WO2023050846A1 - 关节、机械臂、机器人及其谐波减速器装置 - Google Patents

关节、机械臂、机器人及其谐波减速器装置 Download PDF

Info

Publication number
WO2023050846A1
WO2023050846A1 PCT/CN2022/095687 CN2022095687W WO2023050846A1 WO 2023050846 A1 WO2023050846 A1 WO 2023050846A1 CN 2022095687 W CN2022095687 W CN 2022095687W WO 2023050846 A1 WO2023050846 A1 WO 2023050846A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
harmonic reducer
reducer device
bearing
stopper
Prior art date
Application number
PCT/CN2022/095687
Other languages
English (en)
French (fr)
Inventor
王重彬
胡万权
叶伟智
刘主福
刘培超
Original Assignee
深圳市越疆科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市越疆科技有限公司 filed Critical 深圳市越疆科技有限公司
Publication of WO2023050846A1 publication Critical patent/WO2023050846A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • B25J9/1025Harmonic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/029Gearboxes; Mounting gearing therein characterised by means for sealing the gearboxes, e.g. to improve airtightness

Definitions

  • the present application relates to the technical field of robots, specifically a joint, a robot arm, a robot and a harmonic reducer device thereof.
  • a robot usually includes a robotic arm and a joint that rotates the robotic arm, and a harmonic reducer is used at the joint to adjust the speed.
  • the harmonic reducer is composed of three main components, which are fixed rigid spline, flexible spline and wave generator that causes radial deformation of the flexible spline.
  • the inner wheel has an inner gear
  • the flex spline is a thin-walled cylindrical outer gear that is easily deformed.
  • the power is transmitted through the meshing of the inner gear and the outer gear. It is power transmission without deceleration.
  • the generator installed in the flexspline makes the flexspline deform radially and becomes an ellipse.
  • the teeth mesh along the entire working height , while on the short axis, a radial gap is formed between the tooth tops.
  • the shape of the flexspline is always close to an ellipse, realizing deceleration transmission.
  • Harmonic reducers have the advantages of high load capacity, large transmission ratio, small size, stable transmission and high transmission precision, and are widely used in electronics, aerospace, robotics and other industries.
  • the usual harmonic reducer adopts a top-hat flexspline, please refer to Figure 1.
  • the flexspline 10 includes a cylinder 11 and an annular fixed table 12 that is perpendicular to the axis of the cylinder 11 and folded outward.
  • the core of the cylinder 11 There is a central cavity (not marked) extending along the axis and completely penetrating through it.
  • the outer peripheral surface of the cylindrical body 11 is provided with an annular toothed belt 13 extending along the axis and distributed in a circular array of single teeth.
  • the size of the harmonic reducer 100 cannot be further increased in the space occupied by the ring-shaped fixing table 12 due to the existence of the outwardly folded ring-shaped fixing table 12. development in the direction of miniaturization.
  • the flexible spline 10a includes a ring-shaped rotating body 11a and a
  • the axis of the top hat flexspline 10 and the ring-shaped fixed platform 12a that is turned inwards are replaced by the cup-shaped flexspline 10a, which reduces the space occupied by the fixed platform 12 of the top hat-shaped flexible spline 10, making the harmony
  • the wave reducer 100a has a smaller size, which also makes the size of the joints of the robot using such a harmonic reducer 100a smaller, and the whole robot is very compact.
  • a harmonic reducer device is provided to solve the technical problem that the size of the existing harmonic reducer device does not meet people's demand for more miniaturization.
  • the purpose of the embodiments of the present application is to provide a harmonic reducer device to solve the technical problem that the size of the existing harmonic reducer device does not meet people's demand for more miniaturization.
  • a harmonic reducer device which includes a cup-shaped flex spline, a rigid spline meshed with the flex spline, and a wave generator
  • the wave generator includes a power input
  • the sleeve and the wave generator main body which is arranged on the sleeve and deforms the flexible spline radially under the rotation of the sleeve to change the meshing position of the flexible spline and the rigid spline
  • the harmonic reducer device also includes an oppositely arranged end cover and
  • the output bearing and the harmonic reducer device also include a first stop structure and a second stop structure that stop the sleeve.
  • the first stop structure adopts a non-bearing structure and is sleeved on the sleeve.
  • a gap is formed between the sleeve and the end cap, and the first stop structure seals the gap.
  • the axial dimension of the first stop structure is smaller than the difference between the inner and outer diameters of the first stop structure.
  • the first stop structure and the second stop structure stop the sleeve in both directions in the axial direction.
  • a first step is formed on the outer ring surface of the sleeve, a shroud is formed on an outer surface of the end cap, and the first stop structure is disposed between the first step and the shroud.
  • the first stopper structure includes a stopper that is sleeved on the sleeve and rotates with the rotation of the sleeve, and a seal that rotates relative to the stopper, and the seal is fixedly connected to the end cover. The stopper is pressed against the first step, and the sealing piece is pressed against the coaming plate.
  • a sealing structure is formed between the stopper and the sealing member, the sealing structure includes an annular groove and a protruding ring inserted into the annular groove, and one of the stopper and the sealing member is provided with an annular groove , the other of the stopper and the seal is protrudingly provided with a protruding ring.
  • At least one of the stopper and the seal is in the form of a sheet.
  • the first stopper structure includes a stopper sleeved on the sleeve and rotates with the rotation of the sleeve and a seal connected to the stopper; the inner surface of one end of the stopper is against the On the first step, the outer surface of one end of the seal is against the shroud.
  • the seal is always in contact with the shroud when the seal rotates, and a sealing structure is formed at the contact between the seal and the shroud.
  • the stopper includes a fixing part with a U-shaped cross section, an extension part extending from a side of the fixing part close to the main body of the wave generator away from the direction of the sleeve, and a side edge of the extension part away from the sleeve.
  • the inclined portion deviates from the direction of the sleeve and extends obliquely toward the shroud.
  • the seal includes a stopper fixed in the fixed portion and a contact portion that extends obliquely toward the shroud from the side of the stopper away from the sleeve and close to the shroud, The contact portion is in contact with the shroud.
  • a shroud is formed on the outer surface of the end cap
  • the first stop structure includes a connecting ring connected to the side of the shroud close to the sleeve, and a connecting ring is formed between the connecting ring and the outer ring surface of the sleeve. Sealed structure.
  • connection ring is in surface contact with the outer ring surface of the sleeve
  • sealing structure is at least one ring groove opened on the contact surface between the connection ring and the sleeve.
  • the end cover includes a main body, the rigid wheel is fixed between the inner end surface of the main body and the outer ring of the output bearing, and the surrounding plate is connected to the outer end edge of the main body and is integrated with the main body.
  • the second stop structure is a stop bearing, and the power output end of the wave generator and the projection of the stop bearing on the axis of the sleeve at least partially overlap.
  • the projection overlap ratio of the power output end of the wave generator and the stop bearing on the axis of the sleeve is in the range of 0.1-1.
  • the projected overlapping ratio of the power output end of the wave generator and the stop bearing on the axis of the sleeve is in the range of 0.5-0.9.
  • the second stop structure is a stop bearing
  • the harmonic reducer device further includes an output shaft fixedly connected to the inner ring of the output bearing, and the stop bearing is located between the output shaft and the sleeve.
  • the outer ring surface of the output shaft is protruded with a mounting portion, and the mounting portion is fixed to the inner ring of the output bearing together with the cup bottom of the flexspline.
  • the inner ring surface of the sleeve is provided with a second step; one side of the stopper bearing abuts against the second step, and the other side indirectly abuts against the cup bottom of the flexspline, and the outer part of the stopper bearing The circle rests on the second step.
  • the harmonic reducer device further includes an output shaft fixedly connected to the inner ring of the output bearing and another end cover located outside the output bearing, and the other end cover is connected to the inner ring of the output bearing.
  • the other end cover and the output shaft are two independent components, and a wire harness structure is arranged between the other end cover and the output shaft.
  • the output bearing is a bearing with its own oil seal.
  • the wave generator body includes a rotating arm formed on the sleeve and rollers mounted on opposite ends of the rotating arm; or, the wave generator body includes a cam formed on the sleeve and a cam connected to the cam.
  • a flexible bearing alternatively, the main body of the wave generator includes an elliptical disk formed on the sleeve and a flexible bearing connected to the elliptical disk.
  • the purpose of the embodiments of the present application is to provide a joint, which includes the harmonic reducer device in the above embodiments and a drive motor for inputting power to the sleeve.
  • the joint further includes another bearing sleeved on the sleeve and a mounting piece for limiting the other bearing.
  • An accommodation space is formed between the stator and the rotor of the motor, and the other bearing is located in the accommodation space. inside the space.
  • the mounting part includes a plate body and a limit ring connected to one side of the plate body, the limit ring and the sleeve radially limit the other bearing, and the outer ring surface of the sleeve forms a third The step, the third step and the plate body axially limit the other bearing.
  • the purpose of the embodiment of the present application is to provide a mechanical arm, which includes the joint in the above embodiment.
  • the purpose of the embodiments of the present application is to provide a robot, which includes the mechanical arm in the above embodiments.
  • the harmonic reducer device in this embodiment breaks through the convention, the first stop structure does not use the bearing structure, but uses the first stop structure with a smaller axial dimension than the conventional bearing that provides the axial limit function instead of the conventional Bearings have made innovative breakthroughs in the reduction of axial dimensions. Due to the existing bearings, balls need to be added between the inner ring and the outer ring. In order to allow the balls to run safely and reliably between the inner ring and the outer ring, the axial dimensions of the inner ring and the outer ring cannot be made small, and In this application, the use of the bearing is directly broken through the conventional abandonment, and the first stop structure with the axial dimension smaller than the conventional bearing is replaced. When the radial dimension of the rigid wheel remains unchanged, the The axial dimension meets the demand for more miniaturization of the harmonic reducer device and caters to the market demand.
  • Figure 1 is a schematic cross-sectional view of a harmonic reducer using a top-hat flexspline.
  • Fig. 2 is a schematic cross-sectional view of a harmonic reducer using a cup-shaped flexspline.
  • FIG. 3 is a schematic diagram of a three-dimensional structure of a robot provided in an embodiment of the present application.
  • FIG. 4 is a schematic plan view of the robot shown in FIG. 3 .
  • FIG. 5 is an assembly diagram of one of the joints of the robot shown in FIG. 4 .
  • Fig. 6 is a schematic cross-sectional view of the joint in Fig. 5 along line A-A, wherein the harmonic reducer device of the first embodiment is applied to the joint.
  • Fig. 7 shows a comparison diagram of the axial dimension between the harmonic speed reducer device provided by the first embodiment of the present application and the harmonic speed reducer shown in Fig. 2 .
  • FIG. 8 is a partially enlarged view of the joint in FIG. 5 .
  • FIG. 9 is an enlarged view of circle B in FIG. 8 .
  • Fig. 10 is a schematic cross-sectional view of the joint in Fig. 5 along the line A-A, wherein the harmonic reducer device of the second embodiment is applied to the joint.
  • FIG. 11 is an enlarged view at circle C in the joint of FIG. 10 .
  • Fig. 12 is a schematic cross-sectional view of the joint in Fig. 5 along the line A-A, wherein the harmonic reducer device of the third embodiment is applied to the joint.
  • FIG. 13 is an enlarged view at circle D in the joint of FIG. 12 .
  • Fig. 14 shows a comparison diagram of the axial dimension between the harmonic speed reducer device provided by the third embodiment of the present application and the harmonic speed reducer in Fig. 2 .
  • Fig. 15 is a schematic cross-sectional view of the joint in Fig. 5 along the line A-A, wherein the harmonic reducer device of the fourth embodiment is applied to the joint.
  • Fig. 16 is a schematic cross-sectional view of the joint in Fig. 5 along the line A-A, wherein the harmonic reducer device of the fifth embodiment is applied to the joint.
  • Fig. 17 is a schematic cross-sectional view of the joint in Fig. 5 along the line A-A, wherein the harmonic reducer device of the sixth embodiment is applied to the joint.
  • Fig. 18 is a schematic cross-sectional view of the joint in Fig. 5 along the line A-A, wherein the harmonic reducer device of the seventh embodiment is applied to the joint.
  • Fig. 19 is a schematic cross-sectional view of the joint in Fig. 5 along the line A-A, wherein the harmonic reducer device of the eighth embodiment is applied to the joint.
  • Fig. 20 is a schematic cross-sectional view of the joint in Fig. 5 along the line A-A, wherein the harmonic reducer device of the ninth embodiment is applied to the joint.
  • Fig. 21 is a schematic cross-sectional view of the joint in Fig. 5 along the line A-A, wherein the harmonic reducer device of the tenth embodiment is applied to the joint.
  • Fig. 22 is a schematic cross-sectional view of the joint in Fig. 5 along the line A-A, wherein the harmonic reducer device of the eleventh embodiment is applied to the joint.
  • Fig. 23 is a schematic cross-sectional view of the joint in Fig. 5 along the line A-A, wherein the harmonic reducer device of the twelfth embodiment is applied to the joint.
  • harmonic reducer device 21d, sleeve; 30d, first stop structure; 90d, end cover; 91d, enclosure; 92d, connecting ring; 33d, sealing structure; 34d, ring groove; 36d, groove wall ; 37d, the bottom surface of the groove; 38d, the corner; 9d, the motor; 921d, the stator; 911d, the rotor; 93d, the accommodation space;
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • the application of the cup-shaped flexspline 10a in the harmonic reducer achieves the purpose of reducing the size of the harmonic reducer, and at the same time, the sleeve of the wave generator 20a
  • the inner end and the outer end of the cylinder 21a corresponding to the roller 22a are respectively provided with a first positioning bearing 30a and a second positioning bearing 40a to realize the positioning of the sleeve 21a in both directions in the axial direction.
  • the structural scheme of the wheel 10a, the sleeve 21a, the first locating bearing 30a and the second locating bearing 40a is the best choice at present.
  • the research and development personnel have already developed a fixed thinking , will not change the structural scheme of the cup-shaped flexspline 10a, the sleeve 21a, the first locating bearing 30a and the second locating bearing 40a shown in Fig. 2, but strive towards other directions, for example:
  • the first end cover 50a in addition to meeting the fixed connection strength of the connecting flange 51a, the rigid wheel 60a and the outer ring 71a of the roller bearing 70a, the first end cover 50a must also reserve a space for the first positioning bearing 30a. Space, it is difficult to make a breakthrough in this aspect; for the second and third points, the harmonic reducer 100a realizes the adjustment of the speed through the change of the meshing position of the rigid wheel 60a and the flexible wheel 10a, at a certain speed ratio After being determined, the parameters of the meshing teeth of the flexspline 10a and the rigid spline 60a are fixed.
  • the roller bearing 70a is a direct part that transmits power to the output shaft 80a, and its structural strength also needs to be satisfied. There is no substantive breakthrough in making a fuss about the size of the bearing 70a.
  • the embodiment of the present application provides a robot 200, which includes a base 203, and a mechanical arm 201 connected to the base 203, the mechanical arm 201 includes at least two arms 202 and connected to the arm The joint 204 between 202, the movement of the mechanical arm 201 is realized through the joint 204.
  • the joint 204 includes a motor 9 and a harmonic reducer device 100 b connected to the motor 9 .
  • Fig. 5 and Fig. 6 show the harmonic reducer device 100b provided by the first embodiment of the present application.
  • the harmonic reducer device 100b includes a cup-shaped flexspline 10b, a rigid spline 60b meshing with the flexspline 10b, and a wave generator 20b.
  • the wave generator 20b includes a sleeve 21b for power input and a wave generator which is arranged on the sleeve 21b and makes the flexspline 10b radially deform under the rotation of the sleeve 21b to change the meshing position of the flexspline 10b and the rigid spline 60b Body 22b.
  • the harmonic reducer device 100b also includes an end cover 90b and an output bearing 70b that are oppositely arranged.
  • the harmonic reducer device 100b further includes a first stop structure 30b and a second stop structure 40b that stop the sleeve 21b.
  • the first stop structure 30b adopts a non-bearing structure and is sheathed on the sleeve 21b.
  • the axial dimension of the first stop structure 30b is smaller than the axial dimension of the conventional bearing that provides the axial limiting function, for example, the axial dimension of the first stop structure 30b is smaller than the shaft of the first positioning bearing 30a shown in FIG. 2 to size.
  • the harmonic reducer device 100b in this embodiment breaks through the convention, the first stop structure 30b does not use a bearing structure, but uses a first stop structure 30b with a smaller axial dimension than conventional bearings that provide an axial limit function Instead of conventional bearings, an innovative breakthrough has been made in reducing the axial size. Due to the existing bearings, balls need to be added between the inner ring and the outer ring. In order to allow the balls to run safely and reliably between the inner ring and the outer ring, the axial dimensions of the inner ring and the outer ring cannot be made small, and In this application, the use of bearings is directly broken through the routine abandonment, and replaced by the first stop structure 30b whose axial dimension is smaller than that of conventional bearings.
