WO2023054613A1 - 多自由度変位計測装置及び多自由度変位計測方法 - Google Patents

多自由度変位計測装置及び多自由度変位計測方法 Download PDF

Info

Publication number
WO2023054613A1
WO2023054613A1 PCT/JP2022/036519 JP2022036519W WO2023054613A1 WO 2023054613 A1 WO2023054613 A1 WO 2023054613A1 JP 2022036519 W JP2022036519 W JP 2022036519W WO 2023054613 A1 WO2023054613 A1 WO 2023054613A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation axis
detection
scale
relative
axis
Prior art date
Application number
PCT/JP2022/036519
Other languages
English (en)
French (fr)
Inventor
加藤慶顕
小野林季
田中駿丞
Original Assignee
株式会社ミツトヨ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツトヨ filed Critical 株式会社ミツトヨ
Priority to CN202280066490.8A priority Critical patent/CN118043631A/zh
Publication of WO2023054613A1 publication Critical patent/WO2023054613A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature

Definitions

  • This case relates to a multi-degree-of-freedom displacement measurement device and a multi-degree-of-freedom displacement measurement method.
  • a rotary encoder is known as an angle detector that detects a rotation angle around a specific axis (see Patent Document 1, for example).
  • a rotary encoder is attached, for example, to a joint portion of an industrial robot such as an assembly robot (see, for example, Patent Document 2).
  • a rotary encoder may be incorporated in a machine tool and used for detecting the rotation angle of a turning shaft provided in the machine tool (see, for example, Patent Document 3).
  • the rotary encoder can detect the rotation angle around a specific axis, for example, by being attached to the joint part of the robot, the link (arm member) connected via the joint part can be detected. Angle can be detected.
  • the posture of the robot can be known. can.
  • the posture of the robot may change due to the weight of the object to be gripped.
  • the members that make up the rotating shaft may wear out and become displaced.
  • Such a change in the posture of the robot is caused by a combination of rotational movements around a plurality of axes and movements along a plurality of axial directions, that is, complex movements due to displacement of multiple degrees of freedom in the robot.
  • a separate measuring device may be prepared in addition to the rotary encoder.
  • a similar problem can occur in machine tools with rotary encoders on rotating parts.
  • a tool attached to a pivot shaft may be misaligned, or rotational vibration may occur in the pivot shaft.
  • These phenomena may involve multi-degree-of-freedom displacements in the pivot axis.
  • conventional rotary encoders that only measure the rotation angle and rotation speed of the turning shaft cannot accurately capture these phenomena, so it is necessary to provide a separate monitoring device to monitor these phenomena. be. Installation of such a monitoring device increases the size of machine tools and complicates factory facilities, as in the case of robots. Such problems can also occur in various machines other than robots and machine tools.
  • an object of the present invention is to provide a multi-degree-of-freedom displacement measurement device capable of measuring the rotational movement of an object to be measured about multiple axes and the movement along multiple axial directions.
  • the multi-degree-of-freedom displacement measuring device includes a rotary scale arranged around a first rotation axis and having a scale pattern formed by arranging a plurality of patterns along the circumferential direction; a detection head group that spreads around the rotation axis and is arranged in an installation surface facing the rotary scale, and includes a plurality of detection heads that respectively read the pattern from the scale pattern; Based on the detected value, a relative rotation angle about the first rotation axis is calculated, and in addition to the relative rotation angle about the first rotation axis, relative movement in a direction along the first rotation axis direction is calculated. and a calculation unit that calculates at least one of an amount and an amount of relative movement in a direction along a second axis of rotation orthogonal to the first axis of rotation.
  • a rotary scale having a scale pattern arranged around a first rotation axis and formed by arranging a plurality of patterns along the circumferential direction; a detection head group including a plurality of detection heads arranged in an installation surface facing the scale and each reading the pattern from the scale pattern, and based on the detection values obtained by the plurality of detection heads, the A relative rotation angle about a first rotation axis is calculated, and in addition to the relative rotation angle about the first rotation axis, a relative movement amount in a direction along the first rotation axis direction and the first rotation and a calculation unit that calculates at least one of relative rotation angles around a second rotation axis orthogonal to the axis.
  • a multi-degree-of-freedom displacement measuring device includes a rotary scale arranged around a first rotation axis and having a scale pattern formed by arranging a plurality of patterns along a circumferential direction; and a detection head group including a plurality of detection heads for reading the pattern from the scale pattern, the detection head group being arranged in an installation surface facing the rotary scale and extending around the rotation axis of the rotary scale. Based on the detected value, a relative rotation angle about the first rotation axis is calculated, and in addition to the relative rotation angle about the first rotation axis, a second rotation angle orthogonal to the first rotation axis is calculated.
  • a computing unit for simultaneously calculating a relative movement amount in a direction along the rotation axis and a relative rotation angle about the second rotation axis.
  • the plurality of detection heads is three or more, and the calculation unit calculates the rotation around the first rotation axis based on the detection values obtained by the plurality of detection heads.
  • the relative rotation angle in addition to the relative rotation angle about the first rotation axis, the relative movement amount in the direction along the first rotation axis direction and the relative movement amount in the direction along the second rotation axis direction are calculated.
  • At least one of the amount of movement and the amount of relative movement in a direction along a third rotation axis orthogonal to the first rotation axis and the second rotation axis may be calculated.
  • the plurality of detection heads is three or more, and the calculation unit calculates the first rotation axis based on the detection values obtained by the plurality of detection heads.
  • the relative movement amount in the direction along the first rotation axis direction and the relative movement amount in the direction along the first rotation axis At least one of the relative rotation angle about the second rotation axis and the relative rotation angle about the third rotation axis orthogonal to the first rotation axis and the second rotation axis is calculated. be able to.
  • the plurality of detection heads is three or more, and the calculation unit calculates the first rotation axis based on the detection values obtained by the plurality of detection heads. In addition to calculating the relative rotation angle around the first rotation axis, the relative movement amount in the direction along the first rotation axis direction and the direction along the second rotation axis direction are calculated.
  • At least two of the relative rotation angle about the rotation axis and the relative rotation angle about the third rotation axis orthogonal to the first rotation axis and the second rotation axis may be calculated at the same time.
  • the installation surface is set parallel to the rotary scale
  • the computing unit is configured to detect the rotary scale and each detection unit based on the intensity of the detection signal detected by the plurality of detection heads.
  • a distance from the head is calculated, and when the distances are the same, it is determined that the rotary scale and the detection head group are in a state of relative movement along the direction of the first rotation axis, and the distance is calculated from the rotary scale.
  • a mode can be adopted in which the scale and the detection head group are moved relative to each other.
  • the plurality of detection heads may be arranged at regular intervals along the circumferential direction of the scale pattern.
  • the detection head includes a receiving coil, and the receiving coil is formed within a predetermined range including the installation surface and in a direction perpendicular to the installation surface. It is good also as an aspect.
  • the receiving coil has a predetermined thickness
  • the receiving coil is placed in an installation area that extends in both directions perpendicular to the installation surface with the installation surface as the center.
  • the installation area is an area having a vertical distance from the installation surface corresponding to the predetermined thickness of the receiving coil in both directions of the installation surface.
  • a middle line in the thickness direction of the receiving coil may be aligned with the installation surface.
  • a multi-degree-of-freedom displacement measuring method includes: a rotary scale having a scale pattern arranged around a first rotation axis and formed by arranging a plurality of patterns along a circumferential direction; a detection head group including a plurality of detection heads that spread around a rotation axis and are arranged in an installation surface facing the rotary scale, and each of which reads the pattern from the scale pattern.
  • a method for measuring the displacement of the displacement of the first rotation axis based on the detection values obtained by the plurality of detection heads the step of calculating the relative rotation angle around the first rotation axis In addition to the relative rotation angle, at least one of the amount of relative movement in the direction along the direction of the first rotation axis and the amount of relative movement in the direction along the second axis of rotation perpendicular to the first axis of rotation. and calculating
  • a multi-degree-of-freedom displacement measuring method includes: a rotary scale having a scale pattern arranged around a first rotation axis and formed by arranging a plurality of patterns along a circumferential direction; a detection head group including a plurality of detection heads that spread around a rotation axis and are arranged in an installation surface facing the rotary scale, and each of which reads the pattern from the scale pattern.
  • a method for measuring the displacement of the displacement of the first rotation axis based on the detection values obtained by the plurality of detection heads the step of calculating the relative rotation angle around the first rotation axis In addition to the relative rotation angle, at least one of the amount of relative movement in the direction along the first rotation axis and the relative rotation angle around the second rotation axis orthogonal to the first rotation axis is calculated.
  • a multi-degree-of-freedom displacement measuring method includes: a rotary scale having a scale pattern arranged around a first rotation axis and formed by arranging a plurality of patterns along a circumferential direction; and a detection head group including a plurality of detection heads that are arranged on an installation surface facing the rotary scale and that read the pattern from the scale pattern.
  • a method for measuring displacement in degrees comprising the steps of: calculating a relative rotation angle about the first rotation axis based on the detection values obtained by the plurality of detection heads; Simultaneously calculating a relative movement amount in a direction along a second rotation axis orthogonal to the first rotation axis and a relative rotation angle around the second rotation axis, in addition to the relative rotation angle of .
  • FIG. 1 is a block diagram illustrating the configuration of a multi-degree-of-freedom displacement measuring device according to an embodiment.
  • FIG. 2 is a plan view showing a schematic configuration of a rotary encoder included in the multi-degree-of-freedom displacement measuring device of the embodiment.
  • FIG. 3A is an explanatory diagram showing three degrees of freedom (X, Y, Z), and
  • FIG. 3B is an explanatory diagram showing the remaining three degrees of freedom ( ⁇ x, ⁇ y, ⁇ z).
  • FIG. 4(A) is an explanatory view schematically showing a state in which the rotary scale is relatively eccentric along the Y-axis direction in a multi-degree-of-freedom displacement measuring device provided with two detection heads, and FIG.
  • FIG. 5(A) is an explanatory diagram schematically showing a state in which a rotary scale is relatively rotated around the Y-axis in a multi-degree-of-freedom displacement measuring device provided with two detection heads
  • FIG. 10 is an explanatory diagram schematically showing a state in which the rotary scale is relatively rotated around the X-axis in the multi-degree-of-freedom displacement measuring device provided with two detection heads;
  • FIG. 6 schematically shows a state in which the rotary scale is relatively eccentric along the Y-axis direction and relatively eccentric along the X-axis direction in a multi-degree-of-freedom displacement measuring device equipped with four detection heads.
  • 3 is an explanatory diagram shown in FIG.
  • FIG. 7 is an explanatory diagram schematically showing a state in which a rotary scale is relatively rotated around the Y axis and a state in which the rotary scale is relatively rotated around the X axis in a multi-degree-of-freedom displacement measuring device provided with four detection heads.
  • FIG. 8A is an explanatory diagram schematically showing n detection heads and a rotary scale
  • FIG. 8(C) is an example of a sine wave drawn when .theta.x and .theta.y are detected.
  • FIG. 9A is an explanatory diagram showing the relationship between the eccentricity in the X-axis direction and the coefficient in the sine wave
  • FIG. 9B is an explanatory diagram showing the relationship between the eccentricity in the Y-axis direction and the coefficient in the sine wave
  • FIG. 9C is an explanatory diagram showing the relationship between the rotation angle about the X-axis and the coefficient in the sine wave
  • FIG. 9D is the relationship between the rotation angle about the Y-axis and the coefficient in the sine wave. It is an explanatory view showing a relationship.
  • FIG. 9A is an explanatory diagram showing the relationship between the eccentricity in the X-axis direction and the coefficient in the sine wave
  • FIG. 9B is an explanatory diagram showing the relationship between the eccentricity in the Y-axis direction and the coefficient in the sine wave
  • FIG. 9C is an explanatory
  • FIG. 10 is a perspective view of a robot to which the multi-degree-of-freedom displacement measuring device of the embodiment is applied.
  • FIG. 11 is an explanatory diagram showing degrees of freedom in the first joint portion of the robot shown in FIG.
  • FIG. 12 is an explanatory diagram schematically showing how the robot shown in FIG. 10 is tilted at the first joint.
  • FIG. 13 is an explanatory diagram showing part of a machine tool to which the multi-degree-of-freedom displacement measuring device of the embodiment is applied.
  • 14 is a plan view showing the details of the configuration of the rotary encoder shown in FIG. 2.
  • FIG. FIG. 15 is an explanatory diagram showing how the detection head is arranged on the installation surface facing the rotary scale.
  • FIG. 16 is an explanatory diagram showing the arrangement of the first to fourth detection heads in the rotary encoder.
  • FIG. 17 is a plan view of the rotary scale.
  • FIG. 18 is an explanatory diagram showing the configuration of the receiving coil.
  • FIG. 19 is an explanatory diagram showing an example in which a receiving coil is formed on a printed wiring board.
  • FIG. 20 is a diagram illustrating the correlation between the distance between the detection head and the rotary scale and the strength of the detection signal.
  • FIGS. 21(A) and 21(B) are explanatory diagrams showing movable regions of the patterns provided on the scale pattern with respect to the rotary scale.
  • 22(A) and 22(B) are explanatory diagrams showing movable regions of patterns provided on the scale pattern with respect to the rotary scale.
  • FIG. 1 is a block diagram illustrating the configuration of a measurement device 50 according to an embodiment.
  • FIG. 2 is a plan view showing a schematic configuration of the rotary encoder 1 included in the measuring device 50.
  • FIG. 3A is an explanatory diagram showing three degrees of freedom (X, Y, Z)
  • FIG. 3B is an explanatory diagram showing the remaining three degrees of freedom ( ⁇ x, ⁇ y, ⁇ z).
  • FIG. 3A is an explanatory diagram showing three degrees of freedom (X, Y, Z)
  • FIG. 3B is an explanatory diagram showing the remaining three degrees of freedom ( ⁇ x, ⁇ y, ⁇ z).
  • FIG. 14 is a plan view showing the details of the configuration of the rotary encoder 1, and shows the rotary encoder 1 in a mode closer to the actual machine than in FIG.
  • FIG. 15 is an explanatory diagram showing how the detection heads 5-0 to 5-(n-1) are arranged on the installation surface facing the rotary scale 2.
  • FIG. 16 is an explanatory diagram showing the arrangement of the first detection head 5-0 to the fourth detection head 5-3 in the rotary encoder 1.
  • FIG. FIG. 17 is a plan view of the rotary scale 2.
  • FIG. FIG. 18 is an explanatory diagram showing the configuration of the receiving coil 5b.
  • FIG. 19 is an explanatory diagram showing an example in which the receiving coil 5b is formed on a printed wiring board.
  • the measuring device 50 includes a rotary encoder 1 and a computing section 10.
  • a rotary encoder 1 includes a rotary scale 2 and n detection heads 5-0 to 5-(n-1) (where n is an integer equal to or greater than 2).
  • FIG. 3(A) shows the eccentricity detection axis
  • FIG. 3(B) shows the tilt detection axis.
  • FIG. 15 shows the rotary encoder 1 when viewed from the -Y direction to the +Y direction in FIG. 3A.
  • the detection heads 5-0 to 5-(n-1) are arranged on the installation surface F facing the rotary scale 2.
  • the rotary encoder 1 shown in FIGS. 2, 3A, 3B and 15 is equipped with four detection heads from the first detection head 5-0 to the fourth detection head 5-3. It is
  • the detection heads 5-0 to 5-(n-1) are arranged around the Z-axis, which is the center of rotation of the rotary scale 2, as its central axis.
  • Each of the detection heads 5-0 to 5-(n-1) is provided with a transmission coil 5a and a reception coil 5b.
  • FIG. 16 shows the first detection head 5-0 to the fourth detection head 5-3 arranged on the rotary encoder 1. As shown in FIG.
  • the transmission coil 5a constitutes a fan-shaped coil having a length direction in the circumferential direction.
  • the receiving coil 5b forms a detection loop that repeats in the circumferential direction with a fundamental period ⁇ inside the transmitting coil 5a by a positive and negative sinusoidal waveform pattern with a fundamental period ⁇ .
  • the rotary scale 2 is a disc-shaped member. is attached to the The rotary scale 2 has a scale pattern 3 including a plurality of patterns 3a arranged with a fundamental period ⁇ along the circumferential direction of the rotary scale 2 .
  • Pattern 3a is a closed loop coil. Each pattern 3a is electromagnetically coupled with the transmitting coil 5a and electromagnetically coupled with the receiving coil 5b.
  • the transmission circuit 6 shown in FIG. 16 generates a single-phase AC drive signal and supplies it to the transmission coil 5a.
  • magnetic flux is generated in the transmission coil 5a.
  • an electromotive current is generated in the plurality of patterns 3a.
  • the plurality of patterns 3a are electromagnetically coupled with the magnetic flux generated by the transmission coil 5a, thereby generating a magnetic flux that changes at a predetermined spatial period in the circumferential direction.
  • the magnetic flux generated by the transmission coil 5a causes an electromotive current in the reception coil 5b.
  • the electromagnetic coupling between the coils changes according to the amount of displacement of the rotary encoder 1, and a sine wave signal having the same period as the fundamental period ⁇ is obtained.
  • the installation surface F is, for example, a surface including the receiving coil 5b formed on the surface of the flat member.
  • the flat member is, for example, a substrate.
  • Each receiving coil 5b has a sine waveform pattern positive/negative switching portion 5b1. Therefore, as shown in FIG. 18, the receiving coil 5b has a thickness equal to the receiving coil thickness T as well as the installation surface F.
  • the receiving coil 5b can be formed on a printed wiring board. In this case, the sinusoidal waveform pattern is arranged with an insulator sandwiched therebetween, and a through hole th is arranged in the switching portion 5b1 to electrically connect the two.
  • each receiving coil 5b is connected to a signal processing circuit 10a provided in the calculating section 10, and the signal acquired by each receiving coil 5b is used for calculation in the calculating section 10.
  • FIG. Although each receiving coil 5b and the signal processing circuit 10a are connected by wire, they may be connected wirelessly.
  • the first detection head 5-0 to the fourth detection head 5-3 are circumferentially arranged at regular intervals.
  • the intervals between the heads may be arranged at arbitrary intervals instead of at equal intervals.
  • the calculation performed by the calculation unit 10 which will be described later, becomes easier.
  • the detection heads 5-0 to 5-(n-1) are circumferentially arranged at equal intervals. This means that the detection heads are arranged at equal angles in a shape (on the circumference with the Z axis as the central axis).
  • each detection head is equipped with a transmission coil 5a. It is good also as a mode which receives.
  • the rotary scale 2 is mounted on the side of the rotating body to be measured. You may make it set to a body side. In short, the rotary encoder 1 should be installed so that the relative positional relationship between the rotary scale 2 and the installation surface F changes in the object to be measured.
  • the rotary encoder 1 of this embodiment is of the electromagnetic induction type, it may be of a form using other detection principles such as a capacitance type or a photoelectric type.
  • a transmitting section and a receiving section corresponding to the type adopted by the rotary encoder are adopted as the transmitting coil and the receiving coil, respectively.
  • FIGS. 4A to 9D the principle of displacement measurement with multiple degrees of freedom by the measuring device 50 will be described.
  • Each figure depicts a rotary encoder with a different number and arrangement of detection heads. A common reference number is used for the encoders. Also, in each figure, elements appearing in FIG. 2 and the like are simplified or omitted.
  • the rotary encoder 1 has two detection heads, ie, a first detection head 5-0 and a second detection head 5-1.
  • the first detection head 5-0 and the second detection head 5-1 are arranged at positions separated by 180° on the X-axis. That is, the first detection head 5-0 and the second detection head 5-1 are arranged on opposite sides of the X axis with the Z axis therebetween.
  • the rotary scale 2 is eccentric to the +Y side like the rotary encoder 1 shown on the right side of FIG. 4(A).
  • the first detection head 5-0 indicates a detection value as if the rotary scale 2 had rotated to the plus side (+ ⁇ z) around the Z axis.
  • the second detection head 5-1 shows a detection value as if the rotary scale 2 had rotated to the minus side (- ⁇ z) around the Z axis.
  • the amount of movement at this time is the absolute value of each of the detection value of the first detection head 5-0 and the detection value of the second detection head 5-1.
  • the rotary scale 2 is moved (eccentrically) relatively to the -Y side. .
  • the first detection head 5-0 and the second detection head 5-1 are arranged at positions separated by 180° on the Y-axis. That is, the first detection head 5-0 and the second detection head 5-1 are arranged on opposite sides of the Y-axis with the Z-axis therebetween.
  • the rotary scale 2 is eccentric to the -X side like the rotary encoder 1 shown on the lower side of FIG. 4(B).
  • the first detection head 5-0 indicates a detection value as if the rotary scale 2 had rotated to the plus side (+ ⁇ z) around the Z axis.
  • the second detection head 5-1 shows a detection value as if the rotary scale 2 had rotated to the minus side (- ⁇ z) around the Z axis.
  • the amount of movement at this time is the absolute value of each of the detection value of the first detection head 5-0 and the detection value of the second detection head 5-1. If the ⁇ detection values of the first detection head 5-0 and the second detection head 5-1 are interchanged, the rotary scale 2 is moved (eccentrically) relatively to the +X side.
  • the rotary encoder 1 has a first detection head 5-0 and a second detection head 5-1, like the rotary encoder 1 shown in FIG. 4A.
  • the distance between the detection head and the rotary scale 2 has a correlation with the strength of the detection signal. Specifically, when the distance between the detection head and the rotary scale 2 is short (gap fluctuation is small), the intensity of the detection signal is large (strong), and when the distance is long (far, gap fluctuation is large) , the intensity of the detected signal becomes smaller (weak).
  • FIG. 20 is a diagram illustrating the correlation between the distance between the detection head and the rotary scale 2 and the strength of the detection signal obtained from the receiving coil.
  • the horizontal axis indicates the distance [mm] between the two, and the vertical axis indicates the signal intensity. Since the detection method of the rotary encoder 1 of this embodiment uses the electromagnetic induction method between the transmission coil and the reception coil, as shown in FIG. Increased signal strength.
  • the rotary encoder 1 includes a first detection head 5-0 and a second detection head 5-1, like the rotary encoder 1 shown in FIG. 4(B). Also in this case, the distance between each detection head and the rotary scale 2 is calculated based on the intensity of the detection signal.
  • the rotary scale 2 rotates in the + ⁇ x direction (clockwise direction in FIG. 5(B)) like the rotary encoder 1 shown on the lower side of FIG. 5(B). Then, the distance between the second detection head 5-1 detected by the second detection head 5-1 and the rotary scale 2 is the distance between the first detection head 5-0 detected by the first detection head 5-0 and the rotary scale. greater than the distance from 2. When such a combination of detected values is obtained, it can be seen that the rotary scale 2 is relatively rotating in the + ⁇ x direction. The amount of rotation at this time can be calculated from the difference between the detection value of the first detection head 5-0 and the detection value of the second detection head 5-1. When the distance between the first detection head 5-0 and the rotary scale 2 is larger than the distance between the second detection head 5-1 and the rotary scale 2, the rotary scale 2 moves relatively to the - ⁇ x side. It is rotating.
  • the rotary encoder 1 has four detection heads, namely a first detection head 5-0, a second detection head 5-1, a third detection head 5-2 and a fourth detection head 5-3. It has In this rotary encoder 1, a first detection head 5-0 and a third detection head 5-2 are arranged at positions separated by 180° on the X axis, and a second detection head 5-1 and a fourth detection head 5-3 are arranged. are positioned 180° apart on the Y-axis.
  • the first detection head 5-0 and the third detection head 5-2 are arranged on the opposite sides of the X axis across the Z axis
  • the second detection head 5-1 and the fourth detection head 5-3 are arranged on the Z axis. They are arranged on the opposite side on the Y-axis across the axis.
  • the first detection head 5-0 to the fourth detection head 5-3 are arranged at regular intervals of 90°.
  • the first detection head 5-0 indicates a detection value as if the rotary scale 2 had rotated to the plus side (+ ⁇ z) around the Z axis.
  • the third detection head 5-2 shows a detection value as if the rotary scale 2 were rotated to the minus side (- ⁇ z) around the Z axis.
  • Both the detection value of the second detection head 5-1 and the detection value of the fourth detection head 5-3 indicate values when there is no rotation around the Z axis.
  • the amount of movement at this time is the absolute value of each of the detection value of the first detection head 5-0 and the detection value of the third detection head 5-2.
  • the rotary scale 2 is moved relatively to the -Y side. .
  • the second detection head 5-1 indicates a detection value as if the rotary scale 2 had rotated to the plus side (+ ⁇ z) around the Z axis.
  • the fourth detection head 5-3 shows a detection value as if the rotary scale 2 were rotated to the minus side (- ⁇ z) around the Z axis.
  • Both the detection value of the first detection head 5-0 and the detection value of the third detection head 5-2 show values when there is no rotation around the Z axis.
  • the amount of movement at this time is the absolute value of each of the detection value of the second detection head 5-1 and the detection value of the fourth detection head 5-3. Incidentally, if the detection value of the second detection head 5-1 and the detection value of the fourth detection head 5-3 are interchanged, the rotary scale 2 is moved relatively to the +X side.
  • the rotary encoder 1 has a first detection head 5-0 to a fourth detection head 5-3 like the rotary encoder 1 shown in FIG.
  • the distance between each detection head and the rotary scale 2 is calculated based on the intensity of the detection signal of each detection head.
  • the rotation amount at this time can be calculated from the difference between the detection value of the first detection head 5-0 and the detection value of the third detection head 5-2.
  • the rotary scale 2 moves relatively to the - ⁇ y side. It is rotating.
  • the rotary scale 2 rotates in the + ⁇ x direction (clockwise direction in FIG. 7) like the rotary encoder 1 shown on the lower side of FIG. Then, the distance between the fourth detection head 5-3 detected by the fourth detection head 5-3 and the rotary scale 2 is the distance between the second detection head 5-1 detected by the second detection head 5-1 and the rotary scale. greater than the distance from 2.
  • the detection value of the first detection head 5-0 and the detection value of the third detection head 5-2 show the same value. When such a combination of detected values is obtained, it can be seen that the rotary scale 2 is relatively rotating in the + ⁇ x direction.
  • the amount of rotation at this time can be calculated from the difference between the detection value of the second detection head 5-1 and the detection value of the fourth detection head 5-3.
  • the rotary scale 2 moves relatively to the - ⁇ x side. It is rotating.
  • the rotation around the Z axis can be detected from the detection values of each detection head in the same manner as the conventional rotary encoder.
  • the rotation angle (rotation amount) around the Z-axis can be, for example, the average value of the detection values (angle output) of each detection head.
  • the average value of the distances between each detection head and the rotary scale 2 calculated based on detection by each detection head can be used as the relative movement amount along the Z-axis direction.
  • the following description refers to the rotary encoder 1 shown in FIG. 8(A).
  • the rotary encoder 1 shown in FIG. 8A has n detection heads from a first detection head 5-0 to an n-th detection head 5-(n-1).
  • ⁇ in the figure indicates the installation position of each detection head. Specifically, the clockwise angle is shown with the installation position ⁇ 0 of the first detection head 5-0 as the reference position.
  • the amount of relative movement X (amount of eccentricity) along the X-axis direction and the amount of relative movement Y (amount of eccentricity) along the Y-axis direction can be obtained from the amplitude and phase of the eccentricity error.
  • the eccentricity error can be extracted by defining ⁇ out with the following equation (3). .
  • ⁇ out(i, j) is represented by the following equation (5).
  • the coefficients a, b, and c can be calculated by applying the least-squares method using Equation (7) below.
  • parts A and B are parts determined by the arrangement of the detection heads, and part C is ⁇ out(i,j)/ ⁇ (i,j).
  • the A part becomes a diagonal matrix, which facilitates the calculation.
  • Formula (7) is a general formula for n detection heads, but when there are four detection heads, coefficients a, b, and c can be obtained by the following formula (8). Also, when there are eight detection heads, the coefficients a, b, and c can be obtained by the following equation (9).
  • the relative movement amount X [mm] has the relationship shown in FIG. 9(A) between the coefficient b [rad] and R [mm].
  • R [mm] is the radius of the scale pattern 3 .
  • the relative movement amount Y [mm] has the relationship shown in FIG. 9(B) between the coefficients c [rad] and R [mm].
  • R [mm] is the radius of the scale pattern 3 .
  • the vertical axis is the gap in the sine wave shown in FIG. 8(C).
  • a sine wave (a+b ⁇ sin( ⁇ )+c ⁇ Cos( ⁇ )) coefficients a, b, and c are obtained.
  • the amplitude of this fitted sine wave becomes the amplitude of the gap fluctuation. That is, ⁇ (b 2 +c 2 ) is the amplitude of the gap variation.
  • the coefficients a, b, and c can be calculated by applying the least-squares method using Equation (12) below.
  • parts A and B are parts determined by the arrangement of the detection heads
  • part C is a matrix of gap values for each detection head.
  • the A part becomes a diagonal matrix, which facilitates the calculation.
  • Formula (12) is a general formula for n detection heads, but in the case of four detection heads, coefficients a, b, and c can be obtained by the following formula (13). Also, when there are eight detection heads, the coefficients a, b, and c can be obtained by the following equation (14).
  • the relative rotation amount ⁇ x [rad] has the relationship shown in FIG. 9(C) between the coefficients b [mm] and R [mm].
  • R [mm] is the radius of the scale pattern 3 .
  • the relative rotation amount ⁇ y [rad] has the relationship shown in FIG. 9(D) between the coefficients c [mm] and R [mm].
  • R [mm] is the radius of the scale pattern 3 .
  • the rotary encoder 1 can detect the amount of eccentricity when the rotary scale 2 is eccentric and the amount of tilt when the rotary scale 2 is tilted. These are described separately in the above description. 4(A), 4(B) and 6, the detection of the amount of eccentricity in the eccentric posture of the rotary scale 2 will be described. , and FIG. 7, the detection of the tilt amount when the rotary scale 2 is tilted. However, the rotary encoder 1 can simultaneously detect the amount of eccentricity and the amount of tilt even when the rotary scale 2 is eccentric and tilted.
  • FIGS. 21(A) to 22(B) each show a part of the rotary encoder 1 viewed from the Z-axis direction.
  • reference sign CP1 is the center of scale pattern 3 and is indicated by a cross shape drawn by a dashed line.
  • reference sign CP2 is the center of rotation of the rotary scale 2, which is indicated by a figure drawn in a cross shape with a solid line.
  • the transmitting coil 5a and the receiving coil 5b are circumferentially arranged around the rotation center CP2.
  • 21A to 22B show how the center CP1 of the scale pattern 3 and the rotation center CP2 of the rotary scale 2 are slightly shifted relative to each other.
  • the scale pattern 3 and the rotary scale 2 are provided so that the pattern 3a can maintain the state described below when the eccentricity amount and the tilt amount of the rotary scale 2 are detected simultaneously.
  • 21A to 22B, the scale pattern 3 and the rotary scale 2 are arranged so that the pattern 3a does not protrude from the magnetic flux generation area generated by the transmission coil 5a of each detection head. is provided.
  • the measurement apparatus 50 of the present embodiment includes n detection heads 5-0 to 5-(n-1), so that a certain detection head included in the detection heads 5-0 to 5-(n-1) Position coordinates can be output in a cylindrical coordinate system of P(r, ⁇ , Z). That is, by using the detection values of the detection heads other than the detection head whose position coordinates are to be output, the position coordinates of the target detection head can be known. By mutually outputting the position coordinates of the detection heads included in the detection heads 5-0 to 5-(n-1), it is possible to measure displacements with multiple degrees of freedom.
  • the center of rotation of the rotary scale 2 in the rotary encoder 1 and the central axis of the circumferentially arranged detection heads 5-0 to 5-(n-1) are both the Z axis.
  • Such a positional relationship between the rotary encoder 1 and the detection heads 5-0 to 5-(n-1) is guaranteed when the rotary encoder 1 is installed on the object to be measured.
  • the object to be measured by the rotary encoder 1 is assumed to be, for example, a joint portion of a robot or a rotating member on which a tool is mounted in a machine tool. In robots and machine tools, misalignment may occur in each part due to the load applied to each part due to aging and use. With the measuring device 50 of this embodiment, it is possible to measure this deviation. That is, the state when the rotary encoder 1 is installed is set as an initial state, and the multi-degree-of-freedom displacement is measured based on that state, so that the state of the object to be measured can be grasped.
  • each detection head the dimensions of each detection head, and the dimensions of the rotary scale 2 in each drawing are not accurately represented. Also, the dimensions of the patterns 3a and the distances between the patterns 3a in each figure are not represented accurately.
  • the rotary encoder 1 is installed with its center of rotation aligned with the Z axis.
  • the rotary scale 2 is installed so that the X-axis orthogonal to the Z-axis and the Y-axis orthogonal to the Z-axis and the X-axis penetrate in the radial direction.
  • the Z axis corresponds to the first rotation axis
  • the X axis corresponds to the second rotation axis
  • the Y axis corresponds to the third rotation axis.
  • the measuring device 50 is, as indicated by +X and -X in FIG. It is possible to detect the amount of relative movement along.
  • the measuring device 50 has a detection head group including the detection heads 5-0 to 5-(n-1) and the rotary scale 2 on the Y axis, as indicated by +Y and -Y. Relative movement along a direction can be detected.
  • the measuring device 50 has a detection head group including the detection heads 5-0 to 5-(n-1) and the Z axis of the rotary scale 2, as indicated by +Z and -Z. Relative movement along a direction can be detected.
  • the measuring device is arranged such that the detection head group including the detection heads 5-0 to 5-(n-1) and the rotary scale 2 are relative to each other around the X-axis, as indicated by + ⁇ x and - ⁇ x.
  • a rotation angle can be detected.
  • the measuring device 50 has a detection head group including the detection heads 5-0 to 5-(n-1) and the rotary scale 2, as indicated by + ⁇ y and ⁇ y in FIG.
  • a relative rotation angle around can be detected.
  • the measuring device 50 has a detection head group including the detection heads 5-0 to 5-(n ⁇ 1) and the Z axis of the rotary scale 2, as indicated by + ⁇ z and ⁇ z.
  • a relative rotation angle around can be detected.
  • the relative rotation angle around the Z-axis between the detection head group including the detection heads 5-0 to 5-(n-1) and the rotary scale 2 is measured by a normal rotary encoder. is one of the displacements of the degrees of freedom that In the measuring device 50 of this embodiment, the relative rotation angle around the Z-axis can be measured in the same manner as a conventional rotary encoder. The measuring device 50 of the embodiment can also measure displacement in other degrees of freedom in addition to the relative rotation angle around the Z axis.
  • FIG. 10 The robot 100 is a so-called industrial robot used for assembly work in a factory.
  • the robot 100 is provided with a base portion 101, a first link member 102a to a sixth link member 102f, on which a reference point P1 for the coordinates of each portion of the robot 100 is set.
  • the sixth link member 102f is an end effector that is a hand portion that clamps a work object.
  • Joints J1 to J6 are provided at the connecting portions of the respective link members.
  • a motor (not shown) and a rotary encoder 1 as shown in FIG. 1 are incorporated in each of the joints J1 to J6.
  • the configuration in which the motor and the rotary encoder are incorporated in each of the joints J1 to J6 is a conventionally known configuration. is omitted.
  • the first joint part J1 is provided between the base part 101 and the first link member 102a.
  • the second joint J2 is provided between the first link member 102a and the second link member 102b.
  • the third joint J3 is provided between the second link member 102b and the third link member 102c.
  • the fourth joint J4 is provided between the third link member 102c and the fourth link member 102d.
  • the fifth joint J5 is provided between the fourth link member 102d and the fifth link member 102e.
  • the sixth joint J6 is provided between the fifth link member 102e and the sixth link member (end effector) 102f.
  • the center points of the rotary encoders 1 provided at each joint are P1, P2, P3, P4, P5 and P6, respectively.
  • the position of the sixth link member 102f is represented by a gripping point HC.
  • the coordinates of the gripping point HC with respect to the coordinates (0, 0, 0) of the reference point P1 are indicated.
  • the motors provided at the joints J1 to J6 operate so that the coordinates of the gripping point HC become the target coordinates.
  • the center points P1 to P6 and the gripping point HC are calculated by sequentially calculating the rotation angle (rotation amount) of the motor at each joint J1 to J6 and the dimensions of each link member, starting from the reference point P1. can do.
  • FIG. 11 The rotary encoder 1 provided at the first joint J1 is installed with the Z axis passing through the reference point P1 whose coordinates are (0, 0, 0). Since the motor incorporated in the first joint J1 rotates the first link member 102a around the Z axis, ⁇ z is actively changed by operating the motor. However, for various reasons, for example, when the sixth link member 102f grips an object to be gripped, due to the weight of the gripped object, as shown in FIG. link member may be tilted. In addition, eccentricity in the X-axis direction and the Y-axis direction may occur due to wear of members forming the shaft portion.
  • any of the remaining five degrees of freedom will also change. it seems to do. If it moves in the X-axis direction, the Y-axis direction, and the Z direction, the reference point P1 becomes the reference point P1', and its coordinates (0, 0, 0) are updated to (x, y, z). . Further, when the rotation ⁇ x about the X-axis and the rotation ⁇ y about the Y-axis are measured, the Z′-axis is tilted in consideration of these rotations. The Z'-axis passes through the new reference point P1'.
  • new X'-axis and Y'-axis are set in consideration of the original rotation ⁇ z about the Z-axis.
  • the X-axis, Y-axis and Z-axis are updated to X'-axis, Y'-axis and Z'-axis.
  • the X-, Y-, and Z-axes are updated.
  • Such updating of the X-axis, Y-axis and Z-axis is also performed in each of the joints J2 to J6.
  • the position of the gripping point HC for which the target coordinates are set actually becomes the gripping point HC', and the coordinates thereof deviate from the target coordinates.
  • the actual coordinates of the gripping point HC' are calculated by sequentially calculating the displacements of the multiple degrees of freedom detected by the rotary encoder 1 at the joints J1 to J6 and the dimensions of each link member.
  • Position correction control is performed to operate J1 to J6. Note that the position correction control itself can employ a conventionally known method, so detailed description thereof will be omitted here.
  • the robot 100 can grasp the posture of the robot 100 and the deviation of the gripping point HC without preparing a separate measuring device other than the rotary encoder 1 . Then, the deviation can be corrected.
  • a machine tool 150 as a second example to which the measuring device 50 of the embodiment can be applied will be described with reference to FIG.
  • the machine tool 150 performs cutting, polishing, and the like on a work (not shown).
  • the machine tool 150 includes a cylindrical main body 151, a drive motor 152 housed in the main body 151, and a rotating member 153 rotatable by the drive motor 152.
  • the drive motor 152 rotates the rotating member 153 around the rotation main axis AX.
  • a chuck portion 153 a is provided at the distal end portion of the rotating member 153 .
  • Various tools can be attached to the chuck portion 153a.
  • a cutting tool 154 is attached to the chuck portion 153a.
  • a rotary encoder 1 is provided in the body portion 151 .
  • a rotary scale 2 included in the rotary encoder 1 is fixed to a rotating member 153 and rotates together with the rotating member 153 .
  • a detection head 5 included in the rotary encoder 1 is fixed to the inner peripheral wall surface of the body portion 151 .
  • a plurality of detection heads 5 are provided, and these detection heads 5 are circumferentially arranged on a virtual installation surface F facing the rotary scale 2 .
  • the rotary encoder 1 is provided with the rotation axis AX and the axial (Z-axis) direction aligned.
  • the rotation angle ⁇ z about the Z-axis is measured by the rotary encoder 1, and the remaining five degrees of freedom are measured as appropriate.
  • the machine tool 150 can calculate the correct coordinates of the tip 154a of the cutting bit 154 by measuring displacements with multiple degrees of freedom.
  • the rotary encoder 1 measures the displacement with multiple degrees of freedom, the coordinates of the tip portion 154a deviate from the target coordinates. Therefore, the machine tool 150 performs a correction operation to correct the deviation of the coordinates of the tip portion 154a. As a result, the machine tool 150 can perform machining with higher accuracy.
  • the machine tool 150 of the second embodiment can monitor the operating state of the rotating member 153 . Specifically, by measuring the displacement of multiple degrees of freedom, the modulation of the drive motor 152 and the rotating member 153 can be sensed, and failure prediction can be performed.
  • the rotary encoder 1 makes it possible to monitor the state of the rotating shaft (eccentricity, tilt, and vibration thereof) with a simple configuration without adding any other sensors, which can be useful for predicting mechanical failures.
  • the measuring device 50 of the present embodiment it is possible to measure the rotational movement of the object to be measured around multiple axes and the movement along multiple axial directions. In other words, it is possible to measure the rotational angle ⁇ z about the Z-axis and appropriately measure the remaining five degrees of freedom.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

多自由度変位計測装置は、第1の回転軸回りに配置され、複数のパターンが周方向に沿って配列されて形成されたスケールパターンを有するロータリースケールと、第1の回転軸回りに広がり、ロータリースケールと対向する設置面内に配置され、それぞれスケールパターンからパターンを読み取る複数の検出ヘッドを含む検出ヘッド群と、演算部を備える。演算部は、複数の検出ヘッドによって取得された検出値に基づいて、第1の回転軸回りの相対回転角度を算出するとともに、第1の回転軸回りの相対回転角度以外に、第1の回転軸方向に沿う方向の相対移動量と、第1の回転軸に直交する第2の回転軸に沿う方向の相対移動量のうち、少なくともいずれか一方を算出する。

Description

多自由度変位計測装置及び多自由度変位計測方法
 本件は、多自由度変位計測装置及び多自由度変位計測方法に関する。
 従来、特定の軸回りの回転角度を検出する角度検出器としてロータリーエンコーダが知られている(例えば、特許文献1参照)。ロータリーエンコーダは、例えば、組立ロボットのような産業用のロボットの関節部分に装着される(例えば、特許文献2参照)。また、ロータリーエンコーダは、工作機械に組み込まれ、工作機械が備える旋回軸の回転角度を検出する用途に用いられることがある(例えば、特許文献3参照)。
特開2021-110670号公報 特開2013-107175号公報 特開2020-001133号公報
 ところで、ロータリ-エンコーダは、特定の軸回りの回転角度を検出することができるため、例えば、ロボットの関節部分に装着されることで、その関節部分を介して接続されたリンク(アーム部材)間の角度を検出することができる。ロボットが複数の関節部分を備えている場合に、各関節部分にロータリーエンコーダを装着し、各ロータリーエンコーダの検出値を知ることができれば、ロボットがどのような姿勢となっているのかを知ることができる。しかしながら、ロボットは、例えば、先端部に設けられたエンドエフェクタで把持対象物を把持した状態となると、把持対象物の重量によってその姿勢が変化することがある。また、回転軸を構成する部材が摩耗してずれが生じることもある。このようなロボットの姿勢の変化は、複数の軸回りに回転する動きや、複数の軸方向に沿った動きの組み合わせ、つまり、ロボットにおける多自由度変位による複合的な動きに起因する。このため、このような姿勢の変化を把握し、各部の正確な位置情報を得るために、ロータリーエンコーダ以外に別途計測装置が準備されることがある。このような計測装置が設置されると、その分ロボットが大型化したり、工場の設備が複雑化したりする。
 同様の問題は、回転部分にロータリーエンコーダを備えた工作機械においても生じ得る。工作機械では、旋回軸に取り付けられた工具に位置ずれが生じたり、旋回軸に回転振動が生じたりすることがある。これらの現象には旋回軸における多自由度変位がかかわっていることがある。このため、旋回軸の回転角度や回転速度を計測するだけの従来のロータリーエンコーダだけでは、これらの現象を正確に捉えることができないことから、別途これらの現象を監視する監視装置が設けられることがある。このような監視装置の設置は、ロボットの場合と同様に工作機械を大型化させたり、工場の設備を複雑化させたりする。このような問題は、ロボットや工作機械以外の各種機械においても生じ得る。
 1つの側面では、本発明は、計測対象物の複数の軸回りに回転する動きや、複数の軸方向に沿った動きを計測することができる多自由度変位計測装置の提供を目的とする。
 1つの態様では、多自由度変位計測装置は、第1の回転軸回りに配置され、複数のパターンが周方向に沿って配列されて形成されたスケールパターンを有するロータリースケールと、前記第1の回転軸回りに広がり、前記ロータリースケールと対向する設置面内に配置され、それぞれ前記スケールパターンから前記パターンを読み取る複数の検出ヘッドを含む検出ヘッド群と、を備え、前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出するとともに、当該第1の回転軸回りの相対回転角度以外に、当該第1の回転軸方向に沿う方向の相対移動量と、前記第1の回転軸に直交する第2の回転軸に沿う方向の相対移動量のうち、少なくともいずれか一方を算出する演算部と、を備えている。
 他の態様では、第1の回転軸回りに配置され、複数のパターンが周方向に沿って配列されて形成されたスケールパターンを有するロータリースケールと、前記第1の回転軸回りに広がり、前記ロータリースケールと対向する設置面内に配置され、それぞれ前記スケールパターンから前記パターンを読み取る複数の検出ヘッドを含む検出ヘッド群と、を備え、前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出するとともに、当該第1の回転軸回りの相対回転角度以外に、当該第1の回転軸方向に沿う方向の相対移動量と、前記第1の回転軸に直交する第2の回転軸回りの相対回転角度のうち、少なくともいずれか一方を算出する演算部と、を備えている。
 さらに他の態様では、多自由度変位計測装置は、第1の回転軸回りに配置され、複数のパターンが周方向に沿って配列されて形成されたスケールパターンを有するロータリースケールと、前記第1の回転軸回りに広がり、前記ロータリースケールと対向する設置面内に配置され、それぞれ前記スケールパターンから前記パターンを読み取る複数の検出ヘッドを含む検出ヘッド群と、を備え、前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出するとともに、当該第1の回転軸回りの相対回転角度以外に、前記第1の回転軸に直交する第2の回転軸に沿う方向の相対移動量と、前記第2の回転軸回りの相対回転角度を同時に算出する演算部と、を備えている。
 上記多自由度変位計測装置において、前記複数の検出ヘッドは、3個以上であり、前記演算部は、前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出するとともに、当該第1の回転軸回りの相対回転角度以外に、当該第1の回転軸方向に沿う方向の相対移動量と、前記第2の回転軸方向に沿う方向の相対移動量と、前記第1の回転軸と前記第2の回転軸とに直交する第3の回転軸方向に沿う方向の相対移動量のうち、少なくとも一つを算出する態様とすることができる。
 さらに、上記多自由度変異計測装置において、前記複数の検出ヘッドは、3個以上であり、前記演算部は、前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出するとともに、当該第1の回転軸回りの相対回転角度以外に、当該第1の回転軸方向に沿う方向の相対移動量と、前記第1の回転軸に直交する第2の回転軸回りの相対回転角度と、前記第1の回転軸と前記第2の回転軸とに直交する第3の回転軸回りの相対回転角度のうち、少なくとも一つを算出する態様とすることができる。
 また、上記多自由度変異計測装置において、前記複数の検出ヘッドは、3個以上であり、前記演算部は、前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出するとともに、当該第1の回転軸回りの相対回転角度以外に、当該第1の回転軸方向に沿う方向の相対移動量と、前記第2の回転軸方向に沿う方向の相対移動量と、前記第1の回転軸と前記第2の回転軸とに直交する第3の回転軸方向に沿う方向の相対移動量と、前記第1の回転軸に直交する第2の回転軸回りの相対回転角度と、前記第1の回転軸と前記第2の回転軸とに直交する第3の回転軸回りの相対回転角度のうち、少なくとも二つを同時に算出する態様としてもよい。
 上記多自由度変位計測装置において、前記設置面は、前記ロータリースケールと平行に設定され、前記演算部は、前記複数の検出ヘッドによって検出される検出信号の強度に基づいて前記ロータリースケールと各検出ヘッドとの距離を算出し、当該距離が同値であるときに前記ロータリースケールと前記検出ヘッド群は、前記第1回転軸方向に沿って相対移動した状態であると判定し、前記距離を前記ロータリースケールと前記検出ヘッド群とが相対移動した距離とする態様とすることができる。
 上記多自由度変位計測装置において、前記複数の検出ヘッドは、前記スケールパターンの周方向に沿って等間隔に配置された態様とすることができる。
 さらに、上記多自由度変位計測装置において、前記検出ヘッドは、受信コイルを備え、当該受信コイルは、前記設置面を含むと共に前記設置面に対して垂直方向の所定の範囲内に形成されている態様としてもよい。
 また、上記多自由度変位計測装置において、前記受信コイルは、所定の厚さを有し、前記受信コイルは、前記設置面を中心として当該設置面に対して垂直方向の両方向に広がる設置領域内に設置され、前記設置領域は、前記設置面からの垂直方向距離が前記設置面の両方向にそれぞれ前記受信コイルの前記所定の厚さに対応する距離となる領域である態様とすることができる。
 さらに、上記多自由度変位計測装置において、前記受信コイルの厚さ方向の中間線が前記設置面と一致している態様としてもよい。
 1つの態様では、多自由度変位計測方法は、第1の回転軸回りに配置され、複数のパターンが周方向に沿って配列されて形成されたスケールパターンを有するロータリースケールと、前記第1の回転軸回りに広がり、前記ロータリースケールと対向する設置面内に配置され、それぞれ前記スケールパターンから前記パターンを読み取る複数の検出ヘッドを含む検出ヘッド群と、を備えた検出装置を用いて多自由度の変位を計測する方法であって、前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出する工程と、当該第1の回転軸回りの相対回転角度以外に、当該第1の回転軸方向に沿う方向の相対移動量と、前記第1の回転軸に直交する第2の回転軸に沿う方向の相対移動量のうち、少なくともいずれか一方を算出する工程と、を含む。
 他の態様では、多自由度変位計測方法は、第1の回転軸回りに配置され、複数のパターンが周方向に沿って配列されて形成されたスケールパターンを有するロータリースケールと、前記第1の回転軸回りに広がり、前記ロータリースケールと対向する設置面内に配置され、それぞれ前記スケールパターンから前記パターンを読み取る複数の検出ヘッドを含む検出ヘッド群と、を備えた検出装置を用いて多自由度の変位を計測する方法であって、前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出する工程と、当該第1の回転軸回りの相対回転角度以外に、当該第1の回転軸方向に沿う方向の相対移動量と、前記第1の回転軸に直交する第2の回転軸回りの相対回転角度のうち、少なくともいずれか一方を算出する工程と、を含む。
 さらに他の態様では、多自由度変位計測方法は、第1の回転軸回りに配置され、複数のパターンが周方向に沿って配列されて形成されたスケールパターンを有するロータリースケールと、前記第1の回転軸回りに広がり、前記ロータリースケールと対向する設置面内に配置され、それぞれ前記スケールパターンから前記パターンを読み取る複数の検出ヘッドを含む検出ヘッド群と、を備えた検出装置を用いて多自由度の変位を計測する方法であって、前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出する工程と、当該第1の回転軸回りの相対回転角度以外に、前記第1の回転軸に直交する第2の回転軸に沿う方向の相対移動量と、前記第2の回転軸回りの相対回転角度を同時に算出する工程と、を含む。
 計測対象物の複数の軸回りに回転する動きや、複数の軸方向に沿った動きを計測することができる。
図1は実施形態の多自由度変位計測装置の構成を例示するブロック図である。 図2は実施形態の多自由度変位計測装置が備えるロータリーエンコーダの概略構成を示す平面図である。 図3(A)は3自由度(X、Y、Z)を示す説明図であり、図3(B)は残りの3自由度(θx、θy、θz)を示す説明図である。 図4(A)は2個の検出ヘッドを備えた多自由度変位計測装置においてロータリースケールがY軸方向に沿って相対的に偏心した状態を模式的に示す説明図であり、図4(B)は2個の検出ヘッドを備えた多自由度変位計測装置においてロータリースケールがX軸方向に沿って相対的に偏心した状態を模式的に示す説明図である。 図5(A)は2個の検出ヘッドを備えた多自由度変位計測装置においてロータリースケールがY軸回りに相対的に回転した状態を模式的に示す説明図であり、図5(B)は2個の検出ヘッドを備えた多自由度変位計測装置においてロータリースケールがX軸回りに相対的に回転した状態を模式的に示す説明図である。 図6は4個の検出ヘッドを備えた多自由度変位計測装置においてロータリースケールがY軸方向に沿って相対的に偏心した状態と、X軸方向に沿って相対的に偏心した状態を模式的に示す説明図である。 図7は4個の検出ヘッドを備えた多自由度変位計測装置においてロータリースケールがY軸回りに相対的に回転した状態と、X軸回りに相対的に回転した状態を模式的に示す説明図である。 図8(A)はn個の検出ヘッドとロータリースケールを模式的に示す説明図であり、図8(B)はX軸方向、Y軸方向偏心検出時に描かれる正弦波の一例であり、図8(C)はθx、θy検出時に描かれる正弦波の一例である。 図9(A)はX軸方向の偏心量と正弦波における係数との関係を示す説明図であり、図9(B)はY軸方向の偏心量と正弦波における係数との関係を示す説明図であり、図9(C)はX軸回りの回転角度と正弦波における係数との関係を示す説明図であり、図9(D)はY軸回りの回転角度と正弦波における係数との関係を示す説明図である。 図10は実施形態の多自由度変位計測装置が適用されるロボットの斜視図である。 図11は図10に示すロボットの第一関節部における自由度を示す説明図である。 図12は図10に示すロボットが第一関節部で傾く様子を模式的に示す説明図である。 図13は実施形態の多自由度変位計測装置が適用される工作機械の一部を示す説明図である。 図14は図2に示すロータリーエンコーダの構成の詳細を示す平面図である。 図15は検出ヘッドがロータリースケールに対向する設置面に配置された様子を示す説明図である。 図16は第1検出ヘッド~第4検出ヘッドのロータリーエンコーダにおける配置を示す説明図である。 図17はロータリースケールの平面図である。 図18は受信コイルの構成を示す説明図である。 図19は受信コイルをプリント配線基板に形成した例を示す説明図である。 図20は検出ヘッドとロータリースケール間の距離と、検出信号の強度との間の相関を例示する図である。 図21(A)及び図21(B)はスケールパターンに設けられたパターンのロータリースケールに対する可動領域を示す説明図である。 図22(A)及び図22(B)はスケールパターンに設けられたパターンのロータリースケールに対する可動領域を示す説明図である。
 以下、図面を参照しつつ、実施形態について説明する。
(実施形態)
 まず、図1から図3(B)及び図14から図22を参照して、実施形態の多自由度変位計測装置(以下、単に「計測装置」という)50の概略構成について説明する。図1は実施形態の計測装置50の構成を例示するブロック図である。図2は計測装置50が備えるロータリーエンコーダ1の概略構成を示す平面図である。図3(A)は3自由度(X、Y、Z)を示す説明図であり、図3(B)は残りの3自由度(θx、θy、θz)を示す説明図である。図14はロータリーエンコーダ1の構成の詳細を示す平面図であり、図2と比較してより実機に近い態様のロータリーエンコーダ1が示されている。図15は検出ヘッド5-0~5-(n-1)がロータリースケール2に対向する設置面に配置された様子を示す説明図である。図16は第1検出ヘッド5-0~第4検出ヘッド5-3のロータリーエンコーダ1における配置を示す説明図である。図17はロータリースケール2の平面図である。図18は受信コイル5bの構成を示す説明図である。図19は受信コイル5bをプリント配線基板に形成した例を示す説明図である。
 図1を参照すると、計測装置50は、ロータリーエンコーダ1と演算部10を備えている。ロータリーエンコーダ1は、ロータリースケール2と、n個(nは2以上の整数)の検出ヘッド5-0~5-(n-1)とを含んでいる。
 図3(A)、図3(B)及び図15にロータリーエンコーダ1を図示する。多自由度変位の検出軸を定義するために、図3(A)では偏心の検出軸を、図3(B)では傾斜の検出軸を示している。図15は、図3(A)における-Y方向から+Y方向側を見たときのロータリーエンコーダ1を示している。図15に示すように、検出ヘッド5-0~5-(n-1)はロータリースケール2に対向する設置面Fに配置されている。なお、図2、図3(A)、図3(B)及び図15に示すロータリーエンコーダ1では、第1検出ヘッド5-0~第4検出ヘッド5-3までの4個の検出ヘッドが装備されている。
 検出ヘッド5-0~5-(n-1)は、ロータリースケール2の回転中心となるZ軸を中心軸としてその周囲に配置されている。検出ヘッド5-0~5-(n-1)には、それぞれ、送信コイル5aと受信コイル5bが設けられている。図16には、にロータリーエンコーダ1に配置された第1検出ヘッド5-0~第4検出ヘッド5-3が示されている。
 送信コイル5aは、円周方向に長さ方向を有する扇形コイルを構成している。図16で例示するように、受信コイル5bは、送信コイル5aの内側において、基本周期λの正負の正弦波形パターンによって、円周方向に基本周期λで繰り返される検出ループを構成している。
 ロータリースケール2は、図17に示すように、円盤状の部材であり、図示しない多自由度変位の計測対象となる回転体の回転軸と回転中心(Z軸)とを一致させてその回転体に装着される。ロータリースケール2は、ロータリースケール2の周方向に沿って基本周期λで配列された複数のパターン3aを含むスケールパターン3を有している。パターン3aは、閉ループコイルである。各パターン3aは、送信コイル5aと電磁結合するとともに、受信コイル5bと電磁結合している。
 図16に示された送信回路6は、単相交流の駆動信号を生成し、送信コイル5aに供給する。この場合、送信コイル5aに磁束が発生する。それにより、複数のパターン3aに起電流が発生する。当該複数のパターン3aは、送信コイル5aが発生する磁束と電磁結合することで、円周方向に所定の空間周期で変化する磁束を発生する。送信コイル5aが発生する磁束は、受信コイル5bに起電流を生じさせる。ロータリーエンコーダ1の変位量に応じて各コイル間の電磁結合が変化し、基本周期λと同じ周期の正弦波信号が得られる。
 設置面Fは、例えば、平板状の部材の表面に形成された受信コイル5bを含む面である。平板状の部材は、例えば、基板である。各受信コイル5bは、正弦波形パターン正負の切り替え部5b1がある。そのため、図18に示すように、受信コイル5bは設置面Fの面上だけでなく、受信コイル厚みTだけの厚みがある。また、図19に示すように、受信コイル5bをプリント配線基板に形成することもできる。この場合では、正弦波波形パターンは絶縁体を挟んで配置され、切り替え部5b1にはスルーホールthが配置されて両者を電気的に接続している。また、正弦波波形パターンが受信コイル厚みTだけ離れて配置されているので、設置面Fを受信コイル厚みTの中間線に設定することにより、信号バランスが良い状態で高精度に検出することが可能である。さらに、各受信コイル5bは、それぞれ演算部10が備える信号処理回路10aと接続されており、各受信コイル5bで取得された信号は、演算部10における演算に供される。各受信コイル5bと信号処理回路10aとは有線接続されているが、無線接続するようにしてもよい。
 図2、図3(A)及び図3(B)に示すロータリーエンコーダ1では、第1検出ヘッド5-0~第4検出ヘッド5-3が周状に等間隔で配置されているが、検出ヘッド間の間隔は、等間隔ではなく、任意の間隔で配置してもよい。但し、検出ヘッド5-0~5-(n-1)を等間隔で配置することにより、後に説明する演算部10が行う演算が容易となる。ここで、検出ヘッド5-0~5-(n-1)が周状に等間隔で配置されている、を言い換えると、ロータリースケール2の回転中心となるZ軸を中心軸としてその周囲に周状(Z軸を中心軸とする円周上)に検出ヘッドが等角度で配置されているということである。
 本実施形態では、検出ヘッド毎に送信コイル5aを装備しているが、例えば、一つの送信コイルを単独で備え、この送信コイルからロータリースケール2に向かって送信された信号を各受信コイル5bで受信する態様としてもよい。
 本実施形態のロータリーエンコーダ1では、ロータリースケール2を計測対象物となる回転体側に装着する態様であるが、検出ヘッド5-0~5-(n-1)が設けられた設置面Fを回転体側に設定するようにしてもよい。要は、ロータリーエンコーダ1は、計測対象物において、ロータリースケール2と設置面Fとの相対的な位置関係が変化するように設置されていればよい。
 本実施形態のロータリーエンコーダ1は、電磁誘導式であるが、静電容量式や光電式等、他の検出原理を用いた形態としてもよい。他の形式のロータリーエンコーダとする場合、送信コイル及び受信コイルは、それぞれ、ロータリーエンコーダが採用する形式に応じた送信部や受信部が採用される。
[計測原理]
 つぎに、図4(A)から図9(D)を参照して、計測装置50による多自由度の変位の計測の原理について説明する。各図には、検出ヘッドの数や配置が異なるロータリーエンコーダが描かれており、厳密には各図間で検出ヘッドやロータリーエンコーダは異なる場合があるが、説明の都合上、異なる検出ヘッドやロータリーエンコーダに対し、共通の参照番号を用いている。また、各図は、図2等に表れている要素が簡略化されていたり、省略されていたりする。
 まず、図4(A)及び図4(B)を参照し、2個の検出ヘッドを備えたロータリーエンコーダ1において、ロータリースケール2が偏心している場合について説明する。図4(A)を参照すると、ロータリーエンコーダ1は、2個の検出ヘッド、つまり、第1検出ヘッド5-0と第2検出ヘッド5-1を備えている。図4(A)に示すロータリーエンコーダ1では、第1検出ヘッド5-0と第2検出ヘッド5-1がX軸線上の180°離れた位置に配置されている。つまり、第1検出ヘッド5-0と第2検出ヘッド5-1はZ軸を隔ててX軸上の反対側に配置されている。
 このようなロータリーエンコーダ1において、図4(A)の右側に示すロータリーエンコーダ1のようにロータリースケール2が+Y側に偏心しているとする。すると、第1検出ヘッド5-0は、ロータリースケール2が恰もZ軸回りのプラス側(+θz)に回転したような検出値を示す。一方、第2検出ヘッド5-1は、ロータリースケール2が恰もZ軸回りのマイナス側(-θz)に回転したような検出値を示す。このような検出値の組み合わせが得られた場合、ロータリースケール2は、相対的に+Y側へ移動(偏心)していることがわかる。このときの移動量は、第1検出ヘッド5-0の検出値と第2検出ヘッド5-1の検出値のそれぞれの絶対値となる。なお、第1検出ヘッド5-0と第2検出ヘッド5-1の検出値の±が入れ替わっていれば、ロータリースケール2は、相対的に-Y側へ移動(偏心)していることになる。
 図4(B)に示すロータリーエンコーダ1では、第1検出ヘッド5-0と第2検出ヘッド5-1がY軸線上の180°離れた位置に配置されている。つまり、第1検出ヘッド5-0と第2検出ヘッド5-1はZ軸を隔ててY軸上の反対側に配置されている。
 このようなロータリーエンコーダ1において、図4(B)の下側に示すロータリーエンコーダ1のようにロータリースケール2が-X側に偏心しているとする。すると、第1検出ヘッド5-0は、ロータリースケール2が恰もZ軸回りのプラス側(+θz)に回転したような検出値を示す。一方、第2検出ヘッド5-1は、ロータリースケール2が恰もZ軸回りのマイナス側(-θz)に回転したような検出値を示す。このような検出値の組み合わせが得られた場合、ロータリースケール2は、相対的に-X側へ移動(偏心)していることがわかる。このときの移動量は、第1検出ヘッド5-0の検出値と第2検出ヘッド5-1の検出値のそれぞれの絶対値となる。なお、第1検出ヘッド5-0と第2検出ヘッド5-1の検出値の±が入れ替わっていれば、ロータリースケール2は、相対的に+X側へ移動(偏心)していることになる。
 つぎに、図5(A)及び図5(B)を参照し、2個の検出ヘッドを備えたロータリーエンコーダ1において、ロータリースケール2が傾斜している場合について説明する。図5(A)を参照すると、ロータリーエンコーダ1は、図4(A)に示すロータリーエンコーダ1と同様に第1検出ヘッド5-0と第2検出ヘッド5-1を備えている。ここで、検出ヘッドとロータリースケール2との距離は、その検出信号の強度と相関性を有する。具体的には、検出ヘッドとロータリースケール2との距離が近い(ギャップ変動が小さい)場合には、検出信号の強度が大きく(強く)なり、距離が遠い(離れて、ギャップ変動が大きい)場合には、検出信号の強度が小さく(弱く)なる。図20は、検出ヘッドとロータリースケール2との間の距離と、受信コイルから得られる検出信号の強度との間の相関を例示する図である。図2において、横軸は両者間の距離[mm]を示し、縦軸は信号強度を示す。本実施形態のロータリーエンコーダ1の検出方式は、送信コイルと受信コイル間の電磁誘導式を用いているので、図20で例示するように、距離が遠くなるほど信号強度が低下し、距離が近いほど信号強度が大きくなる。図20に示すような検出ヘッドとロータリースケール2との距離と検出信号の強度との関係を示すマップを演算部10に記憶させておき、各検出ヘッドから得られる検出信号の強度を図20に示すマップのY軸に当てはめることによって、各検出ヘッドとロータリースケール2との距離を算出することができる。
 このようなロータリーエンコーダ1において、図5(A)の右側に示すロータリーエンコーダ1のようにロータリースケール2が+θy方向(図5(A)において時計回り方向)に回転しているとする。すると、第1検出ヘッド5-0によって検出された第1検出ヘッド5-0とロータリースケール2との距離が、第2検出ヘッド5-1によって検出された第2検出ヘッド5-1とロータリースケール2との距離よりも大きくなる。このような検出値の組み合わせが得られた場合、ロータリースケール2は、相対的に+θy方向へ回転していることがわかる。このときの回転量は、第1検出ヘッド5-0の検出値と第2検出ヘッド5-1の検出値の差分から算出できる。なお、第1検出ヘッド5-0とロータリースケール2との距離よりも第2検出ヘッド5-1とロータリースケール2との距離の方が大きい場合、ロータリースケール2は、相対的に-θy側へ回転していることになる。
 図5(B)を参照すると、ロータリーエンコーダ1は、図4(B)に示すロータリーエンコーダ1と同様に第1検出ヘッド5-0と第2検出ヘッド5-1を備えている。この場合も検出信号の強度に基づいて各検出ヘッドとロータリースケール2との距離が算出される。
 このようなロータリーエンコーダ1において、図5(B)の下側に示すロータリーエンコーダ1のようにロータリースケール2が+θx方向(図5(B)において時計回り方向)に回転しているとする。すると、第2検出ヘッド5-1によって検出された第2検出ヘッド5-1とロータリースケール2との距離が、第1検出ヘッド5-0によって検出された第1検出ヘッド5-0とロータリースケール2との距離よりも大きくなる。このような検出値の組み合わせが得られた場合、ロータリースケール2は、相対的に+θx方向へ回転していることがわかる。このときの回転量は、第1検出ヘッド5-0の検出値と第2検出ヘッド5-1の検出値の差分から算出できる。なお、第2検出ヘッド5-1とロータリースケール2との距離よりも第1検出ヘッド5-0とロータリースケール2との距離の方が大きい場合、ロータリースケール2は、相対的に-θx側へ回転していることになる。
 つぎに、図6を参照し、4個の検出ヘッドを備えたロータリーエンコーダ1において、ロータリースケール2が偏心している場合について説明する。図6を参照すると、ロータリーエンコーダ1は、4個の検出ヘッド、つまり、第1検出ヘッド5-0、第2検出ヘッド5-1、第3検出ヘッド5-2及び第4検出ヘッド5-3を備えている。このロータリーエンコーダ1では、第1検出ヘッド5-0と第3検出ヘッド5-2がX軸線上の180°離れた位置に配置され、第2検出ヘッド5-1と第4検出ヘッド5-3がY軸線上の180°離れた位置に配置されている。つまり、第1検出ヘッド5-0と第3検出ヘッド5-2はZ軸を隔ててX軸上の反対側に配置され、第2検出ヘッド5-1と第4検出ヘッド5-3はZ軸を隔ててY軸上の反対側に配置されている。第1検出ヘッド5-0~第4検出ヘッド5-3は、90°ずつ隔てて等間隔に配置されている。
 このようなロータリーエンコーダ1において、図6の右側に示すロータリーエンコーダ1のようにロータリースケール2が+Y側に偏心しているとする。すると、第1検出ヘッド5-0は、ロータリースケール2が恰もZ軸回りのプラス側(+θz)に回転したような検出値を示す。一方、第3検出ヘッド5-2は、ロータリースケール2が恰もZ軸回りのマイナス側(-θz)に回転したような検出値を示す。そして、第2検出ヘッド5-1の検出値と第4検出ヘッド5-3の検出値は、いずれもZ軸回りの回転がなかったときの値を示す。このような検出値の組み合わせが得られた場合、ロータリースケール2は、相対的に+Y側へ移動していることがわかる。このときの移動量は、第1検出ヘッド5-0の検出値と第3検出ヘッド5-2の検出値のそれぞれの絶対値となる。なお、第1検出ヘッド5-0の検出値と第3検出ヘッド5-2の検出値の±が入れ替わっていれば、ロータリースケール2は、相対的に-Y側へ移動していることになる。
 図6に示すロータリーエンコーダ1において、図6の下側に示すようにロータリースケール2が-X側に偏心しているとする。すると、第2検出ヘッド5-1は、ロータリースケール2が恰もZ軸回りのプラス側(+θz)に回転したような検出値を示す。一方、第4検出ヘッド5-3は、ロータリースケール2が恰もZ軸回りのマイナス側(-θz)に回転したような検出値を示す。そして、第1検出ヘッド5-0の検出値と第3検出ヘッド5-2の検出値は、いずれもZ軸回りの回転がなかったときの値を示す。このような検出値の組み合わせが得られた場合、ロータリースケール2は、相対的に-X側へ移動していることがわかる。このときの移動量は、第2検出ヘッド5-1の検出値と第4検出ヘッド5-3の検出値のそれぞれの絶対値となる。なお、第2検出ヘッド5-1の検出値と第4検出ヘッド5-3の検出値の±が入れ替わっていれば、ロータリースケール2は、相対的に+X側へ移動していることになる。
 つぎに、図7を参照し、4個の検出ヘッドを備えたロータリーエンコーダ1において、ロータリースケール2が傾斜している場合について説明する。図7を参照すると、ロータリーエンコーダ1は、図6に示すロータリーエンコーダ1と同様に第1検出ヘッド5-0~第4検出ヘッド5-3を備えている。各検出ヘッドとロータリースケール2との距離は、各検出ヘッドの検出信号の強度に基づいて算出される。
 このようなロータリーエンコーダ1において、図7の右側に示すロータリーエンコーダ1のようにロータリースケール2が+θy方向(図7において時計回り方向)に回転しているとする。すると、第1検出ヘッド5-0によって検出された第1検出ヘッド5-0とロータリースケール2との距離が、第3検出ヘッド5-2によって検出された第3検出ヘッド5-2とロータリースケール2との距離よりも大きくなる。そして、第2検出ヘッド5-1の検出値と第4検出ヘッド5-3の検出値は同値を示す。このような検出値の組み合わせが得られた場合、ロータリースケール2は、相対的に+θy方向へ回転していることがわかる。このときの回転量は、第1検出ヘッド5-0の検出値と第3検出ヘッド5-2の検出値の差分から算出できる。なお、第1検出ヘッド5-0とロータリースケール2との距離よりも第3検出ヘッド5-2とロータリースケール2との距離の方が大きい場合、ロータリースケール2は、相対的に-θy側へ回転していることになる。
 このようなロータリーエンコーダ1において、図7の下側に示すロータリーエンコーダ1のようにロータリースケール2が+θx方向(図7において時計回り方向)に回転しているとする。すると、第4検出ヘッド5-3によって検出された第4検出ヘッド5-3とロータリースケール2との距離が、第2検出ヘッド5-1によって検出された第2検出ヘッド5-1とロータリースケール2との距離よりも大きくなる。そして、第1検出ヘッド5-0の検出値と第3検出ヘッド5-2の検出値は同値を示す。このような検出値の組み合わせが得られた場合、ロータリースケール2は、相対的に+θx方向へ回転していることがわかる。このときの回転量は、第2検出ヘッド5-1の検出値と第4検出ヘッド5-3の検出値の差分から算出できる。なお、第4検出ヘッド5-3とロータリースケール2との距離よりも第2検出ヘッド5-1とロータリースケール2との距離の方が大きい場合、ロータリースケール2は、相対的に-θx側へ回転していることになる。
 図4(A)から図7では、検出ヘッドが2個の場合と4個の場合について説明したが、検出ヘッドが2個以上であれば、同様の要領で、多自由度の変位を計測することができる。なお、Z軸回りの回転については、従来のロータリーエンコーダと同様に各検出ヘッドの検出値から検出することができる。Z軸回りの回転角度(回転量)は、例えば、各検出ヘッドの検出値(角度出力)の平均値とすることができる。また、各検出ヘッドの検出に基づいて算出された各検出ヘッドとロータリースケール2との間の距離の平均値をZ軸方向に沿う相対移動量とすることができる。
 つぎに、図8(A)から図9(D)を参照して、多自由度に含まれる自由度の変位の算出について説明する。自由度の変位の算出は、図1に示す演算部によって行われる。
 以下の説明では、図8(A)に示すロータリーエンコーダ1を参照する。図8(A)に示すロータリーエンコーダ1は、第1検出ヘッド5-0から第n検出ヘッド5-(n-1)までのn個の検出ヘッドを備えている。図中のφは、各検出ヘッドの設置位置を示している。具体的に、第1検出ヘッド5-0の設置位置φ0を基準位置とする時計回りの角度を示している。
<ロータリースケールが相対的に偏心している場合>
 まず、図8(B)を参照して、ロータリースケール2が検出ヘッド群に対して相対的に偏心している場合について説明する。X軸方向に沿った相対移動量X(偏心量)とY軸方向に沿った相対移動量Y(偏心量)は、偏心誤差の振幅と位相とによって求めることができる。n個の検出ヘッドのうち、k番目(k=0~n-1)の検出ヘッドの角度出力outkは、理想的な角度出力、つまり、偏心がない場合に得られる角度出力と、偏心誤差の和として表現される(式(1)参照)。
Figure JPOXMLDOC01-appb-M000001
 ここで、2つの検出ヘッドiと検出ヘッドjの角度出力の差を考える(式(2)参照)。
Figure JPOXMLDOC01-appb-M000002
 理想の角度(i)-理想の角度(j)は、2つの検出ヘッドの配置の差φi-φjと一致するので、以下の式(3)でΔoutを定義すると偏心誤差を抽出することができる。
Figure JPOXMLDOC01-appb-M000003
 ここで、φ=0を基準にしたときの偏心誤差の振幅をα、位相をβとすると、これらは、以下の式(4)のように表すことができる。
Figure JPOXMLDOC01-appb-M000004
 従って、Δout(i,j)は、以下の式(5)のように表される。
Figure JPOXMLDOC01-appb-M000005
 そして、式(5)を変形すると、Δout(i,j)は、以下の式(6)のように表される。
Figure JPOXMLDOC01-appb-M000006
 ここで、Δα(i,j)とΔφ(i,j)は、2つの検出ヘッドの配置に依存した定数である。すなわち、Δout(i,j)は、φ=0を基準にしたときの偏心誤差と比較して、振幅がΔα(i,j)倍されて、位相がφi,jだけずれた正弦波となる。このため、Out(i,j)をΔα(i,j)で除したものを縦軸に、横軸にΔφ(i,j)をとってプロットすると、図8(b)に示すようなプロットが得られて、それを正弦波にフィッティングすることで、偏心誤差の振幅及び位相が求められる。
 ここで、図8(B)に示す正弦波を示すy=a+b・sin(θ)+c・cos(θ)に対するフィッティングを行い係数a、b、cを算出する例について説明する。ここでは、計算を簡単にするために、第1検出ヘッド5-0から第n検出ヘッド5-(n-1)が等間隔に配置されているものとする。
 係数a、b、cは、以下の式(7)を用いた最小二乗法を適用することで算出することができる。式(7)においてA部とB部は、検出ヘッドの配置によって決定される部分であり、C部は各検出ヘッドの角度出力の差と検出ヘッドの配置から求めたΔout(i,j)/Δα(i,j)である。
Figure JPOXMLDOC01-appb-M000007
 ここで、各検出ヘッドを等間隔に配置することで、A部が対角行列になるため、計算が容易になる。
 式(7)は、検出ヘッドがn個の場合の一般式であるが、検出ヘッドが4個の場合は、以下の式(8)によって係数a、b、cを求めることができる。また、検出ヘッドが8個の場合、以下の式(9)によって係数a、b、cを求めることができる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 以上のような演算を行うことにより、係数a、b、cを求めることができ、正弦波を示す式であるy=a+b・sin(θ)+c・cos(θ)を特定することができる。そして、この式における係数bを用いてX軸方向に沿った相対移動量X(偏心量)を求め、係数cを用いてY軸方向に沿った相対移動量Y(偏心量)を求めることができる。
 相対移動量X[mm]は、係数b[rad]とR[mm]との間に、図9(A)に示すような関係を有している。ここで、R[mm]はスケールパターン3の半径である。
 このため、相対移動量X[mm]は、以下の式10によって算出される。
Figure JPOXMLDOC01-appb-M000010
 同様に、相対移動量Y[mm]は、係数c[rad]とR[mm]との間に、図9(B)に示すような関係を有している。ここで、R[mm]はスケールパターン3の半径である。
 このため、相対移動量Y[mm]は、以下の式11によって算出される。
Figure JPOXMLDOC01-appb-M000011
 このようにして相対移動量X[mm]と相対移動量Y[mm]を算出することができる。
<ロータリースケールが相対的に回転している場合>
 つぎに、図8(C)を参照して、ロータリースケール2が検出ヘッド群に対して相対的に回転している場合について説明する。具体的に、ロータリースケール2が検出ヘッド群に対してX軸回りに回転し、また、Y軸回りに回転している場合について説明する。X軸回りの相対回転量θx(傾斜量)とY軸回りの相対回転量θy(傾斜量)は、ギャップ変動(各検出ヘッドとロータリースケール2との距離)の振幅と位相とによって求めることができる。
 相対回転量θxとY軸回りの相対回転量θyを検出する場合、図8(C)に示す正弦波において、縦軸がギャップとなる。周状に配置された第1検出ヘッド5-0から第n検出ヘッド5-(n-1)の各検出ヘッドにおけるギャップをプロットし、フィッティングすることで正弦波(a+b・sin(θ)+c・cos(θ))の係数a、b、cが求められる。このフィッティングした正弦波の振幅がギャップ変動の振幅になる。すなわち、√(b+c)がギャップ変動の振幅になる。
 係数a、b、cは、以下の式(12)を用いた最小二乗法を適用することで算出することができる。式(12)においてA部とB部は、検出ヘッドの配置によって決定される部分であり、C部は各検出ヘッドにおけるギャップの値の行列である。
Figure JPOXMLDOC01-appb-M000012
 ここで、各検出ヘッドを等間隔に配置することで、A部が対角行列になるため、計算が容易になる。
 式(12)は、検出ヘッドがn個の場合の一般式であるが、検出ヘッドが4個の場合は、以下の式(13)によって係数a、b、cを求めることができる。また、検出ヘッドが8個の場合、以下の式(14)によって係数a、b、cを求めることができる。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 以上のような演算を行うことにより、係数a、b、cを求めることができ、正弦波を示す式であるy=a+b・sin(θ)+c・cos(θ)を特定することができる。そして、この式における係数bを用いてX軸回りの相対回転量θx(傾斜量)を求め、係数cを用いてY軸回りの相対回転量θy(傾斜量)を求めることができる。
 相対回転量θx[rad]は、係数b[mm]とR[mm]との間に、図9(C)に示すような関係を有している。ここで、R[mm]はスケールパターン3の半径である。
 このため、相対回転量θx[rad]は、以下の式15によって算出される。
Figure JPOXMLDOC01-appb-M000015
 同様に、相対回転量θy[rad]は、係数c[mm]とR[mm]との間に、図9(D)に示すような関係を有している。ここで、R[mm]はスケールパターン3の半径である。
 このため、相対回転量θy[rad]は、以下の式16によって算出される。
Figure JPOXMLDOC01-appb-M000016
 このようにして相対回転量θx[rad]と相対回転量θy[rad]を算出することができる。
 ロータリーエンコーダ1は、ロータリースケール2が偏心している姿勢状況における偏心量の検出と、ロータリースケール2が傾斜している姿勢状況における傾斜量の検出を行うことができる。上記説明では、これらを別個に説明している。つまり、図4(A)、図4(B)及び図6を参照しつつ、ロータリースケール2が偏心している姿勢状況における偏心量の検出について説明し、図5(A)、図5(B)及び図7を参照しつつ、ロータリースケール2が傾斜している姿勢状況における傾斜量の検出について説明している。しかしながら、ロータリーエンコーダ1は、ロータリースケール2が偏心して、かつ傾斜している姿勢状況であっても、偏心量および傾斜量を同時に検出することができる。
 ここで、図21(A)から図22(B)を参照して、スケールパターン3に設けられたパターン3aのロータリースケール2に対する可動領域について説明する。図21(A)から図22(B)は、いずれもZ軸方向から見たロータリーエンコーダ1の一部を示している。図21(A)から図22(B)において、参照符号CP1は、スケールパターン3の中心であり、一点鎖線によって描かれた十字形状によって示されている。また、参照符号CP2は、ロータリースケール2の回転中心であり、実線によって十字形状に描かれた図形によって示されている。送信コイル5a及び受信コイル5bは、回転中心CP2の周囲に周状に配置されている。図21(A)から図22(B)は、スケールパターン3の中心CP1とロータリースケール2の回転中心CP2とが相対的に僅かずつずれた様子を示している。スケールパターン3とロータリースケール2は、ロータリースケール2の偏心量および傾斜量を同時に検出する場合、パターン3aが以下に説明する状態を維持することができるように設けられている。つまり、スケールパターン3とロータリースケール2は、図21(A)から図22(B)に示すように、パターン3aが各検出ヘッドの送信コイル5aが発生させる磁束生起領域からはみ出すことがないように設けられている。
 本実施形態の計測装置50は、n個の検出ヘッド5-0~5-(n-1)を備えることで、検出ヘッド5-0~5-(n-1)に含まれるある検出ヘッドの位置座標をP(r,θ,Z)の円筒座標系で出力できる。つまり、位置座標の出力対象となっている検出ヘッド以外の検出ヘッドの検出値を用いることで、対象とする検出ヘッドの位置座標を知ることができる。検出ヘッド5-0~5-(n-1)に含まれる検出ヘッドについて相互に位置座標を出力することで、多自由度変位を計測することができるようになる。
 上述のように、ロータリーエンコーダ1におけるロータリースケール2の回転中心と、周状に配置された検出ヘッド5-0~5-(n-1)の中心軸は、ともにZ軸である。そして、ロータリーエンコーダ1が計測対象に設置された際に、ロータリーエンコーダ1と検出ヘッド5-0~5-(n-1)とのこのような位置関係は保証されている。ここで、ロータリーエンコーダ1の計測対象は、例えば、ロボットにおける関節部分や工作機械において工具が装着される回転部材等が想定される。ロボットや工作機械は、経年変化や使用に伴って各部に加わる負荷によって、各部にズレが生じることがある。本実施形態の計測装置50であれば、このズレを計測することが可能となる。つまり、ロータリーエンコーダ1が設置されたときの状態を初期状態として、その状態を基準として多自由度変位を計測することで、計測対象物の状態を把握することができる。
 なお、各図における各検出ヘッド間の距離や、各検出ヘッドの寸法及びロータリースケール2の寸法を正確に表すものではない。また、各図におけるパターン3aの寸法や、パターン3a間の距離は正確に表されたものではない。
 ここで、再び図3(A)及び図3(B)を参照して、実施形態の計測装置50によって計測することができる多自由度の変位について説明する。図3(A)及び図3(B)に示すように、ロータリーエンコーダ1は、その回転中心をZ軸と一致させて設置される。また、このとき、ロータリースケール2は、Z軸と直交するX軸及びZ軸とX軸とに直交するY軸がそれぞれ径方向に貫くように設置される。ここで、Z軸は第1の回転軸、X軸は第2の回転軸、Y軸は第3の回転軸に相当する。
 計測装置50は、図3(A)において、+Xと-Xで示すように、検出ヘッド5-0~5-(n-1)を含む検出ヘッド群と、ロータリースケール2とのX軸方向に沿う相対移動量を検出することができる。また、計測装置50は、図3(A)において、+Yと-Yで示すように、検出ヘッド5-0~5-(n-1)を含む検出ヘッド群と、ロータリースケール2とのY軸方向に沿う相対移動量を検出することができる。さらに、計測装置50は、図3(A)において、+Zと-Zで示すように、検出ヘッド5-0~5-(n-1)を含む検出ヘッド群と、ロータリースケール2とのZ軸方向に沿う相対移動量を検出することができる。
 計測装置は、図3(B)において、+θxと-θxで示すように、検出ヘッド5-0~5-(n-1)を含む検出ヘッド群と、ロータリースケール2とのX軸回りの相対回転角度を検出することができる。また、計測装置50は、図3(B)において、+θyと-θyで示すように、検出ヘッド5-0~5-(n-1)を含む検出ヘッド群と、ロータリースケール2とのY軸回りの相対回転角度を検出することができる。さらに、計測装置50は、図3(B)において、+θzと-θzで示すように、検出ヘッド5-0~5-(n-1)を含む検出ヘッド群と、ロータリースケール2とのZ軸回りの相対回転角度を検出することができる。
 上記の6つの自由度のうち、検出ヘッド5-0~5-(n-1)を含む検出ヘッド群と、ロータリースケール2とのZ軸回りの相対回転角度は、通常のロータリーエンコーダによって計測される自由度の変位の一つである。本実施形態の計測装置50において、Z軸回りの相対回転角度については、従来のロータリーエンコーダと同様に計測することができる。実施形態の計測装置50は、このZ軸回りの相対回転角度以外に、他の自由度の変位についても計測することができる。
(第1実施例)
 つぎに、図10から図12を参照して、実施形態の計測装置50を適用することができる第1実施例としてのロボット100について説明する。ロボット100は、工場における組み立て作業等に用いられる所謂産業用ロボットである。
 ロボット100は、土台となり、ロボット100の各部の座標の基準点P1が設定されたベース部101、第1リンク部材102aから第6リンク部材102fを備えている。第6リンク部材102fは、作業対象物を挟持するハンド部であるエンドエフェクタである。各リンク部材の接続部分には、関節部J1からJ6が設けられている。各関節部J1からJ6には、モータ(不図示)と図1に示すようなロータリーエンコーダ1が組み込まれている。なお、各関節部J1からJ6に、モータとロータリーエンコーダとが組み込まれた構成は、従来公知の構成であり、図10及び図12において、各関節部J1からJ6に組み込まれたモータ及びロータリーエンコーダは省略されている。
 第1関節部J1はベース部101と第1リンク部材102aとの間に設けられている。第2関節部J2は第1リンク部材102aと第2リンク部材102bとの間に設けられている。第3関節部J3は第2リンク部材102bと第3リンク部材102cとの間に設けられている。第4関節部J4は第3リンク部材102cと第4リンク部材102dとの間に設けられている。第5関節部J5は第4リンク部材102dと第5リンク部材102eとの間に設けられている。第6関節部J6は第5リンク部材102eと第6リンク部材(エンドエフェクタ)102fとの間に設けられている。各関節部に設けられているロータリーエンコーダ1の中心点は、それぞれ、P1、P2、P3、P4、P5及びP6である。そして、第6リンク部材102fの位置は把持点HCで表される。ロボット100の制御では、基準点P1の座標(0,0,0)に対する把持点HCの座標が指示される。具体的に、把持点HCの座標が目標座標となるように、各関節部J1からJ6に設けられたモータが作動する。中心点P1~P6及び把持点HCは、基準点P1を出発点として、各関節部J1からJ6におけるモータの回転角度(回転量)と各リンク部材の寸法を考慮して順次演算することで算出することができる。
 ここで、図11及び図12を参照して、第1関節部J1における6自由度(X,Y,Z,θx,θy,θz)の変化について説明する。第1関節部J1に設けられたロータリーエンコーダ1は、座標が(0,0,0)である基準点P1にZ軸を通過させた状態で設置されている。第1関節部J1に組み込まれているモータは第1リンク部材102aをZ軸回りに回転させるものであるため、モータを作動させることで能動的に変化するのは、θzである。ところが、種々の原因、例えば、第6リンク部材102fが把持対象物を把持した場合に、その把持対象物の重量によって、図12に示すように、ベース部101に対し、第1リンク部材102a以降のリンク部材が傾斜することがある。また、軸部分を形成している部材の摩耗等に起因して、X軸方向やY軸方向に偏心することがある。
 このような現象が生じている場合、6自由度(X,Y,Z,θx,θy,θz)のうち、Z軸回りの回転角度θz以外に、残りの5自由度のいずれかについても変化していると考えられる。仮に、X軸方向、Y軸方向及びZ方向に移動していた場合、基準点P1は基準点P1´となり、その座標(0,0,0)は(x,y,z)に更新される。また、X軸回りの回転θxやY軸回りの回転θyが計測された場合には、これらの回転を考慮して傾斜させたZ´軸が設定される。Z´軸は新たな基準点P1´を通過する。さらに、元々のZ軸回りの回転θzを考慮した新たなX´軸及びY´軸が設定される。このようにX軸、Y軸及びZ軸は、X´軸、Y´軸及びZ´軸に更新される。このように多自由度の変位が生じると、X軸、Y軸及びZ軸の更新が行われる。
 このようなX軸、Y軸及びZ軸の更新は、各関節部J2からJ6においても行われる。この結果、目標座標が設定された把持点HCの位置は、実際には、把持点HC´となり、その座標は、目標座標とはずれたものとなる。
 実際の把持点HC´の座標は、各関節部J1からJ6においてロータリーエンコーダ1によって検出された多自由度の変位と各リンク部材の寸法を考慮して順次演算することで算出される。
 このようにして算出された実際の把持点HC´の座標と目標値の把持点HCの座標とが図12に示すようにずれていた場合、ロボット100はこの座標のずれを打ち消すように関節部J1からJ6を動作させる位置補正制御する。なお、位置補正制御自体は、従来公知の方法を採用することができるので、ここでは、その詳細な説明は省略する。
 これにより、ロボット100は、ロータリーエンコーダ1以外に別途計測装置を準備することなく、ロボット100の姿勢、把持点HCのずれを把握することができる。そして、そのずれを補正することができる。
(第2実施例)
 つぎに、図13を参照して、実施形態の計測装置50を適用することができる第2実施例としての工作機械150について説明する。工作機械150は、ワーク(不図示)に対する切削や研磨作業等を行う。
 工作機械150は、筒状の本体部151と、この本体部151内に収納された駆動モータ152、駆動モータ152によって回転可能に設けられた回転部材153を備えている。駆動モータ152は、回転部材153を回転主軸AX回りに回転させる。回転部材153の先端部分には、チャック部153aが設けられている。チャック部153aには、各種工具を装着することができるが、本実施形態では、切削バイト154がチャック部153aに装着されている。本体部151内には、ロータリーエンコーダ1が設けられている。ロータリーエンコーダ1に含まれるロータリースケール2は、回転部材153に固定されており、回転部材153とともに回転する。ロータリーエンコーダ1に含まれる検出ヘッド5は、本体部151の内周壁面に固定されている。検出ヘッド5は複数設けられており、これらの検出ヘッド5はロータリースケール2と対向する仮想の設置面F上に周状に配列されている。ロータリーエンコーダ1は、回転軸線AXとアキシャル(Z軸)方向とを一致させて設けられている。
 工作機械150では、ロータリーエンコーダ1によってZ軸回りの回転角度θzを計測するとともに、これ以外の残りの5自由度について適宜計測する。
 工作機械150は、多自由度の変位を計測することにより、切削バイト154の先端部154aの正確な座標を算出することができる。ロータリーエンコーダ1によって多自由度の変位が計測された場合、先端部154aの座標は、目標座標からずれていることになる。そこで、工作機械150は、先端部154aの座標のずれを修正するように補正動作を行う。これにより、工作機械150は、より精度の高い加工を行うことができる。
 また、第2実施例の工作機械150は、回転部材153の作動状態を監視することができる。具体的に、多自由度の変位を計測することで、駆動モータ152や回転部材153の変調を察知し、これらの故障予知を行うことができる。つまり、ロータリーエンコーダ1によって、他にセンサを加えることなく簡潔な構成で回転軸の状態(偏心、傾き、それらの振動)監視を行うことが可能になり、機械の故障予知に役立てることができる。
 本実施形態の計測装置50によれば、計測対象物の複数の軸回りに回転する動きや、複数の軸方向に沿った動きを計測することができる。つまり、Z軸回りの回転角度θzを計測するとともに、これ以外の残りの5自由度について適宜計測することができる。
 以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 1 ロータリーエンコーダ
 2 ロータリースケール
 3 スケールパターン
 3a パターン
 5 検出ヘッド
 5-0 第1検出ヘッド
 5-1 第2検出ヘッド
 5-n-1 第n検出ヘッド
 5a 送信コイル
 5b 受信コイル
 50 多自由度変位計測装置
 100 ロボット
 101 ベース部
 102a 第1リンク部材
 102b 第2リンク部材
 102c 第3リンク部材
 102d 第4リンク部材
 102e 第5リンク部材
 102f 第6リンク部材
 J1 第1関節部
 J2 第2関節部
 J3 第3関節部
 J4 第4関節部
 J5 第5関節部
 J6 第6関節部

Claims (14)

  1.  第1の回転軸回りに配置され、複数のパターンが周方向に沿って配列されて形成されたスケールパターンを有するロータリースケールと、
     前記第1の回転軸回りに広がり、前記ロータリースケールと対向する設置面内に配置され、それぞれ前記スケールパターンから前記パターンを読み取る複数の検出ヘッドを含む検出ヘッド群と、を備え、
     前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出するとともに、当該第1の回転軸回りの相対回転角度以外に、当該第1の回転軸方向に沿う方向の相対移動量と、前記第1の回転軸に直交する第2の回転軸に沿う方向の相対移動量のうち、少なくともいずれか一方を算出する演算部と、
    を備えた多自由度変位計測装置。
  2.  第1の回転軸回りに配置され、複数のパターンが周方向に沿って配列されて形成されたスケールパターンを有するロータリースケールと、
     前記第1の回転軸回りに広がり、前記ロータリースケールと対向する設置面内に配置され、それぞれ前記スケールパターンから前記パターンを読み取る複数の検出ヘッドを含む検出ヘッド群と、を備え、
     前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出するとともに、当該第1の回転軸回りの相対回転角度以外に、当該第1の回転軸方向に沿う方向の相対移動量と、前記第1の回転軸に直交する第2の回転軸回りの相対回転角度のうち、少なくともいずれか一方を算出する演算部と、
    を備えた多自由度変位計測装置。
  3.  第1の回転軸回りに配置され、複数のパターンが周方向に沿って配列されて形成されたスケールパターンを有するロータリースケールと、
     前記第1の回転軸回りに広がり、前記ロータリースケールと対向する設置面内に配置され、それぞれ前記スケールパターンから前記パターンを読み取る複数の検出ヘッドを含む検出ヘッド群と、を備え、
     前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出するとともに、当該第1の回転軸回りの相対回転角度以外に、前記第1の回転軸に直交する第2の回転軸に沿う方向の相対移動量と、前記第2の回転軸回りの相対回転角度を同時に算出する演算部と、
    を備えた多自由度変位計測装置。
  4.  前記複数の検出ヘッドは、3個以上であり、
     前記演算部は、前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出するとともに、当該第1の回転軸回りの相対回転角度以外に、当該第1の回転軸方向に沿う方向の相対移動量と、前記第2の回転軸方向に沿う方向の相対移動量と、前記第1の回転軸と前記第2の回転軸とに直交する第3の回転軸方向に沿う方向の相対移動量のうち、少なくとも一つを算出する、
    請求項1に記載の多自由度変位計測装置。
  5.  前記複数の検出ヘッドは、3個以上であり、
     前記演算部は、前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出するとともに、当該第1の回転軸回りの相対回転角度以外に、当該第1の回転軸方向に沿う方向の相対移動量と、前記第1の回転軸に直交する第2の回転軸回りの相対回転角度と、前記第1の回転軸と前記第2の回転軸とに直交する第3の回転軸回りの相対回転角度のうち、少なくとも一つを算出する、
    請求項2に記載の多自由度変位計測装置。
  6.  前記複数の検出ヘッドは、3個以上であり、
     前記演算部は、前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出するとともに、当該第1の回転軸回りの相対回転角度以外に、当該第1の回転軸方向に沿う方向の相対移動量と、前記第2の回転軸方向に沿う方向の相対移動量と、前記第1の回転軸と前記第2の回転軸とに直交する第3の回転軸方向に沿う方向の相対移動量と、前記第1の回転軸に直交する第2の回転軸回りの相対回転角度と、前記第1の回転軸と前記第2の回転軸とに直交する第3の回転軸回りの相対回転角度のうち、少なくとも二つを同時に算出する、
    請求項3に記載の多自由度変位計測装置。
  7.  前記設置面は、前記ロータリースケールと平行に設定され、
     前記演算部は、前記複数の検出ヘッドによって検出される検出信号の強度に基づいて前記ロータリースケールと各検出ヘッドとの距離を算出し、当該距離が同値であるときに前記ロータリースケールと前記検出ヘッド群は、前記第1回転軸方向に沿って相対移動した状態であると判定し、前記距離を前記ロータリースケールと前記検出ヘッド群とが相対移動した距離とする請求項1、3、5のいずれか一項に記載の多自由度変位計測装置。
  8.  前記複数の検出ヘッドは、前記スケールパターンの周方向に沿って等間隔に配置された、
    請求項1から6のいずれか一項に記載の多自由度変位計測装置。
  9.  前記検出ヘッドは、受信コイルを備え、当該受信コイルは、前記設置面を含むと共に前記設置面に対して垂直方向の所定の範囲内に形成されている、
    請求項1から6のいずれか一項に記載の多自由度変位計測装置。
  10.  前記受信コイルは、所定の厚さを有し、前記受信コイルは、前記設置面を中心として当該設置面に対して垂直方向の両方向に広がる設置領域内に設置され、前記設置領域は、前記設置面からの垂直方向距離が前記設置面の両方向にそれぞれ前記受信コイルの前記所定の厚さに対応する距離となる領域である、
    請求項9に記載の多自由度変位計測装置。
  11.  前記受信コイルの厚さ方向の中間線が前記設置面と一致している、
    請求項10に記載の多自由度変位計測装置。
  12.  第1の回転軸回りに配置され、複数のパターンが周方向に沿って配列されて形成されたスケールパターンを有するロータリースケールと、
     前記第1の回転軸回りに広がり、前記ロータリースケールと対向する設置面内に配置され、それぞれ前記スケールパターンから前記パターンを読み取る複数の検出ヘッドを含む検出ヘッド群と、を備えた検出装置を用いて多自由度の変位を計測する方法であって、
     前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出する工程と、
     当該第1の回転軸回りの相対回転角度以外に、当該第1の回転軸方向に沿う方向の相対移動量と、前記第1の回転軸に直交する第2の回転軸に沿う方向の相対移動量のうち、少なくともいずれか一方を算出する工程と、
    を含む多自由度変位計測方法。
  13.  第1の回転軸回りに配置され、複数のパターンが周方向に沿って配列されて形成されたスケールパターンを有するロータリースケールと、
     前記第1の回転軸回りに広がり、前記ロータリースケールと対向する設置面内に配置され、それぞれ前記スケールパターンから前記パターンを読み取る複数の検出ヘッドを含む検出ヘッド群と、を備えた検出装置を用いて多自由度の変位を計測する方法であって、
     前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出する工程と、
     当該第1の回転軸回りの相対回転角度以外に、当該第1の回転軸方向に沿う方向の相対移動量と、前記第1の回転軸に直交する第2の回転軸回りの相対回転角度のうち、少なくともいずれか一方を算出する工程と、
    を含む多自由度変位計測方法。
  14.  第1の回転軸回りに配置され、複数のパターンが周方向に沿って配列されて形成されたスケールパターンを有するロータリースケールと、
     前記第1の回転軸回りに広がり、前記ロータリースケールと対向する設置面内に配置され、それぞれ前記スケールパターンから前記パターンを読み取る複数の検出ヘッドを含む検出ヘッド群と、を備えた検出装置を用いて多自由度の変位を計測する方法であって、
     前記複数の検出ヘッドによって取得された検出値に基づいて、前記第1の回転軸回りの相対回転角度を算出する工程と、
     当該第1の回転軸回りの相対回転角度以外に、前記第1の回転軸に直交する第2の回転軸に沿う方向の相対移動量と、前記第2の回転軸回りの相対回転角度を同時に算出する工程と、
    を含む多自由度変位計測方法。
PCT/JP2022/036519 2021-09-30 2022-09-29 多自由度変位計測装置及び多自由度変位計測方法 WO2023054613A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280066490.8A CN118043631A (zh) 2021-09-30 2022-09-29 多自由度位移测量设备和多自由度位移测量方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021161576 2021-09-30
JP2021-161576 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054613A1 true WO2023054613A1 (ja) 2023-04-06

Family

ID=85782942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036519 WO2023054613A1 (ja) 2021-09-30 2022-09-29 多自由度変位計測装置及び多自由度変位計測方法

Country Status (2)

Country Link
CN (1) CN118043631A (ja)
WO (1) WO2023054613A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215571A (ja) * 1992-02-05 1993-08-24 Asahi Optical Co Ltd ロータリエンコーダ
JPH11108698A (ja) * 1997-09-30 1999-04-23 Ishikawajima Harima Heavy Ind Co Ltd 光学式位置検出装置の検出器
JP2006145560A (ja) * 2006-03-06 2006-06-08 Mitsutoyo Corp 倣いプローブの校正プログラムおよび校正方法
JP2011242286A (ja) * 2010-05-19 2011-12-01 Seiko Epson Corp 偏心測定方法、偏心測定装置、該偏心測定装置の制御プログラム、回転装置、該回転装置の製造方法
JP2014059297A (ja) * 2012-08-20 2014-04-03 Dmg Mori Seiki Co Ltd スケール装置、位置情報生成方法及び多軸ステージ装置
JP2016118491A (ja) * 2014-12-22 2016-06-30 Dmg森精機株式会社 ロータリーエンコーダ、ロータリーエンコーダの制御方法および制御プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215571A (ja) * 1992-02-05 1993-08-24 Asahi Optical Co Ltd ロータリエンコーダ
JPH11108698A (ja) * 1997-09-30 1999-04-23 Ishikawajima Harima Heavy Ind Co Ltd 光学式位置検出装置の検出器
JP2006145560A (ja) * 2006-03-06 2006-06-08 Mitsutoyo Corp 倣いプローブの校正プログラムおよび校正方法
JP2011242286A (ja) * 2010-05-19 2011-12-01 Seiko Epson Corp 偏心測定方法、偏心測定装置、該偏心測定装置の制御プログラム、回転装置、該回転装置の製造方法
JP2014059297A (ja) * 2012-08-20 2014-04-03 Dmg Mori Seiki Co Ltd スケール装置、位置情報生成方法及び多軸ステージ装置
JP2016118491A (ja) * 2014-12-22 2016-06-30 Dmg森精機株式会社 ロータリーエンコーダ、ロータリーエンコーダの制御方法および制御プログラム

Also Published As

Publication number Publication date
CN118043631A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
US10583570B2 (en) Displacement measurement device, robot, and robot arm
JP7237904B2 (ja) ロボット装置、制御方法、物品の製造方法、プログラム、及び記録媒体
JP2521167B2 (ja) 表面検出装置
JP3443030B2 (ja) 測定装置
US10201901B2 (en) Robot apparatus, method for controlling robot, program, and recording medium
KR101532060B1 (ko) 셀프 베어링 모터를 위한 위치 피드백
CN101281011B (zh) 具有恒定接触力的振动扫描探针
Bonev et al. A closed-form solution to the direct kinematics of nearly general parallel manipulators with optimally located three linear extra sensors
CN103782130A (zh) 在测量工件的坐标时的误差修正和/或避免
US20050038563A1 (en) Device and method for kinematic calibration of robots
JP6918647B2 (ja) 力センサ、トルクセンサ、力覚センサ、指先力センサ、およびその製造方法
KR20000070430A (ko) 로봇의 캘리브레이션 장치 및 방법
US11619522B2 (en) Calibrating position sensor readings
CN101680741A (zh) 用于测量轴的对准误差的系统和方法
US6964102B2 (en) Device and method for detecting the rotational movement of an element rotatably mounted about an axis
US11002529B2 (en) Robot system with supplementary metrology position determination system
JP2017159425A (ja) ロボット
JP3663318B2 (ja) パラレルメカニズムの運動誤差補正方法およびその装置
WO2023054613A1 (ja) 多自由度変位計測装置及び多自由度変位計測方法
JP5786290B2 (ja) 6軸ロボットの6軸原点位置較正方法、6軸ロボットの制御装置、7軸ロボットの7軸原点位置較正方法及び7軸ロボットの制御装置
CN111683796A (zh) 机械臂和机器人
GB2552386A (en) Magnetic position sensor mounting arrangement
US20230266186A1 (en) Torque sensor element and torque sensor
JP7146609B2 (ja) 検出装置、駆動装置、ロボット装置、検出方法、物品の製造方法、制御方法、プログラム、及び記録媒体
JP2021085755A (ja) 検出装置、駆動装置、ロボット装置、検出方法、ロボット装置を用いた物品の製造方法、制御プログラムおよび記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876477

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551862

Country of ref document: JP