WO2023055131A1 - 그래핀 나노판을 포함하는 폴리이미드 필름 및 그 제조방법 - Google Patents

그래핀 나노판을 포함하는 폴리이미드 필름 및 그 제조방법 Download PDF

Info

Publication number
WO2023055131A1
WO2023055131A1 PCT/KR2022/014667 KR2022014667W WO2023055131A1 WO 2023055131 A1 WO2023055131 A1 WO 2023055131A1 KR 2022014667 W KR2022014667 W KR 2022014667W WO 2023055131 A1 WO2023055131 A1 WO 2023055131A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
dianhydride
polyimide film
less
content
Prior art date
Application number
PCT/KR2022/014667
Other languages
English (en)
French (fr)
Inventor
전진석
여문진
백승열
이길남
Original Assignee
피아이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피아이첨단소재 주식회사 filed Critical 피아이첨단소재 주식회사
Priority to CN202280063233.9A priority Critical patent/CN118043383A/zh
Publication of WO2023055131A1 publication Critical patent/WO2023055131A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area

Definitions

  • the present invention relates to a polyimide film containing graphene nanoplatelets with excellent dielectric properties and a method for preparing the same.
  • Polyimide (PI) is a polymer material with the highest level of heat resistance, chemical resistance, electrical insulation, chemical resistance and weather resistance among organic materials based on an imide ring with excellent chemical stability along with a rigid aromatic main chain. am.
  • Such a thin circuit board tends to use a structure in which a circuit including a metal foil is formed on a polyimide film that has excellent heat resistance, low temperature resistance, and insulation characteristics and is easily bent.
  • a flexible metal clad laminate is mainly used, and as an example, a flexible copper clad laminate (FCCL) using a thin copper plate as a metal foil is included.
  • FCCL flexible copper clad laminate
  • polyimide is also used as a protective film or insulating film for thin circuit boards.
  • an insulator having high impedance capable of maintaining electrical insulation even at high frequencies is required. Since impedance is in inverse proportion to the frequency and dielectric constant (Dk) formed in the insulator, the dielectric constant must be as low as possible to maintain insulation even at high frequencies.
  • Dk dielectric constant
  • dielectric properties are not at a level that is excellent enough to maintain sufficient insulation in high frequency communication.
  • polyimide with low dielectric properties is recognized as the most important factor in the performance of thin circuit boards.
  • Dielectric dissipation factor (Df) means the amount of electrical energy wasted on a thin circuit board and is closely related to the signal propagation delay that determines the communication speed. It is recognized as an important factor in the performance of the substrate.
  • polyimide film while it is suitable as a material for a thin circuit board due to its excellent inherent properties, it may be relatively vulnerable to moisture due to a polar imide group, and as a result, insulation properties may be deteriorated.
  • the dielectric constant must be higher than that of the conventional polyimide film (Dk: 3.5) in order to match the impedance value of the terminator resistance.
  • Patent Document 1 Korean Patent Publication No. 10-2015-0069318
  • an object of the present invention is to provide a polyimide film having excellent dielectric properties and a manufacturing method thereof.
  • the present invention has a practical purpose to provide specific embodiments thereof.
  • One embodiment of the present invention for achieving the above object is benzophenone tetracarboxylic dianhydride (BTDA), biphenyltetracarboxylic dianhydride (BPDA) and pyromellitic dianhydride (PMDA) Obtained by imidization reaction of a dianhydride component containing a polyamic acid solution containing a diamine component including m-tolidine and paraphenylene diamine (PPD), graphene nanoplates (graphene It provides a polyimide film containing 0.5 to 2.5% by weight of nanoplatelets).
  • BTDA benzophenone tetracarboxylic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • the content of m-tolidine may be 20 mol% or more and 40 mol% or less, and the content of paraphenylene diamine may be 60 mol% or more and 80 mol% or less.
  • the content of benzophenone tetracarboxylic dianhydride is 20 mol% or more and 45 mol% or less based on 100 mol% of the total content of the dianhydride component
  • the content of biphenyltetracarboxylic dianhydride is 20 mol % or more and 45 mol% or less
  • the content of pyromellitic dianhydride may be 20 mol% or more and 45 mol% or less.
  • the graphene nanoplatelets may have an average thickness of 6 to 8 nm, an average particle size of 5 to 25 ⁇ m, and a specific surface area of 120 to 150 m 2 /g.
  • the polyimide film may have a dielectric constant of 4.0 or more and 7.0 or less, and a dielectric loss factor of 0.01 or less.
  • Another embodiment of the present invention is (a) dianhydride acids including benzophenonetetracarboxylic dianhydride (BTDA), biphenyltetracarboxylic dianhydride (BPDA) and pyromellitic dianhydride (PMDA) preparing a polyamic acid by polymerizing a component and a diamine component composed of m-tolidine and paraphenylene diamine (PPD) in an organic solvent, (b) adding graphene nanoplatelets to the polyamic acid and mixing; and (c) imidizing the polyamic acid containing the graphene nanoplatelets.
  • BTDA benzophenonetetracarboxylic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • Another embodiment of the present invention provides a multilayer film including the polyimide film, a flexible metal clad laminate including the polyimide film and an electrically conductive metal foil, and an electronic component including the flexible metal clad laminate.
  • the present invention provides a polyimide film having excellent dielectric properties through a polyimide film composed of specific components and a specific composition ratio and a method for manufacturing the polyimide film, thereby providing a polyimide film in various fields requiring these characteristics, particularly flexible metal clad laminates, etc. It can be usefully applied to electronic parts of
  • dianhydride acid is intended to include its precursors or derivatives, which technically may not be dianhydride acids, but will nonetheless react with diamines to form polyamic acids, which in turn polyamic acids. can be converted to mead.
  • diamine is intended to include precursors or derivatives thereof, which may not technically be diamines, but will nonetheless react with dianhydrides to form polyamic acids, which in turn will form polyamic acids. can be converted to mead.
  • the polyimide film according to the present invention includes a dianhydride component including benzophenonetetracarboxylic dianhydride (BTDA), biphenyltetracarboxylic dianhydride (BPDA) and pyromellitic dianhydride (PMDA), It is obtained by imidization of a polyamic acid solution containing a diamine component including m-tolidine and paraphenylene diamine (PPD), and graphene nanoplatelets are 0.5 to 2.5% by weight.
  • BTDA benzophenonetetracarboxylic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • the content of m-tolidine may be 20 mol% or more and 40 mol% or less, and the content of paraphenylene diamine may be 60 mol% or more and 80 mol% or less.
  • m-tolidine has a hydrophobic methyl group, contributing to the low moisture absorption characteristics of the polyimide film.
  • the content of benzophenonetetracarboxylic dianhydride is 20 mol% or more and 45 mol% or less
  • the content of biphenyltetracarboxylic dianhydride is 20 mol% or more 45 mol% or less
  • the content of pyromellitic dianhydride may be 20 mol% or more and 45 mol% or less.
  • the polyimide chain derived from the biphenyltetracarboxylic dianhydride of the present invention has a structure called a charge transfer complex (CTC), that is, an electron donor and an electron acceptor. They have a regular linear structure located close to each other, and intermolecular interactions are strengthened.
  • CTC charge transfer complex
  • benzophenonetetracarboxylic dianhydride having a carbonyl group also contributes to the expression of CTC like biphenyltetracarboxylic dianhydride.
  • this structure has an effect of preventing hydrogen bonding with moisture, it is possible to maximize the effect of lowering the hygroscopicity of the polyimide film by influencing the lowering of the moisture absorptivity.
  • the dianhydride component may additionally include pyromellitic dianhydride.
  • Pyromellitic dianhydride is a dianhydride component having a relatively rigid structure, and is preferable in that it can impart appropriate elasticity to the polyimide film.
  • the content ratio of dianhydride is particularly important. For example, as the content ratio of biphenyltetracarboxylic dianhydride decreases, it becomes difficult to expect a low moisture absorption due to the CTC structure.
  • biphenyltetracarboxylic dianhydride and benzophenonetetracarboxylic dianhydride contain two benzene rings corresponding to the aromatic part, whereas pyromellitic dianhydride has a benzene ring corresponding to the aromatic part contains 1
  • the increase in the pyromellitic dianhydride content in the dianhydride component can be understood as an increase in the imide group in the molecule based on the same molecular weight, which means that the polyimide polymer chain has an imide derived from the pyromellitic dianhydride. It can be understood that the ratio of de groups is increased relative to the imide groups derived from biphenyltetracarboxylic dianhydride and benzophenonetetracarboxylic dianhydride.
  • the component having a relatively rigid structure is reduced, and thus the elasticity of the polyimide film may be lowered to a desired level or less.
  • the graphene nanoplatelets may have an average thickness of 6 to 8 nm, an average particle size of 5 to 25 ⁇ m, and a specific surface area of 120 to 150 m 2 /g.
  • the graphene nanoplatelets have relatively excellent dispersibility compared to other carbon nanomaterials, and when added to a polyimide film, a drop in dielectric loss of the polyimide film can be minimized.
  • the polyimide film may have a dielectric constant of 4.0 or more and 7.0 or less, and a dielectric loss factor of 0.01 or less.
  • the dielectric constant may be preferably 4.5 or more, more preferably 5.0 or more.
  • a polyimide film satisfying both dielectric constant (Dk) and dielectric loss factor (Df) it can be used as an insulating film for flexible metal clad laminates, and the manufactured flexible metal clad laminates transmit signals at high frequencies of 10 GHz or more. Even when used as an electrical signal transmission circuit, its insulation stability can be secured and signal transmission delay can be minimized.
  • Some diamine components and some dianhydride components are reacted in an excess amount in a solvent to form a first composition, and some diamine components and some dianhydride components in another solvent are reacted in an excess amount to form a first composition.
