WO2023045646A1 - 一种从电池废料中回收锂及镍钴锰的方法 - Google Patents

一种从电池废料中回收锂及镍钴锰的方法 Download PDF

Info

Publication number
WO2023045646A1
WO2023045646A1 PCT/CN2022/113434 CN2022113434W WO2023045646A1 WO 2023045646 A1 WO2023045646 A1 WO 2023045646A1 CN 2022113434 W CN2022113434 W CN 2022113434W WO 2023045646 A1 WO2023045646 A1 WO 2023045646A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter residue
cobalt
manganese
nickel
lithium
Prior art date
Application number
PCT/CN2022/113434
Other languages
English (en)
French (fr)
Inventor
许开华
彭亚光
高宝玉
王杰奇
丁留亮
李杨
孟庆岩
陈小飞
Original Assignee
荆门市格林美新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荆门市格林美新材料有限公司 filed Critical 荆门市格林美新材料有限公司
Publication of WO2023045646A1 publication Critical patent/WO2023045646A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/002Dry processes by treating with halogens, sulfur or compounds thereof; by carburising, by treating with hydrogen (hydriding)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention relates to the technical field of waste battery recovery, in particular to a method for recovering lithium and nickel, cobalt and manganese from battery waste.
  • Lithium-ion batteries are widely used in various electronic equipment fields due to their high working voltage and specific energy, stable discharge voltage, light weight and small size, long cycle life, and no memory effect.
  • the amount of waste has also increased year by year.
  • the lifespan of lithium-ion batteries is generally 3-5 years.
  • the recycling system has not yet reached a large scale. Most of the waste lithium-ion batteries have not been effectively treated, which not only pollutes the environment, but also wastes a lot of useful resources.
  • Battery waste refers to the black battery powder left after the scrapped ternary battery pack or lithium cobalt oxide battery pack has been disassembled, crushed, and sieved.
  • the valence states of metals are complex, and most of them exist in the form of high valence states.
  • the present invention provides a method for recovering lithium and nickel-cobalt-manganese from battery waste, which specifically includes the following contents:
  • a method for reclaiming lithium and nickel-cobalt-manganese from battery waste characterized in that it comprises the following steps:
  • Reduction roasting put the battery waste into the reduction furnace, introduce reducing gas, control the reaction temperature at 400-600°C, and the reaction time is 3-6h. After the reaction, the reduced material is used as the raw material for ball milling and washing;
  • Ball mill washing Put the roasted material and deionized water into the ball mill according to a certain ratio, and the ball milling time is ⁇ 2h; pump the ball milled material into the reaction kettle, heat up to 70-80°C, and react for 1.5-3h , after the reaction is completed, the reaction system is filtered, and the ball milling filtrate and filter residue are collected; the filter residue is washed with water at a solid-to-liquid ratio of 1:1-1:3, and filtered again after washing, and the water-washed filtrate and filter residue are collected, and the water-washed filtrate is used as a ball mill Influent, the filter residue is used as raw material for subsequent extraction;
  • Reductive acid leaching add deionized water to the filter residue obtained in step (3) for slurrying, add acid solution to the filter residue slurry, adjust the pH to 1.5-2.0 and stabilize the pH within this range for 0.5-2h ; After the reaction is finished, add a reducing agent to the above reaction system, then continue to add acid solution to stabilize the pH of the reaction system at 2.0-2.5, after the pH of the reaction system is stabilized at 2.0-2.5, react for 1-3h, wait for the reaction Filtration after completion, the obtained filtrate is a salt solution of nickel-cobalt-manganese, and the obtained filter residue continues to repeat step (1) reduction roasting.
  • the reducing gas in the step (1) is hydrogen, and the amount of hydrogen introduced is 15-30 Nm 3 /h per ton of waste.
  • the ratio of the roasted material to deionized water in the step (2) is 1:2
  • the ball milling time is 2-3 hours
  • the particle size requirement of the solid material after ball milling is: 95% and above of the particles have a particle size of 300 above.
  • the reaction time in the step (2) is 2 hours
  • the filtration method is filter press filtration
  • the solid-to-liquid ratio when the filter residue is washed is 1:2.
  • the solid-to-liquid ratio when slurrying the filter residue in the step (3) is 1:2
  • the pH of the reaction system is 6, and the reaction time is 2 hours.
  • the concentration ratio in the step (4) is 1:5.
