WO2023047726A1 - アルカリ蓄電池用水素吸蔵合金 - Google Patents
アルカリ蓄電池用水素吸蔵合金 Download PDFInfo
- Publication number
- WO2023047726A1 WO2023047726A1 PCT/JP2022/024799 JP2022024799W WO2023047726A1 WO 2023047726 A1 WO2023047726 A1 WO 2023047726A1 JP 2022024799 W JP2022024799 W JP 2022024799W WO 2023047726 A1 WO2023047726 A1 WO 2023047726A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen
- alloy
- storage alloy
- hydrogen storage
- mpa
- Prior art date
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 212
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 212
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 205
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 189
- 239000000956 alloy Substances 0.000 title claims abstract description 189
- 238000003860 storage Methods 0.000 title claims abstract description 147
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 17
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 12
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 9
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- 229910052718 tin Inorganic materials 0.000 claims abstract description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 238000010521 absorption reaction Methods 0.000 claims description 50
- 238000003795 desorption Methods 0.000 claims description 34
- 239000002245 particle Substances 0.000 claims description 32
- 239000013078 crystal Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 19
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 16
- 230000005415 magnetization Effects 0.000 claims description 12
- 238000002441 X-ray diffraction Methods 0.000 claims description 11
- 239000007864 aqueous solution Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 10
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 8
- 125000004429 atom Chemical group 0.000 claims description 6
- 150000002431 hydrogen Chemical class 0.000 abstract description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 64
- 239000011777 magnesium Substances 0.000 description 39
- 238000011156 evaluation Methods 0.000 description 28
- 229910052761 rare earth metal Inorganic materials 0.000 description 25
- 239000000203 mixture Substances 0.000 description 24
- 238000005259 measurement Methods 0.000 description 13
- 229910052759 nickel Inorganic materials 0.000 description 13
- 230000014759 maintenance of location Effects 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- 230000007423 decrease Effects 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 10
- 229910052746 lanthanum Inorganic materials 0.000 description 10
- 239000011701 zinc Substances 0.000 description 10
- 239000011651 chromium Substances 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 229910052748 manganese Inorganic materials 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 238000005336 cracking Methods 0.000 description 8
- 230000006872 improvement Effects 0.000 description 8
- 229910052684 Cerium Inorganic materials 0.000 description 7
- 238000007600 charging Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 239000007773 negative electrode material Substances 0.000 description 7
- 238000010298 pulverizing process Methods 0.000 description 7
- 229910052772 Samarium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910052727 yttrium Inorganic materials 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 229910052987 metal hydride Inorganic materials 0.000 description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229910019083 Mg-Ni Inorganic materials 0.000 description 4
- 229910019403 Mg—Ni Inorganic materials 0.000 description 4
- 229910052777 Praseodymium Inorganic materials 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010277 constant-current charging Methods 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910000905 alloy phase Inorganic materials 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- AIBQNUOBCRIENU-UHFFFAOYSA-N nickel;dihydrate Chemical compound O.O.[Ni] AIBQNUOBCRIENU-UHFFFAOYSA-N 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- -1 rare earth hydroxides Chemical class 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910004247 CaCu Inorganic materials 0.000 description 1
- 229910020191 CeNi Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910017706 MgZn Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910018661 Ni(OH) Inorganic materials 0.000 description 1
- 229910018095 Ni-MH Inorganic materials 0.000 description 1
- 229910002640 NiOOH Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910018477 Ni—MH Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910021472 group 8 element Inorganic materials 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 102220043159 rs587780996 Human genes 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a hydrogen storage alloy used for alkaline storage batteries.
- nickel-metal hydride secondary batteries have a higher capacity than nickel-cadmium batteries and do not contain harmful substances in terms of the environment.
- Alkaline storage batteries are mainly used for these applications.
- Patent Documents 1 and 2 propose a rare earth-Mg transition metal based hydrogen storage alloy containing Mg.
- Patent Document 3 proposes a method of increasing the operating voltage by using a hydrogen storage alloy with a high hydrogen equilibrium pressure.
- Patent Document 5 reports that an alkaline storage battery is provided which is inexpensive, has good discharge output characteristics, and is excellent in high-temperature durability.
- the hydrogen storage alloy negative electrode has a general formula (La x Ln y ) 1-z Mg z Ni t-u Tu (T: selected from Al, Co, Mn, Zn and Ln is at least one selected from rare earth elements other than La and Y, x>y, 0.09 ⁇ z ⁇ 0.14, 3.65 ⁇ t ⁇ 3.80, 0.05 ⁇ u ⁇ 0.25), including hexagonal (2H) A 5 B 19 -type structures, trigonal (3R) A 5 B 19 -type structures, and A 2 B 7 -type structures, and 2H
- the powder X-ray diffraction intensity peak of the A 5 B 19 type crystal structure of the system by Cu-K ⁇ rays is larger than that of the A 5 B 19 type crystal structure and the A 2 B 7 type structure of the 3R system. are doing.
- the composition has a general formula: A (4-w) B (1+w) C 19 (where A is one or more selected from rare earth elements including Y (yttrium)) element, B is a Mg element, C is one or more elements selected from the group consisting of Ni, Co, Mn and Al, and w is a number in the range of -0.1 to 0.8).
- Patent Document 7 discloses a hydrogen storage alloy composed of an A component composed of a rare earth element represented by Ln and magnesium, and a B component composed of an element containing at least nickel and aluminum,
- the alloy main phase of the alloy has an A 5 B 19 type structure and the general formula is Ln l-x Mg x Ni y-a-b Al a M b (wherein M is selected from Co, Mn, Zn at least one element represented by 0.1 ⁇ x ⁇ 0.2, 3.6 ⁇ y ⁇ 3.9, 0.1 ⁇ a ⁇ 0.2, 0 ⁇ b ⁇ 0.1),
- the rare earth element (Ln) consists of at most two elements including at least lanthanum (La), and the hydrogen storage equilibrium pressure (Pa) when the hydrogen storage amount H/M (atomic ratio) at 40° C. is 0.5 is 0.03 to 0.17 MPa.
- Ln 1-x Mg x Ni y A z (wherein Ln is at least one element selected from rare elements including Y and Ca, Zr and Ti) and A is at least one element selected from Co, Mn, V, Cr, Nb, Al, Ga, Zn, Sn, Cu, Si, P and B, and subscripts x, y and z are , 0.05 ⁇ x ⁇ 0.25, 0 ⁇ z ⁇ 1.5, 2.8 ⁇ y + z ⁇ 4.0), the above Ln contains 20 mol of Sm % or more is disclosed.
- ⁇ x + y + z ⁇ 3.8 is disclosed.
- Patent Document 10 describes a hydrogen storage alloy for alkaline storage batteries that is capable of having high output characteristics far exceeding the conventional range by examining the composition ratio of the A 2 B 7 structure and the A 5 B 19 structure. and reported to provide a manufacturing method thereof and an alkaline storage battery.
- a specific hydrogen-absorbing alloy for alkaline storage batteries contains, except for La, rare earth elements including Y, an element R selected from Group 4, and an element M consisting of at least one of Co, Mn, and Zn.
- the general formula is La ⁇ R 1- ⁇ - ⁇ Mg ⁇ Ni ⁇ - ⁇ - ⁇ Al ⁇ M ⁇ ( ⁇ , ⁇ , ⁇ , ⁇ are 0 ⁇ 0.5, 0.1 ⁇ ⁇ 0.2, 3.7 ⁇ ⁇ ⁇ 3.9, 0.1 ⁇ ⁇ ⁇ 0.3, 0 ⁇ ⁇ ⁇ 0.2), and the A 5 B 19 type structure is 40% in the crystal structure The above is disclosed.
- Patent Document 11 provides a hydrogen storage alloy for alkaline storage batteries excellent in high output characteristics and output stability, and a method for producing the same.
- a hydrogen storage alloy for alkaline storage batteries AB n at least one selected element, T: at least one element selected from Co, Mn, Zn, Al, z>0), and the stoichiometric ratio n is 3.5 to 3.8 , the ratio of La to Re (x/y) is 3.5 or less, has at least an A 5 B 19 type structure, and has an average C-axis length ⁇ of the crystal lattice of 30 to 41 ⁇ . ing.
- Patent Literature 12 aims to provide a hydrogen-absorbing alloy or the like capable of improving the cycle characteristics of a nickel-metal hydride storage battery. Specifically, it is a hydrogen storage alloy represented by the general formula La v Sm w M1 x M2 y M3 z , wherein M1 is an element of Pr and/or Nd, and M2 is at least Mg among Mg and Ca.
- M3 is Ni or part of Ni selected from the group consisting of Group 6A elements, Group 7A elements, Group 8 elements (excluding Ni and Pd), Group 1B elements, Group 2B elements, and Group 3B elements is substituted with one or two or more elements, and v, w, x, y and z are the following formulas (1), (2) and (3) 3.2 ⁇ z/(v+w+x+y) ⁇ 3.7 Formula (1) 0.60 ⁇ v/(v+w+x) ⁇ 0.85 Formula (2) 0.01 ⁇ w/(v+w+x) ⁇ 0.06 Formula (3) A hydrogen storage alloy is disclosed that satisfies the following:
- the composition formula is La x Re y Mg 1-x-y Ni n-m-v Al m T v (where Re is at least one selected from rare earth elements including Y (excluding La)).
- seed element, T is at least one element selected from Co, Mn, Zn, Fe, Pb, Cu, Sn, Si, B, 0.17 ⁇ x ⁇ 0.64, 3.5 ⁇ n ⁇ 3 .8, 0.10 ⁇ m + v ⁇ 0.22, v ⁇ 0)
- the main phase has an A 5 B 19 type structure
- the concentration ratio of aluminum (Al) to nickel (Ni) in the surface layer is X
- the ratio X/Y between Al/Ni) (%) and the concentration ratio Y (Al/Ni) (%) of aluminum (Al) to nickel (Ni) in the bulk layer is 0.36 or more and 0.84 or less (0.84 or less). 36 ⁇ X/Y ⁇ 0.84) is disclosed.
