WO2023050831A1 - 圆周阵列分布的单个电梯井多个轿厢的电梯运行系统 - Google Patents

圆周阵列分布的单个电梯井多个轿厢的电梯运行系统 Download PDF

Info

Publication number
WO2023050831A1
WO2023050831A1 PCT/CN2022/093941 CN2022093941W WO2023050831A1 WO 2023050831 A1 WO2023050831 A1 WO 2023050831A1 CN 2022093941 W CN2022093941 W CN 2022093941W WO 2023050831 A1 WO2023050831 A1 WO 2023050831A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
intersection
horizontal
elevator
car
Prior art date
Application number
PCT/CN2022/093941
Other languages
English (en)
French (fr)
Inventor
林建就
温燕香
覃俊谕
窦毅
吴永贵
Original Assignee
广西桂华智能制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广西桂华智能制造有限公司 filed Critical 广西桂华智能制造有限公司
Publication of WO2023050831A1 publication Critical patent/WO2023050831A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/003Kinds or types of lifts in, or associated with, buildings or other structures for lateral transfer of car or frame, e.g. between vertical hoistways or to/from a parking position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/0035Arrangement of driving gear, e.g. location or support
    • B66B11/0045Arrangement of driving gear, e.g. location or support in the hoistway
    • B66B11/005Arrangement of driving gear, e.g. location or support in the hoistway on the car
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/043Driving gear ; Details thereof, e.g. seals actuated by rotating motor; Details, e.g. ventilation
    • B66B11/0461Driving gear ; Details thereof, e.g. seals actuated by rotating motor; Details, e.g. ventilation with rack and pinion gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/02Guideways; Guides
    • B66B7/023Mounting means therefor
    • B66B7/026Interconnections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/02Kinds or types of lifts in, or associated with, buildings or other structures actuated mechanically otherwise than by rope or cable
    • B66B9/022Kinds or types of lifts in, or associated with, buildings or other structures actuated mechanically otherwise than by rope or cable by rack and pinion drives

Definitions

  • the invention relates to the technical field of elevators in architectural design, in particular to an elevator running system with multiple cars in a single elevator shaft distributed in a circular array.
  • Elevator is an indispensable vertical transportation tool in modern high-rise buildings.
  • elevator operation planning in buildings has become one of the key issues that must be considered in the architectural design and construction stages.
  • the number of floors of the building, the maximum load capacity and operating speed of the elevator, and the future traffic flow of the building determine the degree of demand for the elevator in the building. If the number of floors is high and the flow of people is large, such as office buildings or shopping malls, the demand for elevators will be greater, the more planning space for elevators in the building will be, and the more land resources and economic costs will be occupied.
  • the traditional traction elevator can only run one car in the same elevator shaft.
  • the present invention aims at the mode that a single elevator shaft of a traditional traction elevator can only run with a single car, which is increasingly unable to meet the needs of high-rise buildings for elevators, and can only meet the needs by increasing the number of elevators and occupying building space.
  • an elevator operation system with multiple cars in a single elevator shaft distributed in a circular array is proposed to meet the demand for elevators in high-rise buildings with high traffic on the premise of occupying as little building space as possible.
  • Design an elevator operation system with multiple cars in a single elevator shaft distributed in a circular array including:
  • a pair of horizontal circular guide rail components are arranged on the wall where the car needs to stop on each floor in the vertical direction, and the horizontal circular guide rail components include concentric inner circular guide rails and outer circular guide rails;
  • the inner ring guide rail is composed of a number of inner ring horizontal track segments
  • the outer ring guide rail is composed of the same number of outer ring horizontal track segments as the inner ring horizontal track segments, and is set between every two adjacent inner ring horizontal track segments
  • a second cross track assembly that can switch between the vertical direction and the horizontal direction through rotation is provided between every two adjacent horizontal track segments of the outer ring.
  • the cylindrical space formed by several layers of circular guide rail components is at least three elevator shafts evenly distributed in the vertical direction, which are: the first elevator shaft as the ascending passage, the second elevator shaft as the suspension passage, and the descending passage the third elevator shaft;
  • each car The two sides of each car are equipped with a vertical movement power mechanism that drives the car to rise or fall along the vertical toothed guide rail, and the bottom of each car is equipped with a lateral movement force that makes the car move left and right in the horizontal direction. mechanism.
  • the vertical movement power mechanism includes two elevator shafts respectively arranged on the left and right sides of the car.
  • Each of the four first motors and four gears on the side, the eight first motors and eight gears are arranged near the eight corners on both sides of the car, and the eight first motors respectively control the eight gears at the same time. It moves on four vertical toothed guide rails of an elevator shaft.
  • the elevator operating system also includes two second motors respectively arranged at the lower ends of the two sides of the car and two screw rods connected to the two second motors;
  • the traversing power mechanism includes: a bottom plate arranged at the bottom of the car, and four translation modules arranged at the four corners of the lower end surface of the bottom plate, and each translation module is provided with a roller;
  • the second motor controls the traverse power mechanism to move in the vertical direction through the screw rod.
  • the translation module further includes: a third motor arranged on the mounting plate, a driving wheel, a synchronous belt, a driven wheel, a slider, and a fourth motor arranged on the slider, and the mounting plate is arranged on the lower end surface of the bottom plate;
  • the output end of the third motor is connected to the driving wheel, one end of the timing belt is connected to the driving wheel, and the other end is connected to the driven wheel, the slider is fixed by the belt fixing piece and the belt, and the roller is arranged on the output end of the fourth motor;
  • the third motor drives the rollers to perform telescopic actions in a direction perpendicular to the car door
  • the fourth motor drives the rollers to rotate so that the rollers translate on the horizontal circular guide rail component.
  • first intersection track assembly includes the fifth motor and the first intersection track
  • second intersection track assembly includes the fifth motor and the second intersection group track
  • the track at the first intersection is adapted to each section of the horizontal track section of the inner circle, and the track at the second intersection is adapted to the horizontal track section of each section of the outer circle;
  • the two ends of the long side of the track at the first intersection and the two ends of the long side of the track at the second intersection are all processed with the same convex arc structure.
  • One side of the two sides is processed with straight teeth matching the vertical toothed guide rail, and the fifth motor is installed on the other side.
  • the upper end surface of the track at the first intersection and the upper end surface of the horizontal track section of the inner ring have The same structure, the upper end surface of the track at the second intersection and the upper end surface of the horizontal track section of the outer ring have the same structure;
  • the fifth motor of the track assembly at the second intersection controls the track at the second intersection to rotate to the vertical direction
  • the upper and lower ends of the track at the second intersection and the two ends are respectively on the upper and lower ends of the horizontal track section of the outer ring.
  • the vertical toothed guide rail at the end forms an uninterrupted connection; when the fifth motor of the track assembly at the second intersection controls the track at the second intersection to rotate to the horizontal direction, the left and right ends of the track at the second intersection are respectively connected to the two outer circles.
  • the circular horizontal track segments form an uninterrupted connection.
  • the elevator running system also includes two sets of car doors, which are respectively set on the ascending passage and the descending passage; or, the two sets of car doors are respectively set on the two suspension passages.
  • each inner circular horizontal track section the left and right ends of each outer circular horizontal track section, and the upper and lower ends of the vertical toothed guide rails are provided with convex circles A concave arc structure that matches the arc structure.
  • the vertical toothed guide rails located between every two adjacent horizontal track sections of the inner ring and the vertical toothed guide rails located between each adjacent two horizontal track segments of the outer ring are arranged oppositely.
  • every two adjacent elevator shafts are separated by a certain distance on the circumference.
  • the first time t1 required for the car to run two adjacent floors in the ascending passage or two adjacent floors in the descending passage is greater than the time required for the car to traverse from one elevator shaft to another adjacent elevator shaft The second time t2.
  • the same elevator shaft allows multiple cars to run at the same time, and the mutual operation is not affected by the operation of other cars: that is, the first elevator shaft is used as an ascending channel to allow multiple elevator cars to rise to different floors at the same time, and the mutual operation The operation between them is not affected by other cars; the third elevator shaft is used as a descending passage to allow multiple elevator cars to descend to different floors at the same time, and the mutual operation is not affected by other cars;
  • the car on the same floor can be moved to any elevator shaft arbitrarily: that is, the cars in the first elevator shaft and the third elevator shaft can be moved to the second elevator shaft to suspend the passage, or the first elevator shaft can be Move to the suspension channel of the second elevator shaft, the bridge box of the third elevator shaft can be moved to the suspension channel of the fourth elevator shaft; the car of the suspension channel can also be moved to the ascending channel of the first elevator shaft, or to The third elevator shaft descends the passageway.
  • Fig. 1 is a schematic diagram of elevator shaft distribution according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the vertical gear track and horizontal track layout of each floor building in the embodiment described in Fig. 1;
  • Fig. 3 is the schematic diagram of the principle of changing the vertical track and the traversing track in the embodiment described in Fig. 1;
  • Fig. 4 is a schematic diagram of the vertical movement of the car in the embodiment described in Fig. 1;
  • Fig. 5 is a schematic diagram of the car's lateral movement and track change in the embodiment described in Fig. 1;
  • Fig. 6 is a schematic diagram of the external structure of a single elevator shaft and multiple car elevator running systems distributed in a circular array in the embodiment of Fig. 1;
  • Fig. 7 is a schematic diagram of the internal structure of an elevator running system with multiple cars in a single elevator shaft distributed in a circular array in the embodiment of Fig. 1;
  • Figure 8 is an enlarged view of A in Figure 2;
  • Figure 9 is an enlarged view of B in Figure 2;
  • Fig. 10 is the assembly drawing of translation module
  • Figure 11 is an enlarged view of C in Figure 5;
  • Figure 12 is an enlarged view of D in Figure 2;
  • serial numbers and corresponding names in the legend are in order: ascending passage I, suspending passage II, descending passage III, suspending passage IV, inner ring guide rail 10, inner ring horizontal track section 11, inner ring horizontal track section 11's upper end surface 12, concave arc-shaped structure 13, outer ring guide rail 20, outer ring horizontal track section 21, first intersection track assembly 30, fifth motor 31, first intersection track 32, convex arc Structure 33, straight teeth 34, upper end surface 35 of the first intersection track 32, second intersection track assembly 36, second intersection track 37, vertical toothed guide rail 40, car 50, left and right sides of the car 50 Side 51, car door 52, vertical movement power mechanism 60, first motor 61, gear 62, second motor 63, screw mandrel 64, transverse movement power mechanism 70, bottom plate 71, translation module 72, mounting plate 721, The third motor 722, driving wheel 723, synchronous belt 724, slide block 725, fourth motor 726, roller 727.
  • the elevator operating system that the present invention proposes comprises 4 elevator shafts, and these 4 elevator shafts are distributed in a circular array, that is, elevator shaft I is used as an ascending passage, elevator shaft III is used as a descending passage, and elevator shaft III is used as a descending passage. II and elevator shaft IV serve as pause passages.
  • elevator shaft I can also be used as the descending passage, elevator shaft III as the ascending passage, and elevator shaft II and elevator shaft IV as the suspension passage.
  • elevator shaft I and elevator shaft III are only used as pause passages, elevator shaft II is used as an ascending passage, and elevator shaft IV is used as a descending passage; or, elevator shaft I and elevator shaft III are used as pause passages, elevator shaft II is used as a descending passage, and elevator shaft IV acts as an ascending channel.
  • the present invention only exemplarily lists the situation that the elevator shaft I is the ascending passage, the elevator shaft II is used as the pause passage, the elevator shaft III is used as the ascending passage, and the elevator shaft IV is used as the pause passage.
  • the 4 elevator shafts disclosed in the present invention are only exemplary, and the number of elevator shafts includes at least 3, including 3, for example, 5 or 6.
  • a pair of horizontal circular guide rail components as shown in Figure 1 are installed on the wall at the bottom of the position where the car needs to stop on each floor.
  • the horizontal circular guide rail component includes an inner circular guide rail 10 and an outer circular guide rail 20 concentric with each other.
  • inner ring guide rail 10 is made up of several inner ring horizontal track segments 11
  • outer ring guide rail 20 is made up of outer ring horizontal track segments 21 of the same number as inner ring horizontal track segment 11.
  • the lengths of the inner circular ring horizontal track sections 11 of each section are different, and the lengths of the outer circular ring horizontal track sections 21 of each section are different.
  • the quantity of the horizontal track section 11 of the inner ring is the same as the number of the horizontal track section 21 of the outer ring.
  • a first intersection track assembly 30 which switches between the vertical direction and the horizontal direction through rotation.
  • a second intersection track assembly 36 is provided between every adjacent two outer circular horizontal track segments 21 . It can be understood that the number of the first intersection track assemblies 30 disposed on the inner circular guide rail 10 is the same as the number of the second intersection track assemblies 36 disposed on the outer circular guide rail 20 .
  • vertical toothed guide rails 40 are provided on the two opposite first intersection track assemblies 30 on the upper and lower adjacent inner circular guide rails 10 .
  • the opposite second intersection track assembly 36 on the upper and lower adjacent outer circular guide rails 20 is also provided with a vertical toothed guide rail 40 .
  • oppositely refers to the same vertical line direction of the inner ring guide rails 10 of two adjacent layers, and the same vertical line direction of the outer ring guide rails 20 of two adjacent layers.
  • the two sides 51 of each car 50 are provided with the vertical motion power mechanism 60 that rises or descends along 4 vertical toothed guide rails 40, and the bottom of the car 50 is provided with to make the car 50 A traverse power mechanism 70 that moves left and right in the horizontal direction.
  • the vertical motion power mechanism 60 includes four first motors 61 and four gears respectively arranged on the left and right sides 51 of the car 50 62, eight first motors 61 and eight gears 62 are arranged near the eight corners of the two sides of the car 50, and the eight first motors 61 respectively control the eight gears 62 on the four vertical shafts of the same elevator shaft.
  • the elevator running system further includes two second motors 63 respectively arranged at the lower ends of the sides 51 of the car 50 and two screw rods 64 connected to the second motors. That is to say, a second motor 63 is connected to a screw rod 64 .
  • the traversing power mechanism 70 in FIG. 2 includes a base plate 71 arranged at the bottom of the car 50, and four translation modules 72 arranged at the four corners of the lower end surface of the base plate 71, and each translation module 72 is provided with There is a roller 727; four second motors 63 control the traverse power mechanism 70 to move in the vertical direction through four screw rods 64.
  • FIG. 10 is a detailed diagram of the translation module 72 .
  • Each translation module 72 includes a third motor 722, a driving wheel 723, a synchronous belt 724, a driven wheel, a slider 725 arranged on a mounting plate 721, a fourth motor 726 arranged on a slider 725, and the aforementioned Roller 727.
  • the output end of the third motor 722 is connected with the driving wheel 723, and one end of the synchronous belt 724 is connected on the driving wheel 723, and the other end is connected on the driven wheel (blocked by the slide block 725), and the slide block 725 is fixed with the belt by the belt fixing piece
  • the roller 727 is arranged on the output end of the fourth motor 726 .
  • the four translation modules 72 are distributed on the four corners of the base plate 71, two inside of the four rollers 727 are distributed on the inner circular guide rail 10, and two outside are distributed on the outer circular guide rail 20.
  • the third motor 722 drives the roller 727 to perform telescopic movement in the direction perpendicular to the car door 52, that is, the telescopic movement inward and outward
  • the fourth motor 726 drives the roller 727 to rotate so that the inner circle of the roller 727 Translate on the ring guide rail 10 and the outer ring guide rail 20.
  • the aforementioned first intersection track assembly 30 includes a fifth motor 31 and a first intersection track 32 . Both ends of the long side of the track 32 at the first intersection are processed with convex arc structures 33, one side of the two sides is processed with a number of straight teeth 34, the fifth motor 31 is installed on the other side of the two sides, and the straight teeth 34 is oppositely arranged; the profile of the upper end face 35 of the track 32 at the first intersection has the same structure as the profile of the upper end face 12 of the inner circular ring horizontal track section 11, and its purpose is to allow the roller 727 to move on the inner circular ring horizontal track section 11. Smooth scrolling.
  • the aforementioned second intersection track assembly 36 includes a fifth motor 31 and a second intersection track 37 .
  • the difference between the second intersection track 37 and the first intersection track 32 is that the radii of the upper end surface structures are different, and the rest of the structures are the same.
  • the position where the fifth motor 31 is placed on the track 37 at the second intersection is the same as the position where the fifth motor 31 is placed on the track 32 at the first intersection.
  • the second intersection rail assembly 36 is used to be installed between two adjacent outer circular guide rails 20 .
  • a straight tooth 41 is processed on the vertical toothed guide rail 40 to facilitate the meshing movement of the gear 62 in FIG. 8 on the straight tooth 41 .
  • the car doors 52 of the elevator running system are respectively arranged on the ascending passage I and the descending passage III as shown in Fig. 1; or, two groups of car doors 52 are respectively arranged on the pause passage II and the pause passage IV.
  • the car door 52 is respectively set on the ascending passage I and the descending passage III, the advantage is that passengers can directly enter and exit after the elevator arrives at the designated floor, without waiting for the car to traverse to the middle pause passage before entering and exiting.
  • the disadvantage is: when a certain car located in ascending passage I or descending passage III arrives at a certain floor, if it takes too long for passengers on a certain floor to enter and exit the car, it will affect the operation of other cars in the passage.
  • the advantage is: when the car in the ascending passage I rises to the designated floor, it will traverse to the suspension passage II to carry out passenger entry and exit, which will not affect the rising Other running cars in channel I have an impact. Similarly, when the car located in the descending passage III descends to the designated floor, it traverses to the suspension passage IV for passengers to enter and exit, so that it will not affect other running cars in the descending passage III.
  • the disadvantage is: after the car reaches the designated floor, it needs to move horizontally to the second suspension channel II and the suspension channel IV, and passengers may experience bad experience when taking the elevator.
  • each inner ring horizontal track section 11 are respectively provided with concave arc-shaped structures 13 continuously connected with convex arc structures 33.
  • concave arc-shaped structures 13 are also provided at both ends of each outer circular horizontal track section 21
  • concave arc-shaped structures 13 are also provided at the upper and lower ends of the vertical toothed guide rail 40 .
  • the advantage of doing like this is: 1, in the horizontal direction, the first intersection track 32 can form uninterrupted connection with the inner circle horizontal track section 11, and the second intersection track 37 can also form with the outer circle horizontal track section 21 2.
  • the first intersection track 32 and the vertical toothed guide rail 40 form an uninterrupted connection
  • the second intersection track 37 and the vertical toothed guide rail 40 form an uninterrupted connection. It is guaranteed that the car 50 can run smoothly both in the vertical direction and in the horizontal direction.
  • every two adjacent elevator shafts are separated by a certain distance K on the circumference. This prevents two adjacent elevator shafts from colliding when traversing in the horizontal direction.
  • the first time t1 required for the car to run two adjacent floors in the ascending passage or two adjacent floors in the descending passage is greater than the time required for the car to traverse from one elevator shaft to another adjacent elevator shaft.
  • the first time required for the car to rise from the first floor to the second floor in the false ascending channel I is t1
  • the second time required for the car to traverse from the ascending channel I to the pause channel II in the horizontal direction is t2
  • t1>t2 is set through the program, under the premise that the distance between adjacent cars must be greater than the distance of one floor, the ascending passage in the vertical direction can allow multiple cars to run at the same time.
  • the car on the same floor can be moved to any elevator shaft arbitrarily: that is, the car in the elevator shaft I can be moved to the elevator shaft II as the pause passage, or it can be moved to the elevator shaft II as the pause passage
  • the elevator shaft IV; the car of the elevator shaft II as the suspension passage can traverse to the elevator shaft I as the ascending passage, and can also traverse to the elevator shaft III as the descending passage.
  • the four fifth motors 31 in Figure 5 respectively control the two first intersection rails 32 and the two second intersection rails 37 to rotate to a horizontal state
  • the first intersection track 32 is joined with the inner ring horizontal track section 11 to form an uninterrupted inner ring guide rail (see Figure 2)
  • the second intersection track 37 is joined with the outer ring horizontal track section 21 to form an uninterrupted outer circle Ring guide.
  • the third motor 722 at the bottom of the car 50 drives the roller 727 to extend outwards in the direction perpendicular to the car door 52 to just above the horizontal track section 11 of the inner circle and the horizontal track section 21 of the outer circle , with reference to Fig.
  • the second motor 63 at the bottom of the car drives the screw mandrel 64 (see Fig. 11) to rotate, and the screw mandrel 64 and the screw nut fixed on the bottom plate 71 in Fig. 2 (blocked by the bottom plate) carry out spiral motion , and then drive the 4 rollers 727 at the bottom of the car to descend in the vertical direction until the 4 rollers 727 contact the inner ring horizontal track section 11 and the outer ring horizontal track section 21.
  • four rollers 727 are driven by the fourth motor 726 in FIG. 10 to rotate to realize the lateral movement of the car 50 on the horizontal track section 11 of the inner circle and the horizontal track section 21 of the outer circle.
  • the vertical toothed guide rail between every adjacent two inner ring horizontal track segments is opposite to the vertical toothed guide rail between every adjacent two outer ring horizontal track segments set up.
  • the relative setting here means that the straight teeth on the vertical toothed guide rails between every adjacent two inner ring horizontal track sections face outwards, and the vertical tooth teeth between each adjacent two outer ring horizontal track sections The straight teeth on the rail face inward. Only in this way can the 4 gears on the car move up and down on the four vertical toothed guide rails.
  • the four fifth motors 31 control the four first intersection rails 32 to rotate to the vertical direction and form a joint with the vertical toothed guide rails 40 fixed on the elevator shaft wall. Uninterrupted vertical track, the car 50 traverses to the position where the gear 61 on the car and the vertical rack track 40 mesh (see Figure 8), and then the second motor 63 at the bottom of the car drives the screw mandrel 64 (see Fig. 11) rotates, and the screw mandrel 64 and the fixed screw nut (covered by the bottom plate) on the bottom plate 71 in Fig.
  • the third motor 722 in Fig. 10 drives 4 rollers 727 towards the center direction of car 50 to close, so that the car 50 center direction is closed.
  • Four translation modules 72 can not interfere with the inner circle horizontal track section 11 and the outer circle horizontal track section 21 of other floors when the car 50 carries out lifting vertical movement.
  • the same elevator shaft allows multiple cars to run at the same time, and the mutual operation is not affected by the operation of other cars: that is, the first elevator shaft is used as an ascending channel to allow multiple elevator cars to rise to different floors at the same time, and the mutual The operation between them is not affected by other cars; the third elevator shaft is used as a descending passage to allow multiple elevator cars to descend to different floors at the same time, and the mutual operation is not affected by other cars;
  • the car on the same floor can be moved to any elevator shaft arbitrarily: that is, the car in the first elevator shaft can be moved to the second elevator shaft suspension channel, or to the fourth elevator shaft suspension channel;
  • the car in the second pause passage can be traversed to the ascending passage of the first elevator shaft, and can also be traversed to the descending passage of the third elevator shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Civil Engineering (AREA)
  • Types And Forms Of Lifts (AREA)
  • Elevator Control (AREA)

Abstract

本发明公开了一种圆周阵列分布的单个电梯井多个轿厢的电梯运行系统,包括:在竖直方向上的每一层轿厢需要停止的墙上布置有一对水平环形导轨部件,水平环形导轨部件包括同圆心的内圆环导轨和外圆环导轨;内圆环导轨由若干内圆环水平轨道段组成,外圆环导轨由和内圆环水平轨道段同样多数量的外圆环水平轨道段组成,每相邻两内圆环水平轨道段之间均设置有通过转动实现在竖直方向和水平方向互相切换的第一交叉处轨道组件,以及每相邻两外圆环水平轨道段之间均设置有通过转动实现在竖直方向和水平方向互相切换的第二交叉处轨道组件。本系统包括:一个上升通道,两个暂停通道,一个下降通道。本发明减少了电梯安装空间,提升了电梯运载效率。

Description

[根据细则37.2由ISA制定的发明名称] 圆周阵列分布的单个电梯井多个轿厢的电梯运行系统 技术领域
本发明涉及建筑设计中电梯技术领域,尤其涉及一种圆周阵列分布的单个电梯井多个轿箱的电梯运行系统。
背景技术
电梯作为现代高层建筑中一种不可缺少的垂直交通运输工具,随着高层建筑的快速增长,建筑中的电梯运营规划问题就成了建筑设计和建筑施工阶段必需要考虑的关键问题之一。在建筑设计规划阶段,建筑的层数、电梯的最大载能和运行速度,以及未来该建筑的人流量,决定了该建筑对电梯的需求程度。如果建筑层数高、人流量大比如写字楼或者商场,那么对于电梯的需求程度就越大,建筑中用于电梯的规划空间就越多,占用的土地资源和经济成本就越多。在人流量大的高层建筑中,传统的曳引式电梯在同一个电梯井中只能运行一个轿厢的模式,受到电梯最大载能和运行速度的限定,电梯的使用效率已经越来越不能满足人流量大的高层建筑对电梯的需求,只能通过增加电梯的数量来满足需求。但是,增加的电梯数量越多,占用的建筑空间越多,造成土地浪费和经济成本越多。
发明内容
本发明针对传统曳引式电梯单个电梯井只能单个轿厢运行这种模式越来越不能满足高层建筑对于电梯的需求,只能通过增加电梯数量这种占用建筑空间的方式来满足需求这种现象,提出一种圆周阵列分布的单个电梯井多个轿箱的电梯运行系统,在尽少占用建筑空间的前提下满足高层建筑高人流量对于电梯的需求。
为了实现上述目的,本发明采用了如下技术方案:
设计一种圆周阵列分布的单个电梯井多个轿箱的电梯运行系统,包括:
在竖直方向上的每一层轿厢需要停止的墙上布置有一对水平环形导轨部件,水平环形导轨部件包括同圆心的内圆环导轨和外圆环导轨;
内圆环导轨由若干内圆环水平轨道段组成,外圆环导轨由和内圆环水平轨道段同样数量的外圆环水平轨道段组成,每相邻两内圆环水平轨道段之间设置有通过转动实现在竖直方向和水平方向互相切换的第一交叉处轨道组件,在每相邻两外圆环水平轨道段之间设置有通过转动实现在竖直方向和水平方向互相切换的第二交叉处轨道组件;
每上、下相邻两层的内圆环导轨上相对的两第一交叉处轨道组件以及每上、下相邻两层的外圆环导轨上相对的两第二交叉处轨道组件的墙上均设置有竖直齿状导轨;
若干层环形导轨部件形成的圆柱状空间在垂直方向上为均匀分布的至少三个电梯井,依次是:作为上升通道的第一个电梯井,作为暂停通道的第二个电梯井,作为下降通道的第三个电梯井;
每一轿厢的两侧边设有驱使轿厢沿竖直齿状导轨上升或下降的竖直运动动力机构,每一轿厢的底部设置有使轿厢在水平方向上左右移动的横移动力机构。
在一实施例中,包括四个电梯井,其中两个电梯井作为暂停通道的第二个电梯井和第四个电梯井,所述竖直运动动力机构包括分别设置在轿厢左、右两侧边的各四个第一电机和各四个齿轮,八个第一电机和八个齿轮设置在轿厢两侧边的八个角的附近,八个第一电机分别控制八个齿轮在同一个电梯井的四根竖直齿状导轨上运动。
进一步地,电梯运行系统还包括分别设置在轿厢两侧边下端的各两个第 二电机及连接到两第二电机上的两根丝杆;
横移动力机构包括:设置在轿厢底部的底板,以及设置在底板下端面的四个角的四个平移模块,每个平移模块上均设置有一个滚轮;
第二电机通过丝杆控制横移动力机构在竖直方向上运动。
进一步地,平移模块还包括:设置在安装板上的第三电机、主动轮、同步带、从动轮、滑块,以及设置在滑块上的第四电机,安装板设置在底板的下端面;
第三电机的输出端和主动轮连接,同步带的一端连接在主动轮上,另一端连接在从动轮上,滑块通过皮带固定片和皮带固定,滚轮设置在第四电机的输出端上;
第三电机带动滚轮在垂直于轿厢门方向做伸缩动作,第四电机带动滚轮进行旋转以使得滚轮在水平环形导轨部件上平移。
进一步地,第一交叉处轨道组件包括第五电机和第一交叉处轨道,第二交叉处轨道组件包括第五电机和第二交叉组轨道;
第一交叉处轨道和每一段内圆环水平轨道段适配,第二交叉处轨道和每一段外圆环水平轨道段相适配;
第一交叉处轨道的长边两端及第二交叉处轨道的长边两端均加工有相同的凸圆弧结构,第一交叉处轨道的两侧边的一侧及第二交叉处轨道的两侧边的一侧均加工有和竖直齿状导轨相适配的直齿,另一侧均安装第五电机,第一交叉处轨道的上端面和内圆环水平轨道段的上端面具有相同结构,第二交叉处轨道的上端面和外圆环水平轨道段的上端面具有相同结构;
当第一交叉处轨道组件的第五电机控制第一交叉处轨道旋转至竖直方向时,第一交叉处轨道的上、下两端分别和两根处于内圆环水平轨道段上、下 两端的竖直齿状导轨形成不间断衔接;当第一交叉处轨道组件的第五电机控制第一交叉处轨道旋转到水平方向时,第一交叉处轨道的左、右两端分别与两内圆环水平轨道段形成不间断衔接;
当第二交叉处轨道组件的第五电机控制第二交叉处轨道旋转至竖直方向时,第二交叉处轨道的上、下两端分别和两根处于外圆环水平轨道段上、下两端的竖直齿状导轨形成不间断衔接;当第二交叉处轨道组件的第五电机控制第二交叉处轨道旋转到水平方向时,第二交叉处轨道的左、右两端分别与两外圆环水平轨道段形成不间断衔接。
进一步地,电梯运行系统还包括两组轿厢门,两组轿厢门分别设置在上升通道和下降通道上;或者,两组轿厢门分别设置在两个暂停通道上。
进一步地,每一内圆环水平轨道段的左、右两端、每一外圆环水平轨道段的左、右两端以及竖直齿状导轨的上、下两端均设置有和凸圆弧结构相适配的凹圆弧结构。
进一步地,位于每相邻两内圆环水平轨道段之间的竖直齿状导轨和位于每相邻两外圆环水平轨道段之间的竖直齿状导轨相对设置。
进一步地,每相邻两个电梯井在圆周上间隔一定距离。
进一步地,轿厢在上升通道中运行相邻两层或者在下降通道中运行相邻两层所需要的第一时间t1大于轿厢从一个电梯井横移到相邻的另一个电梯井所需要的第二时间t2。
本发明具有如下有益效果:
同一个电梯井允许多个轿厢同时运行,且相互之间的运行不受其他轿厢运行的影响:即第一个电梯井作为上升通道允许多个电梯轿厢同时上升到不同楼层,且相互之间的运行不受其他轿厢的影响;第三个电梯井作为下降通 道允许多个电梯轿厢同时下降到不同楼层,且相互之间的运行不受其他轿厢的影响;
2、同一楼层的轿厢可任意移动到任一电梯井通道:即第一个电梯井和第三电梯井的轿厢,可以移动到第二个电梯井暂停通道,或第一个电梯井可以移动到第二个电梯井暂停通道,第三电梯井的桥箱可以移动到第4个电梯井暂停通道;暂停通道的轿厢也可以横移到第一个电梯井上升通道,或横移到第三个电梯井下降通道。