  • the solid-to-liquid ratio when slurrying the filter residue in the step (5) is 1:3.
  • the step (5) adds an acid solution to the filter residue slurry, adjusts the pH to 1.5-2.0 and stabilizes the pH within this range for 1 hour.
  • the step (5) adds a reducing agent to the reaction system, and then continues to add an acid solution to stabilize the pH of the reaction system at 2.0-2.5, and react for 2 hours after the pH of the reaction system is stabilized at 2.0-2.5.
  • the acid in the steps (3) and (5) is sulfuric acid.
  • the method disclosed in the present invention first reduces high-valent lithium to elemental lithium through reduction roasting, and then ball mills and immerses lithium in water, which is beneficial to the efficient separation of lithium and heavy metals.
  • the recovery rate of lithium can be effectively improved, so that the recovery rate of lithium is ⁇ 90%;
  • Fig. 1 is a process flow chart of the method for recovering lithium and nickel-cobalt-manganese from battery wastes disclosed by the present invention.
  • a method for reclaiming lithium and nickel-cobalt-manganese from battery waste characterized in that it comprises the following steps:
  • Reduction roasting put the battery waste into the reduction furnace, introduce reducing gas, control the reaction temperature at 400-600°C, and the reaction time for 3-6 hours. After the reaction, the reduced material is used as the raw material for ball milling and washing.
  • Ball mill washing Put the roasted material and deionized water into the ball mill at a solid-to-liquid ratio of 1:2, and the ball milling time is 2 hours; pump the ball milled material into the reaction kettle, heat up to 70-80°C, React for 1.5h. After the reaction is completed, filter the reaction system and collect the ball milling filtrate and filter residue; wash the filter residue with water at a solid-to-liquid ratio of 1:1, filter again after washing, collect the water-washed filtrate and filter residue, and use the water-washed filtrate as a ball mill for feeding Water and filter residue are used as raw materials for subsequent extraction;
  • Reductive acid leaching add deionized water to the filter residue obtained in step (3) according to the ratio of solid to liquid ratio of 1:3 for slurrying, add acid solution to the filter residue slurry, adjust the pH to 1.5-2.0 and stabilize React within this pH range for 0.5h; after the reaction is completed, add a reducing agent to the above reaction system, and then continue to add acid solution to stabilize the pH of the reaction system at 2.0-2.5, after the pH of the reaction system is stabilized at 2.0-2.5 , react for 1h, and filter after the reaction is completed, the obtained filtrate is a salt solution of nickel-cobalt-manganese, and the obtained filter residue continues to repeat step (1) reduction roasting.
  • the recovery rate of lithium is ⁇ 90%
  • the recovery rate of heavy metals such as nickel, cobalt, and manganese is ⁇ 98%.
  • a method for reclaiming lithium and nickel-cobalt-manganese from battery waste characterized in that it comprises the following steps:
  • Reduction roasting Put the battery waste into the reduction furnace, feed hydrogen, the amount of hydrogen fed is 15-30Nm 3 /h per ton of waste, control the reaction temperature 400-600°C, the reaction time is 3-6h, and the reaction is over
  • the post-reduction material is used as the raw material for ball milling and washing;
  • Ball milling and water washing Put the roasted material and deionized water into the ball mill at a solid-to-liquid ratio of 1:2, and the ball milling time is 2.5 hours. More than 300 mesh; pump the ball-milled material into the reaction kettle, heat up to 70-80°C, and react for 2 hours. After the reaction is completed, filter the reaction system.
  • the filtration method is filter press, and the ball mill filtrate and filter residue are collected; Wash the filter residue with water at a solid-to-liquid ratio of 1:2, filter again after washing, collect the water-washed filtrate and filter residue, use the water-washed filtrate as ball mill inlet water, and filter residue as subsequent extraction raw materials;
  • Reductive acid leaching add deionized water to the filter residue obtained in step (3) according to the ratio of solid to liquid ratio of 1:3 for slurrying, add hydrochloric acid solution to the filter residue slurry, adjust the pH to 1.5-2.0 and stabilize React within this pH range for 1 hour; after the reaction is completed, add a reducing agent to the above reaction system, and then continue to add acid solution to stabilize the pH of the reaction system at 2.0-2.5. After the pH of the reaction system is stabilized at 2.0-2.5, React for 2 hours, and filter after the reaction is completed.
