WO2023045693A1 - 直通链路的资源选择方法、装置及用户设备 - Google Patents

直通链路的资源选择方法、装置及用户设备 Download PDF

Info

Publication number
WO2023045693A1
WO2023045693A1 PCT/CN2022/114800 CN2022114800W WO2023045693A1 WO 2023045693 A1 WO2023045693 A1 WO 2023045693A1 CN 2022114800 W CN2022114800 W CN 2022114800W WO 2023045693 A1 WO2023045693 A1 WO 2023045693A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
determining
sensing
resource selection
time
Prior art date
Application number
PCT/CN2022/114800
Other languages
English (en)
French (fr)
Inventor
李晨鑫
赵锐
Original Assignee
大唐高鸿智联科技(重庆)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐高鸿智联科技(重庆)有限公司 filed Critical 大唐高鸿智联科技(重庆)有限公司
Priority to EP22871746.8A priority Critical patent/EP4366343A1/en
Priority to KR1020247003466A priority patent/KR20240024279A/ko
Publication of WO2023045693A1 publication Critical patent/WO2023045693A1/zh
Priority to US18/431,125 priority patent/US20240179680A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a resource selection method, device and user equipment for a direct link.
  • V2X Vehicle to Everything
  • V2X supports communication methods such as Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), Vehicle to Pedestrian (Vehicle to Pedestrian, V2P) and Vehicle to Network (V2N).
  • Pedestrians cannot ensure continuous and sufficient power supply for V2X devices (such as pedestrian handheld terminals, (Pedestrian User Equipment, P-UE) (Vulnerable Road Users, VRU)), or situations that require energy saving (such as vehicles with insufficient battery life or roadside equipment. It is not necessary to continue to work when the number of vehicles is small), and in the above cases, the user equipment (User Equipment, UE) power saving mechanism needs to be considered.
  • V2V Vehicle to Vehicle
  • V2I Vehicle to Infrastructure
  • V2P Vehicle to Pedestrian
  • V2N Vehicle to Network
  • Pedestrians cannot ensure continuous and sufficient power supply for V2X devices (such as pedestrian handheld terminals, (Pedestrian User Equipment, P-UE) (Vulnerable Road
  • power-saving terminal application scenarios are generally urban scenarios with high node density.
  • the limited resource perception results and the potential congestion caused by high node density will make it difficult to effectively ensure the reliability of some perception. Therefore, it is necessary to design a reasonable direct link resource selection method, so as to ensure the accuracy of resource selection and the reliability of transmission as much as possible under the power saving mechanism.
  • the present disclosure provides a direct link resource selection method, device and user equipment, which solves the problem that the accuracy of resource selection and the reliability of transmission cannot be ensured under the power saving mechanism.
  • an embodiment of the present disclosure provides a resource selection method for a direct link, which is applied to a user equipment UE, including:
  • the target operation includes: at least one of determining a resource sensing method, determining an existing resource sensing result, determining a candidate resource set, determining a partial sensing opportunity, and performing partial sensing;
  • an embodiment of the present disclosure provides a user equipment, including: a transceiver, a memory, a processor, and a computer program stored in the memory and operable on the processor, when the processor executes the computer program The steps of implementing the resource selection method for the direct link as described in the first aspect.
  • embodiments of the present disclosure provide an apparatus for selecting resources of a direct link, which is applied to a user equipment UE, including:
  • the first processing module is configured to perform the following steps when the UE expects to perform resource selection or determines to perform resource selection:
  • the target operation includes: at least one of determining a resource sensing method, determining an existing resource sensing result, determining a candidate resource set, determining a partial sensing opportunity, and performing partial sensing;
  • embodiments of the present disclosure provide a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method for selecting a resource for a direct link as described in the first aspect are implemented.
  • the user equipment UE when the UE expects to perform resource selection or determines to perform resource selection, the user equipment UE performs the following steps: perform a target operation; wherein the target operation includes: determining a resource sensing method, determining an existing resource sensing result 1. At least one of determining a set of candidate resources, determining an occasion for partial sensing, and performing partial sensing; performing resource exclusion; and performing resource selection.
  • FIG. 1 shows a flowchart of a resource selection method for a direct link in an embodiment of the present disclosure
  • FIG. 2 shows one of the schematic diagrams of periodic resource reservation in an embodiment of the present disclosure
  • FIG. 3 shows the second schematic diagram of periodic resource reservation in an embodiment of the present disclosure
  • FIG. 4 shows the third schematic diagram of periodic resource reservation in an embodiment of the present disclosure
  • FIG. 5 shows the fourth schematic diagram of periodic resource reservation in an embodiment of the present disclosure
  • FIG. 6 shows the fifth schematic diagram of periodic resource reservation in an embodiment of the present disclosure
  • FIG. 7 shows the sixth schematic diagram of periodic resource reservation in an embodiment of the present disclosure
  • FIG. 8 shows the seventh schematic diagram of periodic resource reservation in an embodiment of the present disclosure
  • FIG. 9 shows the eighth schematic diagram of periodic resource reservation in an embodiment of the present disclosure.
  • FIG. 10 shows a ninth schematic diagram of periodic resource reservation in an embodiment of the present disclosure.
  • FIG. 11 shows a tenth schematic diagram of periodic resource reservation in an embodiment of the present disclosure
  • FIG. 12 shows a structural block diagram of a resource selection device for a direct link according to an embodiment of the present disclosure
  • Fig. 13 shows a schematic diagram of a hardware structure of a user equipment according to an embodiment of the present disclosure.
  • sequence numbers of the following processes do not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, and should not be implemented in the present disclosure.
  • the implementation of the examples constitutes no limitation.
  • system and “network” are often used interchangeably herein.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B may also be determined according to A and/or other information.
  • the form of the access network is not limited, and may include macro base station (Macro Base Station), micro base station (Pico Base Station), 3G mobile base station (Node B), enhanced base station (eNB), home enhancement Access network of base station (Femto eNB or Home eNode B or Home eNB or HeNB), relay station, access point, remote radio module (Remote Radio Unit, RRU), radio remote head (Remote Radio Head, RRH) etc. .
  • macro base station Micro Base Station
  • micro base station Pico Base Station
  • 3G mobile base station Node B
  • eNB enhanced base station
  • eNB home enhancement Access network of base station
  • Femto eNB or Home eNode B or Home eNB or HeNB relay station
  • access point
  • remote radio module Remote Radio Unit
  • RRU radio remote head
  • RRH Remote Head
  • the user terminal can be a mobile phone (or mobile phone), or other equipment capable of sending or receiving wireless signals, including user equipment, personal digital assistant (Personal Digital Assistant, PDA), wireless modem, wireless communication device, handheld device, laptop Computers, cordless phones, wireless local loop (Wireless Local Loop, WLL) stations, customer terminals (Customer Premise Equipment, CPE) or mobile smart hotspots that can convert mobile signals into WiFi signals, smart home appliances, or other operations that do not require humans
  • PDA Personal Digital Assistant
  • WLL Wireless Local Loop
  • CPE Customer Premise Equipment
  • mobile smart hotspots that can convert mobile signals into WiFi signals, smart home appliances, or other operations that do not require humans
  • PBPS Periodic-Based Partial Sensing
  • CPS Contiguous Partial Sensing
  • the CPS is mainly used in the resource selection process to exclude resources reserved/occupied by previous transmission instructions of the same TB in the same transport block (Transport Block, TB).
  • the PBPS is mainly used to exclude resources that have been periodically reserved/occupied among candidate resources during the resource selection process.
  • the determination of the sensing (sensing) opportunity of PBPS (the resource position of Pre reserve ⁇ K before the candidate resource) is determined based on two types of determination parameters: a period determination parameter (P reserve ) and a corresponding period number determination parameter (K), wherein, Preserve is for the convenience of description and is not limited to be defined as this name. The same is true for K.
  • 3GPP Long Term Evolution (LTE)-V2X supports a partial sensing mechanism based on periodic service transmission, but only performs partial sensing and resource selection for typical services that are periodically transmitted.
  • the resource reservation information obtained by decoding the SCI if it is a periodic reservation, the definition of the relevant mechanism is that the periodic reservation indicated by the SCI is the next time;
  • T scal T2
  • P rsvp_RX is the resource reservation period obtained by SCI decoding
  • n' is the logical time slot corresponding to the service packet arrival time or the logical time slot of the first resource pool closest to the service arrival time
  • m is At the moment when the SCI is decoded
  • T2 is the parameter for determining the rear edge of the resource selection window
  • P' rsvp_RX is the number of logical time slots converted into the resource pool corresponding to the resource reservation period indicator value P rsvp_RX obtained from the decoded SCI.
  • the UE performs full sensing and can sense all resource locations in the sensing window, so reliability can be effectively guaranteed.
  • partial sensing can only obtain limited sensing results.
  • the application scenarios of power-saving terminals are generally urban scenes with high node density. Congestion will make it difficult to effectively ensure the reliability of some perceptions. Therefore, it is necessary to consider enhancing the reservation mechanism.
  • the embodiments of the present disclosure provide a resource selection method, device, and user equipment for a direct link, which solves the problem in the related art that the accuracy of resource selection and the reliability of transmission cannot be ensured under the power-saving mechanism .
  • an embodiment of the present disclosure provides a resource selection method for a direct link, which is applied to a user equipment UE.
  • the UE When the UE expects to perform resource selection or determines to perform resource selection, the following steps are performed:
  • Step 11 perform a target operation; wherein, the target operation includes: at least one of determining a resource sensing method, determining an existing resource sensing result, determining a candidate resource set, determining a partial sensing opportunity, and performing partial sensing;
  • the existing resource sensing results may include: the sensing results obtained by the periodic partial sensing PBPS of other direct link processes, the sensing results obtained by the CPS of other direct link processes, and the sensing results obtained by discontinuous reception DRX activation time result.
  • Step 12 execute resource exclusion
  • Step 13 execute resource selection.
  • the user equipment UE when the UE expects to perform resource selection or determines to perform resource selection, performs determining resource sensing methods, determining existing resource sensing results, determining candidate resource sets, determining partial sensing opportunities, and performing partial sensing at least one of ; and perform resource exclusion and resource selection.
  • resource sensing methods, existing resource sensing results, candidate resource sets, and partial sensing timings during the resource selection process it is possible to ensure that the existing sensing results are reused as much as possible under the power-saving mechanism. Use more sufficient sensing results when selecting resources, minimize unnecessary sensing as much as possible, and ensure the accuracy of resource selection and reliability of transmission.
  • determining the candidate resource set in step 11 includes:
  • the target information includes at least one of the following:
  • the perception result acquired by the discontinuous reception DRX activation time corresponds to the resource location where resource exclusion can be performed
  • the sensing results obtained by the periodic partial sensing PBPS correspond to resource locations where resource exclusion can be performed.
  • the media access control (Media Access Control, MAC) entity determines to perform resource selection of a single MAC protocol data unit (Protocol Data Unit, PDU) for the service packet , according to at least one of the sensing results acquired by CPS completion time and DRX activation time corresponding to the resource positions that can be used for resource exclusion, and the sensing results acquired by PBPS corresponding to the resource positions that can be used for resource exclusion to determine the candidate resource set, by considering multiple available sensing As a result, a variety of candidate resources are considered to align perceivable resources, reuse existing perceptual results as much as possible, use more sufficient perceptual results in resource selection as much as possible, and repeat unnecessary percepts as little as possible. Determining CPS candidate resources can ensure power-saving performance and reliability.
  • determining the candidate resource set includes the following situations:
  • determining the candidate resource set according to the target information includes:
  • the determination condition of the resource selection window frontier determination parameter T1 is: 0 ⁇ T1 ⁇ T proc,1 ;
  • the determination condition of the resource selection window frontier determination parameter T1 is: TB ⁇ T1 ⁇ TB+T proc,1 ;
  • T proc,1 is resource selection time and transmission preparation time
  • TB is a parameter determined by the trailing edge of the CPS window.
  • T2 is a parameter for determining the rear edge of the resource selection window
  • L is the minimum time of the resource selection window or the minimum number of resources in the time domain.
  • the execution time of CPS is [n+TA, n+TB]; wherein, within the time of the last T proc,0 in the CPS window, it can be considered that the perceptual processing time does not have perceptual results. That is, the perceptual processing time T proc,0 is determined to be included in the CPS window, ie the perceptual processing time is included in [n+TA, n+TB].
  • the conditions for determining the parameter T1 at the front edge of the resource selection window are any of the following:
  • the determination condition of the resource selection window frontier determination parameter T1 is any of the following:
  • T proc,0 is the perception processing time
  • T porc,1 is the resource selection time and transmission preparation time
  • TB is the parameter for determining the trailing edge of the CPS window.
  • T2 is a parameter for determining the rear edge of the resource selection window
  • L is the minimum time of the resource selection window or the minimum number of resources in the time domain.
  • the execution time of CPS is [n+TA, n+TB]; where, the CPS window does not include the consideration of perception processing time, allowing resources without perception results. That is, the perceptual processing time T proc,0 is determined not to be included in the CPS window, ie not included in [n+TA, n+TB].
  • determining the candidate resource set includes:
  • the sensing result acquired by the DRX activation time corresponding to the resource location where resource exclusion can be performed and/or, the sensing result acquired by the PBPS corresponds to the resource location where resource exclusion can be performed, and determining a candidate resource set;
  • the considered processing time includes: subtracting or not subtracting the processing time; n+TB is the trailing edge of the CPS window.
  • the sensing result acquired according to the DRX activation time corresponds to a resource location where resource exclusion can be performed
  • the sensing result acquired by the PBPS corresponds to a resource location where resource exclusion can be performed
  • the candidate resource set is determined
  • the perception result obtained at the DRX activation time corresponds to the target resource that satisfies the following conditions in the resource location where resource exclusion can be performed, and is preferentially determined as a candidate resource in the candidate resource set:
  • the perception results obtained by PBPS correspond to the target resources that meet the following conditions in the resource locations where resources can be excluded, and are prioritized as candidate resources in the candidate resource set:
  • the sensing result obtained at the DRX activation time corresponds to the resource location where resource exclusion can be performed or the sensing result obtained by PBPS corresponds to the target resource that meets the following conditions in the resource location where resource exclusion can be performed, and is preferentially determined as a candidate resource in the candidate resource set:
  • the time domain position of the target resource is the N time domain positions closest to n+T1; where N is a positive integer, n+T1 is the front edge of the resource selection window; T1 is the resource selection window The front edge of the window determines the parameters.
  • the candidate resource alignment corresponding to the PBPS sensing result is not considered, and/or, the corresponding to the sensing result of the DRX activation time is not considered Candidate resource alignment for ;
  • a candidate resource set is determined.
  • the user equipment performs resource selection directly, regardless of the perceived results of PBPS and/or DRX activation time.
  • the existing perception results are considered to be reused as much as possible
  • the candidate set of CPS and the resources that can be correspondingly excluded from reserved resources of the existing PBPS are aligned as much as possible
  • the candidate set of CPS and the existing CPS can be correspondingly excluded from reserved resources.
  • One or more operations such as resource alignment for CPS candidate set and discontinuous reception DRX can be performed correspondingly, such as resource alignment for reserved resource exclusion, can determine the candidate resource set corresponding to CPS, and ensure transmission reliability.
  • the existing PBPS can correspond to the resource location of the reserved resource exclusion
  • the existing CPS can correspond to the resource location of the reserved resource exclusion
  • the discontinuous reception DRX can correspond to the resource location of the reserved resource exclusion , excluding at least one of the above three types of resources from the candidate resource set when determining the candidate resource set.
  • the method before step 12, the method further includes the following two ways of determining the number of target resource reservations:
  • the value of the parameter K is determined according to the sensing execution times in the sensing timing determination parameters, and the target resource reservation times is determined.
  • the K value is a configuration indication or a pre-configuration indication.
  • the target number of resource reservations is the number of periodic reservations indicated by the SCI assuming or according to the agreement that the periodic reservation information obtained by decoding the SCI indicates resource reservation in the next period.
  • the SCI reservation and resource selection mechanism are enhanced based on the additionally configured sensing opportunity determination parameter K, which can possibly improve the accuracy of resource selection and transmission reliability under the power saving mechanism.
  • the additional configuration that is, the default execution mode of PBPS sensing, that is, the corresponding execution of sensing according to the PBPS cycle is the method of performing sensing on the last corresponding resource determined according to the PBPS reference time, and additionally has pre-configured signaling or network corresponding to K
  • the signaling name may be, but not limited to, a parameter (additionalPeriodicSensingOccasion) determined for the number of additional periodic sensing occasions.
  • the value of the parameter K is determined according to the number of sensing execution times in the sensing timing determination parameter, and the target resource reservation times are determined, including:
  • the target number of periodic resource reservations is N times the number of periodic reservations indicated by the SCI; wherein, the N is any one of the following (1) to (6):
  • N is the K value
  • N is the maximum value in the set of the K value
  • N is the maximum value indicated in the bitmap of the K value
  • bitmap is not limited to 10 bits, but can also be other bits (bits), such as 16 bits, and does not limit the specific indication meaning corresponding to the specific number of bits.
  • N is a value corresponding to the current sensing opportunity within the sensing opportunity determined according to the K value
  • N is the value corresponding to the current perception opportunity in the set of K values
  • N is a value corresponding to the current sensing opportunity within the sensing opportunity determined by the bitmap of the K value.
  • bitmap is not limited to 10 bits, but can also be other bits, such as 16 bits, and does not limit the specific indication meaning corresponding to the specific number of bits.
  • the periodic reservation information obtained by decoding the SCI indicates resource reservation in the next period, determine that the target periodic resource reservation times is the first value, and the
  • P rsvp_RX is the resource reservation period indication value obtained by decoding the SCI.
  • n the arrival time of the service packet.
  • the above method also includes:
  • the resource reservation cycle indication value P rsvp_RX obtained by decoding the SCI is less than or equal to the first threshold value T scal , the number of periodic reservations indicated by the received SCI is assumed or considered as the target number of periodic reservations according to the agreement Q times;
  • T2 is a parameter for determining the trailing edge of the resource selection window
  • the above method also includes:
  • the resource reservation period indication value P rsvp_RX obtained by decoding the SCI is less than or equal to the first threshold value T scal and the first condition is met, the number of periodic reservations indicated by the received SCI is assumed or considered as Any of the following:
  • the first condition includes:
  • T2 is a parameter for determining the trailing edge of the resource selection window
  • n' is the logical time slot corresponding to the service packet arrival time or the logical time slot of the first resource pool closest to the service arrival time
  • m is the time slot where the decoding SCI is located
  • P' rsvp_RX is the resource reservation obtained according to the decoding SCI
  • the cycle indication value P rsvp_RX corresponds to the number of logical time slots in the resource pool.
  • determining the number of target resource reservations includes:
  • the target number of resource reservations is determined.
  • the potential perception or decoding reliability is high, and there is only a small probability of SCI decoding failure, so in this case, the SCI indication resource reservation mechanism under partial perception is not performed to enhance the potential reliability.
  • the probability of a significant drop is low and may not be dealt with according to the enhanced scheme. Only when the CBR measurement value of the channel busy rate is greater than or equal to the CBR threshold value, that is, when the channel is congested, the target resource reservation times are determined according to the enhanced solution.
  • the above method also includes:
  • the second condition is that before the reference time, after decoding the i P rsvp_RX corresponding to the SCI, any one of the corresponding SCIs is successfully decoded, and the successfully decoded SCI indicates that resources will not be reserved periodically in the future; wherein the reference The time is the time of the time domain resource where the first candidate resource is located minus or not minus the processing time, i is an integer and i ⁇ 1.
  • an embodiment of the present disclosure provides an apparatus 1200 for resource selection of a direct link, which is applied to a user equipment UE, including:
  • the first processing module 1201 is configured to perform the following steps when the UE expects to perform resource selection or determines to perform resource selection:
  • the target operation includes: at least one of determining a resource sensing method, determining an existing resource sensing result, determining a candidate resource set, determining a partial sensing opportunity, and performing partial sensing;
  • the first processing module 1201 includes:
  • the first determining submodule is configured to determine a candidate resource set according to target information; wherein the target information includes at least one of the following:
  • the perception result acquired by the discontinuous reception DRX activation time corresponds to the resource location where resource exclusion can be performed
  • the sensing results obtained by the periodic partial sensing PBPS correspond to resource locations where resource exclusion can be performed.
  • the first determining submodule is specifically configured to:
  • the determination condition of the resource selection window frontier determination parameter T1 is: 0 ⁇ T1 ⁇ T proc,1 ;
  • the determination condition of the resource selection window frontier determination parameter T1 is: TB ⁇ T1 ⁇ TB+T proc,1 ;
  • T proc,1 is resource selection time and transmission preparation time
  • TB is a parameter determined by the trailing edge of the CPS window.
  • the first determining submodule is specifically configured to:
  • the conditions for determining the parameter T1 at the front edge of the resource selection window are any of the following:
  • the determination condition of the resource selection window frontier determination parameter T1 is any of the following:
  • T proc,0 is the perception processing time
  • T proc,1 is the resource selection time and transmission preparation time
  • TB is the parameter for determining the trailing edge of the CPS window.
  • the second processing module is configured to, when the service packet arrives, if the existing CPS sensing result meets the requirements, when determining the candidate resource set, the candidate resource alignment corresponding to the PBPS sensing result is not considered, and/or, the alignment with the candidate resource corresponding to the PBPS sensing result is not considered.
  • Candidate resource alignment corresponding to the perception result of DRX activation time is configured to, when the service packet arrives, if the existing CPS sensing result meets the requirements, when determining the candidate resource set, the candidate resource alignment corresponding to the PBPS sensing result is not considered, and/or, the alignment with the candidate resource corresponding to the PBPS sensing result is not considered.
  • the target information includes: the sensing result acquired at the DRX activation time corresponds to a resource location where resource exclusion can be performed, and/or the sensing result acquired by the PBPS corresponds to a resource location where resource exclusion can be performed
  • the first determining submodule also includes:
  • the first determining unit is configured to determine a candidate resource set according to the sensing result acquired at the DRX activation time corresponding to a resource location where resource exclusion can be performed, and/or the sensing result acquired by the PBPS corresponds to a resource location where resource exclusion can be performed ;
  • the second determining unit is configured to determine the time domain position of the first time domain candidate resource in the determined candidate resource set and considering the processing time as the position of n+TB;
