WO2023053167A1 - 光半導体素子、光モジュールおよび光半導体素子の製造方法 - Google Patents
光半導体素子、光モジュールおよび光半導体素子の製造方法 Download PDFInfo
- Publication number
- WO2023053167A1 WO2023053167A1 PCT/JP2021/035516 JP2021035516W WO2023053167A1 WO 2023053167 A1 WO2023053167 A1 WO 2023053167A1 JP 2021035516 W JP2021035516 W JP 2021035516W WO 2023053167 A1 WO2023053167 A1 WO 2023053167A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- optical semiconductor
- mesa
- electron barrier
- resistance buried
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 90
- 239000004065 semiconductor Substances 0.000 title claims abstract description 77
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 238000000034 method Methods 0.000 title claims description 20
- 230000004888 barrier function Effects 0.000 claims abstract description 92
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 238000005253 cladding Methods 0.000 claims abstract description 31
- 238000005530 etching Methods 0.000 claims description 15
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 229910052707 ruthenium Inorganic materials 0.000 claims description 9
- 229910052736 halogen Inorganic materials 0.000 claims description 8
- 150000002367 halogens Chemical class 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 18
- 230000003071 parasitic effect Effects 0.000 description 9
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000005036 potential barrier Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- SBYXRAKIOMOBFF-UHFFFAOYSA-N copper tungsten Chemical compound [Cu].[W] SBYXRAKIOMOBFF-UHFFFAOYSA-N 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
Definitions
- the present disclosure relates to an optical semiconductor element, an optical module, and a method for manufacturing an optical semiconductor element used for optical communication.
- Some optical semiconductor devices such as semiconductor lasers used for optical communication have high-resistance buried layers formed on both sides of a mesa containing an active layer so as to bury the mesa.
- an electron barrier layer is provided from the side surface of the mesa to the upper surface of the substrate in order to suppress leakage current (see, for example, Patent Document 1). This electron barrier layer suppresses leakage current flowing between the mesa and the high resistance buried layer.
- the optical semiconductor device described above limits the modulation speed of the laser.
- the electron barrier layer is also formed on the upper surface of the substrate.
- a parasitic capacitance is generated between the electron barrier layer formed on the upper surface of the substrate and the substrate. This parasitic capacitance limits the modulation speed of the laser.
- the present disclosure has been made to solve the above problems, and an object thereof is to obtain an optical semiconductor element, an optical module, and a method for manufacturing an optical semiconductor element capable of high-speed operation while suppressing leakage current. .
- An optical semiconductor device includes a substrate, at least a portion of a first clad layer formed on the substrate, a mesa in which an active layer and a second clad layer are sequentially stacked from the bottom, and both sides of the mesa.
- An electron barrier layer that serves as an electron barrier against the active layer is formed on the surface so as to cover at least the side surfaces of the active layer and the second clad layer, and the mesa and the electron barrier layer are embedded on both sides of the mesa.
- a semi-insulating high-resistance buried layer formed; and a contact layer formed on the second cladding layer, wherein the high-resistance buried layers formed on both sides of the mesa are each continuous. , the lower surface of the high resistance buried layer is in contact with the substrate or the first clad layer.
- an optical module includes a stem, a lead pin passing through the stem, a carrier fixed to the stem, the optical semiconductor element fixed to the carrier and electrically connected to the lead pin, and an optical semiconductor element a lens that converges the laser light emitted from the device and emits it to the outside; and a lens cap that has a cylindrical cap that fixes the lens, and the cap is fixed to a stem so as to enclose the carrier and the optical semiconductor element.
- a method for manufacturing an optical semiconductor device includes a step of sequentially laminating a first clad layer, an active layer and a second clad layer on a substrate, and a step of forming a mesa, wherein the mesa is formed by: etching both sides of the forming location to expose the substrate from the top surface of the second cladding layer or halfway through the first cladding layer to form a mesa; forming a semi-insulating first high-resistance buried layer on the top surface of the substrate or the first cladding layer such that the top of the side surface of the mesa does not exceed the bottom of the active layer; forming an electron barrier layer on both sides of the mesa to serve as an electron barrier against the active layer; forming a second high-resistance buried layer of the same material and composition as the resistance buried layer; and forming a contact layer on the second clad layer.
- the electron barrier layer is formed on the side surface of the mesa, the high resistance buried layers on both sides of the mesa are respectively continuous, and the lower surface of the high resistance buried layer is in contact with the substrate or the first cladding layer. Therefore, it is possible to obtain an optical semiconductor device capable of high-speed operation while suppressing leakage current.
- FIG. 1 is a cross-sectional view of an optical semiconductor device according to Embodiment 1;
- FIG. FIG. 4 is a cross-sectional view of a modification of the optical semiconductor device according to Embodiment 1;
- FIG. 3 is a cross-sectional view of a comparative example of the optical semiconductor device according to Embodiment 1;
- FIG. 3 is a cross-sectional view of a comparative example of the optical semiconductor device according to Embodiment 1;
- FIG. 4 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 1;
- FIG. 4 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 1;
- FIG. 4 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 1;
- FIG. 4 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 1;
- FIG. 4 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 1;
- FIG. 4 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 1;
- FIG. 4 is a cross-sectional view showing a method for manufacturing an optical semiconductor device according to Embodiment 1;
- FIG. 8 is a cross-sectional view of an optical semiconductor device according to Embodiment 2;
- FIG. 11 is a cross-sectional view of an optical module according to Embodiment 3;
- Embodiment 1 The configuration of the optical semiconductor device 10 according to Embodiment 1 will be described.
- the optical semiconductor device 10 according to Embodiment 1 is a semiconductor laser for optical communication using a III-V group compound.
- Group III elements include B, Al, Ga, In, and the like.
- Group V elements include N, P, As, Sb, and the like.
- Typical III-V compounds include GaAs, GaN, InP, and the like.
- FIG. 1 A cross-sectional view of an optical semiconductor device 10 according to Embodiment 1 is shown in FIG.
- the cross section of FIG. 1 is a plane perpendicular to the direction of emission of laser light.
- An optical semiconductor device 10 according to Embodiment 1 includes a substrate 12 .
- the substrate 12 consists of S-doped n-type InP.
- a mesa 14 is formed on the substrate 12 .
- the mesa 14 has a mesa shape as shown in FIG. 1 and extends in a direction perpendicular to the plane of FIG.
- the mesa 14 has a first cladding layer 16, an active layer 18 and a second cladding layer 20 formed on the substrate 12 and laminated in this order from the bottom.
- the mesa 14 has a structure in which the light generated in the active layer 18 is confined by the first clad layer 16 and the second clad layer 20 from above and below.
- the first clad layer 16 is made of S-doped n-type InP, has a thickness of 0.5 to 2 ⁇ m, and a carrier concentration of 1 to 8 ⁇ 10 18 cm ⁇ 3 .
- the first cladding layer 16 may comprise a buffer layer or an optical guiding layer.
- the active layer 18 is made of undoped AlGaInAs or InGaAsP and has a thickness of 0.05-0.2 ⁇ m.
- the second clad layer 20 is made of Zn-doped p-type InP and has a thickness of 0.5-2 ⁇ m and a carrier concentration of 1-2 ⁇ 10 18 cm ⁇ 3 .
- the second cladding layer 20 may comprise a buffer layer or an optical guiding layer.
- the mesa 14 may have the entire first clad layer 16 as shown in FIG. 1, or may have a part of the first clad layer 16 as shown in FIG. That is, the mesa 14 may have at least part of the first cladding layer 16 formed on the substrate 12 .
- Electron barrier layers 24 are formed on both sides of the mesa 14 .
- the electron barrier layer 24 is made of Zn-doped p-type InP, has a lateral thickness of 0.05 to 2 ⁇ m, and a carrier concentration of 2 ⁇ 10 17 cm ⁇ 3 or more.
- the electron barrier layer 24 serves as an electron potential barrier with respect to the active layer 18 .
- the electron barrier layer 24 is formed to cover at least side surfaces of the active layer 18 and the second clad layer 20 .
- the lower end of the electron barrier layer 24 on the side surface of the mesa 14 may be positioned below the lower end of the active layer 18 .
- the lower edge of the electron barrier layer 24 on the side surface of the mesa 14 is preferably in the range from the lower edge of the active layer 18 to a position 0.5 ⁇ m lower than the lower edge of the active layer 18 .
- a high resistance buried layer 22 is formed on both sides of the mesa 14 so as to bury the mesa 14 and the electron barrier layer 24 .
- the high resistance buried layers 22 formed on both sides of the mesa 14 are continuous bodies, and the lower surfaces of the high resistance buried layers 22 are in contact with the substrate 12 .
- the continuum refers to a united body that is not separated by other substances.
- the electron barrier layer 24 vertically divides the high resistance buried layer 22 as shown in FIG. 3, the respective high resistance buried layers 22 are not continuous.
- the high-resistance buried layer 22 is made of semi-insulating InP doped with Fe or Ru, and has an impurity concentration of Fe or Ru of 6 ⁇ 10 16 cm ⁇ 3 or higher. When the optical semiconductor device has the structure shown in FIG. 2, the lower surface of the high-resistance buried layer 22 is in contact with the first clad layer 16 .
- the carrier concentration of the electron barrier layer 24 is preferably set to 2 ⁇ 10 17 cm ⁇ 3 or more in consideration of mutual diffusion between Fe or Ru in the high resistance buried layer 22 and Zn in the electron barrier layer 24 . desirable. Since the interdiffusion concentration is rate-determined by the layer with the lower active concentration among the electron barrier layer 24 and the high-resistance buried layer 22, the Zn flowing out to the high-resistance buried layer 22 is 1 ⁇ 10, which is the active concentration of Fe or Ru. It is about 17 cm ⁇ 3 or less. Considering this, it is desirable to set the carrier concentration of the electron barrier layer 24 to 2 ⁇ 10 17 cm ⁇ 3 or more.
- the high-resistance buried layer 22 is semi-insulating and has a higher resistivity than the first cladding layer 16 . Furthermore, Fe or Ru is doped, and Fe or Ru serves as a deep acceptor level to trap electrons. Therefore, electrons traveling from the substrate 12 toward the contact layer 28 concentrate on the mesa 14 .
- the electron barrier is reduced compared to the case where the high-resistance buried layers 22 are divided by the electron barrier layers 24 (FIG. 3). Parasitic capacitance between layer 24 and substrate 12 is reduced. If the lower surface of the high resistance buried layer 22 is in contact with the substrate 12 or the first clad layer 16, the electron barrier layer 24 is also formed under the high resistance buried layer 22 (FIG. 4). In comparison, the parasitic capacitance between electron barrier layer 24 and substrate 12 is reduced.
- the electron barrier layer 24 is formed on the side surface of the mesa 14, no leakage path is formed between the active layer 18 and the high resistance buried layer 22.
- a hole barrier layer 26 is formed on high resistance buried layer 22 .
- the hole barrier layer 26 is made of n-type InP doped with S, Si or Sn, has a thickness of 0.1 to 0.5 ⁇ m, and a carrier concentration of 2 ⁇ 10 18 cm ⁇ 3 or more. Since the hole barrier layer 26 is made of n-type InP, it serves as a hole potential barrier to the contact layer 28 made of p-type InP, which will be described later. Therefore, leakage of holes from the contact layer 28 to the high resistance buried layer 22 is suppressed. Although the hole barrier layer 26 is formed away from the mesa 14 in FIG. 1, it may be in contact with the upper end of the mesa 14 .
- a contact layer 28 is formed on the second cladding layer 20 , the high resistance buried layer 22 and the hole barrier layer 26 . As shown in FIG. 1, hole barrier layer 26 is formed between high resistance buried layer 22 and contact layer 28 .
- the contact layer 28 is made of Zn-doped p-type InP, has a thickness of 1-3 ⁇ m, and a carrier concentration of 1-2 ⁇ 10 18 cm ⁇ 3 .
- a thin InGaAs layer or InGaAsP layer highly doped with Zn may be inserted on the surface of the contact layer 28.
- the contact layer 28 should be at least on the second clad layer 20 .
- a method for manufacturing the optical semiconductor device 10 according to Embodiment 1 will be described.
- the metal-organic vapor phase epitaxy method, the molecular beam epitaxy method, or the like may be used.
- the first clad layer 16, the active layer 18, and the second clad layer 20 are laminated on the substrate 12 in this order.
- the growth temperature of each layer is 550 to 700°C.
- a mesa 14 is formed.
- a SiO2 mask 30 is formed using a sputtering device. The location of formation is above the second cladding layer 20 where the mesa 14 is to be formed. Then, using an Inductively Coupled Plasma (ICP) apparatus, both sides of the mask 30 are etched from the upper surface of the second cladding layer 20 until the substrate 12 is exposed. A mesa 14 is formed by this etching. Etching may be stopped halfway through the first cladding layer 16 to form the mesa 14 having the structure shown in FIG.
- ICP Inductively Coupled Plasma
- a first high-resistance buried layer 22a is formed on both sides of the mesa 14 and on the upper surface of the substrate 12 exposed by the etching.
- the growth temperature of the first high-resistance buried layer 22a is 600° C. or higher.
- the first high-resistance buried layer 22 a is formed so that the upper end of the side surface of the mesa 14 does not exceed the lower end of the active layer 18 .
- FIG. 7 shows the case where the upper end of the first high-resistance buried layer 22a is located at the lower end of the active layer 18.
- FIG. Mask 30 used to form mesa 14 can be used as a selective growth mask.
- the first high-resistance buried layer 22a it is preferable to simultaneously supply a halogen-based etching gas such as HCl in addition to the Group III gas and Group V gas which are source gases.
- a halogen-based etching gas such as HCl
- the growth rate on the (111) plane can be reduced, and the growth of abnormal protrusions in the ⁇ 111> direction of the first high-resistance buried layer 22a can be prevented.
- the growth rate to the side surface of the mesa 14 can be reduced.
- the width of the mask 30 may be made larger than the width of the mesa 14 before the growth of the first high-resistance buried layer 22a.
- the first high-resistance layer is formed on the upper surface of the first cladding layer 16 exposed by this etching.
- a buried layer 22a may be formed.
- electron barrier layers 24 are formed on both sides of the exposed mesa 14 .
- the growth temperature is lowered so that the growth rate of the (1-10) plane on the side surface of the mesa 14 is faster than that of the (001) plane, which is the upper surface of the first high-resistance buried layer 22a, and the flow rate of the group III gas is lowered. increase.
- the migration length is shortened, the raw material component supplied from above the mask 30 is desorbed or crystallized on the side surface of the mesa 14 before reaching the (001) plane. Therefore, the growth rate of the (1-10) plane is faster than that of the (001) plane, and less deposits are deposited on the upper surface of the first high-resistance buried layer.
- a halogen-based etching gas such as HCl may be supplied in addition to the raw material gas. By supplying the halogen-based etching gas, deposition of deposits on the upper surface of the first high-resistance buried layer can be eliminated.
- a Group V gas and a halogen-based etching gas such as HCl are simultaneously supplied to form the active layer 18.
- a Group V gas and a halogen-based etching gas such as HCl are simultaneously supplied to form the active layer 18.
- the deposit deposited on the first high resistance buried layer 22a when the electron barrier layer 24 was formed is removed.
- a halogen-based etching gas such as HCl and the same V gas that was supplied as the raw material gas for the first high-resistance buried layer 22a when forming the first high-resistance buried layer 22a was used. family gas at the same time.
- family gas By supplying the group V gas, deterioration of the surface morphology of the first high-resistance buried layer 22a can be suppressed.
- the electron barrier layer 24 is formed, if there is no growth on the (001) plane, which is the top surface of the first high-resistance buried layer 22a, this deposit removal need not be performed.
- a second high-resistance buried layer 22b is formed on the first high-resistance buried layer 22a so as to bury the mesa 14 and the electron barrier layer 24 therein.
- the second high resistance buried layer 22b has the same material and composition as the first high resistance buried layer 22a.
- the method and conditions for forming the second high-resistance buried layer 22b may be the same as those for forming the first high-resistance buried layer 22a.
- a high resistance buried layer 22 is formed by combining the first high resistance buried layer 22a and the second high resistance buried layer 22b.
- the first high-resistance buried layer 22a and the second high-resistance buried layer 22b is desirably set to a growth temperature of the electron barrier layer 24 or higher.
- a hole barrier layer 26 is formed on the high resistance buried layer 22. Then, as shown in FIG. 10, a hole barrier layer 26 is formed on the high resistance buried layer 22. Then, as shown in FIG. The growth temperature is 500-600°C.
- the growth rate of the hole barrier layer 26 on the (111)B plane is increased, and the (111)B plane of the high resistance buried layer 22 in the state of FIG. It is desirable to reduce the area of the exposed portion.
- a contact layer 28 is formed on the second cladding layer 20, the second high-resistance embedded layer 22b and the hole barrier layer 26. Then, as shown in FIG. The growth temperature is 550-700°C. By forming the contact layer 28, the optical semiconductor device 10 shown in FIG. 1 is obtained.
- the electron barrier layer 24 is formed on the side surface of the mesa 14, so the leak current between the active layer 18 and the high resistance buried layer 22 is suppressed.
- the second reason is that a leakage path is not formed between the active layer 18 and the high-resistance buried layer 22, and leakage current is suppressed.
- the high-resistance buried layers 22 on both sides of the mesa 14 are continuous bodies, and the lower surfaces of the high-resistance buried layers 22 are in contact with the substrate 12 or the first clad layer 16 . be. If the high resistance buried layers 22 on both sides of the mesa 14 are continuous as described above, the parasitic capacitance between the electron barrier layer 24 and the substrate 12 is reduced. Also, when the lower surface of the high-resistance buried layer 22 is in contact with the substrate 12 or the first clad layer 16, this parasitic capacitance is reduced. The reduction in parasitic capacitance enables the optical semiconductor device 10 according to this embodiment to operate at high speed.
- Embodiment 2 The optical semiconductor device 40 according to the second embodiment is similar to that of the first embodiment, and differs from the first embodiment in that the electron barrier layer 54 is made of p-type or undoped AlInAs. If the electron barrier layer 54 is p-type AlInAs, the dopant is Zn.
- FIG. 2 A cross-sectional view of an optical semiconductor element 40 according to Embodiment 2 is shown in FIG. Since the electronic barrier layer 54 of the optical semiconductor device 40 is made of ternary AlInAs, the physical properties can be changed by changing the composition. For example, the bandgap can be varied to change the height of the electron barrier of electron blocking layer 54 with respect to active layer 18 . In addition, by limiting the lateral growth, which is difficult to adjust the composition in a ternary system such as AlInAs, to only the side surfaces of the mesa 14, the electron barrier layer 54 can be formed while maintaining the crystallinity.
- AlInAs When AlInAs is undoped, it has the effects of suppressing the diffusion of Zn into the active layer 18 and suppressing the formation of a Zn-doped p-type region near the active layer 18 . Therefore, by suppressing the absorption of light generated in the active layer 18, reduction in operating current and improvement in light output can be expected.
- AlInAs When AlInAs is undoped, diffusion of Zn from the second cladding layer 20 and the contact layer 28 can be further suppressed, so that controllability of the impurity profile in the buried cross section is improved.
- FIG. 12 shows a cross-sectional view of the optical module 100 according to the third embodiment.
- the optical module 100 has the optical semiconductor element 10 according to the first embodiment mounted therein.
- the optical module 100 has a stem 102 .
- Stem 102 is made of cold rolled steel (SPC).
- a plurality of lead pins 104 pass through the stem 102 . These lead pins 104 are made of metal. The lead pins 104 protrude into the optical module 100, but are omitted from FIG.
- a carrier 106 is fixed to the inner surface of the stem 102 .
- the carrier 106 is made of copper-tungsten with good heat dissipation in order to dissipate the heat generated from the optical semiconductor element 10 to the stem 102 .
- the optical semiconductor element 10 is mounted on the carrier 106 . Although not shown, the optical semiconductor element 10 is electrically connected to the lead pins 104 . Light is generated in the active layer 18 by the current flowing through the lead pin 104 flowing between the contact layer 28 of the optical semiconductor element 10 and the substrate 12, and laser light is emitted from the optical semiconductor element 10 as shown by the arrow in FIG. is emitted. An example of electrical connection between the optical semiconductor element 10 and the lead pins 104 will be described. Two electrodes are formed in the optical semiconductor element 10 for the current to flow. The lead pin 104 and one electrode of the optical semiconductor element 10 are connected by a bonding wire. Further, another lead pin 104 and a carrier 106 are connected, and the carrier 106 and the other electrode of the optical semiconductor element 10 are connected with a conductive bonding material such as solder.
- a lens cap 110 is fixed to the stem 102 so as to enclose the carrier 106 and the optical semiconductor element 10 .
- the lens cap 110 has a lens 110a that collects laser light emitted from the optical semiconductor element 10 and emits it to the outside, and a cylindrical cap 110b that fixes the lens 110a. It is this cap 110b that is fixed to the stem 102 .
- the lens 110a is made of glass, and the cap 110b is made of stainless steel (SUS).
- SUS stainless steel
- the optical semiconductor element 10 according to the first embodiment is mounted on the optical module 100 according to the third embodiment, the leakage current is suppressed, resulting in low power consumption operation, and the parasitic capacitance is reduced. High speed operation can be achieved.
- the optical semiconductor element to be mounted may be the optical semiconductor element 40 according to the second embodiment.
- 10, 40 optical semiconductor element 12 substrate, 14 mesa, 16 first clad layer, 18 active layer, 20 second clad layer, 22 high resistance buried layer, 22a first high resistance buried layer, 22b second 2 high resistance buried layers, 24, 54 electron barrier layer, 26 hole barrier layer, 28 contact layer, 30 mask, 100 optical module, 102 stem, 104 lead pin, 106 carrier, 110 lens cap, 110a lens, 110b cap
Landscapes
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
実施の形態1に係る光半導体素子10の構成を説明する。
実施の形態2に係る光半導体素子40は実施の形態1と同様であり、実施の形態1との違いは電子障壁層54がp型またはアンドープのAlInAsから成ることである。電子障壁層54がp型AlInAsの場合は、ドーパントはZnである。
実施の形態3に係る光モジュール100の断面図を図12に示す。光モジュール100は、実施の形態1に係る光半導体素子10を内部に搭載している。
Claims (16)
- 基板と、
前記基板の上に形成された第1のクラッド層の少なくとも一部、活性層および第2のクラッド層が下から順に積層されたメサと、
前記メサの両側面に、少なくとも前記活性層および前記第2のクラッド層の側面を覆うように形成された、前記活性層に対して電子障壁となる電子障壁層と、
前記メサの両側に、前記メサおよび前記電子障壁層を埋め込むように形成された半絶縁性の高抵抗埋込層と、
前記第2のクラッド層の上に形成されたコンタクト層と、
を備え、
前記メサの両側に形成された前記高抵抗埋込層はそれぞれ連続体であり、
前記高抵抗埋込層の下面は前記基板または前記第1のクラッド層と接している光半導体素子。 - 前記高抵抗埋込層はFeまたはRuがドープされたInPから成り、
前記電子障壁層はZnがドープされたp型InPから成る
請求項1に記載の光半導体素子。 - 前記電子障壁層のキャリア濃度は2×1017cm-3以上である
請求項2に記載の光半導体素子。 - 前記電子障壁層はAlInAsから成る
請求項1に記載の光半導体素子。 - 前記メサの側面において、前記電子障壁層の下端が、前記活性層の下端から、前記活性層の下端より0.5μm低い位置までの範囲にある
請求項1から4のいずれか1項に記載の光半導体素子。 - 前記コンタクト層は前記高抵抗埋込層の上方に広がっており、
前記高抵抗埋込層と前記コンタクト層の間に、前記コンタクト層に対してホール障壁となるホール障壁層が形成されている
請求項1から5のいずれか1項に記載の光半導体素子。 - ステムと、
前記ステムを貫通するリードピンと、
前記ステムに固定されたキャリアと、
前記キャリアに固定され、前記リードピンと電気的に接続された、請求項1から6のいずれか1項に記載の光半導体素子と、
前記光半導体素子から出射されるレーザ光を集光して外部に出射するレンズと、前記レンズを固定する筒状のキャップを有し、前記キャリアおよび前記光半導体素子を内包するように前記キャップが前記ステムに固定されたレンズキャップと
を備えた光モジュール。 - 基板の上に順に、第1のクラッド層、活性層および第2のクラッド層を積層する工程と、
メサを形成する工程であって、前記メサを形成する場所の両側を、前記第2のクラッド層の上面から前記基板が露出するまで、または、前記第1のクラッド層の途中までエッチングして前記メサを形成する工程と、
前記メサの両側の、前記エッチングにより露出した前記基板または前記第1のクラッド層の上面の上に、前記メサの側面における上端が前記活性層の下端を超えないように半絶縁性の第1の高抵抗埋込層を形成する工程と、
露出している前記メサの両側面に、前記活性層に対して電子障壁となる電子障壁層を形成する工程と、
前記第1の高抵抗埋込層の上に、前記メサおよび前記電子障壁層を埋め込むように、前記第1の高抵抗埋込層と同じ材料および組成の第2の高抵抗埋込層を形成する工程と、
前記第2のクラッド層の上にコンタクト層を形成する工程と、
を備えた光半導体素子の製造方法。 - 前記第1の高抵抗埋込層はIII-V族化合物から成り、
前記電子障壁層を形成する工程と前記第2の高抵抗埋込層を形成する工程の間に、ハロゲン系エッチングガスと、前記第1の高抵抗埋込層を形成する工程において前記第1の高抵抗埋込層の原料ガスとして供給したのと同じV族ガスを同時に供給して、前記電子障壁層を形成する際に前記第1の高抵抗埋込層の上に堆積した堆積物を除去する工程を備える
請求項8に記載の光半導体素子の製造方法。 - 前記電子障壁層はInPから成り、
前記電子障壁層を形成する工程において、前記電子障壁層の成長温度が500~600℃であり、前記電子障壁層の原料ガスとして供給するTMInの流量が2×10-4mol/min以上である
請求項8または9に記載の光半導体素子の製造方法。 - 前記高抵抗埋込層はFeまたはRuがドープされたInPから成り、
前記電子障壁層はZnがドープされたp型InPから成る
請求項8から10のいずれか1項に記載の光半導体素子の製造方法。 - 前記電子障壁層のキャリア濃度は2×1017cm-3以上である
請求項11に記載の光半導体素子の製造方法。 - 前記電子障壁層はAlInAsから成る
請求項8または9に記載の光半導体素子の製造方法。 - 前記電子障壁層を形成する工程において、前記電子障壁層の原料ガスに加えてハロゲン系エッチングガスを供給する
請求項8から13のいずれか1項に記載の光半導体素子の製造方法。 - 前記メサの側面において、前記電子障壁層の下端が、前記活性層の下端から、前記活性層の下端より0.5μm低い位置までの範囲にある
請求項8から14のいずれか1項に記載の光半導体素子の製造方法。 - 前記第2の高抵抗埋込層を形成する工程と前記コンタクト層を形成する工程の間に、前記第2の高抵抗埋込層の上に、前記コンタクト層に対してホール障壁となるホール障壁層を形成する工程を備え、
前記コンタクト層を形成する工程において、前記コンタクト層を前記ホール障壁層の上に広がるように形成する
請求項8から15のいずれか1項に記載の光半導体素子の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180102608.3A CN117981188A (zh) | 2021-09-28 | 2021-09-28 | 光半导体元件、光模块以及光半导体元件的制造方法 |
JP2021569095A JP7010423B1 (ja) | 2021-09-28 | 2021-09-28 | 光半導体素子、光モジュールおよび光半導体素子の製造方法 |
PCT/JP2021/035516 WO2023053167A1 (ja) | 2021-09-28 | 2021-09-28 | 光半導体素子、光モジュールおよび光半導体素子の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/035516 WO2023053167A1 (ja) | 2021-09-28 | 2021-09-28 | 光半導体素子、光モジュールおよび光半導体素子の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023053167A1 true WO2023053167A1 (ja) | 2023-04-06 |
Family
ID=80678859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/035516 WO2023053167A1 (ja) | 2021-09-28 | 2021-09-28 | 光半導体素子、光モジュールおよび光半導体素子の製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7010423B1 (ja) |
CN (1) | CN117981188A (ja) |
WO (1) | WO2023053167A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010010622A (ja) * | 2008-06-30 | 2010-01-14 | Sumitomo Electric Ind Ltd | 半導体光素子 |
JP2016134522A (ja) * | 2015-01-20 | 2016-07-25 | 三菱電機株式会社 | 光半導体装置 |
JP2017017282A (ja) * | 2015-07-06 | 2017-01-19 | 日本電信電話株式会社 | 半導体光素子及びその製造方法 |
JP2017139416A (ja) * | 2016-02-05 | 2017-08-10 | 三菱電機株式会社 | 光モジュール |
WO2020240644A1 (ja) * | 2019-05-27 | 2020-12-03 | 三菱電機株式会社 | 光半導体装置および光半導体装置の製造方法 |
-
2021
- 2021-09-28 WO PCT/JP2021/035516 patent/WO2023053167A1/ja active Application Filing
- 2021-09-28 JP JP2021569095A patent/JP7010423B1/ja active Active
- 2021-09-28 CN CN202180102608.3A patent/CN117981188A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010010622A (ja) * | 2008-06-30 | 2010-01-14 | Sumitomo Electric Ind Ltd | 半導体光素子 |
JP2016134522A (ja) * | 2015-01-20 | 2016-07-25 | 三菱電機株式会社 | 光半導体装置 |
JP2017017282A (ja) * | 2015-07-06 | 2017-01-19 | 日本電信電話株式会社 | 半導体光素子及びその製造方法 |
JP2017139416A (ja) * | 2016-02-05 | 2017-08-10 | 三菱電機株式会社 | 光モジュール |
WO2020240644A1 (ja) * | 2019-05-27 | 2020-12-03 | 三菱電機株式会社 | 光半導体装置および光半導体装置の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7010423B1 (ja) | 2022-01-26 |
JPWO2023053167A1 (ja) | 2023-04-06 |
CN117981188A (zh) | 2024-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7589357B2 (en) | Semiconductor device and method of fabricating the same | |
US7421000B2 (en) | Semiconductor laser device | |
JP2001352131A (ja) | InAlAs又はInGaAlAsを使用する光電装置に関するドーパント拡散阻止 | |
US7590158B2 (en) | Semiconductor laser having an improved window layer and method for the same | |
KR20010005722A (ko) | 화합물 반도체 레이저 | |
US20090252190A1 (en) | Semiconductor optical device and method of fabricating the same | |
US6556605B1 (en) | Method and device for preventing zinc/iron interaction in a semiconductor laser | |
WO2020240644A1 (ja) | 光半導体装置および光半導体装置の製造方法 | |
US7215691B2 (en) | Semiconductor laser device and method for fabricating the same | |
JP4002422B2 (ja) | 半導体素子およびその作製方法 | |
US20080283852A1 (en) | Light-emitting device and a method for producing the same | |
US6639926B1 (en) | Semiconductor light-emitting device | |
WO2023053167A1 (ja) | 光半導体素子、光モジュールおよび光半導体素子の製造方法 | |
KR100323237B1 (ko) | 구동회로의변동을억제할수있는발광반도체소자 | |
US7656921B2 (en) | Semiconductor laser device and method for manufacturing the same semiconductor laser device | |
US5323412A (en) | Semiconductor laser device | |
KR20000053604A (ko) | 반도체광학장치 제조방법 | |
JPH11340585A (ja) | 半導体発光装置 | |
JP3306688B2 (ja) | 光半導体装置の製造方法 | |
JP2020038905A (ja) | 半導体レーザおよび半導体レーザの製造方法 | |
TW202324864A (zh) | 半導體雷射及半導體雷射製造方法 | |
JPH08316572A (ja) | レーザ装置 | |
JPS6035590A (ja) | プレ−ナ型半導体発光装置 | |
JPH04275479A (ja) | 半導体レーザ及びその製造方法 | |
JP2547458B2 (ja) | 半導体レーザ素子及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2021569095 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21959220 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180102608.3 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21959220 Country of ref document: EP Kind code of ref document: A1 |