  • the obtained filtrate is a salt solution of nickel, cobalt and manganese, and the obtained filter residue continues to repeat step (1) reduction roasting.
  • the recovery rate of lithium is ⁇ 90%
  • the recovery rate of heavy metals such as nickel, cobalt, and manganese is ⁇ 98%.
  • a method for reclaiming lithium and nickel-cobalt-manganese from battery waste characterized in that it comprises the following steps:
  • Reduction roasting Put the battery waste into the reduction furnace, feed hydrogen, the amount of hydrogen fed is 15-30Nm 3 /h per ton of waste, control the reaction temperature 400-600°C, the reaction time is 3-6h, and the reaction is over
  • the post-reduction material is used as the raw material for ball milling and washing;
  • Ball milling and washing Put the roasted material and deionized water into the ball mill at a solid-to-liquid ratio of 1:2.
  • the ball milling time is 3 hours. mesh or above; pump the ball-milled material into the reaction kettle, heat up to 70-80°C, and react for 3 hours.
  • filter the reaction system After the reaction is completed, filter the reaction system.
  • the filter residue is washed with water at a solid-to-liquid ratio of 1:3, filtered again after washing, and the washed filtrate and filter residue are collected, and the washed filtrate is used as ball mill inlet water, and the filter residue is used as subsequent extraction raw material;
  • Reductive acid leaching add deionized water to the filter residue obtained in step (3) according to the ratio of solid to liquid ratio of 1:3 for slurrying, add sulfuric acid solution to the filter residue slurry, adjust the pH to 1.5-2.0 and stabilize React within this pH range for 2 hours; after the reaction is completed, add a reducing agent to the above reaction system, and then continue to add acid solution to stabilize the pH of the reaction system at 2.0-2.5. After the pH of the reaction system is stabilized at 2.0-2.5, React for 2 hours, and filter after the reaction is completed.
