本申请实施例提供了一种混合动力系统、控制方法和车辆。
所述技术方案如下:
第一方面提供了一种混合动力系统,所述混合动力系统包括:发动机、第一电机、离合器和无级变速装置;所述第一电机的输出轴为空心轴;所述离合器同轴插装在所述空心轴内,所述离合器包括飞轮、从动盘和连接轴,所述飞轮周向活动地套装在所述连接轴外,且所述飞轮的外周壁与所述空心轴的内壁 相连,所述从动盘轴向活动地套装在所述连接轴外且与所述连接轴周向固定,所述从动盘的外周壁与所述空心轴的内壁之间具有间隙,所述从动盘被配置为可操控地沿所述连接轴轴向移动,以与所述飞轮贴合相连或分离,所述连接轴与所述发动机的输出轴传动连接;所述无级变速装置包括传动连接的第一转轴和第二转轴,所述第一转轴与所述空心轴传动连接,所述第二转轴与车轮传动连接。
可选地,所述飞轮与所述从动盘相对的侧面设有第一增阻结构,所述从动盘与所述飞轮相对的侧面设有第二增阻结构,在所述飞轮与所述从动盘贴合相连时,所述第一增阻结构和所述第二增阻结构相互配合,以连接所述飞轮和所述从动盘。
可选地,所述第一增阻结构和所述第二增阻结构均为摩擦片;或者,所述第一增阻结构包括所述飞轮的侧面上的凹槽,所述第二增阻结构包括所述从动盘的侧面上的凸起,所述凹槽与所述凸起匹配。
可选地,所述无级变速装置位于所述发动机和所述第一电机之间,所述第一转轴为中空轴,所述第一转轴与所述空心轴同轴连接;所述混合动力系统还包括传动轴,所述传动轴活动插装在所述第一转轴内,所述传动轴的第一端突出于所述第一转轴且与所述连接轴同轴连接,所述传动轴的第二端突出于所述第一转轴且与所述发动机的输出轴同轴连接。
可选地,所述混合动力系统还包括第二电机,所述第二电机的输出轴与所述发动机的输出轴传动连接。
可选地,所述无级变速装置还包括:第一传动轮、第二传动轮、传动带和调整件;所述第一传动轮同轴套装在所述第一转轴外,所述第二传动轮同轴套装在所述第二转轴外,所述传动带同时套装在所述第一传动轮和所述第二传动轮外;所述调整件分别与所述第一传动轮和所述第二传动轮相连,所述调整件用于调整所述第一传动轮和所述第二传动轮之间的传动比。
可选地,所述第一传动轮包括:固定环、活动环、限位环和滑动筒;所述固定环固定套装在所述第一转轴外,所述活动环可沿所述第一转轴的轴向滑动地套装在所述第一转轴外;所述限位环固定套装在所述第一转轴外,所述活动环位于所述固定环和所述限位环之间;所述滑动筒位于所述活动环与所述限位环相对的端面,所述滑动筒的一端与所述活动环同轴相连,所述滑动筒同轴套 装在所述限位环外,所述滑动筒的内壁与所述限位环的外壁滑动密封,所述滑动筒、所述活动环、所述限位环和所述第一转轴围成环形间隙,所述第一转轴上设有与所述环形间隙连通的液压油道,所述调整件用于向所述液压油道注入液压油;所述第二传动轮与所述第一传动轮的结构相同,所述第一传动轮上的所述活动环与所述第二传动轮上的所述活动环分别位于所述传动带的两侧。
第二方面,提供了一种混合动力系统的控制方法,适用于如前文所述的混合动力系统,所述控制方法包括:确定动力模式;根据所述动力模式控制所述发动机、所述第一电机和所述第二电机的工作状态,以及所述离合器的状态。
可选地,所述动力模式为纯电动模式时,所述控制方法包括:控制所述发动机、所述第二电机不工作,控制所述离合器分离,控制所述第一电机工作;所述动力模式为纯发动机模式时,所述控制方法包括:控制发动机工作,控制所述第一电机和所述第二电机均不工作,控制所述离合器结合;所述动力模式为混合驱动模式时,所述控制方法包括:控制所述发动机、所述第一电机和所述第二电机工作,控制所述离合器结合。
可选地,所述动力模式为能量回收模式时,所述控制方法包括:控制所述发动机和所述第二电机不工作,控制所述第一电机发电,控制所述离合器分离。
第三方面,提供了一种车辆,所述车辆包括如前文所述的混合动力系统。
本申请实施例提供的技术方案带来的有益效果至少包括:
本申请实施例提供的混合动力系统包括发动机、第一电机、离合器和无级变速装置,其中,无级变速装置具有传动连接的第一转轴和第二转轴,第一转轴和第一电机的输出轴传动连接,第二转轴与车轮传动连接,这样第一电机就能通过无级变速装置将动力传递至车轮,以驱动汽车行驶。同时,第一电机的输出轴为空心轴,离合器是同轴插装在空心轴内的,且离合器的飞轮的外周壁与空心轴的内壁相连,离合器的从动盘套装在连接轴外,从动盘能够在连接轴上轴向移动,并且当从动盘移动至与飞轮贴合后,飞轮和从动盘相连,以使飞轮和从动盘能一起转动,从而传动动力。由于连接轴又是和发动机的输出轴传动连接的,这样发动机就能通过离合器与无级变速装置连接,并通过无级变速装置将动力传递至车轮,以驱动汽车行驶。
由于离合器直接设置在第一电机的内部,且飞轮和第一电机的输出轴的内壁相连,这样将离合器与第一电机的输出轴形成一个整体结构,可以无需在混 合动力系统上的其他位置保留用来安装离合器的空间,从而能缩减混合动力系统的轴向尺寸,减小混合动力系统占用的汽车内部空间,以实现轻量化设计。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种混合动力系统的结构示意图;
图2是本申请实施例提供的一种离合器与第一电机的装配示意图;
图3是本申请实施例提供的一种离合器的结构示意图;
图4是本申请实施例提供的一种无级变速装置的结构示意图;
图5是本申请实施例提供的一种无级变速装置的结构示意图;
图6是本申请实施例提供的一种混合动力系统在纯电动模式下的能量传递示意图;
图7是本申请实施例提供的一种混合动力系统在纯发动机模式下的能量传递示意图;
图8是本申请实施例提供的一种混合动力系统在混合动力模式下的能量传递示意图;
图9是本申请实施例提供的一种混合动力系统在混合动力模式下的能量传递示意图;
图10是本申请实施例提供的一种混合动力系统在能量回收模式下的能量传递示意图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
除非另作定义,此处使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。本申请专利申请说明书以及权利要求书中使用的“第一”、“第二”、“第三”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”、“顶”、“底”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地改变。
图1是本申请实施例提供的一种混合动力系统的结构示意图。如图1所示,混合动力系统包括:发动机10、第一电机11、离合器2和无级变速装置3。
如图1所示,第一电机11的输出轴为空心轴110,离合器2同轴插装在空心轴110内,离合器2包括飞轮21、从动盘22和连接轴23,飞轮21周向活动地套装在连接轴23外,且飞轮21的外周壁与空心轴110的内壁相连,从动盘22轴向活动地套装在连接轴23外且与连接轴23周向固定,从动盘22的外周壁与空心轴110的内壁之间具有间隙,从动盘22被配置为可操控地沿连接轴23轴向移动,以与飞轮21贴合相连或分离,连接轴23与发动机10的输出轴传动连接。
如图1所示,无级变速装置3包括传动连接的第一转轴31和第二转轴32,第一转轴31与空心轴110传动连接,第二转轴32与车轮62传动连接。
本申请实施例提供的混合动力系统包括发动机10、第一电机11、离合器2和无级变速装置3,其中,无级变速装置3具有传动连接的第一转轴31和第二转轴32,第一转轴31和第一电机11的输出轴传动连接,第二转轴32与车轮62传动连接,这样第一电机11就能通过无级变速装置3将动力传递至车轮62,以驱动汽车行驶。同时,第一电机11的输出轴为空心轴110,离合器2是同轴插装在空心轴110内的,且离合器2的飞轮21的外周壁与空心轴110的内壁相连,离合器2的从动盘22套装在在连接轴23外,从动盘22能够在连接轴23上轴向移动,并且当从动盘22移动至与飞轮21贴合后,飞轮21和从动盘22 相连,以使飞轮21和从动盘22能一起转动,从而传动动力。由于连接轴23又是和发动机10的输出轴传动连接,这样发动机10就能通过离合器2与无级变速装置3连接,并通过无级变速装置3将动力传递至车轮62,以驱动汽车行驶。
由于离合器2直接设置在第一电机11的内部,且离合器2的飞轮21和第一电机11的输出轴的内壁相连,这样将离合器2与第一电机11的输出轴形成一个整体结构,可以无需在混合动力系统上的其他位置保留用来安装离合器2的空间,从而能缩减混合动力系统的轴向尺寸,减小混合动力系统占用的汽车内部空间,以实现轻量化设计。
图2是本申请实施例提供的一种离合器与第一电机的装配示意图。如图2所示,飞轮21与从动盘22相对的侧面设有第一增阻结构210,从动盘22与飞轮21相对的侧面设有第二增阻结构220,在飞轮21与从动盘22贴合相连时,第一增阻结构210和第二增阻结构220相互配合,以连接飞轮21和从动盘22。
其中,第一增阻结构210可以增加飞轮21的侧面的粗糙程度,第二增阻结构220可以增加从动盘22的侧面的粗糙程度。这样从动盘22在控制下移动至与从动盘22贴合后,由于经增阻结构增大了飞轮21和从动盘22的侧面的粗糙程度,因而增大了飞轮21和从动盘22之间的摩擦力,从而让飞轮21和从动盘22相连,即飞轮21和从动盘22中的一个转动时,飞轮21和从动盘22中的另一个也会跟随转动,以传递动力。
示例性地,如图2所示,第一增阻结构210和第二增阻结构220均为摩擦片。摩擦片贴附于飞轮21和从动盘22的侧面上,以增加飞轮21和从动盘22的侧面的粗糙程度。