3、当上升通道中某一个轿厢上升到某个楼层停止后暂时不运行,即可水平移动到第2/4个电梯井暂停通道,当附近某个楼层需要上升轿厢时,该楼层第2/4个电梯井暂停通道的轿厢可横移到上升通道进而进行上升运动;当下降通道中某一个轿厢下降到某个楼层停止后暂时不运行,即可水平移动到第2/4个电梯井暂停通道,当附近某个楼层需要下降轿厢时,该楼层第2/4个电梯井暂停通道的轿厢可横移到下降通道进而进行下降运动;第2/4个电梯井中间暂停通道的另一个作用是,当某个轿厢电量不足时,可停在中间暂停通道进行充电,且不会影响其他轿厢的运行。
附图说明
图1为本发明一实施例的电梯井分布示意图;
图2为图1所述实施例中每层建筑竖直齿轮轨道和水平轨道布局示意图;
图3为图1所述实施例中竖直轨道和横移轨道换轨的原理示意图;
图4为图1所述实施例中轿厢竖直运动变轨示意图;
图5为图1所述实施例中轿厢横移运动变轨示意图;
图6为图1所述实施例中圆周阵列分布的单个电梯井多个轿箱的电梯运行系统的外部结构示意图;
图7为图1所述实施例中圆周阵列分布的单个电梯井多个轿箱的电梯运行系统的内部结构示意图;
图8为图2中的A处放大图;
图9为图2中的B处放大图;
图10为平移模块的装配图;
图11为图5中的C处放大图;
图12为图2中的D处放大图;
图例中各序号及对应的名称按先后顺序分别为:上升通道Ⅰ、暂停通道Ⅱ、下降通道Ⅲ、暂停通道Ⅳ、内圆环导轨10、内圆环水平轨道段11、内圆环水平轨道段11的上端面12、凹圆弧状结构13、外圆环导轨20、外圆环水平轨道段21、第一交叉处轨道组件30、第五电机31、第一交叉处轨道32、凸圆弧结构33、直齿34、第一交叉处轨道32的上端面35、第二交叉处轨道组件36、第二交叉处轨道37、竖直齿状导轨40、轿厢50、轿厢50的左右两侧边51、轿厢门52、竖直运动动力机构60、第一电机61、齿轮62、第二电机63、丝杆64、横移动力机构70、底板71、平移模块72、安装板721、第三电机722、主动轮723、同步带724、滑块725、第四电机726、滚轮727。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参考图1,在该实施例中,本发明提出的电梯运行系统包括4个电梯井,这4个电梯井呈圆周阵列分布,即电梯井Ⅰ作为上升通道,电梯井Ⅲ作为下 降通道,电梯井Ⅱ和电梯井Ⅳ作为暂停通道。当然,也可以是电梯井Ⅰ作为下降通道,电梯井Ⅲ作为上升通道,电梯井Ⅱ和电梯井Ⅳ作为暂停通道。或者,电梯井Ⅰ、电梯井Ⅲ仅仅作为暂停通道,电梯井Ⅱ作为上升通道,电梯井Ⅳ作为下降通道;或者,电梯井Ⅰ,电梯井Ⅲ作为暂停通道,电梯井Ⅱ作为下降通道,电梯井Ⅳ作为上升通道。本发明仅仅示例性的列出了电梯井Ⅰ为上升通道、电梯井Ⅱ作为暂停通道、电梯井Ⅲ作为上升通道、电梯井Ⅳ作为暂停通道的情形。另外本发明中所公开的4个电梯井仅仅是示例性的,电梯井的数量至少包括3个,含3个,例如是5个或者6个。
在本发明所公开的4个电梯井所构成的圆柱形空间中,在每一层轿厢需要停止的位置底部的墙上安装有如图1所示的一对水平环形导轨部件。水平环形导轨部件包括同圆心的内圆环导轨10和外圆环导轨20。参考图2,内圆环导轨10由若干内圆环水平轨道段11组成,外圆环导轨20由和内圆环水平轨道段11同样多数量的外圆环水平轨道段21组成。从图2中看出,各段内圆环水平轨道段11的长短不一样,各段外圆环水平轨道段21的长短不一样。内圆环水平轨道段11的数量和外圆环水平轨道段21的数量相同。在每相邻两内圆环水平轨道段11之间设置有通过转动实现竖直方向和水平方向互相切换的第一交叉处轨道组件30。同样的,在每相邻两外圆环水平轨道段21之间设置有第二交叉处轨道组件36。可以理解的是,设置在内圆环导轨10上的第一交叉处轨道组件30的数量和设置在外圆环导轨20上的第二交叉处轨道组件36的数量相同。
结合图2和图4,每上、下相邻两层的内圆环导轨10上相对的两第一交叉处轨道组件30设置有竖直齿状导轨40。参考图4,每上、下相邻两层的外圆环导轨20上相对的第二交叉处轨道组件36也设置有竖直齿状导轨40。此 处,相对是指相邻两层的内圆环导轨10的同一竖直线方向,以及相邻两层的外圆环导轨20的同一竖直线方向。
参考图2,在每一个轿厢50的两侧边51设置有沿4根竖直齿状导轨40上升或下降的竖直运动动力机构60,在轿厢50的底部设置有使轿厢50在水平方向上左右移动的横移动力机构70。具体地,参考图2和图8,作为其中一个实施例,竖直运动动力机构60包括分别设置在轿厢50的左、右两侧边51的各四个第一电机61和各四个齿轮62,八个第一电机61和八个齿轮62设置在轿厢50的两侧边的八个角的附近,八个第一电机61分别控制八个齿轮62在同一个电梯井的四根竖直齿状导轨40上做上、下运动。需要说明的是,八个齿轮62同步在四根竖直齿状导轨40做上、下运动,以带动轿厢50在同一电梯井的四根竖直齿状导轨40上同步上下运动。
参考图5和图11,电梯运行系统还包括分别设置在轿厢50两侧边51下端的各两个第二电机63及连接到各第二电机上的两根丝杆64。也就是说,一个第二电机63和一根丝杆64连接。作为优选实施例,图2中的横移动力机构70包括设置在轿厢50底部的底板71,以及设置在底板71下端面四个角的四个平移模块72,每个平移模块72上均设置有一个滚轮727;四个第二电机63通过四根丝杆64控制横移动力机构70在竖直方向上运动。
参考图10,图10为平移模块72的详图。每个平移模块72包括设在安装板721上的第三电机722、主动轮723、同步带724、从动轮、滑块725,设置在滑块725上的第四电机726,以及前面提到的滚轮727。第三电机722的输出端和主动轮723连接,同步带724的一端连接在主动轮723上,另一端连接在从动轮(被滑块725遮挡)上,滑块725通过皮带固定片与皮带固定在从动轮上,滚轮727设置在第四电机726的输出端上。可以理解的是,四 个平移模块72分布在底板71的四个角上,四个滚轮727的里面两个分布在内圆环导轨10上,外面两个分布在外圆环导轨20上。参考图2和图10,第三电机722带动滚轮727在垂直于轿厢门52的方向做伸缩动作,也就是向内外伸缩动作,第四电机726带动滚轮727进行旋转以使得滚轮727在内圆环导轨10和外圆环导轨20上平移。
参考图2和图9,前面提到的第一交叉处轨道组件30包括第五电机31和第一交叉处轨道32。第一交叉处轨道32的长边两端均加工有凸圆弧结构33,两侧边的一侧加工有若干直齿34,第五电机31安装在两侧边的另一侧,和直齿34相对设置;第一交叉处轨道32的上端面35的外形则和内圆环水平轨道段11的上端面12的外形具备相同结构,其目的是让滚轮727在内圆环水平轨道段11上平稳滚动。
参考图2和图12,前面提到的第二交叉处轨道组件36,包括第五电机31和第二交叉处轨道37。第二交叉处轨道37和第一交叉处轨道32的区别在于上端面结构的半径不同,其余结构均相同。此外,第五电机31放置在第二交叉处轨道37的位置和第五电机31放置在第一交叉处轨道32的位置相同。第二交叉处轨道组件36用于安装在两相邻外圆环导轨20之间。
参考图3及图4,竖直齿状导轨40上加工有直齿41,以方便图8中的齿轮62在直齿41上啮合运动。
参考图4,当第五电机31控制第一交叉处轨道32旋转至竖直方向时,第一交叉处轨道32的上、下两端分别和位于两内圆环水平轨道段11之间的上、下两端的两根竖直齿状导轨40形成不间断衔接。当第五电机31控制第二交叉处轨道37旋转至竖直方向时,第二交叉处轨道37的上、下两端分别和位于两外圆环水平轨道段21之间的上、下两端的两根竖直齿状导轨40形成不 间断衔接。则图4中的8个齿轮62就可以沿着内外4根竖直齿状导轨40上下运动,实现轿厢50在竖直方向平稳运行。
参考图2、图5和图9,当第五电机31控制第一交叉处轨道32旋转到水平方向时,第一交叉处轨道32的左、右两端分别和两内圆环水平轨道段11形成不间断衔接。若干段第一交叉处轨道32和若干段内圆环水平轨道段11形成不间断衔接,组成图2所示的内圆环导轨10。同样的,参考图2、图5和图12,当第五电机31控制第二交叉处轨道37旋转到水平方向上时,若干段第二交叉处轨道37和若干段外圆环水平轨道段形成21形成不间断衔接后,组成外圆环导轨20。
参考图6,电梯运行系统的轿厢门52分别设置在如图1所示的上升通道Ⅰ和下降通道Ⅲ;或者,两组轿厢门52分别设置在暂停通道Ⅱ和暂停通道Ⅳ。如果分别在上升通道Ⅰ和下降通道Ⅲ各设置轿厢门52,其优点是:电梯到达指定楼层后乘客可直接进出,不用等待轿厢横移到中间暂停通道才能进出。缺点是:当位于上升通道Ⅰ或下降通道Ⅲ的某个轿厢到达某个楼层后,如果某个楼层的乘客进出轿厢占用的时间太长会对该通道中其他轿厢的运行造成影响。
如果两组轿厢门52分别设置在暂停通道Ⅱ和暂停通道Ⅳ,优点是:当位于上升通道Ⅰ中的轿厢上升到指定楼层,横移到暂停通道Ⅱ进行乘客进出,这样不会对上升通道Ⅰ中其他运行的轿厢造成影响。同样的,当位于下降通道Ⅲ中的轿厢下降到指定楼层,横移到暂停通道Ⅳ进行乘客进出,这样不会对下降通道Ⅲ中的其他运行的轿厢造成影响。缺点是:轿厢到达指定楼层后需要横移到第暂停通道Ⅱ和暂停通道Ⅳ,乘客乘坐电梯可能体验感不好。
参考图9和图12,每一内圆环水平轨道段11的两端设置有分别为和凸圆 弧结构33不间断衔接的凹圆弧状结构13。参考图4,每一段外圆环水平轨道段21的两端也设置有凹圆弧状结构13,竖直齿状导轨40的上、下两端也分别设置有凹圆弧状结构13。这样做的好处在于:1、在水平方向上,第一交叉处轨道32能够和内圆环水平轨道段11形成不间断衔接,第二交叉处轨道37也能和外圆环水平轨道段21形成不间断衔接;2、在垂直方向上,第一交叉处轨道32和竖直齿状导轨40形成不间断衔接,第二交叉处轨道37和竖直齿状导轨40形成不间断衔接。保证了轿厢50在竖直方向和水平方向都能平稳运行。
参考图1,每相邻两个电梯井在圆周上间隔一定距离K。这样防止两个相邻电梯井在水平方向上横移时碰撞。
本系统中,轿厢在上升通道中运行相邻两层或者在下降通道中运行相邻两层所需要的第一时间t1大于轿厢从一个电梯井横移到相邻的另一个电梯井所需要的第二时间t2。假上升通道Ⅰ中轿厢从第1楼层上升到第2楼层所需要的第一时间为t1,假设水平方向上轿厢从上升通道Ⅰ横移到暂停通道Ⅱ所需要的第二时间为t2,只要通过程序设定t1>t2,在满足相邻轿厢之间的距离必须大于1个楼层的距离的前提条件下,在竖直方向上的上升通道就能允许多个轿厢同时运行。比如上升通道第1楼层的1号轿厢需要上升到第10楼层,第3楼层的2号轿厢需要上升到第7楼层,则第1楼层的1号轿厢和第3楼层的2号轿厢可以同时运行:当第3楼层的2号轿厢上升到第7楼层时,原来在第1楼层的1号轿厢上升到第5楼层,当1号轿厢从第5楼层继续上升到第6楼层,停在第7楼层的2号轿厢已经横移到第2个电梯井暂停通道,不会与从第6楼层继续上升的1号轿厢相撞。同样的,第4个电梯井下降通道的相邻轿厢,在满足相邻轿厢之间的距离必须大于1个楼层的距离的前提 条件下,在竖直方向上的下降通道就能允许多个轿厢同时运行。
下面阐述一下本电梯系统中,同一楼层的轿厢可任意移动到任一电梯井通道:即电梯井Ⅰ中的轿厢,可以移动到作为暂停通道的电梯井Ⅱ,也可以移动到作为暂停通道的电梯井Ⅳ;作为暂停通道的电梯井Ⅱ的轿厢,可以横移到作为上升通道的电梯井Ⅰ,也可以横移到作为下降通道的电梯井Ⅲ。
轿厢横移运动的实现:
当轿厢需要从竖直运动转到水平横移运动时,图5中的4个第五电机31分别控制两根第一交叉处轨道32和两根第二交叉处轨道37旋转至水平状态,第一交叉处轨道32与内圆环水平轨道段11衔接成不间断的内圆环导轨(见图2),第二交叉处轨道37与外圆环水平轨道段21衔接成不间断的外圆环导轨。参考图5及图10,由轿厢50底部的第三电机722带动滚轮727在垂直于轿厢门52的方向往外伸到内圆环水平轨道段11及外圆环水平轨道段21的正上方,参考图11,然后由轿厢底部的第二电机63带动丝杆64(见图11)旋转,丝杆64与图2中的底板71上固定的丝杆螺母(被底板遮挡)进行螺旋运动,进而带动轿厢底部的4个滚轮727在竖直方向上进行下降运动,直到4个滚轮727与内圆环水平轨道段11及外圆环水平轨道段21接触。最后由图10中的第四电机726带动4个滚轮727进行旋转实现轿厢50在内圆环水平轨道段11及外圆环水平轨道段21横移。
参考图2、图5和图7,位于每相邻两内圆环水平轨道段之间的竖直齿状导轨和位于每相邻两外圆环水平轨道段之间的竖直齿状导轨相对设置。这里的相对设置,是指每相邻两内圆环水平轨道段之间的竖直齿状导轨上的直齿朝外,而每相邻两外圆环水平轨道段之间的竖直齿状导轨上的直齿朝内。只有这样,轿厢上的4个齿轮才能在四根竖直齿状导轨上上下运动。
轿厢升降运动的实现:
参考图4,当轿厢50需要上升/下降运动时,4个第五电机31控制4根第一交叉处轨道32旋转到竖直方向与电梯井墙上固定的竖直齿状导轨40衔接形成不间断的竖直轨道,轿厢50横移到轿厢上的齿轮61和竖直齿条轨道40啮合的位置(见图8),然后轿厢底部的第二电机63带动丝杆64(见图11)旋转,丝杆64与图2中的底板71上固定的丝杆螺母(被底板遮挡)进行螺旋运动,进而带动4个滚轮727(见图11)在垂直方向向上收,4个滚轮727脱离与内圆环水平轨道段11及外圆环水平轨道段21的接触后,再由图10中的第三电机722带动4个滚轮727往轿厢50中心方向收,使图5中的四个平移模块72(见图10)在轿厢50进行升降竖直运动时不会与其他楼层的内圆环水平轨道段11及外圆环水平轨道段21有干涉。
因此,本发明所公开的技术方案可以实现如下技术效果:
同一个电梯井允许多个轿厢同时运行,且相互之间的运行不受其他轿厢运行的影响:即第1个电梯井作为上升通道允许多个电梯轿厢同时上升到不同楼层,且相互之间的运行不受其他轿厢的影响;第3个电梯井作为下降通道允许多个电梯轿厢同时下降到不同楼层,且相互之间的运行不受其他轿厢的影响;
2、同一楼层的轿厢可任意移动到任一电梯井通道:即第1个电梯井的轿厢,可以移动到第2个电梯井暂停通道,也可以移动到第4个电梯井暂停通道;第2个暂停通道的轿厢,可以横移到第1个电梯井上升通道,也可以横移到第3个电梯井下降通道。
3、当上升通道中某一个轿厢上升到某个楼层停止后暂时不运行,即可水平移动到第2/4个电梯井暂停通道,当附近某个楼层需要上升轿厢时,该楼 层第2/4个电梯井暂停通道的轿厢可横移到上升通道进而进行上升运动;当下降通道中某一个轿厢下降到某个楼层停止后暂时不运行,即可水平移动到第2/4个电梯井暂停通道,当附近某个楼层需要下降轿厢时,该楼层第2/4个电梯井暂停通道的轿厢可横移到下降通道进而进行下降运动;第2/4个电梯井中间暂停通道的另一个作用是,当某个轿厢电量不足时,可停在中间暂停通道进行充电,且不会影响其他轿厢的运行。
需要说明的是,当采用3个电梯井时,需要通过传感器和软件控制,避免当电梯井暂停通道中已经停有桥箱时出现碰撞事故。
最后应说明的是:以上仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种圆周阵列分布的单个电梯井多个轿箱的电梯运行系统,其特征在于,包括,在竖直方向上的每一层轿厢需要停止的墙上布置有一对水平环形导轨部件,所述水平环形导轨部件包括同圆心的内圆环导轨和外圆环导轨;
    所述内圆环导轨由若干内圆环水平轨道段组成,所述外圆环导轨由和所述内圆环水平轨道段同样数量的外圆环水平轨道段组成,所述每相邻两内圆环水平轨道段之间设置有通过转动实现在竖直方向和水平方向互相切换的第一交叉处轨道组件,在所述每相邻两外圆环水平轨道段之间设置有通过转动实现在竖直方向和水平方向互相切换的第二交叉处轨道组件;
    每上、下相邻两层的内圆环导轨上相对的两所述第一交叉处轨道组件以及每上、下相邻两层的外圆环导轨上相对的两所述第二交叉处轨道组件的墙上均设置有竖直齿状导轨;
    所述若干层环形导轨部件形成的圆柱状空间在垂直方向上划分为均匀分布的至少三个电梯井,包括作为上升通道的第一个电梯井,作为暂停通道的第二个电梯井和作为下降通道的第三个电梯井;
    每一轿厢的两侧边设有驱使所述轿厢沿所述竖直齿状导轨上升或下降的竖直运动动力机构,每一轿厢的底部设置有使所述轿厢在水平方向上左右移动的横移动力机构。
  2. 如权利要求1所述的电梯运行系统,其特征在于:包括四个电梯井,其中两个电梯井作为暂停通道的第二个电梯井和第四个电梯井,所述竖直运动动力机构包括分别设置在所述轿厢左、右两侧边的各四个第一电机和各四个齿轮,八个所述第一电机和八个所述齿轮设置在所述轿厢两侧边的八个角的附近,所述八个第一电机分别控制所述八个齿轮在同一个电梯井的四根所述竖直齿状导轨上运动。
  3. 如权利要求1所述的电梯运行系统,其特征在于:所述电梯运行系统还包括分别设置在所述轿厢两侧边下端的各两个第二电机及连接到所述两第二电机上的两根丝杆;
    所述横移动力机构包括:设置在所述轿厢底部的底板,以及设置在所述底板下端面的四个角的四个平移模块,每个平移模块上均设置有一个滚轮;
    所述第二电机通过所述丝杆控制所述横移动力机构在竖直方向上运动。
  4. 如权利要求3所述的电梯运行系统,其特征在于:所述平移模块还包括:设置在安装板上的第三电机、主动轮、同步带、从动轮、滑块,以及设置在所述滑块上的第四电机,所述安装板设置在所述底板的下端面;
    所述第三电机的输出端和所述主动轮连接,所述同步带的一端连接在所述主动轮上,另一端连接在所述从动轮上,所述滑块通过皮带固定片和皮带固定,所述滚轮设置在所述第四电机的输出端上;
    所述第三电机带动所述滚轮在垂直于轿厢门方向做伸缩动作,所述第四电机带动所述滚轮进行旋转以使得所述滚轮在所述水平环形导轨部件上平移。
  5. 如权利要求1所述的电梯运行系统,其特征在于:所述第一交叉处轨道组件包括第五电机和第一交叉处轨道,所述第二交叉处轨道组件包括所述第五电机和第二交叉组轨道;
    所述第一交叉处轨道和所述每一段内圆环水平轨道段适配,所述第二交叉处轨道和所述每一段外圆环水平轨道段相适配;
    所述第一交叉处轨道的长边两端及所述第二交叉处轨道的长边两端均加工有相同的凸圆弧结构,所述第一交叉处轨道的两侧边的一侧及第二交叉处轨道的两侧边的一侧均加工有和所述竖直齿状导轨相适配的直齿,另一侧均 安装所述第五电机,所述第一交叉处轨道的上端面和所述内圆环水平轨道段的上端面具有相同结构,所述第二交叉处轨道的上端面和所述外圆环水平轨道段的上端面具有相同结构;
    当所述第一交叉处轨道组件的所述第五电机控制所述第一交叉处轨道旋转至竖直方向时,所述第一交叉处轨道的上、下两端分别和两根处于所述内圆环水平轨道段上、下两端的所述竖直齿状导轨形成不间断衔接;当所述第一交叉处轨道组件的所述第五电机控制所述第一交叉处轨道旋转到水平方向时,所述第一交叉处轨道的左、右两端分别与两所述内圆环水平轨道段形成不间断衔接;
    当所述第二交叉处轨道组件的所述第五电机控制所述第二交叉处轨道旋转至竖直方向时,所述第二交叉处轨道的上、下两端分别和两根处于所述外圆环水平轨道段上、下两端的所述竖直齿状导轨形成不间断衔接;当所述第二交叉处轨道组件的所述第五电机控制所述第二交叉处轨道旋转到水平方向时,所述第二交叉处轨道的左、右两端分别与两所述外圆环水平轨道段形成不间断衔接。
  6. 如权利要求1所述的电梯运行系统,其特征在于,所述电梯运行系统还包括两组轿厢门,两组所述轿厢门分别设置在所述上升通道和所述下降通道上;或者,两组所述轿厢门分别设置在两个暂停通道上。
  7. 如权利要求5所述的电梯运行系统,其特征在于,每一内圆环水平轨道段的左、右两端、所述每一外圆环水平轨道段的左、右两端以及所述竖直齿状导轨的上、下两端均设置有和所述凸圆弧结构相适配的凹圆弧结构。
  8. 如权利要求1所述的电梯运行系统,其特征在于,位于每相邻两所述内圆环水平轨道段之间的所述竖直齿状导轨和位于每相邻两所述外圆环水平 轨道段之间的所述竖直齿状导轨相对设置。
  9. 如权利要求1所述的电梯运行系统,其特征在于,每相邻两个所述电梯井在圆周上间隔一定距离。
  10. 如权利要求1所述的电梯运行系统,其特征在于,所述轿厢在上升通道中运行相邻两层或者在下降通道中运行相邻两层所需要的第一时间t1大于所述轿厢从一个电梯井横移到相邻的另一个电梯井所需要的第二时间t2。
PCT/CN2022/093941 2021-09-30 2022-05-19 圆周阵列分布的单个电梯井多个轿厢的电梯运行系统 WO2023050831A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111165626.4 2021-09-30
CN202111165626.4A CN113734936A (zh) 2021-09-30 2021-09-30 圆周阵列分布的单个电梯井多个轿箱的电梯运行系统

Publications (1)

Publication Number Publication Date
WO2023050831A1 true WO2023050831A1 (zh) 2023-04-06

Family

ID=78725986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093941 WO2023050831A1 (zh) 2021-09-30 2022-05-19 圆周阵列分布的单个电梯井多个轿厢的电梯运行系统

Country Status (2)

Country Link
CN (1) CN113734936A (zh)
WO (1) WO2023050831A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113734936A (zh) * 2021-09-30 2021-12-03 广西桂华智能制造有限公司 圆周阵列分布的单个电梯井多个轿箱的电梯运行系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494389A (ja) * 1990-08-07 1992-03-26 Kajima Corp リニアモータ駆動エレベータ
US5197570A (en) * 1991-04-16 1993-03-30 Kajima Corporation Linear motor driven elevator with passing function
JPH06247664A (ja) * 1993-02-02 1994-09-06 Hun-Woo Park 回転式昇降装置
US6354404B1 (en) * 2000-05-16 2002-03-12 Otis Elevator Company Rotatable elevator system
CN104310174A (zh) * 2014-08-20 2015-01-28 山东建筑大学 一种面向环形建筑的直线电机驱动电梯
CN107215752A (zh) * 2017-07-31 2017-09-29 山东建筑大学 一种面向环形建筑可垂直和水平移动的电梯
CN107265258A (zh) * 2017-08-21 2017-10-20 河南理工大学 一种移动架无绳循环垂直提升机构
CN111770890A (zh) * 2017-12-20 2020-10-13 蒂森克虏伯电梯创新与运营有限公司 电梯设备
CN113734936A (zh) * 2021-09-30 2021-12-03 广西桂华智能制造有限公司 圆周阵列分布的单个电梯井多个轿箱的电梯运行系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494389A (ja) * 1990-08-07 1992-03-26 Kajima Corp リニアモータ駆動エレベータ
US5197570A (en) * 1991-04-16 1993-03-30 Kajima Corporation Linear motor driven elevator with passing function
JPH06247664A (ja) * 1993-02-02 1994-09-06 Hun-Woo Park 回転式昇降装置
US6354404B1 (en) * 2000-05-16 2002-03-12 Otis Elevator Company Rotatable elevator system
CN104310174A (zh) * 2014-08-20 2015-01-28 山东建筑大学 一种面向环形建筑的直线电机驱动电梯
CN107215752A (zh) * 2017-07-31 2017-09-29 山东建筑大学 一种面向环形建筑可垂直和水平移动的电梯
CN107265258A (zh) * 2017-08-21 2017-10-20 河南理工大学 一种移动架无绳循环垂直提升机构
CN111770890A (zh) * 2017-12-20 2020-10-13 蒂森克虏伯电梯创新与运营有限公司 电梯设备
CN113734936A (zh) * 2021-09-30 2021-12-03 广西桂华智能制造有限公司 圆周阵列分布的单个电梯井多个轿箱的电梯运行系统

Also Published As

Publication number Publication date
CN113734936A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
US3658155A (en) Elevator system
US5197570A (en) Linear motor driven elevator with passing function
WO2023050831A1 (zh) 圆周阵列分布的单个电梯井多个轿厢的电梯运行系统
CN111108055A (zh) 智能多轿厢电梯系统
CN103669942A (zh) 一种链条传动旋转中置升降机的板式纵列机械式停车设备
CN1250744A (zh) 循环运行多用途电梯
US3727558A (en) Transport system with moving-platform terminal
US5663539A (en) Passenger transfer, double deck, multi-elevator shuttle system
US1973920A (en) Elevator system
CN216004850U (zh) 圆周阵列分布的单个电梯井多个轿箱的电梯运行系统
CN112249836A (zh) 高层建筑多轿厢循环运行电梯及控制方法
JPH07157239A (ja) リニアエレベータ
CN111776898B (zh) 一种载重量和运行速率可调节的电梯
CN210763799U (zh) 一种单井道双轿厢多开门电梯装置
US20070045053A1 (en) Elevator apparatus
CN211496525U (zh) 一拖二快捷安全节能电梯
CN114436098A (zh) 一种串联多轿厢单向循环电梯装置及布置运行方法
CN113734935A (zh) 一字阵列分布的单个电梯井多个轿箱的电梯运行系统
JP3318749B2 (ja) 高速エスカレータ装置
CN106553942A (zh) 一种偶数轿箱高效节能电梯
CN215402475U (zh) 一种实现电梯及多种轨道交通车辆在线化互联互通的系统
CN110626920A (zh) 一种单井道双轿厢多开门电梯装置
CN107628513B (zh) 一种嵌套式双轿厢水平运行电梯
CN111608445A (zh) 一种多层循环立体车库中的升降装置
CN115159298B (zh) 一种垂直双面电梯轨道系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874229

Country of ref document: EP

Kind code of ref document: A1