WO2023054227A1 - リチウムの浸出方法 - Google Patents

リチウムの浸出方法 Download PDF

Info

Publication number
WO2023054227A1
WO2023054227A1 PCT/JP2022/035591 JP2022035591W WO2023054227A1 WO 2023054227 A1 WO2023054227 A1 WO 2023054227A1 JP 2022035591 W JP2022035591 W JP 2022035591W WO 2023054227 A1 WO2023054227 A1 WO 2023054227A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
leaching
powder
titanium oxide
mineral acid
Prior art date
Application number
PCT/JP2022/035591
Other languages
English (en)
French (fr)
Inventor
広隆 酒井
順 中澤
Original Assignee
株式会社アサカ理研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アサカ理研 filed Critical 株式会社アサカ理研
Priority to JP2023551453A priority Critical patent/JPWO2023054227A1/ja
Publication of WO2023054227A1 publication Critical patent/WO2023054227A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals

Definitions

  • the present invention relates to a method for leaching lithium.
  • Patent Document 1 can obtain a lithium titanium oxide as an active material for a regenerated negative electrode, but has a problem that a lithium compound having battery-grade purity cannot be obtained.
  • a method of acid leaching lithium from lithium manganate, lithium cobalt oxide, lithium nickel oxide, etc. contained as a positive electrode active material in waste lithium ion batteries waste lithium ion batteries are not roasted (heat treated) or heat treated.
  • a method of immersing a fired body powder obtained by pulverization and classification in sulfuric acid heated to about 50 to 70° C. is known (see, for example, Patent Document 2).
  • the present invention provides a method for leaching lithium from lithium titanium oxide contained as a negative electrode active material or the like in waste lithium-ion batteries to obtain a lithium compound having battery-grade purity. intended to provide
  • the lithium leaching method of the present invention is a method of leaching lithium from a powder containing lithium titanium oxide obtained from a waste lithium ion battery, wherein the powder is heated to 80°C to 95°C. It is characterized by being immersed in a mineral acid of a predetermined concentration heated to a temperature in the range of less than.
  • powder containing lithium titanium oxide obtained from waste lithium ion batteries can be dissolved in mineral acid. As a result, lithium can be leached from the lithium titanium oxide.
  • the time for immersing the powder of the waste lithium ion battery containing lithium titanium oxide in the mineral acid is very short, the leaching of lithium from the powder into the mineral acid is not completed. Also, if the immersion time is too long, the cost of heating increases while the leaching does not proceed any further.
  • the temperature of the mineral acid is less than 80°C, the powder cannot be efficiently dissolved in the mineral acid.
  • the temperature of the mineral acid exceeds 95° C., the gas violently volatilizes, degrading the working environment and corroding the equipment.
  • the powder is preferably immersed in a mineral acid heated to a temperature in the range of 90°C or higher and lower than 95°C.
  • lithium can be leached more efficiently by immersing the powder in a mineral acid heated to a temperature in the range of 90° C. or more and less than 95° C.
  • the mineral acid preferably contains at least one selected from the group consisting of hydrochloric acid, sulfuric acid and nitric acid.
  • the immersion is preferably for a time in the range of 2 hours or more and 20 hours or less.
  • FIG. 4 is a diagram showing the result of immersing waste lithium ion battery powder containing lithium titanium oxide according to the method of the present invention in hydrochloric acid; FIG. 4 shows the result of immersing the waste lithium ion battery powder containing lithium titanium oxide according to the method of the present invention in sulfuric acid.
  • the method for leaching lithium according to the present embodiment can be used when leaching lithium from a powder containing lithium titanium oxide obtained from a waste lithium ion battery.
  • the waste lithium-ion battery includes a used lithium-ion battery whose life as a battery product has been exhausted, a lithium-ion battery discarded as a defective product in the manufacturing process, and a lithium-ion battery discarded in the manufacturing process. It means the residual positive electrode material and the like used for commercialization.