可选地,第一增阻结构210和第二增阻结构220的摩擦片均可以有多个。以飞轮21上的摩擦片的分布为例,摩擦片可以周向均布于飞轮21的侧面上,这样让摩擦片更加均匀地设置在飞轮21的侧面,能有效提高飞轮21与从动盘22之间的连接可靠性。
示例性地,图3是本申请实施例提供的一种离合器的结构示意图。如图3所示,第一增阻结构210包括飞轮21的侧面上的凹槽,第二增阻结构220包括从动盘22的侧面上的凸起,凹槽与凸起匹配。
上述实现方式中,若要控制离合器结合,此时从动盘22在连接轴23上朝向飞轮21移动,使从动盘22上的凸起与飞轮21的侧面相抵,若凸起未能恰好 嵌入凹槽内,则可以控制发动机输出动力,以驱动连接轴23带动从动盘22转动,这样在从动盘22的凸起转动至与凹槽相对时,凸起会陷入凹槽内,从而将从动盘22和飞轮21连接在一起,以传递动力。若要控制离合器分离,此时控制从动盘22在连接轴23上朝远离飞轮21的方向移动,使从动盘22上的凸起从飞轮21的凹槽内脱离,从而将从动盘22和飞轮21分离,以中断动力传递。
在其他一些实现方式中,第一增阻结构可以是凸起,而第二增阻结构可以是凹槽,本申请实施例不做限制。
可选地,如图1所示,无级变速装置3位于发动机10和第一电机11之间,第一转轴31为中空轴,第一转轴31与空心轴110同轴连接。
如图1所示,混合动力系统还包括传动轴4,传动轴4活动插装在第一转轴31内,传动轴4的第一端突出于第一转轴31且与连接轴23同轴连接,传动轴4的第二端突出于第二转轴32且与发动机10的输出轴同轴连接。
其中,无级变速装置3的第一转轴31设置为中空轴,传动轴4插装在第一转轴31内且传动轴4的两端分别穿出第一转轴31,传动轴4的两端分别和发动机10和离合器2的从动盘22同轴连接,从而实现将发动机10的动力传递至离合器2的目的,再通过离合器2就能将发动机10的动力传递至无级变速装置3,得以将动力传递至车轮62,以驱动汽车行驶。
本申请实施例中,将无级变速装置3套装在传动轴4外的装配方式,避免了将无级变速装置3和发动机10设置在第一电机11的异侧,能缩减混合动力系统的轴向尺寸,且让发动机10、无级变速装置3和第一电机11分布更加紧凑,减小混合动力系统占用的汽车内部空间。
可选地,如图1所示,混合动力系统还包括第二电机12,第二电机12的输出轴与发动机10的输出轴传动连接。第二电机12与发动机10相同,均与连接轴23传动连接,因而能将动力传递至无级变速装置3,得以将动力传递至车轮62,以驱动汽车行驶。
并且,该种装配方式使第二电机12能与发动机10一起共用离合器2,从而能避免单独为第二电机12配置离合器2,不经节省成本还缩减了混合动力系统的整体尺寸。
本申请实施例中,第二电机12可以通过齿轮系与发动机10的输出轴传动连接,其中,齿轮系的输入齿轮与第二电机12的输出轴同轴连接,齿轮系的输 出齿轮与发动机10的输出轴同轴连接。
其中,齿轮系至少包括输入齿轮和输出齿轮,输入齿轮和输出齿轮可以直接啮合,以实现输入齿轮和输出齿轮的传动连接。输入齿轮和输出齿轮之间还可以设置至少一个连接齿轮。例如,当仅设置一个连接齿轮时,连接齿轮则分别与输入齿轮和输出齿轮啮合,以实现输入齿轮和输出齿轮的传动连接。
需要说明的是,齿轮系中具体设置多少个齿轮,具体可以根据实际需求确定。由于齿轮系中设置齿轮的数量会影响齿轮系的传动比,因而,可以结合汽车的动力需求,调整齿轮系中齿轮的数量。
可选地,如图1所示,动力系统还包括:传动齿轮和差速器61,传动齿轮与第二转轴32同轴连接,差速器61的输入齿轮与传动齿轮啮合,差速器61的输出轴与车轮62传动连接。
本申请实施例中,差速器61的输入齿轮与安装在第二转轴32上的传动齿轮啮合,从而能接收从第二转轴32传递而来的动力,以实现驱动车轮62转动的目的。
其中,差速器61能使与差速器61的输出轴连接的车轮62实现以不同转速转动。当汽车转弯行驶时,汽车的内侧车轮62和汽车的外侧车轮62的转弯半径不同,外侧车轮62的转弯半径要大于内侧车轮62的转弯半径,这就要求在转弯时外侧车轮62的转速要高于内侧车轮62的转速,利用差速器61可以使两个车轮62以不同转速滚动,从而实现两个车轮62转速的差异。
可选地,如图1所示,供电组件5包括:电池51和两个逆变器52,两个逆变器52分别与电池51连接,第一电机11与两个逆变器52中的一个连接,第二电机12与两个逆变器52中的另一个连接。
通过设置两个逆变器52,其一用于连接电池51和第一电机11,其二用于连接电池51和第二电机12。其中,电池51为可充电电池51,逆变器52设置在电池51的输出电路上,用于将电池51输出的直流电转换成三相交流电后驱动第一电机11或第二电机12。
图4是本申请实施例提供的一种无级变速装置的结构示意图。如图4所示,无级变速装置3还包括:第一传动轮33、第二传动轮34、传动带35和调整件36,第一传动轮33同轴套装在第一转轴31外,第二传动轮34同轴套装在第二 转轴32外,传动带35同时套装在第一传动轮33和第二传动轮34外。
其中,调整件36分别与第一传动轮33和第二传动轮34相连,调整件36用于调整第一传动轮33和第二传动轮34之间的传动比。
上述实现方式中,通过在第一转轴31和第二转轴32外分别套装第一传动轮33和第二传动轮34,并采用传动带35套装在第一传动轮33和第二传动轮34外,以使第一传动轮33、第二传动轮34和传动带35构成带传动的传动形式。从而能使第一转轴31上的动力经传动带35传递至第二转轴32,以驱动汽车形式。
同时,无级变速装置3还设有调整件36,调整件36能调整第一传动轮33和第二传动轮34之间的传动比,以实现无极调速,使得发动机10和第一电机11能采用多种不同挡位驱动汽车。相较于采用同步器换挡,采用无级变速装置3能在不占用过多空间的情况下,实现更多不同挡位模式,并且无级变速装置3换挡过程更加平顺、无冲击,便于驾驶。
示例性地,如图4所示,第一传动轮33包括:固定环301和活动环302,固定环301固定套装在第一转轴31外,活动环302可沿第一转轴31的轴向滑动地套装在第一转轴31外,固定环301上与活动环302相对的端面为第一圆锥面303,活动环302与固定环301相对的端面为第二圆锥面304,从固定环301的内边缘至固定环301的外边缘的方向上,第一圆锥面303和第二圆锥面304之间的间距逐渐变大,传动带35为刚性件。
其中,调整件36与活动环302相连,调整件36被配置为,控制活动环302在第一转轴31上轴向移动,并将活动环302锁定在第一转轴31上。
本申请实施例中,第二传动轮34与第一传动轮33的结构相同。示例性地,如图2所示,第二传动轮34的固定环301和活动环302均套装在第二转轴32外,第二传动轮34的调整件36则用于调整第二传动轮34的活动环302在第二转轴32上轴向移动。
该无级变速装置3工作时,通过调整第一传动轮33的活动环302在第一转轴31的位置和第二传动轮34的活动环302在第二转轴32上的位置,就能实现改变无级变速装置3的传动比,以加速或减速驱动汽车的目的。
示例性地,当需要加速时,可以通过调节件控制第一传动轮33的活动环302逐渐靠近固定环301,让活动环302和固定环301之间的间距逐渐减小,由于活 动环302和固定环301相互靠近的端面均为圆锥面,因此,第一圆锥面303和第二圆锥面304会挤压刚性的传动带35,以使得刚性的传动带35朝向远离固定环301的中轴线的方向移动。此时,传动带35套装在第一传动轮33上的缠绕半径变大参见图4至图5中R1。
与此同时,调节件可以通过调节件控制第二传动轮34的活动环302逐渐远离固定环301,让活动环302和固定环301之间的间距逐渐增大,由于活动环302和固定环301相互靠近的端面均为圆锥面,因此,第一圆锥面303和第二圆锥面304不再挤压传动带35,以使得传动带35朝向靠近固定环301的中轴线的方向移动,以在此搁置在两个圆锥面上。此时,传动带35套装在第二传动轮34上的缠绕半径变小参见图2至图3中R2。
从图4至图5,无级变速装置3的传动比变小,实现加速驱动的目的。
其中,减速过程与加速过程类似,本申请实施例不做赘述。
本申请实施例中,如图4所示,第一传动轮33上的活动环302与第二传动轮34上的活动环302分别位于传动带35的两侧。这样将固定环301分别夹设在传动带35的两侧,通过固定环301对传动带35进行限位,以防止传动带35经多次变速后,传动带35的位置出现偏移,以保证无级变速装置3的连接可靠性。
可选地,如图4、5所示,第一传动轮33还包括限位环305,限位环305固定套装在第一转轴31外,活动环302位于固定环301和限位环305之间。
如图4、5所示,活动环302与限位环305相对的端面设有滑动筒306,滑动筒306的一端与活动环302同轴相连,滑动筒306同轴套装在限位环305外,滑动筒306的内壁与限位环305的外壁滑动密封。
如图4、5所示,滑动筒306、活动环302、限位环305和第一转轴31围成环形间隙307,第一转轴31上设有与环形间隙307连通的液压油道308,调整件36用于向液压油道308注入液压油。
本申请实施例中,调整件36可以是液压输送机构,例如,调整件36可以是液压泵。液压泵的出油口与液压油道308连通,从而能通过液压油道308向环形间隙307内注入液压油,液压油进入环形间隙307后,就能推动活动环302轴向移动。