  • the conventional bearing mentioned here may be the first positioning bearing 30a shown in FIG. 2 .
  • FIG. 7 shows a comparison diagram of the harmonic reducer device 100b provided by the embodiment of the present application and the harmonic reducer 100a in FIG.
  • the line W can be used as a reference in the figure, and the element that acts as a limit function on the left side of the first stop structure 30b can be used as a starting point ( For Fig. 2, take the fixed plate 52a as the starting point, and for Fig.
  • the harmonic reducer device 100b provided by the embodiment of the present application has a significantly smaller axial dimension than the harmonic reducer 100a shown in FIG. 2 .
  • it is specifically reduced by 5mm-13mm.
  • the reduction is 8mm-10mm.
  • a gap (not shown) is formed between the sleeve 21b and the end cap 90b.
  • the first stop structure 30b seals the gap.
  • the first stop structure 30b and the second stop structure 40b stop the sleeve 21b in both directions in the axial direction.
  • the outer annular surface of the sleeve 21b is formed with a first step 23b.
  • a surrounding plate 91b is formed on the outer surface of the end cover 90b.
  • the first stop structure 30b is disposed between the first step 23b and the surrounding plate 91b.
  • the first stop structure 30b restricts its bidirectional movement in the axial direction of the sleeve 21b through the first step 23b and the surrounding plate 91b.
  • the first step 23b is formed by reducing the diameter of the sleeve 21b at a position corresponding to the first stop structure 30b.
  • the formation of the first step 23b may be formed by increasing the diameter of the sleeve 21b on the right side of the sleeve 21b at the position corresponding to the first stop structure 30b, the "right side” mentioned here refers to the side of the first stopper structure 30b that is close to the main body 22b of the wave generator.
  • the first stopper structure 30b includes a stopper 31b that is sheathed on the sleeve 21b and rotates with the rotation of the sleeve 21b, and a seal 32b that rotates relative to the stopper 31b.
  • 32b is fixedly connected to the end cover 90b, the stopper 31b abuts against the first step 23b, and the sealing member 32b abuts against the surrounding plate 91b.
  • the rotational pair between the stopper 31b and the seal 32b forms a portion overlapping between the outer side of the stopper 31b and the inner side of the seal 32b.
  • the outer side of the stopper 31b refers to the side away from the wave generator main body 22b
  • the inner side of the sealing member 32b refers to the side closer to the wave generator main body 22b.
  • Projections of the sealing member 32b and the stopper 31b in a direction parallel to the axis of the sleeve 21b at least partially overlap.
  • the overlapping part forms the rotation pair of the first stopper structure 30b.
  • the positions of the stopper 31b and the sleeve 21b are relatively fixed, so that the stopper 31b rotates with the rotation of the sleeve 21b.
  • the sealing part 32b is fixedly connected with the end cover 90b, so that the stopper 31b can be used as a rotor, and the sealing part 32b can be used as a stator.
  • the first stopper structure 30b is composed of a stopper 31b and a sealing member 32b, and the first stopper structure 30b is only composed of two parts, which is one less than conventional bearings in terms of the number of parts.
  • a conventional bearing includes an inner ring, an outer ring, and a ball disposed between the inner ring and the outer ring, and has three parts, while the first stop structure 30b in the present application has only two parts, that is, the stopper 31b and Seal 32b.
  • the present application has made a great breakthrough in terms of the material cost reduction brought about by the reduction of parts.
  • the axial dimension of the first stop structure 30b is smaller than the difference between the inner diameter and the outer diameter of the first stop structure 30b.
  • the harmonic reducer device 100b in this embodiment breaks through the convention.
  • the first stop structure 30b does not use a bearing structure, but uses the first stop structure 30b whose axial dimension is smaller than the difference between the inner diameter and the outer diameter to replace the conventional bearing.
  • An innovative breakthrough has been made in the reduction of the axial dimension. Due to the existing bearings, balls need to be added between the inner ring and the outer ring. In order to allow the balls to run safely and reliably between the inner ring and the outer ring, the axial dimensions of the inner ring and the outer ring cannot be made small.
  • the axial dimension of the inner ring or outer ring is equal to the difference between the inner diameter and outer diameter of the bearing or the axial dimension of the inner ring or outer ring is greater than the difference between the inner diameter and outer diameter of the bearing.
  • the difference between the inner diameter and outer diameter of the bearing mentioned here is The difference refers to the difference in diameter or radius between the inner and outer rings.
  • the use of bearings is directly broken through the conventional abandonment, and a structure whose axial dimension is smaller than the difference between the inner diameter and the outer diameter is replaced.
  • the axial dimension of the device 100b meets the demand for a more miniaturized harmonic reducer device 100b and meets the market demand.
  • a sealing structure 33b is formed between the stopper 31b and the sealing member 32b to achieve a sealing effect and prevent the lubricating oil in the inner cavity of the harmonic reducer device 100b from leaking.
  • the sealing structure 33b includes an annular groove 34b and a protruding ring 35b inserted into the annular groove 34b, one of the stopper 31b and the sealing member 32b defines the annular groove 34b, and the stopper 31b and The other one of the two seals 32b protrudes from a protruding ring 35b.
  • the cooperation between the ring groove 34b and the protruding ring 35b not only does not hinder the relative rotation between the stopper 31b and the seal 32b, but also provides a sealing function for the rotation pair between the stopper 31b and the seal 32b.
  • the specific sealing effect is realized by the labyrinth matching surface of the annular groove 34b and the protruding ring 35b.
  • FIG. 8 and FIG. 9 there are at least three mating surfaces between the annular groove 34b and the protruding ring 35b, including two groove wall surfaces 36b and a groove bottom surface 37b connecting the two groove wall surfaces 36b.
  • a corner 38b is formed between the groove bottom surface 37b and each groove wall surface 36b.
  • the axial dimension between the stopper 31b and the sealing member 32b is further reduced through the cooperative arrangement of the ring groove 34b and the protruding ring 35b.
  • the stopper 31b has a certain supporting effect on the sealing member 32b.
  • the stopper 31b also has a certain supporting effect on the end cap 90b.
  • the annular groove 34b and the protruding ring 35b are provided in pairs, and may be provided as one pair, or may be provided as two pairs, or may be provided as other numbers such as three or more pairs.
  • the logarithm of the specific setting needs to be based on the radial dimension difference between the end cap 90b and the sleeve 21b and the thickness of the protruding ring 35b.
  • the radial dimension difference between the end cap 90b and the sleeve 21b here refers to the The radial distance between the cover 90b and the sleeve 21b is specifically the radial distance between the main body 92b of the end cover 90b and the sleeve 21b.
  • two pairs of ring grooves 34b and protruding rings 35b are provided.
  • At least one of the stopper 31b and the seal 32b has a sheet shape.
  • the flake shape mentioned here means that the axial dimension is smaller than the difference between the inner diameter and the outer diameter.
  • both the stopper 31b and the seal 32b are sheet-shaped, the axial dimension of the stopper 31b is smaller than the difference between the inner diameter and the outer diameter of the stopper 31b, and the axial dimension of the seal 32b is smaller than that of the seal The difference between the inner and outer diameters of 32b.
  • one of the stopper 31b and the sealing member 32b may be selected to be arranged in a sheet structure.
  • the end cover 90b includes a main body 92b, and the rigid wheel 60b is fixed between the inner end surface of the main body 92b and the outer ring of the output bearing 70b.
  • the inner end surface of the main body 92b mentioned here refers to the end surface of the main body 92b close to the output bearing 70b.
  • An annular cavity is formed between the inner end surface of the main body 92b and the outer ring of the output bearing 70b, and the rigid wheel 60b is disposed in the annular cavity and sandwiched between the inner end surface of the main body 92b and the outer ring of the output bearing 70b.
  • the main body 92b, the rigid wheel 60b and the outer ring of the output bearing 70b are fixed together by the first fixing member 61b.
  • the surrounding plate 91b is connected to the outer edge of the main body 92b and is integrated with the main body 92b. That is to say, the shroud 91b does not exist as a separate part, but is integrated with the main body 92b of the end cover 90b.
  • Such arrangement can reduce the number of parts and reduce the shroud 91b as a separate part.
  • the additional processing cost also reduces the processing and assembly process of the shroud 91b as a separate component, and saves the cost of the harmonic reducer device 100b to a certain extent.
  • the parts that play the role of the enclosure 91b are the fixed plate 52a outside the first end cover 50a, and this fixed plate 52a exists as a separate component in Fig. 2, virtually adding zero
  • the number of parts also needs to increase the inventory space, increase the types of inventory control of parts, and also increase the processing and assembly processes. Of course, it also increases the cost.
  • the flexspline 10b is cup-shaped, and includes a ring portion 11b and a cup bottom 12b connected to the ring portion 11b.
  • the cup bottom 12b is formed by extending inwardly from one end edge of the ring portion 11b.
  • the cup bottom 12b defines a through hole (not shown) for the output shaft 80b to pass through.
  • the outer ring surface of the ring portion 11b is provided with an external gear (not marked) for meshing with an internal gear (not marked) of the rigid wheel 60b.
  • the ring part 11b and the cup bottom 12b form an accommodating space 14b, and the wave generator main body 22b and the second stop structure 40b are located in the accommodating space 14b.
  • the rigid spline 60b is ring-shaped, and an internal gear is formed on its inner side and meshed with the flexible spline 10b.
  • the flexible spline 10b is disposed in the inner cavity of the rigid spline 60b.
  • the second stop structure 40b stops at the stop bearing 40b, and the power output end of the wave generator 20b at least partially overlaps with the projection of the stop bearing 40b on the axis of the sleeve 21b. In this way, the overall axial size of the stopper bearing 40b and the power output end of the generator is reduced.
  • the power output end of the wave generator 20a in the harmonic reducer 100a shown in FIG. The projections of the second locating bearing 40 a on the axis of the sleeve 21 a do not overlap at all.
  • the power output end of the wave generator 20b overlaps with the projection of the stop bearing 40b on the axis of the sleeve 21b, and the size in the axis direction of the sleeve 21b is smaller.
  • the consistent design scheme in the industry in the harmonic reducer is as shown in Fig.
  • the two stop bearings 30a, 40a are arranged on the opposite sides of the power output end of the wave generator 20a, and there is no overlap, while the present application Breaking the routine, creatively improve the structural positional relationship between the stop bearing 40b and the power output end of the wave generator 20b, so that the projection of the power output end of the wave generator 20b and the stop bearing 40b on the axis of the sleeve 21b
  • the at least partial overlap further reduces the axial size of the harmonic reducer device 100b, making a further contribution to the miniaturization of the harmonic reducer device 100b.
  • the projection overlap ratio of the power output end of the wave generator 20b and the stop bearing 40b on the axis of the sleeve 21b ranges from 0.1-1.
  • the projection overlap ratio may be 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, or 0.9.
  • the projection overlap ratio of the power output end of the wave generator and the stop bearing on the axis of the sleeve is in the range of 0.5-0.9.
  • the R&D personnel continue to research and test, and make prototypes, test, and test a large number of samples It was unexpectedly found that "the projected overlap ratio of the power output end of the wave generator and the stop bearing on the axis of the sleeve is 0.5-0.9" can not only make a larger axial dimension Contribution, and product reliability can be well guaranteed.
  • the inner ring surface of the sleeve 21b is provided with a second step 24b; one side of the stop bearing 40b abuts against the second step 24b, and the other side indirectly abuts against the cup bottom 12b of the flexspline 10b.
  • the second step 24b is formed by increasing the inner diameter of the sleeve 21b at a position corresponding to the second stop structure 40b.
  • the harmonic reducer device 100b further includes an output shaft 80b fixedly connected to the inner ring 72b of the output bearing 70b, and the stop bearing 40b is located between the output shaft 80b and the sleeve 21b.
  • the inertial thinking is to arrange the stop bearing 40b on the periphery of the sleeve 21b, and never think of placing the stop bearing 40b between the sleeve 21b and the output shaft 80b, and this
  • the application proposes a brand-new design idea, directly setting the stop bearing 40b between the sleeve 21b and the output shaft 80b, and at the same time extending the stop bearing 40b under the power output end of the wave generator 20b, the stop bearing 40b Between the power output end of the wave generator 20b is a sleeve 21b.
  • the sleeve 21b and the output shaft 80b radially limit the stop bearing 40b, and no other additional limiting structures are required.
  • the harmonic reducer device 100b further includes a washer 81b disposed between the cup bottom 12b of the flexspline 10b and the stop bearing 40b.
  • the gasket 81b has a sheet shape.
  • the washer 81b and the second step 24b limit the stop bearing 40b in both directions in the axial direction, and the sleeve 21b and the output shaft 80b limit the stop bearing 40b in the radial direction. Upwards are limited.
  • the washer 81b is in the shape of a sheet, and there is no overlap between the washer 81b and the stop bearing 40b in the axial direction of the sleeve 21b, and the washer 81b and the stop bearing 40b are sleeved on the sleeve 21b side by side.
  • the washer 81a in FIG. 2 includes a radial connection portion 82a and an axial ring portion 83a, and radially restricts the stop bearing 40b through the radial connection portion 82a.
  • the washer 81b It only needs to be in a simple sheet shape, and does not need the radial connecting portion 82a, so the structure is simpler and the assembly is also easy.
  • a mounting portion 82b protrudes from the outer ring surface of the output shaft 80b, and the mounting portion 82b is fixed to the inner ring 72b of the output bearing 70b together with the cup bottom 12b of the flexspline 10b.
  • the stop bearing 40b, the washer 81b, the cup bottom 12b of the flexspline 10b, the mounting part 82b and the inner ring 72b of the output bearing 70b are closely arranged in sequence, and no other parts are arranged in the middle.
  • the inner ring 72b of the output bearing 70b defines an accommodating groove 73b inside, and the mounting portion 82b is installed in the accommodating groove 73b.
  • the harmonic reducer device 100b further includes another end cover 93b located outside the output bearing 70b, and the other end cover 93b is connected to the inner ring 72b of the output bearing 70b.
  • the outside of the output bearing 70b referred to here refers to the side of the output bearing 70b away from the rigid wheel 60b.
  • the other end cover 93b and the output shaft 80b are two independent parts.
  • a wire harness structure 1b is provided between one side of the other end cover 93b and the output shaft 80b. Setting the other end cover 93b and the output shaft 80b as two independent parts reduces the inconvenience of processing and installation caused by the integrated structure of the output shaft 80a and the second end cover 93a as shown in Figure 2 on the one hand, and at the same time The cost is reduced.
  • the wire harness structure 1b can also be provided between the other end cover 93b and the end of the output shaft 80b, which can kill two birds with one stone.
  • the wire harness structure 1b includes a tube body 101b connected to the connecting portion 94b and an elastic stretchable portion 102b sheathed on the outside of the tube body 101b.
  • the pipe body 101b is used for the cables 103b to pass through.
  • One end of the tube body 101b extends into the output shaft 80b, and the other end is connected to the connecting portion 94b.
  • the telescoping portion 102b is located between the tube body 101b and the connecting portion 94b.
  • the wave generator body 22b includes an elliptical disk 25b formed on the sleeve 21b and a flexible bearing 26b connected to the elliptical disk 25b.
  • the wave generator main body 22b includes a rotating arm formed on the sleeve 21b and rollers mounted on opposite ends of the rotating arm; or, the wave generator main body 22b includes a cam and a connection formed on the sleeve 21b Flexible bearing 26b on the cam.
  • the output bearing 70b is a bearing with its own oil seal 95b. It is not necessary to install an oil seal 95a inside the second end cover 93a as shown in FIG.
  • the set oil seal 95a needs to be customized, and the cost will be relatively high.
  • the cost of the harmonic reducer device 100b of the present application is nearly 20% lower than that of the harmonic reducer 100a shown in FIG. 2 .
  • the specific performance is as follows:
  • the rigid wheel 60a and the flexible wheel 10a of the harmonic reducer 100a shown in Figure 2 need to be customized, while the harmonic reducer device 100b of this application only needs to use the standard parts of the rigid wheel 60b and the flexible wheel 10b to meet the design Requirements, reducing customization costs;
  • roller bearing 70a of the harmonic reducer 100a shown in Figure 2 uses a bearing without an oil seal, and the oil seal is customized between the right end cover 93a and the roller bearing 70a, while this application uses an automatic
  • the output bearing 70b with oil seal 95b does not need to be designed separately, which reduces the customization cost;
  • the component that functions as the enclosure plate 91b is the fixing plate 52a outside the first end cover 50a, and this fixing plate 52a exists as a separate component in FIG. 2 Yes, the number of parts is virtually increased, the inventory space needs to be increased, the inventory control types of parts are increased, and the processing and assembly processes are also increased. Of course, the cost is also increased.
  • the enclosure 91b is connected to The outer edge of the main body 92b is not integral with the main body 92b.
  • the shroud 91b does not exist as a separate part, but is integrated with the main body 92b of the end cover 90b.