  • the following pretreatment is performed on the waste lithium ion battery.
  • the waste lithium-ion battery is a used lithium-ion battery whose life as a battery product has been exhausted, or a lithium-ion battery discarded as a defective product in the manufacturing process
  • salt water is used for the pretreatment.
  • a discharge treatment is performed inside to discharge all the remaining electric charges.
  • the waste lithium ion battery is disassembled, and the housing, current collector and the like constituting the waste lithium ion battery are removed to obtain an electrode foil containing lithium titanium oxide.
  • the lithium titanium oxide in the present embodiment includes a spinel structure lithium titanium oxide (eg Li 4+x Ti 5 O 12 (where x is ⁇ 1 ⁇ x ⁇ 3)), a ramsdellite structure lithium titanium oxide (eg Li 2+x Ti 3 O 7 ( ⁇ 1 ⁇ x ⁇ 3)), Li 1+x Ti 2 O 4 (0 ⁇ x ⁇ 1), Li 1.1+x Ti 1.8 O 4 (0 ⁇ x ⁇ 1), Li 1.07+x Including Ti 1.86 O 4 (0 ⁇ x ⁇ 1) and Li x TiO 2 (0 ⁇ x ⁇ 1).
  • Said lithium titanium oxide is typically Li 4 Ti 5 O 12 .
  • the lithium titanium oxide in the present embodiment includes Co, V, Mn, Fe, Ni, Cu, Zn, Al, B, Mg, Ca, Sr, Ba, Zr, Nb, Mo, W, Bi, Na, Ga and at least one selected from the group consisting of rare earth elements.
  • the electrode foil is heat-treated (roasted) at a temperature in the range of 300 to 400°C. Then, after the heat treatment, or without the heat treatment, the electrode foil is pulverized with a pulverizer such as a biaxial crusher or a hammer crusher, and the electrode foil base material and the like constituting the electrode foil are removed by sieving (classification). ) to obtain a powder containing lithium titanium oxide.
  • a pulverizer such as a biaxial crusher or a hammer crusher
  • the powder is immersed in a mineral acid of a predetermined concentration to dissolve the lithium titanium oxide, thereby leaching lithium with the mineral acid.
  • the powder is immersed in mineral acid of a predetermined concentration heated to a temperature in the range of 80°C or more and less than 95°C.
  • the immersion time is preferably in the range of 2 hours or more and 20 hours or less.
  • the powder is preferably immersed in a mineral acid heated to a temperature in the range of 90°C or higher and lower than 95°C.
  • the mineral acid preferably contains at least one selected from the group consisting of hydrochloric acid, sulfuric acid, and nitric acid, and more preferably contains at least one selected from the group consisting of hydrochloric acid and sulfuric acid.
  • Example 1 1000 g of electrode foil of a waste lithium ion battery was put into an electric furnace and heat-treated (roasted) at 400° C. for 10 minutes. Then, after the heat treatment, the material was cut into squares of about 2 cm in length and width, pulverized with a pulverizer, sieved using a sieve with an opening of 1 mm, and the powder that passed through the sieve was collected to obtain Li 4 Ti. 780 g of powder containing lithium titanium oxide based on 5 O 12 were obtained.
  • Example 2 100 g of the powder was immersed in 170 mL of sulfuric acid to leach lithium from the lithium titanium oxide.
  • concentration of sulfuric acid used for the immersion, the immersion time, and the temperature of the sulfuric acid were changed, and the concentration of lithium in the leaching solution was measured to determine the amount of lithium leached under each condition.
  • the ratio of the leaching amount of lithium to the theoretical amount of lithium contained in the powder was calculated as the leaching rate (% by mass) of lithium. The results are shown in FIG.
  • the range of conditions in which the leaching rate of lithium exceeds 60% is surrounded by a thick frame as a guideline so that the effect can be easily understood. It is clear that when the temperature of the mineral acid is 80° C. or higher, preferably 90° C. or higher, the leaching rate of lithium is higher and lithium can be leached more efficiently. In addition, since the increase in the leaching rate peaks out over time, it is preferable to soak for about 2 hours to 20 hours, and extending the time beyond that requires a balance such as an increase in heating cost. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

廃リチウムイオン電池に負極活物質等として含まれるリチウムチタン酸化物からリチウムを浸出して、電池グレードの純度を備えるリチウム化合物を得ることができるリチウムの浸出方法を提供する。本発明のリチウムの浸出方法は、廃リチウムイオン電池から得られたリチウムチタン酸化物を含む粉末からリチウムを浸出する方法であって、前記粉末を80℃以上95℃未満の温度に加熱した所定の濃度の鉱酸に浸漬することを特徴とする。

Description

リチウムの浸出方法
 本発明は、リチウムを浸出する方法に関する。
 従来、リチウムイオン電池の負極活物質等として用いられているリチウムチタン酸化物を回収する方法として、廃リチウムイオン電池を熱処理し、粉砕することで、粉砕物を得る工程と、前記破砕物を、溶媒中に分散させることで、分散液を得る工程と、前記分散液について、沈殿層と、上澄み液とを分離させる工程と、前記上澄み液に、凝集沈降剤を添加することで、前記リチウムチタン酸化物粉末を沈降させる工程とを備える方法が知られている(例えば、特許文献1参照)。
 ところが、特許文献1記載の方法では、再生負極用活物質としてのリチウムチタン酸化物を得ることはできるが、電池グレードの純度を備えるリチウム化合物を得ることはできないという問題がある。
 一方、廃リチウムイオン電池に正極活物質として含まれるマンガン酸リチウム、コバルト酸リチウム、ニッケル酸リチウムなどから、リチウムを酸浸出する方法として、廃リチウムイオン電池を焙焼(熱処理)又は熱処理せず、粉砕、分級して得られた焼成体の粉末を50~70℃程度に加熱された硫酸に浸漬する方法が知られている(例えば、特許文献2参照)。
特開2019-130474号公報 特開2019-169309号公報
 しかしながら、リチウムチタン酸化物からリチウムを酸浸出する方法は知られていない。
 本発明は、かかる事情に鑑み、廃リチウムイオン電池に負極活物質等として含まれるリチウムチタン酸化物からリチウムを浸出して、電池グレードの純度を備えるリチウム化合物を得ることができるリチウムの浸出方法を提供することを目的とする。
 かかる目的を達成するために、本発明のリチウムの浸出方法は、廃リチウムイオン電池から得られたリチウムチタン酸化物を含む粉末からリチウムを浸出する方法であって、前記粉末を80℃以上95℃未満の範囲の温度に加熱した所定の濃度の鉱酸に浸漬することを特徴とする。
 本発明のリチウムの浸出方法によれば、廃リチウムイオン電池から得られたリチウムチタン酸化物を含む粉末を鉱酸に溶解することができる。この結果、前記リチウムチタン酸化物からリチウムを浸出することができる。
 ここで、リチウムチタン酸化物を含む廃リチウムイオン電池の粉末を鉱酸に浸漬する時間が非常に短い場合は、前記粉末を前記鉱酸へのリチウムの浸出が完了しきらない。また、浸漬する時間が非常に長い場合は、浸出がこれ以上進まなくなってくる一方で加熱のためのコストが増大する。
 さらに、前記鉱酸の温度が80℃未満では、前記粉末を前記鉱酸に効率的に溶解することができない。また、前記鉱酸の温度が95℃超では、ガスが激しく揮発し、作業環境が悪化したり、装置が腐食されたりする。
 本発明のリチウムの浸出方法は、記粉末を90℃以上95℃未満の範囲の温度に加熱した鉱酸に浸漬することが好ましい。本発明のリチウムの浸出方法では、前記粉末を90℃以上95℃未満の範囲の温度に加熱した鉱酸に浸漬することにより、より効率よくリチウムを浸出することができる。
 前記鉱酸は、好ましくは、塩酸、硫酸、及び硝酸からなる群から選ばれる少なくとも1つを含む。
 前記浸漬は、好ましくは2時間以上20時間以下の範囲の時間である。
本発明の方法によるリチウムチタン酸化物を含む廃リチウムイオン電池の粉末を塩酸に浸漬した結果を示す図。 本発明の方法によるリチウムチタン酸化物を含む廃リチウムイオン電池の粉末を硫酸に浸漬した結果を示す図。
 次に、本発明の実施の形態について更に詳しく説明する。
 本実施形態のリチウムの浸出方法は、廃リチウムイオン電池から得られたリチウムチタン酸化物を含む粉末から、リチウムを浸出する際に用いることができる。
 本実施形態のリチウムの浸出方法において、前記廃リチウムイオン電池とは、電池製品としての寿命が消尽した使用済みのリチウムイオン電池、製造工程で不良品等として廃棄されたリチウムイオン電池、製造工程において製品化に用いられた残余の正極材料等を意味する。
 本実施形態のリチウムの浸出方法では、前記廃リチウムイオン電池に対し、例えば、以下の前処理を行う。前記前処理は、前記廃リチウムイオン電池が電池製品としての寿命が消尽した使用済みのリチウムイオン電池、又は、製造工程で不良品等として廃棄されたリチウムイオン電池である場合には、まず、塩水中で放電処理を行い、残留している電荷を全て放電させる。次いで、前記廃リチウムイオン電池を解体し、該廃リチウムイオン電池を構成する筐体、集電体等を除去し、リチウムチタン酸化物を含む電極箔を得る。
 本実施形態におけるリチウムチタン酸化物は、スピネル構造リチウムチタン酸化物(例えば一般式Li4+xTi12(xは-1≦x≦3))、ラムスデライト構造リチウムチタン酸化物(例えば、Li2+xTi(-1≦x≦3))、Li1+xTi(0≦x≦1)、Li1.1+xTi1.8(0≦x≦1)、Li1.07+xTi1.86(0≦x≦1)、LiTiO(0<x≦1)を包含する。前記リチウムチタン酸化物は、典型的にはLiTi12である。さらに本実施形態におけるリチウムチタン酸化物は、Co、V、Mn、Fe、Ni、Cu、Zn、Al、B、Mg、Ca、Sr、Ba、Zr、Nb、Mo、W、Bi、Na、Gaおよび希土類元素からなる群から選ばれる少なくとも1つでドープされていてもよい。
 次いで、前記電極箔を300~400℃の範囲の温度で加熱処理(焙焼)する。そして、前記加熱処理後、ないし前記電極箔を加熱処理せず、二軸破砕機、ハンマークラッシャー等の粉砕機で粉砕し、該電極箔を構成する電極箔母材等を篩分けにより除去(分級)して、リチウムチタン酸化物を含む粉末を得ることができる。
 本実施形態のリチウムの浸出方法では、次に、前記粉末を所定の濃度の鉱酸に浸漬し、前記リチウムチタン酸化物を溶解することにより、リチウムを鉱酸により浸出する。前記粉末は、80℃以上95℃未満の範囲の温度に加熱した所定の濃度の鉱酸に浸漬する。この結果、前記リチウムチタン酸化物からリチウムを浸出することができる。前記浸漬時間は好ましくは2時間以上20時間以下の範囲にできる。
 また、本実施形態のリチウムの浸出方法では、前記粉末は90℃以上95℃未満の範囲の温度に加熱した鉱酸に浸漬することが好ましい。
 前記鉱酸は、好ましくは、塩酸、硫酸、及び硝酸からなる群から選ばれる少なくとも1つを含み、より好ましくは、塩酸、及び硫酸からなる群から選ばれる少なくとも1つを含む。
実施例1
 廃リチウムイオン電池の電極箔1000gを電気炉に投入し、400℃で10分間加熱処理(焙焼)した。そして、前記加熱処理後、縦と横それぞれ約2cmの四角形に裁断し、粉砕機で粉砕し、目開き1mmの篩を用いて篩分け、篩を通過した粉末を回収することで、LiTi12を主成分とするリチウムチタン酸化物を含む粉末780gを得た。
 前記粉末100gを塩酸170mLに浸漬し、リチウムチタン酸化物からリチウムを浸出した。ここで、前記浸漬に用いる前記塩酸の濃度、浸漬時間、及び前記塩酸の温度をそれぞれ変化させて、浸出液中のリチウムの濃度を測定することにより、それぞれの条件におけるリチウムの浸出量を求めた。さらに、前記粉末に含まれるリチウムの理論量に対する前記リチウムの浸出量の割合を、リチウムの浸出率(質量%)として算出した。結果を図1に示す。
実施例2
 前記粉末100gを硫酸170mLに浸漬し、リチウムチタン酸化物からリチウムを浸出した。ここで、前記浸漬に用いる前記硫酸の濃度、浸漬時間、及び前記硫酸の温度をそれぞれ変化させて、浸出液中のリチウムの濃度を測定することにより、それぞれの条件におけるリチウムの浸出量を求めた。さらに、前記粉末に含まれるリチウムの理論量に対する前記リチウムの浸出量の割合を、リチウムの浸出率(質量%)として算出した。結果を図2に示す。
 図1及び2において効果がわかりやすいように、前記リチウムの浸出率が一つの目安として60%を超える条件範囲を太枠で囲っている。前記鉱酸の温度が80℃以上、好ましくは90℃以上であれば、前記リチウムの浸出率がより高く、より効率的にリチウムを浸出させることができることが明らかである。また、浸出率の増加は時間とともに頭打ちになっていくため、好ましくは2時間から20時間程度の浸漬が適しており、それ以上の時間延長は加熱コストの増加等のバランスを加味する必要がある。
 

Claims (5)

  1.  廃リチウムイオン電池から得られたリチウムチタン酸化物を含む粉末からリチウムを浸出する方法であって、
     前記粉末を80℃以上95℃未満の範囲の温度に加熱した所定の濃度の鉱酸に浸漬することを特徴とするリチウムの浸出方法。
  2.  請求項1に記載のリチウムの浸出方法において、前記粉末を90℃以上95℃未満の範囲の温度に加熱した鉱酸に浸漬することを特徴とするリチウムの浸出方法。
  3.  請求項1又は2に記載のリチウムの浸出方法において、前記鉱酸が、塩酸、硫酸、及び硝酸からなる群から選ばれる少なくとも1つを含むことを特徴とするリチウムの浸出方法。
  4.  請求項1又は2に記載のリチウムの浸出方法において、前記浸漬が2時間以上20時間以下の範囲の時間であることを特徴とするリチウムの浸出方法。
  5.  請求項3に記載のリチウムの浸出方法において、前記浸漬が2時間以上20時間以下の範囲の時間であることを特徴とするリチウムの浸出方法。
PCT/JP2022/035591 2021-09-29 2022-09-26 リチウムの浸出方法 WO2023054227A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023551453A JPWO2023054227A1 (ja) 2021-09-29 2022-09-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-159023 2021-09-29
JP2021159023 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054227A1 true WO2023054227A1 (ja) 2023-04-06

Family

ID=85782583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035591 WO2023054227A1 (ja) 2021-09-29 2022-09-26 リチウムの浸出方法

Country Status (2)

Country Link
JP (1) JPWO2023054227A1 (ja)
WO (1) WO2023054227A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160429A (ja) * 2018-03-07 2019-09-19 Jx金属株式会社 リチウム回収方法
JP2019169309A (ja) * 2018-03-22 2019-10-03 三菱マテリアル株式会社 コバルトと銅およびアルミニウムの分離方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6495780B2 (ja) * 2015-08-13 2019-04-03 Jx金属株式会社 リチウムイオン電池の処理方法
US10450633B2 (en) * 2017-07-21 2019-10-22 Larry Lien Recovery of lithium from an acid solution
EP3854893A1 (en) * 2020-01-23 2021-07-28 Universite de Rouen Normandie Process of extraction of lithium from a material comprising lithium and at least another metal
JP6948481B2 (ja) * 2020-03-13 2021-10-13 Dowaエコシステム株式会社 有価物の回収方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160429A (ja) * 2018-03-07 2019-09-19 Jx金属株式会社 リチウム回収方法
JP2019169309A (ja) * 2018-03-22 2019-10-03 三菱マテリアル株式会社 コバルトと銅およびアルミニウムの分離方法

Also Published As

Publication number Publication date
JPWO2023054227A1 (ja) 2023-04-06

Similar Documents

Publication Publication Date Title
Mao et al. Toward practical lithium-ion battery recycling: adding value, tackling circularity and recycling-oriented design
CA3058572C (en) Lithium ion battery scrap treatment method
CN108075203B (zh) 一种废旧锂离子电池材料中有价金属组分回收的方法
CN110676533B (zh) 处理锂离子电池的正极材料的方法
JP6587861B2 (ja) リチウムイオン電池の処理方法
JP5535717B2 (ja) リチウムの回収方法
JP2020072032A (ja) リチウムイオン二次電池の正極活物質廃棄物の処理方法
JP7670416B2 (ja) 正極材回収方法
JP6571123B2 (ja) リチウムイオン電池スクラップの浸出方法および、リチウムイオン電池スクラップからの金属の回収方法
JP2019160429A (ja) リチウム回収方法
US20240055597A1 (en) Method of recycling positive electrode active material and recycled positive electrode active material prepared by the same
JP6483569B2 (ja) リチウムイオン電池の処理方法
US20160049700A1 (en) Method for removing copper and aluminum from an electrode material, and process for recycling electrode material from waste lithium-ion batteries
EP4140956A1 (en) Method for producing mixed metal salt
JP2020180362A (ja) リチウムイオン電池廃棄物の処理方法および、硫酸塩の製造方法
JP7520144B2 (ja) 正極スクラップを用いた活物質の再使用方法
US20240120566A1 (en) Method of recycling positive electrode active material and recycled positive electrode active material prepared by the same
JP7286085B2 (ja) リチウムイオン電池からのリチウムの回収方法
CN115552694A (zh) 锂的回收方法及锂离子二次电池的处理方法
JP3777226B2 (ja) 再利用可能な希土類含有化合物の回収方法
JP2023511183A (ja) 正極スクラップを用いた活物質の再使用方法
JP2022547698A (ja) 廃電池の処理方法
JP7317761B2 (ja) リチウムイオン電池廃棄物の処理方法
WO2023054227A1 (ja) リチウムの浸出方法
EP4417721A1 (en) Method for producing cobalt solution, method for producing cobalt salt, method for producing nickel solution, and method for producing nickel salt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876094

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551453

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22876094

Country of ref document: EP

Kind code of ref document: A1