  • the considered processing time includes: subtracting or not subtracting the processing time; n+TB is the trailing edge of the CPS window.
  • the device 1200 also includes:
  • the third processing module is configured to determine the value of the parameter K according to the number of sensing execution times in the sensing opportunity determination parameter, and determine the target resource reservation when the periodic reservation information obtained by decoding the SCI indicates resource reservation in the next cycle frequency.
  • the value of K is a configuration indication or a pre-configuration indication.
  • the third processing module includes:
  • the second determination submodule is configured to determine that the target periodic resource reservation times is N times the periodic reservation times indicated by the SCI; wherein, the N is any of the following:
  • the value corresponding to the current sensing opportunity within the sensing opportunity determined by the bitmap of the K value.
  • the device 1200 also includes:
  • the fourth processing module is configured to determine that the target number of periodic resource reservations is the first value when the periodic reservation information obtained by decoding the SCI indicates resource reservation in the next period, and the
  • P rsvp_RX is the resource reservation period indication value obtained by decoding the SCI.
  • the device 1200 also includes:
  • the fifth processing module is configured to determine the number of periodic reservations indicated by the received SCI as the target periodic reservation when the resource reservation period indication value P rsvp_RX obtained by decoding the SCI is less than or equal to the first threshold value T scal Q times the number of stays;
  • T2 is a parameter for determining the trailing edge of the resource selection window
  • the device 1200 also includes:
  • the sixth processing module is configured to receive the number of periodic reservations indicated by the SCI when the resource reservation period indication value P rsvp_RX obtained by decoding the SCI is less than or equal to the first threshold value T scal and the first condition is met Determined to be any of the following:
  • the first condition includes:
  • T2 is a parameter for determining the trailing edge of the resource selection window
  • n' is the logical time slot corresponding to the service packet arrival time or the logical time slot of the first resource pool closest to the service arrival time
  • m is the time slot where the decoding SCI is located
  • P' rsvp_RX is the resource reservation obtained according to the decoding SCI
  • the cycle indication value P rsvp_RX corresponds to the number of logical time slots in the resource pool.
  • a third processing module and a fourth processing module are Specifically used when determining the number of target resource reservations:
  • the device 1200 also includes:
  • the seventh processing module is configured to not perform the operation of determining the number of target resource reservations when the second condition is met;
  • the second condition is that before the reference time, after decoding the i P rsvp_RX corresponding to the SCI, any one of the corresponding SCIs is successfully decoded, and the successfully decoded SCI indicates that resources will not be reserved periodically in the future; wherein the reference The time is the time of the time domain resource where the first candidate resource is located minus or not minus the processing time, i is an integer and i ⁇ 1.
  • the second embodiment of the present disclosure corresponds to the method of the above-mentioned first embodiment, and all the implementation means in the above-mentioned first embodiment are applicable to the embodiment of the resource selection device for the direct link, and can also achieve the same technical effect.
  • the fourth embodiment of the present disclosure further provides a user equipment, including:
  • the transceiver 1310 is connected with the bus interface, and is used for receiving and sending data under the control of the processor 1300; the processor 1300 is used for reading the program in the memory 1320.
  • the processor 1300 is configured to perform the following steps when the UE expects to perform resource selection or determines to perform resource selection:
  • the target operation includes: at least one of determining a resource sensing method, determining an existing resource sensing result, determining a candidate resource set, determining a partial sensing opportunity, and performing partial sensing;
  • the processor 1300 is configured to determine the candidate resource set according to target information when determining the candidate resource set; wherein the target information includes at least one of the following:
  • the perception result acquired by the discontinuous reception DRX activation time corresponds to the resource location where resource exclusion can be performed
  • the sensing results obtained by the periodic partial sensing PBPS correspond to resource locations where resource exclusion can be performed.
  • the processor 1300 when the target information includes the completion time of the CPS, is configured to: when determining the candidate resource set according to the target information:
  • the determination condition of the resource selection window frontier determination parameter T1 is: 0 ⁇ T1 ⁇ T proc,1 ;
  • the determination condition of the resource selection window frontier determination parameter T1 is: TB ⁇ T1 ⁇ TB+T proc,1 ;
  • T proc,1 is resource selection time and transmission preparation time
  • TB is a parameter determined by the trailing edge of the CPS window.
  • the processor 1300 when the target information includes the completion time of the CPS, is configured to: when determining the candidate resource set according to the target information:
  • the conditions for determining the parameter T1 at the front edge of the resource selection window are any of the following:
  • the determination condition of the resource selection window frontier determination parameter T1 is any of the following:
  • T proc,0 is the perception processing time
  • T proc,1 is the resource selection time and transmission preparation time
  • TB is the parameter for determining the trailing edge of the CPS window.
  • T2 is a parameter for determining the rear edge of the resource selection window
  • L is the minimum time of the resource selection window or the minimum number of resources in the time domain.
  • the target information includes: the sensing result acquired at the DRX activation time corresponds to a resource location where resource exclusion can be performed, and/or the sensing result acquired by the PBPS corresponds to a resource location where resource exclusion can be performed
  • the processor 1300 is further configured to: the sensing result acquired according to the DRX activation time corresponds to a resource location where resource exclusion can be performed, and/or the sensing result acquired by the PBPS corresponds to a resource location where resource exclusion can be performed, Determine the candidate resource set; determine the first time-domain candidate resource in the determined candidate resource set and consider the time-domain position of the processing time as the position of n+TB; wherein, the consideration of the processing time includes: subtracting or Processing time is not subtracted; n+TB is the trailing edge of the CPS window.
  • the processor 1300 before performing resource exclusion, the processor 1300 is further configured to:
  • the value of the parameter K is determined according to the sensing execution times in the sensing timing determination parameters, and the target resource reservation times is determined.
  • the value of K is a configuration indication or a pre-configuration indication.
  • the processor 1300 determines the value of the parameter K according to the number of sensing execution times in the sensing timing determination parameter and determines the number of target resource reservations, it is specifically used to:
  • N is any of the following:
  • the value corresponding to the current sensing opportunity within the sensing opportunity determined by the bitmap of the K value.
  • the processor 1300 before performing resource exclusion, the processor 1300 is further configured to:
  • the periodic reservation information obtained by decoding the SCI indicates resource reservation in the next period, determine that the target periodic resource reservation times is the first value, and the
  • P rsvp_RX is the resource reservation period indication value obtained by decoding the SCI.
  • the processor 1300 is also used for:
  • the resource reservation cycle indication value P rsvp_RX obtained by decoding the SCI is less than or equal to the first threshold value T scal , the number of periodic reservations indicated by the received SCI is determined to be Q times the target number of periodic reservations;
  • T2 is a parameter for determining the trailing edge of the resource selection window
  • the processor 1300 is also used for:
  • the number of periodic reservations indicated by the received SCI is determined as any of the following:
  • the first condition includes:
  • T2 is a parameter for determining the trailing edge of the resource selection window
  • n' is the logical time slot corresponding to the service packet arrival time or the logical time slot of the first resource pool closest to the service arrival time
  • m is the time slot where the decoding SCI is located
  • P' rsvp_RX is the resource reservation obtained according to the decoding SCI
  • the cycle indication value P rsvp_RX corresponds to the number of logical time slots in the resource pool.
  • the processor 1300 when determining the target resource reservation times, is further configured to:
  • the processor 1300 is also used for:
  • the second condition is that before the reference time, after decoding the i P rsvp_RX corresponding to the SCI, any one of the corresponding SCIs is successfully decoded, and the successfully decoded SCI indicates that resources will not be reserved periodically in the future; wherein the reference The time is the time of the time domain resource where the first candidate resource is located minus or not minus the processing time, i is an integer and i ⁇ 1.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1300 and various circuits of the memory represented by the memory 1320 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 1310 may be a plurality of elements, including a transmitter and a transceiver, providing a means for communicating with various other devices over a transmission medium.
  • the user interface 1330 may also be an interface capable of connecting externally and internally to required devices, and the connected devices include but are not limited to keypads, displays, speakers, microphones, joysticks, and the like.
  • the processor 1300 is responsible for managing the bus architecture and general processing, and the memory 1320 can store data used by the processor 1300 when performing operations.
  • the present disclosure provides a user equipment UE, which, when the UE expects to perform resource selection or determines to perform resource selection, determines resource sensing methods, determines existing resource sensing results, determines candidate resource sets, determines partial sensing opportunities, and performs partial sensing at least one of ; and perform resource exclusion and resource selection.
  • resource sensing methods existing resource sensing results, candidate resource sets, and partial sensing timings during the resource selection process, it is possible to ensure that the existing sensing results are reused as much as possible under the power-saving mechanism. Use more sufficient sensing results when selecting resources, minimize unnecessary sensing as much as possible, and ensure the accuracy of resource selection and reliability of transmission.
  • each component or each step can be decomposed and/or reassembled. These decompositions and/or recombinations should be considered equivalents of the present disclosure. Also, the steps for executing the above series of processes can naturally be executed in chronological order according to the illustrated order, but they are not necessarily executed in chronological order, and some steps can be executed in parallel or independently of each other.
  • the object of the present disclosure can also be achieved by running a program or a group of programs on any computing device.
  • the computing device may be a known general-purpose device. Therefore, the object of the present disclosure can also be achieved only by providing a program product including program codes for realizing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure. Obviously, the storage medium may be any known storage medium or any storage medium developed in the future. It should also be pointed out that, in the apparatus and method of the present disclosure, obviously, each component or each step can be decomposed and/or reassembled. These decompositions and/or recombinations should be considered equivalents of the present disclosure. Also, the steps for performing the above series of processes may naturally be performed in chronological order in the order described, but need not necessarily be performed in chronological order. Certain steps may be performed in parallel or independently of each other.
  • the division of the above modules is only a division of logical functions, and may be fully or partially integrated into a physical entity or physically separated during actual implementation.
  • these modules can all be implemented in the form of calling software through processing elements; they can also be implemented in the form of hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in the form of hardware.
  • the determining module may be a separate processing element, or may be integrated in a chip of the above-mentioned device.
  • it may be stored in the memory of the above-mentioned device in the form of program code, and a certain processing element of the above-mentioned device may Call and execute the functions of the modules identified above.
  • each step of the above method or each module above can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • each module, unit, subunit or submodule may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or, one or Multiple microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种直通链路的资源选择方法、装置及用户设备。方法应用于用户设备UE,包括:在所述UE预期执行资源选择或确定执行资源选择时,执行以下步骤:执行目标操作;其中,所述目标操作包括:确定资源感知方式、确定已有的资源感知结果、确定候选资源集合、确定部分感知时机并执行部分感知中的至少一项;执行资源排除;执行资源选择。

Description

直通链路的资源选择方法、装置及用户设备
相关申请的交叉引用
本公开主张在2021年9月27日在中国提交的中国专利申请号No.202111138621.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种直通链路的资源选择方法、装置及用户设备。
背景技术
直通链路通信的应用场景包括但不限于车联网(Vehicle to Everything,V2X)、公共安全、商用场景等,其中V2X是最为典型的应用场景之一。V2X支持车对车(Vehicle to Vehicle,V2V)、车对设施(Vehicle to Infrastructure,V2I)、车对行人(Vehicle to Pedestrian,V2P)和车对网络(Vehicle to Network,V2N)等通信方式,针对行人无法确保持续充足供电的V2X设备(如行人手持终端,(Pedestrian User Equipment,P-UE)(Vulnerable Road Users,VRU)),或者需要进行节能的情况(如车辆续航能力不足或者路侧设备在车辆数量较少时不必持续工作),上述情况下需要考虑用户设备(User Equipment,UE)节电机制。
目前,对于直通链路应用场景而言,节电终端应用场景一般为节点密度较高的城市场景,资源感知结果受限加之潜在节点密度高造成拥塞,将使得部分感知的可靠性难以有效确保,为此需要设计合理的直通链路资源选择方法,以实现在节电机制下,尽可能确保资源选择的准确性和传输的可靠性。
发明内容
本公开提供一种直通链路的资源选择方法、装置及用户设备,解决了在节电机制下,不能确保资源选择的准确性和传输的可靠性的问题。
第一方面,本公开的实施例提供一种直通链路的资源选择方法,应用于 用户设备UE,包括:
在所述UE预期执行资源选择或确定执行资源选择时,执行以下步骤:
执行目标操作;其中,所述目标操作包括:确定资源感知方式、确定已有的资源感知结果、确定候选资源集合、确定部分感知时机并执行部分感知中的至少一项;
执行资源排除;
执行资源选择。
第二方面,本公开的实施例提供一种用户设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所述直通链路的资源选择方法的步骤。
第三方面,本公开的实施例提供一种直通链路的资源选择装置,应用于用户设备UE,包括:
第一处理模块,用于在所述UE预期执行资源选择或确定执行资源选择时,执行以下步骤:
执行目标操作;其中,所述目标操作包括:确定资源感知方式、确定已有的资源感知结果、确定候选资源集合、确定部分感知时机并执行部分感知中的至少一项;
执行资源排除;
执行资源选择。
第四方面,本公开的实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如第一方面所述直通链路的资源选择方法的步骤。
本公开的上述技术方案的有益效果是:
上述方案中,用户设备UE在所述UE预期执行资源选择或确定执行资源选择时,执行以下步骤:执行目标操作;其中,所述目标操作包括:确定资源感知方式、确定已有的资源感知结果、确定候选资源集合、确定部分感知时机并执行部分感知中的至少一项;执行资源排除;以及执行资源选择。通过在资源选择的过程中,考虑资源感知方式、已有的资源感知结果、候选资源集合、部分感知时机,能够保证在节电机制下,确保资源选择的准确性和 传输的可靠性。
附图说明
图1表示本公开实施例的直通链路的资源选择方法的流程图;
图2表示本公开实施例的周期性资源预约示意图之一;
图3表示本公开实施例的周期性资源预约示意图之二;
图4表示本公开实施例的周期性资源预约示意图之三;
图5表示本公开实施例的周期性资源预约示意图之四;
图6表示本公开实施例的周期性资源预约示意图之五;
图7表示本公开实施例的周期性资源预约示意图之六;
图8表示本公开实施例的周期性资源预约示意图之七;
图9表示本公开实施例的周期性资源预约示意图之八;
图10表示本公开实施例的周期性资源预约示意图之九;
图11表示本公开实施例的周期性资源预约示意图之十;
图12表示本公开实施例的直通链路的资源选择装置的结构框图;
图13表示本公开实施例的用户设备的硬件结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。在下面的描述中,提供诸如具体的配置和组件的特定细节仅仅是为了帮助全面理解本公开的实施例。因此,本领域技术人员应该清楚,可以对这里描述的实施例进行各种改变和修改而不脱离本公开的范围和精神。另外,为了清楚和简洁,省略了对已知功能和构造的描述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本公开的各种实施例中,应理解,下述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常可互换使用。
在本公开所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本公开实施例中,接入网的形式不限,可以是包括宏基站(Macro Base Station)、微基站(Pico Base Station)、3G移动基站(Node B)、增强型基站(eNB)、家庭增强型基站(Femto eNB或Home eNode B或Home eNB或HeNB)、中继站、接入点、远端射频模块(Remote Radio Unit,RRU)、射频拉远头(Remote Radio Head,RRH)等的接入网。用户终端可以是移动电话(或手机),或者其他能够发送或接收无线信号的设备,包括用户设备、个人数字助理(Personal Digital Assistant,PDA)、无线调制解调器、无线通信装置、手持装置、膝上型计算机、无绳电话、无线本地回路(Wireless Local Loop,WLL)站、能够将移动信号转换为WiFi信号的客户终端(Customer Premise Equipment,CPE)或移动智能热点、智能家电、或其他不通过人的操作就能自发与移动通信网络通信的设备等。
下面,首先对本公开中涉及到的技术术语进行简单介绍。
一、周期性部分感知(Periodic-Based Partial Sensing,PBPS)和持续部分感知(Contiguous Partial Sensing,CPS)
CPS主要用于资源选择过程中,同一传输块(Transport Block,TB)中被同一TB先前传输指示预留/占用的资源进行排除。PBPS主要用于在资源选择过程中,对候选资源中已被周期性预留/占用的资源进行排除。其中,PBPS的感知(sensing)时机(为候选资源之前P reserve×K的资源位置)的确定基于两类确定参数:周期确定参数(P reserve)和对应周期的次数确定参数(K),其中,P reserve是为了方便描述、并不局限于定义为该名称,K也同理。
二、3GPP长期演进(Long Term Evolution,LTE)-V2X基于周期性业务传输支持部分感知机制,但仅针对周期性传输的典型业务进行部分感知和资 源选择。
三、相关技术中的周期性预约机制
对于感知操作,解码SCI获得的资源预留信息,如果为周期性预约,相关机制的定义是SCI指示的周期性预约为下1次;
额外的,对于P rsvp_RX<T scal的情况,如果满足条件(n'-m≤P' rsvp_RX),其周期性预约次数为
Figure PCTCN2022114800-appb-000001
次,T scal=T2,P rsvp_RX为SCI解码获得的资源预留周期,n'为业务包到达时刻对应的逻辑时隙或者业务到达时刻之后最近的第一个资源池的逻辑时隙,m为解码SCI所在的时刻,T2为资源选择窗后沿确定参数,P' rsvp_RX为根据解码SCI获得的资源预留周期指示值P rsvp_RX对应折算在资源池内的逻辑时隙个数。
对于非节电机制,UE执行全感知(full sensing),能够对感知窗口中的所有资源位置进行感知,因此能够有效保证可靠性。对于节电机制而言,部分感知只能获得有限的感知结果,特别是对于V2X场景而言,节电终端应用场景一般为节点密度较高的城市场景,感知结果受限加之潜在节点密度高造成拥塞,将使得部分感知的可靠性难以有效确保,为此,需要考虑对预约机制进行增强。
具体地,本公开的实施例提供了一种直通链路的资源选择方法、装置及用户设备,解决了相关技术中在节电机制下,不能确保资源选择的准确性和传输的可靠性的问题。
第一实施例
如图1所示,本公开的实施例提供了一种直通链路的资源选择方法,应用于用户设备UE,在所述UE预期执行资源选择或确定执行资源选择时,执行以下步骤:
步骤11,执行目标操作;其中,所述目标操作包括:确定资源感知方式、确定已有的资源感知结果、确定候选资源集合、确定部分感知时机并执行部分感知中的至少一项;
该步骤中,已有的资源感知结果可以包括:其他直通链路进程的周期性部分感知PBPS获取的感知结果、其他直通链路进程的CPS获取的感知结果、非连续接收DRX激活时间获取的感知结果。
步骤12,执行资源排除;
步骤13,执行资源选择。
该实施例中,用户设备UE在所述UE预期执行资源选择或确定执行资源选择时,执行确定资源感知方式、确定已有的资源感知结果、确定候选资源集合、确定部分感知时机并执行部分感知中的至少一项;以及执行资源排除和资源选择。通过在资源选择的过程中,考虑资源感知方式、已有的资源感知结果、候选资源集合、部分感知时机,能够保证在节电机制下,尽可能多地复用已有的感知结果、尽可能多地在资源选择时使用更充分的感知结果、尽可能少地重复执行不必要的感知、确保资源选择的准确性和传输的可靠性。
在一实施例中,步骤11中的确定候选资源集合,包括:
根据目标信息,确定候选资源集合;其中,所述目标信息包括以下至少一项:
持续部分感知CPS的完成时间;
非连续接收DRX激活时间获取的感知结果对应可进行资源排除的资源位置;
周期性部分感知PBPS获取的感知结果对应可进行资源排除的资源位置。
上述实施例中,节电机制下工作的直通链路UE,当媒体接入控制(Media Access Control,MAC)实体确定为业务包执行单个MAC协议数据单元(Protocol Data Unit,PDU)的资源选择时,根据CPS完成时间、DRX激活时间获取的感知结果对应可进行资源排除的资源位置、PBPS获取的感知结果对应可进行资源排除的资源位置的至少一种确定候选资源集合,通过考虑多种可用感知结果、多种考虑候选资源对齐可感知资源、尽可能多地复用已有的感知结果、尽可能多地在资源选择时使用更充分的感知结果、尽可能少地重复执行不必要的感知,确定CPS候选资源,能够保证节电性能和可靠性。
具体的,根据所述目标信息,确定候选资源集合包括以下情况:
情况一、在所述目标信息包括CPS的完成时间的情况下,根据所述目标信息,确定候选资源集合包括:
方式1:
当TB<0或者TB=0的情况下,资源选择窗前沿确定参数T1的确定条 件为:0≤T1≤T proc,1
当TB>0的情况下,资源选择窗前沿确定参数T1的确定条件为:TB≤T1≤TB+T proc,1
其中,T proc,1为资源选择时间和发送准备时间;TB为CPS窗口后沿确定参数。
进一步的,T2>T1或者T2≥T1+L;
其中,T2为资源选择窗后沿确定参数,L为资源选择窗最小时间或者最小时域资源个数。
需要指出的是,该方式1中,CPS执行时间为[n+TA,n+TB];其中,CPS窗口中最后T proc,0的时间内,可以考虑感知处理时间不具有感知结果。即感知处理时间T proc,0被确定为包括在CPS窗口内,即感知处理时间包括在[n+TA,n+TB]内。
方式2:
当TB<0或者TB=0的情况下,资源选择窗前沿确定参数T1的确定条件为以下任一种:
0≤T1≤T proc,0+T proc,1
T proc,0≤T1≤T proc,0+T proc,1
当TB>0的情况下,资源选择窗前沿确定参数T1的确定条件为以下任一种:
TB≤T1≤TB+T proc,0+T proc,1
TB+T proc,0≤T1≤TB+T proc,0+T porc,1
其中,T proc,0为感知处理时间;T porc,1为资源选择时间和发送准备时间;TB为CPS窗口后沿确定参数。
进一步的,T2>T1或者T2≥T1+L;
其中,T2为资源选择窗后沿确定参数,L为资源选择窗最小时间或者最小时域资源个数。
需要指出的是,该方式1中,CPS执行时间为[n+TA,n+TB];其中,CPS窗口不包括考虑感知处理时间、允许不具有感知结果的资源。即感知处理时间T proc,0被确定为不包括在CPS窗口内,即不包括在[n+TA,n+TB]内。
情况二,在所述目标信息包括:所述DRX激活时间获取的感知结果对应可进行资源排除的资源位置,和/或,所述PBPS获取的感知结果对应可进行资源排除的资源位置的情况下,根据所述目标信息,确定候选资源集合包括:
根据所述DRX激活时间获取的感知结果对应可进行资源排除的资源位置,和/或,所述PBPS获取的感知结果对应可进行资源排除的资源位置,确定候选资源集合;
将已确定的候选资源集合中的第一个时域候选资源且考虑处理时间的时域位置,确定为n+TB的位置;
其中,所述考虑处理时间包括:减去或者不减去处理时间;n+TB为CPS窗口后沿。
在一实施例中,根据所述DRX激活时间获取的感知结果对应可进行资源排除的资源位置,和/或,所述PBPS获取的感知结果对应可进行资源排除的资源位置,确定候选资源集合,包括以下方式:
方式1
将DRX激活时间获取的感知结果对应可进行资源排除的资源位置中满足以下条件的目标资源,优先确定为候选资源集合中的候选资源:
n+T1≤目标资源所在时域位置≤n+剩余时延预算(remaining分组时延预算(Packet Delay Budget,PDB));
方式2
将PBPS获取的感知结果对应可进行资源排除的资源位置中满足以下条件的目标资源,优先确定为候选资源集合中的候选资源:
n+T1≤目标资源所在时域位置≤n+剩余时延预算(remaining PDB);
方式3
DRX激活时间获取的感知结果对应可进行资源排除的资源位置中或者PBPS获取的感知结果对应可进行资源排除的资源位置中满足以下条件的目标资源,优先确定为候选资源集合中的候选资源:
n+T1≤目标资源所在时域位置≤n+剩余时延预算(remaining PDB);
上述情况二中的三种方式中,目标资源的时域位置为距离n+T1最近的N个时域位置;其中,N为正整数,n+T1为资源选择窗的前沿;T1为资源选 择窗前沿确定参数。
情况三,当TB<0或者TB=0的情况下,所述方法还包括:
在业务包到达时,若已有的CPS感知结果满足需求,则确定候选资源集合时,不考虑与PBPS的感知结果对应的候选资源对齐,和/或,不考虑与DRX激活时间的感知结果对应的候选资源对齐;
或者
随机确定直接执行资源选择;
或者
按照上述情况二中的方式1至3,确定候选资源集合。
该情况三中,基于降低时延和节能的角度,业务到达时已经具备了足够的CPS的感知结果,同时又存在可被使用的PBPS,和/或,DRX激活时间的感知结果,则用户设备UE直接执行资源选择,不考虑PBPS和/或DRX激活时间的感知结果。
上述实施例中,考虑已有的感知结果尽量复用、CPS的候选集合与已有PBPS可对应执行预留资源排除的资源尽量对齐、CPS的候选集合与已有CPS可对应执行预留资源排除的资源尽量对齐以及CPS的候选集合与非连续接收DRX可对应执行预留资源排除的资源对齐等一种或者多种操作,能够确定出CPS对应的候选资源集合的同时,确保传输可靠性。
此外,从另一个角度考虑,在特定情况下,例如低时延传输和/或高可靠需求下,为了避免确定的候选资源集合与其他进程潜在的候选资源集合交叠,造成潜在被选择出的传输资源因为与其他进程的传输资源时域上交叠导致由于不能并发而丢弃发送或者重选资源、或者执行并发传输但需要降低功率等问题,还可执行另外一种方式:
在确定候选资源集合时,根据已有PBPS可对应执行预留资源排除的资源位置、已有CPS可对应执行预留资源排除的资源位置、非连续接收DRX可对应执行预留资源排除的资源位置,将上述三类资源至少之一在确定候选资源集合时从候选资源集合中排除。
在一实施例中,在步骤12之前,所述方法还包括以下两种确定目标资源预留次数的方式:
方式A1:
在解码SCI获得的周期性预留信息中指示下个周期进行资源预留的情况下,根据感知时机确定参数中的感知执行次数确定参数K值,确定目标资源预留次数。
其中,所述K值为配置指示或者预配置指示的。
需要指出的是,目标资源预留次数为在解码SCI获得的周期性预留信息中指示下个周期进行资源预留的情况下、假定或者按照协议约定认为的SCI指示的周期性预留次数。其中,若不配置K,则默认为按照PBPS周期对应执行感知为按照PBPS参考时刻确定的最近1次对应资源上执行感知,可以是协议约定或者默认为缺省即相当于K=1。
该实施例中,在基于PBPS进行资源选择时,基于额外配置的感知时机确定参数K进行SCI预约和资源选择机制增强,能够可能提升节电机制下的资源选择的准确性和传输的可靠性。所述额外配置,即所述PBPS感知默认执行方式即按照PBPS周期对应执行感知为按照PBPS参考时刻确定的最近1次对应资源上执行感知的方式外,额外具有对应K的预配置信令或者网络配置信令时,例如信令名称可以但不限于为额外的周期性感知时机次数确定参数(additionalPeriodicSensingOccasion)。
具体的,根据感知时机确定参数中的感知执行次数确定参数K值,确定目标资源预留次数,包括:
确定所述目标周期性资源预留次数为所述SCI指示的周期性预留次数的N倍;其中,所述N为以下(1)至(6)中的任意一项:
(1)N为所述K值;
即,当P rsvp_TX≠0,接收到SCI解码的P rsvp_RX≠0,且(预)配置了PBPS时机确定参数中的对应感知周期的感知次数参数K>1的情况下,假定或者按照协议约定认为该SCI指示的周期性资源预留次数为相关机制定义SCI指示预留次数的K倍。
示例性的,如图2和图3所示,其分别示出了K=3和K=4的假定或者按照协议约定认为SCI指示的周期性预留次数(目标周期性预留次数)的示意图。
(2)N为所述K值的集合中的最大值;
即,当P rsvp_TX≠0,接收到SCI解码的P rsvp_RX≠0,且(预)配置了PBPS时机确定参数中的对应感知周期的感知次数参数K max>1的情况下,假定或者按照协议约定认为该SCI指示的周期性资源预留次数为相关机制定义SCI指示预留次数的K max倍。
示例性的,如图4所示,其示出了K={2,3}这一集合时,假定或者按照协议约定认为SCI指示的周期性预留次数(目标周期性预留次数)为K max=3的示意图。
(3)N为所述K值的比特图中指示的最大值;
即,当P rsvp_TX≠0,接收到SCI解码的P rsvp_RX≠0,且(预)配置了PBPS时机确定参数中的对应感知周期的感知次数参数K max>1的情况下,若K值按照比特图(bitmap)配置,例如1110000000表示K={1,2,3},或者0000000111表示K={1,2,3}。则假定或者按照协议约定认为该SCI指示的周期性资源预留次数为相关机制定义SCI指示预留次数的K max倍。
注:bitmap并不限定为10位,也可为其他比特(bit)位,例如16位等,也并不限定具体位数对应的具体指示含义。
示例性的,如图5所示,其示出了K=1110000000时,假定或者按照协议约定认为SCI指示的周期性预留次数(目标周期性预留次数)为K max=3的示意图。
(4)N为根据所述K值确定的感知时机内、对应当前感知时机的值;
即,当P rsvp_TX≠0,接收到SCI解码的P rsvp_RX≠0,且(预)配置了PBPS时机确定参数中的对应感知周期的感知次数参数K max>1的情况下,若当前对应的感知时机为P reserve×i,则假定或者按照协议约定认为该SCI指示的周期性资源预留次数为相关机制定义SCI指示预留次数的i倍。
示例性的,如图6所示,其示出了K=3时,假定或者按照协议约定认为SCI指示的周期性预留次数(目标周期性预留次数)为K=3的示意图。
(5)N为所述K值的集合中对应当前感知时机的值;
即,当P rsvp_TX≠0,接收到SCI解码的P rsvp_RX≠0,且(预)配置了PBPS时机确定参数中的对应感知周期的感知次数参数K max>1的情况下,若当前 对应的感知时机为P reserve×i,则假定或者按照协议约定认为该SCI指示的周期性资源预留次数为相关机制定义SCI指示预留次数的i倍。
示例性的,如图7所示,其示出了K={2,3}时,假定或者按照协议约定认为SCI指示的周期性预留次数(目标周期性预留次数)为K max=3的示意图。
(6)N为所述K值的比特图确定的感知时机内、对应当前感知时机的值。
即,当P rsvp_TX≠0,接收到SCI解码的P rsvp_RX≠0,且(预)配置了PBPS时机确定参数中的对应感知周期的感知次数参数K max>1的情况下,若K值按照bitmap配置,例如1110000000表示K={1,2,3},或者0000000111表示K={1,2,3},则假定或者按照协议约定认为该SCI指示的周期性资源预留次数为相关机制定义SCI指示预留次数的K max倍。
注:bitmap并不限定为10位,也可为其他bit位,例如16位等,也并不限定具体位数对应的具体指示含义。
示例性的,如图8所示,其示出了K=1110000000时,假定或者按照协议约定认为SCI指示的周期性预留次数(目标周期性预留次数)为K max=3的示意图。
方式A2:
在解码SCI获得的周期性预留信息中指示下个周期进行资源预留的情况下,确定目标周期性资源预留次数为第一值,且所述
Figure PCTCN2022114800-appb-000002
Figure PCTCN2022114800-appb-000003
其中,P rsvp_RX为解码SCI获得的资源预留周期指示值。
即,当P rsvp_TX≠0,接收到SCI解码的P rsvp_RX≠0,且(预)配置了PBPS时机确定参数中的对应感知周期的感知次数参数K>1或K max>1的情况下,假定或者按照协议约定认为该SCI指示的周期性资源预留次数为相关机制定义SCI指示预留次数的
Figure PCTCN2022114800-appb-000004
Figure PCTCN2022114800-appb-000005
倍,即预留次数可确保按照SCI指示的P rsvp_RX值预留资源可以映射到参考时间之后。
如图9所示,接收到SCI的时刻为n-175,P rsvp_RX=100,部分感知资源的参考时刻为n+20,则
Figure PCTCN2022114800-appb-000006
其中,n为业务包到达时刻。
在一实施例中,上述方法还包括:
在解码SCI获得的资源预留周期指示值P rsvp_RX小于或者等于第一门限值T scal时,将接收SCI指示的周期性预留次数假定或者按照协议约定认为是所述目标周期性预留次数的Q倍;
其中,所述第一门限值T scal=T2或者T scal=100ms,T2为资源选择窗口后沿确定参数,
Figure PCTCN2022114800-appb-000007
示例性的,如图10所示,目标周期性预留次数为2次,
Figure PCTCN2022114800-appb-000008
则将接收SCI指示的周期性预留次数假定或者按照协议约定认为是2×2=4次。
在一实施例中,上述方法还包括:
在解码SCI获得的资源预留周期指示值P rsvp_RX小于或者等于第一门限值T scal,且满足第一条件的情况下,将接收SCI指示的周期性预留次数假定或者按照协议约定认为是以下任意一种:
确定为Q次;
当目标周期性预留次数大于或者等于Q的情况下,确定为Q次;
当目标周期性预留次数大于或者等于Q的情况下,确定为目标周期性预留次数的Q倍;
当目标周期性预留次数小于Q的情况下,确定为Q次;
其中,所述第一条件包括:
n'-m≤P' rsvp_RX
其中,所述第一门限值T scal=T2或者T scal=100ms,T2为资源选择窗口后沿确定参数,
Figure PCTCN2022114800-appb-000009
n'为业务包到达时刻对应的逻辑时隙或者业务到达时刻之后最近的第一个资源池的逻辑时隙;m为解码SCI所在的时隙;P' rsvp_RX为根据解码SCI获得的资源预留周期指示值P rsvp_RX对应折算在资源池内的逻辑时隙个数。
示例性的,如图11所示,左侧的SCI由于不符合第一条件(n'-m≤P' rsvp_RX),则将接收SCI指示的周期性预留次数假定为折算后的周期性预留次数的K倍,即为:预约折算次数(2)×K(2)=4次;右侧的SCI由于符合第一条件(n'-m≤P' rsvp_RX),P' rsvp_RX=P rsvp_RX,则将接收SCI指示的周期性预留次数假定为折算后的周期性预留次数Q,即为:预约次数仅为折算预留次数Q(等于2次), 不再乘以K。在一实施例中,确定目标资源预留次数,包括:
当信道忙率CBR测量值大于或等于CBR门限值的情况下,确定目标资源预留次数。
该实施例中,在信道忙率CBR测量值大于或等于CBR门限值的情况下,确定目标资源预留次数。当信道并不拥塞时,潜在的感知或者解码可靠性较高,只有较小概率会出现SCI解码失败的情况,所以这种情况不进行部分感知下的SCI指示资源预留机制增强潜在出现可靠性显著下降的概率较低,可以不必按照增强方案进行处理。而仅在信道忙率CBR测量值大于或等于CBR门限值的情况下,即信道拥塞时,才按照所述的增强方案确定目标资源预留次数。
在一实施例中,上述方法还包括:
在满足第二条件的情况下,不执行确定目标资源预留次数的操作;
其中,所述第二条件为在参考时间之前,当解码SCI对应的i个P rsvp_RX之后,任一个对应SCI被成功解码、且成功解码的SCI指示后续不再周期性预约资源;其中所述参考时间为第一个候选资源所在时域资源减去或者不减去处理时间的时间,i为整数且i≥1。
该实施例具体包括:根据物理层的源地址(Source身份标识号(Identity Document,ID))和目的地址(Destination ID)简化处理。即:当所述解码SCI对应的i个周期(P rsvp_RX)之后,在对应资源位置上,有物理层source ID和Destination ID相同的SCI被成功解码,且指示后续不再周期性预约资源即P rsvp_RX=0,则前述SCI的扩展预约不再有效。
第二实施例
如图12所示,本公开实施例提供一种直通链路的资源选择装置1200,应用于用户设备UE,包括:
第一处理模块1201,用于在所述UE预期执行资源选择或确定执行资源选择时,执行以下步骤:
执行目标操作;其中,所述目标操作包括:确定资源感知方式、确定已有的资源感知结果、确定候选资源集合、确定部分感知时机并执行部分感知中的至少一项;
执行资源排除;
执行资源选择。
在一些实施方式中,所述第一处理模块1201包括:
第一确定子模块,用于根据目标信息,确定候选资源集合;其中,所述目标信息包括以下至少一项:
持续部分感知CPS的完成时间;
非连续接收DRX激活时间获取的感知结果对应可进行资源排除的资源位置;
周期性部分感知PBPS获取的感知结果对应可进行资源排除的资源位置。
在一些实施方式中,在所述目标信息包括CPS的完成时间的情况下,第一确定子模块具体用于:
当TB<0或者TB=0的情况下,资源选择窗前沿确定参数T1的确定条件为:0≤T1≤T proc,1
当TB>0的情况下,资源选择窗前沿确定参数T1的确定条件为:TB≤T1≤TB+T proc,1
其中,T proc,1为资源选择时间和发送准备时间;TB为CPS窗口后沿确定参数。
在一些实施方式中,在所述目标信息包括CPS的完成时间的情况下,第一确定子模块具体用于:
当TB<0或者TB=0的情况下,资源选择窗前沿确定参数T1的确定条件为以下任一种:
0≤T1≤T proc,0+T proc,1
T proc,0≤T1≤T proc,0+T proc,1
当TB>0的情况下,资源选择窗前沿确定参数T1的确定条件为以下任一种:
TB≤T1≤TB+T proc,0+T proc,1
TB+T proc,0≤T1≤TB+T proc,0+T porc,1
其中,T proc,0为感知处理时间;T proc,1为资源选择时间和发送准备时间;TB为CPS窗口后沿确定参数。
在一些实施方式中,T2>T1或者T2≥T1+L;其中,T2为资源选择窗后沿确定参数,L为资源选择窗最小时间或者最小时域资源个数。
在一些实施方式中,当TB<0或者TB=0的情况下,所述装置还包括:
第二处理模块,用于在业务包到达时,若已有的CPS感知结果满足需求,则确定候选资源集合时,不考虑与PBPS的感知结果对应的候选资源对齐,和/或,不考虑与DRX激活时间的感知结果对应的候选资源对齐。
在一些实施方式中,在所述目标信息包括:所述DRX激活时间获取的感知结果对应可进行资源排除的资源位置,和/或,所述PBPS获取的感知结果对应可进行资源排除的资源位置的情况下,所述第一确定子模块还包括:
第一确定单元,用于根据所述DRX激活时间获取的感知结果对应可进行资源排除的资源位置,和/或,所述PBPS获取的感知结果对应可进行资源排除的资源位置,确定候选资源集合;
第二确定单元,用于将已确定的候选资源集合中的第一个时域候选资源且考虑处理时间的时域位置,确定为n+TB的位置;
其中,所述考虑处理时间包括:减去或者不减去处理时间;n+TB为CPS窗口后沿。
在一些实施方式中,所述装置1200还包括:
第三处理模块,用于在解码SCI获得的周期性预留信息中指示下个周期进行资源预留的情况下,根据感知时机确定参数中的感知执行次数确定参数K值,确定目标资源预留次数。
在一些实施方式中,所述K值为配置指示或者预配置指示的。
在一些实施方式中,第三处理模块包括:
第二确定子模块,用于确定所述目标周期性资源预留次数为所述SCI指示的周期性预留次数的N倍;其中,所述N为以下任意一项:
所述K值;
所述K值的集合中的最大值;
所述K值的比特图中指示的最大值;
根据所述K值确定的感知时机内、对应当前感知时机的值;
所述K值的集合中对应当前感知时机的值;
所述K值的比特图确定的感知时机内、对应当前感知时机的值。
在一些实施方式中,所述装置1200还包括:
第四处理模块,用于在解码SCI获得的周期性预留信息中指示下个周期进行资源预留的情况下,确定目标周期性资源预留次数为第一值,且所述
Figure PCTCN2022114800-appb-000010
Figure PCTCN2022114800-appb-000011
其中,P rsvp_RX为解码SCI获得的资源预留周期指示值。
在一些实施方式中,所述装置1200还包括:
第五处理模块,用于在解码SCI获得的资源预留周期指示值P rsvp_RX小于或者等于第一门限值T scal时,将接收SCI指示的周期性预留次数确定为所述目标周期性预留次数的Q倍;
其中,所述第一门限值T scal=T2或者T scal=100ms,T2为资源选择窗口后沿确定参数,
Figure PCTCN2022114800-appb-000012
在一些实施方式中,所述装置1200还包括:
第六处理模块,用于在解码SCI获得的资源预留周期指示值P rsvp_RX小于或者等于第一门限值T scal,且满足第一条件的情况下,将接收SCI指示的周期性预留次数确定为以下任意一种:
确定为Q次;
当目标周期性预留次数大于或者等于Q的情况下,确定为Q次;
当目标周期性预留次数大于或者等于Q的情况下,确定为目标周期性预留次数的Q倍;
当目标周期性预留次数小于Q的情况下,确定为Q次;
其中,所述第一条件包括:
n'-m≤P' rsvp_RX
其中,所述第一门限值T scal=T2或者T scal=100ms,T2为资源选择窗口后沿确定参数,
Figure PCTCN2022114800-appb-000013
n'为业务包到达时刻对应的逻辑时隙或者业务到达时刻之后最近的第一个资源池的逻辑时隙;m为解码SCI所在的时隙;P' rsvp_RX为根据解码SCI获得的资源预留周期指示值P rsvp_RX对应折算在资源池内的逻辑时隙个数。
在一些实施方式中,第三处理模块和第四处理模块。在确定目标资源预 留次数时具体用于:
当信道忙率CBR测量值大于或等于CBR门限值的情况下,确定目标资源预留次数。
在一些实施方式中,所述装置1200还包括:
第七处理模块,用于在满足第二条件的情况下,不执行确定目标资源预留次数的操作;
其中,所述第二条件为在参考时间之前,当解码SCI对应的i个P rsvp_RX之后,任一个对应SCI被成功解码、且成功解码的SCI指示后续不再周期性预约资源;其中所述参考时间为第一个候选资源所在时域资源减去或者不减去处理时间的时间,i为整数且i≥1。
本公开的第二实施例是与上述第一实施例的方法对应的,上述第一实施例中的所有实现手段均适用于该直通链路的资源选择装置的实施例中,也能达到相同的技术效果。
第三实施例
为了更好的实现上述目的,如图13所示,本公开的第四实施例还提供了一种用户设备,包括:
处理器1300;以及通过总线接口与所述处理器1300相连接的存储器1320,所述存储器1320用于存储所述处理器1300在执行操作时所使用的程序和数据,处理器1300调用并执行所述存储器1320中所存储的程序和数据。
其中,收发机1310与总线接口连接,用于在处理器1300的控制下接收和发送数据;处理器1300用于读取存储器1320中的程序。
具体的,所述处理器1300用于,在所述UE预期执行资源选择或确定执行资源选择时,执行以下步骤:
执行目标操作;其中,所述目标操作包括:确定资源感知方式、确定已有的资源感知结果、确定候选资源集合、确定部分感知时机并执行部分感知中的至少一项;
执行资源排除;
执行资源选择。
在一些实施方式中,处理器1300在确定候选资源集合时用于,根据目标 信息,确定候选资源集合;其中,所述目标信息包括以下至少一项:
持续部分感知CPS的完成时间;
非连续接收DRX激活时间获取的感知结果对应可进行资源排除的资源位置;
周期性部分感知PBPS获取的感知结果对应可进行资源排除的资源位置。
在一些实施方式中,在所述目标信息包括CPS的完成时间的情况下,处理器1300在根据所述目标信息,确定候选资源集合时,用于:
当TB<0或者TB=0的情况下,资源选择窗前沿确定参数T1的确定条件为:0≤T1≤T proc,1
当TB>0的情况下,资源选择窗前沿确定参数T1的确定条件为:TB≤T1≤TB+T proc,1
其中,T proc,1为资源选择时间和发送准备时间;TB为CPS窗口后沿确定参数。
在一些实施方式中,在所述目标信息包括CPS的完成时间的情况下,处理器1300在根据所述目标信息,确定候选资源集合时,用于:
当TB<0或者TB=0的情况下,资源选择窗前沿确定参数T1的确定条件为以下任一种:
0≤T1≤T proc,0+T proc,1
T proc,0≤T1≤T proc,0+T proc,1
当TB>0的情况下,资源选择窗前沿确定参数T1的确定条件为以下任一种:
TB≤T1≤TB+T proc,0+T proc,1
TB+T proc,0≤T1≤TB+T proc,0+T porc,1
其中,T proc,0为感知处理时间;T proc,1为资源选择时间和发送准备时间;TB为CPS窗口后沿确定参数。
在一些实施方式中,T2>T1或者T2≥T1+L;
其中,T2为资源选择窗后沿确定参数,L为资源选择窗最小时间或者最小时域资源个数。
在一些实施方式中,当TB<0或者TB=0的情况下,处理器1300还用于, 在业务包到达时,若已有的CPS感知结果满足需求,则确定候选资源集合时,不考虑与PBPS的感知结果对应的候选资源对齐,和/或,不考虑与DRX激活时间的感知结果对应的候选资源对齐。
在一些实施方式中,在所述目标信息包括:所述DRX激活时间获取的感知结果对应可进行资源排除的资源位置,和/或,所述PBPS获取的感知结果对应可进行资源排除的资源位置的情况下,处理器1300还用于,根据所述DRX激活时间获取的感知结果对应可进行资源排除的资源位置,和/或,所述PBPS获取的感知结果对应可进行资源排除的资源位置,确定候选资源集合;将已确定的候选资源集合中的第一个时域候选资源且考虑处理时间的时域位置,确定为n+TB的位置;其中,所述考虑处理时间包括:减去或者不减去处理时间;n+TB为CPS窗口后沿。
在一些实施方式中,在执行资源排除之前,处理器1300还用于:
在解码SCI获得的周期性预留信息中指示下个周期进行资源预留的情况下,根据感知时机确定参数中的感知执行次数确定参数K值,确定目标资源预留次数。
在一些实施方式中,所述K值为配置指示或者预配置指示的。
在一些实施方式中,处理器1300在根据感知时机确定参数中的感知执行次数确定参数K值,确定目标资源预留次数时,具体用于:
确定所述目标周期性资源预留次数为所述SCI指示的周期性预留次数的N倍;其中,所述N为以下任意一项:
所述K值;
所述K值的集合中的最大值;
所述K值的比特图中指示的最大值;
根据所述K值确定的感知时机内、对应当前感知时机的值;
所述K值的集合中对应当前感知时机的值;
所述K值的比特图确定的感知时机内、对应当前感知时机的值。
在一些实施方式中,在执行资源排除之前,处理器1300还用于:
在解码SCI获得的周期性预留信息中指示下个周期进行资源预留的情况下,确定目标周期性资源预留次数为第一值,且所述
Figure PCTCN2022114800-appb-000014
Figure PCTCN2022114800-appb-000015
其中,P rsvp_RX为解码SCI获得的资源预留周期指示值。
在一些实施方式中,处理器1300还用于:
在解码SCI获得的资源预留周期指示值P rsvp_RX小于或者等于第一门限值T scal时,将接收SCI指示的周期性预留次数确定为所述目标周期性预留次数的Q倍;
其中,所述第一门限值T scal=T2或者T scal=100ms,T2为资源选择窗口后沿确定参数,
Figure PCTCN2022114800-appb-000016
在一些实施方式中,处理器1300还用于:
在解码SCI获得的资源预留周期指示值P rsvp_RX小于或者等于第一门限值T scal,且满足第一条件的情况下,将接收SCI指示的周期性预留次数确定为以下任意一种:
确定为Q次;
当目标周期性预留次数大于或者等于Q的情况下,确定为Q次;
当目标周期性预留次数大于或者等于Q的情况下,确定为目标周期性预留次数的Q倍;
当目标周期性预留次数小于Q的情况下,确定为Q次;
其中,所述第一条件包括:
n'-m≤P' rsvp_RX
其中,所述第一门限值T scal=T2或者T scal=100ms,T2为资源选择窗口后沿确定参数,
Figure PCTCN2022114800-appb-000017
n'为业务包到达时刻对应的逻辑时隙或者业务到达时刻之后最近的第一个资源池的逻辑时隙;m为解码SCI所在的时隙;P' rsvp_RX为根据解码SCI获得的资源预留周期指示值P rsvp_RX对应折算在资源池内的逻辑时隙个数。
在一些实施方式中,处理器1300在确定目标资源预留次数时,还用于:
当信道忙率CBR测量值大于或等于CBR门限值的情况下,确定目标资源预留次数。
在一些实施方式中,处理器1300还用于:
在满足第二条件的情况下,不执行确定目标资源预留次数的操作;
其中,所述第二条件为在参考时间之前,当解码SCI对应的i个P rsvp_RX之后,任一个对应SCI被成功解码、且成功解码的SCI指示后续不再周期性预约资源;其中所述参考时间为第一个候选资源所在时域资源减去或者不减去处理时间的时间,i为整数且i≥1。
其中,在图13中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1300代表的一个或多个处理器和存储器1320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1310可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端,用户接口1330还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。处理器1300负责管理总线架构和通常的处理,存储器1320可以存储处理器1300在执行操作时所使用的数据。
本公开提供用户设备UE,在所述UE预期执行资源选择或确定执行资源选择时,执行确定资源感知方式、确定已有的资源感知结果、确定候选资源集合、确定部分感知时机并执行部分感知中的至少一项;以及执行资源排除和资源选择。通过在资源选择的过程中,考虑资源感知方式、已有的资源感知结果、候选资源集合、部分感知时机,能够保证在节电机制下,尽可能多地复用已有的感知结果、尽可能多地在资源选择时使用更充分的感知结果、尽可能少地重复执行不必要的感知、确保资源选择的准确性和传输的可靠性。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过计算机程序来指示相关的硬件来完成,所述计算机程序包括执行上述方法的部分或者全部步骤的指令;且该计算机程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
另外,本公开具体实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的第一实施例中的方法的步骤。且能达到相同的技术效果,为避免重复,这里不再赘述。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步 骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (18)

  1. 一种直通链路的资源选择方法,应用于用户设备UE,包括:
    在所述UE预期执行资源选择或确定执行资源选择时,执行以下步骤:
    执行目标操作;其中,所述目标操作包括:确定资源感知方式、确定已有的资源感知结果、确定候选资源集合、确定部分感知时机并执行部分感知中的至少一项;
    执行资源排除;
    执行资源选择。
  2. 根据权利要求1所述的直通链路的资源选择方法,其中,所述确定候选资源集合,包括:
    根据目标信息,确定候选资源集合;其中,所述目标信息包括以下至少一项:
    持续部分感知CPS的完成时间;
    非连续接收DRX激活时间获取的感知结果对应可进行资源排除的资源位置;
    周期性部分感知PBPS获取的感知结果对应可进行资源排除的资源位置。
  3. 根据权利要求2所述的直通链路的资源选择方法,其中,在所述目标信息包括CPS的完成时间的情况下,所述根据所述目标信息,确定候选资源集合,包括:
    当TB<0或者TB=0的情况下,资源选择窗前沿确定参数T1的确定条件为:0≤T1≤T proc,1
    当TB>0的情况下,资源选择窗前沿确定参数T1的确定条件为:TB≤T1≤TB+T proc,1
    其中,T proc,1为资源选择时间和发送准备时间;TB为CPS窗口后沿确定参数。
  4. 根据权利要求2所述的直通链路的资源选择方法,其中,在所述目标信息包括CPS的完成时间的情况下,所述根据所述目标信息,确定候选资源集合,包括:
    当TB<0或者TB=0的情况下,资源选择窗前沿确定参数T1的确定条件为以下任一种:
    0≤T1≤T proc,0+T proc,1
    T proc,0≤T1≤T proc,0+T proc,1
    当TB>0的情况下,资源选择窗前沿确定参数T1的确定条件为以下任一种:
    TB≤T1≤TB+T proc,0+T proc,1
    TB+T proc,0≤T1≤TB+T proc,0+T porc,1
    其中,T proc,0为感知处理时间;T proc,1为资源选择时间和发送准备时间;TB为CPS窗口后沿确定参数。
  5. 根据权利要求3或4所述的直通链路的资源选择方法,其中,所述方法还包括:
    T2>T1或者T2≥T1+L;
    其中,T2为资源选择窗后沿确定参数,L为资源选择窗最小时间或者最小时域资源个数。
  6. 根据权利要求3或4所述的直通链路的资源选择方法,其中,当TB<0或者TB=0的情况下,所述方法还包括:
    在业务包到达时,若已有的CPS感知结果满足需求,则确定候选资源集合时,不考虑与PBPS的感知结果对应的候选资源对齐,和/或,不考虑与DRX激活时间的感知结果对应的候选资源对齐。
  7. 根据权利要求2所述的直通链路的资源选择方法,其中,在所述目标信息包括:所述DRX激活时间获取的感知结果对应可进行资源排除的资源位置,和/或,所述PBPS获取的感知结果对应可进行资源排除的资源位置的情况下,所述方法还包括:
    根据所述DRX激活时间获取的感知结果对应可进行资源排除的资源位置,和/或,所述PBPS获取的感知结果对应可进行资源排除的资源位置,确定候选资源集合;
    将已确定的候选资源集合中的第一个时域候选资源且考虑处理时间的时域位置,确定为n+TB的位置;
    其中,所述考虑处理时间包括:减去或者不减去处理时间;n+TB为CPS窗口后沿。
  8. 根据权利要求1所述的直通链路的资源选择方法,其中,所述执行资源排除之前,所述方法还包括:
    在解码SCI获得的周期性预留信息中指示下个周期进行资源预留的情况下,根据感知时机确定参数中的感知执行次数确定参数K值,确定目标资源预留次数。
  9. 根据权利要求8所述的直通链路的资源选择方法,其中,所述K值为配置指示或者预配置指示的。
  10. 根据权利要求8所述的直通链路的资源选择方法,其中,所述根据感知时机确定参数中的感知执行次数确定参数K值,确定目标资源预留次数,包括:
    确定所述目标周期性资源预留次数为所述SCI指示的周期性预留次数的N倍;其中,所述N为以下任意一项:
    所述K值;
    所述K值的集合中的最大值;
    所述K值的比特图中指示的最大值;
    根据所述K值确定的感知时机内、对应当前感知时机的值;
    所述K值的集合中对应当前感知时机的值;
    所述K值的比特图确定的感知时机内、对应当前感知时机的值。
  11. 根据权利要求1所述的直通链路的资源选择方法,其中,所述执行资源排除之前,还包括:
    在解码SCI获得的周期性预留信息中指示下个周期进行资源预留的情况下,确定目标周期性资源预留次数为第一值,且所述
    Figure PCTCN2022114800-appb-100001
    Figure PCTCN2022114800-appb-100002
    其中,P rsvp_RX为解码SCI获得的资源预留周期指示值。
  12. 根据权利要求8或11任一项所述的直通链路的资源选择方法,其中,所述方法还包括:
    在解码SCI获得的资源预留周期指示值P rsvp_RX小于或者等于第一门限值 T scal时,将接收SCI指示的周期性预留次数确定为所述目标周期性预留次数的Q倍;
    其中,所述第一门限值T scal=T2或者T scal=100ms,T2为资源选择窗口后沿确定参数,
    Figure PCTCN2022114800-appb-100003
  13. 根据权利要求8或11所述的直通链路的资源选择方法,其中,所述方法还包括:
    在解码SCI获得的资源预留周期指示值P rsvp_RX小于或者等于第一门限值T scal,且满足第一条件的情况下,将接收SCI指示的周期性预留次数确定为以下任意一种:
    确定为Q次;
    当目标周期性预留次数大于或者等于Q的情况下,确定为Q次;
    当目标周期性预留次数大于或者等于Q的情况下,确定为目标周期性预留次数的Q倍;
    当目标周期性预留次数小于Q的情况下,确定为Q次;
    其中,所述第一条件包括:
    n'-m≤P' rsvp_RX
    其中,所述第一门限值T scal=T2或者T scal=100ms,T2为资源选择窗口后沿确定参数,
    Figure PCTCN2022114800-appb-100004
    n'为业务包到达时刻对应的逻辑时隙或者业务到达时刻之后最近的第一个资源池的逻辑时隙;m为解码SCI所在的时隙;P rsvp_RX为根据解码SCI获得的资源预留周期指示值P rsvp_RX对应折算在资源池内的逻辑时隙个数。
  14. 根据权利要求8或11所述的直通链路的资源选择方法,其中,确定目标资源预留次数,包括:
    当信道忙率CBR测量值大于或等于CBR门限值的情况下,确定目标资源预留次数。
  15. 根据权利要求8或11所述的直通链路的资源选择方法,其中,所述方法还包括:
    在满足第二条件的情况下,不执行确定目标资源预留次数的操作;
    其中,所述第二条件为在参考时间之前,当解码SCI对应的i个P rsvp_RX 之后,任一个对应SCI被成功解码、且成功解码的SCI指示后续不再周期性预约资源;其中所述参考时间为第一个候选资源所在时域资源减去或者不减去处理时间的时间,i为整数且i≥1。
  16. 一种用户设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至15中任一项所述直通链路的资源选择方法的步骤。
  17. 一种直通链路的资源选择装置,应用于用户设备UE,包括:
    第一处理模块,用于在所述UE预期执行资源选择或确定执行资源选择时,执行以下步骤:
    执行目标操作;其中,所述目标操作包括:确定资源感知方式、确定已有的资源感知结果、确定候选资源集合、确定部分感知时机并执行部分感知中的至少一项;
    执行资源排除;
    执行资源选择。
  18. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如权利要求1至15中任一项所述直通链路的资源选择方法的步骤。
PCT/CN2022/114800 2021-09-27 2022-08-25 直通链路的资源选择方法、装置及用户设备 WO2023045693A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22871746.8A EP4366343A1 (en) 2021-09-27 2022-08-25 Sidelink resource selection method and apparatus, and user equipment
KR1020247003466A KR20240024279A (ko) 2021-09-27 2022-08-25 사이드링크 자원 선택 방법, 장치 및 사용자 기기
US18/431,125 US20240179680A1 (en) 2021-09-27 2024-02-02 Resource selection method and apparatus for sidelink, and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111138621.2A CN115884122A (zh) 2021-09-27 2021-09-27 一种直通链路的资源选择方法、装置及用户设备
CN202111138621.2 2021-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/431,125 Continuation US20240179680A1 (en) 2021-09-27 2024-02-02 Resource selection method and apparatus for sidelink, and user equipment

Publications (1)

Publication Number Publication Date
WO2023045693A1 true WO2023045693A1 (zh) 2023-03-30

Family

ID=85719280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114800 WO2023045693A1 (zh) 2021-09-27 2022-08-25 直通链路的资源选择方法、装置及用户设备

Country Status (5)

Country Link
US (1) US20240179680A1 (zh)
EP (1) EP4366343A1 (zh)
KR (1) KR20240024279A (zh)
CN (1) CN115884122A (zh)
WO (1) WO2023045693A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148226A (zh) * 2018-11-02 2020-05-12 北京展讯高科通信技术有限公司 边链路传输方法、终端及计算机可读存储介质
WO2021007686A1 (en) * 2019-07-12 2021-01-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User equipment and method for resource exclusion and selection in new radio sidelink communication of same
CN112512008A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 通信资源选择方法、装置、电子设备和存储介质
CN112512124A (zh) * 2021-02-03 2021-03-16 之江实验室 一种确定侧行链路传输资源的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148226A (zh) * 2018-11-02 2020-05-12 北京展讯高科通信技术有限公司 边链路传输方法、终端及计算机可读存储介质
WO2021007686A1 (en) * 2019-07-12 2021-01-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User equipment and method for resource exclusion and selection in new radio sidelink communication of same
CN112512008A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 通信资源选择方法、装置、电子设备和存储介质
CN112512124A (zh) * 2021-02-03 2021-03-16 之江实验室 一种确定侧行链路传输资源的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Considerations on partial sensing and DRX in NR sidelink", 3GPP DRAFT; R1-2102719, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 6 April 2021 (2021-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051993189 *

Also Published As

Publication number Publication date
US20240179680A1 (en) 2024-05-30
CN115884122A (zh) 2023-03-31
KR20240024279A (ko) 2024-02-23
EP4366343A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
WO2019178749A1 (zh) 资源共享的方法和终端设备
WO2022083767A1 (zh) 资源选择方法、装置及终端设备
WO2022083766A1 (zh) 资源选择方法、装置及终端设备
US20230082194A1 (en) Communication method and apparatus
US20210329431A1 (en) Feedback Channel Sending Method And Apparatus, And Feedback Channel Receiving Method And Apparatus
WO2020238428A1 (zh) 一种通信方法及装置
WO2022061774A1 (zh) 无线通信方法和终端
WO2018201397A1 (zh) 无线通信方法和设备
WO2021239064A1 (zh) 通信方法及装置
WO2022077519A1 (zh) 一种信息传输方法及装置
WO2022077384A1 (zh) 资源选择方法以及装置
WO2019061115A1 (zh) 一种非授权频谱上的载波切换方法、基站及终端设备
CN112291836A (zh) 一种资源选择方法、装置及终端
JP2024503648A (ja) リソース選択方法、装置及びシステム
WO2021114104A1 (zh) 数据传输方法、设备及存储介质
WO2019091378A1 (zh) 传输数据的方法和设备
WO2023045693A1 (zh) 直通链路的资源选择方法、装置及用户设备
WO2022206367A1 (zh) 一种切换载波的方法和装置
WO2023279247A1 (zh) 资源重选方法、装置、设备及存储介质
WO2022205387A1 (zh) 边链路资源的重选方法及装置
WO2021226971A1 (zh) 数据发送方法,资源配置方法以及装置
WO2020237686A1 (zh) 传输节能信息的方法、终端设备和网络设备
WO2019191968A1 (zh) 通信方法、网络设备和终端设备
WO2022206511A1 (zh) 模式指示方法、终端设备及网络设备
WO2022077505A1 (zh) 一种传输资源确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247003466

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2024506278

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022871746

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022871746

Country of ref document: EP

Effective date: 20240201

NENP Non-entry into the national phase

Ref country code: DE