例如,当需要加速时,可以同时向第一传动轮33的环形间隙307和第二传 动轮34的环形间隙307内注入液压油,第一传动轮33的环形间隙307中注入的液压油的油压高于第二传动轮34的环形间隙307中注入的液压油的油压。这样第一传动轮33的活动环302在高压油的推动下会挤压传动带35上移,由于第二传动轮34的环形间隙307内的油液压力较低,在第一传动轮33的牵引下,位于第二传动轮34上的传动带35也上移,从而减小传动比,实现加速驱动的目的。
可选地,滑动筒306和限位环305之间可以设置密封圈,以提高滑动筒306与限位环305之间的密封性,以避免液压油泄漏。
例如,限位环305的外周壁可以设置环形槽,环形槽内箍装密封圈,这样滑动筒306轴向移动时,滑动筒306的内壁面始终与密封圈接触,从而保证滑动筒306与限位环305之间的密封性。
本申请实施例提供一种混合动力系统的控制方法,适用于前文所述的混合动力系统,该控制方法包括:确定变速模式,变速模式包括加速模式和减速模式;根据变速模式控制调整件36分别向第一传动轮33的环形间隙307和第二传动轮34的环形间隙307注入液压油。
示例性地,变速模式为加速模式时,控制调整件36向第一传动轮33的环形间隙307内注入第一液压油,且控制调整件36向第二传动轮34的环形间隙307内注入第二液压油,第一液压油的油压大于第二液压油的油压。
其中,通过调节件向第一传动轮33的环形间隙307内注入第一液压油后,第一传动轮33的活动环302会逐渐靠近固定环301,活动环302和固定环301的圆锥面的作用下,会使刚性的传动带35朝向远离固定环301的中轴线的方向移动。此时,传动带35套装在第一传动轮33上的缠绕半径变大参见图2至图3中R1。
与此同时,通过调节件向第二传动轮34的环形间隙307内注入第二液压油后,由于第二液压油的油压小于第一液压油的油压,位于第二传动轮34上的传动带35会被牵引,由于活动环302和固定环301夹持传动带35的端面为圆锥面,所以传动带35会对圆锥面施压,从而使第二传动轮34的活动环302会逐渐远离固定环301。过程中,传动带35套装在第二传动轮34上的缠绕半径变小参见图4至图5中R2。
从图5至图5,无级变速装置3的传动比变小,实现加速驱动的目的。
示例性地,变速模式为减速模式时,控制调整件36向第一传动轮33的环形间隙307内注入第三液压油,且控制调整件36向第二传动轮34的环形间隙307内注入第四液压油,第三液压油的油压小于第四液压油的油压。
其中,通过调节件向第二传动轮34的环形间隙307内注入第四液压油后,第一传动轮33的活动环302会逐渐靠近固定环301,活动环302和固定环301的圆锥面的作用下,会使刚性的传动带35朝向远离固定环301的中轴线的方向移动。此时,传动带35套装在第二传动轮34上的缠绕半径变大。
与此同时,通过调节件向第一传动轮33的环形间隙307内注入第三液压油后,由于第三液压油的油压小于第四液压油的油压,位于第一传动轮33上的传动带35会被牵引,由于活动环302和固定环301夹持传动带35的端面为圆锥面,所以传动带35会对圆锥面施压,从而使第一传动轮33的活动环302会逐渐远离固定环301。过程中,传动带35套装在第一传动轮33上的缠绕半径变小。
此时,无级变速装置3的传动比变大,实现减速驱动的目的。
本申请实施例提供了一种混合动力系统的控制方法,适用于前文所述的混合动力系统,该控制方法包括:确定动力模式;根据动力模式控制发动机10、第一电机11和第二电机12的工作状态,以及离合器2的状态。
其中,动力模式包括纯电动模式、纯发动机10模式、混合驱动模式或能量回收模式。
图6是本申请实施例提供的一种混合动力系统在纯电动模式下的能量传递示意图。如图6所示,混合动力系统的动力模式切换为纯电动模式时,控制方法包括:控制发动机10、第二电机12不工作,控制离合器2处于分离状态,控制第一电机11工作。
此时,由第一电机11驱动车辆行驶。供电组件5放电,经过逆变器52将直流电转换为三相交流电后驱动第一电机11输出轴旋转,第一电机11将电能转换为机械能,机械能经无级变速装置3的第一转轴31、第二转轴32和差速器61传递给车轮62,实现第一电机11单独驱动车辆行驶模式。
可选地,纯电动模式下还可以由第一电机11驱动车辆倒挡行驶。在倒车时,发动机10和第二电机12不工作,第一电机11反转实现倒车。该模式下,能量 传递路径可参见图6。
图7是本申请实施例提供的一种混合动力系统在纯发动机模式下的能量传递示意图。如图7所示,混合动力系统的动力模式切换为纯发动机10模式时,控制方法包括:控制第一电机11和第二电机12均不工作,控制离合器2处于结合状态,控制发动机10工作。
此时,由发动机10驱动车辆行驶。发动机10的动力经离合器2传递至无级变速装置3,再经无级变速装置3的第一转轴31、第二转轴32和差速器61传递给车轮62,实现发动机10单独驱动车辆行驶模式。
图8是本申请实施例提供的一种混合动力系统在混合动力模式下的能量传递示意图。如图8所示,混合动力系统的动力模式切换为混合驱动模式时,控制方法包括:控制发动机10驱动第二电机12发电,控制离合器2处于分离状态,控制第一电机11工作。
此时,发动机10运行在高效区带动第二电机12发电,发出的电能供给第一电机11驱动车辆行驶,多余电能储存在供电组件5中。当发电量不足时,由供电组件5来补充,第二电机12和供电组件5共同满足第一电机11的电量需求。如图6所示,第一电机11输出的动力经无级变速装置3的第一转轴31、第二转轴32和差速器61传递给车轮62,以驱动车辆行驶。
图9是本申请实施例提供的一种混合动力系统在混合动力模式下的能量传递示意图。如图9所示,混合动力系统的动力模式切换为混合驱动模式时,控制方法包括:控制发动机10、第一电机11和第二电机12工作,控制离合器2处于结合状态。
此时,由发动机10、第一电机11和第二电机12共同驱动车辆行驶。供电组件5放电,经过逆变器52将直流电转换为三相交流电后驱动第一电机11和第二电机12的输出轴旋转,第二电机12根据车速和扭矩需求处于发电或电动状态。发动机10和第二电机12的动力经离合器2传递至无级变速装置3的第一转轴31、第二转轴32和差速器61传递给车轮62,第一电机11的动力经无级变速装置3的第一转轴31、第二转轴32和差速器61传递给车轮62,实现三个动力源共同驱动车辆行驶的模式。
图10是本申请实施例提供的一种混合动力系统在能量回收模式下的能量传递示意图。如图10所示,混合动力系统的动力模式切换为能量回收模式时,控 制方法包括:控制发动机10和第二电机12不工作,控制离合器2处于分离状态,控制第一电机11发电。
该模式下,车辆处于滑行或者制动工况,车轮62提供反向力矩,将车辆的部分动能经由差速器61、第二转轴32、第一转轴31传递至第一电机11,以转换为电能,存入供电组件5中备用,实现第一电机11的能量回收功能。
本申请实施例提供了一种车辆,该车辆包括如前文所述的混合动力系统。
以上,并非对本申请作任何形式上的限制,虽然本申请已通过实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (11)

  1. 一种混合动力系统,包括:发动机(10)、第一电机(11)、离合器(2)和无级变速装置(3),其中;
    所述第一电机(11)的输出轴为空心轴(110);
    所述离合器(2)同轴插装在所述空心轴(110)内,所述离合器(2)包括飞轮(21)、从动盘(22)和连接轴(23),所述飞轮(21)周向活动地套装在所述连接轴(23)外,且所述飞轮(21)的外周壁与所述空心轴(110)的内壁相连,所述从动盘(22)轴向活动地套装在所述连接轴(23)外且与所述连接轴(23)周向固定,所述从动盘(22)的外周壁与所述空心轴(110)的内壁之间具有间隙,所述从动盘(22)被配置为可操控地沿所述连接轴(23)轴向移动,以与所述飞轮(21)贴合相连或分离,所述连接轴(23)与所述发动机(10)的输出轴传动连接;
    所述无级变速装置(3)包括传动连接的第一转轴(31)和第二转轴(32),所述第一转轴(31)与所述空心轴(110)传动连接,所述第二转轴(32)与车轮(62)传动连接。
  2. 根据权利要求1所述的混合动力系统,其中,所述飞轮(21)与所述从动盘(22)相对的侧面设有第一增阻结构(210);
    所述从动盘(22)与所述飞轮(21)相对的侧面设有第二增阻结构(220);
    在所述飞轮(21)与所述从动盘(22)贴合相连时,所述第一增阻结构(210)和所述第二增阻结构(220)相互配合,以连接所述飞轮(21)和所述从动盘(22)。
  3. 根据权利要求2所述的混合动力系统,其中,所述第一增阻结构(210)和所述第二增阻结构(220)均为摩擦片;或者,
    所述第一增阻结构(210)包括所述飞轮(21)的侧面上的凹槽,所述第二增阻结构(220)包括所述从动盘(22)的侧面上的凸起,所述凹槽与所述凸起匹配。
  4. 根据权利要求1所述的混合动力系统,其中,所述无级变速装置(3)位 于所述发动机(10)和所述第一电机(11)之间,所述第一转轴(31)为中空轴,所述第一转轴(31)与所述空心轴(110)同轴连接;
    所述混合动力系统还包括传动轴(4),所述传动轴(4)活动插装在所述第一转轴(31)内,所述传动轴(4)的第一端突出于所述第一转轴(31)且与所述连接轴(23)同轴连接,所述传动轴(4)的第二端突出于所述第一转轴(31)且与所述发动机(10)的输出轴同轴连接。
  5. 根据权利要求1至4任一项所述的混合动力系统,其中,所述混合动力系统还包括第二电机(12),所述第二电机(12)的输出轴与所述发动机(10)的输出轴传动连接。
  6. 根据权利要求1至4任一项所述的混合动力系统,其中,所述无级变速装置(3)还包括:第一传动轮(33)、第二传动轮(34)、传动带(35)和调整件(36);
    所述第一传动轮(33)同轴套装在所述第一转轴(31)外,所述第二传动轮(34)同轴套装在所述第二转轴(32)外,所述传动带(35)同时套装在所述第一传动轮(33)和所述第二传动轮(34)外;
    所述调整件(36)分别与所述第一传动轮(33)和所述第二传动轮(34)相连,所述调整件(36)用于调整所述第一传动轮(33)和所述第二传动轮(34)之间的传动比。
  7. 根据权利要求6所述的混合动力系统,其中,所述第一传动轮(33)包括:固定环(301)、活动环(302)、限位环(305)和滑动筒(306);
    所述固定环(301)固定套装在所述第一转轴(31)外,所述活动环(302)可沿所述第一转轴(31)的轴向滑动地套装在所述第一转轴(31)外;
    所述限位环(305)固定套装在所述第一转轴(31)外,所述活动环(302)位于所述固定环(301)和所述限位环(305)之间;
    所述滑动筒(306)位于所述活动环(302)与所述限位环(305)相对的端面,所述滑动筒(306)的一端与所述活动环(302)同轴相连,所述滑动筒(306)同轴套装在所述限位环(305)外,所述滑动筒(306)的内壁与所述限位环(305) 的外壁滑动密封,所述滑动筒(306)、所述活动环(302)、所述限位环(305)和所述第一转轴(31)围成环形间隙(307),所述第一转轴(31)上设有与所述环形间隙(307)连通的液压油道(308),所述调整件(36)用于向所述液压油道(308)注入液压油;
    所述第二传动轮(34)与所述第一传动轮(33)的结构相同,所述第一传动轮(33)上的所述活动环(302)与所述第二传动轮(34)上的所述活动环(302)分别位于所述传动带(35)的两侧。
  8. 一种混合动力系统的控制方法,其中,适用于如权利要求5所述的混合动力系统,所述控制方法包括:
    确定动力模式;
    根据所述动力模式控制所述发动机、所述第一电机和所述第二电机的工作状态,以及所述离合器的状态。
  9. 根据权利要求8所述的控制方法,其中,所述动力模式为纯电动模式时,所述控制方法包括:
    控制所述发动机、所述第二电机不工作,控制所述离合器分离,控制所述第一电机工作;
    所述动力模式为纯发动机模式时,所述控制方法包括:
    控制发动机工作,控制所述第一电机和所述第二电机均不工作,控制所述离合器结合;
    所述动力模式为混合驱动模式时,所述控制方法包括:
    控制所述发动机、所述第一电机和所述第二电机工作,控制所述离合器结合。
  10. 根据权利要求8所述的控制方法,其中,所述动力模式为能量回收模式时,所述控制方法包括:控制所述发动机和所述第二电机不工作,控制所述第一电机发电,控制所述离合器分离。
  11. 一种车辆,所述车辆包括如权利要求1至10任一项所述的混合动力系 统。
PCT/CN2022/070368 2021-10-12 2022-01-05 混合动力系统、控制方法和车辆 WO2023060789A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111186832.3 2021-10-12
CN202111186832.3A CN113978236A (zh) 2021-10-12 2021-10-12 混合动力系统和控制方法

Publications (1)

Publication Number Publication Date
WO2023060789A1 true WO2023060789A1 (zh) 2023-04-20

Family

ID=79738254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070368 WO2023060789A1 (zh) 2021-10-12 2022-01-05 混合动力系统、控制方法和车辆

Country Status (2)

Country Link
CN (1) CN113978236A (zh)
WO (1) WO2023060789A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143264A (ja) * 2008-12-16 2010-07-01 Honda Motor Co Ltd 自動変速機
CN207212972U (zh) * 2017-08-24 2018-04-10 重庆华帝威汽车零部件有限公司 一种充分密封的离合器
CN110939697A (zh) * 2018-09-21 2020-03-31 舍弗勒技术股份两合公司 混合动力变速器和车辆
CN111890911A (zh) * 2020-04-15 2020-11-06 浙江万里扬股份有限公司 混合动力系统和车辆
CN113400932A (zh) * 2021-07-28 2021-09-17 奇瑞汽车股份有限公司 纯电动车的动力系统和控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205806261U (zh) * 2016-07-26 2016-12-14 江西省欧泰诗汽车部件有限公司 一种离合器
CN205978163U (zh) * 2016-08-12 2017-02-22 华晨汽车集团控股有限公司 一种增加摩擦面积的飞轮离合器总成结构
CN109703349A (zh) * 2019-02-22 2019-05-03 芜湖万里扬变速器有限公司 多模式混合动力变速系统
CN212637473U (zh) * 2020-06-19 2021-03-02 奇瑞汽车股份有限公司 混合动力系统和汽车
CN112268098A (zh) * 2020-11-13 2021-01-26 广州艾可米汽车科技股份有限公司 一种机械变速式无级变速器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143264A (ja) * 2008-12-16 2010-07-01 Honda Motor Co Ltd 自動変速機
CN207212972U (zh) * 2017-08-24 2018-04-10 重庆华帝威汽车零部件有限公司 一种充分密封的离合器
CN110939697A (zh) * 2018-09-21 2020-03-31 舍弗勒技术股份两合公司 混合动力变速器和车辆
CN111890911A (zh) * 2020-04-15 2020-11-06 浙江万里扬股份有限公司 混合动力系统和车辆
CN113400932A (zh) * 2021-07-28 2021-09-17 奇瑞汽车股份有限公司 纯电动车的动力系统和控制方法

Also Published As

Publication number Publication date
CN113978236A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
EP3604012B1 (en) Hybrid power transmission device and electric motor drive transmission device
CN108116218B (zh) 基于行星轮系的多档位混联驱动系统
CN107697061A (zh) 混合动力驱动系统及混合动力汽车
CN108839551B (zh) 混合动力系统及控制方法
CN109130831B (zh) 一种汽车多模混合动力耦合装置
CN109130819A (zh) 一种双电机混合动力耦合器及其工作方法
WO2023071093A1 (zh) 混合动力系统和车辆
WO2023065624A1 (zh) 双离合器组件、混合动力系统和车辆
CN208290960U (zh) 混合动力驱动系统及车辆
WO2023005153A1 (zh) 纯电动车的动力系统和控制方法、混合动力车
CN109986947A (zh) 混合动力驱动系统及车辆
CN111098695B (zh) 混合动力驱动系统及车辆
WO2023060789A1 (zh) 混合动力系统、控制方法和车辆
CN110722975A (zh) 一种混合动力变速器
WO2023273307A1 (zh) 传动结构、纯电动车的动力系统和控制方法
CN210821811U (zh) 混合动力变速器
CN211995136U (zh) 一种双电机两档混合动力传动机构
CN110341459B (zh) 一种汽车混合动力驱动机构及其驱动方法
CN111976461A (zh) 一种差速器耦合的混合动力总成
CN110722974A (zh) 一种混合动力变速器系统
CN216002169U (zh) 混合动力系统和汽车
CN216401141U (zh) 纯电动车的动力系统和汽车
JP2016145021A (ja) ハイブリッド駆動装置
CN216833193U (zh) 混合动力系统和汽车
CN109591571A (zh) 混合动力驱动系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879743

Country of ref document: EP

Kind code of ref document: A1