WO2023048050A1 - 電磁波吸収体 - Google Patents
電磁波吸収体 Download PDFInfo
- Publication number
- WO2023048050A1 WO2023048050A1 PCT/JP2022/034435 JP2022034435W WO2023048050A1 WO 2023048050 A1 WO2023048050 A1 WO 2023048050A1 JP 2022034435 W JP2022034435 W JP 2022034435W WO 2023048050 A1 WO2023048050 A1 WO 2023048050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electromagnetic wave
- layer
- rubber
- absorbing layer
- wave absorbing
- Prior art date
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 69
- 239000011230 binding agent Substances 0.000 claims abstract description 42
- 238000010521 absorption reaction Methods 0.000 claims abstract description 30
- 239000010410 layer Substances 0.000 claims description 206
- 230000001629 suppression Effects 0.000 claims description 42
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 22
- 230000005540 biological transmission Effects 0.000 claims description 19
- 229920002379 silicone rubber Polymers 0.000 claims description 16
- 239000004945 silicone rubber Substances 0.000 claims description 16
- 229920001971 elastomer Polymers 0.000 claims description 12
- 239000005060 rubber Substances 0.000 claims description 12
- 239000011358 absorbing material Substances 0.000 claims description 10
- 239000006249 magnetic particle Substances 0.000 claims description 7
- 239000000853 adhesive Substances 0.000 claims description 5
- 230000001070 adhesive effect Effects 0.000 claims description 5
- 244000043261 Hevea brasiliensis Species 0.000 claims description 4
- 229920000459 Nitrile rubber Polymers 0.000 claims description 4
- 239000005062 Polybutadiene Substances 0.000 claims description 4
- 239000012790 adhesive layer Substances 0.000 claims description 4
- 229920005549 butyl rubber Polymers 0.000 claims description 4
- 229920003049 isoprene rubber Polymers 0.000 claims description 4
- 229920003052 natural elastomer Polymers 0.000 claims description 4
- 229920001194 natural rubber Polymers 0.000 claims description 4
- 229920001084 poly(chloroprene) Polymers 0.000 claims description 4
- 229920002857 polybutadiene Polymers 0.000 claims description 4
- 229920001973 fluoroelastomer Polymers 0.000 claims description 3
- 229920002943 EPDM rubber Polymers 0.000 claims description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 2
- 239000005977 Ethylene Substances 0.000 claims description 2
- 229920006311 Urethane elastomer Polymers 0.000 claims description 2
- 229920000800 acrylic rubber Polymers 0.000 claims description 2
- 229920005558 epichlorohydrin rubber Polymers 0.000 claims description 2
- 229920002681 hypalon Polymers 0.000 claims description 2
- 229920000058 polyacrylate Polymers 0.000 claims description 2
- 229920001021 polysulfide Polymers 0.000 claims description 2
- 239000005077 polysulfide Substances 0.000 claims description 2
- 150000008117 polysulfides Polymers 0.000 claims description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims 3
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 claims 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims 1
- 229920002554 vinyl polymer Polymers 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 23
- 229910000859 α-Fe Inorganic materials 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 15
- 239000002245 particle Substances 0.000 description 15
- 239000006057 Non-nutritive feed additive Substances 0.000 description 14
- 239000003431 cross linking reagent Substances 0.000 description 11
- 239000000377 silicon dioxide Substances 0.000 description 11
- 229910052712 strontium Inorganic materials 0.000 description 11
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 9
- 239000006229 carbon black Substances 0.000 description 8
- 241000282320 Panthera leo Species 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 239000000454 talc Substances 0.000 description 5
- 229910052623 talc Inorganic materials 0.000 description 5
- 230000002745 absorbent Effects 0.000 description 4
- 239000002250 absorbent Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 239000003063 flame retardant Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000006247 magnetic powder Substances 0.000 description 3
- 235000010724 Wisteria floribunda Nutrition 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 2
- 239000000391 magnesium silicate Substances 0.000 description 2
- 229910052919 magnesium silicate Inorganic materials 0.000 description 2
- 235000019792 magnesium silicate Nutrition 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/025—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/06—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/082—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/18—Layered products comprising a layer of metal comprising iron or steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/02—Layered products comprising a layer of natural or synthetic rubber with fibres or particles being present as additives in the layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/04—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B25/042—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/04—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B25/08—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/12—Layered products comprising a layer of natural or synthetic rubber comprising natural rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/14—Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/16—Layered products comprising a layer of natural or synthetic rubber comprising polydienes homopolymers or poly-halodienes homopolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/18—Layered products comprising a layer of natural or synthetic rubber comprising butyl or halobutyl rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/20—Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/302—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/304—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
- H01F1/11—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
- H01F1/113—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0081—Electromagnetic shielding materials, e.g. EMI, RFI shielding
- H05K9/0088—Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
Definitions
- This application relates to an electromagnetic wave absorber that absorbs electromagnetic waves in the millimeter wave band.
- Patent Document 1 In order to suppress high-frequency noise, conventionally used electromagnetic wave absorbing sheets that utilize the magnetic loss of magnetic materials are less effective, and resonance-type electromagnetic wave absorbing sheets that utilize conductive materials are required (Patent Document 1). ). However, it is not suitable for the conductive material to come into direct contact with conductive circuit elements or transmission lines because it causes a short circuit. In addition, even if the conductive layer of the resonance type electromagnetic wave absorbing sheet is prevented from directly touching the circuit elements and transmission lines by using an adhesive for affixing them to the circuit elements and transmission lines, the sheet can be cut and punched to a desired size. When used as such, the conductive layer will be exposed on the cut surface, and there is a risk of short-circuiting due to contact with this portion. Furthermore, the risk of short circuit due to falling off of the conductive material cannot be eliminated.
- the iron oxide magnetic material is a non-conductive material and has no risk of short circuit.
- epsilon-type iron oxide has an ability to absorb electromagnetic waves in the millimeter wave band, and that the absorption frequency can be controlled by a substitution element and its substitution amount (Patent Documents 2 and 3).
- hexagonal ferrite is also known to have electromagnetic wave absorbability in the millimeter wave band (Patent Document 4).
- Patent Documents 5, 6, and 7 disclose a laminated electromagnetic wave absorber whose magnetic permeability and dielectric constant gradually increase in the transmission direction from the incident side of the electromagnetic wave.
- Patent Document 6 discloses a radio wave absorber in which the dielectric constant of the surface layer is increased by reducing the amount of rubber contained in the surface layer that functions as a dielectric layer and increasing the amount of alumina powder.
- Patent document 7 uses a magnetic powder/resin composite in which magnetic powder is dispersed so that the packing density of the magnetic powder increases continuously along the propagation direction of radio waves, and a layer made of a low dielectric constant material is arranged on the incident surface.
- a radio wave absorber is disclosed in which reflection of radio waves on the incident surface is reduced by doing so.
- Japanese Patent Application Laid-Open No. 2007-81119 Patent No. 5481613
- Japanese Patent Application Laid-Open No. 2008-60484 Patent No. 4787978
- Japanese Patent Application Laid-Open No. 2008-277726 Patent No. 4859791
- Japanese Patent Application Laid-Open No. 2007-250823 Patent No. 4674380
- the present application solves the above problem and provides an electromagnetic wave absorber capable of suppressing electromagnetic waves reflected on the surface.
- the electromagnetic wave absorber of the present application includes an electromagnetic wave reflection suppression layer and an electromagnetic wave absorption layer, the electromagnetic wave reflection suppression layer includes a first binder, and the content ratio of the first binder in the electromagnetic wave reflection suppression layer. is 85% by mass or more, the electromagnetic wave absorbing layer contains a second binder and an electromagnetic wave absorbing material, and the content of the electromagnetic wave absorbing material in the electromagnetic wave absorbing layer is 45 to 85% by mass. It is characterized by
- an electromagnetic wave absorber capable of suppressing the reflection of electromagnetic waves incident from the outside on the surface layer and absorbing the electromagnetic waves incident from the surface layer.
- FIG. 1 is a schematic cross-sectional view showing an example of an electromagnetic wave absorber according to an embodiment of the present application.
- FIG. 2 is a schematic diagram for explaining the free space method for measuring the electromagnetic wave return loss and the electromagnetic wave transmission loss of the electromagnetic wave absorber of the embodiment of the present application.
- the electromagnetic wave absorber of the present application includes an electromagnetic wave reflection suppression layer and an electromagnetic wave absorption layer, the electromagnetic wave reflection suppression layer includes a first binder, and the content ratio of the first binder in the electromagnetic wave reflection suppression layer. is 85% by mass or more, the electromagnetic wave absorbing layer contains a second binder and an electromagnetic wave absorbing material, and the content of the electromagnetic wave absorbing material in the electromagnetic wave absorbing layer is 45 to 85% by mass. It is characterized by
- the electromagnetic wave absorber of the present application includes an electromagnetic wave reflection suppression layer and an electromagnetic wave absorption layer, and the content of the first binder in the electromagnetic wave reflection suppression layer is higher than the content of the second binder in the electromagnetic wave absorption layer. It is possible to suppress the reflection of the electromagnetic wave incident from the electromagnetic wave reflection suppression layer side, absorb the electromagnetic wave incident from the electromagnetic wave reflection suppression layer side, and prevent the electromagnetic wave from adversely affecting the electronic device as a whole.
- the content ratio of the first binder in the electromagnetic wave reflection suppression layer is made larger than the content ratio of the second binder in the electromagnetic wave absorption layer, reflection of electromagnetic waves incident from the side of the electromagnetic wave reflection suppression layer can be suppressed.
- the reason is considered as follows.
- the reflectance of an electromagnetic wave absorber increases as the difference between the dielectric constant of the air layer into which electromagnetic waves are incident and the dielectric constant of the surface layer of the electromagnetic wave absorber increases.
- the dielectric constant of air is about 1
- the dielectric constant of the electromagnetic wave absorbing layer of a normal electromagnetic wave absorber is about 10-40.
- the dielectric constant of the electromagnetic wave reflection suppressing layer with a large binder content is about 3. Therefore, by arranging an electromagnetic wave reflection suppression layer with a large binder content between the air layer and the electromagnetic wave absorption layer, the relative dielectric constant of the electromagnetic wave reflection suppression layer can be brought close to the relative dielectric constant of the air.
- the electromagnetic wave reflection suppressing layer is preferably arranged on the electromagnetic wave incident side.
- FIG. 1 is a schematic cross-sectional view showing an example of the electromagnetic wave absorber of this embodiment.
- the electromagnetic wave absorber 10 of this embodiment includes an electromagnetic wave absorbing layer 11 and an electromagnetic wave reflection suppressing layer 12.
- the electromagnetic wave absorber 10 is used by arranging the electromagnetic wave reflection suppressing layer 12 on the side on which the electromagnetic wave 13 is incident. Although the electromagnetic wave absorbing layer 11 and the electromagnetic wave reflection suppressing layer 12 are directly bonded in FIG. This can improve the adhesion between the two layers.
- the electromagnetic wave absorber 10 is formed with a two-layer structure of the electromagnetic wave absorbing layer 11 and the electromagnetic wave reflection suppressing layer 12, but an adhesive layer may be further arranged on the electromagnetic wave absorbing layer 11 side. This facilitates attachment of the electromagnetic wave absorber to the electronic device.
- the electromagnetic wave absorbing material constituting the electromagnetic wave absorbing layer is a magnetic iron oxide that magnetically resonates in the millimeter wave band or higher frequency band.
- the following hexagonal ferrite or the following epsilon type iron oxide can be used.
- Magnetic iron oxide is usually used in the form of particles.
- hexagonal ferrite As the hexagonal ferrite, a hexagonal ferrite containing at least one selected from the group consisting of Sr and Ba and in which a part of the Fe sites is substituted with Al can be used.
- the hexagonal ferrite has a magnetoplumbite crystal structure and is represented by the general formula: AFe 12 O 19 , where A represents at least one selected from the group consisting of Sr and Ba.
- Strontium ferrite can have a resonance frequency of 60 GHz to 80 GHz by substituting part of Fe 3+ in SrFe 12 O 19 with Al 3+ , etc., and is an electromagnetic wave absorber compatible with wireless LANs in the 60 GHz band. can be made.
- the frequency indicating electromagnetic wave absorption shifts to the high frequency side, which corresponds to an increase in the value of the anisotropic magnetic field (HA). it is conceivable that.
- Epsilon-type iron oxide As the epsilon-type iron oxide, an epsilon-type iron oxide in which part of the Fe site is substituted with at least one selected from the group consisting of Al, Ga and In can be used.
- the epsilon-type iron oxide has an ⁇ -phase crystal structure and is represented by the general formula: ⁇ -Fe 2 O 3 , and part of the Fe site is at least one selected from the group consisting of Al, Ga and In.
- the magnetic resonance frequency responsible for electromagnetic wave absorption can be changed.
- Patent Document 2 Japanese Patent Application Laid-Open No. 2008-60484
- Patent Document 3 Japanese Patent Application Laid-Open No. 2008-277726
- the electromagnetic wave reflection suppressing layer may contain non-magnetic particles.
- the non-magnetic particles are added mainly to improve the hardness of the electromagnetic wave reflection suppressing layer, and silica particles, talc particles, etc. are used, but other non-magnetic particles may be used.
- Binders constituting the electromagnetic wave absorbing layer and the electromagnetic wave reflection suppressing layer include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), butyl rubber (IIR), nitrile rubber (NBR ), ethylene propylene rubber (EPDM), chloroprene rubber (CR), acrylic rubber (ACM), chlorosulfonated polyethylene rubber (CSR), urethane rubber (PUR), silicone rubber (Q), fluororubber (FKM), ethylene - It preferably contains at least one rubber binder selected from the group consisting of vinyl acetate rubber (EVA), epichlorohydrin rubber (CO), and polysulfide rubber (T).
- EVA vinyl acetate rubber
- CO epichlorohydrin rubber
- T polysulfide rubber
- the two layers can be brought into close contact without using an adhesive layer.
- a layer having another function may be formed between the electromagnetic wave absorbing layer and the electromagnetic wave reflection suppressing layer.
- a flame-retardant layer having a flame-retardant function may be formed.
- the same binder as that constituting the electromagnetic wave absorbing layer and the electromagnetic wave reflection suppressing layer can contain a phosphorus-containing compound as a flame retardant.
- the content of the flame retardant in the flame-retardant layer is preferably 5-20 parts by mass with respect to 100 parts by mass of the binder.
- silicone rubber (Q) and fluororubber (FKM) are particularly preferable in order to improve the strength of the electromagnetic wave absorber.
- silicone rubber any one of addition reaction type, condensation reaction type and peroxide curing type can be used.
- the peroxide-curable silicone rubber is preferable in that the crosslink density can be controlled and any hardness can be obtained.
- the first binder forming the electromagnetic wave reflection suppression layer and the second binder forming the electromagnetic wave absorbing layer may be the same or different. Moreover, each binder may be used by mixing a plurality of types of binders.
- the content of the first binder in the electromagnetic wave reflection suppressing layer must be 85% by mass or more, and the content of the first binder must be greater than the content of the second binder in the electromagnetic wave absorbing layer. be.
- the electromagnetic wave reflection suppressing layer may be formed using only the first binder.
- the content of the second binder in the electromagnetic wave absorbing layer is preferably 15 to 55% by mass.
- the first binder in the electromagnetic wave reflection suppression layer is mainly used as a matrix material when forming the electromagnetic wave reflection suppression layer.
- the second binder in the electromagnetic wave absorbing layer is used as a matrix material for forming the electromagnetic wave absorbing layer by dispersing and fixing the electromagnetic wave absorbing material.
- the electromagnetic wave reflection suppressing layer and the electromagnetic wave absorbing layer of the present application are laminated, the electromagnetic wave incident from the electromagnetic wave reflection suppressing layer side is transmitted on the surface of the electromagnetic wave reflection suppressing layer because the dielectric constant of the electromagnetic wave reflection suppressing layer is lower than that of the electromagnetic wave absorbing layer. Since the reflection of the electromagnetic wave can be suppressed, the reflection attenuation amount can be increased, and the transmission attenuation amount can be increased, so that the electromagnetic wave absorption ability can be improved.
- the electromagnetic wave absorbing layer preferably contains carbon particles such as carbon black. Further, it is preferable to add a dispersant to the electromagnetic wave absorbing layer in order to arrange the electromagnetic wave absorbing material uniformly without uneven distribution.
- the electromagnetic wave return loss and the electromagnetic wave transmission loss of the electromagnetic wave absorber of the present embodiment are preferably ⁇ 10 dB or less in the frequency band of 76 to 81 GHz, and ⁇ 10 dB or less in the electromagnetic wave transmission loss. .
- the attenuation of -10 dB or less means that 10% or less of the incident electromagnetic wave is reflected or transmitted.
- the electromagnetic wave reflection attenuation and the electromagnetic wave transmission attenuation of the electromagnetic wave absorber of this embodiment can be measured using the free space method shown in Examples described later.
- the ratio (A/B) between the thickness A (mm) of the electromagnetic wave absorbing layer and the thickness B (mm) of the electromagnetic wave reflection suppression layer is 0.7 to 1.4. is preferred. Within this range, the electromagnetic wave reflection loss can sometimes be reduced to -15 dB or less. The attenuation amount of -15 dB or less means that 3.16% or less of the incident electromagnetic wave is reflected. On the other hand, if (A/B) is less than 0.7, the thickness A of the electromagnetic wave absorbing layer is too small to sufficiently reduce the amount of electromagnetic wave transmission. Further, when (A/B) is larger than 1.4, the electromagnetic wave reflection amount cannot be sufficiently reduced because the thickness B of the electromagnetic wave reflection suppressing layer is small. (A/B) is more preferably 0.9 to 1.4.
- the thickness of the electromagnetic wave absorbing layer is preferably 1 to 2 mm. Within this range, the strength and flexibility of the electromagnetic wave absorber can be maintained at a practical level.
- the thicknesses of the electromagnetic wave absorbing layer and the electromagnetic wave reflection suppressing layer of the electromagnetic wave absorber of this embodiment can be measured as follows. That is, the cross section of the sample that has been cut by cutter knife cutting, ion milling, etc. so that the cross section of the electromagnetic wave absorber is vertical, is viewed under a microscope (for example, "VHX-6000" manufactured by Keyence Corporation) at a magnification of 20. ) is used to photograph the range where the entire thickness of the sample can be observed. Next, five points randomly extracted from the photographed image are subjected to length measurement using the analysis software of the microscope. Further, the same process is performed for 3 randomly selected fields of view, and the average thickness of the 15 points is calculated. This is done for each of the electromagnetic wave absorbing layer and the electromagnetic wave reflection suppressing layer.
- a microscope for example, "VHX-6000" manufactured by Keyence Corporation
- the ratio (C/D) between the 1 GHz relative dielectric constant real part C of the electromagnetic wave absorbing layer and the 1 GHz relative dielectric constant real part D of the electromagnetic wave reflection suppressing layer measured according to JIS C2138-2007 is 1.5 to 11.0. 6 is preferred. This is because within this range, the difference between the dielectric constant of the air layer and the dielectric constant of the electromagnetic wave reflection suppressing layer can be reduced. (C/D) is more preferably 3.0 to 11.0.
- the 1 GHz relative permittivity real part C of the electromagnetic wave absorbing layer is preferably 5-40.
- the composite impedance when combined with the electromagnetic wave reflection suppressing layer is separated from the value of the air impedance, and the electromagnetic wave reflection of the electromagnetic wave absorber. increase in volume.
- the hardness of the electromagnetic wave reflection suppressing layer and the electromagnetic wave absorbing layer of the electromagnetic wave absorber of this embodiment is preferably 40 to 80, more preferably 50 to 70, in durometer type A specified in JIS K6253-1997. Thereby, the durability of the electromagnetic wave absorber can be improved.
- the adhesive strength between the electromagnetic wave absorbing layer and the electromagnetic wave reflection suppressing layer is defined as the 180° peel strength specified in JIS Z0237-2009. It is preferably 6 N/10 mm or more.
- the overall elongation at break of the electromagnetic wave absorber of this embodiment is preferably 150% or more.
- Example 1 ⁇ Production of electromagnetic wave absorbing sheet> After kneading the components of the electromagnetic wave absorbing layer described below with a kneader, the kneaded product is separated by a calendering method, after which the component of the electromagnetic wave reflection suppressing layer described below is kneaded with a kneader, and the kneaded product is separated by a calendering method. , an electromagnetic wave reflection suppressing layer was laminated on the electromagnetic wave absorbing layer previously separated.
- the laminated electromagnetic wave absorbing layer and electromagnetic wave reflection suppressing layer are subjected to a cross-linking step at a cross-linking temperature of 190°C and a secondary vulcanization step at 200°C, cut into a sheet with a width of 1000 mm, and wound on a roll.
- a laminated electromagnetic wave absorbing sheet of Example 1 was produced.
- the thickness of the electromagnetic wave absorbing layer of the produced laminated electromagnetic wave absorbing sheet was 2.0 mm
- the thickness of the electromagnetic wave reflection suppressing layer was 1.4 mm.
- Electromagnetic wave reflection suppression layer component (1) Silicone rubber (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KE-951KU”, silica particle content: 10% by mass): 99.0% by mass (2) Cross-linking agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “C-8A”): 1.0% by mass
- Example 2 A laminated electromagnetic wave absorbing sheet of Example 2 was produced in the same manner as in Example 1 except that the thickness of the electromagnetic wave absorbing layer was 1.7 mm and the thickness of the electromagnetic wave reflection suppressing layer was 1.7 mm.
- Example 3 A laminated electromagnetic wave absorbing sheet of Example 3 was produced in the same manner as in Example 1 except that the thickness of the electromagnetic wave absorbing layer was 1.0 mm and the thickness of the electromagnetic wave reflection suppressing layer was 1.5 mm.
- Example 4 The laminated electromagnetic wave absorbing layer of Example 4 was prepared in the same manner as in Example 1, except that the following electromagnetic wave absorbing layer components were used, and the thickness of the electromagnetic wave absorbing layer was 1.7 mm, and the thickness of the electromagnetic wave reflection suppressing layer was 1.7 mm. A sheet was produced.
- Example 5 The laminated electromagnetic wave absorbing layer of Example 5 was prepared in the same manner as in Example 1 except that the following electromagnetic wave absorbing layer components were used and the thickness of the electromagnetic wave absorbing layer was 1.7 mm and the thickness of the electromagnetic wave reflection suppressing layer was 1.7 mm. A sheet was produced.
- Example 6 Laminated electromagnetic wave absorption of Example 6 in the same manner as in Example 1 except that the following electromagnetic wave absorbing layer components were used, the thickness of the electromagnetic wave absorbing layer was 1.7 mm, and the thickness of the electromagnetic wave reflection control layer was 1.7 mm. A sheet was produced.
- Example 7 The laminated electromagnetic wave of Example 7 was prepared in the same manner as in Example 1, except that the following electromagnetic wave reflection suppression layer components were used, and the thickness of the electromagnetic wave absorption layer was 1.7 mm, and the thickness of the electromagnetic wave reflection suppression layer was 1.7 mm. An absorbent sheet was produced.
- Electromagnetic wave reflection suppression layer component (1) Silicone rubber (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KE-951KU”, silica particle content: 10% by mass): 85.0% by mass (2) Cross-linking agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “C-8A”): 1.0% by mass (3) Non-magnetic particles (talc: hydrated magnesium silicate, manufactured by Fuji Talc Industry Co., Ltd., trade name “FS205”): 14.0% by mass
- Example 8 The laminated electromagnetic wave of Example 8 was prepared in the same manner as in Example 1, except that the following electromagnetic wave reflection suppression layer components were used, and the thickness of the electromagnetic wave absorption layer was 1.7 mm, and the thickness of the electromagnetic wave reflection suppression layer was 2.0 mm. An absorbent sheet was produced.
- Nylon resin manufactured by Ube Industries, Ltd., trade name “1013B”: 100.0% by mass
- An electromagnetic wave absorbing layer having a thickness of 1.7 mm was prepared using the following electromagnetic wave absorbing layer components, and only the prepared electromagnetic wave absorbing layer was used as it was. A sheet was produced.
- Comparative example 2 Laminated electromagnetic wave absorption of Comparative Example 2 was carried out in the same manner as in Example 1 except that the following electromagnetic wave absorbing layer components were used, and the thickness of the electromagnetic wave absorbing layer was 1.7 mm, and the thickness of the electromagnetic wave reflection suppressing layer was 1.7 mm. A sheet was produced.
- Comparative Example 3 Laminated electromagnetic wave absorption of Comparative Example 3 was carried out in the same manner as in Example 1 except that the following electromagnetic wave absorbing layer components were used, and the thickness of the electromagnetic wave absorbing layer was 1.7 mm, and the thickness of the electromagnetic wave reflection suppressing layer was 1.7 mm. A sheet was produced.
- Comparative Example 4 A laminated electromagnetic wave of Comparative Example 4 was prepared in the same manner as in Example 1, except that the following electromagnetic wave reflection suppression layer components were used, and the thickness of the electromagnetic wave absorption layer was 2.0 mm, and the thickness of the electromagnetic wave reflection suppression layer was 1.4 mm. An absorbent sheet was produced.
- Electromagnetic wave reflection suppression layer component (1) Silicone rubber (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KE-951KU”, silica particle content: 10% by mass): 80.0% by mass (2) Cross-linking agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “C-8A”): 1.0% by mass (3) Non-magnetic particles (talc: hydrated magnesium silicate, manufactured by Fuji Talc Industry Co., Ltd., trade name “FS205”): 19.0% by mass
- Comparative Example 5 A laminated electromagnetic wave of Comparative Example 5 was prepared in the same manner as in Example 1, except that the following electromagnetic wave reflection suppression layer components were used, and the thickness of the electromagnetic wave absorption layer was 1.0 mm, and the thickness of the electromagnetic wave reflection suppression layer was 0.05 mm. An absorbent sheet was produced.
- Electromagnetic wave reflection suppression layer component (1) Silicone rubber (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KE-951KU”, silica particle content: 10% by mass): 49.6% by mass (2) Cross-linking agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “C-8A”): 0.4% by mass (3) Non-magnetic particles (aluminum oxide: manufactured by Showa Denko, trade name “AS-10”): 50.0% by mass
- the electromagnetic wave return loss and the electromagnetic wave transmission loss were measured using the free space method. Specifically, as shown in FIG. 2, using a millimeter-wave network analyzer “ME7838A” (product name) 20 manufactured by Anritsu Corporation, an antenna 21 connected to a first port 20a is connected to a first port 20a through a dielectric lens 23.
- the electromagnetic wave absorption suppression layer side of the electromagnetic wave absorption sheet 24 is irradiated with an input wave (millimeter wave) 25 having a frequency of 76.5 GHz, and the electromagnetic wave 26 reflected by the electromagnetic wave reflection suppression layer is directed to the electromagnetic wave reflection suppression layer side of the electromagnetic wave absorption sheet 24.
- the electromagnetic wave 27 passing through the electromagnetic wave absorbing sheet 24 was measured by the antenna 22 arranged on the electromagnetic wave absorbing layer side of the electromagnetic wave absorbing sheet 24 and connected to the second port 20b.
- the intensity of the irradiated electromagnetic wave 25 and the intensity of the reflected electromagnetic wave 26 and the transmitted electromagnetic wave 27 were grasped as power values, respectively, and the electromagnetic wave return attenuation and the electromagnetic wave transmission attenuation were obtained in dB from the intensity difference.
- ⁇ 1 GHz relative permittivity real part The 1 GHz relative dielectric constant real part C of the electromagnetic wave absorbing layer and the 1 GHz relative dielectric constant real part D of the electromagnetic wave reflection suppressing layer were measured according to JIS C2138-2007. Also, based on the results, the ratio (C/D) between the real part C of the 1 GHz relative permittivity and the real part D of the 1 GHz relative permittivity was determined.
- Table 1 also shows the electromagnetic wave absorbing layer thickness A, the electromagnetic wave reflection suppressing layer thickness B, and their ratio A/B.
- the electromagnetic wave absorption sheets of Examples 1 to 8 were able to suppress the electromagnetic wave return loss to -10 dB or less.
- the electromagnetic wave absorbing sheets of Comparative Examples 1 to 5 the electromagnetic wave reflection attenuation exceeded -10 dB.
- Comparative Example 4 in which the content ratio of the first binder in the electromagnetic wave reflection suppression layer is 80% by mass, which is less than 85% by mass, the -dB value of the return loss at 76.5 GHz is large (absolute value of -dB value The result is that the return loss is small).
- Comparative Example 5 in which the content of the first binder in the electromagnetic wave reflection suppressing layer is 49.6% by mass, the -dB value of the return loss at 76.5 GHz is even larger than that in Comparative Example 4 ( The return loss, which is the absolute value of the ⁇ dB value, is small).
- the -dB value of the transmission attenuation at 76.5 GHz was larger than that of Comparative Example 4 (the transmission attenuation, which is the absolute value of the -dB value, was small).
- the thickness of the electromagnetic wave absorbing layer of the electromagnetic wave absorbing sheet of Example 1 was changed to 1.40 mm, 1.55 mm, 1.60 mm, 1.80 mm, and 2.00 mm, and the thickness of the electromagnetic wave reflection suppressing layer was 1.20 mm. , 1.30 mm, 1.40 mm, 1.50 mm, 1.60 mm, 1.65 mm, 1.70 mm, 1.75 mm, 1.80 mm, 1.90 mm, 1.95 mm, and 2.00 mm, respectively. were combined to produce an electromagnetic wave absorbing sheet, and the electromagnetic wave reflection loss was measured in the same manner as in Example 1.
- the electromagnetic wave reflection loss was reduced to -6 dB or less in all combinations of the electromagnetic wave absorbing sheets.
- the electromagnetic wave absorbing sheet the electromagnetic wave having a ratio (A/B) of the thickness A (mm) of the electromagnetic wave absorbing layer to the thickness B (mm) of the electromagnetic wave reflection suppressing layer is 0.7 to 1.4. With the absorbing sheet, all the electromagnetic wave return losses could be reduced to -10 dB or less.
- the electromagnetic wave absorber of the present application can absorb electromagnetic waves in a high frequency band equal to or higher than the millimeter wave band, and can provide an electromagnetic wave absorber capable of suppressing the reflection of electromagnetic waves, thereby producing electronic components and electronic devices excellent in EMC. is useful for
- electromagnetic wave absorber 11 electromagnetic wave absorbing layer 12 electromagnetic wave reflection suppression layer 13 electromagnetic wave 20 millimeter wave network analyzer 20a first port 20b second port 21, 22 antenna 23 dielectric lens 24 electromagnetic wave absorbing sheet 25 input electromagnetic wave 26 reflected electromagnetic wave 27 transmission electromagnetic wave
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
電磁波吸収層を構成する電磁波吸収材料は、ミリ波帯域以上の周波数帯域で磁気共鳴する磁性酸化鉄であり、具体的には、下記六方晶フェライト又は下記イプシロン型酸化鉄を使用できる。磁性酸化鉄は、通常、粒子の形態で使用される。
上記六方晶フェライトとしては、Sr及びBaからなる群から選ばれる少なくとも1種を含み、Feサイトの一部がAlで置換されている六方晶フェライトが使用できる。上記六方晶フェライトは、マグネトプランバイト型結晶構造を有し、一般式:AFe12O19で示され、一般式中のAは、Sr及びBaからなる群から選ばれる少なくとも1種を示す。上記六方晶フェライトは、Feサイトの一部を、3価のAl金属元素で置換することにより、電磁波吸収を担う磁気共鳴周波数を変化させることができる。
上記イプシロン型酸化鉄としては、Feサイトの一部が、Al、Ga及びInからなる群から選ばれる少なくとも1種で置換されているイプシロン型酸化鉄が使用できる。上記イプシロン型酸化鉄は、ε相結晶構造を有し、一般式:ε-Fe2O3で示され、Feサイトの一部を、Al、Ga及びInからなる群から選ばれる少なくとも1種で置換することにより、電磁波吸収を担う磁気共鳴周波数を変化させることができる。
電磁波反射抑制層には非磁性粒子を含めてもよい。この非磁性粒子は、主として電磁波反射抑制層の硬度を向上させるために添加され、例えば、シリカ粒子、タルク粒子等が用いられるが、他の非磁性粒子を用いてもよい。
電磁波吸収層及び電磁波反射抑制層を構成するバインダとしては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン・ブタジエンゴム(SBR)、ブチルゴム(IIR)、ニトリルゴム(NBR)、エチレン・プロピレンゴム(EPDM)、クロロプレンゴム(CR)、アクリルゴム(ACM)、クロロスルホン化ポリエチレンゴム(CSR)、ウレタンゴム(PUR)、シリコーンゴム(Q)、フッ素ゴム(FKM)、エチレン・酢酸ビニルゴム(EVA)、エピクロルヒドリンゴム(CO)、及び多硫化ゴム(T)からなる群から選ばれる少なくとも1種のゴム系バインダを含むことが好ましい。ゴム系バインダを使用することにより、電磁波吸収体全体に柔軟性を付与でき、電磁波吸収体を装着させる電子機器の表面形状に追従させることが容易となる。
電磁波吸収層には電磁波吸収特性を向上させるために、カーボンブラック等のカーボン粒子を含有させることが好ましい。また、電磁波吸収層には電磁波吸収材料を偏在なく均一に配置するために、分散剤を添加することが好ましい。
本実施形態の電磁波吸収体の電磁波反射減衰量及び電磁波透過減衰量は、76~81GHzの周波数帯域において、電磁波反射減衰量が-10dB以下で、電磁波透過減衰量が-10dB以下であることが好ましい。上記減衰量が-10dB以下とは、入射した電磁波の10%以下が反射又は透過することを意味する。
本実施形態の電磁波吸収体において、電磁波吸収層の厚みA(mm)と、電磁波反射抑制層の厚みB(mm)との比(A/B)は、0.7~1.4であることが好ましい。この範囲であれば電磁波反射減衰量を-15dB以下にすることができる場合がある。上記減衰量が-15dB以下とは、入射した電磁波の3.16%以下が反射することを意味する。一方、(A/B)が0.7より小さいと、電磁波吸収層の厚みAが小さいため、電磁波透過量を十分に低減することができない。また、(A/B)が1.4より大きいと、電磁波反射抑制層の厚みBが小さいため、電磁波反射量を十分に低減することができない。(A/B)は、0.9~1.4がより好ましい。
JIS C2138-2007の規定に従い測定した電磁波吸収層の1GHz比誘電率実部Cと、電磁波反射抑制層の1GHz比誘電率実部Dとの比(C/D)は、1.5~11.6であることが好ましい。この範囲であれば、空気層の比誘電率と電磁波反射抑制層の比誘電率との差を小さくできるからである。(C/D)は、3.0~11.0がより好ましい。
本実施形態の電磁波吸収体の電磁波反射抑制層及び電磁波吸収層の硬度は、JIS K6253-1997に規定するデュロメータタイプAにおいて40~80であることが好ましく、50~70がより好ましい。これにより、電磁波吸収体の耐久性を向上できる。
本実施形態の電磁波吸収体の電磁波吸収層と電磁波反射抑制層とが接触している場合、電磁波吸収層と電磁波反射抑制層との接着力は、JIS Z0237-2009に規定する180°ピール強度として6N/10mm以上であることが好ましい。
本実施形態の電磁波吸収体全体の切断伸びは、150%以上であることが好ましい。電磁波吸収体全体の切断伸びは、以下のとおり測定できる。即ち、電磁波吸収体全体をダンベル状3号系で打ち抜いた試験片を作製し、23±2℃の温度下において500±50mm/minの引張速度で引っ張る。それにより試験片が切断したときの伸びを記録する。次に、切断時伸びEb(%)を次の式によって算出する。
Eb=(L-L0)/L0
但し、L:切断時長さ、L0:初期長さである。
<電磁波吸収シートの作製>
下記の電磁波吸収層成分をニーダで混練した後、その混練物をカレンダ成形法により分出し、その後、下記の電磁波反射抑制層成分をニーダで混練した後、その混練物をカレンダ成形法により分出し、先に分出した電磁波吸収層上に電磁波反射抑制層を積層した。次に、積層された電磁波吸収層と電磁波反射抑制層とを架橋温度190℃での架橋工程、200℃での2次加硫工程を経て幅1000mmのシートに切断し、ロールに巻き取って実施例1の積層電磁波吸収シートを作製した。作製した積層電磁波吸収シートの電磁波吸収層の厚さは2.0mm、電磁波反射抑制層の厚さは1.4mmであった。
(1)シリコーンゴム(信越化学工業株式会社製、商品名“KE-951KU”、シリカ粒子含有量:10質量%):33.0質量%
(2)マグネトプランバイト型ストロンチウムフェライト(磁気共鳴周波数:76.5GHz):64.5質量%
(3)カーボンブラック(ライオン・スペシャリティ・ケミカルズ株式会社製、商品名“ライオナイトCB”):1.5質量%
(4)加工助剤(花王株式会社製、商品名“ルナックS-50V”):0.3質量%
(5)加工助剤(扶桑化学工業株式会社製、商品名“プラストロジンS”):0.5質量%
(6)架橋剤(信越化学工業株式会社製、商品名“C-8A”):0.2質量%
(1)シリコーンゴム(信越化学工業株式会社製、商品名“KE-951KU”、シリカ粒子含有量:10質量%):99.0質量%
(2)架橋剤(信越化学工業株式会社製、商品名“C-8A”):1.0質量%
電磁波吸収層の厚さを1.7mm、電磁波反射抑制層の厚さを1.7mmとした以外は、実施例1と同様にして実施例2の積層電磁波吸収シートを作製した。
電磁波吸収層の厚さを1.0mm、電磁波反射抑制層の厚さを1.5mmとした以外は、実施例1と同様にして実施例3の積層電磁波吸収シートを作製した。
下記の電磁波吸収層成分を用い、電磁波吸収層の厚さを1.7mm、電磁波反射抑制層の厚さを1.7mmとした以外は、実施例1と同様にして実施例4の積層電磁波吸収シートを作製した。
(1)シリコーンゴム(信越化学工業株式会社製、商品名“KE-951KU”、シリカ粒子含有量:10質量%):52.3質量%
(2)マグネトプランバイト型ストロンチウムフェライト(磁気共鳴周波数:76.5GHz):45.0質量%
(3)カーボンブラック(ライオン・スペシャリティ・ケミカルズ株式会社製、商品名“ライオナイトCB”):1.1質量%
(4)加工助剤(花王株式会社製、商品名“ルナックS-50V”):0.4質量%
(5)加工助剤(扶桑化学工業株式会社製、商品名“プラストロジンS”):0.8質量%
(6)架橋剤(信越化学工業株式会社製、商品名“C-8A”):0.4質量%
下記の電磁波吸収層成分を用い、電磁波吸収層の厚さを1.7mm、電磁波反射抑制層の厚さを1.7mmとした以外は、実施例1と同様にして実施例5の積層電磁波吸収シートを作製した。
(1)シリコーンゴム(信越化学工業株式会社製、商品名“KE-951KU”、シリカ粒子含有量:10質量%):12.9質量%
(2)マグネトプランバイト型ストロンチウムフェライト(磁気共鳴周波数:76.5GHz):85.0質量%
(3)カーボンブラック(ライオン・スペシャリティ・ケミカルズ株式会社製、商品名“ライオナイトCB”):1.7質量%
(4)加工助剤(花王株式会社製、商品名“ルナックS-50V”):0.1質量%
(5)加工助剤(扶桑化学工業株式会社製、商品名“プラストロジンS”):0.2質量%
(6)架橋剤(信越化学工業株式会社製、商品名“C-8A”):0.1質量%
下記の電磁波吸収層成分を用い、電磁波吸収層の厚さを1.7mm、電磁波反射制層の厚さを1.7mmとした以外は、実施例1と同様にして実施例6の積層電磁波吸収シートを作製した。
(1)シリコーンゴム(信越化学工業株式会社製、商品名“KE-951KU”、シリカ粒子含有量:10質量%):14.6質量%
(2)マグネトプランバイト型ストロンチウムフェライト(磁気共鳴周波数:76.5GHz):85.0質量%
(3)カーボンブラック(ライオン・スペシャリティ・ケミカルズ株式会社製、商品名“ライオナイトCB”):0質量%
(4)加工助剤(花王株式会社製、商品名“ルナックS-50V”):0.1質量%
(5)加工助剤(扶桑化学工業株式会社製、商品名“プラストロジンS”):0.2質量%
(6)架橋剤(信越化学工業株式会社製、商品名“C-8A”):0.1質量%
下記の電磁波反射抑制層成分を用い、電磁波吸収層の厚さを1.7mm、電磁波反射抑制層の厚さを1.7mmとした以外は、実施例1と同様にして実施例7の積層電磁波吸収シートを作製した。
(1)シリコーンゴム(信越化学工業株式会社製、商品名“KE-951KU”、シリカ粒子含有量:10質量%):85.0質量%
(2)架橋剤(信越化学工業株式会社製、商品名“C-8A”):1.0質量%
(3)非磁性粒子(タルク:含水珪酸マグネシウム、富士タルク工業株式会社製、商品名“FS205”):14.0質量%
下記の電磁波反射抑制層成分を用い、電磁波吸収層の厚さを1.7mm、電磁波反射抑制層の厚さを2.0mmとした以外は、実施例1と同様にして実施例8の積層電磁波吸収シートを作製した。
(1)ナイロン樹脂(宇部興産株式会社製、商品名“1013B”):100.0質量%
下記の電磁波吸収層成分を用い、厚さ1.7mmの電磁波吸収層を作製し、作製した電磁波吸収層のみをそのまま用い、比較例1の電磁波吸収層のみからなる厚さ1.7mmの電磁波吸収シートを作製した。
(1)シリコーンゴム(信越化学工業株式会社製、商品名“KE-951KU”、シリカ粒子含有量:10質量%):10.7質量%
(2)マグネトプランバイト型ストロンチウムフェライト(磁気共鳴周波数:76.5GHz):87.2質量%
(3)カーボンブラック(ライオン・スペシャリティ・ケミカルズ株式会社製、商品名“ライオナイトCB”):1.7質量%
(4)加工助剤(花王株式会社製、商品名“ルナックS-50V”):0.1質量%
(5)加工助剤(扶桑化学工業株式会社製、商品名“プラストロジンS”):0.2質量%
(6)架橋剤(信越化学工業株式会社製、商品名“C-8A”):0.1質量%
下記の電磁波吸収層成分を用い、電磁波吸収層の厚さを1.7mm、電磁波反射抑制層の厚さを1.7mmとした以外は、実施例1と同様にして比較例2の積層電磁波吸収シートを作製した。
(1)シリコーンゴム(信越化学工業株式会社製、商品名“KE-951KU”、シリカ粒子含有量:10質量%):10.7質量%
(2)マグネトプランバイト型ストロンチウムフェライト(磁気共鳴周波数:76.5GHz):87.2質量%
(3)カーボンブラック(ライオン・スペシャリティ・ケミカルズ株式会社製、商品名“ライオナイトCB”):1.7質量%
(4)加工助剤(花王株式会社製、商品名“ルナックS-50V”):0.1質量%
(5)加工助剤(扶桑化学工業株式会社製、商品名“プラストロジンS”):0.2質量%
(6)架橋剤(信越化学工業株式会社製、商品名“C-8A”):0.1質量%
下記の電磁波吸収層成分を用い、電磁波吸収層の厚さを1.7mm、電磁波反射抑制層の厚さを1.7mmとした以外は、実施例1と同様にして比較例3の積層電磁波吸収シートを作製した。
(1)シリコーンゴム(信越化学工業株式会社製、商品名“KE-951KU”、シリカ粒子含有量:10質量%):55.4質量%
(2)マグネトプランバイト型ストロンチウムフェライト(磁気共鳴周波数:76.5GHz):42.0質量%
(3)カーボンブラック(ライオン・スペシャリティ・ケミカルズ株式会社製、商品名“ライオナイトCB”):1.0質量%
(4)加工助剤(花王株式会社製、商品名“ルナックS-50V”):0.4質量%
(5)加工助剤(扶桑化学工業株式会社製、商品名“プラストロジンS”):0.8質量%
(6)架橋剤(信越化学工業株式会社製、商品名“C-8A”):0.4質量%
下記の電磁波反射抑制層成分を用い、電磁波吸収層の厚さを2.0mm、電磁波反射抑制層の厚さを1.4mmとした以外は、実施例1と同様にして比較例4の積層電磁波吸収シートを作製した。
(1)シリコーンゴム(信越化学工業株式会社製、商品名“KE-951KU”、シリカ粒子含有量:10質量%):80.0質量%
(2)架橋剤(信越化学工業株式会社製、商品名“C-8A”):1.0質量%
(3)非磁性粒子(タルク:含水珪酸マグネシウム、富士タルク工業株式会社製、商品名“FS205”):19.0質量%
下記の電磁波反射抑制層成分を用い、電磁波吸収層の厚さを1.0mm、電磁波反射抑制層の厚さを0.05mmとした以外は、実施例1と同様にして比較例5の積層電磁波吸収シートを作製した。
(1)シリコーンゴム(信越化学工業株式会社製、商品名"KE-951KU"、シリカ粒子含有量:10質量%):49.6質量%
(2)架橋剤(信越化学工業株式会社製、商品名"C-8A"):0.4質量%
(3)非磁性粒子(酸化アルミニウム:昭和電工社製、商品名"AS-10"):50.0質量%
電磁波反射減衰量及び電磁波透過減衰量は、フリースペース法を用いて測定した。具体的には、図2に示すように、アンリツ株式会社製のミリ波ネットワークアナライザー“ME7838A”(製品名)20を用いて、第1のポート20aに接続したアンテナ21から誘電体レンズ23を介して電磁波吸収シート24の電磁波反射抑制層側に周波数76.5GHzの入力波(ミリ波)25を照射し、電磁波反射抑制層で反射する電磁波26を、電磁波吸収シート24の電磁波反射抑制層側に配置されたアンテナ21で計測した。また、電磁波吸収シート24を透過する電磁波27は、電磁波吸収シート24の電磁波吸収層側に配置され第2のポート20bに接続されたアンテナ22で計測した。照射される電磁波25の強度と、反射した電磁波26及び透過した電磁波27の強度とをそれぞれ電力値として把握し、その強度差から電磁波反射減衰量及び電磁波透過減衰量をdB単位で求めた。
電磁波吸収層の1GHz比誘電率実部Cと、電磁波反射抑制層の1GHz比誘電率実部Dは、JIS C2138-2007に規定に従い測定した。また、その結果に基づき、1GHz比誘電率実部Cと1GHz比誘電率実部Dとの比(C/D)を求めた。
電磁波吸収シート全体の切断伸びを前述の方法で測定した。
実施例1の電磁波吸収シートの電磁波吸収層の厚さを1.40mm、1.55mm、1.60mm、1.80mm、2.00mmにそれぞれ変化させ、電磁波反射抑制層の厚さを1.20mm、1.30mm、1.40mm、1.50mm、1.60mm、1.65mm、1.70mm、1.75mm、1.80mm、1.90mm、1.95mm、2.00mmにそれぞれ変化させ、それぞれを組み合わせて電磁波吸収シートを作製し、その電磁波反射減衰量を実施例1と同様にして測定した。その結果、全ての組み合わせの電磁波吸収シートにおいて電磁波反射減衰量を-6dB以下にすることができた。特に、上記電磁波吸収シートの中で、電磁波吸収層の厚みA(mm)と、電磁波反射抑制層の厚みB(mm)との比(A/B)が0.7~1.4のある電磁波吸収シートでは、電磁波反射減衰量を全て-10dB以下にすることができた。
11 電磁波吸収層
12 電磁波反射抑制層
13 電磁波
20 ミリ波ネットワークアナライザー
20a 第1のポート
20b 第2のポート
21、22 アンテナ
23 誘電体レンズ
24 電磁波吸収シート
25 入力電磁波
26 反射電磁波
27 透過電磁波
Claims (14)
- 電磁波反射抑制層と電磁波吸収層とを含む電磁波吸収体であって、
前記電磁波反射抑制層は、第1のバインダを含み、
前記電磁波反射抑制層中での、前記第1のバインダの含有割合が、85質量%以上であり、
前記電磁波吸収層は、第2のバインダと、電磁波吸収材料とを含み、
前記電磁波吸収層中での、前記電磁波吸収材料の含有割合が、45~85質量%であることを特徴とする電磁波吸収体。 - 前記電磁波吸収材料が、ミリ波帯域以上の周波数帯域で磁気共鳴する磁性酸化鉄を含む請求項1に記載の電磁波吸収体。
- 前記電磁波反射抑制層は、非磁性粒子を更に含む請求項1又は2に記載の電磁波吸収体。
- 前記第1のバインダ及び前記第2のバインダが、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン・ブタジエンゴム(SBR)、ブチルゴム(IIR)、ニトリルゴム(NBR)、エチレン・プロピレンゴム(EPDM)、クロロプレンゴム(CR)、アクリルゴム(ACM)、クロロスルホン化ポリエチレンゴム(CSR)、ウレタンゴム(PUR)、シリコーンゴム(Q)、フッ素ゴム(FKM)、エチレン・酢酸ビニルゴム(EVA)、エピクロルヒドリンゴム(CO)、及び多硫化ゴム(T)からなる群から選ばれる少なくとも1種のゴム系バインダを含む請求項1~3のいずれかに記載の電磁波吸収体。
- 前記電磁波反射抑制層と前記電磁波吸収層との間に接着層を更に含む請求項1~4のいずれかに記載の電磁波吸収体。
- 76~81GHzの周波数帯域において、電磁波反射減衰量が-10dB以下で、電磁波透過減衰量が-10dB以下である請求項1~5のいずれかに記載の電磁波吸収体。
- 前記電磁波吸収層の厚みA(mm)と、前記電磁波反射抑制層の厚みB(mm)との比(A/B)が、0.7~1.4である請求項1~6のいずれかに記載の電磁波吸収体。
- 前記電磁波吸収層の厚みが、1~2mmである請求項1~7のいずれかに記載の電磁波吸収体。
- JIS C2138-2007の規定に従い測定した前記電磁波吸収層の1GHz比誘電率実部Cと、前記電磁波反射抑制層の1GHz比誘電率実部Dとの比(C/D)が1.5~11.6である請求項1~8のいずれかに記載の電磁波吸収体。
- 前記電磁波吸収層の1GHz比誘電率実部Cが、5~40である請求項1~9のいずれかに記載の電磁波吸収体。
- 前記電磁波反射抑制層と前記電磁波吸収層との硬度が、JIS K6253-1997に規定するデュロメータタイプAにおいて40~80である請求項1~10のいずれかに記載の電磁波吸収体。
- 前記電磁波吸収層と前記電磁波反射抑制層とが接触し、
前記電磁波吸収層と前記電磁波反射抑制層との接着力が、JIS Z0237-2009に規定する180°ピール強度として6N/10mm以上である請求項1~11のいずれかに記載の電磁波吸収体。 - 電磁波吸収体全体の切断伸びが、150%以上である請求項1~12のいずれかに記載の電磁波吸収体。
- 前記電磁波吸収層側に粘着層を更に含む請求項1~13のいずれかに記載の電磁波吸収体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023549507A JPWO2023048050A1 (ja) | 2021-09-24 | 2022-09-14 | |
CN202280063158.6A CN117957925A (zh) | 2021-09-24 | 2022-09-14 | 电磁波吸收体 |
EP22872804.4A EP4395488A1 (en) | 2021-09-24 | 2022-09-14 | Electromagnetic wave absorber |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-155538 | 2021-09-24 | ||
JP2021155538 | 2021-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023048050A1 true WO2023048050A1 (ja) | 2023-03-30 |
Family
ID=85720665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/034435 WO2023048050A1 (ja) | 2021-09-24 | 2022-09-14 | 電磁波吸収体 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4395488A1 (ja) |
JP (1) | JPWO2023048050A1 (ja) |
CN (1) | CN117957925A (ja) |
WO (1) | WO2023048050A1 (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63155700A (ja) * | 1986-12-19 | 1988-06-28 | 東レ株式会社 | 整合型電波吸収体 |
JP2000031686A (ja) | 1998-07-09 | 2000-01-28 | Daido Steel Co Ltd | 積層型電磁波吸収体およびその製造方法 |
JP2003133783A (ja) | 2001-10-23 | 2003-05-09 | Inoac Corp | 電波吸収体 |
JP2007081119A (ja) | 2005-09-14 | 2007-03-29 | E & C Engineering Kk | 共振型電波吸収体とその製造方法 |
JP2007250823A (ja) | 2006-03-16 | 2007-09-27 | Dowa Holdings Co Ltd | 電波吸収体用磁性粉体および製造法並びに電波吸収体 |
JP2008060484A (ja) | 2006-09-01 | 2008-03-13 | Univ Of Tokyo | 電波吸収性磁性結晶および電波吸収体 |
JP2008277726A (ja) | 2006-09-01 | 2008-11-13 | Univ Of Tokyo | 電波吸収材料用の磁性結晶および電波吸収体 |
JP2009188322A (ja) | 2008-02-08 | 2009-08-20 | New Industry Research Organization | 電波吸収体とその製造方法 |
WO2018124131A1 (ja) * | 2016-12-27 | 2018-07-05 | 関西ペイント株式会社 | ミリ波帯域用電波吸収シート及びミリ波電波吸収方法 |
WO2018168859A1 (ja) * | 2017-03-13 | 2018-09-20 | マクセルホールディングス株式会社 | 電磁波吸収シート |
JP2020145340A (ja) * | 2019-03-07 | 2020-09-10 | 富士フイルム株式会社 | 電波吸収体及びその製造方法 |
-
2022
- 2022-09-14 WO PCT/JP2022/034435 patent/WO2023048050A1/ja active Application Filing
- 2022-09-14 CN CN202280063158.6A patent/CN117957925A/zh active Pending
- 2022-09-14 EP EP22872804.4A patent/EP4395488A1/en active Pending
- 2022-09-14 JP JP2023549507A patent/JPWO2023048050A1/ja active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63155700A (ja) * | 1986-12-19 | 1988-06-28 | 東レ株式会社 | 整合型電波吸収体 |
JP2000031686A (ja) | 1998-07-09 | 2000-01-28 | Daido Steel Co Ltd | 積層型電磁波吸収体およびその製造方法 |
JP2003133783A (ja) | 2001-10-23 | 2003-05-09 | Inoac Corp | 電波吸収体 |
JP2007081119A (ja) | 2005-09-14 | 2007-03-29 | E & C Engineering Kk | 共振型電波吸収体とその製造方法 |
JP5481613B2 (ja) | 2005-09-14 | 2014-04-23 | E&Cエンジニアリング株式会社 | 共振型電波吸収体とその製造方法 |
JP4674380B2 (ja) | 2006-03-16 | 2011-04-20 | Dowaエレクトロニクス株式会社 | 電波吸収体用磁性粉体および製造法並びに電波吸収体 |
JP2007250823A (ja) | 2006-03-16 | 2007-09-27 | Dowa Holdings Co Ltd | 電波吸収体用磁性粉体および製造法並びに電波吸収体 |
JP2008277726A (ja) | 2006-09-01 | 2008-11-13 | Univ Of Tokyo | 電波吸収材料用の磁性結晶および電波吸収体 |
JP4787978B2 (ja) | 2006-09-01 | 2011-10-05 | 国立大学法人 東京大学 | 電波吸収性磁性結晶および電波吸収体 |
JP4859791B2 (ja) | 2006-09-01 | 2012-01-25 | 国立大学法人 東京大学 | 電波吸収材料用の磁性結晶および電波吸収体 |
JP2008060484A (ja) | 2006-09-01 | 2008-03-13 | Univ Of Tokyo | 電波吸収性磁性結晶および電波吸収体 |
JP2009188322A (ja) | 2008-02-08 | 2009-08-20 | New Industry Research Organization | 電波吸収体とその製造方法 |
WO2018124131A1 (ja) * | 2016-12-27 | 2018-07-05 | 関西ペイント株式会社 | ミリ波帯域用電波吸収シート及びミリ波電波吸収方法 |
WO2018168859A1 (ja) * | 2017-03-13 | 2018-09-20 | マクセルホールディングス株式会社 | 電磁波吸収シート |
JP2020145340A (ja) * | 2019-03-07 | 2020-09-10 | 富士フイルム株式会社 | 電波吸収体及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117957925A (zh) | 2024-04-30 |
JPWO2023048050A1 (ja) | 2023-03-30 |
EP4395488A1 (en) | 2024-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7351967B2 (ja) | 電磁波吸収シート | |
US11804659B2 (en) | Electromagnetic wave absorbing composition, and electromagnetic wave absorption body | |
US20200008328A1 (en) | Electromagnetic-wave absorbing sheet | |
EP2136613B1 (en) | Sheet for prevention of electromagnetic wave interference, flat cable for high-frequency signal, flexible print substrate, and method for production of sheet for prevention of electromagnetic wave interference | |
KR100486182B1 (ko) | 복합자성체테이프 | |
WO2023048050A1 (ja) | 電磁波吸収体 | |
US20070052575A1 (en) | Near-field electromagnetic wave absorber | |
JPWO2023048050A5 (ja) | ||
US20210225567A1 (en) | Electromagnetic wave absorber | |
JP2008270793A (ja) | 電磁波吸収体および建材ならびに電磁波吸収方法 | |
KR100389781B1 (ko) | 복합 자화기, 복합 자화기 시트 및 그 제조 방법 | |
JP2000244167A (ja) | 電磁波障害防止材 | |
US11756714B2 (en) | Composite magnetic material and method for manufacturing same | |
JP6405355B2 (ja) | 複合磁性シート | |
JP3825210B2 (ja) | 電磁干渉抑制体およびその製造方法 | |
JP7566482B2 (ja) | 電波吸収部材用成形材料、および、電波吸収体 | |
WO2024018995A1 (ja) | 電磁波吸収体 | |
KR102495696B1 (ko) | 전자기파 차폐 시트 및 이를 포함한 전자 기기 | |
JP2012222076A (ja) | 電磁干渉抑制体 | |
JP2001126904A (ja) | 電磁干渉抑制体及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22872804 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023549507 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18691394 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280063158.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022872804 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022872804 Country of ref document: EP Effective date: 20240326 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |