WO2023046213A1 - 一种疏水自清洁树脂浆料、疏水自清洁树脂牙科材料及其应用 - Google Patents

一种疏水自清洁树脂浆料、疏水自清洁树脂牙科材料及其应用 Download PDF

Info

Publication number
WO2023046213A1
WO2023046213A1 PCT/CN2022/129534 CN2022129534W WO2023046213A1 WO 2023046213 A1 WO2023046213 A1 WO 2023046213A1 CN 2022129534 W CN2022129534 W CN 2022129534W WO 2023046213 A1 WO2023046213 A1 WO 2023046213A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophobic self
cleaning resin
parts
hydrophobic
resin slurry
Prior art date
Application number
PCT/CN2022/129534
Other languages
English (en)
French (fr)
Inventor
郑顺丽
翁玲
饶琴
李向阳
李全利
曹颖
陈佳龙
张文娟
陈思源
张乐
王晓玮
Original Assignee
安徽医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽医科大学 filed Critical 安徽医科大学
Publication of WO2023046213A1 publication Critical patent/WO2023046213A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/60Preparations for dentistry comprising organic or organo-metallic additives
    • A61K6/69Medicaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/887Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • C08K5/08Quinones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the invention relates to the technical field of oral materials, in particular to a hydrophobic self-cleaning resin slurry, a hydrophobic self-cleaning resin dental material and applications thereof.
  • the prevention of dental caries is a major public health need in China, and it is also considered to be the most important public health problem in the world and one of the serious burdens of disease treatment resources in the world. Maximizing the effect of caries prevention and treatment has become an urgent problem to be solved in clinical dentistry.
  • the root cause of dental caries is the colonization of dental plaque biofilm on the surface of teeth by caries-causing bacteria as the dominant flora, decomposing carbohydrates in food, producing acid, and continuing to cause demineralization of tooth hard tissues.
  • Common oral diseases such as dental caries, periodontitis, and local irritation factors of dental calculus are all related to the adherent plaque biofilm on the tooth surface.
  • the most commonly used clinical methods for removing oral dental plaque biofilm are mechanical removal or the use of antibacterial agents.
  • mechanical removal methods include brushing teeth, using dental floss, etc.
  • this physical removal method lacks persistence and cannot meet the standard of plaque control.
  • Commonly used antibacterial agents include antibiotics, antibacterial and bactericidal chemical agents (such as chlorhexidine, triclosan, silver preparations, antibacterial peptides), fluoride, extracts of traditional Chinese medicine and natural plants, and small molecules that inhibit metabolic enzymes.
  • Biofilms are prevented from maturing in a manner that is bacteriostatic, inhibits bacterial adhesion, and disrupts the plaque's extracellular matrix.
  • the aforementioned antimicrobial formulations do not have self-cleaning biodecontamination efficacy.
  • the object of the present invention is to provide a hydrophobic self-cleaning resin slurry, a hydrophobic self-cleaning resin dental material and applications thereof.
  • the hydrophobic self-cleaning resin slurry and the hydrophobic self-cleaning resin dental material provided by the invention have self-cleaning biological decontamination performance and can inhibit the formation of bacterial biofilm.
  • the invention provides a hydrophobic self-cleaning resin slurry.
  • the raw materials for the preparation of the hydrophobic self-cleaning resin slurry include the following components in parts by mass: 3-10 parts of dimethacrylate monomers, triethylene glycol 5-30 parts of diol dimethacrylate, 5-15 parts of perfluoroalkyl acrylate, 0-15 parts of diluent, 1-15 parts of nano-silica, ⁇ -methacryloxypropyl trimethoxy 1-30 parts of base silane, 0.05-0.5 part of camphorquinone and 0.1-1 part of photocuring accelerator.
  • the dimethacrylate monomer includes bisphenol A-glycidyl dimethacrylate and/or urethane dimethacrylate.
  • the photocuring accelerator includes ethyl 4-dimethylaminobenzoate and/or dimethylaminoethyl methacrylate.
  • the particle size of the nano silicon dioxide is 15-20 nm.
  • the present invention provides a method for preparing the hydrophobic self-cleaning resin slurry described in the above technical solution, comprising the following steps:
  • Dimethacrylate monomer triethylene glycol dimethacrylate, perfluoroalkyl acrylate, diluent, nano-silica, ⁇ -methacryloxypropyltrimethoxysilane, camphor
  • the quinone and photocuring accelerator are mixed to obtain the hydrophobic self-cleaning resin slurry.
  • the mixing time is 1.5-6 hours.
  • the mixture is:
  • the second mixture, camphorquinone and photocuring accelerator are mixed for the third time.
  • the first mixing time is 0.5-2 hours; the second mixing time is 0.5-2 hours; the third mixing time is 0.5-2 hours.
  • the present invention provides a hydrophobic self-cleaning resin dental material, which is obtained by curing the hydrophobic self-cleaning resin slurry described in the above technical solution or the hydrophobic self-cleaning resin slurry prepared by the preparation method described in the above technical solution by light irradiation.
  • the wavelength of light cured by light irradiation is 420-480 nm.
  • the light irradiation curing time is 20-80s.
  • the present invention provides the hydrophobic self-cleaning resin slurry described in the above technical solution, the hydrophobic self-cleaning resin slurry prepared by the preparation method described in the above technical solution, or the hydrophobic self-cleaning resin dental material described in the above technical solution as oral materials application.
  • the invention provides a hydrophobic self-cleaning resin slurry.
  • the raw materials for the preparation of the hydrophobic self-cleaning resin slurry include the following components in parts by mass: 3-10 parts of dimethacrylate monomers, triethylene glycol 5-30 parts of diol dimethacrylate, 5-15 parts of perfluoroalkyl acrylate, 0-15 parts of diluent, 1-15 parts of nano-silica, ⁇ -methacryloxypropyl trimethoxy 1-30 parts of base silane, 0.05-0.5 part of camphorquinone and 0.1-1 part of photocuring accelerator.
  • the present invention uses dimethacrylate monomers as the resin matrix, and triethylene glycol dimethacrylate as the diluting monomer, by adding hydrophobic functional groups (long fluorocarbon chains) and resin reactive functional groups ( Carbon-carbon double bond) hydrophobic modifier perfluoroalkyl acrylate to reduce the surface energy of the material; through the introduction of inorganic filler nano-silica, while improving the mechanical properties of the resin, the micro-roughness of the resin is increased, and a structure with The lotus leaf-like micro-nano hierarchical structure with excellent hydrophobic properties, the hydrophobic surface of this micro-nano structure can trap air, forming an air layer on the surface of the material, reducing the contact area with proteins and bacteria (site adhesion), Thereby inhibiting the adhesion of oral cavity-related bacteria (such as Streptococcus mutans) and the formation of bacterial biofilm, so that the material has excellent self-cleaning biological decontamination performance (that is, the performance of inhibiting surface bacteria and protein adh
  • organosilane ⁇ -methacryloxypropyltrimethoxysilane molecule is -Si(OCH 3 ) 3 , which becomes -Si(OH) 3 after hydrolysis, and -Si(OH) 3 can be combined with SiO 2
  • the -OH on the surface is condensed into -Si-O-bonds to connect with each other, thereby improving the binding force between the inorganic filler nano-SiO 2 and the resin and the dispersion of nano-SiO 2 in the resin.
  • the present invention provides a hydrophobic self-cleaning resin dental material, which is obtained by curing the hydrophobic self-cleaning resin slurry described in the above technical solution through light irradiation.
  • the photosensitizer camphorquinone in the presence of a photocuring accelerator, generates active free radicals through photoactivation, thereby initiating dimethacrylate monomers, triethylene glycol dimethacrylate, perfluoroalkyl Acrylates and the carbon-carbon double bonds in ⁇ -methacryloxypropyltrimethoxysilane polymerize to form a hydrophobic self-cleaning resin dental material.
  • the hydrophobic self-cleaning resin dental material provided by the present invention has a lotus leaf-like micro-nano structure, which endows the hydrophobic self-cleaning resin dental material with excellent hydrophobic and self-cleaning biological decontamination properties.
  • the hydrophobic surface of this micro-nano structure can retain air, Form an air layer on the surface of the material to reduce the contact area with proteins and bacteria (site adhesion), thereby inhibiting the adhesion of oral-related bacteria (such as Streptococcus mutans) and the formation of bacterial biofilms.
  • the hydrophobic self-cleaning resin slurry provided by the invention uses dimethacrylate monomers as the resin matrix and has good biocompatibility.
  • Fig. 1 is a scanning electron micrograph of the resin dental material prepared in Example 4 and Comparative Example 1, wherein (a 1 )-(a 3 ) are Comparative Example 1, and (b 1 )-(b 3 ) are Example 4;
  • Fig. 2 is a diagram of the dynamic behavior of water droplets in contact with the surface of the resin dental material prepared in Example 4 and Comparative Example 1, where (a 1 ) ⁇ (a 5 ) are comparative example 1, and (b 1 ) ⁇ (b 5 ) are Embodiment 4;
  • Figure 3 is the cytocompatibility fluorescence micrographs of the resin dental material extract prepared in Example 4 and Comparative Examples 1-2 and the blank control group, wherein (a 1 )-(a 3 ) are blank control groups, ( b 1 ) ⁇ (b 3 ) are Comparative Example 2, (c 1 ) ⁇ (c 3 ) are Comparative Example 1, (d 1 ) ⁇ (d 3 ) are Example 4;
  • Figure 4 is a laser confocal microscope fluorescence staining image of the resin dental material prepared in Example 4, Comparative Examples 1-2 and the surface bacteria of the blank control group, wherein (a) is the blank control group, and (b) is the comparative example 2, (c) is comparative example 1, (d) is embodiment 4.
  • the invention provides a hydrophobic self-cleaning resin slurry.
  • the raw materials for the preparation of the hydrophobic self-cleaning resin slurry include the following components in parts by mass: 3-10 parts of dimethacrylate monomers, triethylene glycol 5-30 parts of diol dimethacrylate, 5-15 parts of perfluoroalkyl acrylate, 0-15 parts of diluent, 1-15 parts of nano-silica, ⁇ -methacryloxypropyl trimethoxy 1-30 parts of base silane, 0.05-0.5 part of camphorquinone and 0.1-1 part of photocuring accelerator.
  • the raw materials for the preparation of the hydrophobic self-cleaning resin slurry provided by the present invention include 3-10 parts of dimethacrylate monomers, preferably 4-9 parts, more preferably 5-6 parts.
  • the dimethacrylate monomer preferably includes bisphenol A-glycidyl dimethacrylate (Bis-GMA) and/or urethane dimethacrylate (UDMA), more preferably Includes bisphenol A-glycidyl dimethacrylate or urethane dimethacrylate.
  • the raw materials for the preparation of the hydrophobic self-cleaning resin slurry provided by the present invention include 5 to 30 parts of triethylene glycol dimethacrylate (TEGDMA), preferably 8 to 30 parts. 25 parts, more preferably 10 to 22 parts, most preferably 20 parts.
  • TEGDMA triethylene glycol dimethacrylate
  • the structural formula of the triethylene glycol dimethacrylate is as follows:
  • the raw materials for the preparation of the hydrophobic self-cleaning resin slurry provided by the present invention include 5 to 15 parts of perfluoroalkyl acrylate (FMA), preferably 7 to 13 parts, based on the number of parts by mass of dimethacrylate monomers, More preferably, it is 8-12 parts, Most preferably, it is 10-11 parts.
  • FMA perfluoroalkyl acrylate
  • the structural formula of the perfluoroalkyl acrylate is as follows:
  • the raw materials for the preparation of the hydrophobic self-cleaning resin slurry provided by the present invention include 0 to 15 parts of diluent, more preferably 1 to 12 parts, most preferably 5 to 10 parts, based on the mass parts of dimethacrylate monomers. Parts; the diluent is preferably an alcoholic solvent, more preferably ethanol.
  • the raw materials for the preparation of the hydrophobic self-cleaning resin slurry provided by the present invention include 1 to 15 parts of nano silicon dioxide (SiO 2 ), preferably 2 to 10 parts, more Preferably it is 3-8 parts, most preferably it is 4-5 parts.
  • the particle size of the nano silicon dioxide is preferably 15-20 nm; in the present invention, the silicon dioxide is hydrophilic and has hydroxyl groups on the surface.
  • the raw materials for the preparation of the hydrophobic self-cleaning resin slurry provided by the present invention include 1-30 parts of ⁇ -methacryloyloxypropyltrimethoxysilane (KH570), based on the mass fraction of dimethacrylate monomers, Preferably it is 5-20 parts, more preferably 5-15 parts, most preferably 5-10 parts.
  • KH570 ⁇ -methacryloyloxypropyltrimethoxysilane
  • the structural formula of the ⁇ -methacryloxypropyltrimethoxysilane is as follows:
  • the raw materials for the preparation of the hydrophobic self-cleaning resin slurry provided by the present invention include 0.05 to 0.5 parts of camphorquinone (CQ), preferably 0.08 to 0.4 parts, and more preferably 0.09 parts by mass of dimethacrylate monomers. ⁇ 0.3 parts, most preferably 0.1 ⁇ 0.2 parts; in the embodiment of the present invention, the camphorquinone is preferably DL-camphorquinone (CAS number: 10373-78-1).
  • the raw materials for the preparation of the hydrophobic self-cleaning resin slurry provided by the present invention include 0.1 to 1 part of photocuring accelerator, preferably 0.2 to 0.8 parts, more preferably 0.3 to 0.8 parts by mass of dimethacrylate monomers. 0.4 parts.
  • the photocuring accelerator preferably includes ethyl 4-dimethylaminobenzoate (EDMAB) and/or dimethylaminoethyl methacrylate (DMAEMA), more preferably 4-dimethylamino Ethyl benzoate or dimethylaminoethyl methacrylate.
  • the present invention provides a method for preparing the hydrophobic self-cleaning resin slurry described in the above technical solution, comprising the following steps:
  • Dimethacrylate monomer triethylene glycol dimethacrylate, perfluoroalkyl acrylate, diluent, nano-silica, ⁇ -methacryloxypropyltrimethoxysilane, camphor
  • the quinone and the photocuring accelerator are mixed to obtain a hydrophobic self-cleaning resin paste.
  • the mixing is preferably carried out under light-shielding conditions, and in an embodiment of the present invention, the mixing is preferably carried out in a brown bottle.
  • the mixing time is preferably 1.5 to 6 hours, more preferably 3 to 4.5 hours;
  • the mixing temperature is preferably room temperature;
  • the mixing method is preferably stirring and mixing. It is not particularly limited, as long as the preparation raw materials can be mixed uniformly.
  • the mixing is preferably the first mixing of dimethacrylate monomer, triethylene glycol dimethacrylate, perfluoroalkyl acrylate and diluent to obtain the first mixture;
  • the first mixture, nano-silica and ⁇ -methacryloxypropyltrimethoxysilane are mixed for the second time to obtain a second mixture;
  • the second mixture, camphorquinone and photocuring accelerator 3. Mix to obtain a hydrophobic self-cleaning resin slurry.
  • the first mixing time is preferably 0.5-2 hours, more preferably 1-1.5 hours.
  • the method of adding the ⁇ -methacryloxypropyltrimethoxysilane is preferably dropwise, and the present invention has no special limitation on the speed of the dropping, it can be added dropwise;
  • the time for the second mixing starts from the dropwise addition of the ⁇ -methacryloxypropyltrimethoxysilane; the time for the second mixing is preferably 0.5-2 hours, more preferably 1-1.5 hours.
  • the time for the third mixing is preferably 0.5-2 hours, more preferably 1-1.5 hours.
  • the present invention provides a hydrophobic self-cleaning resin dental material, which is obtained by light irradiation and curing of the hydrophobic self-cleaning resin slurry described in the above technical solution.
  • the light irradiation curing is preferably carried out under anaerobic conditions; the light wavelength of the light irradiation curing is preferably 420-480nm, more preferably 430-470nm, most preferably 450-460nm; the light irradiation
  • the curing time is preferably 20-80s, more preferably 30-70s, most preferably 40-60s; the light irradiation curing is preferably performed with a dental light curing machine.
  • camphorquinone generates active free radicals through photoactivation in the presence of a photocuring accelerator, thereby initiating dimethacrylate monomers, triethylene glycol dimethacrylate , perfluoroalkyl acrylate and carbon-carbon double bonds in ⁇ -methacryloxypropyltrimethoxysilane are polymerized to obtain a hydrophobic self-cleaning structure with high biosafety and lotus leaf-like micro-nano hierarchical structure Resin dental material.
  • the hydrophobic self-cleaning resin dental material provided by the present invention has a micro-nano structure similar to lotus leaves, which endows the material with excellent hydrophobicity and self-cleaning biological decontamination performance.
  • the hydrophobic surface of this micro-nano structure can retain air and form an A layer of air layer reduces the contact area with proteins and bacteria (site adhesion), thereby inhibiting the adhesion of oral-related bacteria (such as Streptococcus mutans) and the formation of bacterial biofilms, which can be used to achieve dental bacteria from the perspective of source etiology. Materials for the prevention and treatment of plaque-related diseases.
  • the hydrophobic self-cleaning resin dental material provided by the present invention does not target the microorganisms themselves, and will not cause interference to the oral micro-ecological system. related drug resistance issues.
  • the hydrophobic self-cleaning resin dental material provided by the invention uses dimethacrylate monomer as the resin matrix and has good biocompatibility.
  • the present invention provides the application of the hydrophobic self-cleaning resin slurry described in the above technical solution or the hydrophobic self-cleaning resin dental material described in the above technical solution as an oral cavity material.
  • the hydrophobic self-cleaning resin slurry or the hydrophobic self-cleaning resin dental material is preferably used as a self-cleaning covering layer, restoration, denture or implant surface layer;
  • the self-cleaning covering layer preferably includes a tooth surface self-cleaning covering layer, denture surface self-cleaning covering layer;
  • the tooth restoration material includes dentition restoration material or caries restoration material.
  • the hydrophobic self-cleaning resin dental material provided by the present invention has a lotus leaf-like micro-nano structure, has excellent hydrophobicity, good biocompatibility, and self-cleaning performance of "biological decontamination” that inhibits bacterial adhesion, and can be used as an oral cavity material use; moreover, the hydrophobic self-cleaning resin slurry provided by the present invention is applied in a liquid state to achieve in-situ curing in the oral cavity, which has the advantages of clinical application efficiency and indications, and can be applied to special oral environments, such as senile root surfaces It is used as a material for the restoration and prevention of caries in patients with caries and xerostomia.
  • step (3) The hydrophobic self-cleaning resin slurry obtained in step (3) was irradiated and cured by a dental light curing machine under anaerobic conditions for 20 seconds to obtain a hydrophobic self-cleaning resin dental material.
  • the hydrophobic self-cleaning resin dental material was prepared according to the method of Example 1, and the preparation conditions of Examples 2-5 are shown in Table 1.
  • Example 1 0.5g 1.5g 1.0g 0.1g 0.1g 0.0105g 0.02405g 20s
  • Example 2 0.5g 1.0g 0.5g 0.25g 0.25g 0.0105g 0.02045g 40s
  • Example 3 0.8g 1.0g 0.5g 0.3g 0.3g 0.0105g 0.02405g 60s
  • Example 4 0.5g 2.0g 1.0g 0.5g 0.5g 0.0105g 0.02045g 80s
  • Example 5 0.5g 2.0g 1.0g 1.0g 1.0g 1.0g 0.0105g 0.02405g 80s
  • step (3) The hydrophilic resin slurry obtained in step (2) was irradiated and cured by a dental light curing machine under anaerobic conditions for 40 seconds to obtain a hydrophilic resin dental material.
  • the commercial resin dental material (3M Filtek TM P60) was irradiated and cured by a dental light curing machine for 20 seconds under anaerobic conditions to obtain the cured commercial resin dental material.
  • Example 4 the surface morphology and properties of the hydrophobic self-cleaning resin dental material prepared by the present invention are studied.
  • Fig. 1 is a scanning electron micrograph of the resin dental material prepared in Example 4 and Comparative Example 1, wherein (a 1 )-(a 3 ) are Comparative Example 1, and (b 1 )-(b 3 ) are Example 4. It can be seen from (b 1 ) to (b 3 ) in Figure 1 that the hydrophobic self-cleaning resin dental material prepared in Example 4 of the present invention is composed of many micron-scale protrusion structures, and many micron-scale protrusion structures are distributed on the surface of the micron-scale protrusion structures. Nano- SiO2 particles constitute a micro-nano hydrophobic surface with a lotus leaf-like structure (contact angle greater than 150°).
  • the hydrophobic surface of this micro-nano structure can retain air and form a layer on the surface of the material.
  • the air layer reduces the contact area with bacteria (site adhesion), thereby inhibiting the formation of bacterial biofilm.
  • Test method 5 ⁇ L of water droplets were placed on the surface of the resin dental material prepared in Example 4 and Comparative Example 1, the resin dental material was lifted up by hand and pressure was applied to the water drop, and then the resin dental material was moved downward.
  • Fig. 2 is a diagram of the dynamic behavior of water droplets in contact with the surface of the resin dental material prepared in Example 4 and Comparative Example 1, where (a 1 ) ⁇ (a 5 ) are comparative example 1, and (b 1 ) ⁇ (b 5 ) are Example 4. It can be seen from (b 1 ) to (b 5 ) in Figure 2 that when the hydrophobic self-cleaning resin dental material prepared in Example 4 of the present invention is lifted up by hand and pressurized on the water droplets, the water droplets will The air layer on the surface of this hydrophobic resin dental material can reduce the contact area between the sample surface and water, thereby reducing the adhesion with water Force, play the role of hydrophobic self-cleaning.
  • Test method the hydrophobic self-cleaning resin dental material prepared in Example 4, the hydrophilic resin dental material prepared in Comparative Example 1 and the cured commercial resin dental material prepared in Comparative Example 2 were placed in 85%DMEM+15% Fetal bovine serum was extracted to obtain the extract to be tested. 85% DMEM+15% fetal bovine serum was used as blank control.
  • the mouse osteogenic precursor cells (MC3T3-E1) were co-cultured with the test extraction solution for 1 day, 3 days and 5 days respectively, and the growth status of the cells was observed with a fluorescence microscope after rhodamine 123 staining and cell proliferation.
  • Figure 3 is the cytocompatibility fluorescence micrographs of the resin dental material extract prepared in Example 4 and Comparative Examples 1-2 and the blank control group, wherein (a 1 )-(a 3 ) are blank control groups, ( b 1 ) to (b 3 ) are Comparative Example 2, (c 1 ) to (c 3 ) are Comparative Example 1, and (d 1 ) to (d 3 ) are Example 4. From (d 1 ) to (d 3 ) in Figure 3, it can be seen that the experimental group co-cultured with the hydrophobic self-cleaning resin dental material extract prepared in Example 4 of the present invention has the highest cell proliferation density and the best cell morphology.
  • the hydrophobic self-cleaning resin dental material prepared by the present invention has good biocompatibility.
  • Test method The hydrophobic self-cleaning resin dental material prepared in Example 4, the hydrophilic resin dental material prepared in Comparative Example 1, and the cured commercial resin dental material prepared in Comparative Example 2 were co-cultured with Streptococcus mutans for 6 hours, and then After sampling, rinsing, and staining with living dead bacteria, the bacterial adhesion on the surface of the sample was observed with a laser confocal microscope. Dental materials without resin were used as the blank control group.
  • Figure 4 is a laser confocal microscope fluorescence staining image of the resin dental material prepared in Example 4, Comparative Examples 1-2 and the surface bacteria of the blank control group, wherein (a) is the blank control group, and (b) is the comparative example 2, (c) is comparative example 1, (d) is embodiment 4.
  • the surface of the hydrophobic self-cleaning resin dental material prepared in Example 4 of the present invention has only a very small amount of bacterial adhesion, which proves that the material has a good ability to inhibit bacterial adhesion, that is, "
  • the surface of the blank control group, the commercial resin dental material group (comparative example 2) and the hydrophilic resin dental material group (comparative example 1) all adhered to a large number of Streptococcus mutans to varying degrees. It shows that compared with the two existing resin dental materials and the blank control group, the hydrophobic self-cleaning resin dental material prepared by the present invention can effectively inhibit the adhesion of bacteria, and has excellent "biological decontamination" self-cleaning performance.
  • the hydrophobic self-cleaning resin dental material prepared by the present invention has a lotus leaf-like micro-nano structure, has excellent hydrophobic properties, good biocompatibility, and "biological decontamination" self-cleaning performance that inhibits bacterial adhesion , can be applied to the surface of oral teeth, dentures, self-cleaning coatings of tooth accessories for oral treatment, restorations, implant surfaces, and some special oral environments, such as caries in senile root caries and xerostomia patients effect on caries prevention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Dental Preparations (AREA)

Abstract

本发明提供了一种疏水自清洁树脂浆料、疏水自清洁树脂牙科材料及其应用,涉及口腔材料技术领域。本发明提供的疏水自清洁树脂浆料的制备原料包括二甲基丙烯酸酯类单体、三乙二醇二甲基丙烯酸酯、全氟烷基丙烯酸酯、稀释剂、纳米二氧化硅、γ-甲基丙烯酰氧丙基三甲氧基硅烷、樟脑醌和光固化促进剂。本发明通过加入全氟烷基丙烯酸酯降低材料的表面能;通过引入纳米二氧化硅,提高树脂力学性能、增加了树脂的微观粗糙度,构建得到类荷叶的疏水微-纳分级结构,这种微-纳结构的疏水表面可以滞留空气,在材料表面形成一层空气层,减少与蛋白和细菌的接触面积,从而抑制口腔相关细菌的粘附及细菌生物膜的形成,使得材料具有优异的自清洁生物清污性能。

Description

一种疏水自清洁树脂浆料、疏水自清洁树脂牙科材料及其应用
本申请要求于2021年09月27日提交中国专利局、申请号为CN202111134716.7、发明名称为“一种疏水自清洁树脂浆料、疏水自清洁树脂牙科材料及其应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及口腔材料技术领域,具体涉及一种疏水自清洁树脂浆料、疏水自清洁树脂牙科材料及其应用。
背景技术
龋病的预防是中国公共卫生的重大需求,它也被认为是目前全球范围内最主要的公共卫生问题和严重的世界疾病治疗资源负担之一。实现龋病防治效果的最大化已成为口腔临床迫切需要解决的问题。龋病的根本原因是龋病致病菌为优势菌群的牙菌斑生物膜在牙齿表面定植,分解食物中的碳水化合物、产酸,持续作用引起牙齿硬组织脱矿。
龋病、牙周炎、牙结石局部刺激因素等口腔常见疾病都与牙齿表面的附着性牙菌斑生物膜相关。目前,临床最常用的清除口腔牙菌斑生物膜的方法是机械清除法或使用抗菌制剂。其中,机械清除法包括刷牙、使用牙线等,然而这种物理清除的方式缺乏持久性,达不到控制菌斑的标准。常用的抗菌制剂包括抗生素、抑菌杀菌化学制剂(如氯己定、三氯生、银制剂、抗菌肽)、氟化物、中药及天然植物的提取物和抑制代谢酶类小分子物质等,通过抑菌杀菌、抑制细菌粘附和破坏菌斑的细胞外基质的方式阻止生物膜成熟。然而,上述抗菌制剂不具有自清洁生物清污功效。
发明内容
有鉴于此,本发明的目的在于提供一种疏水自清洁树脂浆料、疏水自清洁树脂牙科材料及其应用。本发明提供的疏水自清洁树脂浆料和疏水自清洁树脂牙科材料具有自清洁生物清污性能,能够抑制细菌生物膜的形成。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种疏水自清洁树脂浆料,以质量份数计,所述疏水自清洁树脂浆料的制备原料包括以下组分:二甲基丙烯酸酯类单体3~10份、三乙二醇二甲基丙烯酸酯5~30份、全氟烷基丙烯酸酯5~15份、稀释剂0~15份、纳米二氧化硅1~15份、γ-甲基丙烯酰氧丙基三甲氧基硅烷1~30份、樟脑醌0.05~0.5份和光固化促进剂0.1~1份。
优选的,所述二甲基丙烯酸酯类单体包括双酚A-二甲基丙烯酸缩水甘油酯和/或二甲基丙烯酸氨基甲酸酯。
优选的,所述光固化促进剂包括4-二甲基氨基苯甲酸乙酯和/或甲基丙烯酸二甲氨基乙酯。
优选的,所述纳米二氧化硅的粒径为15~20nm。
本发明提供了上述技术方案所述疏水自清洁树脂浆料的制备方法,包括以下步骤:
将二甲基丙烯酸酯类单体、三乙二醇二甲基丙烯酸酯、全氟烷基丙烯酸酯、稀释剂、纳米二氧化硅、γ-甲基丙烯酰氧丙基三甲氧基硅烷、樟脑醌和光固化促进剂混合,得到所述疏水自清洁树脂浆料。
优选的,所述混合的时间为1.5~6h。
优选的,所述混合为:
将二甲基丙烯酸酯类单体、三乙二醇二甲基丙烯酸酯、全氟烷基丙烯酸酯和稀释剂第一混合,得到第一混合料;
将所述第一混合料、纳米二氧化硅和γ-甲基丙烯酰氧丙基三甲氧基硅烷第二混合,得到第二混合料;
将所述第二混合料、樟脑醌和光固化促进剂第三混合。
优选的,所述第一混合的时间为0.5~2h;所述第二混合的时间为0.5~2h;所述第三混合的时间为0.5~2h。
本发明提供了一种疏水自清洁树脂牙科材料,由上述技术方案所述疏水自清洁树脂浆料或上述技术方案所述制备方法制得的疏水自清洁树脂浆料进行光照射固化得到。
优选的,所述光照射固化的光波长为420~480nm。
优选的,所述光照射固化的时间为20~80s。
本发明提供了上述技术方案所述的疏水自清洁树脂浆料、上述技术方案所述制备方法制得的疏水自清洁树脂浆料或上述技术方案所述的疏水自清洁树脂牙科材料作为口腔材料的应用。
本发明提供了一种疏水自清洁树脂浆料,以质量份数计,所述疏水自清洁树脂浆料的制备原料包括以下组分:二甲基丙烯酸酯类单体3~10份、三乙二醇二甲基丙烯酸酯5~30份、全氟烷基丙烯酸酯5~15份、稀释剂0~15份、纳米二氧化硅1~15份、γ-甲基丙烯酰氧丙基三甲氧基硅烷1~30份、樟脑醌0.05~0.5份和光固化促进剂0.1~1份。本发明以二甲基丙烯酸酯类单体作为树脂基质,以三乙二醇二甲基丙烯酸酯作为稀释性单体,通过加入具有疏水性官能团(长氟碳链)和具有树脂反应活性官能团(碳碳双键)的疏水修饰剂全氟烷基丙烯酸酯来降低材料的表面能;通过引入无机填料纳米二氧化硅,在提高树脂力学性能的同时,增加了树脂的微观粗糙度,构建得到具有优异疏水性能的类荷叶微-纳分级结构,这种微-纳结构的疏水表面可以滞留空气,在材料表面形成一层空气层,减少与蛋白和细菌的接触面积(位点粘附),从而抑制口腔相关细菌(如变形链球菌)的粘附及细菌生物膜的形成,使得材料具有优异的自清洁生物清污性能(即抑制表面细菌和蛋白粘附的性能)。而且,有机硅烷γ-甲基丙烯酰氧丙基三甲氧基硅烷分子一端是-Si(OCH 3) 3,经水解后变为-Si(OH) 3,-Si(OH) 3可与SiO 2表面的-OH缩合成-Si-O-键而互相联结,从而提高无机填料纳米SiO 2与树脂间的结合力以及纳米SiO 2在树脂中的分散性。
本发明提供了一种疏水自清洁树脂牙科材料,由上述技术方案所述疏水自清洁树脂浆料经光照射固化得到。在应用过程中,光敏剂樟脑醌在光固化促进剂存在下,通过光活化产生活性自由基,进而引发二甲基丙烯酸酯类单体、三乙二醇二甲基丙烯酸酯、全氟烷基丙烯酸酯和γ-甲基丙烯酰氧丙基三甲氧基硅烷中的碳碳双键发生聚合反应,形成疏水自清洁树脂牙科材料。本发明提供的疏水自清洁树脂牙科材料具有类荷叶微-纳结构,赋予疏水自清洁树脂牙科材料优异的疏水、自清洁生物清污性能,这种微-纳结构的疏水表面可以滞留空气,在材料表面形成一层空气层,减少与蛋白和细菌的接触面积(位点粘附),从而抑制口腔相关细菌(如变形链球菌)的粘附及细菌生物膜的形成。而且,本发明提供的疏水自清洁树脂 浆料以二甲基丙烯酸酯类单体作为树脂基质,具有良好的生物相容性。
附图说明
图1为实施例4和对比例1制备的树脂牙科材料的扫描电镜图,其中,(a 1)~(a 3)为对比例1,(b 1)~(b 3)为实施例4;
图2为水滴与实施例4和对比例1制备的树脂牙科材料表面接触的动态行为图,其中,(a 1)~(a 5)为对比例1,(b 1)~(b 5)为实施例4;
图3为实施例4、对比例1~2制备的树脂牙科材料浸提液以及空白对照组的细胞相容性荧光显微镜图,其中,(a 1)~(a 3)为空白对照组,(b 1)~(b 3)为对比例2,(c 1)~(c 3)为对比例1,(d 1)~(d 3)为实施例4;
图4为实施例4、对比例1~2制备的树脂牙科材料以及空白对照组表面细菌粘附的激光共聚焦显微镜荧光染色图,其中,(a)为空白对照组,(b)为对比例2,(c)为对比例1,(d)为实施例4。
具体实施方式
下面结合实施例和附图对本发明进一步说明。
本发明提供了一种疏水自清洁树脂浆料,以质量份数计,所述疏水自清洁树脂浆料的制备原料包括以下组分:二甲基丙烯酸酯类单体3~10份、三乙二醇二甲基丙烯酸酯5~30份、全氟烷基丙烯酸酯5~15份、稀释剂0~15份、纳米二氧化硅1~15份、γ-甲基丙烯酰氧丙基三甲氧基硅烷1~30份、樟脑醌0.05~0.5份和光固化促进剂0.1~1份。
在本发明中,若无特殊说明,所有的原料组分均为本领域技术人员熟知的市售商品。
以质量份数计,本发明提供的疏水自清洁树脂浆料的制备原料包括二甲基丙烯酸酯类单体3~10份,优选为4~9份,更优选为5~6份。在本发明中,所述二甲基丙烯酸酯类单体优选包括双酚A-二甲基丙烯酸缩水甘油酯(Bis-GMA)和/或二甲基丙烯酸氨基甲酸酯(UDMA),更优选包括双酚A-二甲基丙烯酸缩水甘油酯或二甲基丙烯酸氨基甲酸酯。
在本发明中,所述双酚A-二甲基丙烯酸缩水甘油酯的结构式如下:
Figure PCTCN2022129534-appb-000001
在本发明中,所述二甲基丙烯酸氨基甲酸酯的结构式如下:
Figure PCTCN2022129534-appb-000002
以二甲基丙烯酸酯类单体的质量份数计,本发明提供的疏水自清洁树脂浆料的制备原料包括三乙二醇二甲基丙烯酸酯(TEGDMA)5~30份,优选为8~25份,更优选为10~22份,最优选为20份。在本发明中,所述三乙二醇二甲基丙烯酸酯的结构式如下:
Figure PCTCN2022129534-appb-000003
以二甲基丙烯酸酯类单体的质量份数计,本发明提供的疏水自清洁树脂浆料的制备原料包括全氟烷基丙烯酸酯(FMA)5~15份,优选为7~13份,更优选为8~12份,最优选为10~11份。在本发明中,所述全氟烷基丙烯酸酯的结构式如下:
Figure PCTCN2022129534-appb-000004
以二甲基丙烯酸酯类单体的质量份数计,本发明提供的疏水自清洁树脂浆料的制备原料包括稀释剂0~15份,更优选为1~12份,最优选为5~10份;所述稀释剂优选为醇类溶剂,更优选为乙醇。
以二甲基丙烯酸酯类单体的质量份数计,本发明提供的疏水自清洁树脂浆料的制备原料包括纳米二氧化硅(SiO 2)1~15份,优选为2~10份,更优选为3~8份,最优选为4~5份。在本发明中,所述纳米二氧化硅的 粒径优选为15~20nm;在本发明中,所述二氧化硅具有亲水性,表面上有羟基基团。
以二甲基丙烯酸酯类单体的质量份数计,本发明提供的疏水自清洁树脂浆料的制备原料包括γ-甲基丙烯酰氧丙基三甲氧基硅烷(KH570)1~30份,优选为5~20份,更优选为5~15份,最优选为5~10份。在本发明中,所述γ-甲基丙烯酰氧丙基三甲氧基硅烷的结构式如下:
Figure PCTCN2022129534-appb-000005
以二甲基丙烯酸酯类单体的质量份数计,本发明提供的疏水自清洁树脂浆料的制备原料包括樟脑醌(CQ)0.05~0.5份,优选为0.08~0.4份,更优选为0.09~0.3份,最优选为0.1~0.2份;在本发明的实施例中,所述樟脑醌优选为DL-樟脑醌(CAS号:10373-78-1)。
以二甲基丙烯酸酯类单体的质量份数计,本发明提供的疏水自清洁树脂浆料的制备原料包括光固化促进剂0.1~1份,优选为0.2~0.8份,更优选为0.3~0.4份。在本发明中,所述光固化促进剂优选包括4-二甲基氨基苯甲酸乙酯(EDMAB)和/或甲基丙烯酸二甲氨基乙酯(DMAEMA),更优选为4-二甲基氨基苯甲酸乙酯或甲基丙烯酸二甲氨基乙酯。
本发明提供了上述技术方案所述疏水自清洁树脂浆料的制备方法,包括以下步骤:
将二甲基丙烯酸酯类单体、三乙二醇二甲基丙烯酸酯、全氟烷基丙烯酸酯、稀释剂、纳米二氧化硅、γ-甲基丙烯酰氧丙基三甲氧基硅烷、樟脑醌和光固化促进剂混合,得到疏水自清洁树脂浆料。
在本发明中,所述混合优选在避光条件下进行,在本发明的实施例中,所述混合优选在棕色瓶中进行。在本发明中所述混合的时间优选为1.5~6h,更优选为3~4.5h;所述混合的温度优选为室温;所述混合的方式优选为搅拌混合,本发明对于所述搅拌的速度没有特殊限定,能够将制备原料混合均匀即可。
在本发明中,所述混合优选为将二甲基丙烯酸酯类单体、三乙二醇二 甲基丙烯酸酯、全氟烷基丙烯酸酯和稀释剂第一混合,得到第一混合料;将所述第一混合料、纳米二氧化硅和γ-甲基丙烯酰氧丙基三甲氧基硅烷第二混合,得到第二混合料;将所述第二混合料、樟脑醌和光固化促进剂第三混合,得到疏水自清洁树脂浆料。在本发明中,所述第一混合的时间优选为0.5~2h,更优选为1~1.5h。在本发明中,所述γ-甲基丙烯酰氧丙基三甲氧基硅烷的加入方式优选为滴加,本发明对于所述滴加的速度没有特殊限定,逐滴加入即可;所述第二混合的时间以所述γ-甲基丙烯酰氧丙基三甲氧基硅烷滴加完毕开始计时;所述第二混合的时间优选为0.5~2h,更优选为1~1.5h。在本发明中,所述第三混合的时间优选为0.5~2h,更优选为1~1.5h。
本发明提供了一种疏水自清洁树脂牙科材料,由上述技术方案所述疏水自清洁树脂浆料进行光照射固化得到。在本发明中,所述光照射固化优选在无氧条件下进行;所述光照射固化的光波长优选为420~480nm,更优选为430~470nm,最优选为450~460nm;所述光照射固化的时间优选为20~80s,更优选为30~70s,最优选为40~60s;所述光照射固化优选用牙科光固化机进行。在本发明中,所述光照射固化过程中,樟脑醌在光固化促进剂存在下通过光活化产生活性自由基,进而引发二甲基丙烯酸酯类单体、三乙二醇二甲基丙烯酸酯、全氟烷基丙烯酸酯和γ-甲基丙烯酰氧丙基三甲氧基硅烷中的碳碳双键发生聚合反应,得到具有生物安全性高、类荷叶微-纳分级结构的疏水自清洁树脂牙科材料。
本发明提供的疏水自清洁树脂牙科材料具有类荷叶微-纳结构,赋予材料优异的疏水、自清洁生物清污性能,这种微-纳结构的疏水表面可以滞留空气,在材料表面形成一层空气层,减少与蛋白和细菌的接触面积(位点粘附),从而抑制口腔相关细菌(如变形链球菌)的粘附及细菌生物膜的形成,能够作为从源头病因学角度实现牙菌斑相关疾病的防治材料。相对目前使用的杀菌/抑菌制剂的长期应用可以引起菌群的失调、耐药的副作用,本发明提供的疏水自清洁树脂牙科材料不针对微生物本身,不会对口腔微生态体系造成干扰及其相关耐药问题。而且,本发明提供的疏水自清洁树脂牙科材料以二甲基丙烯酸酯类单体作为树脂基质,具有良好的生物相容性。
本发明提供了上述技术方案所述的疏水自清洁树脂浆料或上述技术方案所述的疏水自清洁树脂牙科材料作为口腔材料的应用。在本发明中,所述疏水自清洁树脂浆料或疏水自清洁树脂牙科材料优选作为自清洁覆盖层、修复体、义齿或种植体表面层;所述自清洁覆盖层优选包括牙齿表面自清洁覆盖层、义齿表面自清洁覆盖层;所述牙齿修复材料包括牙列缺失修复材料或龋病修复材料。本发明提供的疏水自清洁树脂牙科材料具有类荷叶微-纳结构,具有优异的疏水性能、良好的生物相容性以及抑制细菌粘附的“生物清污”自清洁性能,能够作为口腔材料使用;而且,本发明提供的疏水自清洁树脂浆料在液体状态下涂敷使用,实现在口腔内原位固化,具有临床应用效能与适应症优势,可应用于特殊口腔环境,例如老年性根面龋、口腔干燥症患者龋病的修复防治材料使用。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)将0.5g双酚A-二甲基丙烯酸缩水甘油酯(Bis-GMA)、1.5g三乙二醇二甲基丙烯酸酯(TEGDMA)、1.0g全氟烷基丙烯酸酯(FMA)和0.5g无水乙醇加入到棕色玻璃瓶中,在室温条件下磁力搅拌0.5h,得到第一混合料;
(2)将0.1g纳米二氧化硅(SiO 2,粒径为15~20nm)加入所述棕色玻璃瓶中,同时在磁力搅拌条件下滴加0.1gγ-甲基丙烯酰氧丙基三甲氧基硅烷(KH570),滴加完毕后在室温条件下磁力搅拌0.5h,得到第二混合料;
(3)将0.0105g樟脑醌(CQ)和0.02405g 4-二甲基氨基苯甲酸乙酯(EDMAB)加入到所述棕色玻璃瓶中,在室温条件下磁力搅拌1h,得到疏水自清洁树脂浆料;
(4)将步骤(3)得到的疏水自清洁树脂浆料于无氧条件下通过牙科光固化机进行光照射固化20s,得到疏水自清洁树脂牙科材料。
实施例2~5
按照实施例1的方法制备疏水自清洁树脂牙科材料,实施例2~5的制备条件如表1所示。
表1实施例1~5的制备条件
  Bis-GMA TEGDMA FMA SiO 2 KH570 CQ EDMAB 光照射固化时间
实施例1 0.5g 1.5g 1.0g 0.1g 0.1g 0.0105g 0.02405g 20s
实施例2 0.5g 1.0g 0.5g 0.25g 0.25g 0.0105g 0.02045g 40s
实施例3 0.8g 1.0g 0.5g 0.3g 0.3g 0.0105g 0.02405g 60s
实施例4 0.5g 2.0g 1.0g 0.5g 0.5g 0.0105g 0.02045g 80s
实施例5 0.5g 2.0g 1.0g 1.0g 1.0g 0.0105g 0.02405g 80s
对比例1
(1)将0.5g双酚A-二甲基丙烯酸缩水甘油酯(Bis-GMA)、2.0g三乙二醇二甲基丙烯酸酯(TEGDMA)和0.5g无水乙醇加入到棕色玻璃瓶中,在室温条件下磁力搅拌0.5h,得到第一混合料;
(2)将0.0075g樟脑醌(CQ)和0.0175g 4-二甲基氨基苯甲酸乙酯(EDMAB)加入到所述棕色玻璃瓶中,在室温条件下磁力搅拌1h,得到亲水树脂浆料;
(3)将步骤(2)得到的亲水树脂浆料于无氧条件下通过牙科光固化机进行光照射固化40s,得到亲水性树脂牙科材料。
对比例2
将商用树脂牙科材料(3M Filtek TMP60)于无氧条件下通过牙科光固化机进行光照射固化20s,得到固化后的商用树脂牙科材料。
测试例
下面以实施例4为例,对本发明制备的疏水自清洁树脂牙科材料表面形貌和性能进行研究。
(1)微观形貌和表面浸润性
图1为实施例4和对比例1制备的树脂牙科材料的扫描电镜图,其中,(a 1)~(a 3)为对比例1,(b 1)~(b 3)为实施例4。通过图1中(b 1)~(b 3)可以看出,本发明实施例4制备的疏水自清洁树脂牙科材料是由许多微米级的突起结构组成,在微米级的突起结构表面分布着许多纳米SiO 2颗粒,构成了具有类荷叶结构的微-纳疏水表面(接触角大于150°)。 与较平滑的亲水性树脂牙科材料((a 1)~(a 3),接触角约为60°)相比,这种微-纳结构的疏水表面可以滞留空气,在材料表面形成一层空气层,减少与细菌的接触面积(位点粘附),从而抑制细菌生物膜的形成。
(2)材料表面接触的动态行为
测试方法:将5μL水滴置于实施例4和对比例1制备的树脂牙科材料表面,用手将树脂牙科材料向上抬起并对水滴施压,然后向下移动树脂牙科材料。
图2为水滴与实施例4和对比例1制备的树脂牙科材料表面接触的动态行为图,其中,(a 1)~(a 5)为对比例1,(b 1)~(b 5)为实施例4。从图2中(b 1)~(b 5)中可以看出,当本发明实施例4制备的疏水自清洁树脂牙科材料在被用手向上抬起并对水滴施压的过程中,水滴发生了形变,向下移动该树脂牙科材料,水滴未粘附在其表面,这种疏水树脂牙科材料表面的空气层可以减少样品表面与水之间的接触面积,从而降低与水之间的粘附力,起到疏水自清洁作用。从图2中(a 1)~(a 5)中可以看出,在用手将亲水性树脂牙科材料向上抬起过程中,水滴与其接触后,立即粘附在其表面,并铺展开来,亲水性树脂牙科材料与水之间具有很强的粘附力。
(3)生物相容性
测试方法:分别将实施例4制备的疏水自清洁树脂牙科材料、对比例1制备的亲水性树脂牙科材料和对比例2制备的固化后的商用树脂牙科材料置于85%DMEM+15%的胎牛血清中进行浸提,得到待测浸提液。以85%DMEM+15%的胎牛血清作为空白对照。
采用浸提液法,将小鼠成骨前体细胞(MC3T3-E1)分别与待测浸提液共培养1天、3天和5天,经罗丹明123染色后用荧光显微镜观察细胞生长状态和细胞增殖情况。
图3为实施例4、对比例1~2制备的树脂牙科材料浸提液以及空白对照组的细胞相容性荧光显微镜图,其中,(a 1)~(a 3)为空白对照组,(b 1)~(b 3)为对比例2,(c 1)~(c 3)为对比例1,(d 1)~(d 3)为实施例4。通过图3中(d 1)~(d 3)可知,与本发明实施例4所制备的疏水自清洁树脂牙科材料浸提液共培养的实验组,其细胞增殖密度最大,细胞 形态最好,优于空白对照组和亲水性树脂牙科材料组(对比例1),更是远优于商用树脂牙科材料组(对比例2)。说明与现有的两种树脂牙科材料以及空白对照组相比,本发明制备的疏水自清洁树脂牙科材料具有良好的生物相容性。
(4)表面细菌粘附情况
测试方法:分别将实施例4制备的疏水自清洁树脂牙科材料、对比例1制备的亲水性树脂牙科材料和对比例2制备的固化后的商用树脂牙科材料与变形链球菌共培养6h,然后经取样、漂洗、活死细菌染色后,用激光共聚焦显微镜观察样品表面的细菌粘附情况。以不添加树脂牙科材料作为空白对照组。
图4为实施例4、对比例1~2制备的树脂牙科材料以及空白对照组表面细菌粘附的激光共聚焦显微镜荧光染色图,其中,(a)为空白对照组,(b)为对比例2,(c)为对比例1,(d)为实施例4。从图4中(d)中可以看出,本发明实施例4所制备的疏水自清洁树脂牙科材料表面只有极其少量的细菌粘附,证实了该材料具有良好的抑制细菌粘附性能,即“生物清污”性能;而空白对照组、商用树脂牙科材料组(对比例2)以及亲水性树脂牙科材料组(对比例1)的表面在不同程度上都粘附了大量的变形链球菌。说明,与现有的两种树脂牙科材料以及空白对照组相比,本发明所制备的疏水自清洁树脂牙科材料能够有效地抑制细菌的粘附,具有优异的“生物清污”自清洁性能。
综上所述,本发明制备的疏水自清洁树脂牙科材料具有类荷叶微-纳结构,具有优异的疏水性能、良好的生物相容性以及抑制细菌粘附的“生物清污”自清洁性能,能够应用于口腔牙齿表面、义齿、口腔治疗的牙齿附件的自清洁涂覆、修复体、种植体表面,以及一些特殊口腔环境等,例如在老年性根面龋、口腔干燥症患者龋病中起到龋病防治的效果。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (13)

  1. 一种疏水自清洁树脂浆料,以质量份数计,所述疏水自清洁树脂浆料的制备原料包括以下组分:二甲基丙烯酸酯类单体3~10份、三乙二醇二甲基丙烯酸酯5~30份、全氟烷基丙烯酸酯5~15份、稀释剂0~15份、纳米二氧化硅1~15份、γ-甲基丙烯酰氧丙基三甲氧基硅烷1~30份、樟脑醌0.05~0.5份和光固化促进剂0.1~1份。
  2. 根据权利要求1所述的疏水自清洁树脂浆料,其特征在于,所述二甲基丙烯酸酯类单体包括双酚A-二甲基丙烯酸缩水甘油酯和/或二甲基丙烯酸氨基甲酸酯。
  3. 根据权利要求1所述的疏水自清洁树脂浆料,其特征在于,所述光固化促进剂包括4-二甲基氨基苯甲酸乙酯和/或甲基丙烯酸二甲氨基乙酯。
  4. 根据权利要求1所述的疏水自清洁树脂浆料,其特征在于,所述纳米二氧化硅的粒径为15~20nm。
  5. 根据权利要求1所述的疏水自清洁树脂浆料,其特征在于,所述稀释剂为醇类溶剂。
  6. 权利要求1~5任一项所述疏水自清洁树脂浆料的制备方法,包括以下步骤:
    将二甲基丙烯酸酯类单体、三乙二醇二甲基丙烯酸酯、全氟烷基丙烯酸酯、稀释剂、纳米二氧化硅、γ-甲基丙烯酰氧丙基三甲氧基硅烷、樟脑醌和光固化促进剂混合,得到所述疏水自清洁树脂浆料。
  7. 根据权利要求6所述的制备方法,其特征在于,所述混合的时间为1.5~6h。
  8. 根据权利要求6或7所述的制备方法,其特征在于,所述混合为:
    将二甲基丙烯酸酯类单体、三乙二醇二甲基丙烯酸酯、全氟烷基丙烯酸酯和稀释剂第一混合,得到第一混合料;
    将所述第一混合料、纳米二氧化硅和γ-甲基丙烯酰氧丙基三甲氧基硅烷第二混合,得到第二混合料;
    将所述第二混合料、樟脑醌和光固化促进剂第三混合。
  9. 根据权利要求8所述的制备方法,其特征在于,所述第一混合的 时间为0.5~2h;所述第二混合的时间为0.5~2h;所述第三混合的时间为0.5~2h。
  10. 一种疏水自清洁树脂牙科材料,由权利要求1~5任一项所述疏水自清洁树脂浆料或权利要求6~9任一项所述制备方法制得的疏水自清洁树脂浆料进行光照射固化得到。
  11. 根据权利要求10所述的疏水自清洁树脂牙科材料,其特征在于,所述光照射固化的光波长为420~480nm。
  12. 根据权利要求10或11所述的疏水自清洁树脂牙科材料,其特征在于,所述光照射固化的时间为20~80s。
  13. 权利要求1~5任一项所述的疏水自清洁树脂浆料、权利要求6~9任一项所述制备方法制得的疏水自清洁树脂浆料或权利要求10~12任一项所述的疏水自清洁树脂牙科材料作为口腔材料的应用。
PCT/CN2022/129534 2021-09-27 2022-11-03 一种疏水自清洁树脂浆料、疏水自清洁树脂牙科材料及其应用 WO2023046213A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111134716.7 2021-09-27
CN202111134716.7A CN113773442B (zh) 2021-09-27 2021-09-27 一种疏水自清洁树脂浆料、疏水自清洁树脂牙科材料及其应用

Publications (1)

Publication Number Publication Date
WO2023046213A1 true WO2023046213A1 (zh) 2023-03-30

Family

ID=78853650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129534 WO2023046213A1 (zh) 2021-09-27 2022-11-03 一种疏水自清洁树脂浆料、疏水自清洁树脂牙科材料及其应用

Country Status (2)

Country Link
CN (1) CN113773442B (zh)
WO (1) WO2023046213A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773442B (zh) * 2021-09-27 2022-11-01 安徽医科大学 一种疏水自清洁树脂浆料、疏水自清洁树脂牙科材料及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1324877A (zh) * 2001-07-10 2001-12-05 华东理工大学 一种氟代丙烯酸酯嵌段聚合物及其制备方法
EP1283077A1 (de) * 2001-08-10 2003-02-12 Creavis Gesellschaft für Technologie und Innovation mbH Erhalt des Lotus-Effektes durch Verhinderung des Mikrobenwachstums auf selbstreinigenden Oberflächen
CN101507686A (zh) * 2009-04-07 2009-08-19 李榕卿 依凭复合改性原理提升耐磨性能及强韧性能的牙用组合物
CN103319832A (zh) * 2013-06-13 2013-09-25 北京化工大学 齿科修复用光固化复合树脂及其制备方法
CN104083289A (zh) * 2014-07-07 2014-10-08 江苏科技大学 以二氧化硅纳米纤维为填料的齿科充填复合树脂及其制备方法
CN104262151A (zh) * 2014-09-19 2015-01-07 广东希贵光固化材料有限公司 一种含氟光固化单体及其制备方法
CN105111875A (zh) * 2015-08-07 2015-12-02 山东玉皇化工有限公司 一种用于玻璃的自清洁纳米防护液及制备方法
CN113773442A (zh) * 2021-09-27 2021-12-10 安徽医科大学 一种疏水自清洁树脂浆料、疏水自清洁树脂牙科材料及其应用
CN115381722A (zh) * 2022-09-28 2022-11-25 桂林凯文彼德科技有限公司 一种牙科用变色窝沟封闭剂、其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629164B2 (ja) * 1986-01-29 1994-04-20 株式会社松風 歯科用修復材組成物
CN102161736B (zh) * 2011-01-04 2012-09-05 武汉理工大学 一种微纳复合光固化树脂的制备方法
CN102552046A (zh) * 2012-01-13 2012-07-11 东华大学 以二氧化硅微球为填料的齿科修复用复合树脂及其制备
CN110606913B (zh) * 2019-09-11 2021-06-04 国网吉林省电力有限公司电力科学研究院 一种可快速可见光固化的丙烯酸酯类材料及其制备方法
CN111110572B (zh) * 2019-12-27 2023-07-07 太原理工大学 一种高强抗菌牙科修复用复合树脂及其制备方法
CN111840092A (zh) * 2020-08-11 2020-10-30 长沙博谱科学仪器有限公司 一种医疗口腔美容牙齿修补填充材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1324877A (zh) * 2001-07-10 2001-12-05 华东理工大学 一种氟代丙烯酸酯嵌段聚合物及其制备方法
EP1283077A1 (de) * 2001-08-10 2003-02-12 Creavis Gesellschaft für Technologie und Innovation mbH Erhalt des Lotus-Effektes durch Verhinderung des Mikrobenwachstums auf selbstreinigenden Oberflächen
CN101507686A (zh) * 2009-04-07 2009-08-19 李榕卿 依凭复合改性原理提升耐磨性能及强韧性能的牙用组合物
CN103319832A (zh) * 2013-06-13 2013-09-25 北京化工大学 齿科修复用光固化复合树脂及其制备方法
CN104083289A (zh) * 2014-07-07 2014-10-08 江苏科技大学 以二氧化硅纳米纤维为填料的齿科充填复合树脂及其制备方法
CN104262151A (zh) * 2014-09-19 2015-01-07 广东希贵光固化材料有限公司 一种含氟光固化单体及其制备方法
CN105111875A (zh) * 2015-08-07 2015-12-02 山东玉皇化工有限公司 一种用于玻璃的自清洁纳米防护液及制备方法
CN113773442A (zh) * 2021-09-27 2021-12-10 安徽医科大学 一种疏水自清洁树脂浆料、疏水自清洁树脂牙科材料及其应用
CN115381722A (zh) * 2022-09-28 2022-11-25 桂林凯文彼德科技有限公司 一种牙科用变色窝沟封闭剂、其制备方法和应用

Also Published As

Publication number Publication date
CN113773442A (zh) 2021-12-10
CN113773442B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
EP0717976B1 (de) Polymerisierbares Dentalmaterial
CN1177002C (zh) 抗菌性组合物
US8889196B2 (en) Dental composites comprising nanoparticles of amorphous calcium phosphate
JP5373347B2 (ja) 抗菌性人工爪組成物
US9937104B2 (en) Nanostructured antibacterial and remineralizing dental bonding agents and dental bonding systems
JP4986437B2 (ja) 歯科用硬化性組成物
WO2023046213A1 (zh) 一种疏水自清洁树脂浆料、疏水自清洁树脂牙科材料及其应用
AU2008211424A1 (en) Curable composition for dental purposes
Yang et al. Antibacterial activity and reinforcing effect of SiO 2–ZnO complex cluster fillers for dental resin composites
CA2576263A1 (en) Dental polymerizable composition
US20170202752A1 (en) Protein-repellent dental materials and use thereof in dental applications
EP2119425B1 (en) Dental composition
Abdulwahhab et al. The effect of aloe vera extract on adherence of candida albicans and other properties of heat cure denture soft lining material
JP4530856B2 (ja) 歯科用コーティング用キット
US20040120901A1 (en) Dental compositions including enzymes and methods
Behnaz et al. Evaluation and comparison of antibacterial and physicochemical properties of synthesized zinc oxide-nano particle-containing adhesive with commercial adhesive: An experimental study
US20190290550A1 (en) Metformin-containing dental materials
CN110236959A (zh) 一种具有抗菌性能的自修复自粘接树脂水门汀及其制备方法
CN109758371A (zh) 一种齿科修复用可光固化牙本质粘结剂及其制备和应用
JPWO2019124515A1 (ja) 歯科用接着材料キット
CN108143634A (zh) 一种牙科用根面保护材料组合物
NL2030558B1 (en) Hydrophobic self-cleaning resin slurry, hydrophobic self-cleaning resin dental material and application thereof
CN114316135A (zh) 一种具备高效抗菌特性的大块充填牙科复合树脂及其制备方法
Liu et al. Construction and properties of the antibacterial epitaxial transition layer on a zirconia ceramic surface
Cobanoglu et al. Histopathological evaluation of human pulp response to two self-etching resins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE