WO2023051325A1 - 一种无线资源测量方法及装置 - Google Patents

一种无线资源测量方法及装置 Download PDF

Info

Publication number
WO2023051325A1
WO2023051325A1 PCT/CN2022/119965 CN2022119965W WO2023051325A1 WO 2023051325 A1 WO2023051325 A1 WO 2023051325A1 CN 2022119965 W CN2022119965 W CN 2022119965W WO 2023051325 A1 WO2023051325 A1 WO 2023051325A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
rss
frequency domain
measurement result
radio resource
Prior art date
Application number
PCT/CN2022/119965
Other languages
English (en)
French (fr)
Inventor
贺卫东
郝博
张力
杨育波
刘盼
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023051325A1 publication Critical patent/WO2023051325A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application relates to the technical field of mobile communication, and in particular to a radio resource measurement method and device.
  • re-synchronization signal re-synchronization signal
  • NB narrowband
  • RSS radio resource management
  • RRM radio resource management
  • the RRM measurement includes but is not limited to the measurement of reference signal received power (reference signal received power, RSRP) and reference signal received quality (reference signal received quality, RSRQ).
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the present application provides a radio resource measurement method and device for improving the accuracy of measurement based on RSS pilot.
  • the present application provides a radio resource measurement method, which can be implemented by a terminal device.
  • a terminal device such as UE.
  • the method may include: the UE determines the narrowband frequency domain resources where the RSS pilot is located, and the RSS pilot occupies part of the narrowband frequency domain resources; The frequency domain resource determines the first wireless resource measurement result corresponding to the RSS pilot.
  • the first radio resource measurement result corresponding to the RSS pilot can be determined by the UE according to the narrowband frequency domain resources occupied by the RSS pilot, and the measurement accuracy based on the RSS pilot can be improved.
  • the radio resource measurement result includes RSRQ and/or RS-SINR.
  • the first radio resource measurement result includes RSRQ
  • the UE may further determine a received signal strength indicator (RSSI) according to the narrowband frequency domain resource, and determine the RSRQ according to the RSSI.
  • RSSI received signal strength indicator
  • the UE can determine the RSRQ according to the time domain resource of the RSS pilot and the narrowband frequency domain resource, so that the measurement result of the RSRQ conforms to the load condition of the serving cell of the UE, and the measurement accuracy of the RSRQ is improved.
  • the UE may specifically determine the RSSI according to the narrowband frequency domain resource and the time domain resource of the RSS pilot, and according to the reference signal received power RSRP corresponding to the RSS pilot and the The RSSI determines the RSRQ, and the RSRP is determined according to the time domain resource of the RSS pilot.
  • the UE may specifically determine at least one sub-time domain resource according to the time domain resource of the RSS pilot, and determine the RSSI according to the narrowband frequency domain resource and the sub-time domain resource.
  • the UE can sample the time-domain resources occupied by the RSS pilot, and determine the RSSI through the sub-time-domain resources obtained by sampling, so as to reduce the processing overhead in the measurement process.
  • the first radio resource measurement result includes RS-SINR
  • the UE may determine the RS-SINR according to the noise intensity and interference intensity in the narrowband frequency domain resource where the RSS pilot is located.
  • the UE can determine the RS-SINR according to the noise intensity and interference intensity in the narrowband frequency domain resource where the RSS pilot is located, so that the measurement result of RS-SINR conforms to the interference situation of the serving cell of the UE, and improves the measurement of RS-SINR accuracy.
  • the narrowband includes at least one first time unit, the first time unit is not used to send downlink data, and the first time unit is used to determine the noise intensity and the interference intensity .
  • the UE can determine the noise intensity and interference intensity in the narrowband frequency domain resource where the RSS pilot is located in the first time unit, so as to improve the measurement accuracy of RSSI.
  • the UE may determine the first radio resource measurement result at the physical layer according to the narrowband frequency domain resource, and the UE may also determine the first radio resource measurement result according to the power of the RSS pilot, the power difference of the CRS pilot and The first radio resource measurement result determines the second radio resource measurement result, and then the physical layer may send the second radio resource measurement result to layer three (or high layer, RRC layer).
  • layer three or high layer, RRC layer
  • the UE can convert the radio resource measurement results based on the RSS pilot measurement, so that the measurement results reported by the physical layer to the upper layer can be converted to the CRS antenna interface reference, avoiding the evaluation of the radio resource measurement results by the upper layer according to the CRS pilot Standards are used to evaluate the radio resource measurement results determined by the physical layer based on the RSS pilot, which can improve the reliability of radio resource measurement and avoid complex processing of radio resource measurement by high layers. Avoiding complexity means that the high layer does not need to figure out whether the physical layer determines the radio resource measurement result based on the RSS pilot or the CRS pilot.
  • the present application provides an apparatus for measuring radio resources, which can be used to implement the functions implemented by the UE in the first aspect or any possible design of the first aspect.
  • This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the apparatus comprises corresponding units or components for performing the method described above.
  • the apparatus may be a UE.
  • the radio resource measurement device may include a frequency domain resource determination module and a measurement result determination module.
  • the frequency domain resource determination module can be used to determine the narrowband frequency domain resources where the resynchronization signal RSS pilot is located, and the RSS pilot occupies part of the frequency domain resources in the narrowband frequency domain resources; the measurement result determination module can be used to determine according to The narrowband frequency domain resource determines a first wireless resource measurement result corresponding to the RSS pilot.
  • the radio resource measurement result includes RSRQ and/or RS-SINR.
  • the first radio resource measurement result includes RSRQ
  • the measurement result may be used to determine RSSI according to the narrowband frequency domain resource, and determine the RSRQ according to the RSSI.
  • the measurement result determination module may be configured to determine the RSSI according to the narrowband frequency domain resource and the RSS pilot time domain resource, and to determine the RSSI according to the reference signal corresponding to the RSS pilot.
  • the received power RSRP and the RSSI determine the RSRQ, and the RSRP is determined according to the time domain resource of the RSS pilot.
  • the measurement result determination module may be configured to determine at least one sub-time domain resource according to the time domain resource of the RSS pilot, and determine at least one sub-time domain resource according to the narrowband frequency domain resource and the sub-time domain resource Determine the RSSI.
  • the first radio resource measurement result includes RS-SINR
  • the measurement result determination module can be configured to determine the RS-SINR according to the noise intensity and interference intensity in the narrowband frequency domain resource where the RSS pilot is located. SINR.
  • the narrowband includes at least one first time unit, the first time unit is not used to send downlink data, and the first time unit is used to determine the noise intensity and the interference intensity .
  • the measurement result determination module may be configured to determine the first radio resource measurement result according to the narrowband frequency domain resources at the physical layer, and the measurement result determination module may also be configured to determine the first radio resource measurement result according to the RSS The pilot power, the power difference of the cell reference signal CRS pilot and the first radio resource measurement result, determine a second radio resource measurement result, and send the second radio resource measurement result to layer three.
  • the communication device may include a transceiver, a memory, and a processor, wherein the transceiver is used for the communication device to communicate; the memory stores a computer program; the processor uses The computer program is used to run the computer program, so as to realize the functions realized by the UE in the first aspect or any possible design of the first aspect.
  • the embodiment of the present application provides a computer-readable storage medium, including program instructions, when the program instructions are run on the computer, the computer is made to execute any one of the possible designs of the above-mentioned first aspect or the first aspect. Methods implemented by the UE.
  • the embodiment of the present application provides a computer program product, which, when running on a computer, causes the computer to execute the method implemented by the UE in any possible design of the first aspect or the first aspect.
  • the embodiment of the present application provides a chip, which can be coupled with a memory, and can be used to execute program instructions in the memory, and execute the method of the first aspect of the embodiment of the present application and any possible design thereof.
  • “Coupled” means that two components are directly or indirectly bonded to each other, such as coupling may refer to an electrical connection between two components.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by the present application.
  • FIG. 2 is a schematic structural diagram of a terminal device provided by the present application.
  • FIG. 3 is a schematic diagram of resource distribution of an RSS pilot provided by the present application.
  • FIG. 4 is a schematic flowchart of a radio resource measurement method provided by the present application.
  • FIG. 5 is a schematic diagram of resource distribution of another RSS pilot provided by the present application.
  • FIG. 6 is a schematic structural diagram of a radio resource measurement device provided by the present application.
  • FIG. 7 is a schematic structural diagram of an apparatus for measuring radio resources provided by the present application.
  • Embodiments of the present application provide a method and device for determining and configuring uplink resources, so as to reduce power consumption of UE in small data transmission.
  • the method and the device described in this application are based on the same technical concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • At least one (species) refers to one (species) or multiple (species), and multiple (species) refers to two (species) or more than two (species).
  • Fig. 1 shows the architecture of a communication system to which the communication method provided by the embodiment of the present application is applicable, and the architecture of the communication system may include network devices and terminal devices.
  • the network device can be a device with a wireless transceiver function or a chip that can be arranged on the network device, and the network device can include but not limited to: a base station (generation node B, gNB), a radio network controller (radio network controller, RNC) ), Node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), Baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, Wi-Fi) system access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point , TRP or transmission point, TP), etc., can also be a network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (distributed unit, DU).
  • a base station
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (radio unit, RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence layer protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless link Functions of the radio link control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layers.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • a CU may be divided into network devices in the access network RAN, or a CU may be divided into network devices in the core network CN, which is not limited.
  • a network device supports communication with a terminal device.
  • the network device can communicate with the UE through a universal user to network (Uu) interface, such as configuring uplink resources of the UE through the Uu interface.
  • Uu universal user to network
  • the terminal equipment may also be called user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device , User Agent, or User Device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, smart wearable devices (smart glasses, smart watches, smart headphones, etc.), wireless terminals in smart homes, etc., can also be Chips or chip modules (or chip systems) that can be installed in the above devices.
  • the embodiments of the present application do not limit the application scenarios.
  • the communication system shown in Figure 1 may be, but not limited to, a fourth generation (4th generation, 4G) system, a fifth generation (5th generation, 5G) system, such as a new generation of wireless access technology (new radio access technology, NR), independent networking (standalone, SA), etc.
  • 4G fourth generation
  • 5th generation, 5G fifth generation
  • SA independent networking
  • the method in this embodiment of the present application is also applicable to various communication systems in the future, such as a sixth generation (6th generation, 6G) system or other communication networks.
  • a terminal device supports communication with a network device.
  • the network device can communicate with the network device through the Uu interface, such as receiving configuration information of uplink resources from the network device through the Uu interface, and/or sending uplink data to the network device through the Uu interface.
  • the base station can provide communication coverage for a specific geographical area through an integrated or external antenna device.
  • One or more terminals within the communication coverage of the base station can access the base station.
  • One base station can manage one or more cells.
  • Each cell has an identification (identification), which is also called a cell identity (cell ID). From the perspective of radio resources, a cell is a combination of downlink radio resources and its paired uplink radio resources (not necessary).
  • the terminal equipment and the base station should know the predefined configuration of the wireless communication system, including the radio access technology (radio access technology, RAT) supported by the system and the wireless resource configuration specified by the system, such as the radio frequency band and carrier basic configuration.
  • the carrier is a frequency range that complies with system regulations. This frequency range can be jointly determined by the center frequency of the carrier (referred to as the carrier frequency) and the bandwidth of the carrier.
  • the predefined configurations of these systems can be used as part of the standard protocol of the wireless communication system, or determined through the interaction between the terminal and the base station.
  • the content of relevant standard protocols may be pre-stored in the memory of terminal equipment and base stations, or embodied as hardware circuits or software codes of terminal equipment and base stations.
  • the terminal equipment and the base station support one or more of the same RAT, such as 5G NR, 4G, long term evolution (long term evolution, LTE), or the RAT of the future evolution system.
  • the terminal device and the base station use the same air interface parameters, coding scheme, modulation scheme, etc., and communicate with each other based on the wireless resources specified by the system.
  • the devices shown in FIG. 1 are only examples, and the communication system may also include other devices except network devices and terminal devices, which is not limited in this application.
  • the number of network devices and terminal devices is only an example, and there may be multiple network devices and terminal devices in the communication system, which is not limited in this application.
  • FIG. 2 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present application.
  • the wireless communication device may be a terminal or a base station in this embodiment of the present application.
  • the wireless communication device may include a plurality of components, such as an application subsystem, a memory (memory), a large-capacity storage (massive storage), a baseband subsystem, and a radio frequency integrated circuit (radio frequency integrated circuit, RFIC)
  • the UE may include at least one RFIC. If it includes two RFICs, the two RFICs may be respectively represented as RFIC 1 and RFIC 2 in FIG. 2), a radio frequency front end (RFFE) device, and an antenna (antenna, ANT ).
  • RFFE radio frequency front end
  • antenna antenna
  • ANT_1 represents the first antenna
  • ANT_N represents the Nth antenna
  • N is a positive integer greater than 1.
  • Tx represents the sending path
  • Rx represents the receiving path
  • different numbers represent different paths.
  • Each path can represent a signal processing channel.
  • FBRx represents a feedback receiving path
  • PRx represents a main receiving path
  • DRx represents a diversity receiving path.
  • HB means high frequency
  • LB means low frequency, where high frequency and low frequency refer to the relative high and low frequencies, and the frequency of HB is higher than that of LB.
  • BB means baseband.
  • the application subsystem can be used as the main control system or the main computing system of the wireless communication device to run the main operating system and application programs, manage the software and hardware resources of the entire wireless communication device, and provide the user with a user interface.
  • the application subsystem may also include driver software related to other subsystems (eg, baseband subsystem).
  • An application subsystem may include one or more processors.
  • the multiple processors may be multiple processors of the same type, or may include a combination of multiple types of processors.
  • the processor may be a general-purpose processor or a processor designed for a specific field.
  • the processor may be a central processing unit (center processing unit, CPU), a digital signal processor (digital signal processor, DSP), or a microcontroller (micro control unit, MCU).
  • the processor can also be a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processing, ISP), an audio signal processor (audio signal processor, ASP), and an artificial intelligence (artificial intelligence, AI) Apply a specially designed AI processor.
  • AI processors include but are not limited to neural network processing unit (NPU), tensor processing unit (TPU) and processors called AI engines.
  • radio frequency integrated circuits including RFIC 1, and one or more optional RFIC 2 and radio frequency front-end devices can together form a radio frequency subsystem.
  • the RF subsystem can also be divided into RF receive path (RF receive path) and RF transmit path (RF transmit path).
  • the radio frequency receiving channel can receive the radio frequency signal through the antenna, process the radio frequency signal (such as amplifying, filtering and down-converting) to obtain the baseband signal, and transmit it to the baseband subsystem.
  • the radio frequency transmission channel can receive the baseband signal from the baseband subsystem, process the baseband signal (such as up-converting, amplifying and filtering) to obtain a radio frequency signal, and finally radiate the radio frequency signal into space through the antenna.
  • Radio frequency integrated circuits may be referred to as radio frequency processing chips or radio frequency chips.
  • the radio frequency subsystem may include an antenna switch, an antenna tuner, a low noise amplifier (low noise amplifier, LNA), a power amplifier (power amplifier, PA), a mixer (mixer), a local oscillator (local oscillator, LO ), filters and other electronic devices, these electronic devices can be integrated into one or more chips as required.
  • Radio frequency integrated circuits may be referred to as radio frequency processing chips or radio frequency chips.
  • the RF front-end device can also be a stand-alone chip. RF chips are sometimes called receivers, transmitters or transceivers. With the evolution of technology, the antenna can sometimes be considered as a part of the radio frequency subsystem and can be integrated into the chip of the radio frequency subsystem.
  • radio frequency subsystem can also use different devices or different integration methods based on power consumption and performance requirements. For example, if some devices belonging to the radio frequency front end are integrated into the radio frequency chip, even the antenna and the radio frequency front end devices are integrated into the radio frequency chip, the radio frequency chip may also be called a radio frequency antenna module or an antenna module.
  • the baseband subsystem mainly completes the processing of baseband signals.
  • the baseband subsystem can extract useful information or data bits from baseband signals, or convert information or data bits into baseband signals to be transmitted. These information or data bits may be data representing user data such as voice, text, video, or control information.
  • the baseband subsystem can implement signal processing operations such as modulation and demodulation, encoding and decoding.
  • signal processing operations are not exactly the same.
  • the radio frequency signal is usually an analog signal
  • the signal processed by the baseband subsystem is mainly a digital signal
  • an analog-to-digital conversion device is also required in the wireless communication device.
  • the analog-to-digital conversion device may be set in the baseband subsystem, or may be set in the radio frequency subsystem.
  • Analog to digital conversion devices include an analog to digital converter (analog to digital converter, ADC) that converts an analog signal into a digital signal, and a digital to analog converter (digital to analog converter, DAC) that converts a digital signal to an analog signal.
  • the baseband subsystem may also include one or more processors.
  • the baseband subsystem may also include one or more hardware accelerators (hardware accelerator, HAC).
  • Hardware accelerators can be used to specifically complete some sub-functions with high processing overhead, such as assembly and analysis of data packets, encryption and decryption of data packets, etc.
  • These sub-functions can also be implemented by using a general-purpose processor, but due to performance or cost considerations, it may be more appropriate to use a hardware accelerator.
  • the hardware accelerator is mainly realized by an application-specific integrated circuit (ASIC).
  • ASIC application-specific integrated circuit
  • one or more relatively simple processors, such as MCUs may also be included in the hardware accelerator.
  • the baseband subsystem and the radio frequency subsystem together form a communication subsystem, which provides wireless communication functions for wireless communication devices.
  • the baseband subsystem is responsible for managing the hardware and software resources of the communication subsystem, and can configure the working parameters of the radio frequency subsystem.
  • the processor of the baseband subsystem can run the subsystem operating system of the communication subsystem, which is usually an embedded operating system or a real time operating system (real time operating system).
  • the baseband subsystem can be integrated into one or more chips, which can be called baseband processing chips or baseband chips.
  • the baseband subsystem can be used as an independent chip, and the chip can be called a modem (modem) or a modem chip.
  • the baseband subsystem can be manufactured and sold in units of modem chips. Modem chips are sometimes called baseband processors or mobile processors.
  • the baseband subsystem can also be further integrated into a larger chip, and manufactured and sold in units of a larger chip. This larger chip can be called a system-on-a-chip, system-on-a-chip, or system-on-a-chip (SoC), or simply an SoC chip.
  • SoC system-on-a-chip
  • the software components of the baseband subsystem can be built into the hardware components of the chip before the chip leaves the factory, or can be imported into the hardware components of the chip from other non-volatile memories after the chip leaves the factory, or can be downloaded online through the network and update these software components.
  • the wireless communication device also includes a memory, such as the memory and mass storage in FIG. 2 .
  • the application subsystem and the baseband subsystem may also include one or more buffers respectively.
  • the memory can be divided into volatile memory (volatile memory) and non-volatile memory (non-volatile memory, NVM).
  • Volatile memory refers to memory in which data stored inside will be lost when the power supply is interrupted.
  • volatile memory is mainly random access memory (random access memory, RAM), including static random access memory (static RAM, SRAM) and dynamic random access memory (dynamic RAM, DRAM).
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • Non-volatile memory refers to memory in which the data stored inside will not be lost even if the power supply is interrupted.
  • Non-volatile memories include read only memory (ROM), optical discs, magnetic disks, and various memories based on flash memory technology.
  • volatile memory can be used for memory and cache
  • non-volatile memory such as flash memory, can be used for large-capacity storage.
  • the current RRM measurement process will be introduced below.
  • the RRM measurement includes, but is not limited to, a determination process of at least one of RSRP, RSRQ, and reference signal-signal to noise and interference ratio (reference signal-signal to noise and interference ratio, RS-SINR).
  • RSRP reference signal-signal to noise and interference ratio
  • RS-SINR reference signal-signal to noise and interference ratio
  • the RSRP reflects the power on the reference signal resource element (resource element, RE).
  • the RSRP may be the signal received power received on all REs carrying the reference signal in a certain (or some) symbols. average value.
  • the UE can use the average received power of the signal received on the RE where the RSS pilot is located as the RSRP to implement RSRP measurement based on the RSS pilot.
  • RSRQ reflects the load condition of the target cell.
  • the current definition of RSRQ is: N ⁇ RSRP/(E-UTRA carrier RSSI).
  • N is the number of resource blocks (resource blocks, RBs) included in the E-UTRA carrier received signal strength indicator (received signal strength indicator, RSSI) measurement bandwidth, and RSRP and RSSI are obtained through the same physical resource block (physical resource block) , PRB) bandwidth measurement, RSSI can be used to characterize the interference situation within the PRB range. That is to say, when the RSS pilot is introduced, the measured RSRQ reflects the load condition in the frequency domain resources occupied by the RSS pilot.
  • the RSS pilot only occupies a part of the narrowband frequency domain resources of the cell (for example, only occupies part of the narrowband PRBs).
  • the narrowband occupies 6 PRBs in the frequency domain, and the RSS pilot occupies 2 PRBs.
  • the maximum receiving bandwidth of the UE does not exceed 1.4 megahertz (MHz), corresponding to a narrowband, and the RSS pilot may occupy a part of the PRBs of the narrowband, such as 2 PRBs.
  • the maximum receiving bandwidth of the UE does not exceed 5MHz, corresponding to at most 2 narrowbands, where each narrowband can correspond to a serving cell of the UE, and for each serving cell, the RSS pilot of the UE can be Occupies a part of the PRB of the narrowband.
  • the UE's maximum receiving bandwidth does not exceed 20MHz, which can correspond to up to 16 narrowbands, and the RSS pilot can occupy part of the PRBs.
  • the RSRQ measured in the above manner cannot reflect the load in the entire narrowband, and thus cannot reflect the load of the entire cell.
  • RS-SINR is used to represent the channel quality of the cell within the resource range of the reference signal, and after the introduction of RSS, the RS-SINR determined according to the frequency domain resources of the RSS cannot reflect the interference situation within the frequency domain of the entire cell , so the current RSS-based RRM measurement performance needs to be improved.
  • an embodiment of the present application provides a radio resource measurement method.
  • the network device is a base station and the terminal device is a UE as an example to introduce the method embodiments provided by the embodiments of the present application. It should not be understood that the embodiments of the present application can only be implemented by base stations and UEs.
  • the radio resource measurement method provided by the embodiment of the present application may include the following steps:
  • the UE determines narrowband frequency domain resources where the RSS pilot of the resynchronization signal is located, and the RSS pilot occupies part of the narrowband frequency domain resources.
  • the UE may determine the frequency domain resource of the narrowband where the RSS pilot is located according to the configuration information from the base station.
  • the UE may receive the RSS pilot configuration and/or the narrowband configuration from the base station.
  • the base station configures the RSS pilot as shown in FIG. 3 to the UE, and the RSS pilot occupies 2 PRBs in the narrowband.
  • the UE can learn that the narrowband where the RSS pilot is located occupies 6 PRBs according to the narrowband-related configuration and the RSS-related configuration.
  • the base station may also configure the period (period) and/or duration (duration) of the RSS pilot in the time domain to the UE, for example, the RSS pilot interval occurs at 160, 320, 640 or 1280 milliseconds (ms), every The duration of each occurrence is 8, 16, 32 or 40 ms.
  • the UE may also determine the time domain resource of the RSS pilot and/or the time domain resource of the narrowband according to the configuration information from the base station.
  • the processing of S101 may be performed after the UE determines that RRM measurement needs to be performed.
  • the UE has a measurement task to be completed at a high layer (the high layer in this application can also be replaced by layer 3 or RRC layer) (for example, in the process of reselection or handover), and judges that the RRM measurement based on RSS pilot is satisfied
  • the condition is activated, it is performed to determine the narrowband frequency domain resource where the RSS pilot of the resynchronization signal is located.
  • RRM RRM measurement start conditions can be found in Section 4.7.2.1.1 and Section 8.13.2.1 of 3GPP technical specification (technical specification, TS) 36.133 version (version, V) 16.7.0.
  • UE is allowed to be based on RSS pilot A description of the conditions that should be met to perform RSRP measurements.
  • the UE determines the first radio resource measurement result corresponding to the RSS pilot according to the narrowband frequency domain resource.
  • the first radio resource measurement result includes RSRQ and/or RS-SINR.
  • the UE can determine the RSRQ and/or RS-SINR according to the frequency domain resource occupied by the narrowband, so as to improve the performance of the RRM measurement.
  • the UE may determine the RSRQ according to the RSRP corresponding to the RSS pilot and the RSSI corresponding to the RSS pilot.
  • the UE may determine the RSRP corresponding to the RSS pilot according to the time domain resources and frequency domain resources occupied by the RSS pilot. For example, the UE may use the average value of the received power of the signal received on the RE where the RSS is located as the RSRP. Exemplarily, the UE may determine the RSSI corresponding to the RSS pilot according to the narrowband frequency domain resource and the time domain resource occupied by the RSS pilot.
  • the time domain resources occupied by the RSS pilot may include a part of the narrowband frequency domain resources. As shown in FIG. 5 , if the RSS pilot occupies 11 symbols in the time domain, the UE determines the RSSI according to the radio signals received within the 11 symbols.
  • the UE can determine the RSSI based on the narrowband PRBs, that is, received wireless signals within 6 PRBs. That is to say, the UE counts the RSSI in the frequency domain within the maximum receiving bandwidth of the RSS pilot.
  • the UE may also sample the symbols occupied by the RSS pilot within the subframe, and determine the RSSI according to the sub-time domain resource range obtained by sampling. For example, the UE may determine at least one sub-time domain resource from the time domain resource occupied by the RSS pilot, and determine the RSSI according to the sub-time domain resource and the narrowband frequency domain resource, so as to improve the efficiency of RSSI determination. Still taking the 11 symbols occupied by the RSS pilot as an example, the UE can select the 4th, 7th and 11th symbols as sub-time domain resources for determining RSSI, thus reducing the processing overhead in the measurement process.
  • RSRQ RSRQ
  • N is the number of PRBs included in the RSSI measurement.
  • the RSRQ determined in the present application can reflect the load condition in the cell.
  • the UE can determine the RS-SINR according to the noise intensity and interference intensity in the narrowband frequency domain resource where the RSS pilot is located. For example in FIG. 3 , the UE determines the RS-SINR according to the noise intensity and interference intensity within the 6 PRBs where the narrowband is located.
  • the present application does not limit the UE to only support monitoring in one narrowband. If the UE supports multiple narrowbands, the UE may determine the RS-SINR according to the noise intensity and interference intensity in PRBs of multiple narrowbands.
  • the RS-SINR is defined as the signal strength of the reference signal divided by the energy of noise plus interference.
  • the signal strength is the signal strength within the range of frequency domain resources occupied by the RSS pilot, and the energy of noise plus interference can be the sum of the noise energy and interference energy detected in all PRBs that can be included in the narrowband frequency domain resources .
  • the base station may not send downlink data in the first time unit in the narrowband time domain resources, for the UE to The noise and interference measurement of all narrowband PRBs is performed in a time unit.
  • the base station may not send downlink signals according to a certain period, and the resources for not sending signals are used for the UE to measure noise energy and interference energy.
  • the serving cell of the UE is configured to send downlink signals according to the bitmap.
  • mute_pattern [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0], which means the last subframe in every 16 subframes (that is, the subframe corresponding to the bit whose value is 0 frame) does not send the PDSCH of the downlink service.
  • some symbols in this subframe can be used to send cell-specific reference signals (cell-specific reference signals, CRS) pilot, then the UE can measure the interference intensity and noise in the symbols that do not contain CRS pilot in the last subframe A measure of strength.
  • CRS cell-specific reference signals
  • the RS-SINR determined in this application can better reflect the downlink service channel quality of the cell.
  • the UE's physical layer determines the first radio resource measurement result based on the RSS, it can convert the first radio measurement result into the second radio resource measurement result according to the power of the RSS pilot and the power of the CRS pilot, and then send The higher layer sends the second radio resource measurement result.
  • the second radio resource measurement result may include at least one of RSRP, RSRQ and RS-SINR.
  • the radio measurement result of the neighbor cell measurement may still be obtained based on the CRS pilot, due to the gap between the RSS pilot and the CRS pilot
  • the power difference will cause a deviation between the two radio resource measurement results, and the high layer of the UE cannot know which method the radio measurement result is based on, resulting in deviation in high layer filtering and affecting the evaluation of the radio resource measurement result by the high layer.
  • the UE can convert the measurement results to the CRS antenna interface reference before reporting the radio resource measurement results determined based on the RSS pilot to the upper layer, so as to prevent the upper layer from evaluating the radio resource measurement results based on the CRS pilot. Evaluating the radio resource measurement results determined by the physical layer according to the RSS pilot can improve the reliability of the radio resource measurement and avoid complex processing of the radio resource measurement by high layers.
  • the UE may determine the second radio measurement result according to the power of the RSS pilot, the power of the CRS pilot and the first radio measurement result. For example, if the UE knows that the power of the RSS pilot is 6 decibels (dB) higher than the power of the CRS pilot, the conversion method is as follows: first subtract 6 dB from the RSRP obtained by the UE according to the RSS measurement, and then use the conversion result as the radio resource measurement result included RSRP is reported to the upper layer.
  • dB decibels
  • the UE first subtracts 6dB from the RSRP obtained by RSS measurement, and then substitutes the calculation result into the RSRP in the above formula 1, and calculates the RSRQ through the formula 1, and reports the determined RSRQ as the second radio resource measurement result to the upper layer.
  • the UE subtracts 6dB from the RS-SINR obtained by RSS measurement based on the method introduced above, and reports the calculation result to the upper layer as the second radio resource measurement result.
  • the high layer performs a corresponding evaluation operation according to the second radio measurement result, and the evaluation operation may be, for example, that the high layer decides whether to initiate cell reselection or cell handover.
  • an embodiment of the present application further provides a communication device, configured to implement the above functions implemented by the first terminal device and/or the second terminal device.
  • the device may include the structure shown in FIG. 6 and/or FIG. 7 .
  • the device may include a transceiver module 620 and a processing module 610, wherein the transceiver module 620 may include a receiving module and/or a sending module for receiving and/or sending information, and the processing module 610 may be used to generate The information sent by the transceiver module 620 is used to process the information received by the transceiver module 620 .
  • the processing module 610 may also be used to perform actions other than receiving and sending involved in the above method embodiments.
  • the apparatus 600 can be applied to the above UE. Wherein, the UE may be applicable to the communication system shown in FIG. 1 , and may implement the radio resource measurement methods in the above figures.
  • the processing module 610 may include a frequency domain resource determination module and a measurement result determination module.
  • the frequency domain resource determination module may be used to determine the narrowband frequency domain resources where the RSS pilot of the resynchronization signal is located, and the RSS pilot occupies part of the narrowband frequency domain resources.
  • the frequency domain resource determining module may determine the frequency domain resource of the narrowband where the RSS pilot is located according to the configuration information received by the transceiver module 620 from the base station.
  • the measurement result determination module may be configured to determine the first radio resource measurement result corresponding to the RSS pilot according to the narrowband frequency domain resource.
  • the radio resource measurement result includes RSRQ and/or RS-SINR.
  • the first radio resource measurement result includes RSRQ
  • the measurement result may be used to determine RSSI according to the narrowband frequency domain resource, and determine the RSRQ according to the RSSI.
  • the measurement result determination module may be configured to determine the RSSI according to the narrowband frequency domain resource and the RSS pilot time domain resource, and to determine the RSSI according to the reference signal corresponding to the RSS pilot.
  • the received power RSRP and the RSSI determine the RSRQ, and the RSRP is determined according to the time domain resource of the RSS pilot.
  • the measurement result determination module may be configured to determine at least one sub-time domain resource according to the time domain resource of the RSS pilot, and determine at least one sub-time domain resource according to the narrowband frequency domain resource and the sub-time domain resource Determine the RSSI.
  • the first radio resource measurement result includes RS-SINR
  • the measurement result determination module can be configured to determine the RS-SINR according to the noise intensity and interference intensity in the narrowband frequency domain resource where the RSS pilot is located. SINR.
  • the narrowband includes at least one first time unit, the first time unit is not used to send downlink data, and the first time unit is used to determine the noise intensity and the interference intensity .
  • the measurement result determination module may be configured to determine the first radio resource measurement result according to the narrowband frequency domain resources at the physical layer, and the measurement result determination module may also be configured to determine the first radio resource measurement result according to the RSS The pilot power, the power difference of the cell reference signal CRS pilot and the first radio resource measurement result, determine a second radio resource measurement result, and send the second radio resource measurement result to layer three.
  • processing module 610 may also implement the functions of the frequency domain resource determination module and the measurement result determination module.
  • FIG. 7 shows a schematic structural diagram of another apparatus for measuring radio resources, which is used to perform the actions performed by the UE provided in the embodiment of the present application.
  • the radio resource measurement device may include a processor, a memory, a radio frequency circuit, an antenna and/or an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, control the radio resource measurement device, execute software programs, and process data of the software programs.
  • Memory is primarily used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of radio resource measurement devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data deal with.
  • FIG. 7 only one memory and processor are shown in FIG. 7 . In an actual terminal device product, there may be one or more processors and one or more memories.
  • a memory may also be called a storage medium or a storage device. The memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit having a transceiver function may be regarded as a transceiver unit.
  • the transceiver unit may be a functional unit capable of transmitting and receiving functions; or, the transceiver unit may also include two functional units, namely a receiving unit capable of receiving and a transmitting unit capable of transmitting.
  • a processor with processing capabilities may be considered a processing unit.
  • the apparatus for radio resource measurement includes a transceiver unit 710 and a processing unit 720 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • a processing unit may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device in the transceiver unit 710 for realizing the receiving function can be regarded as a receiving unit
  • the device in the transceiver unit 710 for realizing the sending function can be regarded as a sending unit, that is, the transceiver unit 710 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes also be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the transceiver unit 710 may correspond to the transceiver module 620 , or in other words, the transceiver module 620 may be implemented by the transceiver unit 710 .
  • the transceiver unit 710 is configured to perform the sending operation and the receiving operation of the UE in the embodiments shown in this application, and/or other processes for supporting the technology described herein.
  • the processing unit 720 may correspond to the processing module 610 , or in other words, the processing module 610 may be realized by the processing unit 720 .
  • the processing unit 720 is configured to perform other operations of the UE in the embodiments shown in the present application except the transceiving operation.
  • the actions performed by the processing module 610 in the above example may be performed by the processing unit 720 shown in FIG. 7 , and the specific actions will not be described again.
  • the above actions of the second communication device performed by the transceiving module 620 may be performed by the transceiving unit 710 shown in FIG. 7 .
  • the device for measuring radio resources may also have the structure shown in FIG. 2 .
  • the processing actions of the UE in the radio resource measurement method provided by the embodiment of the present application can be implemented by the application subsystem shown in FIG. 2 .
  • the above processing module 610 is implemented by one or more processors in the application subsystem.
  • the above transceiving module 620 may be realized by at least one component of ANT, RFFE, RFIC and baseband subsystem.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 4 provided in the above-mentioned method embodiment. Processes related to UE.
  • An embodiment of the present application also provides a computer program product, the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the UE-related functions in the embodiment shown in FIG. 4 provided in the above method embodiment. process.
  • the embodiment of the present application also provides a chip or a chip system (or circuit), the chip may include a processor, and the processor may be used to call programs or instructions in the memory to execute the implementation shown in Figure 4 provided by the above method embodiment The procedure related to UE in the example.
  • the system-on-a-chip may include the chip, and other components such as a memory or a transceiver.
  • the communication device in the foregoing embodiments may be a terminal device, or may be a chip applied in the terminal device, or other combined devices, components, etc. that can realize the functions of the above-mentioned terminal device.
  • the transceiver unit may be a transmitter and a receiver, or an integrated transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing unit may be a processor, such as a baseband chip.
  • the transceiver unit may be a radio frequency unit
  • the processing unit may be a processor.
  • the transceiver unit may be an input-output interface of the system-on-a-chip
  • the processing unit may be a processor of the system-on-a-chip, such as a central processing unit (CPU).
  • CPU central processing unit
  • the processor in the embodiment of the present application may be a CPU, or other general-purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuits, ASICs), Field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuits
  • FPGA Field programmable gate array
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the first terminal and/or in the second terminal.
  • the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; or it may be a semiconductor medium, such as a solid state disk.
  • At least one item (unit) of a, b or c can represent: a, b, c, a and b, a and c, b and c, or a, b and c, wherein a, b, c Can be single or multiple.
  • the above-mentioned embodiments may be implemented in whole or in part by software, hardware (such as circuits), firmware, or other arbitrary combinations.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product comprises one or more computer instructions or computer programs. When the computer instruction or computer program is loaded or executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • Embodiments of the present invention are described with reference to flowcharts and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present invention. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种无线资源测量方法及装置,该方法包括确定RSS导频所在窄带的频域资源,所述RSS导频占用所述窄带的频域资源中的部分频域资源;根据所述窄带的频域资源确定所述RSS导频对应的第一无线资源测量结果。采用该方法,可由UE根据RSS导频占用所述窄带的频域资源确定RSS导频对应的第一无线资源测量结果,可提高基于RSS导频的测量准确性。

Description

一种无线资源测量方法及装置
相关申请的交叉引用
本申请要求在2021年09月30日提交中华人民共和国知识产权局、申请号为202111161581.3、申请名称为“一种无线资源测量方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种无线资源测量方法及装置。
背景技术
目前增强机器通信(enhenced-machine type communication,eMTC)-4的R15标准引入重同步信号(re-synchronization signal,RSS)导频,用于缩短重同步的时间。RSS导频占用窄带(narrow band,NB)中的部分频域资源。
在R16标准中,RSS被用于无线资源管理(radio resource management,RRM)测量,目的是提升RRM测量性能。其中,RRM测量包括但不限于参考信号接收功率(reference signal received power,RSRP)和参考信号接收质量(reference signal received quality,RSRQ)的测量。然而目前现有技术中没有明确根据RSS导频确定RRM的具体实现方式,导致测量准确性降低。
发明内容
本申请提供一种无线资源测量方法及装置,用以提高基于RSS导频的测量的准确性。
第一方面,本申请提供一种无线资源测量方法,该方法由可由终端装置实施。终端装置例如UE。以UE为执行主体为例,该方法可包括:UE确定RSS导频所在窄带的频域资源,所述RSS导频占用所述窄带的频域资源中的部分频域资源;UE根据所述窄带的频域资源确定所述RSS导频对应的第一无线资源测量结果。
采用该方法,可由UE根据RSS导频占用所述窄带的频域资源确定RSS导频对应的第一无线资源测量结果,可提高基于RSS导频的测量准确性。
在一种可能的设计中,所述无线资源测量结果包括RSRQ和/或RS-SINR。采用该设计,可提高基于RSS导频测量的RSRQ和/或RS-SINR的准确性。
在一种可能的设计中,所述第一无线资源测量结果包括RSRQ,UE还可根据所述窄带的频域资源确定接收信号强度指示RSSI,并根据所述RSSI确定所述RSRQ。采用该设计,UE可根据RSS导频的时域资源和该窄带的频域资源确定RSRQ,使得RSRQ的测量结果符合UE的服务小区的负载情况,提高RSRQ的测量准确性。
在一种可能的设计中,UE具体可根据所述窄带的频域资源和所述RSS导频的时域资源确定所述RSSI,并根据所述RSS导频对应的参考信号接收功率RSRP和所述RSSI确定所述RSRQ,所述RSRP根据所述RSS导频的所述时域资源确定。
在一种可能的设计中,UE具体可根据所述RSS导频的时域资源确定至少一个子时域 资源,根据所述窄带的频域资源和所述子时域资源确定所述RSSI。采用该设计,UE可对RSS导频占用的时域资源进行抽样,通过抽样获得的子时域资源确定RSSI,以降低测量过程中的处理开销。
在一种可能的设计中,所述第一无线资源测量结果包括RS-SINR,UE可根据RSS导频所在窄带的频域资源内的噪声强度和干扰强度,确定RS-SINR。采用该设计,UE可根据RSS导频所在窄带的频域资源内的噪声强度和干扰强度确定RS-SINR,使得RS-SINR的测量结果符合UE的服务小区的干扰情况,提高RS-SINR的测量准确性。
在一种可能的设计中,所述窄带内包括至少一个第一时间单元,所述第一时间单元不用于发送下行数据,所述第一时间单元用于确定所述噪声强度和所述干扰强度。采用该设计,UE可在第一时间单元内确定RSS导频所在窄带的频域资源内的噪声强度和干扰强度,以提高RSSI的测量准确度。
在一种可能的设计中,UE可在物理层根据所述窄带的频域资源确定所述第一无线资源测量结果,UE还可根据所述RSS导频的功率、CRS导频的功率差和所述第一无线资源测量结果,确定第二无线资源测量结果,此后可由物理层向层三(或称高层、RRC层)发送所述第二无线资源测量结果。
采用该设计,UE可对基于RSS导频测量的无线资源测量结果进行折算,使得物理层向高层上报的测量结果转换到CRS天线口面基准,避免高层按照CRS导频的无线资源测量结果的评估标准来评估物理层根据RSS导频确定的无线资源测量结果,能够提高无线资源测量可靠性,避免高层对于无线资源测量的处理复杂化。避免复杂化是指,高层不需要搞清楚物理层究竟是根据RSS导频还是根据CRS导频确定的无线资源测量结果。
第二方面,本申请提供一种无线资源测量装置,该装置可用于实现上述第一方面或第一方面任意一种可能的设计中由UE实现的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置包括用于执行上述方法的相应的单元或部件。示例性的,该装置可以为UE。
在一种可能的设计中,该无线资源测量装置可包括频域资源确定模块和测量结果确定模块。该频域资源确定模块可用于确定重同步信号RSS导频所在窄带的频域资源,所述RSS导频占用所述窄带的频域资源中的部分频域资源;该测量结果确定模块可用于根据所述窄带的频域资源确定所述RSS导频对应的第一无线资源测量结果。
在一种可能的设计中,所述无线资源测量结果包括RSRQ和/或RS-SINR。
在一种可能的设计中,所述第一无线资源测量结果包括RSRQ,所述测量结果可用于根据所述窄带的频域资源确定RSSI,并根据所述RSSI确定所述RSRQ。
在一种可能的设计中,所述测量结果确定模块可用于根据所述窄带的频域资源和所述RSS导频的时域资源确定所述RSSI,并根据所述RSS导频对应的参考信号接收功率RSRP和所述RSSI确定所述RSRQ,所述RSRP根据所述RSS导频的所述时域资源确定。
在一种可能的设计中,所述测量结果确定模块可用于根据所述RSS导频的时域资源确定至少一个子时域资源,并根据所述窄带的频域资源和所述子时域资源确定所述RSSI。
在一种可能的设计中,所述第一无线资源测量结果包括RS-SINR,所述测量结果确定模块可用于根据RSS导频所在窄带的频域资源内的噪声强度和干扰强度,确定RS-SINR。
在一种可能的设计中,所述窄带内包括至少一个第一时间单元,所述第一时间单元不用于发送下行数据,所述第一时间单元用于确定所述噪声强度和所述干扰强度。
在一种可能的设计中,所述测量结果确定模块可用于在物理层根据所述窄带的频域资源确定所述第一无线资源测量结果,所述测量结果确定模块还可用于根据所述RSS导频的功率、小区参考信号CRS导频的功率差和所述第一无线资源测量结果,确定第二无线资源测量结果,并向层三发送所述第二无线资源测量结果。
在另一种可能的设计中,该通信装置可包括收发器、存储器以及处理器,其中,收发器,用于所述通信装置进行通信;所述存储器存储有计算机程序;所述处理器,用于运行所述计算机程序,以实现上述第一方面或第一方面任意一种可能的设计中由UE实现的功能。
第三方面,本申请实施例提供一种计算机可读存储介质,包括程序指令,当所述程序指令在计算机上运用时,使得计算机执行上述第一方面或第一方面任意一种可能的设计中由UE实现的方法。
第四方面,本申请实施例提供一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面任意一种可能的设计中由UE实现的方法。
第五方面,本申请实施例提供一种芯片,所述芯片可与储存器耦合,可用于执行储存器中的程序指令,执行本申请实施例第一方面及其任一可能的设计的方法。“耦合”是指两个部件彼此直接或间接地结合,如耦合可以是指两个部件之间电连接。
以上第二方面至第五方面所带来的技术效果可参见上述第一方面的描述,此处不再赘述。
附图说明
图1为本申请提供的一种无线通信系统的架构示意图;
图2为本申请提供的一种终端装置的架构示意图;
图3为本申请提供的一种RSS导频的资源分布示意图;
图4为本申请提供的一种无线资源测量方法的流程示意图;
图5为本申请提供的另一种RSS导频的资源分布示意图;
图6为本申请提供的一种无线资源测量装置的结构示意图;
图7为本申请提供的一种无线资源测量装置的结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种上行资源确定和配置方法及装置,用以降低UE在小数据传输中的功耗。其中,本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在本申请中的描述中,“至少一个(种)”是指一个(种)或者多个(种),多个(种)是指两个(种)或者两个(种)以上。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的通信方法及装置进行详细说明。
图1示出了本申请实施例提供的通信方法可适用的通信系统的架构,所述通信系统的架构中可以包括网络设备和终端设备。
所述网络设备可以为具有无线收发功能的设备或可设置于该网络设备的芯片,该网络设备可以包括但不限于:基站(generation node B,gNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,Wi-Fi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,对此不作限定。
本申请中,网络设备支持与终端装置进行通信。具体的,网络设备可通过通用用户与网络(universal user to network,Uu)接口与UE进行通信,如通过Uu接口配置UE的上行资源。
所述终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智能穿戴设备(智能眼镜、智能手表、智能耳机等)、智慧家庭(smart home)中的无线终端等等,也可以是能够设置于以上设备的芯片或芯片模组(或芯片系统)等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
需要说明的是,图1所示的通信系统可以但不限于为第四代(4th generation,4G)系统、第五代(5th generation,5G)系统,如新一代无线接入技术(new radio access technology,NR),独立组网(standalone,SA)等。可选的,本申请实施例的方法还适用于未来的各种通信系统,例如第六代(6th generation,6G)系统或者其他通信网络等。
本申请中,终端设备支持与网络设备进行通信。具体的,网络设备可通过Uu接口与网络设备进行通信,如通过Uu接口接收来自于网络设备的上行资源的配置信息,和/或, 通过Uu接口向网络设备发送上行数据。
该无线通信系统中,基站可通过集成或外接的天线设备,为特定地理区域提供通信覆盖。位于基站的通信覆盖范围内的一个或多个终端,均可以接入基站。一个基站可以管理一个或多个小区(cell)。每个小区具有一个身份证明(identification),该身份证明也被称为小区标识(cell identity,cell ID)。从无线资源的角度看,一个小区是下行无线资源,以及与其配对的上行无线资源(非必需)的组合。
本申请中,终端设备和基站应知晓该无线通信系统预定义的配置,包括系统支持的无线电接入技术(radio access technology,RAT)以及系统规定的无线资源配置等,比如无线电的频段和载波的基本配置。载波是符合系统规定的一段频率范围。这段频率范围可由载波的中心频率(记为载频)和载波的带宽共同确定。这些系统预定义的配置可作为无线通信系统的标准协议的一部分,或者通过终端和基站间的交互确定。相关标准协议的内容,可能会预先存储在终端设备和基站的存储器中,或者体现为终端设备和基站的硬件电路或软件代码。
该无线通信系统中,终端设备和基站支持一种或多种相同的RAT,例如5G NR,4G,长期演进(long term evolution,LTE),或未来演进系统的RAT。具体地,终端设备和基站采用相同的空口参数、编码方案和调制方案等,并基于系统规定的无线资源相互通信。
需要说明的是,图1中示出的设备仅仅为示例,通信系统中还可以包含除网络设备和终端设备以外的其他设备,本申请对此不作限定。网络设备和终端设备的个数也仅仅为示例,通信系统中的网络设备和终端设备也可以为多个,本申请对此不作限定。
图2为本申请实施例提供的一种无线通信设备的结构示意图。该无线通信设备可以是本申请实施例中的终端或者基站。如图2所示,该无线通信设备可包括多个组件,例如包括应用子系统、内存(memory)、大容量存储器(massive storge)、基带子系统、射频集成电路(radio frequency intergreted circuit,RFIC)(UE可包括至少一个RFIC,如果包括两个RFIC,这两个RFIC在图2中可分别表示为RFIC 1和RFIC2)、射频前端(radio frequency front end,RFFE)器件,以及天线(antenna,ANT)。这些组件可以通过各种互联总线或其他电连接方式耦合。
图2中,ANT_1表示第一天线,ANT_N表示第N天线,N为大于1的正整数。Tx表示发送路径,Rx表示接收路径,不同的数字表示不同的路径。每条路径均可以表示一个信号处理通道。其中,FBRx表示反馈接收路径,PRx表示主接收路径,DRx表示分集接收路径。HB表示高频,LB表示低频,这里的高频和低频是指频率的相对高低,HB的频率高于LB的频率。BB表示基带。应理解,图5中的标记和组件仅为示意目的,仅作为一种可能的实现方式,本申请实施例还包括其他的实现方式。例如,无线通信设备可以包括更多或更少的路径,包括更多或更少的组件。
其中,应用子系统可作为无线通信设备的主控制系统或主计算系统,用于运行主操作系统和应用程序,管理整个无线通信设备的软硬件资源,并可为用户提供用户操作界面。此外,应用子系统中也可包括与其他子系统(例如基带子系统)相关的驱动软件。
应用子系统可包括一个或多个处理器。多个处理器可以多个相同类型的处理器,也可以包括多种类型的处理器组合。本申请中,处理器可以是通用用途的处理器,也可以是为特定领域设计的处理器。例如,处理器可以是中央处理单元(center processing unit,CPU),数字信号处理器(digital signal processor,DSP),或微控制器(micro control unit,MCU)。 处理器也可以是图形处理器(graphics processing unit,GPU)、图像信号处理器(image signal processing,ISP),音频信号处理器(audio signal processor,ASP),以及为人工智能(artificial intelligence,AI)应用专门设计的AI处理器。AI处理器包括但不限于神经网络处理器(neural network processing unit,NPU),张量处理器(tensor processing unit,TPU)以及被称为AI引擎的处理器。
图2中,射频集成电路(包括RFIC 1,以及一个或多个可选的RFIC 2)和射频前端器件可以共同组成射频子系统。根据信号的接收或发送路径的不同,射频子系统也可以分为射频接收通道(RF receive path)和射频发射通道(RF transmit path)。其中,射频接收通道可通过天线接收射频信号,对该射频信号进行处理(如放大、滤波和下变频)以得到基带信号,并传递给基带子系统。射频发送通道可接收来自基带子系统的基带信号,对基带信号进行处理(如上变频、放大和滤波)以得到射频信号,并最终通过天线将该射频信号辐射到空间中。射频集成电路可以被称为射频处理芯片或射频芯片。
具体地,射频子系统可包括天线开关,天线调谐器,低噪声放大器(low noise amplifier,LNA),功率放大器(power amplifier,PA),混频器(mixer),本地振荡器(local oscillator,LO)、滤波器(filter)等电子器件,这些电子器件可以根据需要集成到一个或多个芯片中。射频集成电路可以被称为射频处理芯片或射频芯片。射频前端器件也可以是独立的芯片。射频芯片有时也被称为接收机(receiver)、发射机(transmitter)或收发机(transceiver)。随着技术的演进,天线有时也可以认为是射频子系统的一部分,并可集成到射频子系统的芯片中。天线、射频前端器件和射频芯片都可以单独制造和销售。当然,射频子系统也可以基于功耗和性能的需求,采用不同的器件或者不同的集成方式。例如,将属于射频前端的部分器件集成在射频芯片中,甚至将天线和射频前端器件都集成射频芯片中,该射频芯片也可以称为射频天线模组或天线模组。
与射频子系统主要完成射频信号处理类似,顾名思义,基带子系统主要完成对基带信号的处理。基带子系统可以从基带信号中提取有用的信息或数据比特,或者将信息或数据比特转换为待发送的基带信号。这些信息或数据比特可以是表示语音、文本、视频等用户数据或控制信息的数据。例如,基带子系统可以实现诸如调制和解调,编码和解码等信号处理操作。对于不同的无线接入技术,例如5G NR和4G LTE,基带信号处理操作也不完全相同。
此外,由于射频信号通常是模拟信号,基带子系统处理的信号主要是数字信号,无线通信设备中还需要有模数转换器件。本申请实施例中,模数转换器件可以设置在基带子系统中,也可以设置在射频子系统中。模数转换器件包括将模拟信号转换为数字信号的模数转换器(analog to digital converter,ADC),以及将数字信号转换为模拟信号的数模转换器(digital to analog converter,DAC)。
与应用子系统类似,基带子系统也可包括一个或多个处理器。此外,基带子系统还可以包括一种或多种硬件加速器(hardware accelerator,HAC)。硬件加速器可用于专门完成一些处理开销较大的子功能,如数据包(data packet)的组装和解析,数据包的加解密等。这些子功能采用通用功能的处理器也可以实现,但是因为性能或成本的考量,采用硬件加速器可能更加合适。在具体的实现中,硬件加速器主要是用专用集成电路(application specified intergated circuit,ASIC)来实现。当然,硬件加速器中也可以包括一个或多个相对简单的处理器,如MCU。
本申请实施例中,基带子系统和射频子系统共同组成通信子系统,为无线通信设备提供无线通信功能。通常,基带子系统负责管理通信子系统的软硬件资源,并且可配置射频子系统的工作参数。基带子系统的处理器中可以运行通信子系统的子操作系统,该子操作系统往往是嵌入式操作系统或实时操作系统(real time operating system)。
基带子系统可以集成为一个或多个芯片,该芯片可称为基带处理芯片或基带芯片。基带子系统可以作为独立的芯片,该芯片可被称调制解调器(modem)或modem芯片。基带子系统可以按照modem芯片为单位来制造和销售。modem芯片有时也被称为基带处理器或移动处理器。此外,基带子系统也可以进一步集成在更大的芯片中,以更大的芯片为单位来制造和销售。这个更大的芯片可以称为系统芯片,芯片系统或片上系统(system on a chip,SoC),或简称为SoC芯片。基带子系统的软件组件可以在芯片出厂前内置在芯片的硬件组件中,也可以在芯片出厂后从其他非易失性存储器中导入到芯片的硬件组件中,或者还可以通过网络以在线方式下载和更新这些软件组件。
此外,该无线通信设备中还包括存储器,例如图2中的内存和大容量存储器。此外,在应用子系统和基带子系统中,还可以分别包括一个或多个缓存。具体实现中,存储器可分为易失性存储器(volatile memory)和非易失性存储器(non-volatile memory,NVM)。易失性存储器是指当电源供应中断后,内部存放的数据便会丢失的存储器。目前,易失性存储器主要是随机存取存储器(random access memory,RAM),包括静态随机存取存储器(static RAM,SRAM)和动态随机存取存储器(dynamic RAM,DRAM)。非易失性存储器是指即使电源供应中断,内部存放的数据也不会因此丢失的存储器。常见的非易失性存储器包括只读存储器(read only memory,ROM)、光盘、磁盘以及基于闪存(flash memory)技术的各种存储器等。通常来说,内存和缓存可以选用易失性存储器,大容量存储器可以选用非易失性存储器,例如闪存。
下面以网络设备是基站且终端装置是UE为例,介绍目前的RRM测量过程。
示例性的,RRM测量包括但不限于RSRP、RSRQ和参考信号信干噪比(reference signal-signal to noise and interference ratio,RS-SINR)中至少一项的确定过程。
其中,RSRP反映的是参考信号资源单元(resource element,RE)上的功率,具体的,RSRP可以是在某个(或某些)符号内承载参考信号的所有RE上接收到的信号接收功率的平均值。在引入RSS导频后,UE可将RSS导频所在的RE上接收到的信号接收功率的平均值作为RSRP,实现基于RSS导频的RSRP测量。
RSRQ反映目标小区负载情况。目前RSRQ的定义为:N×RSRP/(E-UTRA载波RSSI)。其中,N是E-UTRA载波接收信号强度指示(received signal strength indicator,RSSI)测量带宽所包括的资源块(resource block,RB)数量,且RSRP和RSSI是通过相同的物理资源块(physical resource block,PRB)带宽测量获得的,RSSI可用于表征该PRB范围内的干扰情况。也就是说,在引入RSS导频的情况下,测量的RSRQ体现的是RSS导频占用的频域资源内的负载情况。
然而,RSS导频仅占用小区窄带频域资源中的一部分频域资源(如仅占用窄带的部分PRB)。示例性的,如图3所示,在频域上窄带占用6PRB,RSS导频占用其中的2个PRB。应理解,对于LTE种类(category,Cat).M1来说,UE的最大接收带宽不超过1.4兆赫兹(MHz),对应于一个窄带,RSS导频可占用窄带的一部分PRB,如2个PRB。对于LTE Cat.M2来说,UE的最大接收带宽不超过5MHz,对应于最多2个窄带,其中,每个窄带 可对应于UE的一个服务小区,对于每个服务小区,UE的RSS导频可占用窄带的一部分PRB。对于Non-BL CE UE来说,UE的最大接收带宽不超过20MHz,可对应于最多16个窄带,RSS导频可占用其中的一部分PRB。
因此,以上方式测量获得的RSRQ不能体现整个窄带内的负载,也就不能反映整个小区的负载情况。同理,RS-SINR用于表征参考信号的资源范围内的小区信道质量,而在引入RSS之后,按照RSS的频域资源确定的RS-SINR也不能体现整个小区的频域范围内的干扰情况,因此目前基于RSS的RRM测量性能有待提升。
为了提高基于RSS的RRM测量准确性,提高测量性能,本申请实施例提供一种无线资源测量方法。下面以网络设备是基站且终端装置是UE为例,对本申请实施例提供的方法实施例进行介绍,不应理解为本申请实施例只能以基站和UE实施。
如图4所示,本申请实施例提供的无线资源测量方法可包括以下步骤:
S101:UE确定重同步信号RSS导频所在窄带的频域资源,RSS导频占用窄带的频域资源中的部分频域资源。
其中,UE可根据来自于基站的配置信息确定RSS导频所在窄带的频域资源。
示例性的,UE可从基站接收RSS导频配置和/或窄带配置。例如,基站向UE配置如图3所示的RSS导频,该RSS导频占用窄带中的2个PRB。UE可根据窄带相关配置和RSS相关配置,获知RSS导频所在的窄带占用6PRB。可选的,基站还可向UE配置RSS导频在时域的周期(period)和/或持续时长(duration),例如,RSS导频间隔160、320、640或1280毫秒(ms)出现,每次出现的持续时长为8、16、32或40ms。
同理,UE还可根据来自于基站的配置信息确定RSS导频的时域资源和/或该窄带的时域资源。
可选的,S101的处理可以在UE确定需要进行RRM测量后执行。示例性的,UE在高层(本申请中的高层也可替换为层3或RRC层)有测量任务待完成(例如是在重选或切换过程中),且判断满足基于RSS导频的RRM测量启动条件时执行确定重同步信号RSS导频所在窄带的频域资源。RRM RRM测量启动条件可参见3GPP技术规范(technical specification,TS)36.133版本(version,V)16.7.0中的第4.7.2.1.1章节和第8.13.2.1章节中关于UE被允许基于RSS导频进行RSRP测量应满足的条件的描述。
S102:UE根据窄带的频域资源确定RSS导频对应的第一无线资源测量结果。
可选的,第一无线资源测量结果包括RSRQ和/或RS-SINR。
因此,UE可根据窄带占用的频域资源确定RSRQ和/或RS-SINR,实现RRM测量的性能提升。
下面分别对UE确定RSRQ和RS-SINR的方式进行说明。
针对RSRQ,UE可根据RSS导频对应的RSRP和RSS导频对应的RSSI确定RSRQ。
示例性的,UE可根据RSS导频占用的时域资源和频域资源确定RSS导频对应的RSRP。例如,UE可将RSS所在的RE上接收到的信号接收功率的平均值作为RSRP。示例性的,UE可根据该窄带的频域资源和RSS导频占用的时域资源确定RSS导频对应的RSSI。
在时域维度,RSS导频占用的时域资源可能包括窄带的频域资源中的一部分。如图5所示,如果RSS导频在时域占用11个符号,则UE根据该11个符号内接收的无线信号确定RSSI。
在频域维度,如图3所示,如果RSS导频仅占用窄带6个PRB中的2个PRB,UE可 根据窄带的PRB即6PRB内接收到的无线信号确定RSSI。也就是说,UE在频域上在RSS导频最大接收带宽内统计RSSI。
可选的,在确定RSSI的过程中,UE也可以在子帧内部对RSS导频占用的符号进行抽样,根据抽样获得的子时域资源范围确定RSSI。比如,UE可从RSS导频占用的时域资源中确定至少一个子时域资源,根据子时域资源和窄带的频域资源确定RSSI,以提高RSSI确定的效率。仍以RSS导频占用11个符号为例,UE可从中选择第4、第7和第11个符号作为子时域资源,用于确定RSSI,因此可以降低测量过程中的处理开销。
应理解,在确定RSRP和RSSI后,UE可按照以下公式确定RSRQ:
RSRQ=N×RSRP/RSSI;  (公式1)
其中,N是RSSI测量中包括的PRB的数量。以图3为例,RSSI的测量中统计的是窄带所在的6个PRB内的测量值,则此时N=6。
采用以上方式,本申请确定的RSRQ能够反映小区内的负载情况。
针对RS-SINR,UE可根据RSS导频所在窄带的频域资源内的噪声强度和干扰强度,确定RS-SINR。例如图3,UE根据窄带所在的6个PRB内的噪声强度和干扰强度确定RS-SINR。此外,本申请不限定UE仅支持在一个窄带进行监听,如果UE支持多窄带,则UE可以根据多个窄带的PRB内的噪声强度和干扰强度确定RS-SINR。
具体的,RS-SINR的定义是参考信号的信号强度除以噪声加干扰的能量。在本申请中,信号强度是RSS导频占用的频域资源范围内的信号强度,噪声加干扰的能量则可以是窄带的频域资源可包括的全部PRB内检测的噪声能量和干扰能量的和。
本申请中,为了测量窄带的频域资源内包括的全部PRB内的噪声能量和干扰能量,基站可以在窄带的时域资源中的第一时间单元内不发送下行数据,用于UE在第一时间单元内进行窄带的全部PRB的噪声和干扰测量。举例来说,基站可以按照一定周期不发下行信号,不发信号的资源用于UE测量噪声能量和干扰能量。例如,UE的服务小区被配置为按照比特位图发送下行信号。比特位图表示为:mute_pattern=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0],含义是每16个子帧中的最后一个子帧(即取值为0的比特对应的子帧)不发送下行业务的PDSCH。其中,该子帧中的一些符号可用于发送小区特定参考信号(cell-specific reference signals,CRS)导频,则UE可以在最后一个子帧中的不含有CRS导频的符号进行干扰强度和噪声强度的测量。
采用以上方式,本申请中确定的RS-SINR能够更好地反映小区的下行业务信道质量。
本申请中,UE的物理层在基于RSS确定第一无线资源测量结果后,可根据RSS导频的功率和CRS导频的功率将第一无线测量结果折算为第二无线资源测量结果,再向高层发送第二无线资源测量结果。第二无线资源测量结果可包括RSRP、RSRQ和RS-SINR中的至少一项。由于UE当前的服务小区满足RSS测量启动条件,但邻区不一定满足该条件,因此邻区测量的无线测量结果可能仍然是基于CRS导频获得的,由于RSS导频和CRS导频之间的功率差会导致这两种无线资源测量结果之间存在偏差,并且UE的高层不能获知无线测量结果是基于哪种方式确定的,造成高层滤波出现偏差,影响高层对无线资源测量结果的评估。而采用该步骤,UE可以在向高层上报基于RSS导频确定的无线资源测量结果之前,将测量结果转换到CRS天线口面基准,以避免高层按照CRS导频的无线资源测量结果的评估标准来评估物理层根据RSS导频确定的无线资源测量结果,能够提高无线资源测量可靠性,避免高层对于无线资源测量的处理复杂化。
示例性的,UE可根据RSS导频的功率、CRS导频的功率和第一无线测量结果确定第二无线测量结果。比如UE已知RSS导频的功率比CRS导频的功率高6分贝(dB),则折算方法为:UE根据RSS测量得到的RSRP先减去6dB,再将折算结果作为无线资源测量结果包括的RSRP上报给高层。
又如,UE根据RSS测量得到的RSRP先减去6dB,再将计算结果代入为上述公式1中的RSRP,并通过公式1计算RSRQ,将确定的RSRQ作为第二无线资源测量结果上报给高层。
再如,UE基于以上介绍的方法根据RSS测量得到的RS-SINR,对该RS-SINR减去6dB,并将计算结果作为第二无线资源测量结果上报给高层。相应地,高层根据第二无线测量结果进行相应的评估操作,评估操作例如可以是高层决定是否发起小区重选或小区切换。
基于相同的技术构思,本申请实施例还提供一种通信装置,用于实现以上由第一终端装置和/或第二终端装置实现的功能。该装置可包括图6和/或图7所示结构。
如图6所示,该装置可包括收发模块620和处理模块610,其中,收发模块620可包括接收模块和/或发送模块,与实现信息的接收和/或发送,处理模块610可用于生成由收发模块620发送的信息,或用于对收发模块620接收到的信息进行处理。处理模块610也可用于执行以上方法实施例部分涉及的接收和发送以外的动作。所述装置600可以应用于以上UE中。其中,所述UE可以适用于图1所示的通信系统中,并可以实现以上各图中的无线资源测量方法。
示例性的,处理模块610可包括频域资源确定模块和测量结果确定模块。
其中,该频域资源确定模块可用于确定重同步信号RSS导频所在窄带的频域资源,所述RSS导频占用所述窄带的频域资源中的部分频域资源。例如,频域资源确定模块可根据收发模块620从基站接收的配置信息确定RSS导频所在窄带的频域资源。该测量结果确定模块可用于根据所述窄带的频域资源确定所述RSS导频对应的第一无线资源测量结果。
在一种可能的设计中,所述无线资源测量结果包括RSRQ和/或RS-SINR。
在一种可能的设计中,所述第一无线资源测量结果包括RSRQ,所述测量结果可用于根据所述窄带的频域资源确定RSSI,并根据所述RSSI确定所述RSRQ。
在一种可能的设计中,所述测量结果确定模块可用于根据所述窄带的频域资源和所述RSS导频的时域资源确定所述RSSI,并根据所述RSS导频对应的参考信号接收功率RSRP和所述RSSI确定所述RSRQ,所述RSRP根据所述RSS导频的所述时域资源确定。
在一种可能的设计中,所述测量结果确定模块可用于根据所述RSS导频的时域资源确定至少一个子时域资源,并根据所述窄带的频域资源和所述子时域资源确定所述RSSI。
在一种可能的设计中,所述第一无线资源测量结果包括RS-SINR,所述测量结果确定模块可用于根据RSS导频所在窄带的频域资源内的噪声强度和干扰强度,确定RS-SINR。
在一种可能的设计中,所述窄带内包括至少一个第一时间单元,所述第一时间单元不用于发送下行数据,所述第一时间单元用于确定所述噪声强度和所述干扰强度。
在一种可能的设计中,所述测量结果确定模块可用于在物理层根据所述窄带的频域资源确定所述第一无线资源测量结果,所述测量结果确定模块还可用于根据所述RSS导频的功率、小区参考信号CRS导频的功率差和所述第一无线资源测量结果,确定第二无线资源测量结果,并向层三发送所述第二无线资源测量结果。
此外,也可以由处理模块610实现频域资源确定模块和测量结果确定模块的功能。
图7示出了另一种无线资源测量装置的结构示意图,用于执行本申请实施例提供的由UE执行的动作。便于理解和图示方便。如图7所示,该无线资源测量装置可包括处理器、存储器、射频电路、天线和/或输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对无线资源测量装置进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的无线资源测量装置可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到无线资源测量装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图7中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为收发单元。收发单元可以是一个功能单元,该功能单元能够实现发送功能和接收功能;或者,收发单元也可以包括两个功能单元,分别为能够实现接收功能的接收单元和能够实现发送功能的发送单元。可以将具有处理功能的处理器视为处理单元。如图7所示,无线资源测量装置包括收发单元710和处理单元720。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元710中用于实现接收功能的器件视为接收单元,将收发单元710中用于实现发送功能的器件视为发送单元,即收发单元710包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元710可与收发模块620对应,或者说,收发模块620可由收发单元710实现。收发单元710用于执行本申请所示实施例中的UE的发送操作和接收操作,和/或用于支持本文所描述的技术的其它过程。处理单元720可与处理模块610对应,或者说,处理模块610可由处理单元720实现。处理单元720用于执行本申请所示实施例中UE除了收发操作之外的其他操作。
在通过图7所示结构实现本申请实施例提供的UE时,以上示例中由处理模块610执行的动作可由图7所示的处理单元720执行,具体动作不再赘述。同理,以上由收发模块620执行的第二通信装置的动作可由图7所示的收发单元710执行。
此外,本申请实施例提供的无线资源测量装置还可具有图2所示结构。此时可由图2所示的应用子系统实现本申请实施例提供的无线资源测量方法中UE的处理动作。例如,由应用子系统中的一个或多个处理器实现以上处理模块610。此外,可由ANT、RFFE、RFIC和基带子系统中的至少一个组件实现以上收发模块620。
应理解,装置实施例中出现的各个术语以及各种可能的实现方式的细节可以参考上述 方法实施例中的描述或解释,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,计算机可以实现上述方法实施例提供的图4所示的实施例中与UE相关的流程。
本申请实施例还提供一种计算机程序产品,计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,计算机可以实现上述方法实施例提供的图4所示的实施例中与UE相关的流程。
本申请实施例还提供一种芯片或芯片系统(或电路),该芯片可包括处理器,该处理器可用于调用存储器中的程序或指令,执行上述方法实施例提供的图4所示的实施例中与UE相关的流程。该芯片系统可包括该芯片,还可存储器或收发器等其他组件。
需要说明的是,上述实施例中的通信装置可以是终端设备,也可以是应用于终端设备中的芯片或者其他可实现上述终端设备功能的组合器件、部件等。当通信装置是终端设备时收发单元可以是发送器和接收器,或整合的收发器,可以包括天线和射频电路等,处理单元可以是处理器,例如基带芯片等。当通信装置是具有上述终端设备功能的部件时,收发单元可以是射频单元,处理单元可以是处理器。当通信装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理单元可以是芯片系统的处理器,例如:中央处理单元(central processing unit,CPU)。
可以理解的是,本申请的实施例中的处理器可以是CPU,还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于第一终端装置和/或第二终端装置中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、 硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
本申请实施例中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一(项)个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a、b、c可以是单个,也可以是多个。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
本发明实施例是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (27)

  1. 一种无线资源测量方法,其特征在于,包括:
    确定重同步信号RSS导频占用的第一频域资源,所述第一频域资源为所述RSS导频所在窄带的频域资源中的部分频域资源;
    根据所述第一频域资源确定所述RSS导频对应的第一无线资源测量结果。
  2. 如权利要求1所述的方法,其特征在于,在确定所述RSS导频占用的第一频域资源之前,所述方法还包括:
    确定所述窄带的频域资源。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一无线资源测量结果包括参考信号接收质量RSRQ和/或参考信号接收功率RSRP。
  4. 如权利要求1-3中任一所述的方法,其特征在于,所述方法还包括:
    根据所述窄带的频域资源确定接收信号强度指示RSSI;
    根据所述RSSI确定所述RSRQ。
  5. 如权利要求4所述的方法,其特征在于,所述根据所述窄带的频域资源确定RSSI,包括:
    根据所述窄带的频域资源和所述RSS导频的时域资源确定所述RSSI;
    根据所述RSS导频对应的RSRP和所述RSSI确定所述RSRQ,所述RSRP根据所述RSS导频的所述时域资源确定。
  6. 如权利要求5所述的方法,其特征在于,所述根据所述窄带的频域资源和所述RSS导频的时域资源确定所述RSSI,包括:
    根据所述RSS导频的时域资源确定至少一个子时域资源;
    根据所述窄带的频域资源和所述子时域资源确定所述RSSI。
  7. 如权利要求1-6中任一所述的方法,其特征在于,所述方法还包括:
    根据RSS导频所在窄带的频域资源内的噪声强度和干扰强度,确定参考信号信干噪比RS-SINR。
  8. 如权利要求7所述的方法,其特征在于,所述窄带内包括至少一个第一时间单元,所述第一时间单元不用于发送下行数据,所述第一时间单元用于确定所述噪声强度和所述干扰强度。
  9. 如权利要求1-8中任一所述的方法,其特征在于,所述第一无线资源测量结果是在物理层确定的。
  10. 如权利要求1-9中任一所述的方法,其特征在于,所述方法还包括:
    根据所述RSS导频与小区参考信号CRS导频的功率差对所述第一无线资源测量结果进行补偿,得到第二无线资源测量结果。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    向高层发送所述第二无线资源测量结果。
  12. 一种无线资源测量装置,其特征在于,包括:
    频域资源确定模块,用于确定RSS导频占用的第一频域资源,所述第一频域资源为所述RSS导频所在窄带的频域资源中的部分频域资源;
    测量结果确定模块,用于根据所述第一频域资源确定所述RSS导频对应的第一无线资 源测量结果。
  13. 如权利要求12所述的装置,其特征在于,在确定所述RSS导频占用的第一频域资源之前,所述方法还包括:
    确定所述窄带的频域资源。
  14. 如权利要求12或13所述的装置,其特征在于,所述第一无线资源测量结果包括RSRQ和/或RSRP。
  15. 如权利要求12-14中任一所述的装置,其特征在于,所述测量结果确定模块还用于:
    根据所述窄带的频域资源确定RSSI;
    根据所述RSSI确定所述RSRQ。
  16. 如权利要求15所述的装置,其特征在于,所述测量结果确定模块具体用于:
    根据所述窄带的频域资源和所述RSS导频的时域资源确定所述RSSI;
    根据所述RSS导频对应的RSRP和所述RSSI确定所述RSRQ,所述RSRP根据所述RSS导频的所述时域资源确定。
  17. 如权利要求16所述的装置,其特征在于,所述测量结果确定模块具体用于:
    根据所述RSS导频的时域资源确定至少一个子时域资源;
    根据所述窄带的频域资源和所述子时域资源确定所述RSSI。
  18. 如权利要求12-17中任一所述的装置,其特征在于,所述测量结果确定模块还用于:
    根据RSS导频所在窄带的频域资源内的噪声强度和干扰强度,确定RS-SINR。
  19. 如权利要求18所述的装置,其特征在于,所述窄带内包括至少一个第一时间单元,所述第一时间单元不用于发送下行数据,所述第一时间单元用于确定所述噪声强度和所述干扰强度。
  20. 如权利要求12-19中任一所述的装置,其特征在于,所述第一无线资源测量结果是在物理层确定的。
  21. 如权利要求12-20中任一所述的装置,其特征在于,所述测量结果确定模块还用于:
    根据所述RSS导频与小区参考信号CRS导频的功率差对所述第一无线资源测量结果进行补偿,得到第二无线资源测量结果。
  22. 如权利要求21所述的装置,其特征在于,所述测量结果确定模块还用于:
    向高层发送所述第二无线资源测量结果。
  23. 一种无线资源测量装置,其特征在于,包括处理器,用于执行存储器中存储的计算机程序或指令,当执行所述计算机程序或指令时,使得所述装置实现权利要求1-11中任意一项所述的方法。
  24. 如权利要求23所述的装置,其特征在于,还包括所述存储器和/或接口电路。
  25. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机程序,当所述计算机程序被计算机执行时,使得所述计算机执行如权利要求1-11中任一所述的方法。
  26. 一种计算机程序产品,其特征在于,所述计算机程序产品中存储有计算机可读指令,当所述计算机可读指令运行时,如权利要求1-11中任一项所述的方法被执行。
  27. 一种芯片,其特征在于,所述芯片包括至少一个处理器,所述处理器被用以执行如权利要求1-11中任一项所述的方法。
PCT/CN2022/119965 2021-09-30 2022-09-20 一种无线资源测量方法及装置 WO2023051325A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111161581.3 2021-09-30
CN202111161581.3A CN114040421A (zh) 2021-09-30 2021-09-30 一种无线资源测量方法及装置

Publications (1)

Publication Number Publication Date
WO2023051325A1 true WO2023051325A1 (zh) 2023-04-06

Family

ID=80134601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119965 WO2023051325A1 (zh) 2021-09-30 2022-09-20 一种无线资源测量方法及装置

Country Status (2)

Country Link
CN (1) CN114040421A (zh)
WO (1) WO2023051325A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040421A (zh) * 2021-09-30 2022-02-11 华为技术有限公司 一种无线资源测量方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021057232A1 (zh) * 2019-09-29 2021-04-01 大唐移动通信设备有限公司 信号传输方法及装置
CN112821929A (zh) * 2019-11-18 2021-05-18 华为技术有限公司 Csi测量方法及装置
CN114040421A (zh) * 2021-09-30 2022-02-11 华为技术有限公司 一种无线资源测量方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019003991T5 (de) * 2018-08-09 2021-04-22 Lg Electronics Inc. Verfahren zum verbessern der messleistungsfähigkeit eines endgeräts in einem drahtloskommunikationssystem und einrichtung dafür
KR20210146993A (ko) * 2019-03-29 2021-12-06 애플 인크. 재동기화 신호(rss) 기반 기준 신호 수신 전력(rsrp) 계산

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021057232A1 (zh) * 2019-09-29 2021-04-01 大唐移动通信设备有限公司 信号传输方法及装置
CN112821929A (zh) * 2019-11-18 2021-05-18 华为技术有限公司 Csi测量方法及装置
CN114040421A (zh) * 2021-09-30 2022-02-11 华为技术有限公司 一种无线资源测量方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Use of RSS for measurement improvements", 3GPP TSG-RAN WG2 MEETING #108, R2-1915537, 8 November 2019 (2019-11-08), XP051817271 *
NOKIA, NOKIA SHANGHAI BELL, ERICSSON: "Correction to RSS based measurement requirements", 3GPP TSG-RAN4 MEETING #97-E, R4-2017070, 16 November 2020 (2020-11-16), XP051954954 *
QUALCOMM INCORPORATED: "Time synchronization assumption for RSS-based neighbor cell measurements", 3GPP TSG-RAN4 MEETING #99-E, R4-2109869, 2 June 2021 (2021-06-02), XP052019162 *

Also Published As

Publication number Publication date
CN114040421A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2020103793A1 (zh) 波束上报的方法和通信装置
JP6813696B2 (ja) ワイヤレス通信における基準信号リソース捜索技法
WO2020164610A1 (en) Electronic devices and methods for secondary cell activation
KR102090763B1 (ko) 상호변조 이슈들의 검출, 및 상호변조 이슈들을 교정하기 위한 송신 스킴 구성
US10123375B2 (en) Apparatus, system and method of determining one or more link adaptation parameters
US11979896B2 (en) Electronic device and method for wireless communication, and computer-readable storage medium for guard band based on interference caused by overlapping of different radio access technologies
WO2021027376A1 (zh) 一种共生网络中的资源配置方法及装置
WO2021052473A1 (zh) 通信方法和通信装置
EP4027681B1 (en) Wireless broadcast beam coverage enhancement method and apparatus
US11595994B2 (en) Apparatus and method for coordinated spatial reuse in wireless communication
WO2020164517A1 (zh) 用于测量信号的方法和通信装置
WO2021218820A1 (zh) 测量方法、装置及系统
WO2023051325A1 (zh) 一种无线资源测量方法及装置
CN114430924A (zh) 基于探测参考信号的下行链路传输配置指示
WO2021087889A1 (zh) 一种配置cli测量的方法及通信装置
JP2016541170A (ja) 移動性管理方法、装置及びシステム
WO2022206660A1 (zh) 一种干扰处理的方法,相关装置以及设备
WO2017049929A1 (zh) 一种非授权载波的测量方法及装置
CN115250484A (zh) 一种干扰消除方法及装置
US20220279336A1 (en) Method for determining hidden node and apparatus
WO2022162911A1 (ja) 端末および無線通信方法
US20240089869A1 (en) Sidelink reference signal request field for csi and positioning measurement derivation and procedures
WO2023040979A1 (zh) 波束信息的确定方法、终端及网络侧设备
WO2024021981A1 (zh) 一种通信方法及装置
WO2024093638A1 (zh) 一种信息处理的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874712

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022874712

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022874712

Country of ref document: EP

Effective date: 20240411