- the composition formula is La x Re y Mg 1-x-y Ni n-m-v Al m T v (where Re is at least one element selected from rare earth elements including Y (excluding La)).
- Species element, T is at least one element selected from Co, Mn, Zn, 0.17 ⁇ x ⁇ 0.64, 3.5 ⁇ n ⁇ 3.8, 0.06 ⁇ m ⁇ 0.22 , v ⁇ 0)
- the crystal structure of the main phase is the A 5 B 19 type structure
- the ratio X/Y of the concentration ratio Y (Al/Ni) (%) of aluminum (Al) to nickel (Ni) in the layer is 0.36 or more and 0.85 or less (0.36 ⁇ X/Y ⁇ 0.85 ) is disclosed as a hydrogen storage alloy for alkaline storage batteries.
- the negative electrode of a nickel-hydrogen secondary battery has a general formula: (RE 1-x T x ) 1-y Mg y Ni z-a Al a (wherein RE is Y, Sc and rare earth at least one element selected from elements, T is at least one element selected from Zr, V and Ca, subscripts x, y, z, and a are 0 ⁇ x, 0.05 ⁇ y ⁇ 0.35, respectively , 2.8 ⁇ z ⁇ 3.9, 0.10 ⁇ a ⁇ 0.25), and a crystal structure in which AB 2 type subunits and AB 5 type subunits are laminated and a nickel-hydrogen secondary battery containing a hydrogen storage alloy in which a portion of the Ni is replaced with Cr.
- Non-Patent Document 1 has a chapter on the effect of Ce on an RE--Mg--Ni hydrogen storage alloy (RE: rare earth element).
- RE rare earth element
- La0.5Nd0.5 0.85Mg0.15Ni3.3Al0.2 _ _
- La0.45Nd0.45Ce0.1 0.85Mg0.15Ni3.3Al0.2 _ _ _
- La0.4Nd0.4Ce0.2 0.85Mg0.15Ni3.3Al0.2 _ _ _
- La0.3Nd0.3Ce0.4 0.85Mg0.15Ni3.3Al0.2 _ _ alloy
- Non-Patent Document 2 reports the characteristics of a hydrogen storage alloy composed of La 0.78 Mg 0.22 Ni 3.67 Al 0.10 .
- Non-Patent Document 3 reports a hydrogen storage alloy composed of La 0.64 Sm 0.07 Nd 0.08 Mg 0.21 Ni 3.57 Al 0.10 heat-treated at 995° C. for 24 hours. .
- Non-Patent Document 4 reports the characteristics of an alloy composition consisting of La 0.63 Nd 0.16 Mg 0.21 Ni 3.53 Al 0.11 .
- JP-A-11-323469 WO 01/48841 JP-A-2005-32573 JP 2016-69692 A JP 2014-229593 A WO2007/018292 JP 2009-176712 A JP 2009-74164 A JP 2009-108379 A Japanese Patent Application Laid-Open No. 2008-300108 JP 2011-023337 A Japanese Unexamined Patent Application Publication No. 2011-21262 JP 2011-82129 A JP 2011-216467 A JP 2014-26844 A
- Patent Documents 1 and 2 have not been put into practical use for various purposes because the alloys have not been optimized.
- Patent Document 5 shows the structure of an appropriate crystal phase by X-ray diffraction intensity, but when the hydrogen equilibrium pressure (hydrogen storage amount (H / M) at 40 ° C. is 0.5) dissociation pressure) is too high, which may cause problems when used as a battery.
- Patent Document 6 In the case of the technology disclosed in Patent Document 6, it aims to achieve both high capacity and long cycle life characteristics, but the evaluation is made up to several tens of cycles, and the original life evaluation has not been achieved.
- Patent Document 8 is an alloy containing a relatively large amount of Sm, and although it uses elements that are cheaper than Pr and Nd, the material cost is still high, and good rate characteristics are obtained. However, it was not possible to provide a sufficient hydrogen storage alloy.
- Patent Document 9 is an alloy containing relatively large amounts of La and Sm, and although it mainly uses elements that are cheaper than Pr and Nd, it is still inexpensive and has excellent durability. A hydrogen storage alloy cannot be provided. Also, it was necessary to improve the rate characteristics. In particular, Zr is essential in the examples, and only a B/A ratio of 3.6 is disclosed. In addition, although the hydrogen equilibrium pressure, which has decreased due to the increase in La content, is supposed to be raised to a level usable in batteries, it is often insufficient to set an inexpensive La-rich composition.
- Patent Document 10 Although the technology disclosed in Patent Document 10 showed an improvement in output at low temperatures, it did not have sufficient intrinsic high capacity and cycle life characteristics.
- the alloy excludes La among the rare earth elements, and the alloy containing a large amount of Nd is expensive.
- Patent Document 11 aims at high output characteristics and output stability, but has not yet reached the essential high capacity and cycle life characteristics.
- the amount of La contained is relatively small, the alloy is relatively expensive, and an inexpensive alloy that can be put into practical use has been desired.
- Patent Document 12 aims to improve the cycle characteristics and focuses on the absorption performance of oxygen gas generated in the battery when the battery is in use. However, further high capacity and improved cycle characteristics were desired. . Moreover, the high cost of materials is also a big problem.
- Patent Document 13 controls the Al concentration ratio of the surface to the inside of the alloy by surface treatment to improve the battery output characteristics and output stability, but the basic cycle life characteristics Further improvement was required, and an improvement in rate characteristics was also required. Another problem is that the material cost is relatively high.
- Patent Document 14 The technique disclosed in Patent Document 14 is intended to stabilize the battery output by subjecting the surface to a predetermined range of the Al/Ni ratio compared to the inside of the alloy by surface treatment. It was necessary to improve the cycle characteristics. Another problem is that the material cost is relatively high.
- Patent Document 15 was aimed at suppressing self-discharge and improving cycle life characteristics, but it did not lead to improvement in rate characteristics, and further increase in capacity was necessary, and improvement in this point is desired. rice field. Moreover, there also existed the subject that material cost was high.
- Non-Patent Document 1 concludes that the Ce-containing rare earth-Mg-Ni alloy has a small amount of hydrogen absorption and desorption, and is easily pulverized by repeated hydrogen absorption and desorption, so that deterioration in batteries is large. has become clear.
- Non-Patent Document 2 Although a high discharge capacity was obtained, the capacity after 200 cycles decreased by about 20%, and it was necessary to improve the characteristics for practical use.
- Non-Patent Document 3 a high discharge capacity of 370 mAh / g is obtained, but a certain amount of expensive Nd is included, and the discharge capacity after 200 cycles is reduced by about 20%. was not sufficient, and further improvement in characteristics was required for practical use.
- Non-Patent Document 4 a high discharge capacity was obtained, but the discharge capacity after 200 cycles decreased by about 20%, and further improvement in characteristics was required for practical use.
- the present invention has been made in view of these problems of the prior art, and the rare earth-Mg-Ni alloy is inexpensive and has important characteristics as a battery, such as discharge capacity, cycle life and rate. It is an object of the present invention to provide a practical hydrogen storage alloy for an alkaline storage battery with well-balanced characteristics.
- a hydrogen storage alloy for the negative electrode of an alkaline storage battery a composition composed mainly of crystal phases of A 5 B 19 phase and A 2 B 7 phase and containing inexpensive Ce is used.
- the inventors have found that the use of an alloy having such a compound enables a well-balanced combination of discharge capacity characteristics, charge/discharge cycle life characteristics, and rate characteristics, leading to the completion of the present invention.
- the hydrogen storage alloy of the present invention is mainly composed of two crystal phases, A 5 B 19 phase and A 2 B 7 phase, specifically Pr 5 Co 19 type, Ce 5 Co 19 type, It is characterized by having a Ce 2 Ni 7 type and a Gd 2 Co 7 type and having a component composition represented by the following general formula (A).
- M, T and subscripts a, b, c, d, e and f in the above formula (A) are M: at least one selected from Al, Zn, Sn and Si, T: at least one selected from Cr, Mo and V; 0 ⁇ a ⁇ 0.10, 0 ⁇ b ⁇ 0.15, 0.08 ⁇ c ⁇ 0.24, 0.03 ⁇ e ⁇ 0.14, 0 ⁇ f ⁇ 0.05, 3.55 ⁇ d+e+f ⁇ 3.80 satisfy the conditions of
- the hydrogen storage alloy for alkaline storage batteries according to the present invention is (a) in the general formula (A), the conditions of 0.08 ⁇ c ⁇ 0.18 and 3.70 ⁇ d+e+f ⁇ 3.80 are satisfied; (B) In the general formula (A), M is Al, and 0 ⁇ a ⁇ 0.08, 0 ⁇ b ⁇ 0.08, 0.14 ⁇ c ⁇ 0.24, and 0.03 satisfying the condition ⁇ e ⁇ 0.10; (c) Hydrogen pressure (P0.5) is 0.02 MPa or more and 0.1 MPa or less when the hydrogen absorption amount (H/M) at 80° C. is 0.5 in the hydrogen absorption/desorption characteristics.
- H/M hydrogen storage capacity
- H hydrogen storage capacity
- M metal atoms
- B hydrogen storage alloy with a particle size adjusted to a range of 150 ⁇ m or more and 1 mm or less has a volume average particle size MV of 75 ⁇ m or more after repeated hydrogen absorption and desorption, and the hydrogen pressure is increased to 1 MPa at 80 ° C.
- H is the number of hydrogen atoms
- M is the number of metal atoms
- the ratio of the sum ( ⁇ ) of the diffraction intensity of the (107) plane based on the 2H structure of the A 2 B 7 phase and the (1010) plane based on the 3R structure of the A 2 B 7 phase is ⁇ / ⁇ ⁇ 1, (h) X-ray diffraction measurement using Cu-K ⁇ rays as an X-ray source, the (101) plane of the AB 5 phase for the diffraction intensity ( ⁇ ) of the strongest diffraction peak in the range of the diffraction angle 2 ⁇ of 40 to 45 °
- the ratio of the diffraction intensity ( ⁇ ) of is ⁇ / ⁇ ⁇ 0.08, etc. is considered to be a more preferable means of solving the problem.
- the hydrogen storage alloy for alkaline storage batteries of the present invention is excellent in discharge capacity, cycle life and rate characteristics, and nickel-metal hydride secondary batteries using it have high power density and excellent charge-discharge cycle life. Therefore, it has excellent discharge capacity characteristics and can be used for various purposes such as consumer use, industrial use, and vehicle use.
- FIG. 1 is a partially cutaway perspective view illustrating an alkaline storage battery using the hydrogen storage alloy of the present invention
- FIG. An example of the hydrogen absorption/desorption characteristics (PCT characteristics) of the hydrogen storage alloy according to the present invention is shown in terms of the relationship between the hydrogen absorption amount H/M and the hydrogen pressure.
- P0.3. 4 is a graph showing an example of X-ray diffraction measurement results of the hydrogen storage alloy according to the present invention.
- FIG. 1 is a partially cutaway perspective view showing an example of a battery.
- the alkaline storage battery 10 includes a nickel positive electrode 1 whose main positive electrode active material is nickel hydroxide (Ni(OH) 2 ), a hydrogen storage alloy negative electrode 2 whose negative electrode active material is the hydrogen storage alloy (MH) according to the present invention,
- the storage battery includes an electrode group including a separator 3 and an electrolyte layer (not shown) filled with an alkaline electrolyte in a housing 4 .
- This battery 10 corresponds to a so-called nickel-metal hydride battery (Ni-MH battery), and the following reactions occur.
- the hydrogen storage alloy used for the negative electrode of the alkaline storage battery according to the first embodiment will be described below.
- the hydrogen storage alloy of the present embodiment is mainly composed of crystal phases of A 5 B 19 phase and A 2 B 7 phase, specifically Pr 5 Co 19 type, Ce 5 Co 19 type, Ce 2 Ni 7 type and Gd 2 Co 7 type, and have a component composition represented by the following general formula (A).
- M, T and subscripts a, b, c, d, e and f in the above formula (A) are M: at least one selected from Al, Zn, Sn and Si, T: at least one selected from Cr, Mo and V; 0 ⁇ a ⁇ 0.10, 0 ⁇ b ⁇ 0.15, 0.08 ⁇ c ⁇ 0.24, 0.03 ⁇ e ⁇ 0.14, 0 ⁇ f ⁇ 0.05, 3.55 ⁇ d+e+f ⁇ 3.80 satisfy the conditions of
- the alloy represented by the general formula (A) When the alloy represented by the general formula (A) is used as the negative electrode of an alkaline storage battery, it imparts high discharge capacity, cycle life and rate characteristics to the battery. contribute to the achievement of
- the hydrogen storage alloy of this embodiment contains a rare earth element as an element of the A component of the alloy mainly composed of the A 5 B 19 phase and the A 2 B 7 phase.
- a rare earth element two elements, La and Ce, are essential as basic components that provide hydrogen storage capacity.
- La and Ce have different atomic radii, the hydrogen equilibrium pressure can be controlled by this component ratio, and the equilibrium pressure required for the battery can be arbitrarily set.
- the atomic ratio a of Ce to the rare earth elements must be in the range of more than 0 and 0.10 or less.
- the Ce atomic ratio a value is preferably 0.005 or more and preferably 0.08 or less. A more preferable upper limit is 0.07.
- Sm can optionally be contained as a rare earth element other than La and Ce.
- Sm is an element that occupies a rare earth site as an element of the A component of an alloy mainly composed of A 5 B 19 phase and A 2 B 7 phase, and brings about hydrogen storage capacity like these elements. is an ingredient.
- Sm is less effective than Ce in raising the equilibrium pressure, but the durability is improved by substituting La with Ce.
- the upper limit of the b value which represents the atomic ratio of Sm in the rare earth element, is less than 0.15. Preferably, b ⁇ 0.12.
- a composition with a large amount of La has a high discharge capacity, and when combined with other elements, the discharge capacity characteristics are further improved.
- Pr and Nd as rare earth elements are not actively used, they may be contained at an unavoidable impurity level.
- Mg Mgc (where 0.08 ⁇ c ⁇ 0.24)
- Mg is an essential element in the present embodiment that constitutes the elements of the A component of the alloy mainly composed of the crystal phases of the A 5 B 19 phase and the A 2 B 7 phase, and improves the discharge capacity and cycle life characteristics. Contribute to improvement.
- the c value which represents the atomic ratio of Mg in the A component, is in the range of 0.08 or more and 0.24 or less. If the c value is less than 0.08, the hydrogen releasing ability is lowered, resulting in a decrease in the discharge capacity. On the other hand, if it exceeds 0.24, cracking especially accompanying hydrogen absorption/desorption is accelerated, and the cycle life characteristics, that is, the durability is lowered.
- the c value ranges from 0.09 to 0.235.
- Nid Ni is the main element of the B component of the alloy mainly composed of crystal phases of A 5 B 19 phase and A 2 B 7 phase. The atomic ratio d value will be described later.
- M M e (0.03 ⁇ e ⁇ 0.14)
- M is at least one selected from Al, Zn, Sn, and Si, and is an element contained as a B component element of an alloy mainly composed of A 5 B 19 phase and A 2 B 7 phase. It is effective for adjusting the hydrogen equilibrium pressure related to the battery voltage and can improve the corrosion resistance. It is effective in improving the durability of fine hydrogen storage alloy particles, that is, in cycle life characteristics. Al is particularly preferred.
- the e value which represents the atomic ratio of M to the A component, should be in the range of 0.03 or more and 0.14 or less. If the e-value is less than 0.03, corrosion resistance is not sufficient, resulting in insufficient cycle life. On the other hand, when the e-value exceeds 0.14, the discharge capacity decreases.
- a preferred e value is 0.04 or more and 0.12 or less. A more preferable upper limit is 0.095.
- T f (however, 0 ⁇ f ⁇ 0.05) T is at least one selected from Cr, Mo, and V, and, like the M element, is an element contained as an element of the B component of the alloy consisting of the A 5 B 19 phase and the A 2 B 7 phase.
- the inclusion of T is effective in adjusting the hydrogen equilibrium pressure related to the battery voltage, and the synergistic effect with the M element enhances corrosion resistance and durability. In particular, it is effective in improving the durability of fine grain hydrogen storage alloy, that is, in cycle life characteristics.
- the f value which represents the atomic ratio of T to the A component, should be 0.05 or less.
- f-value exceeds 0.05, excessive T element induces cracking due to absorption and desorption of hydrogen, resulting in deterioration of durability and insufficient cycle life.
- a preferable f value is in the range of 0.002 or more and 0.04 or less.
- the T elements Cr is particularly preferable from the viewpoint of durability.
- Ratio of A component and B component 3.55 ⁇ d + e + f ⁇ 3.80
- the stoichiometric ratio of the B component (Ni, M and T) to the A component of the alloy consisting of the A 5 B 19 phase and the A 2 B 7 phase, that is, the value of d + e + f represented by the general formula is 3.55 or more. It is preferably in the range of 3.80 or less. Below 3.55, the rate characteristics gradually deteriorate. On the other hand, when it exceeds 3.80, the AB 5 phase increases considerably, so the discharge capacity gradually decreases and cracking accompanying hydrogen absorption and release is promoted, resulting in a decrease in durability, that is, cycle life. end up It is preferably 3.56 or more and 3.79 or less.
- the hydrogen storage alloy of this embodiment has a hydrogen pressure when the hydrogen storage amount (H/M: atomic number ratio of hydrogen atoms (H) and metal atoms (M)) at the time of hydrogen release at 80° C. is 0.5.
- P0.5 hereinafter referred to as hydrogen equilibrium pressure
- H/M atomic number ratio of hydrogen atoms (H) and metal atoms (M)
- H/M atomic number ratio of hydrogen atoms (H) and metal atoms (M)
- M metal atoms
- the value of B1 is 0.92 or more and 2.98 or less.
- the discharge capacity is largely determined by the alloy composition.
- the durability depends on the degree of pulverization of the alloy due to hydrogen absorption and desorption, or the elution of the alloy components into the alkaline aqueous solution. This depends on the proportion of the alloy phase generated based on the alloy composition and heat treatment, and the properties of the alloy phase.
- a measurement holder of a PCT (Pressure-Composition-Temperature) evaluation device is filled with 7 g of a hydrogen-absorbing alloy and evacuated at 80 ° C. for 1 hour (0.01 MPa or less).
- Hydrogen absorption/desorption measurement (PCT characteristic evaluation) is performed in the pressure range of 0.01 to 3 MPa. After that, evacuate (0.01 MPa) for 1 hour, introduce hydrogen gas up to 3 MPa and hold for 1 hour to make the alloy absorb hydrogen almost completely, and evacuate (0.01 MPa) for 1 hour. Release hydrogen. Repeat this three times.
- hydrogen absorption/desorption measurement (PCT characteristic evaluation) is performed in the hydrogen pressure range of 0.01 to 3 MPa in the same manner as in the first cycle.
- the difference between the 1st and 5th hydrogen absorption/desorption and the 2nd to 4th hydrogen absorption/desorption is the processing time. short. After performing the hydrogen absorption/desorption cycle a total of five times in this way, the hydrogen absorption alloy powder is taken out and the particle size distribution is measured.
- the range of the volume average particle size MV after repeated hydrogen absorption/desorption is preferably 75 ⁇ m or more, more preferably 80 ⁇ m or more. Within this range, pulverization of the hydrogen-absorbing alloy does not proceed during charging and discharging when actually incorporated in a battery, and it is understood that durability is excellent in combination with good corrosion resistance in an alkaline solution. .
- the volume average particle diameter MV may be measured by a laser diffraction particle size distribution measuring device, and as a measuring device, for example MT3300EXII type manufactured by Microtrac Bell can be used.
- the index H/M of the hydrogen storage amount at 1 MPa obtained from PCT measurement at 80 ° C. is preferably 0.92 or more. More preferably, it is 0.93 or more. Within this range, it can be said that a hydrogen storage alloy having sufficient discharge capacity and high durability is obtained.
- the degree of elution of alloy components when a hydrogen storage alloy is immersed in an alkaline aqueous solution affects corrosion resistance, and as a result, an alloy with good durability is realized. Therefore, as a result of repeated evaluations under various conditions, the magnetization after immersion in an alkaline aqueous solution was measured for an alloy powder having a volume average particle size MV of about 35 ⁇ m, which was linked to corrosion resistance. Specifically, the obtained sample was immersed in a 7.15 mol/L potassium hydroxide aqueous solution at 80°C for 8 hours, washed and dried, and then measured at a temperature of 25°C and in a magnetic field using a vibrating sample magnetometer (VSM). The saturation magnetization was measured at 10 kOe, and it was found that an alloy with excellent durability was obtained when it was 60 emu/m 2 or less. It is preferably 55 emu/m 2 or less.
- VSM vibrating sample magnetometer
- the particle size distribution of the sample measured by VSM is measured, and the specific surface area ( m 2 /g), and the saturation magnetization per surface area (emu/m 2 ) is used as an evaluation criterion. This is to make the value of saturation magnetization less susceptible to the particle size distribution.
- the hydrogen storage alloy according to the present embodiment described above is an alloy whose main phase has an A 5 B 19 type crystal structure or an A 2 B 7 type crystal structure.
- the A 2 B 7 type crystal structure can be any of the hexagonal (2H) Ce 2 Ni 7 phase and the rhombohedral (3R) Gd 2 Co 7 phase coexisting.
- the former it is preferable that the former be included in a larger amount.
- the former is preferably contained in a larger amount, and A 2 B It is preferable that the combined amount of the 7- type crystal structure and the A 5 B 19 -type crystal structure is at least 70 mass % or more.
- the AB 3 type crystal structure (CeNi 3 phase which is a hexagonal system or PuNi 3 phase which is a rhombohedral system) may be contained as a subphase up to 5 mass%, but it is preferable that the amount is small, and most preferable. is not contained.
- the AB 2 type crystal structure (MgZn 2 phase) and the AB 5 type crystal structure (CaCu 5 phase) are not included in alkaline storage batteries from the viewpoint of discharge capacity and cycle life characteristics, but the characteristics may be contained to an extent that does not lower the , for example, about 5 mass% or less.
- the hydrogen storage alloy of the present embodiment has a (109) plane based on the 2H structure of the A 5 B 19 phase and a (1013) plane based on the 3R structure in X-ray diffraction measurement using Cu—K ⁇ rays as an X-ray source.
- the ratio of the sum ( ⁇ ) of the diffraction intensity of the (107) plane based on the 2H structure of the A 2 B 7 phase and the (1010) plane based on the 3R structure of the A 2 B 7 phase to the sum ( ⁇ ) of the diffraction intensity of the A 2 B 7 phase is ⁇ / ⁇ ⁇ 1 is preferably If the value of the ⁇ / ⁇ ratio exceeds 1, the above hydrogen equilibrium pressure becomes too high, which may make it difficult to use as a battery.
- the diffraction lines will be specifically described with the XRD graph of FIG.
- the peak indicated by ⁇ in the diffraction line is the diffraction line of the (1013) plane based on the 3R structure of the A 5 B 19 phase
- the peak indicated by ⁇ is the diffraction line of the (109) plane based on the 2H structure of the A 5 B 19 phase
- the peak indicated by ⁇ is the diffraction line of the (107) plane based on the 2H structure of the A 2 B 7 phase.
- the diffraction line of the (1010) plane based on the 3R structure of the A 2 B 7 phase does not appear, but it is usually seen at the diffraction angle between ⁇ and ⁇ .
- the hydrogen storage alloy of the present embodiment has an AB 5 phase with respect to the diffraction intensity ( ⁇ ) of the strongest diffraction peak in the range of diffraction angles 40 to 45 °. It is preferable that the ratio of the diffraction intensity ( ⁇ ) of the (101) plane of is ⁇ / ⁇ 0.08. If the .zeta./.epsilon. ratio exceeds 0.08, the cycle life characteristics may deteriorate. More preferably, it is 0.05 or less.
- the XRD graph in FIG. 3 shows the diffraction peak height ratio of the diffraction peak indicated by ⁇ to the strongest diffraction peak indicated by *.
- the X-ray diffraction measurement conditions are as follows. A powder pulverized to a particle size of less than 75 ⁇ m is set in a sample holder, the target is Cu, the tube voltage is 40 kV, the tube current is 40 mA, the scan speed is 0.5°/min, the scan step is 0.02°, and the divergence slit (DS) is 1. °, scattering slit (SS) 1°, no receiving slit (RS) and using only the k ⁇ filter.
- the hydrogen storage alloy for alkaline storage batteries preferably satisfies 0.08 ⁇ c ⁇ 0.18 and 3.70 ⁇ d+e+f ⁇ 3.80 in the general formula (A).
- the hydrogen storage alloy for alkaline storage batteries preferably satisfies 0.08 ⁇ c ⁇ 0.18 and 3.70 ⁇ d+e+f ⁇ 3.80 in the general formula (A).
- Mg Mgc (0.08 ⁇ c ⁇ 0.18)
- the upper limit of Mg is preferably limited to 0.18 in this embodiment. As a result, cycle life characteristics, ie, durability, are improved. More preferably, the c value is 0.09 or more and 0.17 or less.
- Ratio of A component and B component 3.70 ⁇ d + e + f ⁇ 3.80
- the stoichiometric ratio which is the molar ratio of the B components (Ni, M and T) to the A component, that is, the value of d + e + f represented by the general formula, is preferably limited to a lower limit of 3.70. .
- rate characteristics are improved.
- the amount of Ni on the alloy surface may have an effect. It is more preferably more than 3.70 and less than 3.80, still more preferably 3.705 or more and 3.79 or less.
- the ratio of Ce and Sm in the rare earth elements is reduced, the ratio of La is increased, the ratio of Mg is increased, and Al is used as the M element, and the ratio of Al is reduced.
- M is Al, 0 ⁇ a ⁇ 0.08, 0 ⁇ b ⁇ 0.08, 0.14 ⁇ c ⁇ 0.24, and 0.03 ⁇ e ⁇
- a hydrogen storage alloy for alkaline storage batteries that satisfies 0.10.
- Rare earth element La 1-ab Ce a Sm b (where 0 ⁇ a ⁇ 0.08, 0 ⁇ b ⁇ 0.08)
- cycle life characteristics are improved.
- Ce Like Ce, it improves cycle life characteristics.
- a composition with a large amount of La has a high discharge capacity, and when combined with other elements, the discharge capacity characteristics are further improved.
- Mg Mgc (0.14 ⁇ c ⁇ 0.24)
- the lower limit of Mg is preferably limited to 0.14 in this embodiment. Accordingly, the discharge capacity characteristics are improved. More preferably, the c value is 0.145 or more and 0.235 or less.
- M Me (where M is Al and 0.03 ⁇ e ⁇ 0.10)
- the atomic ratio of Al is preferably limited to less than 0.10. Accordingly, the discharge capacity characteristics are improved.
- a more preferable e value is 0.04 or more and 0.095 or less.
- the hydrogen storage alloy of the present embodiment includes rare earth elements (Ce, Sm, La, etc.), magnesium (Mg), nickel (Ni), aluminum (Al), zinc (Zn), silicon (Si), tin (Sn), After weighing metal elements such as chromium (Cr), molybdenum (Mo), and vanadium (V) so as to have a predetermined atomic ratio, they are put into an alumina crucible placed in a high-frequency induction furnace and placed in an inert gas atmosphere such as argon gas. After being melted below, it is cast into a mold to produce an ingot of the hydrogen storage alloy. Alternatively, a strip casting method may be used to directly prepare a flake-shaped sample with a thickness of about 200 to 500 ⁇ m.
- the hydrogen storage alloy of the present embodiment contains Mg with a low melting point and a high vapor pressure as a main component. It may be difficult to obtain alloys with the same chemical composition. Therefore, when manufacturing the hydrogen storage alloy of the present embodiment by the melting method, first, the alloy components other than Mg are melted, and then Mg raw materials such as metal Mg and Mg alloy are added to the melt. is preferred. In addition, this dissolving step is preferably performed in an inert gas atmosphere such as argon or helium. Specifically, the inert gas containing 80 vol% or more of argon gas is adjusted to 0.05 to 0.2 MPa. It is preferable to carry out under atmosphere.
- an inert gas atmosphere such as argon or helium. Specifically, the inert gas containing 80 vol% or more of argon gas is adjusted to 0.05 to 0.2 MPa. It is preferable to carry out under atmosphere.
- the alloy melted under the above conditions is then preferably cast in a water-cooled mold and solidified to form an ingot of the hydrogen storage alloy.
- the melting point (T m ) of each obtained ingot of the hydrogen storage alloy is measured using a DSC (differential scanning calorimeter).
- the hydrogen-absorbing alloy of the present embodiment is obtained by exposing the ingot after casting to an atmosphere of an inert gas such as argon or helium, nitrogen gas, or a mixed gas atmosphere thereof, to a melting point of 700° C. or higher. This is because it is preferable to perform heat treatment at a temperature of (T m ) or lower for 3 to 50 hours.
- a hydrogen storage alloy mainly composed of A 5 B 19 phase and A 2 B 7 phase can be produced. It can be confirmed by X-ray diffraction measurement using Cu—K ⁇ rays that the obtained hydrogen storage alloy is mainly A 5 B 19 phase and A 2 B 7 phase.
- the heat treatment temperature is preferably in the range of 750° C. to (T m ⁇ 30° C.). More preferably, it is in the range of 770°C to (T m -50°C).
- the holding time of the heat treatment is 2 hours or less, the ratio of the main phase cannot be stably increased to 50 vol% or more, and the homogenization of the chemical components of the main phase is insufficient, so hydrogen absorption and Expansion and contraction during release become non-uniform, increasing the amount of distortion and defects that occur, which may adversely affect cycle life characteristics.
- the holding time of the heat treatment is preferably 3 hours or longer, and more preferably 4 hours or longer from the viewpoint of homogenizing the main phase and improving the crystallinity.
- the holding time exceeds 50 hours, the amount of evaporation of Mg increases and the chemical composition changes, and as a result, there is a possibility that a large amount of AB 5 type subphase will be generated.
- the heat-treated alloy is pulverized by a dry method or a wet method.
- powder having an average particle size of 20 to 100 ⁇ m can be obtained by pulverizing using, for example, a hammer mill or ACM pulverizer.
- pulverizing by a wet method it is pulverized using a bead mill, an attritor, or the like.
- wet pulverization is preferable because it can be produced safely.
- the pulverized alloy particles may then be surface-treated by alkali treatment using an aqueous alkali solution such as KOH or NaOH, or acid treatment using an aqueous solution of nitric acid, sulfuric acid, or hydrochloric acid.
- a layer made of Ni is formed on at least a part of the surface of the alloy particles, and it is possible to suppress the progress of alloy corrosion and improve durability. Therefore, the cycle life characteristics of the battery and the discharge characteristics in a wide temperature range can be improved.
- acid treatment it is preferable to use hydrochloric acid because it is possible to precipitate Ni with less damage to the alloy surface.
- surface treatment can be performed at the same time.
- Example 1 No. 1 having the composition shown in Tables 1-1 to 1-3 below.
- An evaluation cell using a hydrogen storage alloy No. 1 to 57 as a negative electrode active material was produced in the manner described below, and an experiment was conducted to evaluate its characteristics.
- Alloys 1 to 37 are alloy examples (invention examples) that meet the conditions of the present invention.
- 38 to 57 are alloy examples (comparative examples) that do not satisfy the conditions of the present invention.
- No. of the comparative example. Alloy No. 38 was used as a reference alloy for evaluating cell properties.
- the measurement conditions were as follows: powder pulverized to a particle size of less than 75 ⁇ m was set in a sample holder, the target was Cu, tube voltage 40 kV, tube current 40 mA, scan speed 0.5°/min, scan step 0.02°, divergence slit (DS) 1°, scattering slit (SS) 1°, no receiving slit (RS) and using only a k ⁇ filter.
- the invention example No. It was confirmed that all of 1 to 37 are within the range of diffraction intensity ratio suitable for the present invention.
- Tables 2-1 to 2-3 The results are shown in Tables 2-1 to 2-3.
- Saturation magnetization measurement after immersion in an alkaline aqueous solution is performed according to the following procedure. First, 50 g of a 7.15 mol/L potassium hydroxide aqueous solution at 80° C. and 20 g of a hydrogen storage alloy adjusted to have a volume average diameter (MV) of 35 ⁇ m are placed in a glass beaker. Next, while stirring with a magnetic stirrer, the liquid temperature is maintained at 80° C. and immersed for 8 hours. After the passage of time, water washing is repeated until the pH of the washing water becomes 12 or less, followed by vacuum drying at 70° C. for 6 hours.
- MV volume average diameter
- PCT Characterization is performed in the following procedure.
- the hydrogen-absorbing alloy mass is pulverized, and the particle size is adjusted to 150 ⁇ m or more and 1 mm or less with a sieve in the same manner as described above.
- 3 MPa of hydrogen gas is pressurized and held for 3.5 hours to cause the hydrogen-absorbing alloy to absorb hydrogen.
- the alloy is evacuated for 1 hour to release hydrogen for activation treatment.
- hydrogen absorption/desorption measurement (PCT characteristic evaluation) is performed at a hydrogen pressure range of 0.01 to 1 MPa.
- ⁇ Positive electrode> Nickel hydroxide (Ni(OH) 2 ), metallic cobalt (Co) as a conductive agent, and two types of binders (styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC)) are mixed at a mass ratio of Ni (OH) 2 :Co:SBR:CMC 95.5:2.0:2.0:0.5, and kneaded to form a paste composition.
- This paste composition was applied to porous nickel, dried at 80° C., and roll-pressed with a load of 15 kN to obtain a positive electrode.
- the electrolytic solution used was an alkaline aqueous solution obtained by mixing pure water with potassium hydroxide (KOH) to a concentration of 6 mol/L.
- KOH potassium hydroxide
- the discharge capacity of the electrode of the working electrode was confirmed by the following procedure. After performing constant current charging at a current value of 80 mA/g per active material of the working electrode for 10 hours, constant current discharging was performed at a current value of 40 mA/g per active material of the working electrode. The discharge termination condition was that the potential of the working electrode was -0.5V. The above charging and discharging were repeated 10 times, and the maximum discharge capacity was taken as the discharge capacity of the working electrode. It was confirmed that the discharge capacity of the working electrode was saturated and stabilized after 10 charge/discharge cycles. The measured discharge capacities are the alloy No. shown in Table 2-2. Using the discharge capacity of No.
- Discharge capacity (discharge capacity of evaluation alloy)/(discharge capacity of alloy No. 38) (C)
- Capacity retention rate (Discharge capacity at 500th cycle)/(Discharge capacity at 1st cycle) (D)
- the evaluation of cycle life characteristics was performed on the alloy No. shown in Table 1-2.
- the capacity retention rate of No. 38 after 500 cycles was defined as a reference capacity retention rate, and the ratio to it was calculated by the following formula (E).
- the cycle life characteristics were greater than those of No. 38 and evaluated as excellent.
- Cycle life characteristics (capacity retention rate of alloy No. 38 after 500 cycles)/(capacity retention rate of alloy No. 38 after 500 cycles) (E)
- the alloy cost is a relative evaluation of the raw material cost for manufacturing the alloy with the composition shown in Tables 1-1 to 1-3 by melting it from a metal with a purity of 99%, and Tables 2-1 to 2-3. It was shown to. No. 20% or more higher than the alloy No. 38 (standard cost) is marked with x, and those with the same cost to less than 20% higher than the alloy of No. 38 are marked with ⁇ . A less expensive alloy than the No. 38 alloy was marked with ⁇ .
- invention example No. Alloys 1 to 37 are alloy Nos. Compared to No. 38, the discharge capacity, the cycle life characteristics, the evaluation values of the rate characteristics, and the hydrogen equilibrium pressure are improved in a well-balanced manner, and it is clear that the cost is also advantageous.
- No. of the comparative example It can be seen that the alloys 38 to 57 are below the standard in any of the evaluation values of the properties, or the cost is ⁇ or ⁇ . If the equilibrium pressure is higher than the value within the range of the present invention, the ability to absorb the gas generated during charging will decrease, causing the battery to swell in a closed space, causing the safety valve to operate in some cases. As a result, the function as a battery cannot be maintained.
- the hydrogen storage alloy of the present invention is superior to the conventionally used AB 5 type hydrogen storage alloy in terms of discharge capacity, cycle life and rate characteristics, it is a negative electrode material for alkaline storage batteries for hybrid vehicles and idling stop vehicles. Not only is it suitable as a battery, but it can also be suitably used for alkaline storage batteries for electric vehicles.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
3.2≦z/(v+w+x+y)≦3.7 式(1)
0.60≦v/(v+w+x)≦0.85 式(2)
0.01≦w/(v+w+x)≦0.06 式(3)
を満たすことを特徴とする水素吸蔵合金が開示されている。
(La0.5Nd0.5)0.85Mg0.15Ni3.3Al0.2
(La0.45Nd0.45Ce0.1)0.85Mg0.15Ni3.3Al0.2
(La0.4Nd0.4Ce0.2)0.85Mg0.15Ni3.3Al0.2
(La0.3Nd0.3Ce0.4)0.85Mg0.15Ni3.3Al0.2
の合金が開示され、評価した結果が報告されている。
(La1-a-bCeaSmb)1-cMgcNidMeTf ・・・(A)
ここで、上記(A)式中のM,Tおよび添字a、b、c、d、eおよびfは、
M:Al、Zn、Sn、Siから選ばれる少なくとも1種、
T:Cr、Mo、Vから選ばれる少なくとも1種、
0<a≦0.10、
0≦b<0.15、
0.08≦c≦0.24、
0.03≦e≦0.14、
0≦f≦0.05、
3.55≦d+e+f≦3.80
の条件を満たす。
(ア)前記一般式(A)において、さらに、0.08≦c≦0.18、および、3.70≦d+e+f≦3.80の条件を満たすこと、
(イ)前記一般式(A)において、さらに、MはAlであり、0<a≦0.08、0≦b≦0.08、0.14≦c≦0.24、および、0.03≦e<0.10の条件を満たすこと、
(ウ)水素吸蔵放出特性において、80℃での水素放出時の水素吸蔵量(H/M)が0.5のときの水素圧(P0.5)が0.02MPa以上、0.1MPa以下である、ここで、水素吸蔵量(H/M)は水素原子(H)と金属原子(M)の原子数比とすること、
(エ)水素吸蔵放出特性において、水素吸蔵後の放出時のプラトー傾きが、下記(B)式を満足する範囲にあること、
(オ)150μm以上1mm以下の範囲に粒度調整した水素吸蔵合金に対して、繰り返し水素吸蔵・放出後の体積平均粒径MVが75μm以上で、かつ、80℃で水素圧を1MPaまで加圧した時の水素吸蔵量(H/M;Hは水素原子数、Mは金属原子数)が0.92以上であること、ここで、水素吸蔵は80℃で水素圧を3MPaまで加圧して1時間保持し、水素放出は、真空排気し、80℃で0.01MPaまで減圧して1時間保持し、これを5回繰り返した後に体積平均粒径MVを測定すること、
(カ)7.15mol/Lの水酸化カリウム水溶液に80℃で8時間浸漬した後、25℃で10kOeの磁場を印加して測定した飽和磁化が60emu/m2以下であること、
(キ)Cu-Kα線をX線源とするX線回折測定において、A5B19相の2H構造に基づく(109)面と3R構造に基づく(1013)面の回折強度の和(α)に対する、A2B7相の2H構造に基づく(107)面と3R構造に基づく(1010)面の回折強度の和(β)の比が、β/α≦1であること、
(ク)Cu-Kα線をX線源とするX線回折測定において、回折角2θが40~45°の範囲にある最も強い回折ピークの回折強度(ε)に対するAB5相の(101)面の回折強度(ζ)の比が、ζ/ε≦0.08であること、
などがより好ましい課題解決手段になりうるものと考えられる。
0.90≦log[(P0.7/P0.3)/0.4]≦3.00 ・・・(B)
ここで、P0.7は、水素吸蔵量(H/M)=0.7の時の水素圧[MPa]、
P0.3は、水素吸蔵量(H/M)=0.3の時の水素圧[MPa]
を表す。
負極: MH+OH-=M+H2O+e-
[水素吸蔵合金]
以下、第一実施形態にかかる、アルカリ蓄電池の負極に用いる水素吸蔵合金について説明する。
本実施形態の水素吸蔵合金は、主にA5B19相およびA2B7相の結晶相から構成されており、具体的にはPr5Co19型、Ce5Co19型、Ce2Ni7型およびGd2Co7型であって、かつ、下記一般式(A)で表される成分組成を有することが必要である。
(La1-a-bCeaSmb)1-cMgcNidMeTf ・・・(A)
ここで、上記(A)式中のM,Tおよび添字a、b、c、d、eおよびfは、
M:Al、Zn、Sn、Siから選ばれる少なくとも1種、
T:Cr、Mo、Vから選ばれる少なくとも1種、
0<a≦0.10、
0≦b<0.15、
0.08≦c≦0.24、
0.03≦e≦0.14、
0≦f≦0.05、
3.55≦d+e+f≦3.80
の条件を満たす。
希土類元素:La1-a-bCeaSmb(ただし、0<a≦0.10、0≦b<0.15)
本実施形態の水素吸蔵合金は、主にA5B19相およびA2B7相からなる合金のA成分の元素として、希土類元素を含有する。希土類元素としては、水素吸蔵能力をもたらす基本成分として、LaおよびCeの2つの元素を必須とする。また、LaとCeは原子半径が異なるため、この成分比率によって、水素平衡圧を制御することができ、電池に必要な平衡圧を任意に設定できる。希土類元素に占めるCeの原子比率a値で、0超え0.10以下の範囲であることが必要である。a値が0.10を超えると水素吸蔵放出にともなう割れが促進され、サイクル寿命の低下を招く。一方、a値が0、つまり、Ceを含まない場合には、十分な水素平衡圧の制御が困難となり、電池特性に悪影響を与える。この範囲であれば、電池に適した水素平衡圧に設定しやすい。Ceの原子比率a値は、好ましくは、0.005以上であり、好ましくは、0.08以下である。さらに好ましい上限値は0.07である。
Mgは、主にA5B19相およびA2B7相の結晶相からからなる合金のA成分の元素を構成する本実施形態では必須の元素であり、放電容量の向上およびサイクル寿命特性の向上に寄与する。A成分中のMgの原子比率を表すc値は、0.08以上0.24以下の範囲とする。c値が0.08未満では水素放出能力が低下するため、放電容量が低下してしまう。一方、0.24を超えると特に水素吸蔵放出に伴う割れが促進し、サイクル寿命特性すなわち耐久性が低下する。好ましくは、c値は0.09以上0.235以下の範囲である。
Niは主にA5B19相およびA2B7相の結晶相からなる合金のB成分の主たる元素である。その原子比率d値は後述する。
MはAl、Zn、Sn、Siから選ばれる少なくとも1種であり、主にA5B19相およびA2B7相からなる合金のB成分の元素として含有する元素である。電池電圧に関係する水素平衡圧の調整に有効であるとともに、耐食性が向上できる。微粒の水素吸蔵合金の耐久性向上、すなわちサイクル寿命特性に効果がある。特にAlが好ましい。上記効果を確実に発現させるためには、A成分に対するMの原子比率を表すe値は、0.03以上0.14以下の範囲とする。e値が、0.03未満では耐食性が十分ではなくなり、その結果サイクル寿命が十分でなくなる。一方、e値が、0.14を超えると放電容量が低下してしまう。好ましいe値は、0.04以上であり、0.12以下である。さらに好ましい上限値は0.095である。
TはCr、Mo、Vから選ばれる少なくとも1種であり、M元素と同様にA5B19相およびA2B7相からなる合金のB成分の元素として含有する元素である。Tの含有は、電池電圧に関係する水素平衡圧の調整に有効であるとともに、M元素との相乗効果で耐食性が高まり、耐久性が向上する。特に、微粒の水素吸蔵合金の耐久性向上、すなわちサイクル寿命特性に効果がある。上記効果を確実に発現させるためには、A成分に対するTの原子比率を表すf値は、0.05以下とする。f値が0.05を超えると過剰なT元素によって水素の吸蔵放出に伴う割れが誘起され、結果として耐久性が低下して、サイクル寿命が十分ではなくなる。好ましいf値は、0.002以上0.04以下の範囲である。T元素のうち、特にCrが耐久性の観点から好ましい。
A5B19相およびA2B7相からなる合金のA成分に対するB成分(Ni、MおよびT)の化学量論比、すなわち、一般式で表されるd+e+fの値は、3.55以上3.80以下の範囲であることが好ましい。3.55未満ではレート特性が徐々に低下する。一方、3.80超えではAB5相が相当量増えるため、徐々に放電容量の低下が起きるとともに水素吸蔵放出に伴う割れが促進されるようになり、結果として耐久性、すなわちサイクル寿命が低下してしまう。好ましくは3.56以上3.79以下である。
なお、体積平均粒径MVはレーザー回折粒度分布測定装置で測定すればよく、測定装置としては、例えばマイクロトラック・ベル社製MT3300EXII型などを用いることができる。
第2実施形態は、上記第1実施形態において、Mgの比率を下げ、A成分に対するB成分の比率を上げることで、特性が向上することを見出して完成したものである。すなわち、上記一般式(A)において、0.08≦c≦0.18、および、3.70≦d+e+f≦3.80を満たす、アルカリ蓄電池用水素吸蔵合金とすることが好ましい。以下、第1実施形態と異なる部分について説明する。
Mgは、本実施形態では、上限を0.18に制限することが好ましい。もって、サイクル寿命特性すなわち耐久性を向上させる。より好ましくは、c値は0.09以上であり、0.17以下である。
本実施形態ではA成分に対するB成分(Ni、MおよびT)のモル比である化学量論比、すなわち、一般式で表されるd+e+fの値は、下限を3.70に制限することが好ましい。もって、レート特性を向上させる。合金表面のNi量が影響する可能性がある。より好ましくは3.70を超えて3.80未満であり、さらに好ましくは3.705以上であり、3.79以下である。
第3実施形態は、希土類元素中のCeやSmの比率を下げ、Laの比率を上げ、Mgの比率を上げるとともに、M元素にAlを用い、Alの比率を下げることで、A成分に対するB成分の比率が広い範囲で特性が向上することを見出し完成した。すなわち、上記一般式(A)において、MはAlであり、0<a≦0.08、0≦b≦0.08、0.14≦c≦0.24、および、0.03≦e<0.10を満たすアルカリ蓄電池用水素吸蔵合金とすることが好ましい。以下、第1実施形態と異なる部分について説明する。
本実施形態では、Ceの原子比率a値の上限を0.08に制限することが好ましい。もって、サイクル寿命特性を向上させる。また、CeとのバランスでSmの原子比率b値の上限を0.08に制限することが好ましい。Ceと同様にサイクル寿命特性を向上させる。このように、Laが多い組成では放電容量が高くなり、他の元素と組み合わせたときに、さらに放電容量特性が向上する。
Mgは、本実施形態では、下限を0.14に制限することが好ましい。もって、放電容量特性を向上させる。より好ましくは、c値は0.145以上であり、0.235以下である。
本実施形態では、MにAlを用いることが好ましい。また、Alの原子比率は、0.10未満に制限することが好ましい。もって、放電容量特性を向上させる。より好ましいe値は、0.04以上であり、0.095以下である。
次に、上記各実施形態に共通する水素吸蔵合金の製造方法について説明する。
本実施形態の水素吸蔵合金は、希土類元素(Ce、Sm、Laなど)やマグネシウム(Mg)、ニッケル(Ni)、アルミニウム(Al)、亜鉛(Zn)、シリコン(Si)、スズ(Sn)、クロム(Cr)、モリブデン(Mo)、バナジウム(V)等の金属元素を所定の原子比になるように秤量後、高周波誘導炉に設置したアルミナるつぼに投入してアルゴンガス等の不活性ガス雰囲気下で溶解した後、鋳型に鋳込んで水素吸蔵合金のインゴットを作製する。あるいは、ストリップキャスト法を用いて、200~500μm厚程度のフレーク状試料を直接作製してもよい。
<実施例1>
下記の表1-1~1-3に示した成分組成を有するNo.1~57の水素吸蔵合金を負極活物質とする評価用セルを、以下に説明する要領で作製し、その特性を評価する実験を行った。なお、表1に示したNo.1~37の合金は、本発明の条件に適合する合金例(発明例)である。また、表1に示したNo.38~57は、本発明の条件を満たさない合金例(比較例)である。また、比較例のNo.38の合金は、セルの特性を評価するための基準合金に用いた。
表1-1~1-3に示したNo.1~57の合金の原料(Sm、La、Ce、Mg、Ni、Al、Cr、MoおよびVで、それぞれ純度99%以上)を、高周波誘導加熱炉を用いてアルゴン雰囲気下(Ar:100vol%、0.1MPa)で溶解し、鋳造してインゴットとした。次いで、これらの合金インゴットを、アルゴン雰囲気下(Ar:90vol%、0.1MPa)で、各合金の融点Tm-50℃の温度(940~1130℃)で10時間保持する熱処理を施した後、粗粉砕し、ハンマーミルで、質量基準のD50で25μmになるまで微粉砕して、セル評価用の試料(負極活物質)とした。なお、No.1~57の合金は、熱処理後、粉砕した粉末をX線回折測定した。測定にはリガク(株)製UltimaIVを用いた。測定条件は、粒径75μmアンダーに粉砕した粉末を試料ホルダーにセットし、ターゲットをCuとして、管電圧40kV、管電流40mA、スキャンスピード0.5°/分、スキャンステップ0.02°、発散スリット(DS)1°、散乱スリット(SS)1°、受光スリット(RS)なしでkβフィルタのみ使用で測定した。その結果、発明例であるNo.1~37はいずれも本発明で好適な回折強度比の範囲内であることを確認した。表2-1~2-3に結果を示す。
水素吸蔵・放出繰り返しによる割れ性評価は以下のとおりである。
水素吸蔵合金塊を粉砕して150μm目開きのふるいのふるい上に残り、かつ1mm目開きのふるいのふるい下となるように粒度調整した。PCT(Pressure-Composition-Temperature)評価装置の測定ホルダーにその水素吸蔵合金7gを充填し、80℃で1時間真空排気(0.01MPa以下)を行った後、温度をキープして水素圧0.01~3MPaの範囲で水素吸蔵・放出測定(PCT特性評価)を行う。この後、1時間真空排気(0.01MPa以下)を行い、3MPaまで水素ガスを導入して1時間保持して、合金に水素をほぼフルに吸蔵させ、1時間真空排気(0.01MPa以下)して水素を放出させる。これを3回繰り返す。最後に1サイクル目と同様に水素圧0.01~3MPaの範囲で水素吸蔵・放出測定(PCT特性評価)を行う。この水素吸蔵・放出サイクルを5回行った後、水素吸蔵合金粉を取り出し、粒度分布測定を行った。その繰り返し水素吸蔵・放出後の体積平均粒径MVの値を表1-1~1-3に示す。
アルカリ水溶液浸漬後の飽和磁化測定は下記の通りの手順で行う。
まず、80℃の7.15mol/L水酸化カリウム水溶液50gと体積平均径(MV)35μmに調整した水素吸蔵合金20gをガラス製ビーカーに入れる。次に、マグネチックスターラーで攪拌しながら、液温80℃を保持し8時間浸漬する。時間経過後、水洗浄を行い、洗浄水がpH12以下になるまで繰り返し、70℃で6時間真空乾燥させる。得られた試料から約200mgをはかりとり、測定容器内に固定し、試料振動型磁力計(VSM)を用いて、25℃で磁場10kOeを加えて、飽和磁化(emu/g)を測定する。一方、上記アルカリ水溶液に浸漬した試料について粒度分布を測定、その結果に基づき算出される比表面積CS値(m2/ml)と水素吸蔵合金の密度(8.31g/ml)の値から比表面積(m2/g)を算出し、表面積当たりの飽和磁化(emu/m2)を評価基準として、表1-1~1-3に磁化量として示す。この処理は、飽和磁化を粒度分布に依存させないためである。
PCT特性評価は以下の手順で実施する。
水素吸蔵合金塊を粉砕して、上記と同様150μm以上1mm以下にふるいにて粒度調整して、PCT測定装置に充填し、80℃の下で1時間真空排気(0.01MPa以下)を行う。次に、温度を維持して3MPaの水素ガスを加圧して3.5時間保持し、水素吸蔵合金に水素を吸蔵させ、その後1時間真空排気して水素を放出させて活性化処理とする。その後、水素圧0.01~1MPaの範囲で水素吸蔵・放出測定(PCT特性評価)を行う。表1-1~1-3に80℃での水素放出時の水素吸蔵量(H/M)が0.5のときの水素圧(P0.5)を示し、1MPa加圧時の水素吸蔵量をH/Mとして示し、また、プラトー傾きとして、B1=log[(P0.7/P0.3)/0.4]の計算値を示す。
<負極>
上記で調整した負極活物質と、導電助剤のNi粉末と、2種類のバインダー(スチレン・ブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC))とを、重量比で、負極活物質:Ni粉末:SBR:CMC=95.5:3.0:1.0:0.5となるように混合し、混練してペースト状の組成物とした。このペースト状の組成物を、パンチングメタルに塗布し、80℃で乾燥した後、15kNの荷重でロールプレスして、負極を得た。
水酸化ニッケル(Ni(OH)2)と、導電助剤の金属コバルト(Co)と、2種類のバインダー(スチレン・ブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC))とを、質量比で、Ni(OH)2:Co:SBR:CMC=95.5:2.0:2.0:0.5となるように混合し、混練してペースト状の組成物とした。このペースト状の組成物を、多孔質ニッケルに塗布し、80℃で乾燥した後、15kNの荷重でロールプレスして、正極を得た。
電解液は、純水に、水酸化カリウム(KOH)を濃度が6mol/Lとなるよう混合したアルカリ水溶液を用いた。
アクリル製の筐体内に、上記の正極を対極、上記の負極を作用極として配設した後、上記電解液を注入して、Hg/HgO電極を参照極としたセルを作製し、評価試験に供した。この際、作用極と対極の容量比は、作用極:対極=1:3となるように調整した。
上記のようにして得た合金No.1~57にかかる評価用セルの評価試験は、以下の要領で行った。この際の評価温度はすべて40℃とした。
下記の手順で作用極の電極の放電容量の確認を行った。作用極の活物質あたり80mA/gの電流値で定電流充電を10時間行った後、作用極の活物質あたり40mA/gの電流値で定電流放電を行った。放電の終了条件は、作用極電位が-0.5Vとした。上記の充放電を10回繰り返し、放電容量の最大値を、その作用極の電極の放電容量とした。なお、10回の充放電により作用極の放電容量が飽和し、安定したことを確認している。
測定した放電容量は、表2-2に示した合金No.38の放電容量を基準容量とし、それに対する比率を下記(C)式で算出し、この比率が1.15より大きいものを、合金No.38より放電容量が大きく、優れていると評価した。
放電容量=(評価合金の放電容量)/(合金No.38の放電容量)・・・(C)
上記(1)電極の放電容量で作用極の電極の放電容量が確認されたセルを用いて、下記の手順で作用極のサイクル寿命特性を求めた。
上記(1)電極の放電容量で確認された作用極の電極の放電容量を、1時間で充電または放電を完了させる際に必要な電流値を1Cとしたとき、作用極の充電率が20-80%の範囲において、C/2の電流値で定電流充電および定電流放電を行うことを1サイクルとし、これを500サイクル繰り返して行い、500サイクル後の放電容量を測定し、下記(D)式で容量維持率を求めた。
容量維持率=(500サイクル目の放電容量)/(1サイクル目の放電容量)・・・(D)
サイクル寿命特性の評価は、表1-2に示した合金No.38の500サイクル後の容量維持率を基準容量維持率とし、それに対する比率を下記(E)式で算出し、この比率が1.15より大きいものを、合金No.38よりサイクル寿命特性が大きく、優れていると評価した。
サイクル寿命特性=(測定合金の500サイクル後の容量維持率)/(合金No.38の500サイクル後の容量維持率)・・・(E)
上記(1)電極の放電容量で作用極の電極の放電容量が確認されたセルを用いて、下記の手順で作用極のレート特性を求めた。
上記(1)電極の放電容量で作用極の電極の放電容量1時間で充電または放電を完了させる際に必要な電流値を1Cとしたとき、最初に、C/5で定電流充電を7.5時間行った後、C/5で定電流放電を作用極電位が-0.5Vになるまで行い、この時の放電容量を「C/5放電容量」とし、次いで、C/5で定電流充電を7.5時間行った後、5Cで定電流放電を作用極電位が-0.5Vになるまで行い、この時の放電容量を「5C放電容量」とし、下記(F)式で5C放電時の容量維持率を求めた。
5C放電時の容量維持率=(5C放電容量)/(C/5放電容量)・・・(F)
また、レート特性の評価結果は、表1-2に示した合金No.38の5C放電時の容量維持率を基準容量維持率とし、それに対する比率を下記(G)式で算出し、この比率が1.15より大きいものを、合金No.38よりレート特性が大きく、優れていると評価した。
レート特性=(測定合金の5C放電時の容量維持率)/(合金No.38の5C放電時の容量維持率)・・・(G)
合金コストは、表1-1~1-3に記載の成分組成の合金を純度99%の金属から溶解して製造する原料コストを相対評価し、表2-1~2-3に示した。No.38の合金(基準コスト)と比較して20%以上高額のものを×とし、同額から20%未満高額のものを△、No.38の合金より廉価のものを〇とした。
2:負極
3:セパレータ
4:筐体(電池ケース)
10:アルカリ蓄電池
Claims (9)
- アルカリ蓄電池に用いる水素吸蔵合金であって、
該水素吸蔵合金は主にA5B19相およびA2B7相の2つの結晶相から構成されており、かつ、下記一般式(A)で表されることを特徴とするアルカリ蓄電池用水素吸蔵合金。
(La1-a-bCeaSmb)1-cMgcNidMeTf ・・・(A)
ここで、上記(A)式中のM、Tおよび添字a、b、c、d、eおよびfは、
M:Al、Zn、Sn、Siから選ばれる少なくとも1種、
T:Cr、Mo、Vから選ばれる少なくとも1種、
0<a≦0.10、
0≦b<0.15、
0.08≦c≦0.24、
0.03≦e≦0.14、
0≦f≦0.05、
3.55≦d+e+f≦3.80
の条件を満たす。 - 前記一般式(A)において、さらに、0.08≦c≦0.18、および、3.70≦d+e+f≦3.80の条件を満たすことを特徴とする請求項1に記載のアルカリ蓄電池用水素吸蔵合金。
