WO2023050124A1 - 电极组件及其制造方法和设备、电池、用电装置 - Google Patents

电极组件及其制造方法和设备、电池、用电装置 Download PDF

Info

Publication number
WO2023050124A1
WO2023050124A1 PCT/CN2021/121609 CN2021121609W WO2023050124A1 WO 2023050124 A1 WO2023050124 A1 WO 2023050124A1 CN 2021121609 W CN2021121609 W CN 2021121609W WO 2023050124 A1 WO2023050124 A1 WO 2023050124A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
area
electrode assembly
winding
main body
Prior art date
Application number
PCT/CN2021/121609
Other languages
English (en)
French (fr)
Inventor
许虎
黄思应
赵丰刚
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2022562432A priority Critical patent/JP7463549B2/ja
Priority to EP21931930.8A priority patent/EP4184640A1/en
Priority to CN202180084755.2A priority patent/CN116601813A/zh
Priority to KR1020227034425A priority patent/KR20230047951A/ko
Priority to PCT/CN2021/121609 priority patent/WO2023050124A1/zh
Priority to US18/078,233 priority patent/US20230106248A1/en
Publication of WO2023050124A1 publication Critical patent/WO2023050124A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/005Devices for making primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, in particular to an electrode assembly, a manufacturing method and equipment thereof, a battery, and an electrical device.
  • batteries such as lithium-ion have the advantages of high energy density, high power density, many cycle times, and long storage time, they have been widely used in electric vehicles.
  • the purpose of this application is to improve the performance of the battery.
  • an electrode assembly for a battery cell includes: a first pole piece and a second pole piece with opposite polarities, the first pole piece and the second pole piece both include a main body and a tab protruding from the main body, the first pole piece and the second pole piece are wound around the winding axis so that the respective main bodies form a winding body;
  • the end of the winding body includes at least one conductive area and at least one liquid conducting area.
  • the tab is drawn out from the conducting area and wound at least one turn, and is used for electrical connection with the terminal of the battery cell.
  • the liquid conducting area and the conducting area are along the
  • the winding bodies are arranged adjacent to each other in the radial direction, and are used to guide the electrolyte to flow into the inside of the winding body.
  • This embodiment of the present application has a conductive area and a liquid-conducting area at the end of the winding body. Since the liquid-conducting area is not provided with tabs, after the tabs of the conductive area are flattened, the electrolyte in the battery cell can easily pass through the second The first pole piece and the second pole piece flow into the inside of the winding body in the gap of the liquid guide area to ensure the wettability of the electrode assembly, so that the electrolyte can be mixed with the first pole piece and the second pole piece during the charging and discharging process of the battery.
  • the active materials in the battery fully react to optimize the performance of the battery cell.
  • the tab continuously extends and winds at least one turn in the conductive area, it has a better connection strength with the main body in the circumferential direction, so that the root of the tab has a better self-supporting effect, and when a circumferential force is applied to the tab During the flattening process, it prevents tabs from wrinkling, stabilizes the shape of the flattened area, optimizes the effect of welding tabs and terminals, ensures that the electrode assembly reliably transmits electrical energy to the outside, and improves the overcurrent capability.
  • the particles generated during tab welding are not easy to fall between the first pole piece and the second pole piece in the liquid guide area along the circumference, which can improve the reliability of the electrode assembly and prevent short circuit or pole piece scratches. problem of injury.
  • the tab is wound multiple times around the conductive area.
  • the tabs are wound multiple times in the conductive area, and the bent parts of adjacent tabs are overlapped after kneading to further strengthen the supporting effect of the tabs, which can prevent the tabs from being kneaded and wrinkled.
  • the shape of the bending part is stable, and the effect of welding the tab and the terminal is optimized; moreover, the welding area between the tab and the terminal can be increased after the tab is flattened, so that the welding of the tab and the terminal is firmer, and the electrode assembly can be reliably outward Transmission of electric energy, and improve over-current capability.
  • the sum of the conductive regions and the liquid-conducting regions is greater than or equal to three, and they are arranged alternately along the radial direction of the wound body.
  • the electrolyte that enters the inside of the winding body from the liquid-conducting regions can reach the conductive region more easily, which is conducive to electrolysis.
  • this structure can shorten the transmission distance of electrons from the liquid-conducting area to the conductive area, ensure timely and effective transmission of electrons, improve the uniformity of current distribution, and prevent the polarization of electrode components.
  • the conductive area is located in the radially middle area of the end of the winding body, and a liquid conducting area is respectively provided on both sides of the conductive area along the radial direction.
  • a liquid conducting area is respectively provided on both sides of the conductive area along the radial direction, and the electrolyte can pass through these two liquid conducting areas to enter the inside of the winding body and flow to the first pole piece and the second pole piece. Partial penetration of the pole piece in the conductive region can further improve the electrolyte wetting performance of the electrode assembly. Moreover, the transmission distance of electrons from the inner liquid conducting area and the outer liquid conducting area to the conductive area is shortened, which can improve the uniformity of current distribution and prevent polarization problems. In addition, providing one conductive region also facilitates the electrical connection between the tab and the terminal. All of the above advantages can improve battery performance.
  • At least one of the first pole piece and the second pole piece is provided with a plurality of tabs at intervals along the winding direction, so as to form a plurality of conductive regions at intervals in the radial direction at the end of the winding body.
  • This embodiment of the present application can make the electrolyte that enters the inside of the winding body through the liquid guide area penetrate into the conductive areas on both sides at the same time, so that the electrolyte can smoothly reach the part of the first pole piece and the second pole piece located in the conductive area, improving Electrolyte wettability of electrode assemblies.
  • electrons can reach the conductive region from the liquid conducting region along the radially inner and radially outer sides at the same time, which can greatly shorten the electron transmission distance, improve the uniformity of current distribution, and prevent polarization problems; when the first pole piece and the second pole piece When the deployment is long, the polarization problem caused by the long local electron transmission distance can be better avoided by designing segmented tabs.
  • arranging a plurality of conductive regions can extend the overall length of the tab in the radial direction, which facilitates welding of the tab to the adapter and electrical connection to the terminal through the adapter. All of the above advantages can improve battery performance.
  • two conductive regions are provided and are respectively located on the inner and outer sides of the end of the winding body along the radial direction, and the liquid conducting region is located between the two conductive regions.
  • the two conductive regions are arranged in the non-wetting bottleneck region, such as the inner ring and the outer ring of the electrode assembly, which can optimize the wetting effect and prevent the polarization problem at the same time.
  • one conduction area and one liquid conduction area are provided respectively, and the conduction area is located radially inside the liquid conduction area.
  • the conductive area is set inside the liquid-conducting area.
  • it can also prevent the tabs from contacting the inner wall of the housing after being flattened to form a bent portion. Or prevent particles from falling to the inner wall of the housing when welding the lugs and terminals, so as to avoid short circuit and improve the working safety of the battery cell.
  • the liquid conducting regions at both ends of the wound body have the same radial size, and the conductive regions at both ends of the wound body have the same radial size.
  • the structures at both ends of the winding body are symmetrical, and the first pole piece and the second pole piece can be processed into the same structure, which can reduce the processing difficulty of the electrode assembly and improve the production efficiency of the electrode assembly.
  • the liquid conducting area at one end of the wound body has the same radial dimension as the conductive area at the other end.
  • the conductive area and the liquid-conducting area at both ends of the winding body are radially displaced, that is, the conductive area at one end of the winding body corresponds to the liquid-conducting area at the other end, so that the winding body is radially
  • a liquid guide area at any position which can make the electrolyte enter the winding body more quickly and fully, so that the electrolyte distribution inside the electrode assembly is more uniform, so that the electrolyte and the first electrode can be separated during the charging and discharging process of the battery.
  • the active materials on the sheet and the second pole sheet react uniformly to optimize the performance of the battery cell.
  • the electrode assembly further includes a diaphragm for isolating the first pole piece and the second pole piece, and the diaphragm, the main body of the first pole piece, and the main body of the second pole piece are wound to form a winding body ;
  • the part of the diaphragm located in the liquid guide area exceeds the sides of the main body of the first pole piece and the side of the main body of the second pole piece.
  • the diaphragm is designed in a stepped shape, widened in the liquid guide area, so that the sides of the diaphragm can protrude outward between the first pole piece and the second pole piece in the liquid guide area, and soaked in In the electrolyte, it is easier for the diaphragm to absorb the electrolyte under capillary action, which improves the wetting performance of the electrode assembly, thereby improving the performance of the battery cell.
  • the electrode assembly further includes a diaphragm for isolating the first pole piece and the second pole piece, the main body of at least one of the first pole piece and the second pole piece includes The active material area and the diversion area are provided, the diversion area is located outside the active material area, and the gap between the surface of the main body located in the diversion area and the diaphragm is larger than the gap between the surface of the main body located in the active material area and the diaphragm.
  • the gap between the surface of the main body located in the diversion area and the diaphragm is larger than the gap between the surface of the main body located in the active material area and the diaphragm, and a larger gap can be formed between the diversion area and the diaphragm.
  • the capillary gap after absorbing the electrolyte at the end of the diaphragm, facilitates the electrolyte to quickly enter the end of the winding body, and then further enter the active material area to react with the active material.
  • This structure makes the gap between the main body part and the diaphragm gradually decrease from the outside to the inside, which facilitates the rapid entry of the electrolyte.
  • the flow guide area of at least one of the first pole piece and the second pole piece includes a wetting zone adjacent to the active material zone, and the gap between the surface of the main body portion located in the wetting zone and the diaphragm is along the axis of the winding axis.
  • the extension direction gradually increases from the inside to the outside.
  • This embodiment of the present application can introduce the electrolyte into the active material area through the wetting area after the end of the diaphragm absorbs the electrolyte, so that the electrolyte can quickly enter the inside of the winding body to react.
  • the diversion area of at least one of the first pole piece and the second pole piece includes a wetted area adjacent to the active material area
  • the main body portion of at least one of the first pole piece and the second pole piece includes a current collector , the active material layer and the wetting layer, the active material layer is set on the surface of the current collector and is located in the active material area, the wetting layer is set on the surface of the current collector and is located in the wetting area, and the liquid absorption capacity of the wetting layer is higher than that of the active material layer Liquid absorption capacity.
  • the ability of the end of the winding body to absorb electrolyte can be improved through the material properties of the wetting layer, so that the electrolyte can be quickly removed. Electrolyte solution is sucked into the inside of the winding body.
  • the wetting layer includes an inorganic ceramic coating, a polymer, and an adhesive.
  • the flow guide area of at least one of the first pole piece and the second pole piece further includes a guide area, and the area where the current collector exceeds the wetting layer along the extension direction of the winding axis forms the guide area.
  • no coating layer is provided in the guide area, so that the gap between the current collector in the guide area and the diaphragm is larger than the gap between the surface of the wetting layer and the diaphragm, and the end of the winding body located in the liquid guide area can be
  • the part forms a multi-stage channel for inhaling the electrolyte, and the distance between the first pole piece or the second pole piece and the diaphragm gradually decreases from the guide area, the infiltration area to the active material area, which can significantly improve the liquid absorption efficiency and improve the electrode assembly. Wetting characteristics, thereby improving the performance of the battery cell.
  • the first pole piece is a positive pole piece and is provided with an active material area, a wetting area and a guide area in sequence from the inside to the outside along the extension direction of the winding axis
  • the second pole piece is a negative pole piece and is arranged along the winding axis.
  • An active material zone and a guide zone are sequentially arranged around the axis from inside to outside.
  • the diaphragm is located at a side of the liquid conduction area of at least one of the first pole piece and the second pole piece, and is located between the outer side of the flow guide area and the outer side of the lug.
  • This embodiment of the application makes the side of the diaphragm exceed the outer side of the flow guide area, so that the protruding part of the diaphragm can be soaked in the electrolyte to absorb the electrolyte by capillary action; and the side of the diaphragm does not exceed the pole ear
  • the outer side of the outer edge can prevent the diaphragm from protruding too long in the conductive area and affect the flatness of the tabs, and ensure the conductive effect of the tabs.
  • the extension length of the flow guide area around the circumference of the wound body is consistent with that of the active material area.
  • This embodiment of the present application can reduce the manufacturing difficulty of the pole piece with the guide area, and the extension length of the guide area is consistent with the active material area, and can better guide the electrolysis over the entire coating length of the active material area.
  • the liquid reaches the active material area, so that the electrolyte is evenly distributed on the entire winding length of the pole piece, thereby improving the performance of the battery cell.
  • a battery cell including: a housing with an opening; an end cap assembly for closing the opening, the end cap assembly includes an end cap body and terminals provided on the end cap body; As with the electrode assembly of the above embodiment, it is arranged in the casing, and the tab of the first pole piece or the tab of the second pole piece is electrically connected to the terminal.
  • the performance of the battery cell can be improved.
  • a battery comprising: the battery cell of the above embodiment; and a box for accommodating the battery cell.
  • an electric device including the battery of the above embodiment, and the battery is used to provide electric energy for the electric device.
  • a method for manufacturing an electrode assembly including:
  • each of the first pole piece and the second pole piece includes a main body and a tab protruding from the main body;
  • the first pole piece and the second pole piece around the winding axis so that the respective main body portions form a winding body, and the end portion of the winding body includes at least one conductive region and at least one liquid-conducting region;
  • the tab is drawn out from the conductive area and wound at least one turn, and is used for electrical connection with the terminal of the battery cell, and the liquid guide area and the conductive area are arranged adjacent to the radial direction of the winding body, and are used to guide the electrolyte to flow into Wrap around the inside of the body.
  • a battery manufacturing equipment including:
  • pole piece providing means configured to provide a first pole piece and a second pole piece of opposite polarity, the first pole piece and the second pole piece each comprising a body portion and a tab protruding from the body portion;
  • the pole piece winding device is configured to wind the first pole piece and the second pole piece around the winding axis so that the respective main parts form a winding body, and the end of the winding body includes at least one conductive region and at least one conductive region. Liquid area;
  • the tab is drawn out from the conductive area and wound at least one turn, and is used for electrical connection with the terminal of the battery cell, and the liquid guide area and the conductive area are arranged adjacent to the radial direction of the winding body, and are used to guide the electrolyte to flow into Wrap around the inside of the body.
  • FIG. 1 is a structural schematic diagram of some embodiments of the present application in which batteries are installed in vehicles.
  • Figure 2 is an exploded view of some embodiments of the battery of the present application.
  • FIG. 3 is a schematic structural view of some embodiments of battery cells in the battery of the present application.
  • Fig. 4 is a first exploded view of some embodiments of battery cells in the battery of the present application.
  • Fig. 5 is a second exploded view of some embodiments of battery cells in the battery of the present application.
  • Fig. 6 is a cross-sectional view of the first embodiment of the battery of the present application.
  • FIG. 7 is a schematic end view of the electrode assembly in the battery shown in FIG. 6 .
  • Fig. 8 is a cross-sectional view of some second embodiments of batteries of the present application.
  • FIG. 9 is a schematic end view of the electrode assembly in the battery shown in FIG. 8 .
  • Fig. 10 is a cross-sectional view of some third embodiments of batteries of the present application.
  • FIG. 11 is a schematic end view of the electrode assembly in the battery shown in FIG. 10 .
  • Fig. 12A, Fig. 12B and Fig. 12C are schematic structural diagrams of the first pole piece, the second pole piece and the diaphragm in some embodiments of the electrode assembly respectively.
  • FIG. 13A , FIG. 13B and FIG. 13C are structural schematic diagrams of the first pole piece, the second pole piece and the diaphragm in other embodiments of the electrode assembly, respectively.
  • Fig. 14A, Fig. 14B and Fig. 14C are schematic structural diagrams of the first pole piece, the second pole piece and the diaphragm in some other embodiments of the electrode assembly, respectively.
  • FIG. 15 is a schematic structural view of the first pole piece in the battery of the first embodiment shown in FIG. 6 .
  • FIG. 16 is a schematic structural view of the first pole piece in the battery of the second embodiment shown in FIG. 8 .
  • Fig. 17 is a schematic side view of some embodiments of the first pole piece.
  • Fig. 18 is a schematic side view of other embodiments of the first pole piece.
  • Fig. 19 is a schematic structural diagram of some embodiments in which the first pole piece, the second pole piece and the diaphragm are stacked before winding.
  • Fig. 20 is a schematic flow chart of some embodiments of the electrode assembly manufacturing method of the present application.
  • Fig. 21 is a schematic diagram of the module composition of some embodiments of the electrode assembly manufacturing device of the present application.
  • Electrode assembly 1. First pole piece; 11. Main body; 111. Liquid conducting area; 112. Active material layer; 113. Wetting layer; 114. Current collector; 12. Tabs; 121. Conductive area; 122 , transition part; 2, second pole piece; 3, diaphragm;
  • 200 battery; 201, box body; 201A, accommodating part; 201B, first cover body; 201C, second cover body;
  • S winding body
  • K winding axis
  • A active material area
  • B diversion area
  • B1 infiltration area
  • B2 guide area
  • connection should be interpreted in a broad sense, for example, it can be a fixed connection or a flexible connection. Disassembled connection, or integral connection; it can be directly connected or indirectly connected through an intermediary.
  • connection should be interpreted in a broad sense, for example, it can be a fixed connection or a flexible connection. Disassembled connection, or integral connection; it can be directly connected or indirectly connected through an intermediary.
  • an embodiment means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least some of the embodiments of the present application.
  • the occurrences of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It is understood explicitly and implicitly by those skilled in the art that the embodiments described herein can be combined with other embodiments.
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in this embodiment of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • a current battery cell generally includes a case and an electrode assembly accommodated in the case, and the case is filled with electrolyte.
  • the electrode assembly is mainly formed by stacking or winding a first pole piece and a second pole piece with opposite polarities, and a separator is usually arranged between the first pole piece and the second pole piece.
  • the part of the first pole piece and the second pole piece coated with the active material constitutes the main body of the electrode assembly, and the part of the first pole piece and the second pole piece not coated with the active material constitutes the first tab and the second tab respectively.
  • the first pole piece can be a positive pole piece, including a positive current collector and a positive active material layer located on both sides of the positive current collector.
  • the material of the positive current collector can be aluminum, for example, and the positive active material can be, for example, Lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.; the second pole piece can be a negative pole piece, including a negative electrode current collector and a negative electrode active material layer arranged on both sides of the negative electrode current collector, and the material of the negative electrode current collector For example, it may be copper, and the negative electrode active material may be, for example, graphite or silicon.
  • the first tab and the second tab can be located at one end of the main body together or at two ends of the main body respectively. During the charge and discharge process of the battery cell, the positive active material and the negative active material react with the electrolyte, and the tabs are connected to the terminals to form a current loop.
  • the tabs are flattened so that the tabs are bent and deformed and the adjacent tabs are more compact, so as to facilitate the connection between the tabs and the terminals and the assembly of the battery cells.
  • the tab is generally designed to extend continuously along the entire winding length of the pole piece.
  • the inventors of the present application have found in practice that the flattening treatment of the tabs will cause the ends of two adjacent tab layers in the laminated structure to be close together and form a closed structure.
  • a closed structure is to a certain extent It hinders the passage of the electrolyte from the outer space of the tab into the main body, which adversely affects the infiltration effect of the electrolyte on the active material in the electrode assembly, resulting in the inability of the positive or negative active material to fully participate in the reaction, which may affect the efficiency of the electrode assembly. affect battery performance.
  • the infiltration effect of the electrolyte on the active material in the electrode assembly is an important factor to ensure the high performance of the battery.
  • the inventor intends to improve the wetting effect by changing the material of the separator or the hierarchical structure of the separator, but this will increase the cost of the electrode assembly and complicate the preparation process.
  • Another way of thinking is to die-cut continuous tabs to form multiple discrete tabs. After winding, a stack of tabs is formed. After the tabs are flattened, there are tab areas and non-tab areas in the circumferential direction of the electrode assembly. , the non-tab area is convenient for soaking the electrolyte, and the tab area is used to connect the terminals.
  • the electrical device includes a battery used to provide electrical energy for the device.
  • the device can be a mobile phone, a portable device, a notebook computer, a battery car, an electric car, a ship, a spacecraft, an electric toy, an electric tool, etc.
  • a spacecraft includes an airplane, a rocket , space shuttle and spacecraft, etc.
  • Electric toys include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.
  • Electric tools include metal cutting electric tools, grinding electric Tools, assembly power tools and power tools for railways, such as electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators and electric planers.
  • the electrical device can be a vehicle 300, such as a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle, or an extended-range vehicle, etc.; or the electrical device can also be a drone or a ship, etc. .
  • the vehicle 300 may include an axle 301, a wheel 302 connected to the axle 301, a motor 303, a controller 304 and a battery 200, the motor 303 is used to drive the axle 301 to rotate, and the controller 304 is used to control the operation of the motor 303,
  • the battery 200 can be arranged at the bottom, head or tail of the vehicle 300 to provide electric energy for the operation of the motor 303 and other components in the vehicle.
  • the battery 200 includes a case 201 and a battery cell 100 .
  • the battery 100 there may be one or more battery cells 100 . If there are multiple battery cells 100, the multiple battery cells 100 can be connected in series, parallel or mixed. 100 are connected in series or in parallel or mixed to form a battery module, and then a plurality of battery modules are connected in series or in parallel or mixed to form a whole and accommodated in the box 201 . It may also be that all the battery cells 100 are directly connected in series, in parallel or mixed together, and then the whole composed of all the battery cells 100 is accommodated in the case 201 .
  • the box body 201 is hollow inside and is used to accommodate one or more battery cells 100 . According to the shape, quantity, combination and other requirements of the battery cells 100 contained therein, the box body 201 may also have different shapes and sizes.
  • the box body 201 may include: an accommodating portion 201A, a first cover 201B and a second cover 201C, the opposite ends of the accommodating portion 201A have openings, and the first cover 201B and the second cover 201C are respectively used for closing Both ends of the accommodating portion 201A are open.
  • the accommodating portion 201A has a rectangular cylindrical structure.
  • the battery cell 100 includes a casing 101 , an end cap assembly 102 and an electrode assembly 10 .
  • the battery cell 100 may be, for example, a lithium-ion secondary battery, a lithium-ion primary battery, a lithium-sulfur battery, a sodium-lithium-ion battery, or a magnesium-ion battery.
  • the casing 101 is a hollow structure for accommodating the electrode assembly 10, and the casing 101 has an opening 1011; the end cap assembly 102 is used to close the opening 1011, the end cap assembly 102 includes an end cap body 1021 and a The terminals 1022 on the top cover body 1021 are also provided with a pressure relief component 1023 for pressure relief when the internal pressure of the battery cell 100 exceeds a preset pressure.
  • FIG. 3 shows an embodiment in which only one electrode assembly 10 is provided.
  • the battery cell 100 may also include multiple electrode assemblies 10, and the terminals 1022 may also be configured according to the configuration of the electrode assembly 10. Quantity and arrangement are designed.
  • the casing 101 may be in the shape of a cylinder, a flat body, a cuboid or other shapes.
  • the electrode assembly 10 is arranged in the housing 101, and the first pole piece and the second pole piece with opposite polarities both have tabs 12, and the tabs 12 of the first pole piece or the pole pieces of the second pole piece Ear 12 is electrically connected to terminal 1022 .
  • the end cover assembly 102 may further include an adapter 1025 disposed between the end cover body 1021 and the electrode assembly 10 for realizing the electrical connection between the tab 12 and the terminal 1022 .
  • the end cap assembly 102 may further include an insulating member 1024 disposed between the end cap body 1021 and the adapter 1025 .
  • the casing 101 of the battery cell 100 is a hollow cylinder with openings 1011 at both ends, and the two openings 1011 are closed by the end cap assembly 102 .
  • the electrode assembly 10 can be put into the casing 101 from the opening 1011, the first pole piece and the second pole piece are wound to form a cylindrical electrode assembly 10, and the respective tabs 12 of the first pole piece and the second pole piece are separated from the electrodes respectively. Both ends of the component 10 in the axial direction are led out, and both are electrically connected to the terminals 1022 at the corresponding ends through the adapters 1025 .
  • the casing 101 of the battery cell 100 is a hollow cylinder, one end is closed, the other end has an opening 1011 and is closed by the end cap assembly 102, and the first pole piece and the second pole piece are coiled.
  • a cylindrical electrode assembly 10 is formed, and the respective lugs 12 of the first pole piece and the second pole piece are drawn from both ends of the electrode assembly 10 in the axial direction, and the lugs 12 of the first pole piece, such as the negative pole piece, are connected
  • the piece 1025 is electrically connected to the terminal 1022
  • the second pole piece such as the tab 12 of the positive pole piece, is directly electrically connected to the end wall of the casing 101 .
  • the structure of the electrode assembly 10 will be described in detail below.
  • the electrode assembly 10 is used for a battery cell 100, and the electrode assembly 10 includes: a first pole piece 1 and a second pole piece 2 with opposite polarities, the first pole Both the piece 1 and the second pole piece 2 include a main body portion 11 and a tab 12 protruding from the main body portion 11, and the first pole piece 1 and the second pole piece 2 are wound around the winding axis K so that the respective main body portions 11 form Wind the main body S.
  • the end of the winding body S includes at least one conductive region 121 and at least one liquid-conducting region 111, the tab 12 is drawn out of the conductive region 121 and wound at least one turn, and is used for electrical connection with the terminal 1022 of the battery cell 100,
  • the liquid guiding area 111 and the conductive area 121 are adjacently arranged along the radial direction of the winding body S, and are used to guide the electrolyte to flow into the inside of the winding body S.
  • the shapes of the first pole piece 1 and the second pole piece 2 are basically the same, and may be a strip-shaped structure, and the first pole piece 1 and the second pole piece 2 are stacked along a direction perpendicular to the winding axis K,
  • the formed winding body S can be a cylinder, a flat body, a cuboid or other shapes.
  • the first pole piece 1 is a positive pole piece
  • the second pole piece 2 is a negative pole piece
  • the first pole piece 1 is a negative pole piece
  • the second pole piece 2 is a positive pole piece.
  • the electrode assembly 10 also includes a diaphragm 3, which is used to isolate the first pole piece 1 and the second pole piece 2, and the diaphragm 3, the main body 11 of the first pole piece 1, and the main body of the second pole piece 2 are formed by winding Wind the main body S.
  • one end of the winding body S includes at least one conductive region 121 and at least one liquid-conducting region 111
  • the tab 12 is drawn out from the conductive region 121 and wound at least one turn, so that the conductive region 121 and the liquid-conducting region 111 All form a ring structure, and the tab 12 is flattened to form a bent portion, and is electrically connected to the terminal 1022 of the battery cell 100 through the bent portion, for example, by welding.
  • the tab 12 In the unfolded state of the first pole piece 1 or the second pole piece 2 , the tab 12 can be arranged in the middle area, the end area or other areas of the pole piece.
  • the liquid guide area 111 is not provided with tabs 12, and the gap between the first pole piece 1 or the second pole piece 2 and the diaphragm 3 communicates with the outside of the electrode assembly 10, making it easier for the electrolyte to enter the first pole piece 1 or the second pole piece 1.
  • the gap between the pole piece 2 and the diaphragm 3 flows into the inside of the winding body S, and the diaphragm 3 can also fully play the role of absorbing liquid, so that the electrolyte can be mixed with the first pole piece 1 and the second pole piece during the charging and discharging process of the battery. 2.
  • the active substance on 2 is fully reacted.
  • both ends of the winding body S include at least one conductive region 121 and at least one liquid-conducting region 111, the electrolyte can infiltrate from the liquid-conducting regions 111 at both ends of the winding body S to the inside, and the electrolyte can be shortened.
  • the infiltration path improves the liquid absorption effect.
  • This embodiment of the present application has both a conductive area 121 and a liquid conducting area 111 at the end of the winding body S. Since the liquid conducting area 111 is not provided with tabs 12, after the tabs 12 of the conducting area 121 are flattened, the battery cell
  • the electrolyte solution in 100 can also easily flow into the inside of the winding body S through the gap between the first pole piece 1 and the second pole piece 2 in the liquid guide area 111, so as to ensure the wettability of the electrode assembly 10, so that it can be used in the charging and discharging process of the battery. , so that the electrolyte fully reacts with the active materials on the first pole piece 1 and the second pole piece 2 , thereby optimizing the performance of the battery cell 100 .
  • the tab 12 continuously extends and wraps at least one turn in the conductive region 121, it has better connection strength with the main body 11 in the circumferential direction, so that the root of the tab 12 has a better self-supporting effect.
  • the tab 12 prevent the tab 12 from wrinkling, stabilize the shape of the flattened area, optimize the effect of welding the tab 12 and the terminal 1022, ensure that the electrode assembly 10 reliably transmits electric energy outward, and Improve flow capacity.
  • the particles produced during the welding of the tabs 12 are not easy to fall in the circumferential direction between the first pole piece 1 and the second pole piece 2 of the liquid guide area 111, which can improve the reliability of the electrode assembly 10 and prevent the occurrence of Problems with short circuit or pole piece scratches.
  • the tab 12 is wound around the conductive region 121 for multiple turns.
  • the tab 12 can be wound at least twice.
  • the number of winding turns should be at least 5 turns, and the number of winding turns can be designed according to the current flow capacity and polarization of the electrode assembly 10. .
  • the tabs 12 are wound multiple times in the conductive area 121, and the bent parts of adjacent tabs 12 overlap each other after kneading to further strengthen the supporting effect of the tabs 12, which can prevent the tabs from 12. Knead flat and wrinkle to make the shape of the bent part stable, and optimize the effect of welding the tab 12 and the terminal 1022; moreover, the welding area between the tab 12 and the terminal 1022 after kneading can be increased, so that the joint between the tab 12 and the terminal 1022 can be increased.
  • the welding is firmer, which ensures that the electrode assembly 10 can reliably transmit electric energy to the outside, and improves the overcurrent capability.
  • the sum of the conductive regions 121 and the liquid-conducting regions 111 is greater than or equal to three, and they are arranged alternately along the radial direction of the wound body S. As shown in FIG. 6 and FIG. 7 , there is one conductive region 121 and two liquid-conducting regions 111 ; as shown in FIG. 8 and FIG. 9 , there are two conductive regions 121 and one liquid-conducting region 111 .
  • the electrolyte that enters the inside of the winding body S from the liquid-conducting regions 111 can reach the conductive region more easily.
  • the area 121 is conducive to the rapid infiltration of the electrolyte; moreover, this structure can shorten the transmission distance of electrons from the liquid-conducting area 111 to the conductive area 121, ensure timely and effective transmission of electrons, improve the uniformity of current distribution, and prevent the electrode assembly 10 from occurring. Polarization problem.
  • the conductive area 121 is located in the middle area of the end of the winding body S along the radial direction, and two liquid conducting areas 111 are respectively provided on both sides of the conductive area 121 along the radial direction.
  • the "middle area” mentioned here does not exactly mean the position exactly in the middle along the radial direction, and the position of the conductive region 121 radially inward or outward is within the protection scope of the present application.
  • a liquid conducting area 111 is provided on both sides of the conductive area 121 along the radial direction, and the electrolyte can pass through these two liquid conducting areas 111 to enter the inside of the winding body S and flow to the first pole. Partial penetration of the sheet 1 and the second electrode sheet 2 located in the conductive region 121 can further improve the electrolyte wetting performance of the electrode assembly 10 . Moreover, the transmission distance of electrons from the inner layer liquid conducting area 111 and the outer layer liquid conducting area 111 to the conductive area 121 is shortened, which can improve the uniformity of current distribution and prevent polarization problems. In addition, providing one conductive region 121 also facilitates the electrical connection between the tab 12 and the terminal 1022 . All of the above advantages can improve battery performance.
  • At least one of the first pole piece 1 and the second pole piece 2 is provided with a plurality of tabs 12 at intervals along the winding direction, so as to form a A plurality of conductive regions 121 arranged at intervals along the radial direction.
  • two or more tabs 12 are arranged at intervals on one side of the main body 11 of at least one of the first pole piece 1 and the second pole piece 2 , each tab 12.
  • a conductive region 121 is formed at the end of the winding body S, and the conductive region 121 and the liquid-conducting region 111 are alternately arranged at intervals in the radial direction.
  • the number of segments of the tab 12 may not exceed 10, depending on the length of the pole piece.
  • This embodiment of the present application can make the electrolyte that enters the inside of the winding body S through the liquid guide area 111 penetrate into the conductive areas 121 on both sides at the same time, so that the electrolyte can smoothly reach the first pole piece 1 and the second pole piece 2 in the conductive area.
  • the portion of the region 121 improves the electrolyte wetting performance of the electrode assembly 10 .
  • electrons can reach the conductive region 121 from the liquid conducting region 111 along the radially inner side and the radially outer side at the same time, which can greatly shorten the electron transmission distance, improve the uniformity of current distribution, and prevent polarization problems; when the first pole piece 1 and the second pole piece When the dipole sheet 2 is extended, the polarization problem caused by the long local electron transmission distance can be better avoided by designing segmented tabs 12 .
  • arranging a plurality of conductive regions 121 can extend the overall length of the tab 12 in the radial direction, facilitating welding of the tab 12 to the adapter 1025 and electrically connecting the tab 12 to the terminal 1022 through the adapter 1025 . All of the above advantages can improve battery performance.
  • FIG. 8 and FIG. 9 there are two conductive regions 121 located on the inner and outer sides of the end of the winding body S along the radial direction, and the liquid guiding region 111 is located between the two conductive regions 121 .
  • the electrolyte infiltration of the part of the electrode assembly 10 closest to the inner ring and the outer ring is relatively easy.
  • the electrolyte solution in the gap between the electrode assemblies 10 is in contact, therefore, the inner and outer rings of the electrode assembly 10 are more likely to be immersed in the electrolyte solution than the middle area.
  • the two conductive regions 121 are arranged in the non-wetting bottleneck region, such as the inner ring and the outer ring of the electrode assembly 10, which can optimize the wetting effect and prevent polarization problems at the same time.
  • one conductive region 121 and one liquid-conducting region 111 are respectively provided, and the conductive region 121 is located radially inside of the liquid-conducting region 111 .
  • the radial width of the conductive region 121 may be greater than that of the liquid-conducting region 111 to improve the flow-through capability of the electrode assembly 10 .
  • the conductive region 121 is arranged inside the liquid-conducting region 111.
  • it can also prevent the tab 12 from colliding with the case after kneading to form a bent portion.
  • the inner wall of the body 101 is in contact, or the particles are prevented from falling to the inner wall of the housing 101 when the lug 12 and the terminal 1022 are welded, so as to avoid a short circuit and improve the working safety of the battery cell 100 .
  • the liquid conducting regions 111 at both ends of the wound body S have the same radial size
  • the conductive regions 121 at both ends of the wound body S have the same radial size.
  • the respective tabs 12 of the first pole piece 1 and the second pole piece 2 are drawn out from both ends of the winding body S, and both ends of the winding body S are provided with a conductive area 121 and a liquid conducting area 111, "radial "Size” includes radial position and radial size.
  • the structures at both ends of the winding body S are symmetrical, and the first pole piece 1 and the second pole piece 2 can be processed into the same structure, which can reduce the processing difficulty of the electrode assembly 10 and improve the production of the electrode assembly 10 efficiency.
  • the liquid conducting area 111 at one end of the winding body S has the same radial dimension as the conductive area 121 at the other end.
  • the respective tabs 12 of the first pole piece 1 and the second pole piece 2 are drawn out from both ends of the winding body S, and both ends of the winding body S are provided with a conductive area 121 and a liquid conducting area 111, "radial "Size” includes radial position and radial size.
  • the conductive region 121 and the liquid-conducting region 111 at both ends of the winding body S are displaced radially, that is, the conductive region 121 at one end of the winding body S corresponds to the liquid-conducting region 111 at the other end, so that the winding
  • the winding body S has a liquid guide area 111 at any position along the radial direction, which can make the electrolyte enter the inside of the winding body S more quickly and fully, so that the electrolyte distribution inside the electrode assembly 10 is more uniform, so that it can be used during charging and discharging of the battery.
  • the electrolyte reacts uniformly with the active materials on the first pole piece 1 and the second pole piece 2 , thereby optimizing the performance of the battery cell 100 .
  • the electrode assembly 10 further includes a diaphragm 3 for isolating the first pole piece 1 and the second pole piece 2 , and the diaphragm 3 and the first pole piece 1
  • the main body part 11 and the main part of the second pole piece 2 are wound to form a winding body S; in the extension direction of the winding axis K, at least one side of the diaphragm 3 located in the liquid guide area 111 exceeds the first pole piece 1 The side of the main body 11 and the side of the main body 11 of the second pole piece 2 .
  • the diaphragm 3 can be a strip-shaped structure in the unfolded state, and the diaphragm 3 can be made of PP (polypropylene) material or PE (polyethylene) material, and has micropores of micron or nanoscale inside, and can be used for It is used to allow metal ions to pass through during the charging and discharging process of the battery.
  • PP polypropylene
  • PE polyethylene
  • the part of one side of the diaphragm 3 located in the liquid guide area 111 exceeds the side of the main body 11 of the first pole piece 1 and the side of the main body 11 of the second pole piece 2 .
  • the parts on both sides of the diaphragm 3 located in the liquid guide area 111 are beyond the sides of the main body 11 of the first pole piece 1 and the sides of the main body 11 of the second pole piece 2 .
  • the diaphragm 3 is designed in a stepped shape, widened in the liquid guide area 111, so that the sides of the diaphragm 3 can be outwards between the first pole piece 1 and the second pole piece 2 in the liquid guide area 111 extended and soaked in the electrolyte, so that the separator 3 can absorb the electrolyte more easily under capillary action, improve the wettability of the electrode assembly 10 , and further improve the performance of the battery cell 100 .
  • the diaphragm 3 can also be designed as a strip-shaped structure with equal width.
  • the electrode assembly 10 further includes a diaphragm 3 for isolating the first pole piece 1 and the second pole piece 2 , at least one of the first pole piece 1 and the second pole piece 2