  • Such arrangement can reduce the number of parts and reduce the additional processing cost of the shroud 91b as a separate part , which also reduces the processing and assembly procedures for the coaming plate 91b as a separate component, saving the cost of the harmonic reducer device 100b to a certain extent;
  • the output shaft 80a is integrated with the right end cover 93a, the entire part is very large in size, and the right end cover 93a is almost perpendicular to the output shaft 80a. Difficulty increases processing cost virtually, and this application, output shaft 80b and another end cover 93b separate, during processing, output shaft 80b and another end cover 93b process separately, although there is increase in the quantity of processing parts, but actually quite Compared with the increase in processing cost brought about by the difficulty of processing, it actually reduces the cost.
  • the joint 204 also includes a drive motor 9 for power input to the sleeve 21b.
  • the driving motor 9 is arranged on one side of the harmonic speed reducer device 100b.
  • the joint 204 also includes another bearing 101 sleeved on the sleeve 21b, and the driving motor 9 includes a rotor 91 sleeved on the sleeve 21b and a stator 92 matched with the rotor 91 .
  • Another bearing 101 is located on the side of the rotor away from the wave generator 20b.
  • Another bearing 101 is located on the side of the rotor 91 away from the other end cover 93b.
  • the joint 204 also includes a mounting part 206 sleeved on the sleeve 21b.
  • the mounting part 206 is located on a side of the motor 9 away from the end cover 90 b, and is used for limiting the other bearing 101 .
  • An accommodating space 93 is formed between the stator 92 and the rotor 91 of the motor 9 , and another bearing 101 is located in the accommodating space 93 and does not occupy the axial space of the joint 204 .
  • the mounting member 206 includes a board body 207 and a limiting ring 208 connected to one side of the board body 207 .
  • the limiting ring 208 and the sleeve 21 b radially limit the other bearing 101 .
  • the outer annular surface of the sleeve 21b is formed with a third step 27b.
  • the third step 27 b and the plate body 207 axially limit the other bearing 101 .
  • the limiting ring 208 protrudes into the accommodating space 93 .
  • An elastic member 95 is disposed between the other bearing 101 and the plate body 207 to play a role of shock absorption.
  • the joint 204 also includes a stopper 205 mounted on the sleeve 21b.
  • the stopper 205 is located on the outside of the mount 206 .
  • the mount 206 is located between the brake 205 and the motor 9 .
  • the outer peripheral part 2 b of the mounting part 206 is sandwiched between the casing 94 of the motor 9 and the housing 209 of the brake 205 to realize the fixing of the mounting part 206 .
  • the mounting part 206 utilizes the original gap between the existing motor and the brake to realize the installation of another bearing 101.
  • the outer peripheral part 2b of the mounting part 206 is The casing 94 of the motor 9 is connected to the housing 209 of the brake 205 in a misaligned manner, which does not increase the axial size of the entire joint.
  • the harmonic reducer device 100b is reduced in the axial dimension. Under the condition that the radial dimension of the rigid wheel 60b remains unchanged, the requirement for a more miniaturized harmonic reducer device 100b is met. At the same time, the application of the harmonic The joint 204 of the wave decelerator device 100b will also be more miniaturized. Furthermore, the robot arm 201 to which such miniaturized joints are applied will also be further miniaturized. The robot 200 using such a robot arm is also more miniaturized.
  • the harmonic reducer device 100c provided in the second embodiment of the present application is roughly the same as the harmonic reducer device 100b provided in the first embodiment, the difference lies in:
  • the first stopper structure 30c includes a stopper 31c sleeved on the sleeve 21c and rotates with the rotation of the sleeve 21c and a seal 32c connected to the stopper 31c; the inner surface of one end of the stopper 31c is against the Abutting against the first step 23c, one end of the sealing member 32c abuts against the surrounding plate 91c, thereby realizing the position limitation of the first stop structure 30c between the first step 23c and the surrounding plate 91c.
  • the inner side mentioned here refers to the side close to the wave generator main body 22c, and the outer side refers to the side away from the wave generator main body 22c.
  • the one end of the stopper 31c mentioned here refers to the end close to the sleeve 21c, and the one end of the sealing member 32c refers to the end close to the shroud 91c and away from the sleeve 21c.
  • the first stopper structure 30c is generally in the shape of a sheet.
  • the overall axial dimension of the first stop structure 30c is smaller than the difference between the inner diameter and the outer diameter of the first stop structure 30c.
  • the sealing member 32c rotates together with the stopper 31c following the sleeve 21c.
  • a rotating pair is formed between the sealing member 32c and the shroud 91c.
  • the outer edge of one end of the sealing member 32c contacts the shroud 91c to form a rotating pair.
  • the outer edge of one end of the seal 32c is always in contact with the shroud 91c when the seal 32c rotates, and a sealing structure is formed at the contact between the seal 32c and the shroud 91c.
  • the stopper 31c is annular.
  • the stopper 31c includes a fixing part 301c with a U-shaped cross section, an extension part 302c extending from the side of the fixing part 301c close to the wave generator body 22c away from the direction of the sleeve 21c, and a part of the extension part 302c away from the sleeve 21c.
  • the side edge deviates from the direction of the sleeve 21c and obliquely extends toward the inclined portion 303c of the surrounding plate 91c.
  • the seal 32c has an annular shape.
  • the sealing member 32c includes a stop portion 320c fixed in the fixing portion 301c and a contact portion 321c obliquely extending from a side of the stop portion 320c away from the sleeve 21c and close to the enclosure 91c towards the enclosure 91c.
  • the included angle between the contact portion 321c and the stop portion 320c is an obtuse angle.
  • the stopper 31c is a rigid member, and the sealing member 32c is a flexible member.
  • the contact portion 321c is always in tight contact with the surrounding plate 91c, which not only achieves the function of position limiting, but also plays the role of sealing.
  • the harmonic reducer device 100d provided by the third embodiment of the present application is roughly the same as the harmonic reducer device 100b provided by the first embodiment, the difference lies in:
  • the first stopper structure 30d sleeved on the sleeve 21d is directly formed on the end cover 90d, and the axial stopper function is no longer realized by a separate component, which reduces the number of components.
  • the first stop structure 30d is directly formed on the surrounding plate 91d.
  • the first step is no longer needed to limit the position.
  • the first stop structure 30d includes a connecting ring 92d connected to the side of the surrounding plate 91d close to the sleeve 21d, and the connecting ring 92d is in surface contact with the outer ring surface of the sleeve 21d.
  • a sealing structure 33d is formed between the connecting ring 92d and the outer ring surface of the sleeve 21d.
  • the sealing structure 33d is formed by opening a ring groove 34d on the contact surface between the connecting ring 92d and the sleeve 21d.
  • the ring groove 34d includes two groove wall surfaces 36d and a groove bottom surface 37d connecting the two groove wall surfaces 36d.
  • a corner 38d is formed between the groove bottom surface 37d and each groove wall surface 36d.
  • Multiple ring grooves 34d can be provided, for example, 1, 2, 3, etc. In the case of reducing the axial size, the number of ring grooves 34d can be set according to the situation.
  • the use of the first positioning bearing 30a of the harmonic reducer 100a shown in FIG. 2 is cancelled, and the size of the first stop structure 30d in the axial direction is smaller than that of the harmonic reducer shown in FIG. 2 100a is the sum of the axial dimensions of the fixing plate 52a and the first positioning bearing 30a.
  • connection ring 92d may extend toward the motor 9d. It can be understood that, in order to further reduce the axial dimension, the connecting ring 92d can extend into the accommodation space 93d between the stator 921d and the rotor 911d of the motor 9d.
  • FIG. 14 shows a comparison diagram of the harmonic reducer device 100d provided in the third embodiment of the present application and the harmonic reducer 100a in FIG. 2 in terms of axial dimensions. It can be seen from the figure that Under the same radial dimension L of the rigid wheels 60d and 60a, the axial dimension is significantly reduced. Specifically, the left side of the first stop structure 30d can be used as a limit function based on the line W in the figure.
  • the element is the starting point (for Fig. 2, the fixed plate 52a is the starting point; for Fig.
  • the left side of the first stop structure 30d itself is the starting point
  • the cup bottom 12d of the flexspline is the end point, measure
  • the distance between the two, A1 is obviously smaller than A2, and the harmonic reducer device 100d provided by the embodiment of the present application has a significantly smaller axial dimension than the harmonic reducer 100a shown in FIG. 2 .
  • it is specifically reduced by 5mm-13mm.
  • the reduction is 8mm-10mm.
  • the first stop structure may be other support structures such as a shaft sleeve.
  • the concept of a stopper refers to blocking, and it does not necessarily have to be in a contact state all the time. In the direction of movement, it can function as a stopper when it needs to be blocked. In other embodiments, the stopper may function as sealing and/or positioning, and positioning means that the position does not move.
  • the harmonic reducer device 100e provided by the fourth embodiment of the present application is substantially the same as the harmonic reducer device 100b provided by the first embodiment, the difference lies in:
  • the other end cover 93e is integral with the output shaft 80e.
  • the mounting portion 82b is no longer provided on the output shaft 80e, and the inner ring 72e of the output bearing 70e does not need to be provided with the accommodating groove 73b.
  • the cup bottom 12e of the flexspline 10e is directly fixed with the inner ring 72e of the output bearing 70e.
  • No mounting portion 82b is provided between the cup bottom 12e of the flexspline 10e and the inner ring 72e of the output bearing 70e.
  • the cup bottom 12e of the flexspline 10e is in direct contact with the inner race 72e of the output bearing 70e.
  • the fixing of the output shaft 80e to the inner ring 72e of the output bearing 70e is realized by fixing the other end cover 93e to the inner ring 72e of the output bearing 70e.
  • the harmonic reducer device 100f provided by the fifth embodiment of the present application is substantially the same as the harmonic reducer device 100c provided by the second embodiment, and the difference is the harmonic reducer device 100c provided by the fourth embodiment of the present application.
  • the difference between the reducer device 100e and the harmonic reducer device 100b provided in the first embodiment is the same, that is, the other end cover 93f is integrated with the output shaft 80f. No mounting portion is provided on the output shaft 80f, and the inner ring 72f of the output bearing 70f does not need to be provided with an accommodating groove.
  • the cup bottom 12f of the flexspline 10f is directly fixed with the inner ring 72f of the output bearing 70f.
  • the harmonic reducer device 100g provided by the sixth embodiment of the present application is substantially the same as the harmonic reducer device 100d provided by the third embodiment, and the difference is the harmonic reducer device 100d provided by the fourth embodiment of the present application.
  • the difference between the reducer device 100e and the harmonic reducer device 100b provided in the first embodiment is the same, that is, the other end cover 93g is integrated with the output shaft 80g. No mounting portion is provided on the output shaft 80g, and the inner ring 72g of the output bearing 70g does not need to be provided with an accommodating groove.
  • the cup bottom 12g of the flexspline 10g is directly fixed with the inner ring 72g of the output bearing 70g.
  • No mounting portion is provided between the cup bottom 12g of the flexspline 10g and the inner ring 72g of the output bearing 70g.
  • the cup bottom 12g of the flexspline 10g is in direct contact with the inner ring 72g of the output bearing 70g.
  • the fixing of the output shaft 80g and the inner ring 72g of the output bearing 70g is realized by fixing the other end cover 93g and the inner ring 72g of the output bearing 70g.
  • the harmonic reducer device 100h provided by the seventh embodiment of the present application is substantially the same as the harmonic reducer device 100b provided by the first embodiment, the difference lies in:
  • the second stop structure 40h is sleeved on the periphery of the sleeve 21h.
  • the second stop structure 40h does not overlap with the projection of the power output end of the wave generator 20h on the axis of the sleeve 21h.
  • the washer 81h includes a radial connection portion 82h and an axial ring portion 83h extending inwardly from the radial connection portion 82h.
  • the axial ring portion 83h is interposed between the second stop structure 40h and the cup bottom 12h of the flexspline 10h.
  • the second step 24h is formed on the outer ring surface of the sleeve 21h.
  • the second stop structure 40h is located between the second step 24h and the axial ring portion 83h at the axial upper limit.
  • the radial upper limit of the second stop structure 40h is located between the radial connection portion 82h and the outer ring surface of the sleeve 21h.
  • the harmonic reducer device 100i provided by the eighth embodiment of the present application is substantially the same as the harmonic reducer device 100c provided by the second embodiment, the difference lies in:
  • the second stop structure 40i is sleeved on the periphery of the sleeve 21i.
  • the second stop structure 40i does not overlap with the projection of the power output end of the wave generator 20i on the axis of the sleeve 21i.
  • the washer 81i includes a radial connection portion 82i and an axial ring portion 83i extending inwardly from the radial connection portion 82i.
  • the axial ring portion 83i is interposed between the second stop structure 40i and the cup bottom 12i of the flexspline 10i.
  • the second step 24i is formed on the outer ring surface of the sleeve 21i.
  • the axial upper limit of the second stop structure 40i is located between the second step 24i and the axial ring portion 83i.
  • the radial upper limit of the second stop structure 40i is located between the radial connecting portion 82i and the outer ring surface of the sleeve 21i.
  • the harmonic reducer device 100k provided by the ninth embodiment of the present application is substantially the same as the harmonic reducer device 100d provided by the third embodiment, the difference lies in:
  • the second stop structure 40k is sleeved on the periphery of the sleeve 21k.
  • the second stop structure 40k does not overlap with the projection of the power output end of the wave generator 20k on the axis of the sleeve 21k.
  • the washer 81k includes a radial connection portion 82k and an axial ring portion 83k extending inwardly from the radial connection portion 82k.
  • the axial ring portion 83k is interposed between the second stop structure 40k and the cup bottom 12k of the flexspline 10k.
  • the second step 24k is formed on the outer ring surface of the sleeve 21k.
  • the second stop structure 40k is located between the second step 24k and the axial ring portion 83k at the axial upper limit.
  • the radial upper limit of the second stop structure 40k is located between the radial connecting portion 82k and the outer ring surface of the sleeve 21k.
  • the harmonic reducer device 100m provided by the tenth embodiment of the present application is substantially the same as the harmonic reducer device 100h provided by the seventh embodiment, the difference lies in:
  • the other end cover 93m is integral with the output shaft 80m.
  • the output shaft 80m is no longer provided with a mounting part, and the inner ring 72m of the output bearing 70m does not need to be provided with an accommodating groove.
  • the cup bottom 12m of the flexible spline 10m is directly fixed with the inner ring 72m of the output bearing 70m. No mounting portion is provided between the cup bottom 12m of the flexspline 10m and the inner ring 72m of the output bearing 70m.
  • the cup bottom 12m of the flexspline 10m is directly in contact with the inner ring 72m of the output bearing 70m.
  • the fixing of the output shaft 80m and the inner ring 72m of the output bearing 70m is realized by fixing the other end cover 93m and the inner ring 72m of the output bearing 70m.
  • the harmonic reducer device 100n provided by the eleventh embodiment of the present application is substantially the same as the harmonic reducer device 100i provided by the eighth embodiment, the difference lies in:
  • the other end cover 93n is integral with the output shaft 80n. No mounting portion is provided on the output shaft 80n, and the inner ring 72n of the output bearing 70n does not need to be provided with an accommodating groove.
  • the cup bottom 12n of the flexspline 10n is directly fixed with the inner ring 72n of the output bearing 70n. No mounting portion is provided between the cup bottom 12n of the flexspline 10n and the inner ring 72n of the output bearing 70n.
  • the cup bottom 12n of the flexspline 10n is in direct contact with the inner ring 72n of the output bearing 70n.
  • the fixing of the output shaft 80n to the inner ring 72n of the output bearing 70n is realized by fixing the other end cover 93n to the inner ring 72n of the output bearing 70n.
  • the harmonic reducer device 100p provided by the twelfth embodiment of the present application is substantially the same as the harmonic reducer device 100k provided by the ninth embodiment, the difference lies in:
  • the other end cover 93p is integral with the output shaft 80p. No mounting portion is provided on the output shaft 80p, and the inner ring 72p of the output bearing 70p does not need to be provided with an accommodating groove.
  • the cup bottom 12p of the flexspline 10p is directly fixed with the inner ring 72p of the output bearing 70p. No mounting portion is provided between the cup bottom 12p of the flexspline 10p and the inner ring 72p of the output bearing 70p.
  • the cup bottom 12p of the flexspline 10p is in direct contact with the inner ring 72p of the output bearing 70p.
  • the output shaft 80p is fixed to the inner ring 72p of the output bearing 70p by fixing the other end cover 93p to the inner ring 72p of the output bearing 70p.
  • the above-mentioned twelve embodiments are all reduced in axial dimension compared with the harmonic reducer 100a shown in Fig. 2, and all of them break through the convention.
  • the first stop structure does not use the bearing structure, but adopts the
  • the conventional bearing with the axial limit function has a first stop structure with a smaller axial dimension to replace the conventional bearing.
  • the demand for a more miniaturized harmonic reducer device can be achieved by directly changing the axial dimension of the harmonic reducer device, which caters to the market demand. At the same time, the cost is more or less reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Retarders (AREA)

Abstract

一种机器人、机械臂、关节及其谐波减速器装置,其包括杯状的柔轮(10b)、与柔轮(10b)相啮合的刚轮(60b)及波发生器(20b),波发生器(20b)包括供动力输入的套筒(21b)及设置于套筒(21b)上且在套筒(21b)的转动下使柔轮(10b)发生径向变形以改变柔轮(10b)与刚轮(60b)啮合位置的波发生器主体(22b),还包括相对设置的端盖(90b)和输出轴承(70b),还包括对套筒(21b)进行止挡的第一止挡结构(30b)和第二止挡结构(40b),第一止挡结构(30b)采用非轴承结构并套设于套筒(21b)上。该装置舍弃轴承的使用,而换成了轴向尺寸小于常规轴承的第一止挡结构(30b),在刚轮(60b)径向尺寸不变的情况下,直接通过改变谐波减速器装置的轴向尺寸,达到谐波减速器装置更加小型化的需求,迎合了市场需求。

Description

关节、机械臂、机器人及其谐波减速器装置
本申请要求于2021年09月30日在中国专利局提交的、申请号为202111160367.6、发明名称为“关节、机械臂、机器人及其谐波减速器装置”的中国专利申请,于2022年3月10日向中国专利局提交的申请号为202210237142.4、发明名称为“关节、机械臂、机器人及其谐波减速器装置”的中国专利申请202111160367.6的分案申请,以及于2022年3月10日向中国专利局提交的申请号为202210237114.2、发明名称为“关节、机械臂、机器人及其谐波减速器装置”的中国专利申请202111160367.6分案申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及机器人的技术领域,具体为一种关节、机械臂、机器人及其谐波减速器装置。
背景技术
机器人通常包括机械臂、使机械臂转动的关节,关节处使用谐波减速器来调速。谐波减速器是由三大主要构件组成,这三大主要构件分别为固定的刚轮、柔轮和使柔轮发生径向变形的波发生器。内轮具有内齿轮,柔轮是一个容易变形的薄壁圆筒外齿轮,通过内齿轮和外齿轮的啮合来传递动力,在无波发生器作用下,刚轮和柔轮的各齿间隙均匀,此时是无减速动力传递,在波发生器作用下,装在柔轮内的发生器使柔轮发生径向变形而成为椭圆形,这时,在椭圆的长轴上,齿沿整个工作高度啮合,而在短轴上,齿顶之间形成了径向间隙,在发生器的旋转过程中,柔轮的形状始终接近于椭圆形,实现减速传递。
谐波减速器具有承载能力高、传动比大、体积小、传动平稳且传动精度高的优点,其被广泛应用于电子、航空航天、机器人等行业。
通常的谐波减速器采用礼帽型柔轮,请参阅图1,柔轮10包括圆筒体11和垂直圆筒体11轴线且向外翻折的环形固定台12,圆筒体11的芯部开设有沿轴线方向延伸且完全贯穿的中心空腔(未标示),圆筒体11的外圆周面设置有沿轴线方向延伸且由单个轮齿呈环形阵列分布的环形轮齿带13。在柔轮的圆筒体11尺寸确定的情况下,由于向外翻折的环形固定台12的存在,势必导致谐波减速器100的尺寸在环形固定台12所占的空间区域无法再往更小型化的方向发展。
在多年的科技研发过程中,科研人员发明了一种杯型柔轮,并将其应用于谐波减速器中,请参阅图2,柔轮10a包括环形回转体11a和垂直于环形回转体11a的轴线且向内翻折的环形固定台12a,由于将礼帽型柔轮10替换为杯型柔轮10a,减少了礼帽型柔轮10的外翻的固定台12所占的空间区域,使谐波减速器100a有了更小的尺寸,也使应用这样的谐波减速器100a的机器人关节尺寸也更小,整个机器人就显得格外小巧。
但是,随着人们对机器人的热衷,对机器人小型化的要求更高,小型化主要体现在关节部位,更小的谐波减速器是市场的热点,但过去多年,市场上仍然没有出现一款更加小型化的产品。
技术问题
根据本申请的各种实施例,提供一种谐波减速器装置,以解决现有谐波减速器装置尺寸不满足人们对更加小型化的需求的技术问题。
技术解决方案
本申请实施例的目的在于提供一种谐波减速器装置,以解决现有谐波减速器装置尺寸不满足人们对更加小型化的需求的技术问题。
为实现上述目的,本申请采用的技术方案是:一种谐波减速器装置,其包括杯状的柔轮、与柔轮相啮合的刚轮及波发生器,波发生器包括供动力输入的套筒及设置于套筒上且在套筒的转动下使柔轮发生径向变形以改变柔轮与刚轮啮合位置的波发生器主体,谐波减速器装置还包括相对设置的端盖和输出轴承,谐波减速器装置还包括对套筒进行止挡的第一止挡结构和第二止挡结构,第一止挡结构采用非轴承结构并套设于套筒上。
在一个实施例中,套筒与端盖之间形成有缝隙,第一止挡结构密封缝隙。
在一个实施例中,第一止挡结构的轴向尺寸小于第一止挡结构的内径和外径之差。
在一个实施例中,第一止挡结构和第二止挡结构对套筒进行轴向双方向止挡。
在一个实施例中,套筒的外环面形成有第一台阶,端盖的外侧面形成有围板,第一止挡结构设置于第一台阶和围板之间。
在一个实施例中,第一止挡结构包括套设于套筒上并随着套筒的转动而转动的止挡件及相对于止挡件转动的密封件,密封件与端盖固定连接,止挡件抵顶于第一台阶上,密封件抵顶于围板上。
在一个实施例中,止挡件与密封件之间形成有密封结构,密封结构包括环槽及插入环槽内的凸环,止挡件和密封件二者之中的其中一者开设环槽,止挡件和密封件二者之中的另外一者凸设有凸环。
在一个实施例中,止挡件和密封件二者之中至少有一者呈片状。
在一个实施例中,第一止挡结构包括套设于套筒上并随着套筒的转动而转动的止挡件及连接于止挡件的密封件;止挡件的一端内侧面抵顶于第一台阶上,密封件的一端外侧面抵顶于围板上。
在一个实施例中,密封件与围板之间在密封件转动时始终接触,在密封件与围板之间的接触处形成密封结构。
在一个实施例中,止挡件包括横截面呈U形的固定部、由固定部的靠近波发生器主体的一侧背离套筒方向延伸的延伸部及由延伸部的远离套筒的侧缘背离套筒方向且朝向围板倾斜延伸的倾斜部,密封件包括固定于固定部内的止挡部及由止挡部的背离套筒且靠近围板的一侧朝向围板倾斜延伸的接触部,接触部与围板接触。
在一个实施例中,端盖的外侧面形成有围板,第一止挡结构包括连接于围板的靠近套筒的一侧的连接环,连接环与套筒的外环面之间形成有密封结构。
在一个实施例中,连接环与套筒的外环面形成面接触,密封结构为在连接环与套筒之间的接触面上开设的至少一个环槽。
在一个实施例中,端盖包括主体,主体的内端面与输出轴承的外圈之间固定刚轮,围板连接于主体的外端缘并与主体是一体的。
在一个实施例中,第二止挡结构为止挡轴承,波发生器的动力输出端与止挡轴承在套筒的轴线上的投影至少部分重叠。
在一个实施例中,波发生器的动力输出端与止挡轴承在套筒的轴线上的投影重叠率范围为0.1-1。
在一个实施例中,波发生器的动力输出端与止挡轴承在套筒的轴线上的投影重叠率范围为0.5-0.9。
在一个实施例中,第二止挡结构为止挡轴承,谐波减速器装置还包括与输出轴承的内圈固定连接的输出轴,止挡轴承位于输出轴和套筒之间。
在一个实施例中,输出轴的外环面凸设有安装部,安装部与柔轮的杯底部一同固定于输出轴承的内圈。
在一个实施例中,套筒的内环面设置有第二台阶;止挡轴承的一侧抵顶于第二台阶上,另一侧间接抵顶于柔轮的杯底部,止挡轴承的外圈抵顶于第二台阶上。
在一个实施例中,谐波减速器装置还包括与输出轴承的内圈固定连接的输出轴及位于输出轴承外侧的另一端盖,另 一端盖连接于输出轴承的内圈。
在一个实施例中,另一端盖与输出轴为两个独立的部件,另一端盖与输出轴之间设置有束线结构。
在一个实施例中,输出轴承为自带油封的轴承。
在一个实施例中,波发生器主体包括形成于套筒上的转臂及安装于转臂的相对两端的滚轮;或者,波发生器主体包括形成于套筒上的凸轮及连接于凸轮上的柔性轴承;或者,波发生器主体包括形成于套筒上的椭圆盘及连接于椭圆盘上的柔性轴承。
本申请实施例的目的在于还提供一种关节,其包括上述实施例中的谐波减速器装置及对套筒进行动力输入的驱动电机。
在一个实施例中,关节还包括套设于套筒上的另一轴承和对另一轴承进行限位的安装件,电机的定子与转之间形成有容置空间,另一轴承位于容置空间内。
在一个实施例中,安装件包括板体及连接于板体的一侧的限位环,限位环和套筒对另一轴承进行径向限位,套筒的外环面形成有第三台阶,第三台阶和板体对另一轴承进行轴向限位。
本申请实施例的目的在于还提供一种机械臂,其包括上述实施例中的关节。
本申请实施例的目的在于还提供一种机器人,其包括上述实施例中的机械臂。
有益效果
本申请提供的有益效果在于:
本实施例中的谐波减速器装置突破常规,第一止挡结构不采用轴承结构,而采用比提供轴向限位功能的常规轴承的轴向尺寸更小的第一止挡结构来代替常规轴承,在轴向尺寸的缩减上取得了创新性的突破。由于现有的轴承,在内圈和外圈之间需要加入滚珠,为了让滚珠在内圈和外圈之间安全可靠地运转,内圈和外圈的轴向尺寸不能做得很小,而本申请中直接突破常规地舍弃轴承的使用,而换成了轴向尺寸小于常规轴承的第一止挡结构,在刚轮径向尺寸不变的情况下,直接通过改变谐波减速器装置的轴向尺寸,达到谐波减速器装置更加小型化的需求,迎合了市场需求。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为应用礼帽型柔轮的谐波减速器的剖面示意图。
图2为应用杯型柔轮的谐波减速器的剖面示意图。
图3为本申请实施例提供的机器人的立体结构示意图。
图4为图3所示的机器人的平面结构示意图。
图5为图4所示的机器人的其中一个关节的组装示意图。
图6为图5的关节沿线A-A的剖面示意图,其中,关节上应用第一实施例的谐波减速器装置。
图7示出了本申请第一实施例提供的谐波减速器装置与图2的谐波减速器在轴向尺寸上的对比图。
图8为图5的关节中的局部放大图。
图9为图8的圆圈B处的放大图。
图10为图5的关节沿线A-A的剖面示意图,其中,关节上应用第二实施例的谐波减速器装置。
图11为图10的关节中的圆圈C处的放大图。
图12为图5的关节沿线A-A的剖面示意图,其中,关节上应用第三实施例的谐波减速器装置。
图13为图12的关节中的圆圈D处的放大图。
图14示出了本申请第三实施例提供的谐波减速器装置与图2的谐波减速器在轴向尺寸上的对比图。
图15为图5的关节沿线A-A的剖面示意图,其中,关节上应用第四实施例的谐波减速器装置。
图16为图5的关节沿线A-A的剖面示意图,其中,关节上应用第五实施例的谐波减速器装置。
图17为图5的关节沿线A-A的剖面示意图,其中,关节上应用第六实施例的谐波减速器装置。
图18为图5的关节沿线A-A的剖面示意图,其中,关节上应用第七实施例的谐波减速器装置。
图19为图5的关节沿线A-A的剖面示意图,其中,关节上应用第八实施例的谐波减速器装置。
图20为图5的关节沿线A-A的剖面示意图,其中,关节上应用第九实施例的谐波减速器装置。
图21为图5的关节沿线A-A的剖面示意图,其中,关节上应用第十实施例的谐波减速器装置。
图22为图5的关节沿线A-A的剖面示意图,其中,关节上应用第十一实施例的谐波减速器装置。
图23为图5的关节沿线A-A的剖面示意图,其中,关节上应用第十二实施例的谐波减速器装置。
标号明细如下:
10、柔轮;11、圆筒体;12、固定台;13、轮齿带;100、谐波减速器;
10a、柔轮;11a、回转体;12a、固定台;100a、谐波减速器;20a、波发生器;21a、套筒;22a、滚轮;30a、第一定位轴承;40a、第二定位轴承;50a、第一端盖;60a、刚轮;70a、滚子轴承;51a、连接法兰;71a、滚子轴承70a的外圈;80a、输出轴;52a、固定板;81a、垫圈;82a、径向连接部;83a、轴向环部;93a、第二端盖;95a、第二端盖93a的内侧设置油封;
200、机器人;203、底座;201、机械臂;202、臂体;204、关节;9、电机;100b、谐波减速器装置;10b、柔轮;60b、刚轮;20b、波发生器;21b、套筒;22b、波发生器主体;90b、端盖;70b、输出轴承;30b、第一止挡结构;40b、第二止挡结构;40b、止挡轴承;91b、围板;92b、端盖90b的主体;61b、第一固定件;80b、输出轴;81b、垫圈;82b、安装部;93b、另一端盖;1b、束线结构;95b、输出轴承70b为自带油封;209、制动器205的壳体;208、限位环;207、板体;206、安装件;205、制动器;92、定子;91、转子;101、另一轴承;11b、环部;12b、杯底部;14b、容纳空间;23b、第一台阶;24b、第二台阶;72b、输出轴承70b的内圈;31b、止挡件;32b、密封件;33b、密封结构;34b、环槽;35b、凸环;36b、槽壁面;37b、槽底面;38b、拐角;94b、连接部;101b、管体;102b、伸缩部;103b、线缆;2b、安装件206的外周部;94、电机9的外壳;93、容置空间;95、弹性件;27b、第三台阶;25b、椭圆盘;26b、柔性轴承;73b、容置槽;
100c、谐波减速器装置;21c、套筒;30c、第一止挡结构;31c、止挡件;32c、密封件;23c、第一台阶;91c、围板;22c、波发生器主体;301c、固定部;302c、延伸部;303c、倾斜部;320c、止挡部;321c、接触部;
100d、谐波减速器装置;21d、套筒;30d、第一止挡结构;90d、端盖;91d、围板;92d、连接环;33d、密封结构;34d、环槽;36d、槽壁面;37d、槽底面;38d、拐角;9d、电机;921d、定子;911d、转子;93d、容置空间;
100e、谐波减速器装置;93e、另一端盖;80e、输出轴;70e、输出轴承;72e、输出轴承70e的内圈;10e、柔轮;12e、杯底部;
100f、谐波减速器装置;93f、另一端盖;80f、输出轴;70f、输出轴承;72f、输出轴承70f的内圈;10f、柔轮;12f、杯底部;
100g、谐波减速器装置;93g、另一端盖;80g、输出轴;70g、输出轴承;72g、输出轴承70g的内圈;10g、柔轮;12g、杯底部;
100h、谐波减速器装置;40h、第二止挡结构;21h、套筒;20h、波发生器;81h、垫圈;82h、径向连接部;83h、轴向环部;10h、柔轮;12h、杯底部;24h、第二台阶;
100i、谐波减速器装置;100k、谐波减速器装置;100m、谐波减速器装置;100n、谐波减速器装置;100p、谐波减速器装置;40i、第二止挡结构;40k、第二止挡结构;93m、另一端盖;93n、另一端盖;93p、另一端盖;21i、套筒;21k、套筒;80m、输出轴;80n、输出轴;80p、输出轴;20i、波发生器;20k、波发生器;70m、输出轴承;70n、输出轴承;70p、输出轴承;81i、垫圈;81k、垫圈;72m、内圈;72n、内圈;72p、内圈;82i、径向连接部;82k、径向连接部;10m、柔轮;10n、柔轮;10p、柔轮;83i、轴向环部;83k、轴向环部;12m、杯底部;12n、杯底部;12p、杯底部;10i、柔轮;10k、柔轮;12i、杯底部;12k、杯底部;24i、第二台阶;24k、第二台阶。
本发明的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
随着人们对机器人的热衷,对机器人小型化的要求更高,小型化主要体现在关节部位,更小的谐波减速器是市场的热点,但过去多年,市场上仍然没有出现一款更加小型化的产品。请再次参阅图2,杯型柔轮10a在谐波减速器中的应用,达到了减小谐波减速器尺寸的目的,同时在杯型柔轮10a的应用的同时,波发生器20a的套筒21a对应于滚轮22a的内端和外端分别设置套装有第一定位轴承30a、第二定位轴承40a,实现对套筒21a的轴向双方向的定位,图2中所示的杯型柔轮10a、套筒21a、第一定位轴承30a及第二定位轴承40a的结构方案是当下较佳选择方案,在朝着谐波减速器更小型化的方向研发过程中,研发人员已经产生固定思维,不会去更改图2所示的杯型柔轮10a、套筒21a、第一定位轴承30a及第二定位轴承40a的结构方案,而是朝着其他方向努力,例如:
1、对第一端盖50a进行改进,能不能从第一端盖50a的尺寸上做出创新;
2、对刚轮60a进行改进,能不能从刚轮60a的尺寸上做出创新;
3、对柔轮10a进行改进,能不能从柔轮10a的尺寸上做出创新;
4、对滚子轴承70a进行改进,能不能从滚子轴承70a的尺寸上做出创新,等等。
但是,经过业界研发人员的多年努力,均没有得到好的成效。具体地,针对第1点,第一端盖50a除了满足连接法兰51a、刚轮60a及滚子轴承70a的外圈71a的固定连接强度之外,还得为第一定位轴承30a留出容纳空间,在这一方面很难有所突破;针对第2点和第3点,谐波减速器100a通过刚轮60a与柔轮10a的啮合位置的变化来实现转速的调整,在一定的转速比确定之后,柔轮10a与刚轮60a的啮合齿的参数是固定的,受到现有齿轮加工水平的限制,很难通过更小的啮合齿来实现同样的转速比,所以通过调整柔轮10a和刚轮60a的径向尺寸来达到减小体积的目的是比较难实现,另外,通过柔轮10a与刚轮60a的啮合来实现动力传递,柔轮10a与刚轮60a本身的结构强度要达标,所以也比较难从柔轮10a与刚轮60a的轴向尺寸上突破;针对第4点,滚子轴承70a是将动力传递给输出轴80a的直接零件,其结构强度也需要满足,在滚子轴承70a尺寸上做文章目前也没有实质性的突破。
所以多年来,市场上并没有出现一款更加小型化的产品。但申请人耗费巨额的研发成本也来进行此项技术的研究,打破了原有的杯型柔轮10a、套筒21a、第一定位轴承30a及第二定位轴承40a的结构方案(如图2所示),创新地提出一种全新的结构方案,让谐波减速器100a在原本就比较小型的方案基础上更加小型化。在谐波减速器100a的更加小型化,使得应用这个谐波减速器100a的关节也更加小型化,与此同时,应用这个关节的机器人也更加小型化。
以下结合具体实施例对本申请的具体实现进行更加详细的描述:
请参阅图3和图4,本申请实施例提供了一种机器人200,其包括底座203、及连接于底座203上的机械臂201,机械臂201包括至少两个臂体202及连接于臂体202之间的关节204,机械臂201的活动是通过关节204来实现的。
请同时参阅图5和图6,关节204包括电机9及连接于电机9上的谐波减速器装置100b。图5和图6示出本申请第一实施例提供的谐波减速器装置100b。
谐波减速器装置100b包括杯状的柔轮10b、与柔轮10b相啮合的刚轮60b及波发生器20b。波发生器20b包括供动力输入的套筒21b及设置于套筒21b上且在套筒21b的转动下使柔轮10b发生径向变形以改变柔轮10b与刚轮60b啮合位置的波发生器主体22b。
谐波减速器装置100b还包括相对设置的端盖90b和输出轴承70b。谐波减速器装置100b还包括对套筒21b进行止挡的第一止挡结构30b和第二止挡结构40b。第一止挡结构30b采用非轴承结构并套设于套筒21b上。
第一止挡结构30b的轴向尺寸小于提供轴向限位功能的常规轴承的轴向尺寸,例如,第一止挡结构30b的轴向尺寸小于图2所示的第一定位轴承30a的轴向尺寸。
本实施例中的谐波减速器装置100b突破常规,第一止挡结构30b不采用轴承结构,而采用比提供轴向限位功能的常规轴承的轴向尺寸更小的第一止挡结构30b来代替常规轴承,在轴向尺寸的缩减上取得了创新性的突破。由于现有的轴承,在内圈和外圈之间需要加入滚珠,为了让滚珠在内圈和外圈之间安全可靠地运转,内圈和外圈的轴向尺寸不能做得很小,而本申请中直接突破常规地舍弃轴承的使用,而换成了轴向尺寸小于常规轴承的第一止挡结构30b,在刚轮60b径向尺寸不变的情况下,直接通过改变谐波减速器装置100b的轴向尺寸,达到谐波减速器装置100b更加小型化的需求,迎合了市场需求。需要说明的是,这里所说的常规轴承可以是图2所示的第一定位轴承30a。
请同时参阅图7,图7示出了本申请实施例提供的谐波减速器装置100b与图2的谐波减速器100a在轴向尺寸上的对比图,从图中可以看出,在相同的刚轮60b径向尺寸L下,轴向尺寸明显缩减了,具体地,可从图中以线W为基准,以对第一止挡结构30b的左侧起限位功能的元件为起点(对于图2来讲,是以固定板52a为起点,对于图7来讲,以围板91b本身的左侧为起点),以柔轮10b的杯底部12b为终点,测量两者之间的距离,A1明显比A2小,本申请实施例提供的谐波减速器装置100b比图2的谐波减速器100a在轴向尺寸有明显减少。在本实施例中,具体减少了5mm-13mm。优选 地,减少了8mm-10mm。
请再次参阅图5和图6,套筒21b与端盖90b之间形成有缝隙(未标示)。第一止挡结构30b密封缝隙。
在本实施例中,第一止挡结构30b和第二止挡结构40b对套筒21b进行轴向双方向止挡。
套筒21b的外环面形成有第一台阶23b。端盖90b的外侧面形成有围板91b。第一止挡结构30b设置于第一台阶23b和围板91b之间。第一止挡结构30b通过第一台阶23b和围板91b限制其在套筒21b的轴线方向上的双方向移动。在本实施例中,第一台阶23b的形成是通过将套筒21b在对应第一止挡结构30b的位置上缩小套筒21b直径而形成的。在其他实施例中,第一台阶23b的形成可以是通过在套筒21b在对应第一止挡结构30b的位置上的右侧增加套筒21b直径而形成的,这里所说的“右侧”是指第一止挡结构30b的靠近波发生器主体22b的一侧。
在本实施例中,第一止挡结构30b包括套设于套筒21b上并随着套筒21b的转动而转动的止挡件31b及相对于止挡件31b转动的密封件32b,密封件32b与端盖90b固定连接,止挡件31b抵顶于第一台阶23b上,密封件32b抵顶于围板91b上。通过两个相对转动的止挡件31b和密封件32b来替代轴承结构,可以实现在不妨碍套筒21b相对于端盖90b的转动情况下,具有更小的轴向尺寸。
止挡件31b和密封件32b之间的转动副形成在止挡件31b的外侧和密封件32b的内侧之间重叠的部分。这里需要说明的是,止挡件31b的外侧是指远离波发生器主体22b的一侧,密封件32b的内侧是指靠近波发生器主体22b的一侧。
密封件32b和止挡件31b在平行于套筒21b轴线方向上的投影至少部分重叠。在重叠的部分形成第一止挡结构30b的转动副。
止挡件31b与套筒21b的位置是相对固定的,使止挡件31b随着套筒21b的转动而转动。密封件32b与端盖90b固定连接,这样止挡件31b可以作为转子,密封件32b作为定子。
在本实施例中,第一止挡结构30b由止挡件31b和密封件32b组成,第一止挡结构30b只由两个零件组成,从零件数量上来讲是比常规轴承少一个零件,具体地,常规轴承是包括内圈、外圈及设置于内圈和外圈之间的滚珠,有三个零件,而本申请中的第一止挡结构30b只有两个零件,即止挡件31b和密封件32b。单从零件减少带来的材料成本降低上,本申请具有很大的突破。
在本实施例中,第一止挡结构30b的轴向尺寸小于第一止挡结构30b的内径和外径之差。本实施例中的谐波减速器装置100b突破常规,第一止挡结构30b不采用轴承结构,而采用轴向尺寸小于内径和外径之差的第一止挡结构30b来代替常规轴承,在轴向尺寸的缩减上取得了创新性的突破。由于现有的轴承,在内圈和外圈之间需要加入滚珠,为了让滚珠在内圈和外圈之间安全可靠地运转,内圈和外圈的轴向尺寸不能做得很小,通常内圈或外圈的轴向尺寸与轴承的内径和外径之差相等或内圈或外圈的轴向尺寸大于轴承的内径和外径之差,这里所说的轴承的内径和外径之差是指内圈和外圈的直径差或半径差。而本申请中直接突破常规地舍弃轴承的使用,而换成了轴向尺寸小于内径和外径之差的结构,在刚轮60b径向尺寸不变的情况下,直接通过改变谐波减速器装置100b的轴向尺寸,达到谐波减速器装置100b更加小型化的需求,迎合了市场需求。
在本实施例中,止挡件31b与密封件32b之间形成有密封结构33b,达到密封的作用,防止谐波减速器装置100b的内腔的润滑油泄露。
在本实施例中,密封结构33b包括环槽34b及插入环槽34b内的凸环35b,止挡件31b和密封件32b二者之中的其中一者开设环槽34b,止挡件31b和密封件32b二者之中的另外一者凸设有凸环35b。通过环槽34b与凸环35b的配合,不仅不会妨碍止挡件31b与密封件32b之间的相对转动,而且还为止挡件31b和密封件32b之间的转动副提供密封功能。具体密封效果是由环槽34b与凸环35b的迷宫式配合面来实现的。
请同时参阅图8和图9,在本实施例中,环槽34b与凸环35b的配合面至少有三个,包括两个槽壁面36b及连接两个槽壁面36b的槽底面37b。槽底面37b与每个槽壁面36b之间形成有拐角38b。如此设置,使得润滑油即便想流出来,也必须经过两个槽壁面36b、一个槽底面37b和两个拐角38b,这么漫长的路径最终会让润滑油流不出来,达到密封、防泄露的目的。
通过环槽34b和凸环35b的配合设置,使得止挡件31b和密封件32b之间的轴向尺寸得到进一步的减小。同时,通过环槽34b和凸环35b的配合,止挡件31b对密封件32b有一定的支撑作用,当然,通过密封件32b,止挡件31b对端盖90b也有一定的支撑作用。
环槽34b和凸环35b成对设置,可以设置为一对,也可以设置为两对,也可以设置为三对以上等其他数量。具体设置的对数,需要根据端盖90b与套筒21b之间径向尺寸差值以及凸环35b的厚度,这里所说的端盖90b与套筒21b之间径向尺寸差值是指端盖90b与套筒21b之间的径向距离,具体是端盖90b的主体92b与套筒21b之间的径向距离。在本实施例中,环槽34b和凸环35b设置为两对。
止挡件31b和密封件32b二者之中至少有一者呈片状。这里所说的片状是指轴向尺寸小于内径和外径之差。在本实施例中,止挡件31b与密封件32b均呈片状,止挡件31b的轴向尺寸小于止挡件31b的内径和外径之差,密封件32b的轴向尺寸小于密封件32b的内径和外径之差。在其他实施例中,可以在止挡件31b和密封件32b之中选择一个呈片状结构设置。
端盖90b包括主体92b,主体92b的内端面与输出轴承70b的外圈之间固定刚轮60b。这里所说的主体92b的内端面是指主体92b靠近输出轴承70b的端面。主体92b的内端面与输出轴承70b的外圈之间形成有环腔,刚轮60b设置在环腔内,并夹在主体92b的内端面与输出轴承70b的外圈之间。主体92b、刚轮60b及输出轴承70b的外圈通过第一固定件61b固定在一起。
在本实施例中,围板91b连接于主体92b的外端缘并与主体92b是一体的。也就是说,围板91b并不会作为单独的零部件存在,而是和端盖90b的主体92b是一体的,如此设置,可以减少零部件的数量,减少了作为单独零部件的围板91b的额外加工费用,也减少了对作为单独零部件的围板91b的加工工序和装配工序,一定程度上节省了谐波减速器装置100b的成本。请再次参阅图2,起到围板91b作用的部件是在第一端盖50a外侧的固定板52a,而这个固定板52a,在图2中作为单独的零部件存在的,无形中增加了零部件的数量,还需要增加库存空间,增加零部件的库存管控种类,也增加了加工工序和装配工序,当然,也增加了成本。
在本实施例中,柔轮10b呈杯状,其包括环部11b及连接于环部11b的杯底部12b。杯底部12b由环部11b的一端缘朝内延伸形成。杯底部12b开设有贯通孔(未标示),用以供输出轴80b穿过。环部11b的外环面设置有外齿轮(未标示),用以与刚轮60b的内齿轮(未标示)啮合。环部11b与杯底部12b形成有容纳空间14b,波发生器主体22b与第二止挡结构40b位于容纳空间14b内。
刚轮60b呈环状,其内侧形成有内齿轮并与柔轮10b啮合。柔轮10b设置于刚轮60b的内腔中。
在本实施例中,第二止挡结构40b为止挡轴承40b,波发生器20b的动力输出端与止挡轴承40b在套筒21b的轴线上的投影至少部分重叠。如此设置,止挡轴承40b和发生器的动力输出端的总体轴向尺寸是减小的,请再次参阅图2,图2所示的谐波减速器100a中的波发生器20a的动力输出端与第二定位轴承40a在套筒21a的轴线上的投影完全没有重叠。在本申请中,波发生器20b的动力输出端与止挡轴承40b在套筒21b的轴线上的投影存在重叠,在套筒21b轴线方向上的尺寸更小。业界在谐波减速器中的一贯设计方案是像图2所示的一样,将两个止挡轴承30a、40a设置在波发生器20a的动力输出端的相对两侧,而且没有重叠,而本申请打破常规,创造性地在止挡轴承40b与波发生器20b的动力输出端 的结构位置关系上做出改进,使波发生器20b的动力输出端与止挡轴承40b在套筒21b的轴线上的投影至少部分重叠,更进一步地减小谐波减速器装置100b的轴向尺寸,对于谐波减速器装置100b小型化发展做出更进一步地贡献。
在本实施例中,波发生器20b的动力输出端与止挡轴承40b在套筒21b的轴线上的投影重叠率范围为0.1-1。具体地,投影重叠率可以为0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9。这里所说的投影重叠率是指在平行于套筒21b的轴线方向的截面上,定义:A为止挡轴承40b与波发生器20b的动力输出端在套筒21b的轴线上的投影重合的轴向长度;B为止挡轴承40b的轴向长度或波发生器20b的动力输出端的轴向长度;C为投影重叠率;其中,C=A/B,即投影重叠率C等于A与B的比值。
优选地,波发生器的动力输出端与止挡轴承在套筒的轴线上的投影重叠率范围为0.5-0.9。
研发人员在通过使波发生器20b的动力输出端与止挡轴承40b在套筒21b的轴线上的投影重叠这一思想的指引下,不断地研究和试验,并打样成品,测试,在大量样品中意外地发现“所述波发生器的动力输出端与所述止挡轴承在所述套筒的轴线上的投影重叠率范围为0.5-0.9”不但能在轴向尺寸上做出更大的贡献,而且在产品可靠性能够得到很好地保证。
套筒21b的内环面设置有第二台阶24b;止挡轴承40b的一侧抵顶于第二台阶24b上,另一侧间接抵顶于柔轮10b的杯底部12b。第二台阶24b的形成是通过将套筒21b在对应第二止挡结构40b的位置上增大套筒21b内径而形成的。
谐波减速器装置100b还包括与输出轴承70b的内圈72b固定连接的输出轴80b,止挡轴承40b位于输出轴80b和套筒21b之间。业界在设计谐波减速器装置100b时,惯性思维是将止挡轴承40b设置在套筒21b的外围,不会想到要把止挡轴承40b放在套筒21b与输出轴80b之间,而本申请提出一种全新的设计思路,直接将止挡轴承40b设置在套筒21b与输出轴80b之间,同时将止挡轴承40b伸入到波发生器20b的动力输出端的下方,止挡轴承40b与波发生器20b的动力输出端之间为套筒21b。套筒21b和输出轴80b对止挡轴承40b进行径向限位,不需要额外设置其他限位结构。
谐波减速器装置100b还包括设置于柔轮10b的杯底部12b与止挡轴承40b之间的垫圈81b。垫圈81b呈片状。垫圈81b和第二台阶24b对止挡轴承40b进行轴向双方向限位,套筒21b和输出轴80b对止挡轴承40b进行径向限位,由此,止挡轴承40b在轴向和径向上均得到了限位。
垫圈81b呈片状,垫圈81b与止挡轴承40b在套筒21b的轴向上并未存在重叠,垫圈81b与止挡轴承40b并排套于套筒21b上。请再次参阅图2,图2中的垫圈81a包括径向连接部82a和轴向环部83a,通过径向连接部82a对止挡轴承40b进行径向限位,而在本申请中,垫圈81b只需要简单的呈片状,不需要径向连接部82a,结构更加简单,装配也容易。
输出轴80b的外环面凸设有安装部82b,安装部82b与柔轮10b的杯底部12b一同固定于输出轴承70b的内圈72b。在套筒21b的轴向上,止挡轴承40b、垫圈81b、柔轮10b的杯底部12b、安装部82b及输出轴承70b的内圈72b依次紧密排布,中间并未设置其他的零部件。输出轴承70b的内圈72b于内侧开设有容置槽73b,安装部82b安装于容置槽73b内。
谐波减速器装置100b还包括位于输出轴承70b外侧的另一端盖93b,另一端盖93b连接于输出轴承70b的内圈72b。这里所说的输出轴承70b外侧是指输出轴承70b背离刚轮60b的一侧。
另一端盖93b与输出轴80b为两个独立的部件。另一端盖93b的一侧与输出轴80b之间设置有束线结构1b。将另一端盖93b与输出轴80b设置成两个独立的部件,一方面是减少了如图2所示的输出轴80a与第二端盖93a一体结构所造成的加工及安装的不便,同时也降低了成本,另外一方面,还可以在另一端盖93b与输出轴80b的端部之间设置束线结构1b,一举两得。
另一端盖93b在靠近输出轴承70b的一侧凸设有连接部94b,连接部94b伸入输出轴承70b的内圈72b并靠近输出轴 80b的端部。在本实施例中,束线结构1b包括连接于连接部94b内的管体101b及套设于管体101b外部的弹性伸缩部102b。管体101b供线缆103b穿过。管体101b的一端伸入至输出轴80b内,另一端连接于连接部94b上。伸缩部102b位于管体101b与连接部94b之间。
在本实施例中,波发生器主体22b包括形成于套筒21b上的椭圆盘25b及连接于椭圆盘25b上的柔性轴承26b。在其他实施例中,波发生器主体22b包括形成于套筒21b上的转臂及安装于转臂的相对两端的滚轮;或者,波发生器主体22b包括形成于套筒21b上的凸轮及连接于凸轮上的柔性轴承26b。
在本实施例中,输出轴承70b为自带油封95b的轴承,不需要像图2所示的谐波减速器需要在第二端盖93a的内侧设置油封95a,在第二端盖93a的内侧设置的油封95a需要定制,成本上会比较高。
综上方案,本申请的谐波减速器装置100b在成本上比图2所示的谐波减速器100a减少近20%。具体表现如下:
1、图2所示的谐波减速器100a的刚轮60a、柔轮10a需要定制,而本申请的谐波减速器装置100b只需要采用刚轮60b、柔轮10b的标准件即可以满足设计要求,减少了定制成本;
2、图2所示的谐波减速器100a的滚子轴承70a采用的是不带油封的轴承,油封定制化设计在右侧端盖93a与滚子轴承70a之间,而本申请采用了自带油封95b的输出轴承70b,不需要再另外设计,减少了定制成本;
3、图2所示的谐波减速器100a,起到围板91b作用的部件是在第一端盖50a外侧的固定板52a,而这个固定板52a,在图2中作为单独的零部件存在的,无形中增加了零部件的数量,还需要增加库存空间,增加零部件的库存管控种类,也增加了加工工序和装配工序,当然,也增加了成本,而本申请,围板91b连接于主体92b的外端缘并与主体92b是一体的。围板91b并不会作为单独的零部件存在,而是和端盖90b的主体92b是一体的,如此设置,可以减少零部件的数量,减少了作为单独零部件的围板91b的额外加工费用,也减少了对作为单独零部件的围板91b的加工工序和装配工序,一定程度上节省了谐波减速器装置100b的成本;
4、图2所示的谐波减速器100a,输出轴80a与右侧端盖93a是一体的,整个零件体积是很大的,右侧端盖93a与输出轴80a几乎是垂直的,在加工难度上无形中增加加工成本,而本申请,输出轴80b与另一端盖93b分开,加工时,输出轴80b与另一端盖93b分开加工,虽然在加工零件的数量上有增加,但实际上相比加工难度上所带来的加工成本增加,实际上是降低了成本。
关节204还包括对套筒21b进行动力输入的驱动电机9。驱动电机9设置于谐波减速器装置100b的一侧。关节204还包括套设于套筒21b上的另一轴承101,驱动电机9包括套设于套筒21b上的转子91及与转子91配合的定子92。另一轴承101位于转子的远离波发生器20b的一侧。另一轴承101位于转子91的远离另一端盖93b的一侧。
关节204还包括套设于套筒21b上的安装件206。安装件206位于电机9的远离端盖90b的一侧,并用于对另一轴承101进行限位。
电机9的定子92与转子91之间形成有容置空间93,另一轴承101位于容置空间93内,并且不占用关节204的轴向空间。安装件206包括板体207及连接于板体207的一侧的限位环208。限位环208和套筒21b对另一轴承101进行径向限位。套筒21b的外环面形成有第三台阶27b。第三台阶27b和板体207对另一轴承101进行轴向限位。限位环208伸入容置空间93内。另一轴承101与板体207之间设置有弹性件95,起到减震的作用。
关节204还包括安装于套筒21b的制动器205。制动器205位于安装件206的外侧。安装件206位于制动器205和电机9之间。安装件206的外周部2b夹设于电机9的外壳94与制动器205的壳体209之间,实现安装件206的固定。
安装件206利用现有的电机与制动器之间的原本空隙来实现另一轴承101的安装,通过将限位环208伸入到电机9的容置空间93内,安装件206的外周部2b在电机9的外壳94与制动器205的壳体209之间以错位的方式连接,并不会 增加整个关节的轴向尺寸。
综上,谐波减速器装置100b在轴向尺寸上减小,在刚轮60b径向尺寸不变的情况下,达到谐波减速器装置100b更加小型化的需求,与此同时,应用该谐波减速器装置100b的关节204也会更加小型化。进而,应用这种小型化的关节的机械臂201也会更加小型化。应用这样的机械臂的机器人200也是更加小型化的。
请同时参阅图10和图11,本申请第二实施例提供的谐波减速器装置100c与第一实施例提供的谐波减速器装置100b大致相同,其不同之处在于:
第一止挡结构30c包括套设于套筒21c上并随着套筒21c的转动而转动的止挡件31c及连接于止挡件31c的密封件32c;止挡件31c的一端内侧面抵顶于第一台阶23c上,密封件32c的一端外侧面抵顶于围板91c上,从而实现第一止挡结构30c在第一台阶23c及围板91c之间的限位。这里所说的内侧面是指靠近波发生器主体22c的一侧,外侧面是指远离波发生器主体22c的一侧。这里所说的止挡件31c的一端是指靠近套筒21c的一端,密封件32c的一端是指靠近围板91c且远离套筒21c的一端。
第一止挡结构30c整体呈片状。第一止挡结构30c的整体轴向尺寸小于第一止挡结构30c的内径和外径之差。密封件32c与止挡件31c一同跟着套筒21c转动。密封件32c与围板91c之间形成转动副,在套筒21c转动时,密封件32c的一端外侧缘与围板91c接触而形成转动副。密封件32c的一端外侧缘与围板91c之间在密封件32c转动时始终接触,在密封件32c与围板91c之间的接触处形成密封结构。
止挡件31c呈环状。止挡件31c包括横截面呈U形的固定部301c、由固定部301c的靠近波发生器主体22c的一侧背离套筒21c方向延伸的延伸部302c及由延伸部302c的远离套筒21c的侧缘背离套筒21c方向且朝向围板91c倾斜延伸的倾斜部303c。
密封件32c呈环状。密封件32c包括固定于固定部301c内的止挡部320c及由止挡部320c的背离套筒21c且靠近围板91c的一侧朝向围板91c倾斜延伸的接触部321c。接触部321c与止挡部320c的夹角呈钝角。
止挡件31c为刚性件,密封件32c为柔性件。在第一止挡结构30c随着套筒21c转动时,接触部321c与围板91c始终挤压紧密接触,不但达到限位的作用,还起到了密封的作用。
请同时参阅图12和图13,本申请第三实施例提供的谐波减速器装置100d与第一实施例提供的谐波减速器装置100b大致相同,其不同之处在于:
套设于套筒21d上的第一止挡结构30d直接形成于端盖90d上,不再通过单独的零部件来实现轴向的止挡功能,减少了零部件的数量。
在第三实施例中,第一止挡结构30d直接形成于围板91d上。不再需要第一台阶来限位。第一止挡结构30d包括连接于围板91d的靠近套筒21d的一侧的连接环92d,连接环92d与套筒21d的外环面形成面接触。
在连接环92d与套筒21d的外环面之间形成有密封结构33d。密封结构33d为在连接环92d与套筒21d之间的接触面上开设环槽34d。环槽34d包括两个槽壁面36d及连接两个槽壁面36d的槽底面37d。槽底面37d与每个槽壁面36d之间形成有拐角38d。如此设置,使得润滑油即便想流出来,也必须经过两个槽壁面36d、一个槽底面37d和两个拐角38d,这么漫长的路径最终会让润滑油流不出来,达到密封、防泄露的目的。
环槽34d可以设置多个,例如1个、2个、3个等,在缩小轴向尺寸的情况下,环槽34d的数量可以根据情况来设置。
在本实施例中,取消了图2所示的谐波减速器100a的第一定位轴承30a的使用,第一止挡结构30d在轴向上的尺寸是小于图2所示的谐波减速器100a的固定板52a与第一定位轴承30a的轴向尺寸之和。
在本实施例中,连接环92d可以朝向电机9d延伸。可以理解地是,为了更进一步减小轴向尺寸,连接环92d可以伸 入电机9d的定子921d和转子911d之间的容置空间93d内。
请同时参阅图14,图14示出了本申请第三实施例提供的谐波减速器装置100d与图2的谐波减速器100a在轴向尺寸上的对比图,从图中可以看出,在相同的刚轮60d、60a径向尺寸L下,轴向尺寸明显缩减了,具体地,可从图中以线W为基准,以对第一止挡结构30d的左侧起限位功能的元件为起点(对于图2来讲,是以固定板52a为起点,对于图14来讲,以第一止挡结构30d本身的左侧为起点),以柔轮的杯底部12d为终点,测量两者之间的距离,A1明显比A2小,本申请实施例提供的谐波减速器装置100d比图2的谐波减速器100a在轴向尺寸有明显减少。在本实施例中,具体减少了5mm-13mm。优选地,减少了8mm-10mm。
在上述第一、第二、第三实例中,提供了三种不同的第一止挡结构的方案,在其他实施例中,第一止挡结构可以为轴套等其他支撑结构。
需要说明的是,在本实施例中,止挡的概念是指挡住的意思,不一定必须一直处于接触状态,在运动方向上,需要被挡住的时候起止挡的作用即可。在其他实施例中,止挡可以起到密封和/或定位的功能,定位是指位置不动的意思。
请参阅图15,本申请第四实施例提供的谐波减速器装置100e与第一实施例提供的谐波减速器装置100b大致相同,其不同之处在于:
另一端盖93e与输出轴80e是一体的。输出轴80e上不再设置安装部82b,输出轴承70e的内圈72e也不必设置容置槽73b。柔轮10e的杯底部12e直接与输出轴承70e的内圈72e固定在一起。柔轮10e的杯底部12e与输出轴承70e的内圈72e之间不再设置安装部82b。柔轮10e的杯底部12e直接与输出轴承70e的内圈72e接触。输出轴80e与输出轴承70e的内圈72e的固定是通过另一端盖93e与输出轴承70e的内圈72e的固定来实现的。
请参阅图16,本申请第五实施例提供的谐波减速器装置100f与第二实施例提供的谐波减速器装置100c大致相同,其不同之处与本申请第四实施例提供的谐波减速器装置100e与第一实施例提供的谐波减速器装置100b的不同之处相同,即,另一端盖93f与输出轴80f是一体的。输出轴80f上不再设置安装部,输出轴承70f的内圈72f也不必设置容置槽。柔轮10f的杯底部12f直接与输出轴承70f的内圈72f固定在一起。柔轮10f的杯底部12f与输出轴承70f的内圈72f之间不再设置安装部。柔轮10f的杯底部12f直接与输出轴承70f的内圈72f接触。输出轴80f与输出轴承70f的内圈72f的固定是通过另一端盖93f与输出轴承70f的内圈72f的固定来实现的。
请参阅图17,本申请第六实施例提供的谐波减速器装置100g与第三实施例提供的谐波减速器装置100d大致相同,其不同之处与本申请第四实施例提供的谐波减速器装置100e与第一实施例提供的谐波减速器装置100b的不同之处相同,即,另一端盖93g与输出轴80g是一体的。输出轴80g上不再设置安装部,输出轴承70g的内圈72g也不必设置容置槽。柔轮10g的杯底部12g直接与输出轴承70g的内圈72g固定在一起。柔轮10g的杯底部12g与输出轴承70g的内圈72g之间不再设置安装部。柔轮10g的杯底部12g直接与输出轴承70g的内圈72g接触。输出轴80g与输出轴承70g的内圈72g的固定是通过另一端盖93g与输出轴承70g的内圈72g的固定来实现的。
请参阅图18,本申请第七实施例提供的谐波减速器装置100h与第一实施例提供的谐波减速器装置100b大致相同,其不同之处在于:
第二止挡结构40h套设于套筒21h的外围。第二止挡结构40h与波发生器20h的动力输出端在套筒21h的轴线上的投影不重叠。垫圈81h包括径向连接部82h及由径向连接部82h向内延伸的轴向环部83h。轴向环部83h夹设于第二止挡结构40h与柔轮10h的杯底部12h之间。第二台阶24h形成于套筒21h的外环面。第二止挡结构40h在轴向上限位于第二台阶24h与轴向环部83h之间。第二止挡结构40h在径向上限位于径向连接部82h与套筒21h的外环面之间。
请参阅图19,本申请第八实施例提供的谐波减速器装置100i与第二实施例提供的谐波减速器装置100c大致相同, 其不同之处在于:
第二止挡结构40i套设于套筒21i的外围。第二止挡结构40i与波发生器20i的动力输出端在套筒21i的轴线上的投影不重叠。垫圈81i包括径向连接部82i及由径向连接部82i向内延伸的轴向环部83i。轴向环部83i夹设于第二止挡结构40i与柔轮10i的杯底部12i之间。第二台阶24i形成于套筒21i的外环面。第二止挡结构40i在轴向上限位于第二台阶24i与轴向环部83i之间。第二止挡结构40i在径向上限位于径向连接部82i与套筒21i的外环面之间。
请参阅图20,本申请第九实施例提供的谐波减速器装置100k与第三实施例提供的谐波减速器装置100d大致相同,其不同之处在于:
第二止挡结构40k套设于套筒21k的外围。第二止挡结构40k与波发生器20k的动力输出端在套筒21k的轴线上的投影不重叠。垫圈81k包括径向连接部82k及由径向连接部82k向内延伸的轴向环部83k。轴向环部83k夹设于第二止挡结构40k与柔轮10k的杯底部12k之间。第二台阶24k形成于套筒21k的外环面。第二止挡结构40k在轴向上限位于第二台阶24k与轴向环部83k之间。第二止挡结构40k在径向上限位于径向连接部82k与套筒21k的外环面之间。
请参阅图21,本申请第十实施例提供的谐波减速器装置100m与第七实施例提供的谐波减速器装置100h大致相同,其不同之处在于:
另一端盖93m与输出轴80m是一体的。输出轴80m上不再设置安装部,输出轴承70m的内圈72m也不必设置容置槽。柔轮10m的杯底部12m直接与输出轴承70m的内圈72m固定在一起。柔轮10m的杯底部12m与输出轴承70m的内圈72m之间不再设置安装部。柔轮10m的杯底部12m直接与输出轴承70m的内圈72m接触。输出轴80m与输出轴承70m的内圈72m的固定是通过另一端盖93m与输出轴承70m的内圈72m的固定来实现的。
请参阅图22,本申请第十一实施例提供的谐波减速器装置100n与第八实施例提供的谐波减速器装置100i大致相同,其不同之处在于:
另一端盖93n与输出轴80n是一体的。输出轴80n上不再设置安装部,输出轴承70n的内圈72n也不必设置容置槽。柔轮10n的杯底部12n直接与输出轴承70n的内圈72n固定在一起。柔轮10n的杯底部12n与输出轴承70n的内圈72n之间不再设置安装部。柔轮10n的杯底部12n直接与输出轴承70n的内圈72n接触。输出轴80n与输出轴承70n的内圈72n的固定是通过另一端盖93n与输出轴承70n的内圈72n的固定来实现的。
请参阅图23,本申请第十二实施例提供的谐波减速器装置100p与第九实施例提供的谐波减速器装置100k大致相同,其不同之处在于:
另一端盖93p与输出轴80p是一体的。输出轴80p上不再设置安装部,输出轴承70p的内圈72p也不必设置容置槽。柔轮10p的杯底部12p直接与输出轴承70p的内圈72p固定在一起。柔轮10p的杯底部12p与输出轴承70p的内圈72p之间不再设置安装部。柔轮10p的杯底部12p直接与输出轴承70p的内圈72p接触。输出轴80p与输出轴承70p的内圈72p的固定是通过另一端盖93p与输出轴承70p的内圈72p的固定来实现的。
上述十二个实施例,均在轴向尺寸上,相对于图2所示的谐波减速器100a有所减小,均突破了常规,第一止挡结构不采用轴承结构,而采用比提供轴向限位功能的常规轴承的轴向尺寸更小的第一止挡结构来代替常规轴承。在刚轮径向尺寸不变的情况下,直接通过改变谐波减速器装置的轴向尺寸,达到谐波减速器装置更加小型化的需求,迎合了市场需求。同时,或多或少在成本上均有所降低。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本申请的保护范围之内。

Claims (89)

  1. 一种谐波减速器装置,其特征在于:所述谐波减速器装置包括杯状的柔轮、与所述柔轮相啮合的刚轮及波发生器,所述波发生器包括供动力输入的套筒及设置于所述套筒上且在所述套筒的转动下使所述柔轮发生径向变形以改变所述柔轮与所述刚轮啮合位置的波发生器主体,所述谐波减速器装置还包括相对设置的端盖和输出轴承,所述谐波减速器装置还包括对所述套筒进行止挡的第一止挡结构和第二止挡结构,所述第一止挡结构采用非轴承结构并套设于所述套筒上,所述套筒与所述端盖之间形成有缝隙,所述第一止挡结构密封所述缝隙,所述第一止挡结构的轴向尺寸小于所述第一止挡结构的内径和外径之差。
  2. 如权利要求1所述的谐波减速器装置,其特征在于:所述第一止挡结构和所述第二止挡结构对所述套筒进行轴向双方向止挡。
  3. 如权利要求1所述的谐波减速器装置,其特征在于:所述套筒的外环面形成有第一台阶,所述端盖的外侧面形成有围板,所述第一止挡结构设置于所述第一台阶和所述围板之间。
  4. 如权利要求3所述的谐波减速器装置,其特征在于:所述第一止挡结构包括套设于所述套筒上并随着所述套筒的转动而转动的止挡件及相对于所述止挡件转动的密封件,所述密封件与所述端盖固定连接,所述止挡件抵顶于所述第一台阶上,所述密封件抵顶于所述围板上。
  5. 如权利要求4所述的谐波减速器装置,其特征在于:所述止挡件与所述密封件之间形成有密封结构,所述密封结构包括环槽及插入所述环槽内的凸环,所述止挡件和所述密封件二者之中的其中一者开设所述环槽,所述止挡件和所述密封件二者之中的另外一者凸设有所述凸环。
  6. 如权利要求4所述的谐波减速器装置,其特征在于:所述止挡件和所述密封件二者之中至少有一者呈片状。
  7. 如权利要求3所述的谐波减速器装置,其特征在于:所述第一止挡结构包括套设于所述套筒上并随着所述套筒的转动而转动的止挡件及连接于所述止挡件的密封件;所述止挡件的一端内侧面抵顶于所述第一台阶上,所述密封件的一端外侧面抵顶于所述围板上。
  8. 如权利要求7所述的谐波减速器装置,其特征在于:所述密封件与所述围板之间在所述密封件转动时始终接触,在所述密封件与所述围板之间的接触处形成密封结构。
  9. 如权利要求7所述的谐波减速器装置,其特征在于:所述止挡件包括横截面呈U形的固定部、由所述固定部的靠近所述波发生器主体的一侧背离所述套筒方向延伸的延伸部及由所述延伸部的远离所述套筒的侧缘背离所述套筒方向且朝向所述围板倾斜延伸的倾斜部,所述密封件包括固定于所述固定部内的止挡部及由所述止挡部的背离所述套筒且靠近所述围板的一侧朝向所述围板倾斜延伸的接触部,所述接触部与所述围板接触。
  10. 如权利要求1所述的谐波减速器装置,其特征在于:所述端盖的外侧面形成有围板,所述第一止挡结构包括连接于所述围板的靠近所述套筒的一侧的连接环,所述连接环与所述套筒的外环面之间形成有密封结构。
  11. 如权利要求10所述的谐波减速器装置,其特征在于:所述连接环与所述套筒的外环面形成面接触,所述密封结构为在所述连接环与所述套筒之间的接触面上开设的至少一个环槽。
  12. 如权利要求3-11任一项所述的谐波减速器装置,其特征在于:所述端盖包括主体,所述主体的内端面与所述 输出轴承的外圈之间固定所述刚轮,所述围板连接于所述主体的外端缘并与所述主体是一体的。
  13. 如权利要求1-11任一项所述的谐波减速器装置,其特征在于:所述第二止挡结构为止挡轴承,所述波发生器的动力输出端与所述止挡轴承在所述套筒的轴线上的投影至少部分重叠。
  14. 如权利要求13所述的谐波减速器装置,其特征在于:所述波发生器的动力输出端与所述止挡轴承在所述套筒的轴线上的投影重叠率范围为0.1-1。
  15. 如权利要求14所述的谐波减速器装置,其特征在于:所述波发生器的动力输出端与所述止挡轴承在所述套筒的轴线上的投影重叠率范围为0.5-0.9。
  16. 如权利要求1-11任一项所述的谐波减速器装置,其特征在于:所述第二止挡结构为止挡轴承,所述谐波减速器装置还包括与所述输出轴承的内圈固定连接的输出轴,所述止挡轴承位于所述输出轴和所述套筒之间。
  17. 如权利要求16所述的谐波减速器装置,其特征在于:所述输出轴的外环面凸设有安装部,所述安装部与所述柔轮的杯底部一同固定于所述输出轴承的内圈。
  18. 如权利要求16所述的谐波减速器装置,其特征在于:所述套筒的内环面设置有第二台阶;所述止挡轴承的一侧抵顶于所述第二台阶上,另一侧间接抵顶于所述柔轮的杯底部,所述止挡轴承的外圈抵顶于所述第二台阶上。
  19. 如权利要求1-11任一项所述的谐波减速器装置,其特征在于:所述谐波减速器装置还包括与所述输出轴承的内圈固定连接的输出轴及位于所述输出轴承外侧的另一端盖,所述另一端盖连接于所述输出轴承的内圈。
  20. 如权利要求19所述的谐波减速器装置,其特征在于:所述另一端盖与所述输出轴为两个独立的部件,所述另一端盖与所述输出轴之间设置有束线结构。
  21. 如权利要求1-11任一项所述的谐波减速器装置,其特征在于:所述输出轴承为自带油封的轴承。
  22. 如权利要求1-11任一项所述的谐波减速器装置,其特征在于:所述波发生器主体包括形成于所述套筒上的转臂及安装于所述转臂的相对两端的滚轮;或者,所述波发生器主体包括形成于所述套筒上的凸轮及连接于所述凸轮上的柔性轴承;或者,所述波发生器主体包括形成于所述套筒上的椭圆盘及连接于所述椭圆盘上的柔性轴承。
  23. 一种关节,其特征在于:所述关节包括如权利要求1-22任一项所述的谐波减速器装置及对所述套筒进行动力输入的驱动电机。
  24. 如权利要求23所述的关节,其特征在于:所述关节还包括套设于所述套筒上的另一轴承和对所述另一轴承进行限位的安装件,所述电机的定子与转子之间形成有容置空间,所述另一轴承位于所述容置空间内。
  25. 如权利要求24所述的关节,其特征在于:所述安装件包括板体及连接于所述板体的一侧的限位环,所述限位环和所述套筒对所述另一轴承进行径向限位,所述套筒的外环面形成有第三台阶,所述第三台阶和所述板体对所述另一轴承进行轴向限位。
  26. 一种机械臂,其特征在于:所述机械臂包括如权利要求23-25任一项所述的关节。
  27. 一种机器人,其特征在于:所述机器人包括如权利要求26所述的机械臂。
  28. 一种谐波减速器装置,其特征在于:所述谐波减速器装置包括杯状的柔轮、与所述柔轮相啮合的刚轮及波发生器,所述波发生器包括供动力输入的套筒及设置于所述套筒上的波发生器主体,所述谐波减速器装置还包括对所述套筒 进行止挡的第一止挡结构和第二止挡结构,所述波发生器的动力输出端与所述第二止挡结构在所述套筒的轴线上的投影至少部分重叠。
  29. 如权利要求28所述的谐波减速器装置,其特征在于:所述第二止挡结构为止挡轴承。
  30. 如权利要求28所述的谐波减速器装置,其特征在于:所述柔轮包括环部及连接于所述环部的杯底部,所述环部与所述杯底部形成有容纳空间,所述波发生器主体与所述第二止挡结构位于所述容纳空间内。
  31. 如权利要求28所述的谐波减速器装置,其特征在于:所述谐波减速器装置还包括相对设置的端盖和输出轴承,所述端盖包括主体,所述主体的内端面与所述输出轴承的外圈之间固定所述刚轮,所述柔轮固定于所述输出轴承的内圈。
  32. 如权利要求28所述的谐波减速器装置,其特征在于:所述谐波减速器装置还包括输出轴承及与所述输出轴承的内圈固定连接的输出轴,所述第二止挡结构位于所述输出轴和所述套筒之间。
  33. 如权利要求32所述的谐波减速器装置,其特征在于:所述输出轴的外环面凸设有安装部,所述安装部与所述柔轮的杯底部一同固定于所述输出轴承的内圈。
  34. 如权利要求28所述的谐波减速器装置,其特征在于:所述套筒的内环面设置有第二台阶;所述第二止挡结构的一侧抵顶于所述第二台阶上,另一侧间接抵顶于所述柔轮的杯底部,所述第二止挡结构的外圈抵顶于所述第二台阶上。
  35. 如权利要求32所述的谐波减速器装置,其特征在于:所述谐波减速器装置还包括位于所述输出轴承外侧的另一端盖,所述另一端盖连接于所述输出轴承的内圈。
  36. 如权利要求35所述的谐波减速器装置,其特征在于:所述另一端盖与所述输出轴为两个独立的部件,所述另一端盖与所述输出轴之间设置有束线结构。
  37. 如权利要求36所述的谐波减速器装置,其特征在于:所述另一端盖在靠近所述输出轴承的一侧凸设有连接部,所述连接部伸入所述输出轴承的内圈并靠近所述输出轴的端部,所述束线结构包括连接于所述连接部内的管体及套设于所述管体外部的弹性伸缩部;所述管体的一端伸入至所述输出轴内,另一端连接于所述连接部上;所述伸缩部位于所述管体与所述连接部之间。
  38. 如权利要求28所述的谐波减速器装置,其特征在于:所述波发生器主体包括形成于所述套筒上的转臂及安装于所述转臂的相对两端的滚轮;或者,所述波发生器主体包括形成于所述套筒上的凸轮及连接于所述凸轮上的柔性轴承;或者,所述波发生器主体包括形成于所述套筒上的椭圆盘及连接于所述椭圆盘上的柔性轴承。
  39. 如权利要求28所述的谐波减速器装置,其特征在于:所述波发生器的动力输出端与所述第二止挡结构在所述套筒的轴线上的投影重叠率范围为0.1-1。
  40. 如权利要求28所述的谐波减速器装置,其特征在于:所述波发生器的动力输出端与所述第二止挡结构在所述套筒的轴线上的投影重叠率范围为0.5-0.9。
  41. 如权利要求28所述的谐波减速器装置,其特征在于:所述第一止挡结构的轴向尺寸小于所述第一止挡结构的内径和外径之差。
  42. 如权利要求28所述的谐波减速器装置,其特征在于:所述第一止挡结构和所述第二止挡结构对所述套筒进行轴向双方向止挡。
  43. 如权利要求28所述的谐波减速器装置,其特征在于:所述第一止挡结构采用非轴承结构并套设于所述套筒上。
  44. 如权利要求28-30、32-43任一项所述的谐波减速器装置,其特征在于:所述谐波减速器装置还包括端盖,所述套筒与所述端盖之间形成有缝隙,所述第一止挡结构密封所述缝隙。
  45. 如权利要求44所述的谐波减速器装置,其特征在于:所述第一止挡结构包括套设于所述套筒上并随着所述套筒的转动而转动的止挡件及相对于所述止挡件转动的密封件,所述密封件与所述端盖固定连接。
  46. 如权利要求45所述的谐波减速器装置,其特征在于:所述端盖的外侧面形成有围板,所述套筒的外环面形成有第一台阶,所述第一止挡结构设置于所述第一台阶和所述围板之间,所述止挡件抵顶于所述第一台阶上,所述密封件抵顶于所述围板上。
  47. 如权利要求45所述的谐波减速器装置,其特征在于:所述止挡件与所述密封件之间形成有密封结构,所述密封结构包括环槽及插入所述环槽内的凸环,所述止挡件和所述密封件二者之中的其中一者开设所述环槽,所述止挡件和所述密封件二者之中的另外一者凸设有所述凸环。
  48. 如权利要求45所述的谐波减速器装置,其特征在于:所述止挡件和所述密封件二者之中至少有一者呈片状。
  49. 如权利要求44所述的谐波减速器装置,其特征在于:所述第一止挡结构包括套设于所述套筒上并随着所述套筒的转动而转动的止挡件及连接于所述止挡件的密封件;所述端盖的外侧面形成有围板,所述密封件的一端外侧面抵顶于所述围板上。
  50. 如权利要求49所述的谐波减速器装置,其特征在于:所述套筒的外环面形成有第一台阶,所述止挡件的一端内侧面抵顶于所述第一台阶上。
  51. 如权利要求49所述的谐波减速器装置,其特征在于:所述密封件与所述围板之间在所述密封件转动时始终接触,在所述密封件与所述围板之间的接触处形成密封结构。
  52. 如权利要求49所述的谐波减速器装置,其特征在于:所述止挡件包括横截面呈U形的固定部、由所述固定部的靠近所述波发生器主体的一侧背离所述套筒方向延伸的延伸部及由所述延伸部的远离所述套筒的侧缘背离所述套筒方向且朝向所述围板倾斜延伸的倾斜部,所述密封件包括固定于所述固定部内的止挡部及由所述止挡部的背离所述套筒且靠近所述围板的一侧朝向所述围板倾斜延伸的接触部,所述接触部与所述围板接触。
  53. 如权利要求44所述的谐波减速器装置,其特征在于:所述端盖的外侧面形成有围板,所述第一止挡结构包括连接于所述围板的靠近所述套筒的一侧的连接环,所述连接环与所述套筒的外环面之间形成有密封结构。
  54. 如权利要求53所述的谐波减速器装置,其特征在于:所述连接环与所述套筒的外环面形成面接触,所述密封结构为在所述连接环与所述套筒之间的接触面上开设的至少一个环槽。
  55. 如权利要求44所述的谐波减速器装置,其特征在于:所述端盖的外侧面形成有围板,所述端盖包括主体,所述围板连接于所述主体的外端缘并与所述主体是一体的。
  56. 一种关节,其特征在于:所述关节包括如权利要求28-55任一项所述的谐波减速器装置及对所述套筒进行动力输入的驱动电机。
  57. 如权利要求56所述的关节,其特征在于:所述关节还包括套设于所述套筒上的另一轴承和对所述另一轴承进行限位的安装件,所述电机的定子与转子之间形成有容置空间,所述另一轴承位于所述容置空间内。
  58. 如权利要求57所述的关节,其特征在于:所述安装件包括板体及连接于所述板体的一侧的限位环,所述限位环和所述套筒对所述另一轴承进行径向限位,所述套筒的外环面形成有第三台阶,所述第三台阶和所述板体对所述另一轴承进行轴向限位。
  59. 一种机械臂,其特征在于:所述机械臂包括如权利要求56-58任一项所述的关节。
  60. 一种机器人,其特征在于:所述机器人包括如权利要求59所述的机械臂。
  61. 一种谐波减速器装置,其特征在于:所述谐波减速器装置包括杯状的柔轮、与所述柔轮相啮合的刚轮及波发生器,所述波发生器包括供动力输入的套筒及设置于所述套筒上的波发生器主体,所述谐波减速器装置还包括端盖,所述谐波减速器装置还包括对所述套筒进行止挡的第一止挡结构和第二止挡结构,所述第一止挡结构采用非轴承结构并套设于所述套筒上,所述套筒与所述端盖之间形成有缝隙,所述第一止挡结构密封所述缝隙,所述第一止挡结构的轴向尺寸小于所述第一止挡结构的内径和外径之差。
  62. 如权利要求61所述的谐波减速器装置,其特征在于:所述第一止挡结构包括套设于所述套筒上并随着所述套筒的转动而转动的止挡件及相对于所述止挡件转动的密封件,所述密封件与所述端盖固定连接。
  63. 如权利要求62所述的谐波减速器装置,其特征在于:所述端盖的外侧面形成有围板,所述套筒的外环面形成有第一台阶,所述第一止挡结构设置于所述第一台阶和所述围板之间,所述止挡件抵顶于所述第一台阶上,所述密封件抵顶于所述围板上。
  64. 如权利要求62所述的谐波减速器装置,其特征在于:所述止挡件与所述密封件之间形成有密封结构,所述密封结构包括环槽及插入所述环槽内的凸环,所述止挡件和所述密封件二者之中的其中一者开设所述环槽,所述止挡件和所述密封件二者之中的另外一者凸设有所述凸环。
  65. 如权利要求62所述的谐波减速器装置,其特征在于:所述止挡件和所述密封件二者之中至少有一者呈片状。
  66. 如权利要求61所述的谐波减速器装置,其特征在于:所述第一止挡结构包括套设于所述套筒上并随着所述套筒的转动而转动的止挡件及连接于所述止挡件的密封件;所述端盖的外侧面形成有围板,所述密封件的一端外侧面抵顶于所述围板上。
  67. 如权利要求66所述的谐波减速器装置,其特征在于:所述套筒的外环面形成有第一台阶,所述止挡件的一端内侧面抵顶于所述第一台阶上。
  68. 如权利要求66所述的谐波减速器装置,其特征在于:所述密封件与所述围板之间在所述密封件转动时始终接触,在所述密封件与所述围板之间的接触处形成密封结构。
  69. 如权利要求66所述的谐波减速器装置,其特征在于:所述止挡件包括横截面呈U形的固定部、由所述固定部的靠近所述波发生器主体的一侧背离所述套筒方向延伸的延伸部及由所述延伸部的远离所述套筒的侧缘背离所述套筒方向且朝向所述围板倾斜延伸的倾斜部,所述密封件包括固定于所述固定部内的止挡部及由所述止挡部的背离所述套筒且靠近所述围板的一侧朝向所述围板倾斜延伸的接触部,所述接触部与所述围板接触。
  70. 如权利要求61所述的谐波减速器装置,其特征在于:所述端盖的外侧面形成有围板,所述第一止挡结构包括连接于所述围板的靠近所述套筒的一侧的连接环,所述连接环与所述套筒的外环面之间形成有密封结构。
  71. 如权利要求70所述的谐波减速器装置,其特征在于:所述连接环与所述套筒的外环面形成面接触,所述密封结构为在所述连接环与所述套筒之间的接触面上开设的至少一个环槽。
  72. 如权利要求61所述的谐波减速器装置,其特征在于:所述第一止挡结构和所述第二止挡结构对所述套筒进行轴向双方向止挡。
  73. 如权利要求61所述的谐波减速器装置,其特征在于:所述谐波减速器装置还包括输出轴承,所述输出轴承与所述端盖相对设置,所述端盖的外侧面形成有围板,所述端盖包括主体,所述主体的内端面与所述输出轴承的外圈之间固定所述刚轮,所述围板连接于所述主体的外端缘并与所述主体是一体的。
  74. 如权利要求61-73任一项所述的谐波减速器装置,其特征在于:所述第二止挡结构为止挡轴承,所述波发生器的动力输出端与所述止挡轴承在所述套筒的轴线上的投影至少部分重叠。
  75. 如权利要求74所述的谐波减速器装置,其特征在于:所述波发生器的动力输出端与所述止挡轴承在所述套筒的轴线上的投影重叠率范围为0.1-1。
  76. 如权利要求75所述的谐波减速器装置,其特征在于:所述波发生器的动力输出端与所述止挡轴承在所述套筒的轴线上的投影重叠率范围为0.5-0.9。
  77. 如权利要求61-72任一项所述的谐波减速器装置,其特征在于:所述第二止挡结构为止挡轴承,所述谐波减速器装置还包括输出轴承,所述输出轴承与所述端盖相对设置,所述谐波减速器装置还包括与所述输出轴承的内圈固定连接的输出轴,所述止挡轴承位于所述输出轴和所述套筒之间。
  78. 如权利要求77所述的谐波减速器装置,其特征在于:所述输出轴的外环面凸设有安装部,所述安装部与所述柔轮的杯底部一同固定于所述输出轴承的内圈。
  79. 如权利要求77所述的谐波减速器装置,其特征在于:所述套筒的内环面设置有第二台阶;所述止挡轴承的一侧抵顶于所述第二台阶上,另一侧间接抵顶于所述柔轮的杯底部,所述止挡轴承的外圈抵顶于所述第二台阶上。
  80. 如权利要求61-72任一项所述的谐波减速器装置,其特征在于:所述谐波减速器装置还包括输出轴承,所述输出轴承与所述端盖相对设置,所述谐波减速器装置还包括与所述输出轴承的内圈固定连接的输出轴及位于所述输出轴承外侧的另一端盖,所述另一端盖连接于所述输出轴承的内圈。
  81. 如权利要求80所述的谐波减速器装置,其特征在于:所述另一端盖与所述输出轴为两个独立的部件,所述另一端盖与所述输出轴之间设置有束线结构。
  82. 如权利要求81所述的谐波减速器装置,其特征在于:所述另一端盖在靠近所述输出轴承的一侧凸设有连接部,所述连接部伸入所述输出轴承的内圈并靠近所述输出轴的端部,所述束线结构包括连接于所述连接部内的管体及套设于所述管体外部的弹性伸缩部;所述管体的一端伸入至所述输出轴内,另一端连接于所述连接部上;所述伸缩部位于所述管体与所述连接部之间。
  83. 如权利要求61-73任一项所述的谐波减速器装置,其特征在于:所述波发生器主体包括形成于所述套筒上的转臂及安装于所述转臂的相对两端的滚轮;或者,所述波发生器主体包括形成于所述套筒上的凸轮及连接于所述凸轮上的柔性轴承;或者,所述波发生器主体包括形成于所述套筒上的椭圆盘及连接于所述椭圆盘上的柔性轴承。
  84. 如权利要求61-73任一项所述的谐波减速器装置,其特征在于:所述谐波减速器装置还包括设置于所述柔轮的杯底部与所述第二止挡结构之间的垫圈,所述垫圈包括径向连接部及由所述径向连接部向内延伸的轴向环部,所述轴向环部夹设于所述第二止挡结构与所述柔轮的所述杯底部之间,所述第二止挡结构在径向上限位于所述径向连接部与所述套筒的外环面之间。
  85. 一种关节,其特征在于:所述关节包括如权利要求61-84任一项所述的谐波减速器装置及对所述套筒进行动力输入的驱动电机。
  86. 如权利要求85所述的关节,其特征在于:所述关节还包括套设于所述套筒上的另一轴承和对所述另一轴承进行限位的安装件,所述电机的定子与转子之间形成有容置空间,所述另一轴承位于所述容置空间内。
  87. 如权利要求86所述的关节,其特征在于:所述安装件包括板体及连接于所述板体的一侧的限位环,所述限位环和所述套筒对所述另一轴承进行径向限位,所述套筒的外环面形成有第三台阶,所述第三台阶和所述板体对所述另一轴承进行轴向限位。
  88. 一种机械臂,其特征在于:所述机械臂包括如权利要求85-87任一项所述的关节。
  89. 一种机器人,其特征在于:所述机器人包括如权利要求88所述的机械臂。
PCT/CN2022/095687 2021-09-30 2022-05-27 关节、机械臂、机器人及其谐波减速器装置 WO2023050846A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210237142.4 2021-09-30
CN202210237114.2A CN114688230A (zh) 2021-09-30 2021-09-30 关节、机械臂、机器人及其谐波减速器装置
CN202210237114.2 2021-09-30
CN202111160367.6 2021-09-30
CN202111160367.6A CN113606313B (zh) 2021-09-30 2021-09-30 关节、机械臂、机器人及其谐波减速器装置
CN202210237142.4A CN114688231A (zh) 2021-09-30 2021-09-30 关节、机械臂、机器人及其谐波减速器装置

Publications (1)

Publication Number Publication Date
WO2023050846A1 true WO2023050846A1 (zh) 2023-04-06

Family

ID=78343339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095687 WO2023050846A1 (zh) 2021-09-30 2022-05-27 关节、机械臂、机器人及其谐波减速器装置

Country Status (2)

Country Link
CN (3) CN113606313B (zh)
WO (1) WO2023050846A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117847151A (zh) * 2024-03-04 2024-04-09 四川丹齿精工科技有限公司 一种精密减速箱传动结构总成

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847404A (zh) * 2021-09-30 2021-12-28 深圳市越疆科技有限公司 关节、机械臂、机器人及其谐波减速器装置
CN113606313B (zh) * 2021-09-30 2022-03-11 深圳市越疆科技有限公司 关节、机械臂、机器人及其谐波减速器装置
CN114278717A (zh) * 2021-12-23 2022-04-05 上海非夕机器人科技有限公司 用于转动关节的传动结构
CN115056262B (zh) * 2022-08-16 2023-05-09 库卡机器人(广东)有限公司 关节模组的驱动总成、机器人关节模组及机器人

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021948A (ja) * 2000-07-10 2002-01-23 Harmonic Drive Syst Ind Co Ltd ユニット型波動歯車装置
CN110303484A (zh) * 2019-07-04 2019-10-08 大族激光科技产业集团股份有限公司 关节模块和机器人
CN110561491A (zh) * 2019-08-09 2019-12-13 哈尔滨工业大学(深圳) 机械臂腕关节
CN111152258A (zh) * 2019-12-12 2020-05-15 中山市北京理工大学研究院 一种具有力感知功能的机械集成关节
CN211259531U (zh) * 2019-11-27 2020-08-14 珠海市钧兴机电有限公司 一种新型结构谐波减速器
US20210197404A1 (en) * 2019-12-31 2021-07-01 Ubtech Robotics Corp Ltd Robot joint and robot having the same
CN113606313A (zh) * 2021-09-30 2021-11-05 深圳市越疆科技有限公司 关节、机械臂、机器人及其谐波减速器装置
CN113847404A (zh) * 2021-09-30 2021-12-28 深圳市越疆科技有限公司 关节、机械臂、机器人及其谐波减速器装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012103786A1 (zh) * 2011-02-01 2012-08-09 配天(安徽)电子技术有限公司 一种柔轮、谐波减速器及机器人关节结构
TWM441059U (en) * 2012-06-13 2012-11-11 Harmonic Innovation Technology Co Ltd Flexspline mounting structure of harmonic drive reducer
BR112015003816B1 (pt) * 2012-08-21 2022-05-03 Nexen Group, Inc Sistema de engrenagens de onda de tensão
JP6067112B2 (ja) * 2013-07-01 2017-01-25 株式会社ハーモニック・ドライブ・システムズ 中空型波動歯車装置
CN104595425A (zh) * 2014-12-18 2015-05-06 陕西渭河工模具有限公司 短筒柔轮谐波减速器
CN104942820B (zh) * 2015-06-05 2017-07-14 上海宇航系统工程研究所 一种空间仿人机器人手臂关节
CN207364221U (zh) * 2017-11-01 2018-05-15 深圳市山卓谐波传动科技有限公司 一种谐波减速器
CN108061140A (zh) * 2017-12-22 2018-05-22 众合天成智能装备(廊坊)有限公司 一种谐波减速机构
KR102177405B1 (ko) * 2019-06-07 2020-11-12 하이젠모터 주식회사 일체형 중공 구동 모듈
CN110630717B (zh) * 2019-08-30 2021-11-16 浙江来福谐波传动股份有限公司 一款高扭矩高刚性长寿命谐波减速器及其安装方法
CN111005988A (zh) * 2019-12-12 2020-04-14 中山早稻田科技有限公司 一种具有力感知功能的谐波减速器
CN211841996U (zh) * 2019-12-27 2020-11-03 深圳市越疆科技有限公司 驱动单元、机器人关节以及机器人
CN211296392U (zh) * 2020-03-03 2020-08-18 深圳市蓝蓝科技有限公司 谐波减速机和电机的一体化结构
CN111473101A (zh) * 2020-05-27 2020-07-31 苏州绿的谐波传动科技股份有限公司 一种用于关节模组的杯状谐波减速器装置
CN111791261A (zh) * 2020-07-13 2020-10-20 浙江大学昆山创新中心 一种协作机器人的关节模组
CN213511949U (zh) * 2020-07-21 2021-06-22 尔智机器人(珠海)有限公司 一种组件型谐波减速器及关节
CN213628755U (zh) * 2020-07-24 2021-07-06 大族激光科技产业集团股份有限公司 一种谐波减速器及机器人
CN112605984A (zh) * 2020-12-25 2021-04-06 深圳市越疆科技有限公司 机械臂关节的撞针式抱闸装置、机械臂关节及机械臂

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021948A (ja) * 2000-07-10 2002-01-23 Harmonic Drive Syst Ind Co Ltd ユニット型波動歯車装置
CN110303484A (zh) * 2019-07-04 2019-10-08 大族激光科技产业集团股份有限公司 关节模块和机器人
CN110561491A (zh) * 2019-08-09 2019-12-13 哈尔滨工业大学(深圳) 机械臂腕关节
CN211259531U (zh) * 2019-11-27 2020-08-14 珠海市钧兴机电有限公司 一种新型结构谐波减速器
CN111152258A (zh) * 2019-12-12 2020-05-15 中山市北京理工大学研究院 一种具有力感知功能的机械集成关节
US20210197404A1 (en) * 2019-12-31 2021-07-01 Ubtech Robotics Corp Ltd Robot joint and robot having the same
CN113606313A (zh) * 2021-09-30 2021-11-05 深圳市越疆科技有限公司 关节、机械臂、机器人及其谐波减速器装置
CN113847404A (zh) * 2021-09-30 2021-12-28 深圳市越疆科技有限公司 关节、机械臂、机器人及其谐波减速器装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117847151A (zh) * 2024-03-04 2024-04-09 四川丹齿精工科技有限公司 一种精密减速箱传动结构总成

Also Published As

Publication number Publication date
CN113606313A (zh) 2021-11-05
CN114688230A (zh) 2022-07-01
CN113606313B (zh) 2022-03-11
CN114688231A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2023050846A1 (zh) 关节、机械臂、机器人及其谐波减速器装置
WO2023051714A1 (zh) 关节、机械臂、机器人及其谐波减速器装置和安装方法
US7752939B2 (en) Parallel link mechanism and industrial robot
US7698968B2 (en) Method for reducing input-side holding torque of wave gear device, and rotary actuator
US20150068349A1 (en) Robot arm and robot
US10906194B2 (en) Structure of joint of robot including drive motor and reduction gear
CN212385507U (zh) 一种机器人关节动力机构及机器人
TWI739858B (zh) 齒輪裝置
WO2020129661A1 (ja) 減速機及び内燃機関の可変圧縮機構のアクチュエータ
KR102650180B1 (ko) 감속기
CN113858175A (zh) T型执行器、机械臂及机器人
US10562179B2 (en) Articulated shaft structure of robot and robot
WO2020045516A1 (ja) 車両用駆動伝達装置、及び、油路形成ユニット
JP5143718B2 (ja) 回転装置
WO2022179068A1 (zh) 内啮合行星齿轮装置和机器人用关节装置
CN216742783U (zh) 扭矩传递组件及电动机执行器
CN216180506U (zh) T型执行器、机械臂及机器人
WO2022179067A1 (zh) 内啮合行星齿轮装置和机器人用关节装置
CN218040981U (zh) 外壳及具备该外壳的驱动装置
CN218802260U (zh) 转动座总成以及机器人
KR102167802B1 (ko) 차량용 엑츄에이터
KR20220122125A (ko) 회전식 감속 액추에이터
CN117704015A (zh) 摆线变速器及机械设备
JP2024043451A (ja) 歯車装置及びロボット用関節装置
CN117656122A (zh) 机器人关节输出总成、机器人关节模组及机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE