WO2023056758A1 - 芯片封装用模封胶及封装结构 - Google Patents

芯片封装用模封胶及封装结构 Download PDF

Info

Publication number
WO2023056758A1
WO2023056758A1 PCT/CN2022/099205 CN2022099205W WO2023056758A1 WO 2023056758 A1 WO2023056758 A1 WO 2023056758A1 CN 2022099205 W CN2022099205 W CN 2022099205W WO 2023056758 A1 WO2023056758 A1 WO 2023056758A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
chip
epoxy resin
molding compound
Prior art date
Application number
PCT/CN2022/099205
Other languages
English (en)
French (fr)
Inventor
伍得
胡宗潇
廖述杭
苏峻兴
Original Assignee
武汉市三选科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉市三选科技有限公司 filed Critical 武汉市三选科技有限公司
Publication of WO2023056758A1 publication Critical patent/WO2023056758A1/zh
Priority to US18/307,770 priority Critical patent/US20240030075A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4215Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1087Materials or components characterised by specific uses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/163Connection portion, e.g. seal
    • H01L2924/164Material
    • H01L2924/1659Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy

Definitions

  • the present application relates to the technical field of semiconductor packaging, in particular to a molding compound for chip packaging and a packaging structure.
  • the encapsulation of electronic components by resin in addition to the commonly used transfer molding method, can also use the molding method, that is, the electronic components, such as silicon chips that have been etched chips, are placed in the mold, and then the resin encapsulation material is given, and the resin encapsulation The material is molded for resin sealing.
  • the molding material is likely to warp, resulting in cracks and cracks caused by excessive bending of the silicon wafer, which affects the operation of the subsequent sections and easily leads to the defect rate of the chip.
  • the present application provides a mold sealant for chip packaging, which has high modulus, low warpage and good flexibility, and can effectively reduce cracks and cracks in silicon wafers caused by excessive bending of silicon wafers.
  • the application provides a molding compound for chip packaging, which includes the following components in parts by weight: 5-20 parts by weight of epoxy resin, 5-20 parts by weight of curing agent, 0.1-1.2 parts by weight of curing accelerator, 70-100 parts by weight of inorganic filler, 0.5-2.5 parts by weight of coupling agent, and 0.1-15 parts by weight of diluent;
  • epoxy resin has the structure shown in formula (I):
  • R 1 and R 2 are each independently selected from H or C1-C10 linear or branched chain alkyl groups
  • R 3 , R 4 , R 5 and R 6 are each independently selected from hydrogen atoms , methyl or halogen
  • X is selected from -O-, -COO-, or -OCH(CH 3 )O-
  • R is selected from any one of alkylene and polyether skeletons
  • n is in the range of 1-10 Integer in .
  • the R is -CH 2 CH 2 -(OCH 2 CH 2 ) m -or -CH(CH 3 )CH 2 -(OCH(CH 3 )CH 2 ) m - where m is an integer in the range 0-5.
  • the epoxy resin has a structure as shown in formula (II):
  • X is -OCH(CH 3 )O-
  • n is an integer in the range of 1-5.
  • the inorganic filler is silica, wherein the particle size of silica is in the range of 0.1-75 ⁇ m.
  • the curing agent is selected from the group consisting of tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, methylnadic anhydride, and phenol-arane One or more of the base phenolic resins.
  • the curing agent includes methyl nadic anhydride and methyl hexahydrophthalic anhydride, and the mass ratio of the two is (1-2):1.
  • the diluent is p-tert-butylphenol epoxy resin diluent, and the total chlorine is ⁇ 200ppm.
  • the molding compound for chip packaging further contains 0.02-0.1 parts by weight of a colorant.
  • it consists of the following components in parts by weight: 5-20 parts by weight of the epoxy resin, 5-20 parts by weight of the curing agent, 0.1-1.2 parts by weight of the curing accelerator, the 70-100 parts by weight of the inorganic filler, 0.1-15 parts by weight of the diluent, and 0.02-0.1 parts by weight of the colorant.
  • the present application also provides a chip packaging structure, which includes a chip etched on a silicon wafer, and a packaging layer covering the silicon wafer, wherein the packaging layer and The silicon wafer is in contact with and covers the chip, and the encapsulation layer includes the molding compound as described in any one of the above.
  • the molding compound of this application adopts epoxy resin with flexible units such as polyether, combined with the compounding of curing agent and diluent, etc., to achieve good flexibility and strength, and effectively reduce warpage, wherein warpage can be Reduced to 0mm, the modulus can reach more than 8GPa, has good silicon adhesion, and can effectively protect silicon wafers from bending cracks due to warping.
  • the applicant of the present application has also found that adding p-tert-butylphenol type epoxy resin diluent can further effectively reduce the influence of monofunctional aliphatic diluent on the curing system, and can further improve the flexibility and moldability of epoxy resin. quantity.
  • Fig. 1 is a schematic diagram of the top view structure of a silicon chip etched with a chip to be packaged in the embodiment of the present application;
  • FIG. 2 provides a chip packaging structure according to the embodiment of the present application.
  • expressions such as “one or more” refer to one or more of the listed items, and “multiple” refers to any combination of two or more of these items, including single items (species) ) or any combination of plural items (species), for example, "at least one (species) of a, b, or c" or "at least one (species) of a, b, and c" can mean: a ,b,c,a-b (that is, a and b),a-c,b-c, or a-b-c, where a,b,c can be single or multiple.
  • the embodiment of the present application provides a mold sealant for chip packaging, which includes the following components in parts by weight: 5-20 parts by weight of epoxy resin, 5-20 parts by weight of curing agent, 0.1-1.2 parts by weight of curing accelerator, inorganic 70-100 parts by weight of filler, 0.1-15 parts by weight of diluent;
  • epoxy resin has the structure shown in formula (I):
  • R 1 and R 2 are each independently selected from H or C1-C10 linear or branched chain alkyl groups
  • R 3 , R 4 , R 5 and R 6 are each independently selected from hydrogen atoms , methyl or halogen
  • X is selected from -O-, -COO-, or -OCH(CH 3 )O-
  • R is selected from any one of alkylene and polyether skeletons
  • n is in the range of 1-10 Integer in .
  • halogen is selected from fluorine atom or chlorine atom, wherein fluorine atom is preferred.
  • the mold sealant for chip packaging proposed in the embodiment of the present application adopts the epoxy resin shown in formula (I), through flexible segments such as X groups and R groups and low-polarity segments, combined with a curing system and a diluent , so that the mold sealant has good flexibility and strength, and effectively reduces warpage, and has good silicon adhesion.
  • the R group in formula (I) can be -CH 2 CH 2 -(OCH 2 CH 2 ) m -or -CH(CH 3 )CH 2 -(OCH(CH 3 ) CH 2 ) m -, wherein m is an integer in the range of 0-5.
  • m is an integer in the range of 0-5.
  • the R group is a linear or branched alkylene group.
  • the R group is a polyether skeleton.
  • epoxy resin can have the structure shown in formula (II):
  • X is -OCH(CH 3 )O-
  • n is an integer in the range of 1-5.
  • the epoxy equivalent of the epoxy resin is 400-450 g/eq in consideration of curing rate and strength in the chip packaging process.
  • the viscosity of the epoxy resin (25°C, E-type viscometer) is 10000-15000mPa.s, and the number average molecular weight is 700-900.
  • Such epoxy resins can achieve good flexibility and high modulus.
  • DIC Corporation's EXA-4850-150 can be used.
  • the inorganic filler can be silica, the particle size range is 0.1-75 ⁇ m, and the amount of silica is 70-100 parts by weight.
  • the silica may be fumed silica or fused silica, with a particle size of 0.1-75 ⁇ m, or 1-50 ⁇ m.
  • the curing agent is selected from tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyl hexahydrophthalic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride (methyl-5-norbornene-2,3 -dicarboxylic acid anhydride) and one or more of phenol-aralkylphenolic resins.
  • the dosage of curing agent is 5-20 parts by weight, for example, 10-12 parts.
  • the amount of the curing agent is not particularly limited, and those skilled in the art can select and determine the amount of the curing agent according to the construction conditions and curing rate.
  • the curing agent is preferably a compound of methyl nadic anhydride and methyl hexahydrophthalic anhydride, and the compounding ratio is (1-2):1, more preferably 1:1. In some embodiments, the amount of epoxy resin and curing agent is (1-2):1, preferably 1:1.
  • a curing accelerator may be further added, and the type of the curing accelerator is not particularly limited, and may be selected from imidazole or N,N-dimethylaniline.
  • the curing agent and the curing accelerator are combined with the epoxy resin of the embodiment of the present application to achieve the required processing properties such as curing rate and fluidity of the packaging material.
  • the molding compound contains 0.5-2.5 parts by weight of coupling agent.
  • the coupling agent can increase the compatibility between the components, especially when the silica filler and toughening agent with a large specific gravity are added, the coupling agent can help these particles to disperse evenly in the epoxy resin system , to improve the compatibility of the system.
  • the coupling agent is a silane coupling agent with an epoxy group, for example selected from ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethyl Any one of oxysilane, ⁇ -glycidoxypropyl tripropropoxysilane, ⁇ -glycidoxypropyl tributoxysilane, but not limited thereto.
  • the epoxy functional group carried by the silane coupling agent with epoxy group can better form a cured cross-linked network with the epoxy resin during the curing process, further improving the compatibility of the system.
  • the molding compound contains 0.1-1.5 parts by weight of diluent, which can reduce the viscosity of the packaging material without changing the properties of the material as much as possible.
  • the diluent may be selected from epoxy diluents known in the art, such as p-tert-butylphenol epoxy resin diluents or any one of monofunctional aliphatic diluents and difunctional aliphatic diluents. It is worth noting that the p-tert-butylphenol-type epoxy resin diluent shows a more excellent effect in the molding compound system of the embodiment of the present application.
  • the tert-butylphenol-type epoxy resin diluent has a The influence of the curing system is less, and the curing characteristics of the epoxy resin can be kept relatively stable.
  • the diluent should be halogen-free or low-halogen content, desirably total chlorine ⁇ 200ppm.
  • the optional diluent is ADEKA ED-509S or ERISYS GE-11. The amount of diluent should not exceed 1.5% to keep the total chlorine content low.
  • the chip packaging material also includes 0.02-0.1 parts by weight of coloring agent.
  • the pigment is carbon black.
  • the colorant imparts color to the encapsulation layer so that the encapsulation layer takes on a different colored appearance and facilitates printing of text on the chip.
  • the embodiment of the present application further provides a chip packaging structure.
  • the packaging structure includes a silicon chip 10 and a chip 20 etched on the silicon chip.
  • the packaging layer 30 is partially in contact with the silicon chip 10.
  • the package The layer 30 includes the molding compound provided in the embodiment of the present application.
  • a plurality of chips 20 can be etched at intervals on the silicon wafer 10, and the molding compound of the embodiment of the present application can be used for wafer-level packaging, or packaging of single or multiple chips. .
  • the thickness of the encapsulation layer 30 is 50-200 ⁇ m.
  • the encapsulation layer 30 covers the back of the chip; in other embodiments, the encapsulation layer 30 covers the surroundings of the chip 20 and fills the gaps between the chips 20, that is, the molding compound completely encloses the chip 20. Cladding to provide complete protection for the chip 20 .
  • the embodiment of the present application further provides a chip packaging method to form the above packaging structure.
  • the chip packaging method comprises the steps of:
  • the molding compound of the embodiment of the present application add the liquid molding compound into the mold, make it fill the chip gap and cover the surface of the chip to be packaged;
  • the step of providing the molding compound of the embodiment of the present application includes: providing the components of the encapsulation material in proportion and mixing them uniformly to form the molding compound.
  • the mixing step includes: first stirring and mixing uniformly, kneading, and vacuum defoaming to obtain the mold sealant.
  • stirring and mixing can be carried out in a revolving and self-rotating centrifugal mixer, and the temperature is controlled below 70°C.
  • a three-roll or two-roll mixer can be used for mixing, and the gap between the rolls is determined by the maximum particle size of the filler, for example, it is equal to or slightly larger than the maximum particle size of silicon dioxide.
  • the roll gap at the feed end is 2-3 times the maximum particle size of the filler, and the discharge end is 1.5-2 times the maximum particle size of the filler.
  • the roll gap is 30-80 ⁇ m so that the inorganic Distribution of fillers in the resin system. Control the temperature ⁇ 50°C during mixing to avoid premature solidification of the material due to excessive temperature.
  • the temperature of vacuum stirring and defoaming is controlled at ⁇ 50°C.
  • the curing temperature in the curing step is 120-180°C.
  • This curing process can further increase the hardness of the packaging material, so that it can better protect the chip.
  • the encapsulation material is applied on the back of the chip, cured, and the formation of the encapsulation layer refers to casting the encapsulation material on and around the back of the chip, and then using a molding process to encapsulate it. The material is filled into the mold and cured to form the encapsulation layer.
  • the molding process includes: using a molding machine for pre-pressing and pressing, then releasing the pressure and taking it out, and heating and curing in an oven.
  • a molding machine for pre-pressing and pressing, then releasing the pressure and taking it out, and heating and curing in an oven.
  • each component of the packaging material was weighed, prepared, mixed, defoamed, and filled into tubes to prepare epoxy resin molding compound.
  • the mixing process is: centrifugal stirring at 70°C for 30min, revolution speed 1200-1300r/min; three-roller mixing temperature at 50°C for 1.5h, roller spacing 40 ⁇ m; centrifugal stirring defoaming temperature at 50°C, stirring for 10min; revolution Speed 1200-1500r/min.
  • the thermal expansion coefficient CTE1 test is carried out on the encapsulation adhesives of the examples and comparative examples.
  • the test method is: after the encapsulation adhesive is cured at 130°C/1h, samples that meet the requirements of the standard ASTM E831-2019 are prepared, and then the thermal expansion coefficient of the samples is tested.
  • the Si wafer is covered with encapsulation glue with a thickness of 200 ⁇ m, cured at 130°C for 1 hour, taken out after cooling, placed on a horizontal table, and one side of the glass slide is held down with a heavy object, and the distance from the other side to the table is measured with a caliper.
  • the viscosity of the encapsulants in the examples and comparative examples was measured with reference to the standard ASTM D2196-2018, the sample was kept at a constant temperature of 25°C, and the SC4-14 rotor was selected with a Brookfield viscometer at a speed of 2-10rpm.
  • Modulus test method The size of the prepared test sample is 55mm*10mm*2mm, and the storage modulus is tested by the ASTME2254-2018 standard method.
  • the test method refers to the standard ASTM D1002-2010.
  • the liquid mold sealant is respectively placed on a square area with a size of 5mm ⁇ 5mm on the test interface silicon wafer, and cured at 150°C. After 1 hour, the shear bond strength was tested with a universal tensile machine.
  • Example 1-5 has more excellent performance than that of Comparative Examples 1-2. Because of the use of a certain proportion of epoxy resin with a flexible segment in Example 1-5, combined with the curing system and dilution The system achieves more excellent modulus and warpage, and the silicon interface adhesion is also significantly better than that of the comparative example. Moreover, according to Example 1 and Example 4, it can be seen that the compounded curing agent can have a more stable curing effect, and the effect of the molding compound is better. In addition, the inventors of the present application also found that diluents with aromatic groups exhibit more excellent effects in the molding compound system of the present application.
  • the mold sealant provided by the application can realize more stable protection for the chip through good silicon interface adhesion, and the high modulus and low warpage can improve the cracks caused by the bending of the silicon wafer.
  • the molding compound is liquid at normal temperature, has low viscosity and good fluidity, and is suitable for molding and encapsulating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Epoxy Resins (AREA)

Abstract

本申请公开了一种芯片封装用模封胶,采用式(I)所示环氧树脂,式(I)中具有聚醚等柔性单元的环氧树脂,结合固化剂和稀释剂等成分的复配,实现了良好的柔韧性和强度,且有效降低了翘曲,具有良好的硅接着力,可有效保护硅片不因翘曲而弯曲裂纹。

Description

芯片封装用模封胶及封装结构
本申请要求于2021年10月09日在中国专利局提交的、申请号为202111177372.8、申请名称为“芯片封装用模封胶及封装结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体封装技术领域,尤其涉及一种芯片封装用模封胶及封装结构。
背景技术
随着半导体技术的发展,在电子零件装置的元件封装领域,树脂型密封因其生产便捷性、成本优势逐渐成为主流。今年来,印刷线路板上电子零件的安装逐渐高密度化。随之而来的是,在半导体装置中,相对于先前的引脚插入型的封装,表面安装型的封装正快速发展。表面安装型的集成电路芯片(Integrated Circuit Chip,IC)可提高安装密度且降低安装高度,从而实现薄型、小型封装,减小封装壁厚。
通过树脂进行电子元件的封装,除了常用的转移成型法之外,还可以采用模压法,即将电子元件,例如已刻蚀芯片的硅片置于模具内,再给予树脂封装材料,并对树脂封装材料进行模压,以进行树脂密封。但是,在此过程中,由于模压操作和温度变化,容易使得模封材料发生翘曲,导致硅片弯曲过大而产生裂纹、裂缝,影响后续工段的操作,也容易导致芯片的不良率。
技术问题
现有技术对电子元件进行封装中,由于模压操作和温度变化,容易使得模封材料发生翘曲,导致硅片弯曲过大而产生裂纹、裂缝,影响后续工段的操作,也容易导致芯片的不良率。
技术解决方案
本申请提供一种芯片封装用模封胶,具有高模量、低翘曲和良好的柔韧性,可有效减少硅片弯曲过大而导致的硅片裂纹裂缝。
本申请提供如下技术方案:
一方面,本申请提供一种芯片封装用模封胶,以重量份计包括如下组分:环氧树脂5-20重量份,固化剂5-20重量份,固化促进剂0.1-1.2重量份,无机填料70-100重量份,偶联剂0.5-2.5重量份,稀释剂0.1-15重量份;
其中,所述环氧树脂具有如式(I)所示的结构:
Figure PCTCN2022099205-appb-000001
式(I)中,R 1、R 2各自独立地选自H或C1-C10的直链烷基或支链烷基,R 3、R 4、R 5 和R 6各自独立地选自氢原子、甲基或卤素,X选自-O-,-COO-,或者-OCH(CH 3)O-,并且R选自亚烷基、聚醚骨架中的任一种,n为1-10范围内的整数。
在一些实施例中,在式(I)中,所述R为-CH 2CH 2-(OCH 2CH 2) m-或者-CH(CH 3)CH 2-(OCH(CH 3)CH 2) m-,其中m为0-5范围内的整数。
在一些实施例中,所述环氧树脂具有如式(II)所示的结构:
Figure PCTCN2022099205-appb-000002
其中,X为-OCH(CH 3)O-,n为1-5范围内的整数。
在一些实施例中,所述无机填料为二氧化硅,其中二氧化硅的粒径范围为0.1-75μm。
在一些实施例中,所述固化剂选自四氢苯酐、六氢苯酐、甲基六氢苯酐、邻苯二甲酸酐、四氢邻苯二甲酸酐、甲基纳迪克酸酐及苯酚-芳烷基酚醛树脂中的一种或多种。
在一些实施例中,所述固化剂包括甲基纳迪克酸酐和甲基六氢苯酐,且二者的质量比为(1-2):1。
在一些实施例中,所述稀释剂为对叔丁基苯酚型环氧树脂稀释剂,总氯≤200ppm。
在一些实施例中,所述芯片封装用模封胶还含有0.02-0.1重量份的着色剂。
在一些实施例中,以重量份计由如下组分组成:所述环氧树脂5-20重量份,所述固化剂5-20重量份,所述固化促进剂0.1-1.2重量份,所述无机填料70-100重量份,所述稀释剂0.1-15重量份,着色剂0.02-0.1重量份。
另一方面,本申请还提供一种芯片封装结构,所述芯片封装结构包括蚀刻于硅片晶圆上的芯片,以及覆盖于所述硅片晶圆上的封装层,其中所述封装层与所述硅片晶圆接触并包覆所述芯片,所述封装层包括如上述任一项所述的模封胶。
有益效果
本申请的模封胶采用具有聚醚等柔性单元的环氧树脂,结合固化剂和稀释剂等成分的复配,实现了良好的柔韧性和强度,且有效降低了翘曲,其中翘曲可降低至0mm,模量可达8GPa以上,具有良好的硅接着力,可有效保护硅片不因翘曲而弯曲裂纹。并且,本申请的申请人还发现,加入对叔丁基苯酚型环氧树脂稀释剂,可进一步有效降低单官能脂肪族稀释剂对固化体系的影响,能进一步改善环氧树脂的柔韧性和模量。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中待封装的蚀刻有芯片的硅片俯视结构示意图;
图2为本申请实施例提供一种芯片封装结构。
本申请的实施方式
下面对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人 员在没有作出创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请的描述中,术语“包括”是指“包括但不限于”。本申请中“一种或多种”等表述,是指所列举多项中的一种或者多种,“多种”是指这些项中两种或两种以上的任意组合,包括单项(种)或复数项(种)的任意组合,例如,“a、b或c中的至少一项(种)”或“a、b和c中的至少一项(种)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。本发明的各种实施例可以以一个范围的形式存在;应当理解,以一范围形式的描述仅仅是因为方便及简洁,不应理解为对本发明范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到5的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,以及所数范围内的单一数字,例如1、2、3、4或5,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
本申请实施例提供一种芯片封装用模封胶,以重量份计包括如下组分:环氧树脂5-20重量份,固化剂5-20重量份,固化促进剂0.1-1.2重量份,无机填料70-100重量份,稀释剂0.1-15重量份;
其中,所述环氧树脂具有如式(I)所示的结构:
Figure PCTCN2022099205-appb-000003
式(I)中,R 1、R 2各自独立地选自H或C1-C10的直链烷基或支链烷基,R 3、R 4、R 5和R 6各自独立地选自氢原子、甲基或卤素,X选自-O-,-COO-,或者-OCH(CH 3)O-,并且R选自亚烷基、聚醚骨架中的任一种,n为1-10范围内的整数。
本申请中,卤素选自氟原子或氯原子,其中氟原子是优选的。
本申请实施例提出的芯片封装用模封胶,采用式(I)所示的环氧树脂,通过X基团和R基团等柔性片段和低极性的链段,结合固化体系和稀释剂,使得模封胶具有良好的柔韧性和强度,且有效降低了翘曲,具有良好的硅接着力。
对于本申请实施例所用的环氧树脂,式(I)中的R基团可以为-CH 2CH 2-(OCH 2CH 2) m-或者-CH(CH 3)CH 2-(OCH(CH 3)CH 2) m-,其中m为0-5范围内的整数。例如当m=0时,R基团为直链或支链的亚烷基。当m=1-5中任一整数时,R基团为聚醚骨架。
在一些具体实施例中,环氧树脂可具有如式(II)所示的结构:
Figure PCTCN2022099205-appb-000004
其中,X为-OCH(CH 3)O-,n为1-5范围内的整数。
在一些实施例中,出于芯片封装工艺中固化速率和强度的考虑,环氧树脂的环氧当量为400-450g/eq。环氧树脂的粘度(25℃,E型粘度计)为10000-15000mPa.s,数均分子量为700-900。这样的环氧树脂可以实现良好的柔韧性和高模量。在一些具体实施例中,可选用DIC株式会社的EXA-4850-150。
本申请实施例中,无机填料可选用二氧化硅,粒径范围为0.1-75μm,二氧化硅的用量为70-100重量份。在本申请的环氧树脂模封胶中,由于选用柔性链段的环氧树脂,粘度低、柔韧性好,因而可实现较高比例的二氧化硅填充量,进一步使得封装层具有低的热膨胀系 数。在一些实施例中,二氧化硅可以为气相二氧化硅或熔融二氧化硅,粒径为0.1-75μm,或者1-50μm。
固化剂选自四氢苯酐、六氢苯酐、甲基六氢苯酐、邻苯二甲酸酐、四氢邻苯二甲酸酐、甲基纳迪克酸酐(甲基-5-降冰片烯-2,3-二羧酸酐)及苯酚-芳烷基酚醛树脂中的一种或多种。固化剂用量为5-20重量份,例如10-12份。固化剂的用量没有特别的限定,本领域技术人员能够根据施工条件和固化速率选择确定固化剂的用量。在一些实施例中,固化剂优选甲基纳迪克酸酐与甲基六氢苯酐的复配物,复配比例为(1-2):1,更优选1:1。在一些实施例中,环氧树脂与固化剂的用量为(1-2):1,优选1:1。
本申请实施例中还可以进一步加入固化促进剂,固化促进剂的种类没有特别的限定,可选自咪唑或N,N-二甲基苯胺。固化剂和固化促进剂结合本申请实施例的环氧树脂一同实现封装材料所需的固化速率和流动性等加工性能。
模封胶中含有0.5-2.5重量份的偶联剂。偶联剂可以增加各组分之间的相容性,尤其是加入较大比重的二氧化硅填料和增韧剂的情况下,偶联剂可帮助这些粒子均匀地分散在环氧树脂体系当中,改善体系的相容性。在本申请实施例中,偶联剂为具有环氧基团的硅烷偶联剂,例如选自γ-环氧丙氧基丙基三甲氧基硅烷、γ-环氧丙氧基丙基三乙氧基硅烷、γ-环氧丙氧基丙基三丙氧基硅烷、γ-环氧丙氧基丙基三丁氧基硅烷的任一种,但不限于此。具有环氧基团的硅烷偶联剂所带有的环氧官能团可以在固化过程中较好地与环氧树脂形成固化交联网络,进一步改善体系的相容性。
模封胶中含有0.1-1.5重量份的稀释剂,可在尽量不改变材料性能的情况下,降低封装材料的粘度。该稀释剂可以选自本领域已知的环氧稀释剂,例如对叔丁基苯酚型环氧树脂稀释剂或者单官能脂肪族稀释剂、双官能脂肪族稀释剂中的任一种。值得说明的是,对叔丁基苯酚型环氧树脂稀释剂在本申请实施例的模封胶体系中体现出更加优异的效果,其可能的原因在于叔丁基苯酚型环氧树脂稀释剂对固化体系的影响更小,可以保持环氧树脂较稳定的固化特性。并且稀释剂应该是不含卤素或低卤素含量的,期望的是总氯≤200ppm。在一些实施例中,可选择的稀释剂为ADEKA ED-509S或ERISYS GE-11。稀释剂的用量应不超过1.5%,以保持较低的总氯含量。
芯片封装材料还包括着色剂0.02-0.1重量份。在一些实施例中,颜料为炭黑。着色剂赋予封装层以颜色,以便封装层呈现不同颜色的外观,并且方便在芯片上印刷文字。
本申请实施例进一步提供一种芯片封装结构,参阅图1和图2,该封装结构包括硅片10及蚀刻于该硅片上的芯片20,封装层30与硅片10部分接触,所述封装层30包括本申请实施例提供的模封胶。
本领域技术人员可以理解,如图1所示,在硅片10上可间隔蚀刻多个芯片20,本申请实施例的模封胶可用于晶圆级封装,或者是单个、多个芯片的封装。
一些实施例中,封装层30的厚度为50-200μm。
一些实施例中,封装层30覆盖所述芯片背面;在另一些实施例中,封装层30覆盖及所述芯片20的四周,并且填充芯片20之间的间隙,即模封胶将芯片20完全包覆以便为芯片20提供完全的保护。
相应地,本申请实施例请还提供一种芯片封装方法,以形成上述封装结构。该芯片封装方法包括如下步骤:
将待封装的芯片置于模具中,其中该芯片设置于硅片上;
提供本申请实施例的模封胶,将液体模封胶加入到模具中,使其填充芯片间隙并覆盖芯片的待封装表面;
采用模压机进行模压;以及
固化,完成芯片封装。
一些实施例中,提供本申请实施例的模封胶的步骤包括:按比例提供所述封装材料的各组分,混合均匀,形成模封胶。
在一些实施例中,混合的步骤包括:包括先搅拌混合均匀,混炼,经真空脱泡,制得该模封胶。
本领域技术人员可以理解,可采用本领域已知的方式实现上述混合步骤,只要可提供各组分分散均匀且相容性良好的模封胶分散体系即可。
例如可采用在公转自转式离心搅拌机进行搅拌混合,温度控制在70℃以下。可采用三辊或双辊混炼机进行混炼,辊的间隙由填料的最大粒径决定,例如等于二氧化硅的最大粒径或略大于二氧化硅的最大粒径,在一些实施方式中,进料端的辊间隙为填料最大粒径的2-3倍,出料端为填料最大粒径的1.5-2倍,例如在本申请实施例中辊间隙为30-80μm,以便可充分分散无机填料在树脂体系中的分布。混炼时控制温度≤50℃,避免因温度过高而引起物料提前固化。真空搅拌脱泡的温度控制在≤50℃。
可选的,在本申请的一些实施例中,所述固化步骤中固化温度为120-180℃。该固化过程可进一步提高封装材料的硬度,使其对芯片进行更好的保护。
可选的,在本申请的一些实施例中,在所述芯片的背面施用封装材料,固化,形成封装层是指将所述封装材料流延在芯片背面及周围,然后采用模压工艺使其封装材料填入模具中,并固化,形成所述封装层。
可选的,在本申请的一些实施例中,所述模压工艺包括:采用模压机进行预压和压合,再泄压取出,烘箱内加热固化。对于模压工艺的参数没有特别的限定,本领域技术人员可根据本领域已知的模压工艺及晶圆、模具的具体规模确定模压机的工作参数。
下面通过具体实施例来对本申请进行具体说明,以下实施例仅是本申请的部分实施例,不是对本申请的限定。
实施例
根据表1称取封装材料的各组分,配料,混合,脱泡,装管制备成环氧树脂模封胶。
混合工艺为:70℃下离心搅拌30min,公转转速1200-1300r/min;三辊筒混炼温度50℃下混炼1.5h,辊间距40μm;离心搅拌脱泡温度为50℃,搅拌10min;公转转速1200-1500r/min。
对实施例及对比例的封装胶进行热膨胀系数CTE1测试,测试方法为:将封装胶经130℃/1h固化后,制备符合标准ASTM E831-2019要求的样品,然后测试样品的热膨胀系数。
对实施例及对比例的封装胶进行翘曲测试,测试方法为:
Si片上面覆盖200μm厚度的封装胶,在130℃下固化1h,冷却后取出,放在水平的桌面上,用重物按住载玻片一边,卡尺测量另一边到桌面的距离。
测定实施例及对比例的封装胶的粘度,参考标准ASTM D2196-2018进行测量,样品恒温25℃,用Brookfield粘度计,选择SC4-14转子,转速为2-10rpm。
模量测试方法:制备测试样品的尺寸为55mm*10mm*2mm,采用ASTME2254-2018标准方法测试储存模量。
对实施例及对比例的封装胶的硅界面粘着力,测试方法参考标准ASTM D1002-2010,将液态模封胶分别点在测试界面硅片上大小为5mm×5mm的方形区域,经150℃固化1小时后,用万能拉力机测试剪切粘结强度。
表1模封胶成分表及性能测试结果
Figure PCTCN2022099205-appb-000005
由上表可知,选用实施例1-5比对比例1-2相比具有更加优异性能,实施例1-5因采用了一定含量比例的带柔性链段的环氧树脂,结合固化体系和稀释体系,实现了更加优异的模量和翘曲,且硅界面附着力也明显优于对比例。并且,根据实施例1和实施例4可以看出,复配的固化剂可以具有更加稳定的固化效果,模封胶的效果更佳。另外,本申请的发明人还发现带芳香基的稀释剂在本申请的模封胶体系中表现出更优异的效果。本申请所提供的模封胶通过良好的硅界面附着力可对芯片实现更加稳定的保护,且高模量和低翘曲改善了因硅片弯曲引起的裂缝。且该模封胶常温下呈液态,粘度低,具有良好的流动性,可适用于模压封装。
以上对本申请实施例所提供的芯片封装用模封胶及封装结构进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制

Claims (18)

  1. 一种芯片封装用模封胶,其中,以重量份计包括如下组分:环氧树脂5-20重量份,固化剂5-20重量份,固化促进剂0.1-1.2重量份,无机填料70-100重量份,偶联剂0.5-2.5重量份,稀释剂0.1-15重量份;
    其中,所述环氧树脂具有如式(I)所示的结构:
    Figure PCTCN2022099205-appb-100001
    式(I)中,R 1、R 2各自独立地选自H或C1-C10的直链烷基或支链烷基,R 3、R 4、R 5和R 6各自独立地选自氢原子、甲基或卤素,X选自-O-,-COO-,或者-OCH(CH 3)O-,并且R选自亚烷基、聚醚骨架中的任一种,n为1-10范围内的整数。
  2. 如权利要求1所述的芯片封装用模封胶,其中,在式(I)中,所述R为-CH 2CH 2-(OCH 2CH 2) m-或者-CH(CH 3)CH 2-(OCH(CH 3)CH 2) m-,其中m为0-5范围内的整数。
  3. 如权利要求2所述的芯片封装用模封胶,其中,所述环氧树脂具有如式(II)所示的结构:
    Figure PCTCN2022099205-appb-100002
    其中,X为-OCH(CH 3)O-,n为1-5范围内的整数。
  4. 如权利要求1所述的芯片封装用模封胶,其中,所述无机填料为二氧化硅,其中二氧化硅的粒径范围为0.1-75μm。
  5. 如权利要求1所述的芯片封装用模封胶,其中,所述固化剂选自四氢苯酐、六氢苯酐、甲基六氢苯酐、邻苯二甲酸酐、四氢邻苯二甲酸酐、甲基纳迪克酸酐及苯酚-芳烷基酚醛树脂中的一种或多种。
  6. 如权利要求5所述的芯片封装用模封胶,其中,所述固化剂包括甲基纳迪克酸酐和甲基六氢苯酐,且二者的质量比为1:1。
  7. 如权利要求1所述的芯片封装用模封胶,其中,所述稀释剂为对叔丁基苯酚型环氧树脂稀释剂,总氯≤200ppm。
  8. 如权利要求1所述的芯片封装用模封胶,其中,所述芯片封装用模封胶还含有0.02-0.1重量份的着色剂。
  9. 如权利要求1所述的芯片封装用模封胶,其中,以重量份计由如下组分组成:所述环氧树脂5-20重量份,所述固化剂5-20重量份,所述固化促进剂0.1-1.2重量份,所述无机填料70-100重量份,所述稀释剂0.1-15重量份,着色剂0.02-0.1重量份。
  10. 一种芯片封装结构,其中,所述芯片封装结构包括蚀刻于硅片上的芯片,以及覆盖于所述硅片上的封装层,其中所述封装层与所述硅片接触并包覆所述芯片,所述封装层包括模封胶,其中,所述模封胶以重量份计包括如下组分:环氧树脂5-20重量份,固化剂5-20重量份,固化促进剂0.1-1.2重量份,无机填料70-100重量份,偶联剂0.5-2.5重量份,稀释剂0.1-15重量份;
    其中,所述环氧树脂具有如式(I)所示的结构:
    Figure PCTCN2022099205-appb-100003
    式(I)中,R 1、R 2各自独立地选自H或C1-C10的直链烷基或支链烷基,R 3、R 4、R 5和R 6各自独立地选自氢原子、甲基或卤素,X选自-O-,-COO-,或者-OCH(CH 3)O-,并且R选自亚烷基、聚醚骨架中的任一种,n为1-10范围内的整数。
  11. 如权利要求10所述的芯片封装结构,其中,在式(I)中,所述R为-CH 2CH 2-(OCH 2CH 2) m-或者-CH(CH 3)CH 2-(OCH(CH 3)CH 2) m-,其中m为0-5范围内的整数。
  12. 如权利要求11所述的芯片封装结构,其中,所述环氧树脂具有如式(II)所示的结构:
    Figure PCTCN2022099205-appb-100004
    其中,X为-OCH(CH 3)O-,n为1-5范围内的整数。
  13. 如权利要求10所述的芯片封装结构,其中,所述无机填料为二氧化硅,其中二氧化硅的粒径范围为0.1-75μm。
  14. 如权利要求10所述的芯片封装结构,其中,所述固化剂选自四氢苯酐、六氢苯酐、甲基六氢苯酐、邻苯二甲酸酐、四氢邻苯二甲酸酐、甲基纳迪克酸酐及苯酚-芳烷基酚醛树脂中的一种或多种。
  15. 如权利要求14所述的芯片封装结构,其中,所述固化剂包括甲基纳迪克酸酐和甲基六氢苯酐,且二者的质量比为1:1。
  16. 如权利要求10所述的芯片封装结构,其中,所述稀释剂为对叔丁基苯酚型环氧树脂稀释剂,总氯≤200ppm。
  17. 如权利要求10所述的芯片封装结构,其中,所述芯片封装用模封胶还含有0.02-0.1重量份的着色剂。
  18. 如权利要求10所述的芯片封装结构,其中,以重量份计由如下组分组成:所述环氧树脂5-20重量份,所述固化剂5-20重量份,所述固化促进剂0.1-1.2重量份,所述无机填料70-100重量份,所述稀释剂0.1-15重量份,着色剂0.02-0.1重量份。
PCT/CN2022/099205 2021-10-09 2022-06-16 芯片封装用模封胶及封装结构 WO2023056758A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/307,770 US20240030075A1 (en) 2021-10-09 2023-04-26 Die sealant for chip packaging and packaging structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111177372.8A CN113621332B (zh) 2021-10-09 2021-10-09 芯片封装用模封胶及封装结构
CN202111177372.8 2021-10-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/307,770 Continuation US20240030075A1 (en) 2021-10-09 2023-04-26 Die sealant for chip packaging and packaging structure

Publications (1)

Publication Number Publication Date
WO2023056758A1 true WO2023056758A1 (zh) 2023-04-13

Family

ID=78390903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099205 WO2023056758A1 (zh) 2021-10-09 2022-06-16 芯片封装用模封胶及封装结构

Country Status (3)

Country Link
US (1) US20240030075A1 (zh)
CN (1) CN113621332B (zh)
WO (1) WO2023056758A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113621332B (zh) * 2021-10-09 2022-01-18 武汉市三选科技有限公司 芯片封装用模封胶及封装结构
CN116694275B (zh) * 2023-04-26 2024-03-08 湖北三选科技有限公司 一种液体环氧塑封料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019006A (ja) * 2005-06-08 2007-01-25 Hitachi Chem Co Ltd 導電ペーストおよびそれを用いた電子部品搭載基板
JP2008007577A (ja) * 2006-06-27 2008-01-17 Matsushita Electric Works Ltd チップオンフィルム用液状エポキシ樹脂組成物及び半導体装置
CN102827566A (zh) * 2012-09-19 2012-12-19 三友(天津)高分子技术有限公司 单组份耐高低温环氧树脂组成物
CN106167687A (zh) * 2015-05-21 2016-11-30 日东电工株式会社 粘接片、切割带一体型粘接片、薄膜、半导体装置的制造方法及半导体装置
CN106574038A (zh) * 2014-07-24 2017-04-19 三菱化学株式会社 热固性树脂组合物及其成形体
CN107163891A (zh) * 2017-07-07 2017-09-15 东莞市德聚胶接技术有限公司 双固化环氧胶黏剂及其制备方法
CN109265916A (zh) * 2017-07-18 2019-01-25 味之素株式会社 树脂组合物
CN109843994A (zh) * 2016-10-17 2019-06-04 株式会社大赛璐 片状预浸料
US20200332109A1 (en) * 2019-04-22 2020-10-22 Shengyi Technology Co., Ltd. Resin composition for a metal substrate, and resin varnish and metal base copper-clad laminate comprising the same
CN113621332A (zh) * 2021-10-09 2021-11-09 武汉市三选科技有限公司 芯片封装用模封胶及封装结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989402B2 (ja) * 2007-10-04 2012-08-01 日東電工株式会社 中空型デバイス封止用樹脂組成物シートおよびそれを用いて封止した中空型デバイス
JP2009167372A (ja) * 2008-01-21 2009-07-30 Sekisui Chem Co Ltd 電気部品用接着剤
JP7174637B2 (ja) * 2019-01-28 2022-11-17 株式会社ダイセル 硬化性フイルム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019006A (ja) * 2005-06-08 2007-01-25 Hitachi Chem Co Ltd 導電ペーストおよびそれを用いた電子部品搭載基板
JP2008007577A (ja) * 2006-06-27 2008-01-17 Matsushita Electric Works Ltd チップオンフィルム用液状エポキシ樹脂組成物及び半導体装置
CN102827566A (zh) * 2012-09-19 2012-12-19 三友(天津)高分子技术有限公司 单组份耐高低温环氧树脂组成物
CN106574038A (zh) * 2014-07-24 2017-04-19 三菱化学株式会社 热固性树脂组合物及其成形体
CN106167687A (zh) * 2015-05-21 2016-11-30 日东电工株式会社 粘接片、切割带一体型粘接片、薄膜、半导体装置的制造方法及半导体装置
CN109843994A (zh) * 2016-10-17 2019-06-04 株式会社大赛璐 片状预浸料
CN107163891A (zh) * 2017-07-07 2017-09-15 东莞市德聚胶接技术有限公司 双固化环氧胶黏剂及其制备方法
CN109265916A (zh) * 2017-07-18 2019-01-25 味之素株式会社 树脂组合物
US20200332109A1 (en) * 2019-04-22 2020-10-22 Shengyi Technology Co., Ltd. Resin composition for a metal substrate, and resin varnish and metal base copper-clad laminate comprising the same
CN113621332A (zh) * 2021-10-09 2021-11-09 武汉市三选科技有限公司 芯片封装用模封胶及封装结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄道生 (HUANG, DAOSHENG): "环氧树脂灌封料及其工艺和常见问题 (The Material, Technology and some Questions on the Encapsulation in Current Epoxy Resin)", 电子与封装 (ELECTRONICS & PACKAGING), vol. 7, no. 03, 30 March 2007 (2007-03-30), pages 1 - 3 *

Also Published As

Publication number Publication date
CN113621332B (zh) 2022-01-18
US20240030075A1 (en) 2024-01-25
CN113621332A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2023056758A1 (zh) 芯片封装用模封胶及封装结构
CN103717634A (zh) 用于半导体封装的环氧树脂组合物、使用其的半导体器件以及用于制造半导体器件的方法
KR20110017853A (ko) 전자 패키징
CN113604184B (zh) 芯片封装材料、芯片封装结构及封装方法
WO2022151517A1 (zh) 晶圆级封装密封用电路积层膜、其制备方法及应用
JP3835715B2 (ja) 液状注入封止アンダーフィル材料
JP5069441B2 (ja) 片面封止型半導体装置製造用エポキシ樹脂組成物及び片面封止型半導体装置
JP5364963B2 (ja) エポキシ樹脂組成物及び半導体装置
JP3562565B2 (ja) 半導体封止用エポキシ樹脂組成物及び半導体装置
JPH11124487A (ja) シアン酸エステル−マレイミド液状樹脂組成物及び半導体封止装置
WO2018164042A1 (ja) 硬化性樹脂組成物、その硬化物及び硬化性樹脂組成物の製造方法
JP2000336244A (ja) 液状封止樹脂組成物及びそれを用いた半導体装置
JPH0931161A (ja) 液状エポキシ樹脂組成物
KR101234848B1 (ko) 반도체 소자 밀봉용 액상 에폭시 수지 조성물 및 이를 이용한 반도체 소자
JP2003268203A (ja) ウエハーモールド用液状エポキシ樹脂組成物及びこれを用いた半導体装置
KR100797614B1 (ko) 반도체 소자 언더필용 액상 에폭시 수지 조성물 및 이를이용한 반도체 소자
JPH07247409A (ja) エポキシ樹脂組成物、エポキシ樹脂混合物の製造方法及び半導体封止材料
KR20050068690A (ko) 반도체 소자 밀봉용 액상 에폭시 수지 조성물
KR100529258B1 (ko) 반도체 봉지재용 에폭시 수지 조성물
CN113278253A (zh) 用于芯片封装的二聚酸环氧树脂组合物及其应用和芯片的切割方法
JP2001089551A (ja) エポキシ樹脂組成物及び半導体装置
CN113278252B (zh) 含硅环氧树脂组合物、模封胶及其应用
KR100479856B1 (ko) 캐비티 다운형 볼그리드어레이 패키지용 액상 에폭시 수지조성물
JP2003238651A (ja) 液状樹脂組成物、半導体装置の製造方法及び半導体装置
JPH08258077A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877783

Country of ref document: EP

Kind code of ref document: A1