  • a main body part 11 includes an active material area A and a guide area B arranged side by side along the extension direction of the winding axis K, and the guide area B is located outside the active material area A for guiding the electrolyte into the inside of the winding body S ;
  • the gap between the surface of the main body 11 located in the diversion area B and the diaphragm 3 is greater than the gap between the surface of the main body 11 located in the active material area A and the diaphragm 3 .
  • the first pole piece 1 is a positive pole piece, and the active material area A is coated with a positive pole active material.
  • the positive pole active material can be a ternary material, lithium manganate or lithium iron phosphate;
  • the second pole piece 2 is a negative pole active material ,
  • the negative electrode active material can be graphite or silicon.
  • the gap between the surface of the main body 11 located in the diversion area B and the diaphragm 3 is larger than the gap between the surface of the main body 11 located in the active material area A and the diaphragm 3, and the gap between the diversion area B and the diaphragm 3 can be achieved.
  • a large capillary gap is formed between the diaphragms 3. After the electrolyte is sucked into the end of the diaphragm 3, the electrolyte can quickly enter the end of the winding body S, and then further enter the active material area A to react with the active material.
  • This structure makes the gap between the main body 11 and the diaphragm 3 gradually decrease from the outside to the inside, which facilitates the rapid entry of the electrolyte.
  • the flow guide area B of at least one of the first pole piece 1 and the second pole piece 2 includes a wetting area B1 adjacent to the active material area A, and the main body 11 is located in the wetting area B1
  • the gap between the surface and the diaphragm 3 gradually increases from the inside to the outside along the extension direction of the winding axis K.
  • the wetting area B1 can be a long strip-shaped structure extending along the entire winding direction of the main body 11, for introducing electrolyte solution, and the width of the wetting area B1 along the extending direction of the winding axis K is smaller than the width of the active material area A .
  • the surface of the wetting area B1 can be inclined along the extension direction of the winding axis K, or it can also be designed as an arc, a step, etc., as long as the surface of the wetting area B1 and the diaphragm 3 It is within the protection scope of the present application that the gap gradually increases from the inside to the outside.
  • This embodiment of the present application can introduce the electrolyte into the active material area A through the wetting area B1 after the end of the diaphragm 3 absorbs the electrolyte, so that the electrolyte can quickly enter the inside of the winding body S to react.
  • the flow guide area B of at least one of the first pole piece 1 and the second pole piece 2 includes a wetted area B1 adjacent to the active material area A
  • the first pole piece 1 and at least one of the second pole piece 2 includes a current collector 114, an active material layer 112 and a wetting layer 113
  • the active material layer 112 is arranged on the surface of the current collector 114 and is located in the active material area A
  • the wetting layer 113 Provided on the surface of the current collector 114 and located in the wetting region B1 , the wetting layer 113 has a liquid absorption capacity higher than that of the active material layer 112 .
  • liquid absorption capacity refers to the ability of the coating layer per unit area to absorb electrolyte solution per unit time.
  • the first pole piece 1 is a positive pole piece, and aluminum foil can be used as the current collector 114
  • the second pole piece 2 is a negative pole piece, and copper foil can be used as the current collector 114 .
  • the wetting layer 113 includes an inorganic ceramic coating, a polymer, and an adhesive. As shown in FIG. 17 , the sides of the wetting layer 113 are flush with the sides of the current collector 114 , and the sides of the diaphragm 3 adjacent to the first pole piece 1 exceed the sides of the wetting layer 113 and the current collector 114 .
  • the material properties of the wetting layer 113 can improve the ability of the end of the winding body S to absorb the electrolyte. The ability to quickly suck the electrolyte into the inside of the winding body S.
  • the gap between the surface of the main body 11 located in the wetting region B1 and the diaphragm 3 gradually increases from the inside to the outside, that is, the thickness of the wetting layer 113 is smaller than the thickness of the active material layer 112, and a gap formed between the wetting layer 113 and the diaphragm 3
  • the gradually expanding gap from the inside to the outside also facilitates the inhalation of electrolyte.
  • the wettability of the electrode assembly 10 can be better improved through the double improvement of structural design and material properties.
  • the flow guide area B of at least one of the first pole piece 1 and the second pole piece 2 further includes a guide area B2, and the direction of the current collector 114 along the winding axis K The region extending beyond the wetting layer 113 forms the guide region B2.
  • the guide area B2 is the area where the current collector 114 exceeds the wetting layer 113 along the extension direction of the winding axis K, and no coating layer is provided in this area, and the part of the current collector 114 located in the guide area B2 is integrally connected with the tab 12 .
  • the side of the diaphragm 3 adjacent to the first pole piece 1 exceeds the side of the current collector 114, so that the liquid is sucked through the diaphragm 3 first, and then the electrolyte enters the active material region A through the guide region B2 and the wetting region B1 in sequence.
  • no coating layer is provided in the guide area B2, so that the gap between the current collector 114 between the guide area B2 and the diaphragm 3 is larger than the gap between the surface of the wetting layer 113 and the diaphragm 3, and the main body can be wound S is located at the end of the liquid guide area 111 to form a multi-stage channel for inhaling electrolyte, and the distance between the first pole piece 1 or the second pole piece 2 and the diaphragm 3 is from the guide area B2, the wetting area B1 to the active material area A Gradual reduction can significantly improve the liquid absorption efficiency, improve the wettability of the electrode assembly 10 , and thus improve the performance of the battery cell 100 .
  • the first pole piece 1 is a positive pole piece and is provided with an active material area A, a wetting area B1 and a guide area B2 sequentially from the inside to the outside along the extension direction of the winding axis K;
  • the second pole piece 2 is a negative pole piece and is provided with an active material area A and a guide area B2 in sequence along the winding axis K from inside to outside.
  • the speed at which the electrolyte enters the positive electrode sheet is relatively slow, and by adding the wetting area B1 to the positive electrode sheet, the speed at which the electrolyte penetrates into the positive electrode active material can be accelerated.
  • the speed at which the electrolyte enters the negative pole piece is faster than that of the positive pole piece, and the manufacturing process of the negative pole piece can be simplified only by guiding the electrolyte solution into the negative pole piece through the guide area B2.
  • This embodiment can not only make the electrolyte enter the positive pole piece and the negative pole piece at a similar speed, but also reduce the production difficulty of the electrode assembly 10 .
  • the first pole piece 1 and the second pole piece 2 can also be configured to have the same structure, for example, both are provided with the wetting area B1, or neither are provided with the wetting area B1.
  • the diaphragm 3 is located on the side of the liquid conduction area 111 of at least one of the first pole piece 1 and the second pole piece 2 and is located between the outer side of the flow guide area B and the outer side of the tab 12 .
  • This embodiment of the application makes the side of the diaphragm 3 exceed the outer side of the flow guide area B, so that the protruding part of the diaphragm 3 can be immersed in the electrolyte to absorb the electrolyte by capillary action; and the side of the diaphragm 3 Not exceeding the outer edge of the tab 12 can prevent the diaphragm 3 from protruding too long in the conductive area 121 to affect the flatness of the tab 12 and ensure the conductive effect of the tab 12 .
  • the extension length of the flow guide area B around the circumference of the winding body S is consistent with that of the active material area A.
  • This embodiment of the present application can reduce the manufacturing difficulty of the pole piece with the diversion area B, and the extension length of the diversion area is consistent with the active material area A, and can be better in the entire coating length of the active material area A.
  • the electrolyte is guided to the active material area A efficiently, so that the electrolyte is evenly distributed on the entire winding length of the pole piece, thereby improving the performance of the battery cell 100 .
  • the first pole piece 1 is taken as an example to introduce the specific structure of the pole piece, and the second pole piece 2 can also adopt the same or similar structure.
  • FIG. 6 only shows the structure of one end of the battery cell 100 , and the structure of the other end may be symmetrical to that shown in the figure.
  • the housing 101 is provided with an electrode assembly 10, and the end of the housing 101 is provided with an opening 1011, which is closed by an end cap assembly 102.
  • the end cap assembly 102 includes an end cap body 1021, a terminal 1022, an insulator 1024 and an adapter 1025 .
  • the insulator 1024 is disposed on the side of the end cap body 1021 close to the electrode assembly 10
  • the adapter 1025 is disposed on the side of the insulator 1024 close to the electrode assembly 10 .
  • the electrode assembly 10 includes a first pole piece 1, a second pole piece 2 and a diaphragm 3, the first pole piece 1 and the second pole piece 2 are stacked, and the diaphragm 3 is used to isolate the first pole piece 1 and the second pole piece 2,
  • the first pole piece 1, the second pole piece 2 and the separator 3 are wound together, so that the respective main bodies 11 of the first pole piece 1 and the second pole piece 2 form a winding body S, and the ends of the winding body S are arranged concentrically.
  • There is one conductive region 121 and two liquid-conducting regions 111 and the conductive region 121 is located between the two liquid-conducting regions 111 .
  • the tab 12 is drawn out from the conductive area 121 and wound multiple times, for example, 6 times.
  • the tab 12 is flattened to form a bent portion, and is electrically connected to the terminal 1022 at the same end through the adapter 1025 .
  • the tab 12 can be bent radially inwards to prevent the bent portion from touching the inner wall of the housing 101 and facilitate reducing the radial dimension of the adapter 1025 .
  • the first pole piece 1 with the highest extension length is the first pole piece 1, followed by the diaphragm 3, and the second pole piece 2 extends to the horizontal dotted line; in the liquid guide area 111, the diaphragm 3 with the highest extension length extends to The horizontal dotted line includes the first pole piece 1 and the second pole piece 2, and the first pole piece 1 and the second pole piece 2 are arranged alternately.
  • the outer ring of the insulator 1024 is provided with a protruding portion 1024' for separating the tab 12 from the housing 101 to improve insulation performance.
  • the adapter 1025 may include a first connecting piece 1025A and a second connecting piece 1025B connected to each other, the first connecting piece 1025A is welded to the tab 12 , and the second connecting piece 1025B is connected to the terminal 1022 .
  • the difference from the first embodiment is that two conductive regions 121 and one liquid-conducting region 111 are concentrically arranged at the end of the winding body S, and the conductive The liquid region 111 is located between the two conductive regions 121 .
  • the tab 12 of each conductive region 121 is wound continuously for multiple turns, for example, 5 turns.
  • the difference from the first embodiment is that a conductive area 121 and a liquid-conducting area 111 are concentrically arranged at the end of the winding body S, and the liquid-conducting area Region 111 is located radially outside conductive region 121 .
  • the radial width of the conductive region 121 is greater than the radial width of the liquid conducting region 111 .
  • the first pole piece 1 is a positive pole piece, and the main body portion 11 of the first pole piece 1 includes active material regions A and impregnated materials arranged side by side along the extension direction of the winding axis K.
  • Zone B1 the wetted zone B1 is located outside the active material zone A.
  • the current collector 114 can be coated with an active material layer 112 in the active material area A, and can be coated with a wetting layer 113 in the wetting area B1.
  • the gap between the surface of the layer 113 and the diaphragm 3 gradually decreases from the outside to the inside, and is larger than the gap between the active material layer 112 and the diaphragm 3 .
  • the side of the diaphragm 3 may extend beyond the side of the first pole piece 1 by a width of W9.
  • the tab 12 protrudes from the side of the main body 11 along the direction in which the winding axis K extends.
  • the tab 12 can be located near one end of the main body 11 along the winding length.
  • the conductive area 121 can be located in the inner ring or outer ring.
  • the wetting layer 113 extends along the entire winding length of the first pole piece 1 , and the wetting layer 113 is located on the outer side of the conductive region 121 and can have a small part of its width on the tab 12 .
  • the root of the lug 12 connected to the main body 11 can be provided with a transition portion 122 , such as rounded or chamfered corners, to reduce the stress on the root of the lug 12 during kneading and prevent the lug 12 from cracking or being pulled.
  • a transition portion 122 may also be provided at the corner of the outer side of the tab 12 .
  • the value range of the fillet at the outer corner of the tab 12 is R3-R12, preferably R8; the value range of the fillet at the connection with the main body 11 is between R1-R8, preferably R5.
  • the second pole piece 2 is a negative pole piece, and the main body 11 of the second pole piece 2 only includes the active material area A, and the tab 12 can be provided near one end of the main body 11 along the winding length.
  • the diaphragm 3 is in the shape of a rectangular strip and adopts a structure of equal width.
  • the lugs 12 of the first pole piece 1 and the second pole piece 2 are located on different sides.
  • the first pole piece 1 is a positive pole piece
  • the main body 11 of the first pole piece 1 includes active material regions A arranged side by side along the extension direction of the winding axis K, impregnation Area B1 and Guide Area B2, Wetting Area B1 is located between Active Material Area A and Guide Area B2.
  • the wetted zone B1 and the guide zone B2 extend along the entire winding length of the first pole piece 1 .
  • the current collector 114 can be coated with an active material layer 112 in the active material area A, and can be coated with a wetting layer 113 in the wetting area B1.
  • the gap between the surface of the layer 113 and the diaphragm 3 gradually decreases from the outside to the inside, and is larger than the gap between the active material layer 112 and the diaphragm 3 .
  • the side of the diaphragm 3 may extend beyond the side of the guide area B2 by a width of W9'.
  • the tab 12 protrudes from the side of the main body 11 along the winding axis K.
  • the tab 12 can be located at one end of the main body 11 .
  • the conductive area 121 can be located on the inner ring or the outer ring.
  • the second pole piece 2 is a negative pole piece
  • the main body 11 of the second pole piece 2 includes the active material area A and the guide area B2
  • the tab 12 can be arranged on the main body 11 near one end along the winding length. s position.
  • the current collector 114 can be coated with the active material layer 112 in the active material area A, and the part of the current collector 114 beyond the side of the active material area A forms a guide area B2.
  • the width of the diaphragm 3 in the conductive region 121 is W0, and both sides of the diaphragm 3 are widened by W1 in the liquid-conducting region 111, so that the sides of the diaphragm 3 exceed the main body 11 in the liquid-conducting region 111 sides for easy aspiration.
  • the respective lugs 12 of the first pole piece 1 and the second pole piece 2 are located on different sides.
  • the first pole piece 1 is a positive pole piece, and its structure is the same as that in FIG. 13A .
  • the width of the active material area A is W4
  • the width of the wetting area B1 is W3
  • the width of the guide area B2 is W2
  • the width of the tab 12 is W5.
  • the second pole piece 2 is a negative pole piece, and its structure is the same as that of FIG. 14A .
  • the width of the active material area A is W8
  • the width of the wetting area B1 is W7
  • the width of the guide area B2 is W6, and the width of the tab 12 is W9.
  • the width of the diaphragm 3 in the conductive region 121 is W0, and both sides of the diaphragm 3 are widened by W1 in the liquid-conducting region 111, so that the sides of the diaphragm 3 exceed the main body 11 in the liquid-conducting region 111 sides for easy aspiration.
  • the diaphragm 3 can also adopt the equal-width structure shown in Fig. 12C.
  • the first pole piece 1 can be a positive pole piece or a negative pole piece, and the main body 11 of the first pole piece 1 includes active pole pieces arranged side by side along the extension direction of the winding axis K.
  • the material area A and the wetting area B1, the wetting area B1 is located outside the active material area A.
  • the tab 12 may be located in the middle area of the main body 11 along the winding length, and the conductive region 121 is located in the middle area of the winding body S along the radial direction after winding.
  • the first pole piece 1 may be a positive pole piece or a negative pole piece.
  • the difference from FIG. Two pole lugs 12 are provided on the side, and the two pole lugs 12 are arranged at intervals and respectively located at positions close to both ends of the main body 11 along the winding length.
  • the end of the winding body S is provided with two conductive regions 121 and a liquid-conducting region 111 , and the liquid-conducting region 111 is located between the two conductive regions 121 .
  • Fig. 19 is a schematic structural view of some embodiments in which the first pole piece 1, the second pole piece 2 and the separator 3 are stacked before winding.
  • the first pole piece 1 can be a negative pole piece
  • the second pole piece 2 is a positive pole piece
  • the first pole piece 1 is longer than the second pole piece 2
  • the diaphragm 3 is longer than the first pole piece 1 .
  • the lugs 12 of the first pole piece 1 and the second pole piece 2 are pulled out in opposite directions along the winding axis K, and both are located near the first end of the main body 11 along the winding direction, the first ends are both left ends, and
  • the tab 12 extends continuously in the partial winding length direction of the main body 11 .
  • the main body 11 of the first pole piece 1 only includes the active material coating area A
  • the main body 11 of the second pole piece 2 includes the active material area A and the wetting area B1 arranged side by side along the extension direction of the winding axis K.
  • the area B1 is located outside the active material area A.
  • the width edges on both sides of the active material coating area A of the first pole piece 1 exceed the width edges of the corresponding sides of the active material coating area A of the second pole piece 2 .
  • the diaphragm 3 adopts an equal width structure, and both sides of the diaphragm 3 exceed the sides of the main body 11 of the first pole piece 1 and the second pole piece 2 on the same side, and do not exceed the outer side of the tab 12 .
  • the present application provides a manufacturing method of the electrode assembly 10, as shown in FIG. 20 , in some embodiments, the manufacturing method includes:
  • each of the first pole piece 1 and the second pole piece 2 includes a main body 11 and a tab 12 protruding from the main body 11;
  • the tab 12 is drawn out from the conductive area 121 and wound at least one turn, and is used for electrical connection with the terminal 1022 of the battery cell 100, and the liquid conducting area 111 and the conductive area 121 are adjacently arranged along the radial direction of the winding body S , and is used to guide the electrolyte to flow into the inside of the winding body S.
  • the tab 12 at the end of the winding main body S is flattened, so that the tab 12 forms a bent portion, which is convenient for electrical connection with the terminal 1022 .
  • This embodiment of the present application has both a conductive area 121 and a liquid conducting area 111 at the end of the winding body S. Since the liquid conducting area 111 is not provided with tabs 12, after the tabs 12 of the conducting area 121 are flattened, the battery cell
  • the electrolyte solution in 100 can also easily flow into the inside of the winding body S through the gap between the first pole piece 1 and the second pole piece 2 in the liquid guide area 111, so as to ensure the wettability of the electrode assembly 10, so that it can be used in the charging and discharging process of the battery. , so that the electrolyte fully reacts with the active materials on the first pole piece 1 and the second pole piece 2 , thereby optimizing the performance of the battery cell 100 .
  • the tab 12 continuously extends and wraps at least one turn in the conductive region 121, it has better connection strength with the main body 11 in the circumferential direction, so that the root of the tab 12 has a better self-supporting effect.
  • the tab 12 prevent the tab 12 from wrinkling, stabilize the shape of the flattened area, optimize the effect of welding the tab 12 and the terminal 1022, ensure that the electrode assembly 10 reliably transmits electric energy outward, and Improve flow capacity.
  • the particles generated during welding of the lug 12 are not easy to fall in the circumferential direction between the first pole piece 1 and the second pole piece 2 of the liquid guiding area 111 , which can improve the working reliability of the electrode assembly 10 .
  • the manufacturing equipment 400 includes: a pole piece providing device 410 and a pole piece winding device 420 .
  • the pole piece providing device 410 is configured to provide a first pole piece 1 and a second pole piece 2 with opposite polarities, and each of the first pole piece 1 and the second pole piece 2 includes a main body 11 and a pole protruding from the main body 11 ear 12;
  • the pole piece winding device 420 is configured to wind the first pole piece 1 and the second pole piece 2 around the winding axis K so that the respective main body parts 11 form a winding body S, and the ends of the winding body S It includes at least one conductive region 121 and at least one liquid-conducting region 111 .
  • the tab 12 is drawn out from the conductive area 121 and wound at least one turn, and is used for electrical connection with the terminal 1022 of the battery cell 100, and the liquid conducting area 111 and the conductive area 121 are adjacently arranged along the radial direction of the winding body S , and is used to guide the electrolyte to flow into the inside of the winding body S.
  • the manufacturing equipment 400 in this embodiment of the present application has the same technical effect as the manufacturing method.

Abstract

本申请实施例提供一种电极组件及其制造方法和设备、电池、用电装置,电极组件用于电池单体(100)且包括:电极组件(10)包括:极性相反的第一极片(1)和第二极片(2),第一极片(1)和第二极片(2)均包括主体部(11)和凸出于主体部(11)的极耳(12),第一极片(1)和第二极片(2)绕卷绕轴线(K)卷绕使各自的主体部(11)形成卷绕主体(S);卷绕主体(S)的端部包括至少一个导电区(121)和至少一个导液区(111),极耳(12)在导电区(121)引出并卷绕至少一圈,且用于与电池单体(100)的端子(1022)电连接,导液区(111)与导电区(121)沿卷绕主体(S)的径向相邻布置,用于引导电解液流入卷绕主体(S)内部。

Description

电极组件及其制造方法和设备、电池、用电装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电极组件及其制造方法和设备、电池、用电装置。
背景技术
随着由于锂离子等电池具有能量密度高、功率密度高、循环使用次数多、存储时间长等优点,在电动汽车上面已普遍应用。
但是,提高电动汽车的电池的工作性能,一直是业内的一个难题。
发明内容
本申请的目的在于提高电池的性能。
根据本申请的第一方面,提供了一种电极组件,用于电池单体,电极组件包括:极性相反的第一极片和第二极片,第一极片和第二极片均包括主体部和凸出于主体部的极耳,第一极片和第二极片绕卷绕轴线卷绕使各自的主体部形成卷绕主体;
卷绕主体的端部包括至少一个导电区和至少一个导液区,极耳在导电区引出并卷绕至少一圈,且用于与电池单体的端子电连接,导液区与导电区沿卷绕主体的径向相邻布置,并用于引导电解液流入卷绕主体的内部。
本申请的该实施例在卷绕主体的端部同时具有导电区和导液区,由于导液区未设置极耳,导电区的极耳揉平后,电池单体内的电解液也容易通过第一极片和第二极片在导液区的间隙流入卷绕主体的内部,保证电极组件的浸润性能,以在电池充放电的过程中,使电解液与第一极片和第二极片上的活性物质充分发生反应,从而优化电池单体的性能。
而且,由于极耳连续延伸在导电区卷绕至少一圈,在周向上与主体部具备较好的连接强度,使极耳根部具有较好的自支撑作用,在对极耳施加周向作用力揉平的过程中,防止出现极耳打皱现象,使揉平区域形状稳定,优化焊接极耳和端子的效果,保证电极组件可靠地向外传输电能,并提高过流能力。此外,极耳焊接时产生的粒子也不容易沿周向掉落到导液区的第一极片和第二极片之间,可提高电极组件工作的可靠性,防止出现短路或极片划伤的问题。
此外,通过在主体部的部分卷绕长度上设置连续极耳,能够满足极耳的过流能力,无需在主体部的整个卷绕长度上设置离散极耳,可简化模切极片工序,同时在第一极片和第二极片卷绕形成卷绕主体时,也无需进行极耳对位问题,可简化工艺,提升电极组件的生产效率。
在一些实施例中,极耳在导电区卷绕多圈。
本申请的该实施例通过使极耳在导电区卷绕多圈,揉平后相邻极耳的弯折部相互搭接,进一步强化极耳受到的支撑作用,可防止极耳揉平打皱,使弯折部形状稳定,优化焊接极耳和端子的效果;而且,还可增大极耳揉平后与端子的焊接面积,使极耳和端子的焊接更牢固,保证电极组件可靠地向外传输电能,并提高过流能力。
在一些实施例中,导电区和导液区的数量之和大于或等于三个,且沿卷绕主体的径向交替设置。
本申请的该实施例通过将至少三个导电区和导液区沿卷绕主体的径向交替设置,能够使从导液区进入卷绕主体内部的电解液更容易到达导电区,有利于电解液的快速浸润;而且,此种结构可缩短电子从导液区到达导电区的传输距离,保证电子及时有效传输,提高电流分布的均匀性,防止电极组件发生极化问题。
在一些实施例中,导电区位于卷绕主体端部沿径向的中间区域,导电区沿径向的两侧分别设有一个导液区。
本申请的该实施例在导电区沿径向的两侧分别设有一个导液区,电解液能够同时通过这两个导液区进入到卷绕主体内部,并向第一极片和第二极片位于导电区的部分渗透,可进一步提高电极组件的电解液浸润性能。而且,电子从内层导液区和外层导液区到达导电区的传输距离缩短,可提高电流分布均匀性,防止出现极化问题。此外,导电区设置一个也便于极耳与端子电连接。上述优点均能提高电池性能。
在一些实施例中,第一极片和第二极片中的至少一个沿卷绕方向间隔设置多个极耳,以在卷绕主体的端部形成多个沿径向间隔设置的导电区。
本申请的该实施例可使通过导液区进入卷绕主体内部的电解液同时向两侧导电区渗透,从而使电解液顺利到达第一极片和第二极片位于导电区的部分,提高电极组件的电解液浸润性能。而且,电子从导液区可沿径向内侧和径向外侧同时到达导电区,能够大幅缩短电子传输距离,提高电流分布均匀性,防止出现极化问题;当第一极片和第二极片展开后较长时,通过设计分段极耳,可较好地避免局部电子传输距离长带来极化问题。此外,设置多个导电区可延长极耳在径向设置的整体长度,便于极耳与转接件焊接,并通过转接件与端子电连接。上述优点均能提高电池性能。
在一些实施例中,导电区设有两个且分别位于卷绕主体端部沿径向的内侧和外侧,导液区位于两个导电区之间。
本申请的该实施例将两个导电区设在非浸润瓶颈区域,例如电极组件的内圈和外圈,能够优化浸润效果,同时也能防止出现极化问题。
在一些实施例中,导电区和导液区分别设置一个,且导电区位于导液区的径向内侧。
本申请的该实施例将导电区设在导液区内侧,在通过导液区保证电极组件浸润特性的基础上,还能防止极耳在揉平形成弯折部后与壳体的内壁接触,或者在焊接极耳与端子时防止粒子落到壳体内侧壁,以免发生短路,提高电池单体的工作安全性。
在一些实施例中,卷绕主体两端的导液区具有相同的径向尺寸,且卷绕主体两端的导电区具有相同的径向尺寸。
本申请的该实施例中卷绕主体两端的结构对称,可将第一极片和第二极片加工为相同的结构,可降低电极组件的加工难度,提高电极组件的生产效率。
在一些实施例中,卷绕主体一端的导液区与另一端的导电区具有相同的径向尺寸。
本申请的该实施例中卷绕主体两端的导电区和导液区沿径向错位设置,即在卷绕主体一端的导电区对应于另一端的导液区,这样卷绕主体在沿径向的任意位置均具有导液区,可使电解液更加快速充分地进入卷绕主体内部,使电极组件内部的电解液分布更加均匀,以在电池充放电的过程中,使电解液与第一极片和第二极片上的活性物质均匀地发生反应,从而优化电池单体的性能。
在一些实施例中,电极组件还包括隔膜,隔膜用于隔离第一极片和第二极片,隔膜、第一极片的主体部和第二极片的主体部卷绕后形成卷绕主体;
在卷绕轴线的延伸方向上,隔膜位于导液区的部分超出第一极片的主体部的侧边和第二极片的主体部的侧边。
本申请的该实施例将隔膜设计为阶梯状,在导液区加宽,能够使隔膜的侧边在导液区在第一极片和第二极片之间向外伸出,并浸泡在电解液中,从而使隔膜更容易在毛细作用下吸取电解液,提高电极组件的浸润性能,进而提升电池单体的性能。
在一些实施例中,电极组件还包括隔膜,隔膜用于隔离第一极片和第二极片,第一极片和第二极片中至少一个的主体部包括沿卷绕轴线的延伸方向并排设置的活性物质区和导流区,导流区位于活性物质区的外侧,主体部位于导流区的表面与隔膜之间的间隙大于主体部位于活性物质区的表面与隔膜之间的间隙。
本申请的该实施例使主体部位于导流区的表面与隔膜之间的间隙大于主体部位于 活性物质区的表面与隔膜之间的间隙,能够在导流区与隔膜之间形成较大的毛细间隙,在隔膜端部吸入电解液后,便于电解液快速进入卷绕主体的端部,再进一步进入活性物质区与活性物质发生反应。此种结构使主体部与隔膜之间的间隙从外至内逐渐减小,便于电解液快速进入。
在一些实施例中,第一极片和第二极片中至少一个的导流区包括与活性物质区邻接的浸润区,主体部位于浸润区的表面与隔膜之间的间隙沿卷绕轴线的延伸方向从内至外逐渐增大。
本申请的该实施例能够在隔膜端部吸入电解液后,通过浸润区将电解液引入活性物质区,便于电解液快速进入卷绕主体内部发生反应。
在一些实施例中,第一极片和第二极片中至少一个的导流区包括与活性物质区邻接的浸润区,第一极片和第二极片中至少一个的主体部包括集流体、活性物质层和浸润层,活性物质层设在集流体的表面上且位于活性物质区,浸润层设在集流体的表面上且位于浸润区,浸润层的吸液能力高于活性物质层的吸液能力。
本申请的该实施例通过在主体部靠近外侧的区域涂覆吸液能力高于活性物质层的浸润层,能够通过浸润层的材料特性提高卷绕主体端部吸取电解液的能力,以便快速将电解液吸入卷绕主体内部。
在一些实施例中,浸润层包括无机陶瓷涂层、高分子聚合物和粘接剂。
在一些实施例中,第一极片和第二极片中至少一个的导流区还包括引导区,集流体沿卷绕轴线的延伸方向超出浸润层的区域形成引导区。
本申请的该实施例中在引导区未设置涂覆层,使集流体在引导区与隔膜之间的间隙大于浸润层表面与隔膜之间的间隙,可在卷绕主体位于导液区的端部形成多级吸入电解液的通道,且第一极片或第二极片与隔膜之间的距离从引导区、浸润区至活性物质区逐渐减小,能够显著提高吸液效率,提高电极组件的浸润特性,从而提高电池单体的性能。
在一些实施例中,第一极片为正极极片且沿卷绕轴线的延伸方向从内至外依次设有活性物质区、浸润区和引导区,第二极片为负极极片且沿卷绕轴线从内至外依次设有活性物质区和引导区。
本申请的该实施例考虑到正极极片的压实密度较大,电解液进入正极极片的速度较慢,通过对正极极片增设浸润区,能够加快电解液渗透到正极活性物质的速度;电解液纳进入负极极片的速度相对于正极极片较快,仅通过引导区引导电解液进入能够简化负极极片的制造工艺。该实施例既能使电解液进入正极极片和负极极片的速度接近,又 能降低电极组件的生产难度。
在一些实施例中,隔膜位于第一极片和第二极片中至少一个的导液区的侧边位于导流区的外侧边与极耳的外侧边之间。
本申请的该实施例使隔膜的侧边超出导流区的外侧边,能够使隔膜的伸出部分浸泡在电解液中,以利用毛细作用吸入电解液;而且隔膜的侧边不超过极耳的外侧边,可防止隔膜在导电区伸出过长影响极耳揉平,并保证极耳的导电效果。
在一些实施例中,导流区绕卷绕主体周向的延伸长度与活性物质区一致。
本申请的该实施例能够降低设置导流区的极片的制造难度,且导流区的延伸长度与活性物质区一致,能够在活性物质区的整个涂覆长度上都能较好地引导电解液到达活性物质区,从而使电解液在极片整个卷绕长度上均匀分布,从而提高电池单体的性能。
根据本申请的第二方面,提供了一种电池单体,包括:壳体,具有开口;端盖组件,用于封闭开口,端盖组件包括端盖本体和设在端盖本体上的端子;和上述实施例的电极组件,设在壳体内,第一极片的极耳或第二极片的极耳与端子电连接。
本申请该实施例的电池单体中,由于电极组件具备较优的浸润特性,且极耳与端子具备较高的电连接可靠性,因此能够提高电池单体的性能。
根据本申请的第三方面,提供了一种电池,包括:上述实施例的电池单体;以及箱体,用于容纳电池单体。
根据本申请的第四方面,提供了一种用电装置,包括上述实施例的电池,电池用于为用电装置提供电能。
根据本申请的第五方面,提供了一种电极组件的制造方法,包括:
提供极性相反的第一极片和第二极片,第一极片和第二极片均包括主体部和凸出于主体部的极耳;
将第一极片和第二极片绕卷绕轴线卷绕使各自的主体部形成卷绕主体,卷绕主体的端部包括至少一个导电区和至少一个导液区;
其中,极耳在导电区引出并卷绕至少一圈,且用于与电池单体的端子电连接,导液区与导电区沿卷绕主体的径向相邻布置,并用于引导电解液流入卷绕主体的内部。
根据本申请的第六方面,提供了一种电池的制造设备,包括:
极片提供装置,被配置为提供极性相反的第一极片和第二极片,第一极片和第二极片均包括主体部和凸出于主体部的极耳;和
极片卷绕装置,被配置为将第一极片和第二极片绕卷绕轴线卷绕使各自的主体部形成卷绕主体,卷绕主体的端部包括至少一个导电区和至少一个导液区;
其中,极耳在导电区引出并卷绕至少一圈,且用于与电池单体的端子电连接,导液区与导电区沿卷绕主体的径向相邻布置,并用于引导电解液流入卷绕主体的内部。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请将电池安装于车辆的一些实施例的结构示意图。
图2为本申请电池的一些实施例的分解图。
图3为本申请电池中电池单体的一些实施例的结构示意图。
图4为本申请电池中电池单体的一些实施例的第一种分解图。
图5为本申请电池中电池单体的一些实施例的第二种分解图。
图6为本申请电池的第一实施例的剖视图。
图7为图6所示电池中电极组件的端面示意图。
图8为本申请电池的第二些实施例的剖视图。
图9为图8所示电池中电极组件的端面示意图。
图10为本申请电池的第三些实施例的剖视图。
图11为图10所示电池中电极组件的端面示意图。
图12A、图12B和图12C分别为电极组件的一些实施例中第一极片、第二极片和隔膜的结构示意图。
图13A、图13B和图13C分别为电极组件的另一些实施例中第一极片、第二极片和隔膜的结构示意图。
图14A、图14B和图14C分别为电极组件的再一些实施例中第一极片、第二极片和隔膜的结构示意图。
图15为图6所示第一实施例的电池中第一极片的结构示意图。
图16为图8所示第二实施例的电池中第一极片的结构示意图。
图17为第一极片的一些实施例的侧面结构示意图。
图18为第一极片的另一些实施例的侧面结构示意图。
图19为第一极片、第二极片和隔膜在卷绕前叠加设置的一些实施例的结构示意图。
图20为本申请电极组件制造方法的一些实施例的流程示意图。
图21为本申请电极组件制造装置的一些实施例的模块组成示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
10、电极组件;1、第一极片;11、主体部;111、导液区;112、活性物质层;113、浸润层;114、集流体;12、极耳;121、导电区;122、过渡部;2、第二极片;3、隔膜;
100、电池单体;101、壳体;1011、开口;102、端盖组件;1021、端盖本体;1022、端子;1023、泄压部件;1024、绝缘件;1024’、凸出部;1025、转接件;1025A、第一连接片;1025B、第二连接片;
200、电池;201、箱体;201A、容纳部;201B、第一盖体;201C、第二盖体;
300、车辆;301、车桥;302、车轮;303、马达;304、控制器;
400、制造设备;410、极片提供装置;420、极片卷绕装置;
S、卷绕主体;K、卷绕轴线;A、活性物质区;B、导流区;B1、浸润区;B2、引导区。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普 通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一些实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
本申请采用了“上”、“下”、“顶”、“底”、“前”、“后”、“内”和“外”等指示的方位或位置关系的描述,这仅是为了便于描述本申请,而不是指示或暗示所指的装置必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制。
电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
目前的电池单体通常包括壳体和容纳于壳体内的电极组件,并在壳体内填充电解质。电极组件主要由极性相反的第一极片和第二极片层叠或卷绕形成,并且通常在第一极片与第二极片之间设有隔膜。第一极片和第二极片涂覆有活性物质的部分构成电极组件的主体部,第一极片和第二极片未涂覆活性物质的部分各自构成第一极耳和第二极耳。在锂离子电池中,第一极片可以为正极极片,包括正极集流体和设于正极集流体两侧的正极活性物质层,正极集流体的材料例如可以为铝,正极活性物质例如可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等;第二极片可以为负极极片,包括负极集流体和设于负极集流体两侧的负极活性物质层,负极集流体的材料例如可以为铜,负极活性物质例如可以为石墨或硅等。第一极耳和第二极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池单体的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳连接端子以形成电流回路。
在电极组件的加工和装配程序中,如果极片卷绕完毕后焊接,相邻极耳之间的间隙大,整体比较蓬松,在激光焊接时会产生虚焊,产生爆点现象,所以往往需要对极耳进行揉平处理,使极耳发生弯折变形且相邻极耳更紧凑,以便于极耳与端子连接,以及便于电池单体的装配。为了方便沿电极组件的周向对极耳施加外力进行揉平,一般将极耳设计为沿极片的整个卷绕长度连续延伸。
本申请的发明人在实践中发现,对极耳的揉平处理会导致在层叠结构中相邻两个极耳层的端部紧靠在一起并形成闭口结构,这样的闭口结构在一定程度上阻碍了电解液从极耳外部空间进入主体部的通路,对电极组件中电解液对活性物质的浸润效果造成不利影响,导致正极或负极活性物质不能充分参与反应,可能影响电极组件的效率,从而影响电池性能。
因此,电极组件中电解液对活性物质的浸润效果,是确保电池高性能的重要因素。发明人欲通过改变隔膜的材料或隔膜的层次结构提高浸润效果,但这会导致电极组件的成本增加,制备工艺更为复杂。
另一种思路是对连续极耳进行模切,形成多个离散的极耳,卷绕后形成一叠极耳,极耳揉平后在电极组件的周向上有极耳区和非极耳区,非极耳区便于浸润电解液,极耳区用于连接端子。但是,在极耳模切后再揉平存在打皱现象,而且由于极耳材质较软,在极耳揉平施加周向作用力时无法在极耳根部形成自支撑作用,使揉平区域揉不实,影响后续焊接效果;而且极耳焊接产生的粒子容易掉落到非极耳区的极片之间。
基于上述问题的发现,本申请的发明人改进了电极组件的结构设计,以提升电极组件中电解液对活性物质的浸润效果,提升电池的性能。下面将结合附图进一步描述本申请的各个实施例。
用电装置包括用于为装置提供电能的电池,装置可以是手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
如图1所示,用电装置可以是车辆300,例如新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;或者用电装置也可以是无人机或轮船等。具体地,车辆300可包括车桥301、连接于车桥301的车轮302、马达303、控制器304和电池200,马达303用于驱动车桥301转动,控制器304用于控制马达303工作,电池200可以设置在车辆300的底部、头部或尾部,用于为马达303以及车辆中其它部件的工作提供电能。
如图2所示,电池200包括箱体201和电池单体100。在电池100中,电池单体100可以是一个,也可以是多个。若电池单体100为多个,多个电池单体100之间可串联或并联或混联,混联是指多个电池单体100中既有串联又有并联,可以是多个电池单体 100先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体201内。也可以是所有电池单体100之间直接串联或并联或混联在一起,再将所有电池单体100构成的整体容纳于箱体201内。
箱体201内部中空,用于容纳一个或多个电池单体100,根据所容纳电池单体100的形状、数量、组合方式以及其他要求,箱体201也可以具有不同形状的尺寸。例如,箱体201可包括:容纳部201A、第一盖体201B和第二盖体201C,容纳部201A相对的两端均具有开口,第一盖体201B和第二盖体201C分别用于封闭容纳部201A的两端开口,图2中根据多个电池单体100的排列方式,容纳部201A呈矩形筒状结构。
如图3所示,电池单体100包括壳体101、端盖组件102和电极组件10。电池单体100例如可以为锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池或镁离子电池等。
其中,壳体101为中空结构,用于容纳电极组件10,且壳体101具有开口1011;端盖组件102用于封闭开口1011,端盖组件102包括端盖本体1021和设在端盖本体1021上的端子1022,端盖本体1021上还设有泄压部件1023,用于在电池单体100内部压力超过预设压力时进行卸压。
图3示意出仅设置一个电极组件10的实施例,本领域技术人员应当理解,在其它实施例中,电池单体100也可以包括多个电极组件10,并且端子1022也可以根据电极组件10的数量和布置方式进行设计。此外,根据电极组件10的形状和放置方式,以及多个电极组件10的组合方式,壳体101可以为圆柱体、扁平体、长方体或其它形状。
如图4所示,电极组件10设在壳体101内,极性相反的第一极片和第二极片均具有极耳12,第一极片的极耳12或第二极片的极耳12与端子1022电连接。端盖组件102还可包括转接件1025,转接件1025设在端盖本体1021与电极组件10之间,用于实现极耳12与端子1022的电连接。如图5所示,为了实现端盖本体1021与转接件1025之间的绝缘,端盖组件102还可包括设在端盖本体1021与转接件1025之间的绝缘件1024。
在图4和图5所示的实施例中,电池单体100的壳体101呈中空的圆柱体,且两端均具有开口1011,两个开口1011均通过端盖组件102封闭。电极组件10可从开口1011放入壳体101内,第一极片和第二极片卷绕形成圆柱形的电极组件10,第一极片和第二极片各自的极耳12分别从电极组件10沿轴向的两端引出,且均通过转接件1025与相应端的端子1022电连接。
在其它可选的实施例中,电池单体100的壳体101呈中空的圆柱体,一端封闭,另一端具有开口1011并通过端盖组件102封闭,第一极片和第二极片卷绕形成圆柱形的 电极组件10,第一极片和第二极片各自的极耳12分别从电极组件10沿轴向的两端引出,第一极片例如负极极片的极耳12通过转接件1025与端子1022电连接,第二极片例如正极极片的极耳12直接与壳体101的端壁电连接。
下面将对电极组件10的结构进行详细描述。
在一些实施例中,如图6至图11所示,电极组件10,用于电池单体100,电极组件10包括:极性相反的第一极片1和第二极片2,第一极片1和第二极片2均包括主体部11和凸出于主体部11的极耳12,第一极片1和第二极片2绕卷绕轴线K卷绕使各自的主体部11形成卷绕主体S。
卷绕主体S的端部包括至少一个导电区121和至少一个导液区111,极耳12在导电区121引出并卷绕至少一圈,且用于与电池单体100的端子1022电连接,导液区111与导电区121沿卷绕主体S的径向相邻布置,并用于引导电解液流入卷绕主体S的内部。
其中,第一极片1和第二极片2的形状基本相同,可以是长条形带状结构,第一极片1和第二极片2沿垂直于卷绕轴线K的方向叠加设置,形成的卷绕主体S可以为圆柱体、扁平体、长方体或其它形状。例如,第一极片1为正极片,第二极片2为负极片;或者第一极片1为负极片,第二极片2为正极片。电极组件10还包括隔膜3,隔膜3用于隔离第一极片1和第二极片2,隔膜3、第一极片1的主体部11和第二极片2的主体部卷绕后形成卷绕主体S。
可选地,卷绕主体S的一个端部包括至少一个导电区121和至少一个导液区111,极耳12在导电区121引出并卷绕至少一圈,使导电区121和导液区111均形成环状结构,极耳12揉平后形成弯折部,并通过弯折部与电池单体100的端子1022电连接,例如通过焊接的方式连接。在第一极片1或第二极片2展开的状态下,极耳12可设在极片的中间区域、端部区域或其它区域。
导液区111未设置极耳12,且第一极片1或第二极片2与隔膜3之间的间隙与电极组件10外部连通,更容易使电解液进入第一极片1或第二极片2与隔膜3之间的间隙流入卷绕主体S内部,隔膜3也能充分发挥吸液作用,以在电池充放电的过程中,使电解液与第一极片1和第二极片2上的活性物质充分发生反应。
可选地,卷绕主体S的两个端部均包括至少一个导电区121和至少一个导液区111,电解液能够从卷绕主体S两端的导液区111浸润到内部,可缩短电解液的浸润路径,提高吸液效果。
本申请的该实施例在卷绕主体S的端部同时具有导电区121和导液区111,由于导液区111未设置极耳12,导电区121的极耳12揉平后,电池单体100内的电解液也容 易通过第一极片1和第二极片2在导液区111的间隙流入卷绕主体S的内部,保证电极组件10的浸润性能,以在电池充放电的过程中,使电解液与第一极片1和第二极片2上的活性物质充分发生反应,从而优化电池单体100的性能。
而且,由于极耳12连续延伸在导电区121卷绕至少一圈,在周向上与主体部11具备较好的连接强度,使极耳12根部具有较好的自支撑作用,在对极耳12施加周向作用力揉平的过程中,防止出现极耳12打皱现象,使揉平区域形状稳定,优化焊接极耳12和端子1022的效果,保证电极组件10可靠地向外传输电能,并提高过流能力。此外,极耳12焊接时产生的粒子也不容易沿周向掉落到导液区111的第一极片1和第二极片2之间,可提高电极组件10工作的可靠性,防止出现短路或极片划伤的问题。
此外,通过在主体部11的部分卷绕长度上设置连续极耳12,能够满足极耳12的过流能力,无需在主体部11的整个卷绕长度上设置离散极耳12,可简化模切极片工序,同时在第一极片1和第二极片卷绕形成卷绕主体S时,也无需进行极耳12对位问题,可简化工艺,提升电极组件10的生产效率。
在一些实施例中,如图6至图11所示,极耳12在导电区121卷绕多圈。极耳12可卷绕至少两圈,例如为了使极耳12达到较优的自支撑效果,卷绕圈数至少5圈,卷绕圈数可根据电极组件10的过流能力和极化进行设计。
本申请的该实施例通过使极耳12在导电区121卷绕多圈,揉平后相邻极耳12的弯折部相互搭接,进一步强化极耳12受到的支撑作用,可防止极耳12揉平打皱,使弯折部形状稳定,优化焊接极耳12和端子1022的效果;而且,还可增大极耳12揉平后与端子1022的焊接面积,使极耳12和端子1022的焊接更牢固,保证电极组件10可靠地向外传输电能,并提高过流能力。
在一些实施例中,导电区121和导液区111的数量之和大于或等于三个,且沿卷绕主体S的径向交替设置。如图6和图7所示,导电区121设有一个,导液区111设有两个;如图8和图9所示,导电区121设有两个,导液区111设有一个。
本申请的该实施例通过将至少三个导电区121和导液区111沿卷绕主体S的径向交替设置,能够使从导液区111进入卷绕主体S内部的电解液更容易到达导电区121,有利于电解液的快速浸润;而且,此种结构可缩短电子从导液区111到达导电区121的传输距离,保证电子及时有效传输,提高电流分布的均匀性,防止电极组件10发生极化问题。
在一些实施例中,如图6和图7所示,导电区121位于卷绕主体S端部沿径向的中间区域,导电区121沿径向的两侧分别设有一个导液区111。
其中,此处提到的“中间区域”并不精确表示沿径向正好位于中间的位置,导电 区121位置沿径向偏内或偏外均在本申请的保护范围之内。
本申请的该实施例在导电区121沿径向的两侧分别设有一个导液区111,电解液能够同时通过这两个导液区111进入到卷绕主体S内部,并向第一极片1和第二极片2位于导电区121的部分渗透,可进一步提高电极组件10的电解液浸润性能。而且,电子从内层导液区111和外层导液区111到达导电区121的传输距离缩短,可提高电流分布均匀性,防止出现极化问题。此外,导电区121设置一个也便于极耳12与端子1022电连接。上述优点均能提高电池性能。
在一些实施例中,如图8和图9,第一极片1和第二极片2中的至少一个沿卷绕方向间隔设置多个极耳12,以在卷绕主体S的端部形成多个沿径向间隔设置的导电区121。
其中,在卷绕轴线K的延伸方向上,第一极片1和第二极片2中至少一个的主体部11的一侧间隔设置两个或两个以上的极耳12,每个极耳12在卷绕主体S的端部形成一个导电区121,导电区121与导液区111沿径向交替间隔布置。例如,极耳12的段数可不超过10段,取决于极片的长度。本申请的该实施例可使通过导液区111进入卷绕主体S内部的电解液同时向两侧导电区121渗透,从而使电解液顺利到达第一极片1和第二极片2位于导电区121的部分,提高电极组件10的电解液浸润性能。而且,电子从导液区111可沿径向内侧和径向外侧同时到达导电区121,能够大幅缩短电子传输距离,提高电流分布均匀性,防止出现极化问题;当第一极片1和第二极片2展开后较长时,通过设计分段极耳12,可较好地避免局部电子传输距离长带来极化问题。此外,设置多个导电区121可延长极耳12在径向设置的整体长度,便于极耳12与转接件1025焊接,并通过转接件1025与端子1022电连接。上述优点均能提高电池性能。
在一些实施例中,如图8和图9,导电区121设有两个且分别位于卷绕主体S端部沿径向的内侧和外侧,导液区111位于两个导电区121之间。
由于电极组件10不同位置的浸润速度不同,例如,电极组件10最靠近内圈和靠近外圈的部分电解液浸润相对容易,内圈有中心管的电解液导流,外圈有壳体101与电极组件10之间空隙内的电解液接触,因此,电极组件10的内外圈与中间区域相比更容易浸入电解液。
本申请的该实施例将两个导电区121设在非浸润瓶颈区域,例如电极组件10的内圈和外圈,能够优化浸润效果,同时也能防止出现极化问题。
在一些实施例中,如图10和图11,导电区121和导液区111分别设置一个,且导电区121位于导液区111的径向内侧。例如,导电区121的径向宽度可大于导液区111, 以提高电极组件10的过流能力。
本申请的该实施例将导电区121设在导液区111内侧,在通过导液区111保证电极组件10浸润特性的基础上,还能防止极耳12在揉平形成弯折部后与壳体101的内壁接触,或者在焊接极耳12与端子1022时防止粒子落到壳体101内侧壁,以免发生短路,提高电池单体100的工作安全性。
在一些实施例中,卷绕主体S两端的导液区111具有相同的径向尺寸,且卷绕主体S两端的导电区121具有相同的径向尺寸。其中,第一极片1和第二极片2各自的极耳12从卷绕主体S的两端引出,卷绕主体S的两端均设有导电区121和导液区111,“径向尺寸”包括径向位置和径向尺寸。
本申请的该实施例中卷绕主体S两端的结构对称,可将第一极片1和第二极片2加工为相同的结构,可降低电极组件10的加工难度,提高电极组件10的生产效率。
在另一些实施例中,卷绕主体S一端的导液区111与另一端的导电区121具有相同的径向尺寸。其中,第一极片1和第二极片2各自的极耳12从卷绕主体S的两端引出,卷绕主体S的两端均设有导电区121和导液区111,“径向尺寸”包括径向位置和径向尺寸。
本申请的该实施例中卷绕主体S两端的导电区121和导液区111沿径向错位设置,即在卷绕主体S一端的导电区121对应于另一端的导液区111,这样卷绕主体S在沿径向的任意位置均具有导液区111,可使电解液更加快速充分地进入卷绕主体S内部,使电极组件10内部的电解液分布更加均匀,以在电池充放电的过程中,使电解液与第一极片1和第二极片2上的活性物质均匀地发生反应,从而优化电池单体100的性能。
在一些实施例中,如图6、图8和图10,电极组件10还包括隔膜3,隔膜3用于隔离第一极片1和第二极片2,隔膜3、第一极片1的主体部11和第二极片2的主体部卷绕后形成卷绕主体S;在卷绕轴线K的延伸方向上,隔膜3至少一侧位于导液区111的部分超出第一极片1的主体部11的侧边和第二极片2的主体部11的侧边。
其中,隔膜3在展开的状态下可以为长条带状结构,隔膜3可采用PP(聚丙烯)材料或PE(聚乙烯)材料制成,其内部具有微米级或纳米级的微孔,用于在电池的充放电过程中供金属离子通过。
可选地,在卷绕轴线K的延伸方向上,隔膜3的一侧位于导液区111的部分超出第一极片1的主体部11的侧边和第二极片2的主体部11的侧边;或者如图13A所示,隔膜3的两侧位于导液区111的部分均超出第一极片1的主体部11的侧边和第二极片2的主体部11的侧边。
本申请的该实施例将隔膜3设计为阶梯状,在导液区111加宽,能够使隔膜3的侧边在导液区111在第一极片1和第二极片2之间向外伸出,并浸泡在电解液中,从而使隔膜3更容易在毛细作用下吸取电解液,提高电极组件10的浸润性能,进而提升电池单体100的性能。可选地,如图12A所示,隔膜3也可设计为等宽的长条状结构。
在一些实施例中,如图13A所示,电极组件10还包括隔膜3,隔膜3用于隔离第一极片1和第二极片2,第一极片1和第二极片2中至少一个的主体部11包括沿卷绕轴线K的延伸方向并排设置的活性物质区A和导流区B,导流区B位于活性物质区A的外侧,用于引导电解液进入卷绕主体S内部;如图17和图18所示,主体部11位于导流区B的表面与隔膜3之间的间隙大于主体部11位于活性物质区A的表面与隔膜3之间的间隙。
例如,第一极片1为正极极片,活性物质区A涂覆正极活性物质,例如,正极活性物质可以是三元材料、锰酸锂或磷酸铁锂;第二极片2为负极活性物质,负极活性物质可以是石墨或硅。
本申请的该实施例使主体部11位于导流区B的表面与隔膜3之间的间隙大于主体部11位于活性物质区A的表面与隔膜3之间的间隙,能够在导流区B与隔膜3之间形成较大的毛细间隙,在隔膜3端部吸入电解液后,便于电解液快速进入卷绕主体S的端部,再进一步进入活性物质区A与活性物质发生反应。此种结构使主体部11与隔膜3之间的间隙从外至内逐渐减小,便于电解液快速进入。
在一些实施例中,如图12A所示,第一极片1和第二极片2中至少一个的导流区B包括与活性物质区A邻接的浸润区B1,主体部11位于浸润区B1的表面与隔膜3之间的间隙沿卷绕轴线K的延伸方向从内至外逐渐增大。
其中,浸润区B1可以为沿主体部11的整个卷绕方向延伸的长条带状结构,用于引入电解液,浸润区B1沿卷绕轴线K的延伸方向的宽度小于活性物质区A的宽度。如图17和图18所示,浸润区B1的表面沿卷绕轴线K的延伸方向可以为斜面,或者也可设计为弧形、阶梯状等,只要使浸润区B1的表面与隔膜3之间的间隙从内至外逐渐增大都在本申请的保护范围之内。
本申请的该实施例能够在隔膜3端部吸入电解液后,通过浸润区B1将电解液引入活性物质区A,便于电解液快速进入卷绕主体S内部发生反应。
在一些实施例中,如图17和图18所示,第一极片1和第二极片2中至少一个的导流区B包括与活性物质区A邻接的浸润区B1,第一极片1和第二极片2中至少一个的主体部11包括集流体114、活性物质层112和浸润层113,活性物质层112设在集流体 114的表面上且位于活性物质区A,浸润层113设在集流体114的表面上且位于浸润区B1,浸润层113的吸液能力高于活性物质层112的吸液能力。
其中,“吸液能力”是指单位面积的涂覆层在单位时间内吸收电解液的能力。例如,第一极片1为正极极片,可采用铝箔作为集流体114,第二极片2为负极极片,可采用铜箔作为集流体114。例如,浸润层113包括无机陶瓷涂层、高分子聚合物和粘接剂。如图17所示,浸润层113的侧边与集流体114的侧边平齐,与第一极片1相邻的隔膜3的侧边超出浸润层113和集流体114的侧边。
本申请的该实施例通过在主体部11靠近外侧的区域涂覆吸液能力高于活性物质层112的浸润层113,能够通过浸润层113的材料特性提高卷绕主体S端部吸取电解液的能力,以便快速将电解液吸入卷绕主体S内部。
而且,主体部11位于浸润区B1的表面与隔膜3之间的间隙从内至外逐渐增大,即浸润层113的厚度小于活性物质层112的厚度,在浸润层113与隔膜3之间形成从内至外渐扩的间隙,也便于吸入电解液。通过结构设计和材料特性的双重改进,能够更好地提高电极组件10的浸润特性。
在一些实施例中,如图13A、14A、14B和18,第一极片1和第二极片2中至少一个的导流区B还包括引导区B2,集流体114沿卷绕轴线K的延伸方向超出浸润层113的区域形成引导区B2。
其中,引导区B2为集流体114沿卷绕轴线K的延伸方向超出浸润层113的区域,该区域未设置涂覆层,且集流体114位于引导区B2的部分与极耳12连接为一体。与第一极片1相邻的隔膜3的侧边超出集流体114侧侧边,以便先通过隔膜3吸液,再使电解液依次经过引导区B2和浸润区B1进入活性物质区A。
本申请的该实施例中在引导区B2未设置涂覆层,使集流体114在引导区B2与隔膜3之间的间隙大于浸润层113表面与隔膜3之间的间隙,可在卷绕主体S位于导液区111的端部形成多级吸入电解液的通道,且第一极片1或第二极片2与隔膜3之间的距离从引导区B2、浸润区B1至活性物质区A逐渐减小,能够显著提高吸液效率,提高电极组件10的浸润特性,从而提高电池单体100的性能。
在一些实施例中,如图13A所示,第一极片1为正极极片且沿卷绕轴线K的延伸方向从内至外依次设有活性物质区A、浸润区B1和引导区B2;如图13B所示,第二极片2为负极极片且沿卷绕轴线K从内至外依次设有活性物质区A和引导区B2。
本申请的该实施例考虑到正极极片的压实密度较大,电解液进入正极极片的速度较慢,通过对正极极片增设浸润区B1,能够加快电解液渗透到正极活性物质的速度;电 解液纳进入负极极片的速度相对于正极极片较快,仅通过引导区B2引导电解液进入能够简化负极极片的制造工艺。该实施例既能使电解液进入正极极片和负极极片的速度接近,又能降低电极组件10的生产难度。可选地,第一极片1和第二极片2也可设置为相同的结构,例如均设置浸润区B1,或者均不设置浸润区B1。
在一些实施例中,隔膜3位于第一极片1和第二极片2中至少一个的导液区111的侧边位于导流区B的外侧边与极耳12的外侧边之间。
本申请的该实施例使隔膜3的侧边超出导流区B的外侧边,能够使隔膜3的伸出部分浸泡在电解液中,以利用毛细作用吸入电解液;而且隔膜3的侧边不超过极耳12的外侧边,可防止隔膜3在导电区121伸出过长影响极耳12揉平,并保证极耳12的导电效果。
在一些实施例中,如图12A至图16,导流区B绕卷绕主体S周向的延伸长度与活性物质区A一致。
本申请的该实施例能够降低设置导流区B的极片的制造难度,且导流区的延伸长度与活性物质区A一致,能够在活性物质区A的整个涂覆长度上都能较好地引导电解液到达活性物质区A,从而使电解液在极片整个卷绕长度上均匀分布,从而提高电池单体100的性能。
上述部分实施例中以第一极片1为例介绍了极片的具体结构,第二极片2也可采用相同或类似的结构。
下面将给出一些具体的实施例对电极组件10的结构进行说明。
在第一实施例中,如图6和图7所示,图6仅给出电池单体100一端的结构,另一端的结构可与图中体现的一端对称。壳体101内设有电极组件10,壳体101的端部设有开口1011,并通过端盖组件102封闭,端盖组件102包括端盖本体1021、端子1022、绝缘件1024和转接件1025。绝缘件1024设在端盖本体1021靠近电极组件10的一侧,转接件1025设在绝缘件1024靠近电极组件10的一侧。
电极组件10包括第一极片1、第二极片2和隔膜3,第一极片1和第二极片2叠加设置,隔膜3用于隔离第一极片1和第二极片2,第一极片1、第二极片2和隔膜3一起卷绕,使第一极片1和第二极片2各自的主体部11形成卷绕主体S,卷绕主体S的端部同心设有一个导电区121和两个导液区111,导电区121位于两个导液区111之间。极耳12在导电区121引出并卷绕多圈,例如6圈,极耳12揉平后形成弯折部,并通过转接件1025与同端的端子1022电连接。极耳12可沿径向朝内弯折,以防止弯折部碰触到壳体101内壁,且利于减小转接件1025的径向尺寸。
在导电区121,延伸长度最高的为第一极片1,其次为隔膜3,延伸至水平虚线处的为第二极片2;在导液区111,延伸长度最高的为隔膜3,延伸至水平虚线处的包括第一极片1和第二极片2,且第一极片1和第二极片2交替设置。
如图6所示,绝缘件1024的外环设有凸出部1024’,用于将极耳12和壳体101隔开,以提高绝缘性能。例如,转接件1025可包括相互连接的第一连接片1025A和第二连接片1025B,第一连接片1025A与极耳12焊接,第二连接片1025B与端子1022连接。
在第二实施例中,如图8和图9所示,与第一实施例的不同之处在于,卷绕主体S的端部同心设有两个导电区121和一个导液区111,导液区111位于两个导电区121之间。每个导电区121的极耳12连续卷绕多圈,例如5圈。
在第三实施例中,如图10和图11所示,与第一实施例的不同之处在于,卷绕主体S的端部同心设有一个导电区121和一个导液区111,导液区111位于导电区121的径向外侧。例如,导电区121的径向宽度大于导液区111的径向宽度。
下面将给出一些具体的实施例对展开后第一极片1、第二极片2和隔膜3的结构进行说明。
在第一实施例中,如图12A所示,第一极片1为正极极片,第一极片1的主体部11包括沿卷绕轴线K的延伸方向并排设置的活性物质区A和浸润区B1,浸润区B1位于活性物质区A的外侧。如图17所示,集流体114在活性物质区A可涂覆活性物质层112,在浸润区B1可涂覆浸润层113,浸润层113的吸液性能可高于活性物质层112,且浸润层113表面与隔膜3的间隙从外至内逐渐减小,且大于活性物质层112与隔膜3之间的间隙。隔膜3的侧边可超出第一极片1侧边的宽度为W9。
极耳12从主体部11沿卷绕轴线K延伸方向的侧部凸出,极耳12可设在主体部11沿卷绕长度靠近一端的位置,在卷绕后,导电区121可位于内环或外环。浸润层113沿第一极片1的整个卷绕长度延伸,浸润层113位于导电区121的外侧边可有少部分宽度设在极耳12上。极耳12与主体部11连接的根部位置可设置过渡部122,例如圆角或倒角,以减小极耳12揉平时根部受到的应力,防止极耳12开裂或收到拉扯。可选地,极耳12外侧边的角部位置也可设置过渡部122。例如,极耳12外侧边角部位置的圆角取值范围为R3-R12,优选为R8;与主体部11连接处圆角的取值范围为R1-R8之间,优选为R5。
如图12B所示,第二极片2为负极极片,第二极片2的主体部11仅包括活性物质区A,极耳12可设在主体部11沿卷绕长度靠近一端的位置。
如图12C所示,隔膜3呈矩形长条形状,采用等宽结构。
在卷绕时,在卷绕轴线K的延伸方向上,第一极片1和第二极片2各自的极耳12 位于异侧。
在第二实施例中,如图13A所示,第一极片1为正极极片,第一极片1的主体部11包括沿卷绕轴线K的延伸方向并排设置的活性物质区A、浸润区B1和引导区B2,浸润区B1位于活性物质区A和引导区B2之间。浸润区B1和引导区B2沿第一极片1的整个卷绕长度延伸。
如图18所示,集流体114在活性物质区A可涂覆活性物质层112,在浸润区B1可涂覆浸润层113,浸润层113的吸液性能可高于活性物质层112,且浸润层113表面与隔膜3的间隙从外至内逐渐减小,且大于活性物质层112与隔膜3之间的间隙。隔膜3的侧边可超出引导区B2侧边的宽度为W9’。
极耳12从主体部11沿卷绕轴线K延伸方向的侧部凸出,极耳12可设在主体部11的一端,在卷绕后,导电区121可位于内环或外环。
如图13B所示,第二极片2为负极极片,第二极片2的主体部11包括活性物质区A和引导区B2,极耳12可设在主体部11沿卷绕长度靠近一端的位置。集流体114在活性物质区A可涂覆活性物质层112,集流体114超出活性物质区A侧边的部分形成引导区B2。
如图13C所示,隔膜3在导电区121的宽度为W0,且隔膜3的两侧边在导液区111均加宽W1,以使隔膜3的侧边在导液区111超出主体部11的侧边,以便于吸液。
在卷绕时,在卷绕轴线K的延伸方向上,第一极片1和第二极片2各自的极耳12位于异侧。
在第三实施例中,如图14A所示,第一极片1为正极极片,且结构与图13A相同。在卷绕轴线K的延伸方向上,活性物质区A的宽度为W4,浸润区B1的宽度为W3,引导区B2的宽度为W2,极耳12的宽度为W5。
如图14B所示,第二极片2为负极极片,且结构与14A相同。在卷绕轴线K的延伸方向上,活性物质区A的宽度为W8,浸润区B1的宽度为W7,引导区B2的宽度为W6,极耳12的宽度为W9。
如图14C所示,隔膜3在导电区121的宽度为W0,且隔膜3的两侧边在导液区111均加宽W1,以使隔膜3的侧边在导液区111超出主体部11的侧边,以便于吸液。可选地,隔膜3也可采用图12C的等宽结构。
在另一些实施例中,如图15所示,第一极片1可以为正极极片或负极极片,第一极片1的主体部11包括沿卷绕轴线K的延伸方向并排设置的活性物质区A和浸润区B1,浸润区B1位于活性物质区A的外侧。极耳12可位于主体部11沿卷绕长度的中间区域, 在卷绕后,导电区121位于卷绕主体S沿径向的中间区域。
在另一些实施例中,如图16所示,第一极片1可以为正极极片或负极极片,与图15的不同之处在于,在主体部11的沿卷绕轴线K延伸方向的侧部设有两个极耳12,两个极耳12间隔设置分别位于主体部11沿卷绕长度靠近两端的位置。在卷绕后,卷绕主体S的端部设有两个导电区121和一个导液区111,导液区111位于两个导电区121之间。
图19为第一极片1、第二极片2和隔膜3在卷绕前叠加设置的一些实施例的结构示意图。例如,第一极片1可以为负极极片,相应地第二极片2为正极极片,第一极片1长于第二极片2,隔膜3长于第一极片1。第一极片1和第二极片2的极耳12沿卷绕轴线K的引出方向相反,且均位于主体部11沿卷绕方向靠近第一端的位置,第一端均为左端,且极耳12在主体部11的部分卷绕长度方向上连续延伸。
第一极片1的主体部11仅包括活性物质涂覆区A,第二极片2的主体部11包括包括沿卷绕轴线K的延伸方向并排设置的活性物质区A和浸润区B1,浸润区B1位于活性物质区A的外侧。在卷绕轴线K的延伸方向上,第一极片1的活性物质涂覆区A两侧的宽度边缘均超过第二极片2的活性物质涂覆区A相应侧的宽度边缘。隔膜3采用等宽结构,隔膜3的两个侧边均超出第一极片1和第二极片2主体部11位于同侧的侧边,且不超出极耳12的外侧边。
上述各具体实施例只是示意性地给出第一极片1、第二极片2和隔膜3的结构形式以及组合方式,在实际设置时可根据需要将不同的第一极片1、第二极片2和隔膜3进行组合。
其次,本申请提供了一种电极组件10的制造方法,如图20所示,在一些实施例中,该制造方法包括:
S110、提供极性相反的第一极片1和第二极片2,第一极片1和第二极片2均包括主体部11和凸出于主体部11的极耳12;
S120、将第一极片1和第二极片2绕卷绕轴线K卷绕使各自的主体部11形成卷绕主体S,卷绕主体S的端部包括至少一个导电区121和至少一个导液区111;
其中,极耳12在导电区121引出并卷绕至少一圈,且用于与电池单体100的端子1022电连接,导液区111与导电区121沿卷绕主体S的径向相邻布置,并用于引导电解液流入卷绕主体S的内部。
在通过S120卷绕后,再将卷绕主体S端部的极耳12揉平,以使极耳12形成弯折部,便于与端子1022电连接。
本申请的该实施例在卷绕主体S的端部同时具有导电区121和导液区111,由于 导液区111未设置极耳12,导电区121的极耳12揉平后,电池单体100内的电解液也容易通过第一极片1和第二极片2在导液区111的间隙流入卷绕主体S的内部,保证电极组件10的浸润性能,以在电池充放电的过程中,使电解液与第一极片1和第二极片2上的活性物质充分发生反应,从而优化电池单体100的性能。
而且,由于极耳12连续延伸在导电区121卷绕至少一圈,在周向上与主体部11具备较好的连接强度,使极耳12根部具有较好的自支撑作用,在对极耳12施加周向作用力揉平的过程中,防止出现极耳12打皱现象,使揉平区域形状稳定,优化焊接极耳12和端子1022的效果,保证电极组件10可靠地向外传输电能,并提高过流能力。此外,极耳12焊接时产生的粒子也不容易沿周向掉落到导液区111的第一极片1和第二极片2之间,可提高电极组件10工作的可靠性。
最后,本申请提供了一种电极组件10的制造设备400,如图21所示,在一些实施例中,制造设备400包括:极片提供装置410和极片卷绕装置420。极片提供装置410被配置为提供极性相反的第一极片1和第二极片2,第一极片1和第二极片2均包括主体部11和凸出于主体部11的极耳12;极片卷绕装置420被配置为将第一极片1和第二极片2绕卷绕轴线K卷绕使各自的主体部11形成卷绕主体S,卷绕主体S的端部包括至少一个导电区121和至少一个导液区111。其中,极耳12在导电区121引出并卷绕至少一圈,且用于与电池单体100的端子1022电连接,导液区111与导电区121沿卷绕主体S的径向相邻布置,并用于引导电解液流入卷绕主体S的内部。
本申请该实施例的制造设备400与制造方法有相同的技术效果。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (22)

  1. 一种电极组件(10),用于电池单体(100),其中,所述电极组件(10)包括:极性相反的第一极片(1)和第二极片(2),所述第一极片(1)和所述第二极片(2)均包括主体部(11)和凸出于所述主体部(11)的极耳(12),所述第一极片(1)和所述第二极片(2)绕卷绕轴线(K)卷绕使各自的主体部(11)形成卷绕主体(S);
    所述卷绕主体(S)的端部包括至少一个导电区(121)和至少一个导液区(111),所述极耳(12)在所述导电区(121)引出并卷绕至少一圈,且用于与所述电池单体(100)的端子(1022)电连接,所述导液区(111)与所述导电区(121)沿卷绕主体(S)的径向相邻布置,并用于引导电解液流入所述卷绕主体(S)的内部。
  2. 根据权利要求1所述的电极组件(10),其中,所述极耳(12)在所述导电区(121)卷绕多圈。
  3. 根据权利要求1或2所述的电极组件(10),其中,所述导电区(121)和所述导液区(111)的数量之和大于或等于三个,且沿所述卷绕主体(S)的径向交替设置。
  4. 根据权利要求3所述的电极组件(10),其中,所述导电区(121)位于所述卷绕主体(S)端部沿径向的中间区域,所述导电区(121)沿径向的两侧分别设有一个所述导液区(111)。
  5. 根据权利要求1~3任一项所述的电极组件(10),其中,所述第一极片(1)和所述第二极片(2)中的至少一个沿卷绕方向间隔设置多个所述极耳(12),以在所述卷绕主体(S)的端部形成多个沿径向间隔设置的所述导电区(121)。
  6. 根据权利要求5所述的电极组件(10),其中,所述导电区(121)设有两个且分别位于所述卷绕主体(S)端部沿径向的内侧和外侧,所述导液区(111)位于两个所述导电区(121)之间。
  7. 根据权利要求1或2所述的电极组件(10),其中,所述导电区(121)和所述导液区(111)分别设置一个,且所述导电区(121)位于所述导液区(111)的径向内侧。
  8. 根据权利要求1~7任一项所述的电极组件(10),其中,
    所述卷绕主体(S)两端的所述导液区(111)具有相同的径向尺寸,且所述卷绕主体(S)两端的所述导电区(121)具有相同的径向尺寸;或者
    所述卷绕主体(S)一端的所述导液区(111)与另一端的所述导电区(121)具有相同的径向尺寸。
  9. 根据权利要求1~8任一项所述的电极组件(10),还包括隔膜(3),所述隔膜 (3)用于隔离所述第一极片(1)和第二极片(2),所述隔膜(3)、所述第一极片(1)的主体部(11)和所述第二极片(2)的主体部卷绕后形成所述卷绕主体(S);
    在所述卷绕轴线(K)的延伸方向上,所述隔膜(3)位于导液区(111)的部分超出所述第一极片(1)的主体部(11)的侧边和所述第二极片(2)的主体部(11)的侧边。
  10. 根据权利要求1~9任一项所述的电极组件(10),还包括隔膜(3),所述隔膜(3)用于隔离所述第一极片(1)和第二极片(2),所述第一极片(1)和所述第二极片(2)中至少一个的主体部(11)包括沿所述卷绕轴线(K)的延伸方向并排设置的活性物质区(A)和导流区(B),所述导流区(B)位于所述活性物质区(A)的外侧,所述主体部(11)位于所述导流区(B)的表面与所述隔膜(3)之间的间隙大于所述主体部(11)位于所述活性物质区(A)的表面与所述隔膜(3)之间的间隙。
  11. 根据权利要求10所述的电极组件(10),其中,所述第一极片(1)和所述第二极片(2)中至少一个的导流区(B)包括与所述活性物质区(A)邻接的浸润区(B1),所述主体部(11)位于所述浸润区(B1)的表面与所述隔膜(3)之间的间隙沿所述卷绕轴线(K)的延伸方向从内至外逐渐增大。
  12. 根据权利要求10或11所述的电极组件(10),其中,所述第一极片(1)和所述第二极片(2)中至少一个的导流区(B)包括与所述活性物质区(A)邻接的浸润区(B1),所述第一极片(1)和所述第二极片(2)中至少一个的主体部(11)包括集流体(114)、活性物质层(112)和浸润层(113),所述活性物质层(112)设在所述集流体(114)的表面上且位于所述活性物质区(A),所述浸润层(113)设在所述集流体(114)的表面上且位于所述浸润区(B1),所述浸润层(113)的吸液能力高于所述活性物质层(112)的吸液能力。
  13. 根据权利要求12所述的电极组件(10),其中,所述浸润层(113)包括无机陶瓷涂层、高分子聚合物和粘接剂。
  14. 根据权利要求12或13所述的电极组件(10),其中,所述第一极片(1)和所述第二极片(2)中至少一个的导流区(B)还包括引导区(B2),所述集流体(114)沿所述卷绕轴线(K)的延伸方向超出所述浸润层(113)的区域形成所述引导区(B2)。
  15. 根据权利要求14所述的电极组件(10),其中,所述第一极片(1)为正极极片且沿所述卷绕轴线(K)的延伸方向从内至外依次设有所述活性物质区(A)、所述浸润区(B1)和所述引导区(B2),所述第二极片(2)为负极极片且沿所述卷绕轴线(K)从内至外依次设有所述活性物质区(A)和所述引导区(B2)。
  16. 根据权利要求10~15任一项所述的电极组件(10),其中,所述隔膜(3)位于 所述第一极片(1)和所述第二极片(2)中至少一个的导液区(111)的侧边位于所述导流区(B)的外侧边与所述极耳(12)的外侧边之间。
  17. 根据权利要求10~16任一项所述的电极组件(10),其中,所述导流区(B)绕所述卷绕主体(S)周向的延伸长度与所述活性物质区(A)一致。
  18. 一种电池单体(100),包括:
    壳体(101),具有开口(1011);
    端盖组件(102),用于封闭所述开口(1011),所述端盖组件(102)包括端盖本体(1021)和设在所述端盖本体(1021)上的端子(1022);和
    权利要求1~17任一项所述的电极组件(10),设在所述壳体(101)内,所述第一极片(1)的极耳(12)或所述第二极片(2)的极耳(12)与所述端子(1022)电连接。
  19. 一种电池(200),包括:
    根据权利要求18所述的电池单体(100);以及
    箱体(201),用于容纳所述电池单体(100)。
  20. 一种用电装置,包括权利要求19所述的电池,所述电池用于为所述用电装置提供电能。
  21. 一种电极组件(10)的制造方法,包括:
    提供极性相反的第一极片(1)和第二极片(2),所述第一极片(1)和所述第二极片(2)均包括主体部(11)和凸出于所述主体部(11)的极耳(12);
    将所述第一极片(1)和所述第二极片(2)绕卷绕轴线(K)卷绕使各自的主体部(11)形成卷绕主体(S),所述卷绕主体(S)的端部包括至少一个导电区(121)和至少一个导液区(111);
    其中,所述极耳(12)在所述导电区(121)引出并卷绕至少一圈,且用于与所述电池单体(100)的端子(1022)电连接,所述导液区(111)与所述导电区(121)沿卷绕主体(S)的径向相邻布置,并用于引导电解液流入所述卷绕主体(S)的内部。
  22. 一种电极组件(10)的制造设备(400),包括:
    极片提供装置(410),被配置为提供极性相反的第一极片(1)和第二极片(2),所述第一极片(1)和所述第二极片(2)均包括主体部(11)和凸出于所述主体部(11)的极耳(12);和
    极片卷绕装置(420),被配置为将所述第一极片(1)和所述第二极片(2)绕卷绕轴线(K)卷绕使各自的主体部(11)形成卷绕主体(S),所述卷绕主体(S)的端部包括至少一个导电区(121)和至少一个导液区(111);
    其中,所述极耳(12)在所述导电区(121)引出并卷绕至少一圈,且用于与所述电池单体(100)的端子(1022)电连接,所述导液区(111)与所述导电区(121)沿卷绕主体(S)的径向相邻布置,并用于引导电解液流入所述卷绕主体(S)的内部。
PCT/CN2021/121609 2021-09-29 2021-09-29 电极组件及其制造方法和设备、电池、用电装置 WO2023050124A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022562432A JP7463549B2 (ja) 2021-09-29 2021-09-29 電極アセンブリ及びその製造方法並びに装置、電池、電力消費装置
EP21931930.8A EP4184640A1 (en) 2021-09-29 2021-09-29 Electrode assembly and manufacturing method and device therefor, battery and electrical apparatus
CN202180084755.2A CN116601813A (zh) 2021-09-29 2021-09-29 电极组件及其制造方法和设备、电池、用电装置
KR1020227034425A KR20230047951A (ko) 2021-09-29 2021-09-29 전극 조립체, 그 제조 방법과 설비, 배터리 및 전기 장치
PCT/CN2021/121609 WO2023050124A1 (zh) 2021-09-29 2021-09-29 电极组件及其制造方法和设备、电池、用电装置
US18/078,233 US20230106248A1 (en) 2021-09-29 2022-12-09 Electrode assembly, manufacturing method and apparatus therefor, battery, and power consuming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121609 WO2023050124A1 (zh) 2021-09-29 2021-09-29 电极组件及其制造方法和设备、电池、用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/078,233 Continuation US20230106248A1 (en) 2021-09-29 2022-12-09 Electrode assembly, manufacturing method and apparatus therefor, battery, and power consuming device

Publications (1)

Publication Number Publication Date
WO2023050124A1 true WO2023050124A1 (zh) 2023-04-06

Family

ID=85774676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121609 WO2023050124A1 (zh) 2021-09-29 2021-09-29 电极组件及其制造方法和设备、电池、用电装置

Country Status (6)

Country Link
US (1) US20230106248A1 (zh)
EP (1) EP4184640A1 (zh)
JP (1) JP7463549B2 (zh)
KR (1) KR20230047951A (zh)
CN (1) CN116601813A (zh)
WO (1) WO2023050124A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176137A (ja) * 2010-02-24 2011-09-08 Tdk Corp 電気化学デバイス
CN202454637U (zh) * 2012-02-24 2012-09-26 佛山市顺德区精锐电池科技有限公司 大容量功率型锂离子电池
CN112542641A (zh) * 2020-12-09 2021-03-23 合肥国轩高科动力能源有限公司 一种圆柱电池及其制造方法
CN113314763A (zh) * 2021-06-24 2021-08-27 星恒电源股份有限公司 一种圆柱电池卷芯及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018045846A (ja) 2016-09-13 2018-03-22 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG 蓄電素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176137A (ja) * 2010-02-24 2011-09-08 Tdk Corp 電気化学デバイス
CN202454637U (zh) * 2012-02-24 2012-09-26 佛山市顺德区精锐电池科技有限公司 大容量功率型锂离子电池
CN112542641A (zh) * 2020-12-09 2021-03-23 合肥国轩高科动力能源有限公司 一种圆柱电池及其制造方法
CN113314763A (zh) * 2021-06-24 2021-08-27 星恒电源股份有限公司 一种圆柱电池卷芯及其制造方法

Also Published As

Publication number Publication date
KR20230047951A (ko) 2023-04-10
JP7463549B2 (ja) 2024-04-08
JP2023547970A (ja) 2023-11-15
CN116601813A (zh) 2023-08-15
US20230106248A1 (en) 2023-04-06
EP4184640A1 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
WO2022199129A1 (zh) 电池单体、电池及用电设备
EP4333193A1 (en) Battery cell and method and apparatus for manufacturing same, battery, and electrical device
EP4068418A1 (en) Electrode assembly and manufacturing method and system therefor, battery cell, and battery
EP4300701A1 (en) Wound-type electrode assembly, battery cell, battery and electric device
CN216872160U (zh) 电池单体、电池以及用电装置
WO2023092449A1 (zh) 电池单体及其制造方法和装置、用电装置
KR20210025995A (ko) 파우치 형 전지 케이스 및 파우치 형 이차 전지
US20230395869A1 (en) Electrode assembly and manufacturing method and device, battery cell, battery, electric device
US20230402708A1 (en) Battery cell, battery, electric apparatus, and manufacturing method and device of battery cell
WO2023050124A1 (zh) 电极组件及其制造方法和设备、电池、用电装置
US20230123434A1 (en) Electrode Plate, Electrode Assembly, Battery Cell, Battery, and Electric Appliance
WO2023092441A1 (zh) 电池单体及其制造方法和装置、电池、用电装置
WO2023206192A1 (zh) 电池单体、电池、用电设备、电极组件及其制造方法
EP4195399A1 (en) Wound electrode assembly, battery cell, battery and electrical device
CN215299297U (zh) 电极组件、电池单体、电池以及用电装置
WO2023004825A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2022170496A1 (zh) 电极组件及电池单体、电池、装置、制备方法和制备装置
JP2017098207A (ja) 電極体を有する二次電池
WO2023216254A1 (zh) 电极组件、电池单体、电池及用电设备
WO2023206949A1 (zh) 圆柱电极组件、电池单体、电池、用电设备和制造方法
WO2024092726A1 (zh) 电极组件、电池单体、电池和用电装置
WO2023092529A1 (zh) 外壳及其制备方法和系统、电池单体、电池、用电装置
WO2023004830A1 (zh) 电池极片、电极组件、电池单体、电池及用电装置
CN220710393U (zh) 一种圆柱电芯及使用该电芯的电池设备
CN217719797U (zh) 电极组件、电池单体、电池以及用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021931930

Country of ref document: EP

Effective date: 20220928

WWE Wipo information: entry into national phase

Ref document number: 2022562432

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180084755.2

Country of ref document: CN