- 前記一般式(A)において、さらに、MはAlであり、0<a≦0.08、0≦b≦0.08、0.14≦c≦0.24、および、0.03≦e<0.10の条件を満たすことを特徴とする請求項1に記載のアルカリ蓄電池用水素吸蔵合金。
- 前記水素吸蔵合金は水素吸蔵放出特性において、80℃での水素放出時の水素吸蔵量(H/M)が0.5のときの水素圧(P0.5)が0.02MPa以上、0.1MPa以下である、ここで、水素吸蔵量(H/M)は水素原子(H)と金属原子(M)の原子数比とすることを特徴とする請求項1から3のいずれか1項に記載のアルカリ蓄電池用水素吸蔵合金。
- 前記水素吸蔵合金は水素吸蔵放出特性において、水素吸蔵後の放出時のプラトー傾きが、下記(B)式を満足する範囲にあることを特徴とする請求項1から3のいずれか1項に記載のアルカリ蓄電池用水素吸蔵合金。
0.90≦log[(P0.7/P0.3)/0.4]≦3.00 ・・・(B)
ここで、P0.7は、水素吸蔵量(H/M)=0.7の時の水素圧[MPa]、
P0.3は、水素吸蔵量(H/M)=0.3の時の水素圧[MPa]
を表す。 - 前記水素吸蔵合金は、150μm以上1mm以下の範囲に粒度調整した水素吸蔵合金に対して、繰り返し水素吸蔵・放出後の体積平均粒径MVが75μm以上で、かつ、80℃で水素圧を1MPaまで加圧した時の水素吸蔵量(H/M;Hは水素原子数、Mは金属原子数)が0.92以上である、
ここで、水素吸蔵は80℃で水素圧を3MPaまで加圧して1時間保持し、水素放出は真空排気し、80℃で0.01MPa以下まで減圧して1時間保持し、これを5回繰り返した後に体積平均粒径MVを測定する、
ことを特徴とする請求項1から3のいずれか1項に記載のアルカリ蓄電池用水素吸蔵合金。 - 前記水素吸蔵合金は、7.15mol/Lの水酸化カリウム水溶液に80℃で8時間浸漬した後、25℃で10kOeの磁場を印加して測定した飽和磁化が60emu/m2以下であることを特徴とする請求項1から3のいずれか1項に記載のアルカリ蓄電池用水素吸蔵合金。
- 前記水素吸蔵合金は、Cu-Kα線をX線源とするX線回折測定において、A5B19相の2H構造に基づく(109)面と3R構造に基づく(1013)面の回折強度の和(α)に対する、A2B7相の2H構造に基づく(107)面と3R構造に基づく(1010)面の回折強度の和(β)の比が、β/α≦1であることを特徴とする請求項1から3のいずれか1項に記載のアルカリ蓄電池用水素吸蔵合金。
- 前記水素吸蔵合金は、Cu-Kα線をX線源とするX線回折測定において、回折角2θが40~45°の範囲にある最も強い回折ピークの回折強度(ε)に対するAB5相の(101)面の回折強度(ζ)の比が、ζ/ε≦0.08であることを特徴とする請求項1から3のいずれか1項に記載のアルカリ蓄電池用水素吸蔵合金。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023549371A JP7451000B2 (ja) | 2021-09-24 | 2022-06-22 | アルカリ蓄電池用水素吸蔵合金 |
CN202280061961.6A CN117940595A (zh) | 2021-09-24 | 2022-06-22 | 碱蓄电池用氢吸留合金 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-155922 | 2021-09-24 | ||
JP2021155922 | 2021-09-24 | ||
JP2022-004557 | 2022-01-14 | ||
JP2022004557 | 2022-01-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023047726A1 true WO2023047726A1 (ja) | 2023-03-30 |
Family
ID=85720435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/024799 WO2023047726A1 (ja) | 2021-09-24 | 2022-06-22 | アルカリ蓄電池用水素吸蔵合金 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7451000B2 (ja) |
WO (1) | WO2023047726A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008018494A1 (en) * | 2006-08-09 | 2008-02-14 | Gs Yuasa Corporation | Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy |
JP2014229593A (ja) * | 2013-05-27 | 2014-12-08 | 三洋電機株式会社 | アルカリ蓄電池 |
JP2016069692A (ja) * | 2014-09-30 | 2016-05-09 | 株式会社Gsユアサ | 水素吸蔵合金、電極及びニッケル水素蓄電池 |
JP2017519901A (ja) * | 2014-05-14 | 2017-07-20 | ビーエーエスエフ コーポレーション | 水素吸蔵多相合金 |
JP2022052729A (ja) * | 2020-09-23 | 2022-04-04 | 日本重化学工業株式会社 | アルカリ蓄電池用水素吸蔵合金 |
-
2022
- 2022-06-22 JP JP2023549371A patent/JP7451000B2/ja active Active
- 2022-06-22 WO PCT/JP2022/024799 patent/WO2023047726A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008018494A1 (en) * | 2006-08-09 | 2008-02-14 | Gs Yuasa Corporation | Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy |
JP2014229593A (ja) * | 2013-05-27 | 2014-12-08 | 三洋電機株式会社 | アルカリ蓄電池 |
JP2017519901A (ja) * | 2014-05-14 | 2017-07-20 | ビーエーエスエフ コーポレーション | 水素吸蔵多相合金 |
JP2016069692A (ja) * | 2014-09-30 | 2016-05-09 | 株式会社Gsユアサ | 水素吸蔵合金、電極及びニッケル水素蓄電池 |
JP2022052729A (ja) * | 2020-09-23 | 2022-04-04 | 日本重化学工業株式会社 | アルカリ蓄電池用水素吸蔵合金 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023047726A1 (ja) | 2023-03-30 |
JP7451000B2 (ja) | 2024-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5718006B2 (ja) | 水素吸蔵合金およびニッケル水素二次電池 | |
WO2001048841A1 (en) | Alloy for hydrogen storage, secondary battery, hybrid car and electric vehicle | |
JP3965209B2 (ja) | 低Co水素吸蔵合金 | |
JP2007291474A (ja) | 水素吸蔵合金およびニッケル水素二次電池 | |
JP6276031B2 (ja) | 水素吸蔵合金粉末、負極およびニッケル水素二次電池 | |
US9531005B2 (en) | Synergistic multiphase hydride alloy | |
JP3828922B2 (ja) | 低Co水素吸蔵合金 | |
JP5681729B2 (ja) | 水素吸蔵合金粉末、負極及びニッケル水素二次電池 | |
US12024757B2 (en) | Hydrogen storage alloy for alkaline storage battery and alkaline storage battery using the same | |
JP7251864B2 (ja) | アルカリ蓄電池用水素吸蔵合金 | |
JP7461655B2 (ja) | アルカリ蓄電池用水素吸蔵合金 | |
WO2023047726A1 (ja) | アルカリ蓄電池用水素吸蔵合金 | |
JP2006228536A (ja) | アルカリ蓄電池用水素吸蔵合金及びアルカリ蓄電池 | |
US5753054A (en) | Hydrogen storage alloy and electrode therefrom | |
US6309779B1 (en) | Hydrogen storage alloy electrode and method for manufacturing the same | |
US20220190327A1 (en) | Hydrogen storage alloy for alkaline storage battery, alkaline storage battery using the same as negative electrode, and vehicle | |
JP7158684B2 (ja) | アルカリ蓄電池用水素吸蔵合金およびそれを負極に用いたアルカリ蓄電池ならびに車両 | |
JP2001291511A (ja) | 水素吸蔵合金電極、二次電池、ハイブリッドカー及び電気自動車 | |
JP7572056B2 (ja) | アルカリ蓄電池用水素吸蔵合金 | |
US8105715B2 (en) | Hydrogen-absorbing alloy and nickel-metal hydride storage battery | |
CN117940595A (zh) | 碱蓄电池用氢吸留合金 | |
JP2007063597A (ja) | アルカリ蓄電池用水素吸蔵合金、アルカリ蓄電池用水素吸蔵合金の製造方法及びアルカリ蓄電池 | |
JP2022052728A (ja) | アルカリ蓄電池用水素吸蔵合金 | |
JP2007254782A (ja) | アルカリ蓄電池用水素吸蔵合金及びアルカリ蓄電池 | |
JP2010080171A (ja) | アルカリ二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22872484 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023549371 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280061961.6 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22872484 Country of ref document: EP Kind code of ref document: A1 |