  • the method of polymerizing by making it mole, etc. are mentioned.
  • the polymerization method is not limited to the above examples, and any known method may be used for preparing the polyamic acid.
  • dianhydride components including benzophenone tetracarboxylic dianhydride (BTDA), biphenyltetracarboxylic dianhydride (BPDA) and pyromellitic dianhydride (PMDA), and m-tolidine (preparing a polyamic acid by polymerizing a diamine component composed of m-tolidine) and paraphenylene diamine (PPD) in an organic solvent;
  • BTDA benzophenone tetracarboxylic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • m-tolidine preparing a polyamic acid by polymerizing a diamine component composed of m-tolidine
  • PPD paraphenylene diamine
  • the content of m-tolidine is 20 mol% or more and 40 mol% or less
  • the content of paraphenylene diamine is 60 mol% or more and 80 mol% or less
  • the dianhydride component is Based on the total content of 100 mol%
  • the content of benzophenonetetracarboxylic dianhydride is 20 mol% or more and 45 mol% or less
  • the content of biphenyltetracarboxylic dianhydride is 20 mol% or more and 45 mol% or less
  • the content of pyromellitic dianhydride may be 20 mol% or more and 45 mol% or less.
  • the polymerization method of the polyamic acid as described above can be defined as a random polymerization method, and the polyimide film prepared from the polyamic acid of the present invention manufactured by the above process has excellent dielectric properties It can be preferably applied in terms of maximizing the effect of the invention.
  • the polymerization method of the polyamic acid that can be particularly preferably used in the present invention may be a block polymerization method.
  • the solvent for synthesizing the polyamic acid is not particularly limited, and any solvent can be used as long as it dissolves the polyamic acid, but an amide-based solvent is preferable.
  • the solvent may be an organic polar solvent, and in detail, may be an aprotic polar solvent, for example, N,N-dimethylformamide (DMF), N,N- It may be one or more selected from the group consisting of dimethylacetamide, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), and diglyme, but is not limited thereto, and is used alone or as needed. Two or more types can be used in combination.
  • DMF N,N-dimethylformamide
  • NMP N-methyl-pyrrolidone
  • GBL gamma butyrolactone
  • diglyme diglyme
  • N,N-dimethylformamide and N,N-dimethylacetamide may be particularly preferably used as the solvent.
  • a filler may be added for the purpose of improving various properties of the film, such as sliding properties, thermal conductivity, corona resistance, and loop hardness.
  • the filler added is not particularly limited, but preferable examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.
  • the particle size of the filler is not particularly limited, and may be determined according to the film properties to be modified and the type of filler to be added. Generally, the average particle size is 0.05 to 100 ⁇ m, preferably 0.1 to 75 ⁇ m, more preferably 0.1 to 50 ⁇ m, particularly preferably 0.1 to 25 ⁇ m.
  • the addition amount of the filler is not particularly limited either, and may be determined according to the properties of the film to be modified, the particle size of the filler, and the like. Generally, the added amount of the filler is 0.01 to 100 parts by weight, preferably 0.01 to 90 parts by weight, and more preferably 0.02 to 80 parts by weight, based on 100 parts by weight of the polyimide.
  • the added amount of the filler is less than this range, the modification effect by the filler is difficult to appear, and if it exceeds this range, the mechanical properties of the film may be significantly damaged.
  • the method of adding the filler is not particularly limited, and any known method may be used.
  • the polyimide film may be prepared by thermal imidation or chemical imidation.
  • it may be prepared by a complex imidation method in which thermal imidation and chemical imidation are combined.
  • the thermal imidization method is a method of inducing an imidization reaction by excluding a chemical catalyst and using a heat source such as hot air or an infrared dryer.
  • the amic acid group present in the gel film may be imidized by heat-treating the gel film at a variable temperature in the range of 100 to 600 ° C, specifically 200 to 500 ° C, more specifically , Heat treatment at 300 to 500 ° C. may imidize the amic acid group present in the gel film.
  • amic acid about 0.1 mol% to 10 mol% may be imidized even in the process of forming the gel film. This may also be included in the scope of the thermal imidization method.
  • a polyimide film may be prepared using a dehydrating agent and an imidizing agent according to a method known in the art.
  • a dehydrating agent and an imidizing agent are added to a polyamic acid solution, and then heated at 80 to 200 ° C, preferably 100 to 180 ° C, partially cured and dried, and then heated at 200 to 400 ° C for 5 to 400 seconds.
  • a polyimide film can be manufactured by heating.
  • the polyimide film of the present invention manufactured according to the above manufacturing method may have a dielectric constant of 4.0 or more and 7.0 or less, and a dielectric loss factor of 0.01 or less.
  • the present invention provides a multilayer film comprising the above-described polyimide film and a flexible metal-clad laminate comprising the above-described polyimide film and electrically conductive metal foil.
  • the multilayer film may include a thermoplastic resin layer, particularly a thermoplastic polyimide resin layer.
  • the metal foil used is not particularly limited, but in the case of using the flexible metal clad laminate of the present invention for electronic devices or electrical devices, for example, copper or copper alloy, stainless steel or its alloy, nickel or nickel alloy (42 alloy) Also included), it may be a metal foil containing aluminum or aluminum alloy.
  • copper foils such as rolled copper foil and electrolytic copper foil are often used, and they can be preferably used in the present invention as well.
  • a rust prevention layer, a heat resistance layer, or an adhesive layer may be applied to the surface of these metal foils.
  • the thickness of the metal foil is not particularly limited, and may be any thickness capable of exhibiting sufficient functions depending on its use.
  • a metal foil is laminated on one surface of the polyimide film, or an adhesive layer containing thermoplastic polyimide is added to one surface of the polyimide film, and the metal foil is attached to the adhesive layer. It may be a laminated structure.
  • the present invention also provides an electronic component including the flexible metal clad laminate as an electrical signal transmission circuit.
  • the electrical signal transmission circuit may be an electronic component that transmits a signal at a high frequency of at least 2 GHz, specifically at a high frequency of at least 5 GHz, and more specifically at a high frequency of at least 10 GHz.
  • the electronic component may be, for example, a communication circuit for a portable terminal, a communication circuit for a computer, or a communication circuit for aerospace, but is not limited thereto.
  • Inject DMF while injecting nitrogen into a 500 ml reactor equipped with a stirrer and nitrogen inlet/discharge pipe, set the temperature of the reactor to 30 ° C or less, m-tolidine and paraphenylene diamine as diamine components, and dianhydride as components Benzophenone tetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride and pyromellitic dianhydride were added to confirm complete dissolution.
  • the content of m-tolidine is 34 mol%
  • the content of paraphenylene diamine is 66 mol%
  • benzo based on 100 mol% of the total content of the dianhydride component, benzo
  • the content of phenonetetracarboxylic dianhydride was 33 mol%
  • the content of biphenyltetracarboxylic dianhydride was 32 mol%
  • the content of pyromellitic dianhydride was 35 mol%.
  • a catalyst and a dehydrating agent were added to the final polyamic acid prepared in this way, and air bubbles were removed through high-speed rotation of 1,500 rpm or more, and then applied to a glass substrate using a spin coater.
  • a gel film was prepared by drying at a temperature of 120 ° C. for 30 minutes under a nitrogen atmosphere, and the temperature was raised to 450 ° C. at a rate of 2 ° C./min, followed by heat treatment at 450 ° C. for 60 minutes, followed by 2 to 30 ° C. By cooling again at a rate of °C/min, a final polyimide film was obtained and peeled off from the glass substrate by dipping in distilled water.
  • the thickness of the prepared polyimide film was 15 ⁇ m.
  • the thickness of the prepared polyimide film was measured using Anritsu's Electric Film thickness tester.
  • dielectric constant and dielectric loss factor were measured for the polyimide films prepared in Examples 1 and 2 and Comparative Examples 1 to 5, respectively.
  • the dielectric loss factor (Df) was measured by leaving the flexible metal clad laminate for 72 hours using an ohmmeter Agilent 4294A.
  • the polyimide film prepared according to the embodiment of the present invention satisfies all conditions of dielectric constant of 4.0 or more and 7.0 or less, and dielectric loss factor of 0.01 or less.
  • the polyimide films of Comparative Examples 1 and 2 containing no or a small amount (0.1% by weight) of the graphene nanoplatelets had dielectric constants of less than 4.0.
  • Comparative Examples 3 to 5 including graphene nanoplatelets in excess (3% by weight or more) had dielectric constants exceeding 7.0, and in particular, Comparative Examples 4 and 5 also had dielectric loss factors exceeding 0.01.
  • the dielectric constant and dielectric loss factor are at desired levels only within the content range of the graphene nanoplatelets according to the embodiment.
  • the polyimide films of Comparative Examples 1 and 2 having components different from those of the Examples are used in electronic components in which signals are transmitted at high frequencies in units of giga units in at least one aspect of dielectric constant and dielectric loss factor compared to the polyimide films of Examples. Difficulties can be foreseen.
  • the present invention provides a polyimide film having excellent dielectric properties through a polyimide film composed of specific components and a specific composition ratio and a method for manufacturing the polyimide film, thereby providing a polyimide film in various fields requiring these characteristics, particularly flexible metal clad laminates, etc. It can be usefully applied to electronic parts of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 벤조페논테트라카복실릭디안하이드라이드(BTDA), 비페닐테트라카르복실릭디안하이드라이드(BPDA) 및 피로멜리틱디안하이드라이드(PMDA)를 포함하는 이무수물산 성분과, m-톨리딘(m-tolidine) 및 파라페닐렌 디아민(PPD)을 포함하는 디아민 성분을 포함하는 폴리아믹산 용액을 이미드화 반응시켜 얻어지고, 그래핀 나노판(graphene nanoplatelets)을 0.5~2.5 중량% 포함하는 폴리이미드 필름을 제공한다.

Description

그래핀 나노판을 포함하는 폴리이미드 필름 및 그 제조방법
본 발명은 그래핀 나노판을 포함하는 우수한 유전 특성의 폴리이미드 필름 및 이의 제조방법에 관한 것이다.
폴리이미드(polyimide, PI)는 강직한 방향족 주쇄와 함께 화학적 안정성이 매우 우수한 이미드 고리를 기초로 하여, 유기 재료들 중에서도 최고 수준의 내열성, 내약품성, 전기 절연성, 내화학성, 내후성을 가지는 고분자 재료이다.
특히, 뛰어난 절연특성, 즉 낮은 유전율과 같은 우수한 전기적 특성으로 전기, 전자, 광학 분야 등에 이르기까지 고기능성 고분자 재료로 각광받고 있다.
최근, 전자제품이 경량화, 소형화되어 감에 따라서, 집적도가 높고 유연한 박형 회로기판이 활발히 개발되고 있다.
이러한 박형 회로기판은 우수한 내열성, 내저온성 및 절연특성을 가지면서도 굴곡이 용이한 폴리이미드 필름 상에 금속박을 포함하는 회로가 형성되어 있는 구조가 많이 활용되는 추세이다.
이러한 박형 회로기판으로는 연성금속박적층판이 주로 사용되고 있고, 한 예로, 금속박으로 얇은 구리판을 사용하는 연성동박적층판(Flexible Copper Clad Laminate, FCCL)이 포함된다. 그 밖에도 폴리이미드를 박형 회로기판의 보호 필름, 절연 필름 등으로 활용하기도 한다.
한편, 최근 전자 기기에 다양한 기능들이 내재됨에 따라 상기 전자기기에 빠른 연산 속도와 통신 속도가 요구되고 있으며, 이를 충족하기 위해 고주파로 고속 통신이 가능한 박형 회로기판이 개발되고 있다.
고주파 고속 통신의 실현을 위하여, 고주파에서도 전기 절연성을 유지할 수 있는 높은 임피던스(impedance)를 가지는 절연체가 필요하다. 임피던스는 절연체에 형성되는 주파수 및 유전상수(dielectric constant; Dk)와 반비례의 관계가 성립하므로, 고주파에서도 절연성을 유지하기 위해서는 유전상수가 가능한 낮아야 한다.
그러나, 통상의 폴리이미드의 경우 유전 특성이 고주파 통신에서 충분한 절연성을 유지할 수 있을 정도로 우수한 수준은 아닌 실정이다.
또한, 절연체가 저유전 특성을 지닐수록 박형 회로기판에서 바람직하지 않은 부유 용량(stray capacitance)과 노이즈의 발생을 감소시킬 수 있어, 통신 지연의 원인을 상당부분 해소할 수 있는 것으로 알려져 있다.
따라서, 저유전 특성의 폴리이미드가 박형 회로기판의 성능에 무엇보다 중요한 요인으로 인식되고 있는 실정이다.
특히, 고주파 통신의 경우 필연적으로 폴리이미드를 통한 유전 손실(dielectric dissipation)이 발생하게 되는데. 유전 손실률(dielectric dissipation factor; Df)은 박형 회로기판의 전기 에너지 낭비 정도를 의미하고, 통신 속도를 결정하는 신호 전달 지연과 밀접하게 관계되어 있어, 폴리이미드의 유전 손실률을 가능한 낮게 유지하는 것도 박형 회로기판의 성능에 중요한 요인으로 인식되고 있다.
또한, 폴리이미드 필름에 습기가 많이 포함될수록 유전상수가 커지고 유전 손실률이 증가한다. 폴리이미드 필름의 경우 우수한 고유의 특성으로 인하여 박형 회로기판의 소재로서 적합한 반면, 극성을 띄는 이미드기에 의해 습기에 상대적으로 취약할 수 있으며, 이로 인해 절연 특성이 저하될 수 있다.
따라서, 폴리이미드 특유의 기계적 특성을 일정 수준으로 유지하는 유전 특성의 폴리이미드 필름의 개발이 필요한 실정이다.
또한, 최근에는 전송 속도가 빨라짐에 따라서 반사 신호가 Rising time 부위를 교란시켜 반도체 동작을 방해하는 문제를 해결하기 위하여, 회로 끝 부분에 터미네이터(terminator)를 부착하여 에너지를 흡수하는 방식을 적용하고 있다. 이러한 흡수 방식의 적용을 위해서는 터미네이터의 임피던스와 전송 회로의 임피던스가 동일해야 한다.
이때, 터미네이터 저항(terminator Resistor)의 임피던스 값은 정해져 있기 때문에 인쇄회로기판(PCB)의 회로의 임피던스의 조절이 필요하다.
즉, 전자기기의 소형화 추세로 절연 두께가 얇아짐에 따라서 임피던스가 감소하는 가운데, 정해져 있는 터미네이터 저항의 임피던스 값을 맞추기 위해서는 유전율을 종래 폴리이미드 필름(Dk: 3.5)보다 높혀야 한다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 공개특허공보 제10-2015-0069318호
이에 상기와 같은 문제를 해결하고자, 우수한 유전 특성을 가지는 폴리이미드 필름 및 이의 제조방법을 제공하는 데 목적이 있다.
이에 본 발명은 이의 구체적 실시예를 제공하는데 실질적인 목적이 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 일 실시형태는, 벤조페논테트라카복실릭디안하이드라이드(BTDA), 비페닐테트라카르복실릭디안하이드라이드(BPDA) 및 피로멜리틱디안하이드라이드(PMDA)를 포함하는 이무수물산 성분과, m-톨리딘(m-tolidine) 및 파라페닐렌 디아민(PPD)을 포함하는 디아민 성분을 포함하는 폴리아믹산 용액을 이미드화 반응시켜 얻어지고, 그래핀 나노판(graphene nanoplatelets)을 0.5~2.5 중량% 포함하는, 폴리이미드 필름을 제공한다.
상기 디아민 성분의 총함량 100 몰%를 기준으로 m-톨리딘의 함량이 20 몰% 이상 40 몰% 이하이고, 파라페닐렌 디아민의 함량이 60 몰% 이상 80 몰% 이하일 수 있다.
또한, 상기 이무수물산 성분의 총함량 100 몰%를 기준으로 벤조페논테트라카복실릭디안하이드라이드의 함량이 20 몰% 이상 45 몰% 이하이고, 비페닐테트라카르복실릭디안하이드라이드의 함량이 20 몰% 이상 45 몰% 이하이며, 피로멜리틱디안하이드라이드의 함량이 20 몰% 이상 45 몰% 이하일 수 있다.
상기 그래핀 나노판의 평균 두께가 6~8 nm이고, 평균 입자 크기가 5~25 μm이며, 비표면적은 120~150 m2/g일 수 있다.
한편, 상기 폴리이미드 필름의 유전율은 4.0 이상, 7.0 이하이고, 유전 손실률이 0.01 이하일 수 있다.
본 발명의 다른 일 실시형태는 (a) 벤조페논테트라카복실릭디안하이드라이드(BTDA), 비페닐테트라카르복실릭디안하이드라이드(BPDA) 및 피로멜리틱디안하이드라이드(PMDA)를 포함하는 이무수물산 성분과, m-톨리딘(m-tolidine) 및 파라페닐렌 디아민(PPD)으로 구성된 디아민 성분을 유기 용매 중에서 중합하여 폴리아믹산을 제조하는 단계, (b) 상기 폴리아믹산에 그래핀 나노판을 추가하고 혼합하는 단계 및 (c) 상기 그래핀 나노판이 포함된 상기 폴리아믹산을 이미드화하는 단계를 포함하는 폴리이미드 필름의 제조방법을 제공한다.
본 발명의 또 다른 일 실시형태는 상기 폴리이미드 필름을 포함하는 다층 필름, 상기 폴리이미드 필름과 전기전도성의 금속박을 포함하는 연성금속박적층판 및 상기 연성금속박적층판을 포함하는 전자 부품을 제공한다.
이상에서 설명한 바와 같이, 본 발명은 특정 성분 및 특정 조성비로 이루어진 폴리이미드 필름 및 이의 제조방법을 통하여 우수한 유전 특성을 가지는 폴리이미드 필름을 제공함으로써, 이러한 특성들이 요구되는 다양한 분야, 특히 연성금속박적층판 등의 전자 부품 등에 유용하게 적용될 수 있다.
이하에서, 본 발명에 따른 "폴리이미드 필름" 및 "폴리이미드 필름의 제조 방법"의 순서로 발명의 실시 형태를 보다 상세하게 설명한다.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 양, 농도, 또는 다른 값 또는 파라미터가 범위, 바람직한 범위 또는 바람직한 상한 값 및 바람직한 하한 값의 열거로서 주어지는 경우, 범위가 별도로 개시되는 지에 상관없이 임의의 한 쌍의 임의의 위쪽 범위 한계치 또는 바람직한 값 및 임의의 아래쪽 범위 한계치 또는 바람직한 값으로 형성된 모든 범위를 구체적으로 개시하는 것으로 이해되어야 한다.
수치 값의 범위가 범위가 본 명세서에서 언급될 경우, 달리 기술되지 않는다면, 그 범위는 그 종점 및 그 범위 내의 모든 정수와 분수를 포함하는 것으로 의도된다. 본 발명의 범주는 범위를 정의할 때 언급되는 특정 값으로 한정되지 않는 것으로 의도된다.
본 명세서에서 "이무수물산"은 그 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 이무수물산이 아닐 수 있지만, 그럼에도 불구하고 디아민과 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.
본 명세서에서 "디아민"은 그의 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 디아민이 아닐 수 있지만, 그럼에도 불구하고 디안하이드라이드와 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.
본 명세서에서 수치범위를 나타내는 "a 내지 b" 및 "a~b"에서 "내지" 및 “~”는 ≥ a이고 ≤ b으로 정의한다.
본 발명에 따른 폴리이미드 필름은 벤조페논테트라카복실릭디안하이드라이드(BTDA), 비페닐테트라카르복실릭디안하이드라이드(BPDA) 및 피로멜리틱디안하이드라이드(PMDA)를 포함하는 이무수물산 성분과, m-톨리딘(m-tolidine) 및 파라페닐렌 디아민(PPD)을 포함하는 디아민 성분을 포함하는 폴리아믹산 용액을 이미드화 반응시켜 얻어지고, 그래핀 나노판(graphene nanoplatelets)을 0.5~2.5 중량% 포함할 수 있다.
상기 디아민 성분의 총함량 100 몰%를 기준으로 m-톨리딘의 함량이 20 몰% 이상 40 몰% 이하이고, 파라페닐렌 디아민의 함량이 60 몰% 이상 80 몰% 이하일 수 있다.
특히, m-톨리딘은 특히 소수성을 띄는 메틸기를 가지고 있어서 폴리이미드 필름의 저흡습 특성에 기여한다.
상기 이무수물산 성분의 총함량 100 몰%를 기준으로 벤조페논테트라카복실릭디안하이드라이드의 함량이 20 몰% 이상 45 몰% 이하이고, 비페닐테트라카르복실릭디안하이드라이드의 함량이 20 몰% 이상 45 몰% 이하이며, 피로멜리틱디안하이드라이드의 함량이 20 몰% 이상 45 몰% 이하일 수 있다.
본 발명의 비페닐테트라카르복실릭디안하이드라이드로부터 유래된 폴리이미드 사슬은 전하이동착체(CTC: Charge transfer complex)라고 명명된 구조, 즉, 전자주게(electron donnor)와 전자받게(electron acceptor)가 서로 근접하게 위치하는 규칙적인 직선 구조를 가지게 되고 분자간 상호 작용(intermolecular interaction)이 강화된다.
또한, 카보닐 그룹을 가지고 있는 벤조페논테트라카복실릭디안하이드라이드도 비페닐테트라카르복실릭디안하이드라이드와 마찬가지로 CTC의 발현에 기여하게 된다.
이러한 구조는 수분과의 수소결합을 방지하는 효과가 있으므로, 흡습률을 낮추는데 영향을 주어 폴리이미드 필름의 흡습성을 낮추는 효과를 극대화 할 수 있다.
하나의 구체적인 예에서, 상기 이무수물산 성분은 피로멜리틱디안하이드라이드를 추가적으로 포함할 수 있다. 피로멜리틱디안하이드라이드는 상대적으로 강직한 구조를 가지는 이무수물산 성분으로 폴리이미드 필름에 적절한 탄성을 부여할 수 있는 점에서 바람직하다.
폴리이미드 필름이 적절한 탄성과 흡습률을 동시에 만족하기 위해서는 이무수물산의 함량비가 특히 중요하다. 예를 들어, 비페닐테트라카르복실릭디안하이드라이드의 함량비가 감소할수록 상기 CTC 구조로 인한 낮은 흡습률을 기대하기 어려워진다.
또한, 비페닐테트라카르복실릭디안하이드라이드 및 벤조페논테트라카복실릭디안하이드라이드는 방향족 부분에 해당하는 벤젠 고리를 2개 포함하는 반면에, 피로멜리틱디안하이드라이드는 방향족 부분에 해당하는 벤젠 고리를 1개 포함한다.
이무수물산 성분에서 피로멜리틱디안하이드라이드 함량의 증가는 동일한 분자량을 기준으로 했을 때 분자 내의 이미드기가 증가하는 것으로 이해할 수 있으며, 이는 폴리이미드 고분자 사슬에 상기 피로멜리틱디안하이드라이드로부터 유래되는 이미드기의 비율이 비페닐테트라카르복실릭디안하이드라이드 및 벤조페논테트라카복실릭디안하이드라이드로부터 유래되는 이미드기 대비 상대적으로 증가하는 것으로 이해할 수 있다.
즉, 피로멜리틱디안하이드라이드 함량의 증가는 폴리이미드 필름 전체에 대해서도, 이미드기의 상대적 증가로 볼 수 있고, 이로 인해 낮은 흡습률을 기대하기 어려워진다.
반대로, 피로멜리틱디안하이드라이드의 함량비가 감소하면 상대적으로 강직한 구조의 성분이 감소하게 되어, 폴리이미드 필름의 탄성이 소망하는 수준 이하로 저하될 수 있다.
이러한 이유로 상기 비페닐테트라카르복실릭디안하이드라이드 및 벤조페논테트라카복실릭디안하이드라이드의 함량이 상기 범위를 상회하거나, 피로멜리틱디안하이드라이드의 함량이 상기 범위를 하회하는 경우, 폴리이미드 필름의 기계적 물성이 저하되고, 연성금속박적층판을 제조하기에 적절한 수준의 내열성을 확보할 수 없다.
반대로, 상기 비페닐테트라카르복실릭디안하이드라이드 및 벤조페논테트라카복실릭디안하이드라이드의 함량이 상기 범위를 하회하거나, 피로멜리틱디안하이드라이드의 함량이 상기 범위를 상회하는 경우, 적절한 수준의 유전상수, 유전 손실률 및 흡습률의 달성이 어려우므로 바람직하지 않다.
한편, 상기 그래핀 나노판의 평균 두께가 6~8 nm이고, 평균 입자 크기가 5~25 μm이며, 비표면적은 120~150 m2/g일 수 있다.
상기 그래핀 나노판은 다른 탄소 나노 소재에 비하여 상대적으로 분산성이 우수하고, 폴리이미드 필름에 첨가시 폴리이미드 필름의 유전 손실율의 하락을 최소화시킬 수 있다.
*일 구현예에 있어서, 상기 폴리이미드 필름은 유전율이 4.0 이상, 7.0 이하이고, 유전 손실률이 0.01 이하일 수 있다.
상기 유전율은 바람직하게는 4.5 이상일 수 있고, 더욱 바람직하게는 5.0 이상일 수 있다.
이와 관련하여, 유전율(Dk) 및 유전 손실률(Df)를 모두 만족하는 폴리이미드 필름의 경우, 연성금속박적층판용 절연 필름으로 활용 가능할뿐더러, 제조된 연성금속박적층판이 10 GHz 이상의 고주파로 신호를 전송하는 전기적 신호 전송 회로로 사용되더라도, 그것의 절연 안정성이 확보될 수 있고, 신호 전달 지연도 최소화할 수 있다.
본 발명에서 폴리아믹산의 제조는 예를 들어,
(1) 디아민 성분 전량을 용매 중에 넣고, 그 후 이무수물산 성분을 디아민 성분과 실질적으로 등몰이 되도록 첨가하여 중합하는 방법;
(2) 이무수물산 성분 전량을 용매 중에 넣고, 그 후 디아민 성분을 이무수물산 성분과 실질적으로 등몰이 되도록 첨가하여 중합하는 방법;
(3) 디아민 성분 중 일부 성분을 용매 중에 넣은 후, 반응 성분에 대해서 이무수물산 성분 중 일부 성분을 약 95~105 몰%의 비율로 혼합한 후, 나머지 디아민 성분을 첨가하고 이에 연속해서 나머지 이무수물산 성분을 첨가하여, 디아민 성분 및 이무수물산 성분이 실질적으로 등몰이 되도록 하여 중합하는 방법;
(4) 이무수물산 성분을 용매 중에 넣은 후, 반응 성분에 대해서 디아민 화합물 중 일부 성분을 95~105 몰%의 비율로 혼합한 후, 다른 이무수물산 성분을 첨가하고 계속되어 나머지 디아민 성분을 첨가하여, 디아민 성분 및 이무수물산 성분이 실질적으로 등몰이 되도록 하여 중합하는 방법;
(5) 용매 중에서 일부 디아민 성분과 일부 이무수물산 성분을 어느 하나가 과량이도록 반응시켜, 제1 조성물을 형성하고, 또 다른 용매 중에서 일부 디아민 성분과 일부 이무수물산 성분을 어느 하나가 과량이도록 반응시켜 제2 조성물을 형성한 후, 제1, 제2 조성물들을 혼합하고, 중합을 완결하는 방법으로서, 이 때 제1 조성물을 형성할 때 디아민 성분이 과잉일 경우, 제 2조성물에서는 이무수물산 성분을 과량으로 하고, 제1 조성물에서 이무수물산 성분이 과잉일 경우, 제2 조성물에서는 디아민 성분을 과량으로 하여, 제1, 제2 조성물들을 혼합하여 이들 반응에 사용되는 전체 디아민 성분과 이무수물산 성분이 실질적으로 등몰이 되도록 하여 중합하는 방법 등을 들 수 있다.
다만, 상기 중합 방법이 이상의 예들로만 한정되는 것은 아니며, 상기 폴리아믹산의 제조는 공지된 어떠한 방법을 사용할 수 있음은 물론이다.
하나의 구체적인 예에서, 본 발명에 따른 폴리이미드 필름의 제조방법은,
(a) 벤조페논테트라카복실릭디안하이드라이드(BTDA), 비페닐테트라카르복실릭디안하이드라이드(BPDA) 및 피로멜리틱디안하이드라이드(PMDA)를 포함하는 이무수물산 성분과, m-톨리딘(m-tolidine) 및 파라페닐렌 디아민(PPD)으로 구성된 디아민 성분을 유기 용매 중에서 중합하여 폴리아믹산을 제조하는 단계;
(b) 상기 폴리아믹산에 그래핀 나노판을 추가하고 혼합하는 단계; 및
(c) 상기 그래핀 나노판이 포함된 상기 폴리아믹산을 이미드화하는 단계를 포함할 수 있다.
상기 디아민 성분의 총함량 100 몰%를 기준으로 m-톨리딘의 함량이 20 몰% 이상 40 몰% 이하이고, 파라페닐렌 디아민의 함량이 60 몰% 이상 80 몰% 이하이고, 상기 이무수물산 성분의 총함량 100 몰%를 기준으로 벤조페논테트라카복실릭디안하이드라이드의 함량이 20 몰% 이상 45 몰% 이하이고, 비페닐테트라카르복실릭디안하이드라이드의 함량이 20 몰% 이상 45 몰% 이하이며, 피로멜리틱디안하이드라이드의 함량이 20 몰% 이상 45 몰% 이하일 수 있다.
본 발명에서는, 상기와 같은 폴리아믹산의 중합 방법을 임의(random) 중합 방식으로 정의할 수 있으며, 상기와 같은 과정으로 제조된 본 발명의 폴리아믹산으로부터 제조된 폴리이미드 필름은 우수한 유전 특성을 가지는 본 발명의 효과를 극대화시키는 측면에서 바람직하게 적용될 수 있다.
다만, 상기 중합 방법은 앞서 설명한 고분자 사슬 내의 반복단위의 길이가 상대적으로 짧게 제조되므로, 이무수물산 성분으로부터 유래되는 폴리이미드 사슬이 가지는 각각의 우수한 특성을 발휘하기에는 한계가 있을 수 있다. 따라서, 본 발명에서 특히 바람직하게 이용될 수 있는 폴리아믹산의 중합 방법은 블록 중합 방식일 수 있다.
한편, 폴리아믹산을 합성하기 위한 용매는 특별히 한정되는 것은 아니고, 폴리아믹산을 용해시키는 용매이면 어떠한 용매도 사용할 수 있지만, 아미드계 용매인 것이 바람직하다.
구체적으로는, 상기 용매는 유기 극성 용매일 수 있고, 상세하게는 비양성자성 극성 용매(aprotic polar solvent)일 수 있으며, 예를 들어, N,N-디메틸포름아미드(DMF), N,N-디메틸아세트아미드, N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL), 디그림(Diglyme)으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니며, 필요에 따라 단독으로 또는 2종 이상 조합해서 사용할 수 있다.
하나의 예에서, 상기 용매는 N,N-디메틸포름아미드 및 N,N-디메틸아세트아미드가 특히 바람직하게 사용될 수 있다.
또한, 폴리아믹산 제조 공정에서는 접동성, 열전도성, 코로나 내성, 루프 경도 등의 필름의 여러 가지 특성을 개선할 목적으로 충전재를 첨가할 수도 있다. 첨가되는 충전재는 특별히 한정되는 것은 아니지만, 바람직한 예로는 실리카, 산화티탄, 알루미나, 질화규소, 질화붕소, 인산수소칼슘, 인산칼슘, 운모 등을 들 수 있다.
충전재의 입경은 특별히 한정되는 것은 아니고, 개질하여야 할 필름 특성과 첨가하는 충전재의 종류과 따라서 결정하면 된다. 일반적으로는, 평균 입경이 0.05 내지 100 ㎛, 바람직하게는 0.1 내지 75 ㎛, 더욱 바람직하게는 0.1 내지 50 ㎛, 특히 바람직하게는 0.1 내지 25 ㎛이다.
입경이 이 범위를 하회하면 개질 효과가 나타나기 어려워지고, 이 범위를 상회하면 표면성을 크게 손상시키거나, 기계적 특성이 크게 저하되는 경우가 있다.
또한, 충전재의 첨가량에 대해서도 특별히 한정되는 것은 아니고, 개질하여야 할 필름 특성이나 충전재 입경 등에 의해 결정하면 된다. 일반적으로, 충전재의 첨가량은 폴리이미드 100 중량부에 대하여 0.01 내지 100 중량부, 바람직하게는 0.01 내지 90 중량부, 더욱 바람직하게는 0.02 내지 80 중량부이다.
충전재 첨가량이 이 범위를 하회하면, 충전재에 의한 개질 효과가 나타나기 어렵고, 이 범위를 상회하면 필름의 기계적 특성이 크게 손상될 가능성이 있다. 충전재의 첨가 방법은 특별히 한정되는 것은 아니고, 공지된 어떠한 방법을 이용할 수도 있다.
본 발명의 제조방법에서 폴리이미드 필름은 열 이미드화법 및 화학적 이미드화법에 의해서 제조될 수 있다.
또한, 열 이미드화법 및 화학적 이미드화법이 병행되는 복합 이미드화법에 의해서 제조될 수도 있다.
상기 열 이미드화법이란, 화학적 촉매를 배제하고, 열풍이나 적외선 건조기 등의 열원으로 이미드화 반응을 유도하는 방법이다.
*상기 열 이미드화법은 상기 겔 필름을 100 내지 600 ℃의 범위의 가변적인 온도에서 열처리하여 겔 필름에 존재하는 아믹산기를 이미드화할 수 있으며, 상세하게는 200 내지 500 ℃, 더욱 상세하게는, 300 내지 500 ℃에서 열처리하여 겔 필름에 존재하는 아믹산기를 이미드화할 수 있다.
다만, 겔 필름을 형성하는 과정에서도 아믹산 중 일부(약 0.1 몰% 내지 10 몰%)가 이미드화될 수 있으며, 이를 위해 50 ℃ 내지 200 ℃의 범위의 가변적인 온도에서 폴리아믹산 조성물을 건조할 수 있고, 이 또한 상기 열 이미드화법의 범주에 포함될 수 있다.
화학적 이미드화법의 경우, 당업계에 공지된 방법에 따라 탈수제 및 이미드화제를 이용하여, 폴리이미드 필름을 제조할 수 있다.
복합이미드화법의 한예로 폴리아믹산 용액에 탈수제 및 이미드화 제를 투입한 후 80 내지 200℃, 바람직하게는 100 내지 180℃에서 가열하여, 부분적으로 경화 및 건조한 후에 200 내지 400℃에서 5 내지 400 초간 가열함으로써 폴리이미드 필름을 제조할 수 있다.
이상과 같은 제조방법에 따라 제조된 본 발명의 폴리이미드 필름은 유전율이 4.0 이상, 7.0 이하이고, 유전 손실률이 0.01 이하일 수 있다.
본 발명은, 상술한 폴리이미드 필름을 포함하는 다층 필름 및 상술한 폴리이미드 필름과 전기전도성의 금속박을 포함하는 연성금속박적층판을 제공한다.
상기 다층 필름은 열가소성 수지층, 특히 열가소성 폴리이미드 수지층을 포함할 수 있다.
사용하는 금속박으로는 특별히 한정되는 것은 아니지만, 전자 기기 또는 전기 기기용도에 본 발명의 연성금속박적층판을 이용하는 경우에는, 예를 들면 구리 또는 구리 합금, 스테인레스강 또는 그의 합금, 니켈 또는 니켈 합금(42 합금도 포함함), 알루미늄 또는 알루미늄 합금을 포함하는 금속박일 수 있다.
일반적인 연성금속박적층판에서는 압연 동박, 전해 동박이라는 구리박이 많이 사용되며, 본 발명에서도 바람직하게 사용할 수 있다. 또한, 이들 금속박의 표면에는 방청층, 내열층 또는 접착층이 도포되어 있을 수도 있다.
본 발명에서 상기 금속박의 두께에 대해서는 특별히 한정되는 것은 아니고, 그 용도에 따라서 충분한 기능을 발휘할 수 있는 두께이면 된다.
본 발명에 따른 연성금속박적층판은, 상기 폴리이미드 필름의 일면에 금속박이 라미네이트되어 있거나, 상기 폴리이미드 필름의 일면에 열가소성 폴리이미드를 함유하는 접착층이 부가되어 있고, 상기 금속박이 접착층에 부착된 상태에서 라미네이트되어있는 구조일 수 있다.
본 발명은 또한, 상기 연성금속박적층판을 전기적 신호 전송 회로로서 포함하는 전자 부품을 제공한다. 상기 전기적 신호 전송 회로는, 적어도 2 GHz의 고주파, 상세하게는 적어도 5 GHz의 고주파, 더욱 상세하게는 적어도 10 GHz의 고주파로 신호를 전송하는 전자 부품일 수 있다.
상기 전자 부품은 예를 들어, 휴대 단말기용 통신 회로, 컴퓨터용 통신 회로, 또는 우주 항공용 통신회로일 수 있으나 이것으로 한정되는 것은 아니다.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
<제조예>
교반기 및 질소 주입·배출관을 구비한 500 ㎖ 반응기에 질소를 주입시키면서 DMF을 투입하고 반응기의 온도를 30℃ 이하로 설정한 후 디아민 성분으로서 m-톨리딘 및 파라페닐렌 디아민과, 이무수물산 성분으로서 벤조페논테트라카복실릭디안하이드라이드, 비페닐테트라카르복실릭디안하이드라이드 및 피로멜리틱디안하이드라이드를 투입하여 완전히 용해된 것을 확인한다.
상기 디아민 성분의 총함량 100 몰%를 기준으로 m-톨리딘의 함량이 34 몰%이고, 파라페닐렌 디아민의 함량이 66몰%이며, 상기 이무수물산 성분의 총함량 100 몰%를 기준으로 벤조페논테트라카복실릭디안하이드라이드의 함량이 33 몰%이고, 비페닐테트라카르복실릭디안하이드라이드의 함량이 32 몰%이며, 피로멜리틱디안하이드라이드의 함량이 35 몰%이었다.
이후, 질소 분위기하에서 40 ℃로 반응기의 온도를 올려 가열하면서 120분간 교반을 계속해주어 폴리아믹산을 제조하였다.
이렇게 제조한 폴리아믹산에 그래핀 나노판을 첨가 후 교반시켰다.
이렇게 제조한 최종 폴리아믹산에 촉매 및 탈수제를 첨가하고 1,500 rpm이상의 고속 회전을 통해 기포를 제거한 후, 스핀 코터를 이용하여 유리 기판에 도포하였다.
이후, 질소 분위기 하, 120 ℃의 온도에서 30분 동안 건조하여 겔 필름을 제조하였고, 이를 450 ℃까지 2 ℃/min의 속도로 승온하고, 450 ℃에서 60분 동안 열처리한 뒤, 30 ℃까지 2 ℃/min의 속도로 다시 냉각해줌으로써, 최종적인 폴리이미드 필름을 수득하였고, 증류수에 디핑(dipping)하여 유리 기판으로부터 박리시켜주었다.
제조된 폴리이미드 필름의 두께는 15 ㎛였다. 제조된 폴리이미드 필름의 두께는 Anritsu사의 필름 두께 측정기(Electric Film thickness tester)를 사용하여 측정하였다.
<실시예 1, 2 및 비교예 1 내지 5>
앞서 설명한 제조예에 의해 제조하되, 그래핀 나노판의 함량을 표 1에 나타낸 바와 같이 조절해 주었다.
그래핀 나노판
(중량%)
유전율
(Dk)
유전 손실률
(Df)
실시예 1 1.0 5.36 0.00538
실시예 2 2.0 6.77 0.00761
비교예 1 0 3.46 0.00440
비교예 2 0.1 3.78 0.00460
비교예 3 3.0 10.51 0.00877
비교예 4 4.0 16.19 0.01245
비교예 5 5.0 22.01 0.01521
<실험예> 유전율 및 유전 손실률 평가
상기 표 1에 나타낸 바와 같이 실시예 1,2 및 비교예 1 내지 5에서 각각 제조한 폴리이미드 필름에 대해서 유전율 및 유전 손실률을 측정하였다.
(1) 유전율 측정
*유전율(Dk)은 Keysight사의 SPDR 측정기를 사용하여 10 GHz에서의 유전율을 측정하였다.
(2) 유전 손실률 측정
유전 손실률(Df)은 저항계 Agilent 4294A을 사용하여 72 시간동안 연성금속박적층판을 방치하여 측정하였다
표 1에 나타낸 바와 같이, 본 발명의 실시예에 따라 제조된 폴리이미드 필름은 유전율이 4.0 이상, 7.0 이하이고, 유전 손실률이 0.01 이하인 조건을 모두 만족하였다.
그래핀 나노판을 포함하지 않거나, 소량(0.1 중량%) 포함하는 비교예 1및 2의 폴리이미드 필름은 유전율이 4.0 미만이었다.
또한, 그래핀 나노판를 과량(3 중량% 이상) 포함하는 비교예 3내지 5는 유전율이 7.0을 초과하였고, 특히 비교예 4 및 5는 유전 손실률도 0.01을 초과하였다.
따라서, 실시예에 따른 그래핀 나노판의 함량 범위 내에서만 유전율 및 유전 손실률이 소망하는 수준임을 확인할 수 있다.
이러한 결과는 본원에서 특정된 성분 및 조성비에 의해 달성되는 것이며, 각 성분들의 함량이 결정적 역할을 한다는 것을 알 수 있다.
반면에 실시예들과 상이한 성분을 가지는 비교예 1 및 2의 폴리이미드 필름은 실시예의 폴리이미드 필름 대비 유전율 및 유전 손실률의 어느 한 측면 이상에서 기가 단위의 고주파로 신호 전송이 이루어지는 전자 부품에 사용되기 어려움을 예상할 수 있다.
이상 본 발명의 실시예들을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명은 특정 성분 및 특정 조성비로 이루어진 폴리이미드 필름 및 이의 제조방법을 통하여 우수한 유전 특성을 가지는 폴리이미드 필름을 제공함으로써, 이러한 특성들이 요구되는 다양한 분야, 특히 연성금속박적층판 등의 전자 부품 등에 유용하게 적용될 수 있다.

Claims (11)

  1. 벤조페논테트라카복실릭디안하이드라이드(BTDA), 비페닐테트라카르복실릭디안하이드라이드(BPDA) 및 피로멜리틱디안하이드라이드(PMDA)를 포함하는 이무수물산 성분과, m-톨리딘(m-tolidine) 및 파라페닐렌 디아민(PPD)을 포함하는 디아민 성분을 포함하는 폴리아믹산 용액을 이미드화 반응시켜 얻어지고,
    그래핀 나노판(graphene nanoplatelet)을 0.5~2.5 중량% 포함하는,
    폴리이미드 필름.
  2. 제1항에 있어서,
    상기 디아민 성분의 총함량 100 몰%를 기준으로 m-톨리딘의 함량이 20 몰% 이상 40 몰% 이하이고, 파라페닐렌 디아민의 함량이 60 몰% 이상 80 몰% 이하인,
    폴리이미드 필름.
  3. 제1항에 있어서,
    상기 이무수물산 성분의 총함량 100 몰%를 기준으로 벤조페논테트라카복실릭디안하이드라이드의 함량이 20 몰% 이상 45 몰% 이하이고,
    비페닐테트라카르복실릭디안하이드라이드의 함량이 20 몰% 이상 45 몰% 이하이며,
    피로멜리틱디안하이드라이드의 함량이 20 몰% 이상 45 몰% 이하인,
    폴리이미드 필름.
  4. 제1항에 있어서,
    상기 그래핀 나노판의 평균 두께가 6~8 nm이고,
    평균 입자 크기가 5~25 μm이며,
    비표면적은 120~150 m2/g인,
    폴리이미드 필름.
  5. 제1항에 있어서,
    유전율이 4.0 이상, 7.0 이하이고,
    유전 손실률이 0.01 이하인,
    폴리이미드 필름.
  6. (a) 벤조페논테트라카복실릭디안하이드라이드(BTDA), 비페닐테트라카르복실릭디안하이드라이드(BPDA) 및 피로멜리틱디안하이드라이드(PMDA)를 포함하는 이무수물산 성분과, m-톨리딘(m-tolidine) 및 파라페닐렌 디아민(PPD)으로 구성된 디아민 성분을 유기 용매 중에서 중합하여 폴리아믹산을 제조하는 단계;
    (b) 상기 폴리아믹산에 그래핀 나노판을 추가하고 혼합하는 단계; 및
    (c) 상기 그래핀 나노판이 포함된 상기 폴리아믹산을 이미드화하는 단계를 포함하는,
    폴리이미드 필름의 제조방법.
  7. 제6항에 있어서,
    상기 디아민 성분의 총함량 100 몰%를 기준으로 m-톨리딘의 함량이 20 몰% 이상 40 몰% 이하이고, 파라페닐렌 디아민의 함량이 60 몰% 이상 80 몰% 이하이고,
    상기 이무수물산 성분의 총함량 100 몰%를 기준으로 벤조페논테트라카복실릭디안하이드라이드의 함량이 20 몰% 이상 45 몰% 이하이고,
    비페닐테트라카르복실릭디안하이드라이드의 함량이 20 몰% 이상 45 몰% 이하이며,
    피로멜리틱디안하이드라이드의 함량이 20 몰% 이상 45 몰% 이하인,
    폴리이미드 필름의 제조방법.
  8. 제6항에 있어서,
    상기 폴리이미드 필름의 유전율이 4.0 이상, 7.0 이하이고,
    유전 손실률이 0.01 이하인,
    폴리이미드 필름의 제조방법.
  9. 제1항 내지 제5항 중 어느 한 항에 따른 폴리이미드 필름을 포함하는,
    다층 필름.
  10. 제1항 내지 제5항 중 어느 한 항에 따른 폴리이미드 필름과 전기전도성의 금속박을 포함하는,
    연성금속박적층판.
  11. 제10항에 따른 연성금속박적층판을 포함하는,
    전자 부품.
PCT/KR2022/014667 2021-09-30 2022-09-29 그래핀 나노판을 포함하는 폴리이미드 필름 및 그 제조방법 WO2023055131A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280063233.9A CN118043383A (zh) 2021-09-30 2022-09-29 包含石墨烯纳米片的聚酰亚胺膜及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210129373A KR102606060B1 (ko) 2021-09-30 2021-09-30 그래핀 나노판을 포함하는 폴리이미드 필름 및 그 제조방법
KR10-2021-0129373 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023055131A1 true WO2023055131A1 (ko) 2023-04-06

Family

ID=85783252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014667 WO2023055131A1 (ko) 2021-09-30 2022-09-29 그래핀 나노판을 포함하는 폴리이미드 필름 및 그 제조방법

Country Status (3)

Country Link
KR (1) KR102606060B1 (ko)
CN (1) CN118043383A (ko)
WO (1) WO2023055131A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160076879A (ko) * 2014-12-23 2016-07-01 주식회사 두산 양면 연성 금속 적층판 및 그 제조방법
KR20170032910A (ko) * 2015-09-15 2017-03-24 한국화학연구원 유전성 조성물 및 이를 포함하는 전자 소자
KR20190067600A (ko) * 2017-12-07 2019-06-17 에스케이씨코오롱피아이 주식회사 저유전율 및 고열전도성을 가지는 폴리이미드 필름
KR20210055234A (ko) * 2019-11-07 2021-05-17 피아이첨단소재 주식회사 고내열 저유전 폴리이미드 필름 및 이의 제조방법
KR102284431B1 (ko) * 2018-11-07 2021-08-03 피아이첨단소재 주식회사 유전특성이 우수한 폴리이미드 복합 필름 및 이를 제조하는 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311458B1 (ko) * 2011-06-21 2013-09-25 동의대학교 산학협력단 폴리이미드-그래핀 복합 재료 조성 및 그의 제조 방법
KR101271606B1 (ko) * 2011-08-10 2013-06-11 동의대학교 산학협력단 폴리이미드-그래핀 복합 재료의 제조 방법
KR101769101B1 (ko) 2013-12-13 2017-08-30 주식회사 엘지화학 저유전율 및 열가소성을 갖는 폴리이미드 수지 및 이를 이용한 연성 금속 적층판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160076879A (ko) * 2014-12-23 2016-07-01 주식회사 두산 양면 연성 금속 적층판 및 그 제조방법
KR20170032910A (ko) * 2015-09-15 2017-03-24 한국화학연구원 유전성 조성물 및 이를 포함하는 전자 소자
KR20190067600A (ko) * 2017-12-07 2019-06-17 에스케이씨코오롱피아이 주식회사 저유전율 및 고열전도성을 가지는 폴리이미드 필름
KR102284431B1 (ko) * 2018-11-07 2021-08-03 피아이첨단소재 주식회사 유전특성이 우수한 폴리이미드 복합 필름 및 이를 제조하는 방법
KR20210055234A (ko) * 2019-11-07 2021-05-17 피아이첨단소재 주식회사 고내열 저유전 폴리이미드 필름 및 이의 제조방법

Also Published As

Publication number Publication date
CN118043383A (zh) 2024-05-14
KR20230046415A (ko) 2023-04-06
KR102606060B1 (ko) 2023-11-29

Similar Documents

Publication Publication Date Title
WO2021091014A1 (ko) 유전특성이 개선된 폴리이미드 필름 및 그 제조방법
WO2021091011A1 (ko) 고내열 저유전 폴리이미드 필름 및 이의 제조방법
WO2021095975A1 (ko) 저유전 폴리이미드 필름 및 이의 제조방법
WO2021060613A1 (ko) 폴리아믹산 조성물, 이의 제조방법 및 이를 포함하는 폴리이미드 필름
WO2021096245A2 (ko) 치수 안정성이 향상된 폴리이미드 필름 및 이의 제조방법
WO2020091147A1 (ko) 폴리이미드 피복물의 내열성을 향상시키기 위한 도체 피복용 폴리이미드 바니쉬 및 이로부터 제조된 폴리이미드 피복물
WO2020101225A1 (ko) 가교성 디안하이드라이드계 화합물 및 산화방지제를 포함하는 폴리이미드 전구체 조성물, 이로부터 제조된 폴리이미드 필름
WO2021091013A1 (ko) 고내열 저유전 폴리이미드 필름 및 이의 제조방법
WO2022065804A1 (ko) 저유전 폴리이미드 필름 및 이의 제조방법
WO2022098042A1 (ko) 높은 치수 안정성을 가지는 폴리이미드 필름 및 그 제조방법
WO2023055131A1 (ko) 그래핀 나노판을 포함하는 폴리이미드 필름 및 그 제조방법
WO2023090968A1 (ko) 폴리아믹산, 폴리이미드 필름 및 이를 이용한 연성금속박적층판
WO2022108296A1 (ko) 액정 분말을 포함하는 저유전 폴리아믹산, 폴리이미드 필름 및 그 제조방법
WO2022108265A1 (ko) 치수안정성이 개선된 저유전 폴리이미드 필름 및 그 제조방법
WO2021060616A1 (ko) 폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법 및 이를 포함하는 폴리이미드
WO2021060612A1 (ko) 폴리아믹산 조성물, 이의 제조방법 및 이를 포함하는 폴리이미드 필름
WO2023096344A1 (ko) 저유전 폴리아믹산 및 폴리이미드 필름
WO2022270968A1 (ko) 반투명 저유전 폴리이미드 필름 및 그 제조방법
WO2023211225A1 (ko) 저유전 및 고내열 특성을 가지는 폴리이미드 필름 및 그 제조방법
WO2023090969A1 (ko) 폴리이미드 전구체 조성물 및 이를 포함하는 폴리이미드 필름
WO2021095977A1 (ko) 고접착 저유전 폴리이미드 필름 및 이의 제조방법
WO2023075542A1 (ko) 높은 치수 안정성을 가지는 폴리이미드 필름 및 그 제조방법
WO2023191434A1 (ko) 폴리이미드 필름 및 그 제조방법
WO2024063534A1 (ko) 폴리이미드 바니쉬 및 이로부터 제조되는 폴리이미드 피복물
WO2023096348A1 (ko) 다층 구조의 폴리이미드 필름 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876903

Country of ref document: EP

Kind code of ref document: A1