WO2023045621A1 - 介质滤波器单元及介质滤波器 - Google Patents

介质滤波器单元及介质滤波器 Download PDF

Info

Publication number
WO2023045621A1
WO2023045621A1 PCT/CN2022/112564 CN2022112564W WO2023045621A1 WO 2023045621 A1 WO2023045621 A1 WO 2023045621A1 CN 2022112564 W CN2022112564 W CN 2022112564W WO 2023045621 A1 WO2023045621 A1 WO 2023045621A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
filter unit
dielectric filter
frequency hole
resonant cavity
Prior art date
Application number
PCT/CN2022/112564
Other languages
English (en)
French (fr)
Inventor
乔龙
卜伟
龚红伟
武增强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020247012943A priority Critical patent/KR20240058948A/ko
Publication of WO2023045621A1 publication Critical patent/WO2023045621A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure

Definitions

  • the present application relates to the field of communication equipment, in particular to a dielectric filter unit and a dielectric filter.
  • dielectric materials can be used instead of traditional metal materials. Under the same index, the volume of the filter can be reduced.
  • Research on dielectric filters has always been a hot spot in the communication industry. Filters are important components of wireless communication products, and dielectric filters are of great significance to the miniaturization of communication products.
  • Dielectric filters are usually composed of multiple resonant cavities.
  • the general dielectric filter cannot Taking into account the requirements of volume, multi-resonance mode and suppression performance.
  • the purpose of the present application is to at least solve one of the technical problems in the prior art, and provide a dielectric filter unit and a dielectric filter.
  • the embodiment of the present application provides a dielectric filter unit, including:
  • a first dielectric resonant cavity the upper end surface or the lower end surface of the first dielectric resonant cavity is provided with a first frequency hole;
  • the second dielectric resonant cavity, the second dielectric resonant cavity is connected to the first dielectric resonant cavity, the upper end surface or the lower end surface of the second dielectric resonant cavity is provided with a second frequency hole, and the first dielectric resonant cavity
  • a coupling slot is provided at the connection with the second dielectric resonator, and a third frequency hole is further provided at the connection between the first dielectric resonator and the second dielectric resonator.
  • an embodiment of the present application provides a dielectric filter, including more than two dielectric filter units as described in the embodiment of the first aspect above.
  • FIG. 1 is a perspective view of a dielectric filter unit provided in Embodiment 1 of the present application;
  • Fig. 2 is a top view of a dielectric filter unit provided in Embodiment 1 of the present application;
  • Fig. 3 is a front view of a dielectric filter unit provided in Embodiment 1 of the present application.
  • Fig. 4 is a front view of a dielectric filter unit provided in Embodiment 2 of the present application.
  • Fig. 5 is a top view of a dielectric filter unit provided in Embodiment 3 of the present application.
  • FIG. 6 is a perspective view of a dielectric filter unit provided in Embodiment 4 of the present application.
  • Fig. 7 is a top view of a dielectric filter unit provided in Embodiment 5 of the present application.
  • Fig. 8 is a front view of a dielectric filter unit provided in Embodiment 5 of the present application.
  • Fig. 9 is a perspective view of a dielectric filter provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of the cooperation between the third frequency hole 400 and the coupling groove 300 of a dielectric filter unit provided by the embodiment of the present application;
  • Figure 11 is a schematic diagram of a common CT tripole structure composed of three cavities
  • Figure 12 is a schematic diagram of the transmission zero point of a common three-cavity CT tripole structure falling on the high end of the passband;
  • Fig. 13 is a schematic diagram of a common three-cavity CT tripole structure in which the transmission zero point falls at the low end of the passband.
  • dielectric materials can be used instead of traditional metal materials. Under the same index, the volume of the filter can be reduced.
  • Research on dielectric filters has always been a hot spot in the communication industry. Filters are important components of wireless communication products, and dielectric filters are of great significance to the miniaturization of communication products.
  • cross-coupling The significance of cross-coupling is that the phase polarity of the electromagnetic wave is reversed after passing through different coupling paths, thereby generating an infinitesimal notch point outside the filter band, that is, a transmission zero point. Therefore, the out-of-band suppression capability of the filter is improved without increasing the number of cavities.
  • out-of-band zeros is located on both sides or one side of the high and low ends of the filter's working passband.
  • the out-of-band zero points are on both sides of the passband of the filter, and the strength is different, that is, the frequency distance from the passband is different.
  • the above characteristics require that the design can be flexibly adjusted according to the specific out-of-band suppression index requirements.
  • Dielectric filters are usually composed of multiple resonant cavities.
  • the general dielectric filter cannot Taking into account the requirements of volume, multi-resonance mode and suppression performance.
  • the embodiment of the present application provides a dielectric filter unit and a dielectric filter, which can simultaneously realize small volume, multi-resonant modes and generate out-of-band transmission zeros.
  • Figure 1 is a perspective view of a dielectric filter unit provided in the embodiment of the first aspect of the application
  • Figure 2 is a top view of the dielectric filter unit provided in the embodiment of the application
  • Figure 3 is a perspective view of the embodiment of the application
  • the dielectric filter unit provided in the embodiment of the present application includes a first dielectric resonant cavity 100 and a second dielectric resonant cavity 200 .
  • a first frequency hole 110 is disposed on an upper end surface or a lower end surface of the first dielectric resonant cavity 100 .
  • the second dielectric resonant cavity 200 is connected to the first dielectric resonant cavity 100, the upper or lower end surface of the second dielectric resonant cavity 200 is provided with a second frequency hole 210, the connection between the first dielectric resonant cavity 100 and the second dielectric resonant cavity 200
  • a coupling slot 300 is provided at the connection of the first dielectric resonator 100 and the second dielectric resonator 200
  • a third frequency hole 400 is also provided at the connection of the first dielectric resonator 100 and the second dielectric resonator 200 .
  • the dielectric filter unit includes a first dielectric resonator 100 and a second dielectric resonator 200, and a coupling groove 300 is arranged between the first dielectric resonator 100 and the second dielectric resonator 200, so that a certain amount of The coupling of the first dielectric resonant cavity 100 and the second dielectric resonant cavity 200 is provided with a third frequency hole 400, and the third frequency hole 400 cooperates with the coupling groove 300, so that in the structure of the double cavity
  • the third resonance mode is excited in the middle, so that the dielectric filter only uses the physical form and volume size of two cavities to complete the realization of three transmission modes, thereby achieving the performance of a third-order filter and at the same time generating out-of-band transmission Zero point, with high debuggability and manufacturability.
  • the opening of the third frequency hole 400 faces the side of the dielectric filter unit. It can be understood that the opening of the third frequency hole 400 can also be directed towards the upper end surface or the lower end surface of the dielectric filter unit, or towards the connection between the upper end surface and the side surface of the dielectric filter unit or towards the side surface and the side surface of the dielectric filter unit. lower end connection.
  • the opening of the third frequency hole 400 can face to different positions, and it is only necessary to ensure that the third frequency hole 400 can cooperate with the coupling slot 300 to excite the third resonance mode in the double-cavity structure.
  • first dielectric resonant cavity 100 and the second dielectric resonant cavity 200 may be polygonal or irregularly shaped cubes. Both the first dielectric resonator 100 and the second dielectric resonator 200 in this embodiment are selected as cuboids.
  • the first frequency hole 110 is a frequency blind hole formed by the upper end of the first dielectric resonator 100 recessed inwardly
  • the second frequency hole 210 is formed by the upper end of the second dielectric resonant cavity 200.
  • the function of the coupling groove 300 is to form a coupling window so that a certain amount of coupling occurs between the two resonators.
  • the side of the dielectric filter unit is recessed inward to form a third frequency hole 400, the third frequency hole 400 is located between the two cavities, and the plane of the outer surface of the entire dielectric filter unit, the surface including holes and grooves are all metallized . During commissioning, metallization can be removed in local areas.
  • the first frequency hole 110 and the second frequency hole 210 are located on the same end surface of the dielectric filter unit, for example, both are located on the upper end surface or the lower end surface of the dielectric filter unit. 1 to 3, the first frequency hole 110 and the second frequency hole 210 are located on the upper end surface of the dielectric filter unit, that is, the first frequency hole 110 is located on the upper end surface of the first dielectric resonant cavity 100, and the second The frequency hole 210 is located on the upper end surface of the second dielectric resonant cavity 200 . Both the first frequency hole 110 and the second frequency hole 210 are blind holes formed by inwardly recessing the surface, and are used for generating and tuning the frequency of the resonant cavity.
  • first frequency hole 110 and the second frequency hole 210 can also be located on different end faces of the dielectric filter unit, that is, the first frequency hole 110 and the second frequency hole 210 can be located on the upper end face and the second frequency hole 210 of the dielectric filter unit, respectively.
  • first frequency hole 110 is located on the upper end surface of the first dielectric resonant cavity 100
  • second frequency hole 210 is located on the lower end surface of the second dielectric resonant cavity 200, and the effect is to complete the phase inversion of the transmission phase, thereby Switch the transmission zero point at the high and low ends of the filter passband.
  • the dielectric filter unit can also be provided with a fourth frequency hole, and the fourth frequency hole is arranged on the first dielectric resonant cavity relative to The other end face of the end face where the first frequency hole is located or the other end face of the second dielectric resonant cavity opposite to the end face where the second frequency hole is located.
  • a fourth frequency hole 220 is further provided on the upper end surface of the second dielectric resonant cavity 200 . The added fourth frequency hole 220 can improve the convenience of debugging.
  • the first frequency hole 110 , the second frequency hole 210 and the fourth frequency hole 220 are all blind holes, and their cross-sectional shapes may be circular, rectangular, regular polygonal or irregular polygonal.
  • the coupling slot 300 is located in the area between two dielectric resonators, and the coupling slot 300 can be a through slot penetrating through the upper and lower end faces of the dielectric filter unit, or a non-penetrating blind slot.
  • the number of coupling grooves 300 in a dielectric filter unit can be only one or more than one. In the embodiments shown in FIGS. 1 to 3, one coupling groove 300 is provided. The implementation shown in FIG. 5 In an example, there are two coupling slots 300 .
  • the edge of the coupling slot 300 and the dielectric filter unit can be partially broken or completely embedded in the dielectric filter unit.
  • the embodiment shown in Figure 6 shows that the coupling slot 300 is embedded in the dielectric filter unit.
  • the form in the device unit, that is, the coupling groove 300 is located inside the connection between the first dielectric resonator 100 and the second dielectric resonator 200; while the embodiment shown in FIG. 1 shows that the coupling groove 300 is partially broken Form, that is, the coupling groove 300 is located at the edge of the connection between the first dielectric resonator 100 and the second dielectric resonator 200 .
  • the cross-sectional shape of the coupling groove 300 may be a circle, a rectangle, a regular polygon or an irregular polygon.
  • the third frequency hole 400 is a blind hole formed by inwardly recessing from the side of the dielectric filter unit.
  • the cross-sectional shape of the third frequency hole 400 may be a circle, a rectangle, a regular polygon or an irregular polygon. It can be understood that the axis line of the third frequency hole 400 may be perpendicular to the side of the dielectric filter unit, or may not be perpendicular to the side surface of the dielectric filter unit, and the axis line of the third frequency hole 400 is not perpendicular to the dielectric filter unit. When the side of the filter unit is used, the axis of the third frequency hole 400 forms an acute angle with the side of the dielectric filter unit.
  • the third frequency hole 400 is in the horizontal direction
  • the projection area on the horizontal direction completely overlaps or partially overlaps with the projection area of the coupling groove 300 in the horizontal direction.
  • the coupling window 310 in Fig. 7 and Fig. 8 is the projection area of the coupling groove 300 along the horizontal direction on the dielectric filter unit, and the third frequency hole 400 is located on the coupling window 310, that is, the third frequency hole 400 is completely or partially connected to the
  • the coupling window 310 has an overlapping area 410 .
  • the coupling window 310 refers to the sum of projection areas of all coupling slots 300 . At the same time, when there is a non-overlapping area between the projection areas of any two coupling slots 300 , the coupling window 310 also includes the non-overlapping area between the projections.
  • the number of the third frequency hole 400 in the dielectric filter unit can be only one, as shown in Figure 1; the number of the third frequency hole 400 in the dielectric filter unit can also be more than one, that is, There are more than two triple frequency holes 400 . It should be noted that when more than two third frequency holes 400 are provided, the projection area of each third frequency hole 400 in the horizontal direction completely overlaps or partially overlaps with the projection area of the coupling groove 300 in the horizontal direction.
  • the 3rd frequency hole 400 is positioned at the side position of dielectric filter unit, among the figure D is the distance of the center point of the cross section of the 3rd frequency hole 400 and the upper end surface of dielectric filter unit, and dielectric filter unit can pass Adjust the distance D to complete the adjustment of the transmission zero point;
  • B in the figure is the depth of the coupling groove 300 in the horizontal direction, and the dielectric filter unit can flexibly adjust the position of the transmission zero point by adjusting the depth B of the coupling groove 300 ;
  • C in FIG. 2 is the distance between the bottom of the third frequency hole 400 and the coupling groove 300, and the dielectric filter unit can flexibly adjust the frequency of the third mode by adjusting the distance C.
  • the dielectric of the dielectric filter unit refers to a material with a certain dielectric constant, such as ceramics with a dielectric constant of 20, 40, 60, or the like. It can be understood that the medium of the dielectric filter unit can be selected from one material, or mixed with materials with different dielectric constants.
  • the embodiment of the second aspect of the present application provides a dielectric filter, including more than two dielectric filter units as described in the embodiment of the first aspect above.
  • FIG. 9 provides a design example of a dielectric filter, wherein the dielectric filter includes two dielectric filter units according to the embodiment of the first aspect above. It can be understood that this is only one of the overall products of the dielectric filter realized by using the patented dielectric filter unit, and multiple such dielectric filter units can be cascaded to form filters of different orders, different topologies, different modes and different materials .
  • the transmission zero point of the dielectric filter is generated through the cross-coupling path of the non-adjacent cavity, and the signal of the main coupling path is superimposed in the opposite phase, so that the signal is blocked at a specific frequency outside the passband, thereby generating a theoretically infinitely small notch point, which is the transmission zero point.
  • Fig. 11 shows a common CT tripole structure composed of three cavities, and there are two signal transmission paths, respectively 1 ⁇ 2 ⁇ 3 and 1 ⁇ 3.
  • the superposition of opposite phases of the two paths produces a zero, where the sign + indicates positive coupling (inductive coupling) and the sign - indicates negative coupling (capacitive coupling).
  • the positive coupling between signal transmission paths 1 ⁇ 3 determines that the filter transmission zero point falls on the high end of the passband, as shown in Figure 12; the negative coupling between signal transmission paths 1 ⁇ 3 determines the filter transmission zero point is at the low end of the passband, as shown in Figure 13.
  • the third frequency hole 400 in the dielectric filter unit provided by this embodiment cooperates with the coupling groove 300, and the third frequency hole 400 is excited in the double-cavity structure.
  • the working mode is the mode marked as 2 in the figure. Under this specific structure, the three modes complete the coupling structure of the CT tripole shown in FIG. 11 above.
  • the dielectric filter unit provided in the embodiment of the present application generates a third resonant mode without increasing the volume, that is, an additional resonant cavity is added, thereby improving the out-of-band suppression performance of the filter transmission response; or in the same cavity Under the premise of the number, the volume is greatly reduced; the dielectric filter unit generates a transmission zero point, thereby further improving the out-of-band suppression performance of the filter transmission response; the third resonance mode of the dielectric filter unit is independently adjustable, and the generated transmission zero point is also Independently adjustable, the productivity is very high; the quality factor Q value of the dielectric filter unit will not decrease due to the generation of the third resonance mode; the dielectric filter unit is easy to process and shape, and the material cost is lower under the same order. Less weight.
  • the embodiment of the present application includes: a dielectric filter unit and a dielectric filter.
  • the dielectric filter unit includes a first dielectric resonator and a second dielectric resonator, and a coupling groove is arranged between the first dielectric resonator and the second dielectric resonator, so that the distance between the two resonators is A certain amount of coupling is generated between the first dielectric resonant cavity and the second dielectric resonant cavity.
  • a third frequency hole is provided at the junction of the first dielectric resonant cavity and the second dielectric resonant cavity.
  • the third frequency hole is matched with the coupling groove, so that in the structure of the double cavity
  • the third resonant mode is excited, so that the dielectric filter only uses the physical form and volume size of two cavities to complete the realization of three transmission modes, so as to achieve the performance of the third-order filter, and at the same time can generate out-of-band transmission zeros , with high debuggability and productivity. It can simultaneously realize small size, multi-resonance mode and can generate out-of-band transmission zero.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本申请公开了一种介质滤波器单元及介质滤波器,介质滤波器单元包括第一介质谐振腔和第二介质谐振腔,第一介质谐振腔的上端面或者下端面设置有第一频率孔;第二介质谐振腔与第一介质谐振腔连接,第二介质谐振腔的上端面或者下端面设置有第二频率孔,第一介质谐振腔与第二介质谐振腔的连接处设置有耦合槽,第一介质谐振腔与第二介质谐振腔的连接处还设置有第三频率孔。

Description

介质滤波器单元及介质滤波器
相关申请的交叉引用
本申请基于申请号为202111130983.7、申请日为2021年9月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信设备领域,尤其涉及一种介质滤波器单元及介质滤波器。
背景技术
电磁波在高介电常数物质中传播时,其波长可以缩短,利用这一理论,可采用介质材料代替传统金属材料,在相同指标下,滤波器的体积可以缩小。对于介质滤波器的研究一直是通信行业的热点。滤波器作为无线通信产品重要部件,介质滤波器对通信产品的小型化具有特别重要的意义。
介质滤波器通常由多个谐振腔组成,谐振腔数量越多,滤波器阶数越高,从而抑制性能越好,但是往往也会导致介质滤波器的体积越大,目前一般的介质滤波器无法兼顾体积、多谐振模式和抑制性能等多方面的要求。
发明内容
本申请的目的在于至少解决现有技术中存在的技术问题之一,提供一种介质滤波器单元及介质滤波器。
第一方面,本申请实施例提供一种介质滤波器单元,包括:
第一介质谐振腔,所述第一介质谐振腔的上端面或者下端面设置有第一频率孔;
第二介质谐振腔,所述第二介质谐振腔与所述第一介质谐振腔连接,所述第二介质谐振腔的上端面或者下端面设置有第二频率孔,所述第一介质谐振腔与所述第二介质谐振腔的连接处设置有耦合槽,所述第一介质谐振腔与所述第二介质谐振腔的连接处还设置有第三频率孔。
第二方面,本申请实施例提供一种介质滤波器,包括两个以上的如上第一方面实施例所述的介质滤波器单元。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
下面结合附图和实施例对本申请进一步地说明;
图1是本申请实施例一提供的一种介质滤波器单元的立体图;
图2是本申请实施例一提供的一种介质滤波器单元的俯视图;
图3是本申请实施例一提供的一种介质滤波器单元的正视图;
图4是本申请实施例二提供的一种介质滤波器单元的正视图;
图5是本申请实施例三提供的一种介质滤波器单元的俯视图;
图6是本申请实施例四提供的一种介质滤波器单元的立体图;
图7是本申请实施例五提供的一种介质滤波器单元的俯视图;
图8是本申请实施例五提供的一种介质滤波器单元的正视图;
图9是本申请实施例提供的一种介质滤波器的立体图;
图10是本申请实施例提供的一种介质滤波器单元的第三频率孔400与耦合槽300之间的配合示意图;
图11是一种常见的三个腔组成的CT三极子结构示意图;
图12是常见的三个腔组成的CT三极子结构的传输零点是落在通带的高端的示意图;
图13是常见的三个腔组成的CT三极子结构的传输零点是落在通带的低端的示意图。
具体实施方式
本部分将详细描述本申请的具体实施例,本申请之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本申请的每个技术特征和整体技术方案,但其不能理解为对本申请保护范围的限制。
在本申请的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请中的具体含义。
电磁波在高介电常数物质中传播时,其波长可以缩短,利用这一理论,可采用介质材料代替传统金属材料,在相同指标下,滤波器的体积可以缩小。对于介质滤波器的研究一直是通信行业的热点。滤波器作为无线通信产品重要部件,介质滤波器对通信产品的小型化具有特别重要的意义。
交叉耦合的意义在于,电磁波通过不同的耦合路径后的相位极性反转,从而在滤波器带外产生无穷小的陷波点,即传输零点。从而在腔数不增加的前提下,提升滤波器带外抑制的能力。
带外零点的产生,位于滤波器工作通带的高低端两侧或者一侧。当带外零点分别为于滤波器通带两侧时候,且强弱不同,即和通带的频率距离不同。上述特性根据具体的带外抑制指标需求,要求设计能够灵活调整。
介质滤波器通常由多个谐振腔组成,谐振腔数量越多,滤波器阶数越高,从而抑制性能越好,但是往往也会导致介质滤波器的体积越大,目前一般的介质滤波器无法兼顾体积、多谐振模式和抑制性能等多方面的要求。
本申请实施例提供一种介质滤波器单元及介质滤波器,能够同时实现小体积、多谐振模 式以及可以产生带外传输零点。
下面结合附图,对本申请实施例作进一步阐述。
参照图1至图3,图1是本申请第一方面实施例提供的一种介质滤波器单元的立体图;图2是本申请实施例提供的介质滤波器单元的俯视图;图3是本申请实施例提供的介质滤波器单元的正视图。本申请实施例提供的介质滤波器单元,包括第一介质谐振腔100和第二介质谐振腔200。
第一介质谐振腔100的上端面或者下端面设置有第一频率孔110。
第二介质谐振腔200与第一介质谐振腔100连接,第二介质谐振腔200的上端面或者下端面设置有第二频率孔210,第一介质谐振腔100与第二介质谐振腔200的连接处设置有耦合槽300,第一介质谐振腔100与第二介质谐振腔200的连接处还设置有第三频率孔400。
介质滤波器单元包括第一介质谐振腔100和第二介质谐振腔200,第一介质谐振腔100和第二介质谐振腔200之间设置有耦合槽300,使得两个谐振腔之间产生一定量的耦合,并在第一介质谐振腔100和第二介质谐振腔200的连接处设置有第三频率孔400,第三频率孔400存在与耦合槽300之间的配合,从而在双腔的结构中激励出了第三谐振模式,从而使得介质滤波器仅使用两个腔的物理形态和体积尺寸下,完成三个传输模式的实现,从而达到三阶滤波器的性能,同时能够产生带外传输零点,具有较高的可调试性和可生产性。
可以看到的是,图1至图3所示的实施例中,第三频率孔400的开口朝向介质滤波器单元的侧面。可以理解的是,第三频率孔400的开口朝向也可以朝向介质滤波器单元的上端面或者下端面,还可以朝向介质滤波器单元的上端面与侧面连接处或者朝向介质滤波器单元的侧面与下端面连接处。第三频率孔400的开口可以朝向不同的位置,只需要保证第三频率孔400能够存在与耦合槽300之间的配合,以在双腔的结构中激励出第三谐振模式即可。
需要说明的是,第一介质谐振腔100和第二介质谐振腔200的形状可以是多边体或者不规则形状立方体。本实施例中的第一介质谐振腔100和第二介质谐振腔200均选取为长方体。
如图1所示,第一频率孔110是由第一介质谐振腔100的上端面向内凹陷形成的频率盲孔,同理第二频率孔210是由第二介质谐振腔200的上端面向内凹陷形成的频率盲孔,第一介质谐振腔100和第二介质谐振腔200之间具有耦合槽300,耦合槽300的作用是形成耦合窗口,使得两个谐振腔之间产生一定量的耦合。另外,介质滤波器单元的侧面向内凹陷形成第三频率孔400,第三频率孔400位于两个腔之间,整个介质滤波器单元外表面的平面、包含孔和槽的表面全部金属化处理。调试时候局部区域可以去除金属化。
第一频率孔110和第二频率孔210位于介质滤波器单元的同一端面,例如均位于介质滤波器单元的上端面或者下端面。如图1至图3的实施例,第一频率孔110和第二频率孔210均位于介质滤波器单元的上端面,即第一频率孔110位于第一介质谐振腔100的上端面,第二频率孔210位于第二介质谐振腔200的上端面。第一频率孔110和第二频率孔210都是由表面向内凹陷形成的盲孔,用于产生和调谐谐振腔的频率。
可以理解的是,第一频率孔110和第二频率孔210也可以位于介质滤波器单元的不同端面,即第一频率孔110和第二频率孔210可以分别位于介质滤波器单元的上端面和下端面,例如参照图4,第一频率孔110位于第一介质谐振腔100的上端面,第二频率孔210位于第二介质谐振腔200的下端面,作用是完成传输相位的反相,从而使得传输零落点在滤波器通带高低端的切换。
另外,当第一频率孔110和第二频率孔210位于介质滤波器单元的不同端面时,介质滤波器单元还可以设置有第四频率孔,第四频率孔设置于第一介质谐振腔相对于第一频率孔所在端面的另一端面或者设置于第二介质谐振腔相对于第二频率孔所在端面的另一端面。在图4所示的实施例中,第二介质谐振腔200的上端面还设置有第四频率孔220。增加的第四频率孔220能够提高调试的便利性。
第一频率孔110、第二频率孔210和第四频率孔220均为盲孔,其横截面形状可以为圆形、长方形、正多边形或者不规则多边形。
需要说明的是,耦合槽300位于两个介质谐振腔之间的区域,耦合槽300既可以是贯穿介质滤波器单元的上端面和下端面的通槽,也可以是非贯穿的盲槽。另外,耦合槽300在一个介质滤波器单元中的数量可以只有一个,也可以多于1个,图1至图3所示的实施例中,耦合槽300设置有一个,图5所示的实施例中,耦合槽300设置有两个。
另外,耦合槽300的边缘与介质滤波器单元可以是局部破边或完全内嵌在介质滤波器单元之中的形态,如图6所示的实施例,展示了耦合槽300内嵌在介质滤波器单元之中的形态,即耦合槽300位于第一介质谐振腔100与第二介质谐振腔200的连接处的内部;而图1所示的实施例,则展示了耦合槽300局部破边的形态,即耦合槽300位于第一介质谐振腔100与第二介质谐振腔200的连接处的边缘。其中,耦合槽300的横截面形状可以为圆形、长方形、正多边形或者不规则多边形。
参照图1和图6,第三频率孔400为从介质滤波器单元的侧面向内凹陷形成的盲孔。第三频率孔400的横截面形状可以为圆形、长方形、正多边形或者不规则多边形。可以理解的是,第三频率孔400的轴心线可以垂直于介质滤波器单元的侧面,也可以不垂直于介质滤波器单元的侧面,第三频率孔400的轴心线不垂直于介质滤波器单元的侧面时,第三频率孔400的轴心线与介质滤波器单元的侧面成锐角夹角。图7和图8分别为第三频率孔400的轴心线不垂直于介质滤波器单元的侧面的介质滤波器单元的俯视图和正视图,可以看到的是,第三频率孔400在水平方向上的投影区域与耦合槽300在水平方向上的投影区域完全重叠或者部分重叠。其中,图7和图8中的耦合窗口310为耦合槽300延水平方向在介质滤波器单元上的投影区域,第三频率孔400位于耦合窗口310上,即第三频率孔400全部或者局部与耦合窗口310具有交叠区域410。
当耦合槽300的数量多于1个时,耦合窗口310是指全部耦合槽300的投影区域之和。同时当任意两个耦合槽300的投影区域之间出现不重叠区时,耦合窗口310也包括投影之间的不重叠区。
需要说明的是,介质滤波器单元中的第三频率孔400的数量可以只有一个,如图1所示;介质滤波器单元中的第三频率孔400的数量也可以多于1个,即第三频率孔400设置有两个以上。需要注意的是,当第三频率孔400设置有两个以上时,每个第三频率孔400在水平方向上的投影区域与耦合槽300在水平方向上的投影区域完全重叠或者部分重叠。
参照图3,第三频率孔400位于介质滤波器单元的侧面位置,图中D为第三频率孔400的横截面的中心点与介质滤波器单元的上端面的距离,介质滤波器单元可以通过调节该距离D,来完成传输零点的调节;参照图2,图中B为耦合槽300水平方向上的深度,介质滤波器单元可以通过调节耦合槽300的深度B,来灵活调节传输零点的位置;另外,图2中C为第三频率孔400的底部与耦合槽300之间的距离,介质滤波器单元可以通过调节该距离C,可 以灵活调节第三个模式的频率。
需要说明的是,介质滤波器单元的介质是指具有一定介电常数的材料,例如介电常数为20、40、60等的陶瓷。可以理解的是,介质滤波器单元的介质既可以选用一种材料,也可以选取不同介电常数的材料混合使用。
另外,本申请的第二方面实施例提供一种介质滤波器,包括两个以上的如上第一方面实施例的介质滤波器单元。参照图9所示,图9提供了一个介质滤波器的设计实例,其中该介质滤波器包含了两个上述第一方面实施例的介质滤波器单元。可以理解,这只是展示利用本专利介质滤波器单元实现介质滤波器整体产品中的一种,多个此介质滤波器单元可以级联构成不同阶数、不同拓扑、不同模式和不同材料的滤波器。
介质滤波器传输零点的产生,是通过非相邻腔的交叉耦合路径,与主耦合路径的信号产生相反相位叠加,使得信号在通带外特定频率处阻断,从而生成理论无限小的陷波点,即传输零点。
参照图11,图11示出了常见的三个腔组成的CT三极子结构,信号传输路径有两条,分别为1→2→3和1→3。两条路径的相反相位叠加产生零点,其中,符号+表示正耦合(感性耦合),符号-表示负耦合(容性耦合)。信号传输路径1→3之间的正耦合,决定了滤波器传输零点是落在通带的高端,如图12所示;信号传输路径1→3之间的负耦合,决定了滤波器传输零点是落在通带的低端,如图13所示。
在物理结构实现上,参照图10所示,本实施例提供的介质滤波器单元中的第三频率孔400存在与耦合槽300之间的配合,在双腔的结构中激励出了第三个工作模式,即图中标记为2的模式。三个模式在此特定结构下,完成了上述图11所示的CT三极子的耦合结构。
本申请实施例提供的介质滤波器单元,在体积不增加的前提下,产生第三谐振模式,即额外增加一级谐振腔,从而提升了滤波器传输响应的带外抑制性能;或者在相同腔数的前提下,体积大幅缩小;介质滤波器单元产生一个传输零点,从而进一步提升滤波器传输响应的带外抑制性能;介质滤波器单元的第三谐振模式独立可调,所产生一个传输零点也独立可调,可生产性非常高;介质滤波器单元的品质因数Q值,不会因为第三谐振模式的产生而下降;介质滤波器单元易加工成型,相同阶数下,材料成本更低,重量更轻。
本申请实施例包括:介质滤波器单元及介质滤波器。根据本申请实施例提供的方案,介质滤波器单元包括第一介质谐振腔和第二介质谐振腔,第一介质谐振腔和第二介质谐振腔之间设置有耦合槽,使得两个谐振腔之间产生一定量的耦合,并在第一介质谐振腔和第二介质谐振腔的连接处设置有第三频率孔,第三频率孔存在与耦合槽之间的配合,从而在双腔的结构中激励出了第三谐振模式,从而使得介质滤波器仅使用两个腔的物理形态和体积尺寸下,完成三个传输模式的实现,从而达到三阶滤波器的性能,同时能够产生带外传输零点,具有较高的可调试性和可生产性。能够同时实现小体积、多谐振模式以及可以产生带外传输零点。
上面结合附图对本申请实施例作了详细说明,但是本申请不限于上述实施例,在所述技术领域普通技术人员所具备的知识范围内,还可以在不脱离本申请宗旨的前提下作出各种变化。

Claims (15)

  1. 一种介质滤波器单元,包括:
    第一介质谐振腔,所述第一介质谐振腔的上端面或者下端面设置有第一频率孔;
    第二介质谐振腔,所述第二介质谐振腔与所述第一介质谐振腔连接,所述第二介质谐振腔的上端面或者下端面设置有第二频率孔,所述第一介质谐振腔与所述第二介质谐振腔的连接处设置有耦合槽,所述第一介质谐振腔与所述第二介质谐振腔的连接处还设置有第三频率孔。
  2. 根据权利要求1所述的介质滤波器单元,其中,所述第三频率孔的开口朝向所述介质滤波器单元的上端面、朝向所述介质滤波器单元的侧面、朝向所述介质滤波器单元的下端面、朝向所述介质滤波器单元的上端面与侧面连接处或者朝向所述介质滤波器单元的侧面与下端面连接处。
  3. 根据权利要求1所述的介质滤波器单元,其中,所述耦合槽为贯穿所述介质滤波器单元的上端面与下端面的通槽或者为非贯穿的盲槽。
  4. 根据权利要求1所述的介质滤波器单元,其中,所述耦合槽位于所述第一介质谐振腔与所述第二介质谐振腔的连接处的内部或者位于所述第一介质谐振腔与所述第二介质谐振腔的连接处的边缘。
  5. 根据权利要求1所述的介质滤波器单元,其中,所述耦合槽设置有两个以上。
  6. 根据权利要求1所述的介质滤波器单元,其中,所述第一频率孔和所述第二频率孔位于所述介质滤波器单元的同一端面。
  7. 根据权利要求1所述的介质滤波器单元,其中,所述第一频率孔和所述第二频率孔位于所述介质滤波器单元的不同端面。
  8. 根据权利要求7所述的介质滤波器单元,其中,所述第一介质谐振腔相对于所述第一频率孔所在端面的另一端面设置有第四频率孔,或者所述第二介质谐振腔相对于所述第二频率孔所在端面的另一端面设置有第四频率孔。
  9. 根据权利要求1所述的介质滤波器单元,其中,所述第一频率孔、所述第二频率孔和所述第三频率孔均为盲孔。
  10. 根据权利要求1所述的介质滤波器单元,其中,所述第三频率孔的轴心线垂直于所述介质滤波器单元的侧面或者所述第三频率孔的轴心线与所述介质滤波器单元的侧面成锐角夹角。
  11. 根据权利要求1所述的介质滤波器单元,其中,所述第三频率孔在水平方向上的投影区域与所述耦合槽在水平方向上的投影区域完全重叠或者部分重叠。
  12. 根据权利要求1所述的介质滤波器单元,其中,所述第三频率孔设置有两个以上。
  13. 根据权利要求12所述的介质滤波器单元,其中,每个所述第三频率孔在水平方向上的投影区域与所述耦合槽在水平方向上的投影区域完全重叠或者部分重叠。
  14. 根据权利要求1所述的介质滤波器单元,其中,所述第一频率孔、所述第二频率孔、所述第三频率孔、所述耦合槽的横截面形状为圆形、长方形、正多边形或者不规则多边形。
  15. 一种介质滤波器,包括两个以上的如权利要求1至14任一项所述的介质滤波器单元。
PCT/CN2022/112564 2021-09-26 2022-08-15 介质滤波器单元及介质滤波器 WO2023045621A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247012943A KR20240058948A (ko) 2021-09-26 2022-08-15 유전체 필터 유닛 및 유전체 필터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111130983.7 2021-09-26
CN202111130983.7A CN113871826B (zh) 2021-09-26 2021-09-26 介质滤波器单元及介质滤波器

Publications (1)

Publication Number Publication Date
WO2023045621A1 true WO2023045621A1 (zh) 2023-03-30

Family

ID=78990808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112564 WO2023045621A1 (zh) 2021-09-26 2022-08-15 介质滤波器单元及介质滤波器

Country Status (3)

Country Link
KR (1) KR20240058948A (zh)
CN (2) CN113871826B (zh)
WO (1) WO2023045621A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871826B (zh) * 2021-09-26 2023-03-10 中兴通讯股份有限公司 介质滤波器单元及介质滤波器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068493A1 (ja) * 2013-11-06 2015-05-14 日本碍子株式会社 誘電体フィルタ及び誘電体フィルタの減衰特性調整方法
CN110400992A (zh) * 2018-04-24 2019-11-01 上海华为技术有限公司 一种介质滤波器和通信设备
CN111799535A (zh) * 2020-07-06 2020-10-20 武汉凡谷陶瓷材料有限公司 一种容性耦合装置及滤波器
CN112397856A (zh) * 2019-08-14 2021-02-23 昆明盘甲科技有限公司 一种具有容性耦合特性的介质滤波器耦合结构
CN213845459U (zh) * 2020-11-27 2021-07-30 瑞典爱立信有限公司 介质滤波器
CN113871826A (zh) * 2021-09-26 2021-12-31 中兴通讯股份有限公司 介质滤波器单元及介质滤波器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111384482A (zh) * 2018-12-29 2020-07-07 深圳市大富科技股份有限公司 应用于5g通信系统的介质滤波器及通信设备
CN111384551B (zh) * 2018-12-29 2022-05-03 深圳市大富科技股份有限公司 一种介质滤波器及通信设备
CN213752987U (zh) * 2021-01-08 2021-07-20 深圳顺络电子股份有限公司 一种介质滤波器、天线及基站

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068493A1 (ja) * 2013-11-06 2015-05-14 日本碍子株式会社 誘電体フィルタ及び誘電体フィルタの減衰特性調整方法
CN110400992A (zh) * 2018-04-24 2019-11-01 上海华为技术有限公司 一种介质滤波器和通信设备
CN112397856A (zh) * 2019-08-14 2021-02-23 昆明盘甲科技有限公司 一种具有容性耦合特性的介质滤波器耦合结构
CN111799535A (zh) * 2020-07-06 2020-10-20 武汉凡谷陶瓷材料有限公司 一种容性耦合装置及滤波器
CN213845459U (zh) * 2020-11-27 2021-07-30 瑞典爱立信有限公司 介质滤波器
CN113871826A (zh) * 2021-09-26 2021-12-31 中兴通讯股份有限公司 介质滤波器单元及介质滤波器

Also Published As

Publication number Publication date
CN113871826B (zh) 2023-03-10
KR20240058948A (ko) 2024-05-03
CN115986348A (zh) 2023-04-18
CN113871826A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
CN110112518B (zh) 双模介质波导滤波器
WO2023045621A1 (zh) 介质滤波器单元及介质滤波器
CN110504512A (zh) 一种电容耦合结构及应用该结构的介质滤波器
EP1161775B1 (en) Waveguide filter having asymmetrically corrugated resonators
WO2020173243A1 (zh) 一种传输零点可控的基片集成波导滤波器
CN110534851A (zh) 一种用于实现对称传输零点的介质滤波器耦合结构
CA2267504A1 (en) Dielectric resonator device
CN111129667B (zh) 一种应用于介质波导滤波器中的负耦合结构及介质波导滤波器
CN210778910U (zh) 一种滤波器耦合单元和滤波器
JPH08250904A (ja) 誘電体フィルタ
CN110112519B (zh) 高带宽介质波导滤波器
KR100394802B1 (ko) 듀얼 모드 대역통과필터의 감쇠극의 주파수 조정방법
US6507251B2 (en) Dual-mode band-pass filter
US6630875B2 (en) Dual-mode band-pass filter
WO2022000590A1 (zh) 容性、感性交叉耦合结构及介质波导滤波器
Avinash et al. Compact dual-mode microstrip bandpass filters with transmission zeros using modified star shaped resonator
US6714103B2 (en) TEM band pass filter having an evanescent waveguide
US6087909A (en) Dielectric filter having at least one stepped resonator hole with an elongated cross-section
JPH10308604A (ja) 誘電体フィルタ、誘電体デュプレクサおよびそれらの設計方法
CN108281738A (zh) 基于平行耦合线首尾级联的全波长耦合双环形滤波器
CN207719373U (zh) 基于平行耦合线首尾级联的全波长耦合双环形滤波器
US6828880B2 (en) Bandpass filter
JPH10322155A (ja) 帯域阻止フィルタ
CN212571286U (zh) 滤波器及通信基站
JP2002330001A (ja) 帯域通過型フィルタおよび通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247012943

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022871679

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022871679

Country of ref document: EP

Effective date: 20240419