  • the obtained filtrate is a salt solution of nickel, cobalt and manganese, and the obtained filter residue continues to repeat step (1) reduction roasting.
  • the recovery rate of lithium is ⁇ 90%
  • the recovery rate of heavy metals such as nickel, cobalt, and manganese is ⁇ 98%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种从电池废料中回收锂及镍钴锰的方法,包括(1)还原焙烧、(2)球磨水洗、(3)弱酸洗涤、(4)浓缩提取氢氧化锂、(5)还原酸浸五个步骤,将焙烧后的物料先经过2h以上的球磨,使其颗粒粒度达到300目左右,然后再对其进行水浸,首先分离回收金属锂,然后再对滤渣中的镍钴锰等重金属进行酸浸回收,并对最终剩下的滤渣进行重复焙烧回收。在回收过程中,通过严格控制反应体系的pH值和其他工艺参数,使得锂的回收率≥90%,重金属回收率≥98%。本发明公开的从电池废料中回收锂及镍钴锰的方法操作简单,成本低,适合大规模工业化应用。

Description

一种从电池废料中回收锂及镍钴锰的方法 技术领域
本发明涉及废旧电池回收技术领域,具体涉及一种从电池废料中回收锂及镍钴锰的方法。
背景技术
锂离子电池因工作电压和比能量高,放电电压平稳,质量轻且体积小,循环寿命长,加之无记忆效应等优点,被广泛地应用于各种电子设备领域。近年来,随着锂离子电池产量的增加,其废弃量也在逐年增加。锂离子电池报废年限一般为3-5年,目前回收体系尚未成规模,绝大多数废旧锂离子电池未得到有效处理,不仅污染环境,而且浪费大量有用资源。
电池废料是指报废后的三元电池包或者钴酸锂电池包经过拆解、破碎、筛分后,剩下的黑色电池粉末,其中镍、钴、锰以及锂等金属元素含量较高,这些金属的价态复杂,大多以高价态的形式存在。现有技术中存在一些锂离子电池的回收利用方法,一般采用酸或碱浸出工艺,但是传统浸出工艺在回收锂和镍钴锰等金属时回收率较低,且回收成本高,也很难做到锂和其他金属的高效分离。
发明内容
针对现有技术存在的不足,本发明提供了一种从电池废料中回收锂及镍钴锰的方法,具体包括以下内容:
一种从电池废料中回收锂及镍钴锰的方法,其特征在于,包括以下步骤:
(1)还原焙烧:将电池废料投入还原炉中,通入还原性气体,控制反应温度400-600℃,反应时间3-6h,反应结束后还原物料作为球磨水洗原料;
(2)球磨水洗:将焙烧好的物料和去离子水按一定的比例放入球磨机,球磨时间≥2h;将球磨好的物料泵入反应釜中,升温至70-80℃,反应1.5-3h,反应完成后对反应体系进行过滤,收集得到球磨滤液和滤渣;对滤渣按固液比1:1-1:3进行水洗,水洗后再次过滤,收集水洗滤液和滤渣,将水洗滤液用作球磨机进水,滤渣用作后续提取原料;
(3)弱酸洗涤:向步骤(2)中得到的滤渣中加入去离子水进行浆化得到滤渣浆液,向滤渣浆液中加入酸溶液,调节pH至5-7,然后将上述滤渣浆液的温度调至70-80℃,反应1-3h,待反应结束后,对反应体系进行过滤,得到滤渣和洗涤滤液;
(4)浓缩提取氢氧化锂:将(2)中得到的球磨滤液和步骤(3)中得到的洗涤滤液混合,将上述滤液泵入浓缩釜中进行浓缩,浓缩结束后,冷却至常温,然后对浓缩液进行离心分离,得到氢氧化锂固体和母液,对母液重复浓缩提取氢氧化锂;
(5)还原酸浸:向步骤(3)中得到的滤渣中加入去离子水进行浆化,向滤渣浆液中加入酸溶液,调节pH至1.5-2.0并稳定pH在此范围内反应0.5-2h;待反应结束后,向上述反应体系中加入还原剂,然后继续加入酸溶液使反应体系的pH稳定在2.0-2.5,待反应体系的pH稳定在2.0-2.5后,反应1-3h,待反应完成后过滤,所得滤液为镍钴锰的盐溶液,所得的滤渣继续重复步骤(1)还原焙烧。
具体地,所述步骤(1)中还原性气体为氢气,氢气的通入量为每吨废料15-30Nm 3/h。
具体地,所述步骤(2)中焙烧好的物料和去离子水的比例为1:2,球磨时间为2-3h,球磨后固体物料的粒度要求为:95%及以上的颗粒粒度在300目以上。
具体地,所述步骤(2)中的反应时间为2h,过滤方式为压滤机压滤,滤渣洗涤时的固液比为1:2。
具体地,所述步骤(3)中对滤渣进行浆化时的固液比为1:2,反应体系的pH为6,反应时间为2h。
具体地,所述步骤(4)中的浓缩比为1:5。
具体地,所述步骤(5)中对滤渣进行浆化时的固液比为1:3。
具体地,所述步骤(5)向滤渣浆液中加入酸溶液,调节pH至1.5-2.0并稳定pH在此范围内反应1h。
具体地,所述步骤(5)向反应体系中加入还原剂,然后继续加入酸溶液使反应体系的pH稳定在2.0-2.5,待反应体系的pH稳定在2.0-2.5后,反应2h。
具体地,所述步骤(3)和(5)中的酸为硫酸。
本发明的有益效果:
(1)本发明公开的方法在物料处理过程中,先通过还原焙烧将高价态的锂还原成单质锂,再进行球磨,水浸锂,有利于实现锂和重金属的高效分离。通过二段弱酸洗涤,可以有效提高锂的回收率,使锂的回收率≥90%;
(2)严格控制酸洗和酸浸过程中反应体系的pH值,使镍钴锰等重金属的回收率≥98%。
附图说明
图1为本发明公开的从电池废料中回收锂及镍钴锰的方法的工艺流程图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。下面所示的实施例不对权利要求所记载的发明内容起任何限定作用。另外,下面实施例所表示的构成的全部内容不限于作为权利要求所记载的发明的解决方案所必需的。
实施例1
一种从电池废料中回收锂及镍钴锰的方法,其特征在于,包括以下步骤:
(1)还原焙烧:将电池废料投入还原炉中,通入还原性气体,控制反应温度400-600℃,反应时间3-6h,反应结束后还原物料作为球磨水洗原料。
(2)球磨水洗:将焙烧好的物料和去离子水按固液比1:2的比例放入球磨机,球磨时间2h;将球磨好的物料泵入反应釜中,升温至70-80℃,反应1.5h,反应完成后对反应体系进行过滤,收集得到球磨滤液和滤渣;对滤渣按固液比1:1进行水洗,水洗后再次过滤,收集水洗滤液和滤渣,将水洗滤液用作球磨机进水,滤渣用作后续提取原料;
(3)弱酸洗涤:向步骤(2)中得到的滤渣中按固液比1:2加入去离子水进行浆化得到滤渣浆液,向滤渣浆液中加入酸溶液,调节pH至5,然后将上述滤渣浆液的温度调至70-80℃,反应1h,待反应结束后,对反应体系进行过滤,得到滤渣和洗涤滤液;
(4)浓缩提取氢氧化锂:将(2)中得到的球磨滤液和步骤(3)中得到的洗涤滤液混合,将上述滤液泵入浓缩釜中进行浓缩,按浓缩比1:5进行浓缩,浓 缩结束后,冷却至常温,然后对浓缩液进行离心分离,得到氢氧化锂固体和母液,对母液重复浓缩提取氢氧化锂;
(5)还原酸浸:向步骤(3)中得到的滤渣中按固液比1:3的比例加入去离子水进行浆化,向滤渣浆液中加入酸溶液,调节pH至1.5-2.0并稳定pH在此范围内反应0.5h;待反应结束后,向上述反应体系中加入还原剂,然后继续加入酸溶液使反应体系的pH稳定在2.0-2.5,待反应体系的pH稳定在2.0-2.5后,反应1h,待反应完成后过滤,所得滤液为镍钴锰的盐溶液,所得的滤渣继续重复步骤(1)还原焙烧。锂的回收率≥90%,镍钴锰等重金属的回收率≥98%。
实施例2
一种从电池废料中回收锂及镍钴锰的方法,其特征在于,包括以下步骤:
(1)还原焙烧:将电池废料投入还原炉中,通入氢气,氢气的通入量为每吨废料15-30Nm 3/h,控制反应温度400-600℃,反应时间3-6h,反应结束后还原物料作为球磨水洗原料;
(2)球磨水洗:将焙烧好的物料和去离子水按固液比1:2的比例放入球磨机,球磨时间2.5h,球磨后固体物料的粒度要求为:95%及以上的颗粒粒度在300目以上;将球磨好的物料泵入反应釜中,升温至70-80℃,反应2h,反应完成后对反应体系进行过滤,过滤方式为压滤机压滤,收集得到球磨滤液和滤渣;对滤渣按固液比1:2进行水洗,水洗后再次过滤,收集水洗滤液和滤渣,将水洗滤液用作球磨机进水,滤渣用作后续提取原料;
(3)弱酸洗涤:向步骤(2)中得到的滤渣中按固液比1:2加入去离子水进行浆化得到滤渣浆液,向滤渣浆液中加入盐酸溶液,调节pH至6,然后将上述滤渣浆液的温度调至70-80℃,反应2h,待反应结束后,对反应体系进行过滤,得到滤渣和洗涤滤液;
(4)浓缩提取氢氧化锂:将(2)中得到的球磨滤液和步骤(3)中得到的洗涤滤液混合,将上述滤液泵入浓缩釜中进行浓缩,按浓缩比1:5进行浓缩,浓缩结束后,冷却至常温,然后对浓缩液进行离心分离,得到氢氧化锂固体和母液,对母液重复浓缩提取氢氧化锂;
(5)还原酸浸:向步骤(3)中得到的滤渣中按固液比1:3的比例加入去离子水进行浆化,向滤渣浆液中加入盐酸溶液,调节pH至1.5-2.0并稳定pH在此 范围内反应1h;待反应结束后,向上述反应体系中加入还原剂,然后继续加入酸溶液使反应体系的pH稳定在2.0-2.5,待反应体系的pH稳定在2.0-2.5后,反应2h,待反应完成后过滤,所得滤液为镍钴锰的盐溶液,所得的滤渣继续重复步骤(1)还原焙烧。锂的回收率≥90%,镍钴锰等重金属的回收率≥98%。
实施例3
一种从电池废料中回收锂及镍钴锰的方法,其特征在于,包括以下步骤:
(1)还原焙烧:将电池废料投入还原炉中,通入氢气,氢气的通入量为每吨废料15-30Nm 3/h,控制反应温度400-600℃,反应时间3-6h,反应结束后还原物料作为球磨水洗原料;
(2)球磨水洗:将焙烧好的物料和去离子水按固液比1:2的比例放入球磨机,球磨时间3h,球磨后固体物料的粒度要求为:95%及以上的颗粒粒度在300目以上;将球磨好的物料泵入反应釜中,升温至70-80℃,反应3h,反应完成后对反应体系进行过滤,过滤方式为压滤机压滤,收集得到球磨滤液和滤渣;对滤渣按固液比1:3进行水洗,水洗后再次过滤,收集水洗滤液和滤渣,将水洗滤液用作球磨机进水,滤渣用作后续提取原料;
(3)弱酸洗涤:向步骤(2)中得到的滤渣中按固液比1:2加入去离子水进行浆化得到滤渣浆液,向滤渣浆液中加入硫酸溶液,调节pH至7,然后将上述滤渣浆液的温度调至70-80℃,反应3h,待反应结束后,对反应体系进行过滤,得到滤渣和洗涤滤液;
(4)浓缩提取氢氧化锂:将(2)中得到的球磨滤液和步骤(3)中得到的洗涤滤液混合,将上述滤液泵入浓缩釜中进行浓缩,按浓缩比1:5进行浓缩,浓缩结束后,冷却至常温,然后对浓缩液进行离心分离,得到氢氧化锂固体和母液,对母液重复浓缩提取氢氧化锂;
(5)还原酸浸:向步骤(3)中得到的滤渣中按固液比1:3的比例加入去离子水进行浆化,向滤渣浆液中加入硫酸溶液,调节pH至1.5-2.0并稳定pH在此范围内反应2h;待反应结束后,向上述反应体系中加入还原剂,然后继续加入酸溶液使反应体系的pH稳定在2.0-2.5,待反应体系的pH稳定在2.0-2.5后,反应2h,待反应完成后过滤,所得滤液为镍钴锰的盐溶液,所得的滤渣继续重复步骤(1)还原焙烧。锂的回收率≥90%,镍钴锰等重金属的回收率≥98%。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种从电池废料中回收锂及镍钴锰的方法,其特征在于,包括以下步骤:
    (1)还原焙烧:将电池废料投入还原炉中,通入还原性气体,控制反应温度400-600℃,反应时间3-6h,反应结束后还原物料作为球磨水洗原料;
    (2)球磨水洗:将焙烧好的物料和去离子水按一定的比例放入球磨机,球磨时间≥2h;将球磨好的物料泵入反应釜中,升温至70-80℃,反应1.5-3h,反应完成后对反应体系进行过滤,收集得到球磨滤液和滤渣;对滤渣按固液比1:1-1:3进行水洗,水洗后再次过滤,收集水洗滤液和滤渣,将水洗滤液用作球磨机进水,滤渣用作后续提取原料;
    (3)弱酸洗涤:向步骤(2)中得到的滤渣中加入去离子水进行浆化得到滤渣浆液,向滤渣浆液中加入酸溶液,调节pH至5-7,然后将上述滤渣浆液的温度调至70-80℃,反应1-3h,待反应结束后,对反应体系进行过滤,得到滤渣和洗涤滤液;
    (4)浓缩提取氢氧化锂:将(2)中得到的球磨滤液和步骤(3)中得到的洗涤滤液混合,将上述滤液泵入浓缩釜中进行浓缩,浓缩结束后,冷却至常温,然后对浓缩液进行离心分离,得到氢氧化锂固体和母液,对母液重复浓缩提取氢氧化锂;
    (5)还原酸浸:向步骤(3)中得到的滤渣中加入去离子水进行浆化,向滤渣浆液中加入酸溶液,调节pH至1.5-2.0并稳定pH在此范围内反应0.5-2h;待反应结束后,向上述反应体系中加入还原剂,然后继续加入酸溶液使反应体系的pH稳定在2.0-2.5,待反应体系的pH稳定在2.0-2.5后,反应1-3h,待反应完成后过滤,所得滤液为镍钴锰的盐溶液,所得的滤渣继续重复步骤(1)还原焙烧。
  2. 根据权利要求1所述的一种从电池废料中回收锂及镍钴锰的方法,其特征在于,所述步骤(1)中还原性气体为氢气,氢气的通入量为每吨废料15-30Nm 3/h。
  3. 根据权利要求1所述的一种从电池废料中回收锂及镍钴锰的方法,其特征在于,所述步骤(2)中焙烧好的物料和去离子水的比例为1:2,球磨时间为2-3h,球磨后固体物料的粒度要求为:95%及以上的颗粒粒度在300目以上。
  4. 根据权利要求1所述的一种从电池废料中回收锂及镍钴锰的方法,其特征在于,所述步骤(2)中的反应时间为2h,过滤方式为压滤机压滤,滤渣洗涤时的固液 比为1:2。
  5. 根据权利要求1所述的一种从电池废料中回收锂及镍钴锰的方法,其特征在于,所述步骤(3)中对滤渣进行浆化时的固液比为1:2,反应体系的pH为6,反应时间为2h。
  6. 根据权利要求1所述的一种从电池废料中回收锂及镍钴锰的方法,其特征在于,所述步骤(4)中的浓缩比为1:5。
  7. 根据权利要求1所述的一种从电池废料中回收锂及镍钴锰的方法,其特征在于,所述步骤(5)中对滤渣进行浆化时的固液比为1:3。
  8. 根据权利要求1所述的一种从电池废料中回收锂及镍钴锰的方法,其特征在于,所述步骤(5)向滤渣浆液中加入酸溶液,调节pH至1.5-2.0并稳定pH在此范围内反应1h。
  9. 根据权利要求1所述的一种从电池废料中回收锂及镍钴锰的方法,其特征在于,所述步骤(5)向反应体系中加入还原剂,然后继续加入酸溶液使反应体系的pH稳定在2.0-2.5,待反应体系的pH稳定在2.0-2.5后,反应2h。
  10. 根据权利要求1-9所述的任一种从电池废料中回收锂及镍钴锰的方法,其特征在于,所述步骤(3)和(5)中的酸为硫酸。
PCT/CN2022/113434 2021-09-22 2022-08-18 一种从电池废料中回收锂及镍钴锰的方法 WO2023045646A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111107798.6A CN113832349B (zh) 2021-09-22 2021-09-22 一种从电池废料中回收锂及镍钴锰的方法
CN202111107798.6 2021-09-22

Publications (1)

Publication Number Publication Date
WO2023045646A1 true WO2023045646A1 (zh) 2023-03-30

Family

ID=78960225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113434 WO2023045646A1 (zh) 2021-09-22 2022-08-18 一种从电池废料中回收锂及镍钴锰的方法

Country Status (2)

Country Link
CN (1) CN113832349B (zh)
WO (1) WO2023045646A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116902999A (zh) * 2023-05-31 2023-10-20 广东盛祥新材料科技有限公司 三元粉/铁锂粉/碳酸锂加工方法及废旧电池回收方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113832349B (zh) * 2021-09-22 2023-04-04 荆门市格林美新材料有限公司 一种从电池废料中回收锂及镍钴锰的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108220607A (zh) * 2018-02-23 2018-06-29 中国科学院过程工程研究所 一种从含锂电极废料中回收锂的方法
CN111118294A (zh) * 2020-01-15 2020-05-08 北京矿冶科技集团有限公司 一种从废旧锂离子电池材料中分步回收有价金属的方法
CN111937220A (zh) * 2018-04-09 2020-11-13 Sk新技术株式会社 回收锂二次电池的活性金属的方法
CN112400029A (zh) * 2018-07-10 2021-02-23 巴斯夫欧洲公司 用于使废锂离子电池单元再循环的方法
CN112481493A (zh) * 2019-09-11 2021-03-12 荆门市格林美新材料有限公司 一种从废旧动力电池三元正极材料中回收有价金属的方法
CN112680598A (zh) * 2020-12-15 2021-04-20 中南大学 一种低成本清洁处理废旧锂离子电池正极材料的方法
CN113106257A (zh) * 2021-04-12 2021-07-13 广东佳纳能源科技有限公司 锂电池废料的回收利用方法及其应用
CN113832349A (zh) * 2021-09-22 2021-12-24 荆门市格林美新材料有限公司 一种从电池废料中回收锂及镍钴锰的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108091956A (zh) * 2016-11-23 2018-05-29 江苏凯力克钴业股份有限公司 一种报废钴酸锂电池正极材料的循环再生方法
CN107666022A (zh) * 2017-09-25 2018-02-06 湖南工业大学 一种废弃三元正极材料中锂、镍钴锰的回收方法
JP6946223B2 (ja) * 2018-03-28 2021-10-06 Jx金属株式会社 リチウム回収方法
CN108878866B (zh) * 2018-06-28 2020-11-17 山东理工大学 利用废旧锂离子电池三元正极材料制备三元材料前驱体及回收锂的方法
CN111484044A (zh) * 2020-04-26 2020-08-04 北京矿冶科技集团有限公司 一种前端提取锂电池废料中锂的方法
CN112374511B (zh) * 2020-10-17 2022-02-11 北京科技大学 一种废旧三元锂电池回收制备碳酸锂和三元前驱体的方法
CN112646974A (zh) * 2020-11-12 2021-04-13 四川顺应动力电池材料有限公司 一种从废旧三元锂电池正极材料中回收有价金属的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108220607A (zh) * 2018-02-23 2018-06-29 中国科学院过程工程研究所 一种从含锂电极废料中回收锂的方法
CN111937220A (zh) * 2018-04-09 2020-11-13 Sk新技术株式会社 回收锂二次电池的活性金属的方法
CN112400029A (zh) * 2018-07-10 2021-02-23 巴斯夫欧洲公司 用于使废锂离子电池单元再循环的方法
CN112481493A (zh) * 2019-09-11 2021-03-12 荆门市格林美新材料有限公司 一种从废旧动力电池三元正极材料中回收有价金属的方法
CN111118294A (zh) * 2020-01-15 2020-05-08 北京矿冶科技集团有限公司 一种从废旧锂离子电池材料中分步回收有价金属的方法
CN112680598A (zh) * 2020-12-15 2021-04-20 中南大学 一种低成本清洁处理废旧锂离子电池正极材料的方法
CN113106257A (zh) * 2021-04-12 2021-07-13 广东佳纳能源科技有限公司 锂电池废料的回收利用方法及其应用
CN113832349A (zh) * 2021-09-22 2021-12-24 荆门市格林美新材料有限公司 一种从电池废料中回收锂及镍钴锰的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116902999A (zh) * 2023-05-31 2023-10-20 广东盛祥新材料科技有限公司 三元粉/铁锂粉/碳酸锂加工方法及废旧电池回收方法

Also Published As

Publication number Publication date
CN113832349B (zh) 2023-04-04
CN113832349A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
CN107994288B (zh) 废旧镍钴锰酸锂三元电池正极材料中有价金属回收方法
CN108963371B (zh) 一种从废旧锂离子电池中回收有价金属的方法
CN112357899B (zh) 一种废旧磷酸铁锂电池的综合回收利用方法
WO2022161087A1 (zh) 一种从镍铁合金中分离镍和铁的方法和应用
WO2023045646A1 (zh) 一种从电池废料中回收锂及镍钴锰的方法
CN108110357B (zh) 一种从废旧磷酸铁锂电池正极材料中回收有价金属的方法
CN105958148B (zh) 一种从废旧镍钴锰酸锂电池材料中回收有价金属的方法
CN103086405B (zh) 一种电池级碳酸锂的清洁化生产方法
CN102244309B (zh) 一种从电动汽车锂系动力电池中回收锂的方法
CN108878866A (zh) 利用废旧锂离子电池三元正极材料制备三元材料前驱体及回收锂的方法
CN107653378A (zh) 一种废旧镍钴锰锂离子电池中有价金属的回收方法
CN112079369B (zh) 一种从废锂离子电池中优先提锂及协同回收锰的方法
CN104466294B (zh) 从镍钴锰酸锂废电池中回收金属的方法
CN102030375A (zh) 一种直接用失效锂离子电池制备钴酸锂的方法
CN110343864A (zh) 微波焙烧辅助回收废旧电极材料中锂和钴的方法
CN103146923A (zh) 一种基于原子经济途径回收废旧铅酸电池生产氧化铅的方法
CN104466295A (zh) 镍钴锰酸锂废锂离子电池中正极活性材料的再生方法
CN111471864A (zh) 一种废旧锂离子电池浸出液中回收铜、铝、铁的方法
CN109626350A (zh) 一种废旧磷酸铁锂电池正极片制备电池级磷酸铁的方法
CN108123185A (zh) 废旧锰酸锂电池中有价金属回收方法
CN109244588B (zh) 一种废三元锂电池生产三元前驱体和高纯碳酸锂的方法
CN101673829A (zh) 废旧锌锰电池的回收处理方法
CN107046154B (zh) 一种废三元锂电池强化还原浸出的方法
CN103993182A (zh) 一种铁矾渣中二次资源的综合回收方法
CN114132909A (zh) 一种从退役磷酸锰铁锂电池废料中回收纯金属盐的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE