WO2023045924A1 - 氮掺杂硅熔体获取设备、方法及氮掺杂单晶硅制造系统 - Google Patents

氮掺杂硅熔体获取设备、方法及氮掺杂单晶硅制造系统 Download PDF

Info

Publication number
WO2023045924A1
WO2023045924A1 PCT/CN2022/119905 CN2022119905W WO2023045924A1 WO 2023045924 A1 WO2023045924 A1 WO 2023045924A1 CN 2022119905 W CN2022119905 W CN 2022119905W WO 2023045924 A1 WO2023045924 A1 WO 2023045924A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
polysilicon
particles
reaction
silicon
Prior art date
Application number
PCT/CN2022/119905
Other languages
English (en)
French (fr)
Inventor
李阳
Original Assignee
西安奕斯伟材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安奕斯伟材料科技有限公司 filed Critical 西安奕斯伟材料科技有限公司
Priority to DE112022000398.7T priority Critical patent/DE112022000398T5/de
Priority to JP2022571858A priority patent/JP2023546638A/ja
Priority to KR1020227041371A priority patent/KR20220164617A/ko
Priority to US18/253,757 priority patent/US20240011182A1/en
Publication of WO2023045924A1 publication Critical patent/WO2023045924A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction

Definitions

  • the present application relates to the field of semiconductor silicon wafer production, in particular to a nitrogen-doped silicon melt acquisition device and method, and a nitrogen-doped single crystal silicon manufacturing system.
  • Silicon wafers used to produce semiconductor electronic components such as integrated circuits are mainly manufactured by slicing single crystal silicon rods drawn by the Czochralski method.
  • the Czochralski method involves melting polysilicon in a crucible made of quartz to obtain a silicon melt, immersing a single crystal seed in the silicon melt, and continuously lifting the seed to move away from the surface of the silicon melt, whereby during the movement A single crystal silicon rod grows at the phase interface.
  • the silicon wafer has a crystal defect-free region (Denuded Zone, DZ) extending from the front side to the body and a denuded zone adjacent to the DZ and further extending to the body.
  • DZ Crystal defect-free region
  • BMD Bulk Micro Defect
  • the above-mentioned DZ is important because in order to form electronic components on a silicon wafer, it is required that there are no crystal defects in the formation area of the electronic components, otherwise it will cause failures such as circuit breaks, so that the electronic components are formed in the DZ The influence of crystal defects can be avoided; and the function of the above-mentioned BMD is that it can generate an intrinsic getter (Intrinsic Getter, IG) effect on metal impurities, so that the metal impurities in the silicon wafer can be kept away from the DZ, thereby avoiding the leakage caused by metal impurities Adverse effects such as increased current and decreased film quality of the gate oxide film.
  • IG intrinsic getter
  • the silicon wafers with BMD regions it is very beneficial to dope the silicon wafers with nitrogen.
  • it can promote the formation of BMD with nitrogen as the core, so that the BMD can reach a certain density, so that the BMD can effectively function as a metal gettering source, and it can also It has a favorable effect on the density distribution of BMD, such as making the distribution of BMD density more uniform in the radial direction of the silicon wafer, such as making the density of BMD higher in the area near the DZ and gradually decreasing towards the silicon wafer.
  • the silicon melt in the quartz crucible can be doped with nitrogen, and the single crystal silicon rods drawn from this and the silicon crystals cut from the single crystal silicon rods are The flakes are then doped with nitrogen.
  • FIG. 1 it shows a current implementation of doping silicon melt with nitrogen.
  • the polysilicon raw material block B1 and the silicon nitride block B2 are housed in a quartz crucible (Quartz Crucible, QC), wherein the polysilicon raw material block B1 passes through a larger area surrounded by a wire frame.
  • a quartz crucible Quadartz Crucible, QC
  • the silicon nitride block B2 is schematically shown by a small area filled with black, wherein the silicon nitride block B2 is first put into the quartz crucible QC so as to be located at the bottom of the quartz crucible QC, and the polysilicon raw material block B1 is then put into the quartz crucible QC so as to be positioned at the top of the silicon nitride block B2 and the upper part of the quartz crucible QC, when the quartz crucible QC is heated to make the polysilicon raw material block B1 and the silicon nitride block contained in the quartz crucible QC After B2 is melted, a melt including silicon atoms and nitrogen atoms, that is, nitrogen-doped silicon melt M, can be obtained.
  • the obtained melt can be roughly divided into the following three regions according to the nitrogen concentration or nitrogen content: the first melt region M1 with low nitrogen content, as shown in Figure 1, is filled with low-density points Schematically shown in the area of , which is at the position of the polysilicon raw material block B1 in the quartz crucible QC; the second melt area M2 with a medium nitrogen content, as in FIG.
  • the region schematically shown in the quartz crucible QC is in the junction of the polysilicon raw material block B1 and the silicon nitride block B2; the third melt region M3 with high nitrogen content, as shown in Fig. 1 through high
  • the point-filled area of density is schematically shown in the quartz crucible QC at the location where the silicon nitride block B2 is located.
  • FIG. 2 shows another current implementation of doping silicon melt with nitrogen.
  • the silicon nitride block B2 is relative to the polysilicon raw material block B1
  • the distribution of is uniform, which can be realized, for example, by putting polysilicon raw material blocks B1 and silicon nitride blocks B2 into quartz crucibles QC in batches in an alternating manner, or by, for example, holding in a crucible as shown in FIG.
  • the polysilicon raw material block B1 and the silicon nitride block B2 in the quartz crucible QC are stirred. Comparing with Fig. 1, it can be seen that the distribution uniformity of nitrogen in the melt obtained in Fig. 2 is better. However, the approach shown in FIG. 2 still has the problem of "local inhomogeneity" in nitrogen concentration. Specifically, referring to Fig. 2, the obtained melt can be roughly divided into the following three regions according to the difference in nitrogen concentration or nitrogen content: the first melt region M1 with low nitrogen content, as shown in Fig.
  • the low-density point-filled region is shown schematically at a distance from the geometric center of the silicon nitride block B2 in the quartz crucible QC; the second melt region M2 with a moderate nitrogen content, As shown schematically in FIG. 2 by a dot-filled region of medium density, this region is at a moderate distance from the geometric center of the silicon nitride block B2 in the quartz crucible QC;
  • the three-melt region M3, schematically shown in FIG. 2 by the high-density point-filled region, is located in the quartz crucible QC at a close distance from the geometric center of the silicon nitride block B2.
  • the above-described nitrogen doping methods in the related art all have the problem of uneven distribution of doped nitrogen in the melt to varying degrees, resulting in the use of such melts to draw single-crystal silicon rods and single-crystal silicon rods.
  • the nitrogen concentration in silicon wafers cut from silicon rods is also uneven, so that the desired BMD density distribution cannot be obtained or it is difficult to effectively control the BMD density distribution, which affects the gettering effect as a favorable factor.
  • the embodiment of the present application expects to provide a nitrogen-doped silicon melt acquisition equipment, method and nitrogen-doped single crystal silicon manufacturing system to solve the problem of uneven nitrogen concentration in nitrogen-doped silicon melt,
  • the density distribution of the BMD in the silicon wafer can be effectively controlled, thereby exerting a good gettering effect.
  • the embodiment of the present application provides an acquisition device for obtaining nitrogen-doped silicon melt, the acquisition device comprising:
  • a granulation device the granulation device is used to prepare a large number of polysilicon particles with uniform particle size by using polysilicon raw material block;
  • reaction device is used to chemically react the plurality of polysilicon particles with nitrogen to obtain a corresponding plurality of reaction particles, wherein the chemical reaction causes the surface layer of each polysilicon particle to generate silicon nitride , so that each reaction particle includes a polysilicon core and a silicon nitride cladding surrounding the polysilicon core;
  • melting means for melting said plurality of reactive particles to obtain said nitrogen-doped silicon melt comprising silicon atoms and nitrogen atoms.
  • the embodiment of the present application provides an acquisition method for obtaining nitrogen-doped silicon melt, the acquisition method is realized by the acquisition device according to the first aspect, and the acquisition method includes:
  • each reaction particle includes a polysilicon core and a silicon nitride cladding surrounding said polysilicon core;
  • the plurality of reactive particles is melted to obtain the nitrogen-doped silicon melt comprising silicon atoms and nitrogen atoms.
  • an embodiment of the present application provides a system for manufacturing nitrogen-doped single crystal silicon, the system comprising:
  • the obtaining device according to the first aspect
  • a crystal pulling device the crystal pulling device is used to use the nitrogen-doped silicon melt to pull a single crystal silicon rod by the Czochralski method.
  • the embodiment of the present application provides a nitrogen-doped silicon melt acquisition equipment, method and nitrogen-doped single crystal silicon manufacturing system, although the nitrogen atoms from the silicon nitride coating can only dissolve in the surrounding silicon nitride coating within a certain range, but since the silicon nitride coating is uniformly formed outside the polysilicon core, when a large number of reaction particles are melted in a stacked manner, the nitrogen from the silicon nitride coating of all reaction particles can be Atoms dissolve more uniformly in the melt bulk than in related art, and even construct the appropriate polysilicon core size based on a range of sizes over which nitrogen atoms from the silicon nitride cladding can dissolve around the silicon nitride cladding and the thickness of the silicon nitride cladding layer, nitrogen atoms can also be completely and uniformly dissolved in the melt as a whole, thus for the obtained nitrogen-doped silicon melt, the doped nitrogen is in the melt as a whole The distribution of is more uniform, or
  • Fig. 1 is a schematic diagram of an implementation of doping silicon melt with nitrogen in the related art
  • Fig. 2 is a schematic diagram of another implementation of doping silicon melt with nitrogen in the related art
  • FIG. 3 is a schematic diagram of components of an acquisition device for obtaining nitrogen-doped silicon melt according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of the conversion process of converting polysilicon raw material blocks into polysilicon particles, polysilicon particles into reaction particles, and reaction particles into a melt according to an embodiment of the present application;
  • FIG. 5 is a schematic diagram of containing reaction particles in a quartz crucible to perform a melting process according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of the composition and structure of a reaction device according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the composition and structure of a container according to an embodiment of the present application.
  • Fig. 8 is a schematic diagram of the composition and structure of a container according to another embodiment of the present application.
  • FIG. 9 is a schematic diagram of some components of an acquisition device for acquiring nitrogen-doped silicon melt according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram of a method for obtaining a nitrogen-doped silicon melt according to an embodiment of the present application
  • FIG. 11 is a schematic diagram of components of a system for manufacturing nitrogen-doped silicon single crystal according to an embodiment of the present application.
  • the embodiment of the present application provides an acquisition device 10 for obtaining a nitrogen-doped silicon melt M, and the acquisition device 10 may include:
  • a granulation device 100 the granulation device 100 is used to prepare a large number of polysilicon granules G with a uniform particle size using the polysilicon raw material block B1.
  • a granulation device 100 is known in the related art, for example, it includes crushing and The granulating device of the machine and the screening machine, wherein the crushing and granulating machine can break the polysilicon raw material block B1 to break the polysilicon raw material block B1 with a larger volume to obtain polysilicon particles with a smaller volume, and the screening machine can obtain polysilicon particles from a smaller volume Select the required particle size from the polysilicon particles;
  • the reaction device 200 the reaction device 200 is used to chemically react the polysilicon particles G with nitrogen (N 2 ) to obtain a corresponding large number of reaction particles RG, wherein the chemical reaction makes each polysilicon
  • the surface layer of the grain G is formed as silicon nitride (Si 3 N 4 ), so that each reaction grain RG includes a polysilicon core C and a silicon nitride cladding L surrounding the polysilicon core C, as shown in FIG.
  • the enlarged view of a single reaction particle RG in the frame is shown in detail, and an embodiment of the specific composition and structure of the reaction device 200 will be described in detail below;
  • the melting device 300 is used to melt the large amount of reaction particles RG to obtain the nitrogen-doped silicon melt M comprising silicon atoms and nitrogen atoms, where the melting device 300 can be conventional
  • the devices in the crystal pulling furnace such as quartz crucibles, heaters, etc., which are used to melt the polycrystalline silicon raw material blocks, may also be independent devices that do not belong to the crystal pulling furnace.
  • Figure 5 it shows the A schematic diagram of the above-mentioned melting of a large number of reaction particles (Reaction Grain, RG) contained in the quartz crucible QC of the crystal pulling furnace (not shown in detail in the accompanying drawings).
  • the nitrogen atoms from the silicon nitride coating L can only dissolve within a certain range around the silicon nitride coating L, since the silicon nitride coating L is uniformly formed Outside the polysilicon core C, as shown in FIG.
  • the silicon nitride coating L from all the reaction particles RG can be made
  • the nitrogen atoms from the silicon nitride cladding layer L are more uniformly dissolved in the melt as a whole than in the related art, and even a suitable After the size of the polysilicon core C and the thickness of the silicon nitride cladding layer L, nitrogen atoms can also be completely and uniformly dissolved in the melt as a whole, thus for the obtained nitrogen-doped silicon melt M, doping
  • the distribution of nitrogen in the melt as a whole is more uniform, or the consistency of nitrogen concentration in different regions of the melt is better.
  • the uniform particle size of the large number of polysilicon particles G is important, and it can be understood that the smaller the particle size, the easier it is to make the distribution of nitrogen atoms in the nitrogen-doped silicon melt M uniform, but the particles If the diameter is too small, when the large number of polysilicon particles G stack together and react with nitrogen, it will cause the polysilicon particles G inside the stack to be unable to fully contact with nitrogen, which will affect the generation of silicon nitride, or cause Silicon nitride cannot be formed on the surfaces of the large number of polysilicon grains G in a consistent manner. In this way, when the large amount of polysilicon grains G is melted, it is still impossible to obtain a melt with uniform distribution of nitrogen atoms.
  • the granulation device 100 can be configured to prepare uniformly sized particles with a particle diameter between 5mm and 20mm, or in an optional embodiment of the present application, the The uniform particle size of the above-mentioned polysilicon grains G can be between 5 mm and 20 mm, so that each polysilicon grain G can be fully contacted with nitrogen, and the nitrogen atoms in the obtained melt can be fully contacted. Uniform distribution and reduced control requirements and costs.
  • polysilicon particle G is not necessarily spherical, so for a single polysilicon particle G, its size in different directions may be different, so it should be noted that the above-mentioned “particle size” refers to Yes, for each polysilicon grain G, its maximum value in any direction.
  • the total amount of doped nitrogen it can be realized by variables such as the reaction temperature, the amount of nitrogen gas introduced, and the reaction time. In the same case, the total amount of doped nitrogen obtained is greater.
  • the nitrogen doping amount that can make the density of BMD have a favorable impact 20g to 200g of silicon nitride can be doped in every 410kg of polysilicon raw material, and in order to know the nitrogen doping amount, the above-mentioned reaction device 200 can be equipped with a weighing device to obtain the weight of the large number of polysilicon particles G and monitor the total weight of the large number of reaction particles RG in real time, thereby obtaining the quality of the generated silicon nitride and the amount of nitrogen doping, when nitrogen doping When the amount meets the requirements, the above chemical reaction can be interrupted.
  • reaction device 200 may include:
  • a container 210 having a cavity 211 for accommodating said plurality of polysilicon grains G;
  • a nitrogen gas supplier 220 for supplying nitrogen gas into the cavity 211, as schematically shown by arrows in FIG. 6;
  • the heater 230 is used to heat the container 210 to provide a high temperature in the cavity 211 such as between 800° C. and 1100° C., so that the polysilicon reacts with nitrogen to form nitridation Silicon, as shown in FIG. 6, the heater 230 can optionally be a thermal resistance wire wound around the periphery of the container 210, thereby providing a uniform high temperature in the entire cavity 211, and it can also be not detailed in the accompanying drawings.
  • the microwave heater is shown.
  • the cavity 211 can be in the shape of an elongated tube.
  • the container 210 may also have an inlet 212 and an outlet 213 respectively provided at two longitudinal ends of the cavity 211, and the nitrogen gas supplier 220 as shown in FIG. 6 is configured to continue through the inlet 212 Nitrogen gas is supplied into the cavity 211, as shown schematically by the hollow arrow at the inlet 212 in FIG.
  • the interior is shown schematically by a solid arrow and exits via said outlet 213 , as schematically shown by the hollow arrow at outlet 213 in FIG. 7 .
  • each polysilicon particle G is located on the flow path of the nitrogen gas, so that each polysilicon particle G can fully contact with the nitrogen gas to react.
  • the flow rate of nitrogen gas supplied to the cavity 211 may be between 1 L/min and 200 L/min.
  • the container 210 may be made of quartz that can withstand the high temperature environment of the above chemical reaction.
  • the nitrogen gas supplier 220 as shown in FIG. 6 can supply nitrogen gas with a purity not lower than 99.99%.
  • the container 210 has a movable baffle 212 for opening the bottom, so that the container 210 is placed in a quartz crucible such as a crystal pulling furnace with the bottom facing down.
  • a quartz crucible such as a crystal pulling furnace with the bottom facing down.
  • the movable baffle 212 moves to the left along the direction of the arrow shown in Fig. automatically fall into the quartz crucible QC to realize the rapid release of the polysilicon particles G, avoiding the container 210 staying above the quartz crucible QC for a long time and causing pollution to the crucible chamber.
  • the container 210 can be closed so that the polysilicon grains G remain in the cavity 211 .
  • the acquisition device 10 may further include a purging device 400, which is used to utilize protection such as argon before the chemical reaction occurs.
  • An inert gas is used to sweep the plurality of polysilicon particles G to remove residual moisture and/or residual chemical impurities on the surface of each polysilicon particle G.
  • An alternative implementation of the purging device 400 is shown in FIG. 9 , that is, the purging device 400 can purge the polysilicon granules G via the inlet 212 while the polysilicon granules G are accommodated in the cavity 211 of the container 210 shown in FIG. 7 .
  • the embodiment of the present application also provides a method for obtaining a nitrogen-doped silicon melt M, the method may include:
  • each The reaction particle RG includes a polysilicon core C and a silicon nitride cladding layer L surrounding the polysilicon core C;
  • the embodiment of the present application also provides a system 1 for manufacturing nitrogen-doped single crystal silicon, and the system 1 may include:
  • An acquisition device 10 according to the present application.
  • a crystal pulling device 20 the crystal pulling device 20 is used for pulling a single crystal silicon rod by using the nitrogen-doped silicon melt M by using the Czochralski method.
  • the above-mentioned crystal pulling equipment 20 may be a device in a crystal pulling furnace, such as a draft tube, a pulling mechanism, etc.
  • the melting device 300 in the crystal pulling furnace is a device composed of components associated with melting the polycrystalline silicon raw material block, such as a quartz crucible, a heater, etc.
  • the melting device 300 and the pulling device in the present application Crystal apparatus 20 can be implemented in the same conventional crystal puller.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

一种氮掺杂硅熔体获取设备、方法及氮掺杂单晶硅制造系统,所述获取设备包括:制粒装置,所述制粒装置用于利用多晶硅原料块制备粒径均匀的多数量的多晶硅颗粒;反应装置,所述反应装置用于使所述多数量的多晶硅颗粒与氮气发生化学反应以获得相应的多数量的反应颗粒,其中,所述化学反应使每个多晶硅颗粒的表层生成为氮化硅,使得每个反应颗粒包括多晶硅核心和包裹所述多晶硅核心的氮化硅覆层;熔化装置,所述熔化装置用于将所述多数量的反应颗粒熔化以获得包括硅原子和氮原子的所述氮掺杂的硅熔体。

Description

氮掺杂硅熔体获取设备、方法及氮掺杂单晶硅制造系统
相关申请的交叉引用
本申请主张在2021年09月23日在中国提交的中国专利申请号No.202111115707.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及半导体硅片生产领域,尤其涉及一种氮掺杂硅熔体获取设备、方法及氮掺杂单晶硅制造系统。
背景技术
用于生产集成电路等半导体电子元器件的硅片,主要通过将直拉(Czochralski)法拉制的单晶硅棒切片而制造出。Czochralski法包括使由石英制成的坩埚中的多晶硅熔化以获得硅熔体,将单晶晶种浸入硅熔体中,以及连续地提升晶种移动离开硅熔体表面,由此在移动过程中在相界面处生长出单晶硅棒。
在上述生产过程中,提供这样的一种硅片是非常有利的:该硅片具有从正面开始向体内延伸的无晶体缺陷区域(Denuded Zone,DZ)以及与DZ邻接并且进一步向体内延伸的含有体微缺陷(Bulk Micro Defect,BMD)的区域,这里的正面指的是硅片的需要形成电子元器件的表面。上述的DZ是重要的,因为为了在硅片上形成电子元器件,要求在电子元器件的形成区域内不存在晶体缺陷,否则会导致电路断路等故障的产生,使电子元器件形成在DZ中便可以避免晶体缺陷的影响;而上述的BMD的作用在于,能够对金属杂质产生内在吸杂(Intrinsic Getter,IG)作用,使硅片中的金属杂质保持远离DZ,从而避免金属杂质导致的漏电电流增加、栅极氧化膜的膜质下降等不利影响。
而在生产上述的具有BMD区域的硅片的过程中,在硅片中掺杂有氮是非常有利的。举例而言,在硅片中掺杂有氮的情况下,能够促进以氮作为核心 的BMD的形成,从而使BMD达到一定的密度,使BMD作为金属吸杂源有效地发挥作用,而且还能够对BMD的密度分布产生有利影响,比如使BMD的密度在硅片的径向上的分布更为均匀,比如使BMD的密度在临近DZ的区域更高而朝向硅片的体内逐渐降低等。
作为使硅片中掺杂有氮的一种实现方式,可以使石英坩埚中的硅熔体中掺杂有氮,由此拉制出的单晶硅棒以及由单晶硅棒切割出的硅片中便会掺杂有氮。
参见图1,其示出了目前使硅熔体中掺杂有氮的一种实现方式。如图1所示,多晶硅原料块B1与氮化硅块B2一起容纳在比如石英坩埚(Quartz Crucible,QC)中,其中,多晶硅原料块B1通过由线框围绕的面积较大的区域示意性地示,氮化硅块B2通过由黑色填充的面积较小的区域示意性地示出,其中,氮化硅块B2先被放入到石英坩埚QC中从而位于石英坩埚QC的底部,多晶硅原料块B1后被放入到石英坩埚QC中从而位于氮化硅块B2上方并且位于石英坩埚QC的上部,当对石英坩埚QC进行加热使容纳在石英坩埚QC中的多晶硅原料块B1和氮化硅块B2熔化后,便可以获得包括硅原子和氮原子的熔体,即氮掺杂的硅熔体M。但是,在上述实现方式中,由于来自氮化硅块B2的氮原子无法在熔体整体中获得足够充分的溶解,而是仅能够溶解在每个氮化硅块B2周围的一定范围内,因此掺杂的氮在熔体整体中的分布是不均匀的。具体地,所获得的熔体按照氮浓度或含氮量的不同大致可以分为如下的三个区域:含氮量低的第一熔体区域M1,如在图1中通过低密度的点填充的区域示意性地示出的,该区域在石英坩埚QC中处于多晶硅原料块B1所位于的位置处;含氮量中等的第二熔体区域M2,如在图1中通过中等密度的点填充的区域示意性地示出的,该区域在石英坩埚QC中处于多晶硅原料块B1与氮化硅块B2的交界处;含氮量高的第三熔体区域M3,如在图1中通过高密度的点填充的区域示意性地示出的,该区域在石英坩埚QC中处于氮化硅块B2所位于的位置处。
为了改善掺杂的氮在熔体整体中的分布的均匀性,参见图2,其示出了目前使硅熔体中掺杂有氮的另一种实现方式。与图1所示出的方式的不同之处在于,在图2中对于容纳在石英坩埚QC中的多晶硅原料块B1和氮化硅块B2而言,氮化硅块B2相对于多晶硅原料块B1的分布是均匀的,这可以例如通过将多晶硅原料块B1和氮化硅块B2以交替的方式分批放入到石英坩埚QC中实现,也可以例如通过对如图1中示出的容纳在石英坩埚QC中的多晶硅原料块B1和氮化硅块B2进行搅拌实现。与图1进行对比可以看出,图2中获得的熔体中的氮的分布均匀性是较优的。但是,图2中示出的方式仍然存在氮浓度“局部不均匀”的问题。具体地,参见图2,所获得的熔体按照氮浓度或含氮量的不同仍然大致可以分为如下的三种区域:含氮量低的第一熔体区域M1,如在图2中通过低密度的点填充的区域示意性地示出的,该区域在石英坩埚QC中处于与氮化硅块B2的几何中心相距远距离的位置处;含氮量中等的第二熔体区域M2,如在图2中通过中等密度的点填充的区域示意性地示出的,该区域在石英坩埚QC中处于与氮化硅块B2的几何中心相距中等距离的位置处;含氮量高的第三熔体区域M3,如在图2中通过高密度的点填充的区域示意性地示出的,该区域在石英坩埚QC中处于与氮化硅块B2的几何中心相距近距离的位置处。
以上描述的相关技术中的氮掺杂方式都不同程度地存在掺杂的氮在熔体整体中的分布不均匀的问题,导致利用这样的熔体拉制出的单晶硅棒以及由单晶硅棒切割出的硅片中的氮浓度也是不均匀的,由此无法获得期望的BMD的密度分布或者难以对BMD的密度分布进行有效控制,对作为有利因素的吸杂作用产生影响。
发明内容
为解决上述技术问题,本申请实施例期望提供一种氮掺杂硅熔体获取设备、方法及氮掺杂单晶硅制造系统,解决氮掺杂的硅熔体中氮浓度不均匀的 问题,使硅片中的BMD的密度分布能够得到有效控制,从而发挥良好的吸杂作用。
本申请的技术方案是这样实现的:
第一方面,本申请实施例提供了一种用于获取氮掺杂的硅熔体的获取设备,所述获取设备包括:
制粒装置,所述制粒装置用于利用多晶硅原料块制备粒径均匀的多数量的多晶硅颗粒;
反应装置,所述反应装置用于使所述多数量的多晶硅颗粒与氮气发生化学反应以获得相应的多数量的反应颗粒,其中,所述化学反应使每个多晶硅颗粒的表层生成为氮化硅,使得每个反应颗粒包括多晶硅核心和包裹所述多晶硅核心的氮化硅覆层;
熔化装置,所述熔化装置用于将所述多数量的反应颗粒熔化以获得包括硅原子和氮原子的所述氮掺杂的硅熔体。
第二方面,本申请实施例提供了一种用于获取氮掺杂的硅熔体的获取方法,所述获取方法应用根据第一方面所述的获取设备实现,所述获取方法包括:
利用多晶硅原料块制备粒径均匀的多数量的多晶硅颗粒;
使所述多数量的多晶硅颗粒与氮气发生化学反应以获得相应的多数量的反应颗粒,其中,所述化学反应使每个多晶硅颗粒的表层生成为氮化硅,使得每个反应颗粒包括多晶硅核心和包裹所述多晶硅核心的氮化硅覆层;
将所述多数量的反应颗粒熔化以获得包括硅原子和氮原子的所述氮掺杂的硅熔体。
第三方面,本申请实施例提供了一种用于制造氮掺杂的单晶硅的系统,所述系统包括:
根据第一方面所述的获取设备;
拉晶设备,所述拉晶设备用于利用所述氮掺杂的硅熔体采用Czochralski 法拉制单晶硅棒。
本申请实施例提供了一种氮掺杂硅熔体获取设备、方法及氮掺杂单晶硅制造系统,尽管来自氮化硅覆层的氮原子同样仅能够溶解在氮化硅覆层周围的一定范围内,但由于氮化硅覆层均匀地形成在多晶硅核心外部,因此当大量的反应颗粒以堆叠在一起的方式被熔化后,便可以使来自所有反应颗粒的氮化硅覆层的氮原子与相关技术相比更均匀地溶解在熔体整体中,甚至根据来自氮化硅覆层的氮原子能够溶解在氮化硅覆层周围的一定范围的大小,构造出适当的多晶硅核心的尺寸以及氮化硅覆层的厚度后,还能够实现氮原子完全均匀地溶解在熔体整体中,由此对于所获得的氮掺杂的硅熔体而言,掺杂的氮在熔体整体中的分布是更均匀的,或者说熔体的不同区域处的氮浓度的一致性是更好的。
附图说明
图1为相关技术中使硅熔体中掺杂有氮的一种实现方式的示意图;
图2为相关技术中使硅熔体中掺杂有氮的另一种实现方式的示意图;
图3为根据本申请的实施例的一种用于获取氮掺杂的硅熔体的获取设备的组成部件示意图;
图4为根据本申请的实施例的多晶硅原料块转化为多晶硅颗粒、多晶硅颗粒转化为反应颗粒、反应颗粒转化为熔体的转化过程示意图;
图5为根据本申请的实施例的将反应颗粒容纳在石英坩埚中以执行熔化过程的示意图;
图6为根据本申请的实施例的反应装置的组成结构示意图;
图7为根据本申请的实施例的容器的组成结构示意图;
图8为根据本申请的另一实施例的容器的组成结构示意图;
图9为根据本申请的另一实施例的一种用于获取氮掺杂的硅熔体的获取设备的部分部件的示意图;
图10为根据本申请的实施例的一种用于获取氮掺杂的硅熔体的方法的示意图;
图11为根据本申请的实施例的一种用于制造氮掺杂的单晶硅的系统的组成部件示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
参见图3和图4,本申请实施例提供了一种获取氮掺杂的硅熔体M的获取设备10,所述获取设备10可以包括:
制粒装置100,所述制粒装置100用于利用多晶硅原料块B1制备粒径均匀的多数量的多晶硅颗粒G,这样的制粒装置100在相关技术中是已知的,例如包括破碎成粒机和筛选机的制粒装置,其中破碎成粒机可以将多晶硅原料块B1破碎以使体积较大的多晶硅原料块B1碎裂从而获得体积较小的多晶硅颗粒,而筛选机可以从体积较小的多晶硅颗粒中选择出所需的粒径的颗粒;
反应装置200,所述反应装置200用于使所述多数量的多晶硅颗粒G与氮气(N 2)发生化学反应以获得相应的多数量的反应颗粒RG,其中,所述化学反应使每个多晶硅颗粒G的表层生成为氮化硅(Si 3N 4),使得每个反应颗粒RG包括多晶硅核心C和包裹所述多晶硅核心C的氮化硅覆层L,如在图4中通过位于虚线方框中的单个反应颗粒RG的放大示图详细示出的,另外将在下文中对反应装置200的具体组成结构的实施例进行详细描述;
熔化装置300,所述熔化装置300用于将所述多数量的反应颗粒RG熔化以获得包括硅原子和氮原子的所述氮掺杂的硅熔体M,这里的熔化装置300可以是常规的拉晶炉中的比如石英坩埚、加热器等与用于将多晶硅原料块熔化相关联的部件构成的装置,也可以是不属于拉晶炉的独立的装置,参见图5,其示出了所述多数量的反应颗粒(Reaction Grain,RG)被容纳在拉晶炉 (附图中未详细示出)的石英坩埚QC中以执行上述熔化的示意图。
对于根据本申请的获取设备10而言,尽管来自氮化硅覆层L的氮原子同样仅能够溶解在氮化硅覆层L周围的一定范围内,但由于氮化硅覆层L均匀地形成在多晶硅核心C外部,因此如图5所示,当对石英坩埚QC进行加热使容纳在石英坩埚QC中的所有反应颗粒RG熔化后,便可以使来自所有反应颗粒RG的氮化硅覆层L的氮原子与相关技术相比更均匀地溶解在熔体整体中,甚至根据来自氮化硅覆层L的氮原子能够溶解在氮化硅覆层L周围的一定范围的大小,构造出适当的多晶硅核心C的尺寸以及氮化硅覆层L的厚度后,还能够实现氮原子完全均匀地溶解在熔体整体中,由此对于所获得的氮掺杂的硅熔体M而言,掺杂的氮在熔体整体中的分布是更均匀的,或者说熔体的不同区域处的氮浓度的一致性是更好的。
所述多数量的多晶硅颗粒G的均匀的粒径的大小是重要的,可以理解的是,粒径越小,越容易使氮掺杂的硅熔体M中的氮原子的分布均匀,但是粒径太小的话,当所述多数量的多晶硅颗粒G堆叠在一起与氮气发生反应时,会导致处于堆体内部的多晶硅颗粒G无法与氮气充分接触而影响氮化硅的生成,或者说会导致无法使所述多数量的多晶硅颗粒G的表面以相互一致的方式生成氮化硅。这样一来,当所述多数量的多晶硅颗粒G被熔化时,仍然无法获得氮原子均匀分布的熔体。另一方面,粒径越小会造成实际生长单晶硅的过程控制要求越高,而粒径越大又会导致成本越高。有鉴于此,在本申请的可选实施例中,制粒装置100可以构造成制备粒径介于5mm至20mm之间的尺寸均匀的颗粒,或者说在本申请的可选实施例中,所述多数量的多晶硅颗粒G的均匀的粒径可以介于5mm至20mm之间,以便即能够使每个多晶硅颗粒G都能够与氮气充分接触,又能够使所获得的熔体中的氮原子的分布均匀,并且降低控制要求以及成本。可以理解的是,多晶硅颗粒G并不一定是球形的,因此对于单个多晶硅颗粒G而言,其在不同方向上的尺寸可能是不同的,因此需要说明的是,上述的“粒径”指的是,对于每个多晶硅颗粒G而言, 其在任意方向上的尺寸中的最大值。
另外可以理解的是,对于对掺杂的氮的总量进行控制而言,可以通过反应温度、通入氮气的量、反应时间等变量来实现,而上述均匀的粒径越小,在上述变量等同的情况下所获得的掺杂的氮的总量越大。对于能够使BMD的密度产生有利影响的氮掺杂量,每410kg的多晶硅原料中可以掺杂20g至200g的氮化硅,而为了获知氮掺杂量,上述的反应装置200可以配备有称重器,以获取所述多数量的多晶硅颗粒G的重量并实时监控所述多数量的反应颗粒RG的总重量,由此获得所生成的氮化硅的质量以及氮掺杂量,当氮掺杂量满足要求时可以使上述化学反应中断。
下文中对根据本申请的实施例的反应装置200进行详细介绍。参见图6,所述反应装置200可以包括:
容器210,所述容器210具有用于容置所述多数量的多晶硅颗粒G的空腔211;
氮气供应器220,所述氮气供应器220用于将氮气供应至所述空腔211中,如在图6中通过箭头示意性地示出的;
加热器230,所述加热器230用于对所述容器210进行加热以在所述空腔211中提供比如介于800℃至1100℃之间的高温,以使多晶硅与氮气发生反应生成氮化硅,如在图6中示出的,加热器230可选地为缠绕在容器210外围的热电阻丝,由此实现在整个空腔211中提供均匀的高温,也可以为附图中未详细示出的微波加热器。
在所述多数量的多晶硅颗粒G堆叠在一起的情况下,为了实现在每个多晶硅颗粒G的表面都能够生成氮化硅,参见图7,所述空腔211可以呈细长的管状,所述容器210还可以具有分别设置在所述空腔211的两个纵向端部处的入口212和出口213,并且如图6中示出的所述氮气供应器220构造成经由所述入口212持续地将氮气供应至所述空腔211中,如在图7中通过入口212处的空心箭头示意性地示出的,使得氮气流经所述空腔211,如在图7 中通过空腔211内部的实线箭头示意性地示出的,并经由所述出口213排出,如在图7中通过出口213处的空心箭头示意性地示出的。这样,每个多晶硅颗粒G都位于氮气的流通路径上,由此使得每个多晶硅颗粒G都能够与氮气充分接触进而发生反应。可选地,供应至所述空腔211中的氮气的流量可以介于1L/min至200L/min之间。
在本申请的可选实施例中,所述容器210可以由能够耐受上述化学反应的高温环境的石英制成。
为了避免在上述化学反应的过程中引入杂质,在本申请的可选实施例中,如图6中示出的所述氮气供应器220可以供应纯度不低于99.99%的氮气。
参见图8,在本申请的可选实施例中,所述容器210具有用于将底部敞开的活动挡板212,这样,在容器210以底部朝下的方式设置在比如拉晶炉的石英坩埚QC上方的情况下,当活动挡板212沿图8中示出的箭头的方向向左移动时,便可以使容器210的底部敞开,使得容纳在空腔211中的多晶硅颗粒G在重力的作用下自动落入到石英坩埚QC中,实现多晶硅颗粒G的快速释放,避免容器210在石英坩埚QC上方长时间停留而导致对坩埚腔室造成污染,当活动挡板212沿图8中示出的箭头的方向向右移动时,便可以将容器210封闭,使得多晶硅颗粒G保持在空腔211中。
在本申请的可选实施例中,参见图9,所述获取设备10还可以包括吹扫装置400,所述吹扫装置400用于在发生所述化学反应之前利用例如氩气之类的保护性气体对所述多数量的多晶硅颗粒G进行吹扫,以去除每个多晶硅颗粒G的表面的残留水分和/或残留化学杂质。图9中示出了吹扫装置400的可选实现方式,即吹扫装置400可以在多晶硅颗粒G容纳在图7中示出的容器210的空腔211中的情况下经由入口212对多晶硅颗粒G进行吹扫,其中图7中通过实线箭头示出了保护性气体的流动方向,这样,吹扫完成后可以直接进行化学反应,避免了需要对多晶硅颗粒G进行额外的转移,由此最大程度避免了多晶硅颗粒G受到污染。
参见图10,本申请实施例还提供了一种获取氮掺杂的硅熔体M的方法,所述方法可以包括:
S101:利用多晶硅原料块B1制备粒径均匀的多数量的多晶硅颗粒G;
S102:使所述多数量的多晶硅颗粒G与氮气发生化学反应以获得相应的多数量的反应颗粒RG,其中,所述化学反应使每个多晶硅颗粒G的表层生成为氮化硅,使得每个反应颗粒RG包括多晶硅核心C和包裹所述多晶硅核心C的氮化硅覆层L;
S103:将所述多数量的反应颗粒RG熔化以获得包括硅原子和氮原子的所述氮掺杂的硅熔体M。
参见图11,本申请实施例还提供了一种制造氮掺杂的单晶硅的系统1,所述系统1可以包括:
根据本申请的获取设备10;
拉晶设备20,所述拉晶设备20用于利用所述氮掺杂的硅熔体M采用Czochralski法拉制单晶硅棒。
需要说明的是,上述的拉晶设备20可以是拉晶炉中的比如导流筒、拉升机构等与用于将拉制单晶硅棒相关联的部件构成的设备,并且在获取设备10的熔化装置300为如前所述的拉晶炉中的比如石英坩埚、加热器等与用于将多晶硅原料块熔化相关联的部件构成的装置的情况下,本申请中的熔化装置300以及拉晶设备20可以在同一常规的拉晶炉中实现。
需要说明的是:本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种用于获取氮掺杂的硅熔体的获取设备,所述获取设备包括:
    制粒装置,所述制粒装置用于利用多晶硅原料块制备粒径均匀的多数量的多晶硅颗粒;
    反应装置,所述反应装置用于使所述多数量的多晶硅颗粒与氮气发生化学反应以获得相应的多数量的反应颗粒,其中,所述化学反应使每个多晶硅颗粒的表层生成为氮化硅,使得每个反应颗粒包括多晶硅核心和包裹所述多晶硅核心的氮化硅覆层;
    熔化装置,所述熔化装置用于将所述多数量的反应颗粒熔化以获得包括硅原子和氮原子的所述氮掺杂的硅熔体。
  2. 根据权利要求1所述的获取设备,其中,所述多数量的多晶硅颗粒的均匀的粒径介于5mm至20mm之间。
  3. 根据权利要求1所述的获取设备,其中,所述反应装置包括:
    容器,所述容器具有用于容置所述多数量的多晶硅颗粒的空腔;
    氮气供应器,所述氮气供应器用于将氮气供应至所述空腔中;
    加热器,所述加热器用于对所述容器进行加热。
  4. 根据权利要求3所述的获取设备,其中,所述空腔呈细长的管状,所述容器还具有分别设置在所述空腔的两个纵向端部处的入口和出口,并且所述氮气供应器构造成经由所述入口持续地将氮气供应至所述空腔中,使得氮气流经所述空腔并经由所述出口排出。
  5. 根据权利要求3或4所述的获取设备,其中,所述容器由石英制成。
  6. 根据权利要求3所述的获取设备,其中,所述氮气供应器供应纯度不低于99.99%的氮气。
  7. 根据权利要求3所述的获取设备,其中,所述容器具有用于将底部敞开的活动挡板。
  8. 根据权利要求1所述的获取设备,所述获取设备还包括吹扫装置,所述吹扫装置用于在发生所述化学反应之前利用保护性气体对所述多数量的多晶硅颗粒进行吹扫,以去除每个多晶硅颗粒的表面的残留水分和/或残留化学杂质。
  9. 一种用于获取氮掺杂的硅熔体的获取方法,所述获取方法应用根据权利要求1至8中任一项所述的获取设备实现,所述获取方法包括:
    利用多晶硅原料块制备粒径均匀的多数量的多晶硅颗粒;
    使所述多数量的多晶硅颗粒与氮气发生化学反应以获得相应的多数量的反应颗粒,其中,所述化学反应使每个多晶硅颗粒的表层生成为氮化硅,使得每个反应颗粒包括多晶硅核心和包裹所述多晶硅核心的氮化硅覆层;
    将所述多数量的反应颗粒熔化以获得包括硅原子和氮原子的所述氮掺杂的硅熔体。
  10. 一种用于制造氮掺杂的单晶硅的系统,所述系统包括:
    根据权利要求1至8中任一项所述的获取设备;
    拉晶设备,所述拉晶设备用于利用所述氮掺杂的硅熔体采用Czochralski法拉制单晶硅棒。
PCT/CN2022/119905 2021-09-23 2022-09-20 氮掺杂硅熔体获取设备、方法及氮掺杂单晶硅制造系统 WO2023045924A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112022000398.7T DE112022000398T5 (de) 2021-09-23 2022-09-20 Herstellungsvorrichtung und verfahren zum herstellen von stickstoff-dotierter siliziumschmelze und herstellungssystem von stickstoff-dotiertem monokristallinem silizium
JP2022571858A JP2023546638A (ja) 2021-09-23 2022-09-20 窒素ドープシリコン融液の取得設備、方法及び窒素ドープ単結晶シリコンの製造システム
KR1020227041371A KR20220164617A (ko) 2021-09-23 2022-09-20 질소 도핑된 실리콘 용융체 획득 설비, 방법 및 질소 도핑된 단결정 실리콘 제조 시스템
US18/253,757 US20240011182A1 (en) 2021-09-23 2022-09-20 Acquisition Equipment and Method for Acquiring Nitrogen-Doped Silicon Melt and Manufacturing System of Nitrogen-Doped Monocrystalline Silicon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111115707.3 2021-09-23
CN202111115707.3A CN113818077A (zh) 2021-09-23 2021-09-23 氮掺杂硅熔体获取设备、方法及氮掺杂单晶硅制造系统

Publications (1)

Publication Number Publication Date
WO2023045924A1 true WO2023045924A1 (zh) 2023-03-30

Family

ID=78915295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119905 WO2023045924A1 (zh) 2021-09-23 2022-09-20 氮掺杂硅熔体获取设备、方法及氮掺杂单晶硅制造系统

Country Status (3)

Country Link
CN (1) CN113818077A (zh)
TW (1) TWI818656B (zh)
WO (1) WO2023045924A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113818077A (zh) * 2021-09-23 2021-12-21 西安奕斯伟材料科技有限公司 氮掺杂硅熔体获取设备、方法及氮掺杂单晶硅制造系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010015168A1 (en) * 1999-07-14 2001-08-23 Dietze Gerald R. Optimized silicon wafer gettering for advanced semiconductor devices
US20060254499A1 (en) * 2005-05-10 2006-11-16 Jun Furukawa Method For Manufacturing Nitrogen-Doped Silicon Single Crystal
CN102146582A (zh) * 2010-02-05 2011-08-10 硅电子股份公司 通过Czochralski法制造不含位错的单晶硅的方法
CN113818077A (zh) * 2021-09-23 2021-12-21 西安奕斯伟材料科技有限公司 氮掺杂硅熔体获取设备、方法及氮掺杂单晶硅制造系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816207B1 (ko) * 2000-09-19 2008-03-21 엠이엠씨 일렉트로닉 머티리얼즈 인코포레이티드 산화 유발 적층 흠이 거의 없는 질소 도핑 실리콘
CN102409401B (zh) * 2010-09-26 2014-07-23 江国庆 直拉法生长单晶硅中利用氮-氩混合气体除杂的方法
CN102168312A (zh) * 2011-03-09 2011-08-31 浙江大学 一种高掺氮的硅片及其快速掺氮的方法
CN107151818A (zh) * 2016-03-03 2017-09-12 上海新昇半导体科技有限公司 单晶硅的生长方法及其制备的单晶硅锭
CN107604429A (zh) * 2016-07-12 2018-01-19 上海新昇半导体科技有限公司 直拉生长单晶硅的方法
JP2022548592A (ja) * 2019-09-13 2022-11-21 グローバルウェーハズ カンパニー リミテッド 連続チョクラルスキー法を用いる窒素ドープ単結晶シリコンインゴットの成長方法およびこの方法により成長させた単結晶シリコンインゴット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010015168A1 (en) * 1999-07-14 2001-08-23 Dietze Gerald R. Optimized silicon wafer gettering for advanced semiconductor devices
US20060254499A1 (en) * 2005-05-10 2006-11-16 Jun Furukawa Method For Manufacturing Nitrogen-Doped Silicon Single Crystal
CN102146582A (zh) * 2010-02-05 2011-08-10 硅电子股份公司 通过Czochralski法制造不含位错的单晶硅的方法
CN113818077A (zh) * 2021-09-23 2021-12-21 西安奕斯伟材料科技有限公司 氮掺杂硅熔体获取设备、方法及氮掺杂单晶硅制造系统

Also Published As

Publication number Publication date
TW202300722A (zh) 2023-01-01
TWI818656B (zh) 2023-10-11
CN113818077A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
CN114318500B (zh) 一种用于拉制单晶硅棒的拉晶炉、方法及单晶硅棒
EP2206809B1 (en) Silicon wafer and method for producing the same
WO2023045924A1 (zh) 氮掺杂硅熔体获取设备、方法及氮掺杂单晶硅制造系统
WO2017159028A1 (ja) シリコン単結晶の製造方法
KR20120075387A (ko) 소재 다결정 실리콘 재충전 방법
US8840721B2 (en) Method of manufacturing silicon single crystal
US7413605B2 (en) Method for manufacturing silicon single crystal
JPH07165487A (ja) 単結晶製造装置
JP4569103B2 (ja) 単結晶の製造方法
JP4650520B2 (ja) シリコン単結晶の製造装置及び製造方法
WO2023051693A1 (zh) 氮掺杂剂加料装置、方法及氮掺杂单晶硅棒的制造系统
WO2023051616A1 (zh) 一种用于拉制单晶硅棒的拉晶炉
US20240011182A1 (en) Acquisition Equipment and Method for Acquiring Nitrogen-Doped Silicon Melt and Manufacturing System of Nitrogen-Doped Monocrystalline Silicon
TWI613333B (zh) 單晶矽錠及晶圓的形成方法
JP5181171B2 (ja) 半導体単結晶製造方法
JPH07118089A (ja) 多結晶のリチャージ装置およびリチャージ方法
KR20110093341A (ko) 단결정 냉각장치 및 이를 포함하는 단결정 성장장치
WO1999037833A1 (fr) Appareil de tirage de cristal unique
JPWO2002036861A1 (ja) シリコン半導体単結晶の製造装置及び製造方法
JP7359241B2 (ja) シリコン単結晶の製造方法
JP4360208B2 (ja) シリコン単結晶の製造方法
JP4360069B2 (ja) シリコン単結晶の育成方法
JP4315502B2 (ja) シリコン単結晶の製造方法
CN117286566A (zh) 一种单晶硅的制备方法及单晶硅
JP2007112658A (ja) 半導体単結晶の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022571858

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20227041371

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871970

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18253757

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022000398

Country of ref document: DE