WO2023045308A1 - 一种巨型轮胎钢丝圈的圆形化排列控制方法及系统 - Google Patents

一种巨型轮胎钢丝圈的圆形化排列控制方法及系统 Download PDF

Info

Publication number
WO2023045308A1
WO2023045308A1 PCT/CN2022/086837 CN2022086837W WO2023045308A1 WO 2023045308 A1 WO2023045308 A1 WO 2023045308A1 CN 2022086837 W CN2022086837 W CN 2022086837W WO 2023045308 A1 WO2023045308 A1 WO 2023045308A1
Authority
WO
WIPO (PCT)
Prior art keywords
traveler
winding
layer
horizontal
vertical jump
Prior art date
Application number
PCT/CN2022/086837
Other languages
English (en)
French (fr)
Inventor
韩永刚
张晓辰
马松
张宗晨
Original Assignee
天津赛象科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津赛象科技股份有限公司 filed Critical 天津赛象科技股份有限公司
Publication of WO2023045308A1 publication Critical patent/WO2023045308A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F37/00Manufacture of rings from wire

Definitions

  • the invention relates to a circular arrangement control method and system for giant tire bead rings, and belongs to the technical field of giant tire production equipment and methods.
  • the steel traveler is a rigid ring made of rubber-covered steel wires arranged layer by layer. Its function is to give the bead the necessary strength and rigidity, so that the tire is firmly fixed on the rim.
  • a tire with a diameter of 2.6m and a width of more than 0.8m can be called a giant tire.
  • the existing giant tire bead rings are wound in a hexagonal cross-section. As shown in Figure 1, the bead ring cross-section tends to become round after the cord fabric is tightly wrapped, and the stress of the steel wires will not be released, which will affect the performance and life of the tire.
  • the equipment used for bead winding is a bead winding machine.
  • the bead winding machine includes a man-machine interface 28, a winding servo motor 29, a lifting servo motor 30, a wire discharge servo motor 31, a winding disc 32, a winding servo
  • the motor drives the winding disk to rotate, and the winding disk pulls the steel wire to wind, and the steel wire is drawn from the steel wire disk to the wire guide head, which is set close to the winding disk, and the lifting servo motor drives the wire guide head to rise according to the height of the steel wire arrangement, so as to carry out vertical Jumping step
  • the wire arranging motor drives the wire guide head to move left and right according to the position calculated by the program to perform horizontal wire arranging, the groove of the winding disc hoops the steel wire, and finally the traveler is formed in the groove.
  • the conventional trigger lifting and wire discharging motor action is the external proximity switch signal or the position signal of the servo feedback after the winding disc rotates one circle, which will cause the jumping position to be non-adjustable, and the jumping position will be different due to the difference in winding speed Sex, while the technical process requires that the jumping position can be adjusted and determined.
  • the object of the present invention is to overcome the defects in the above-mentioned prior art, and provide a method and system for controlling the circular arrangement of giant tire bead rings.
  • the man-machine interface can be more flexibly Input the corresponding parameters
  • PLC edits the traveler cross-section at least partially tends to the circular arrangement shape program, and controls the winding servo motor, the lifting servo motor and the wire arranging servo motor to cooperate to complete the control method of the traveler manufacturing.
  • a method for controlling the circular arrangement of giant tire bead rings comprises the following steps:
  • the traveler manufacturing parameters include at least the number of transverse layers f in the traveler section, the number of travelers in each transverse layer, the diameter of the steel wire, and the starting angle c of the first vertical jump ;
  • the horizontal layer with the largest number of travellers is the middle layer; the horizontal layers are arranged from bottom to top, then at least in some horizontal layers below the middle layer, the number of travellers in the kth horizontal layer is greater than the number of steel wires in the k+1th horizontal layer
  • the number of circles is small, and the number difference is greater than or equal to 3;
  • the initial angle c of the first vertical jump is the rotation angle of the winding disc relative to the 0-degree line L when the first vertical jump starts
  • the initial angle c n of the nth vertical jump is The rotation angle of the winding disk relative to the 0 degree line L at the beginning of the nth vertical jump, then:
  • the 0-degree line L is the connection line between the position where the steel wire is connected to the winding disk and the axis of the winding disk before starting to wind;
  • the step (1) also includes: displaying the cross-sectional shape of the traveler
  • the step (3) further includes: according to the progress of the winding operation, in the displayed cross-sectional shape of the traveler, marking the circle corresponding to the completed traveler.
  • the circular arrangement control method of the giant tire traveler also includes the following steps:
  • the circular arrangement control method of the giant tire traveler, before step (1) also includes the following steps:
  • Compiling a formula editing screen includes an input area for inputting traveler manufacturing parameters
  • a formula list screen is prepared, and the formula list screen is used for displaying, replacing, and calling formulas, and for displaying cross-sectional shapes of travellers.
  • the manufacturing parameters of the traveler also include the termination angle d 1 of the first vertical jump, that is, the rotation angle of the winding disc relative to the 0 degree line L when the first vertical jump is terminated;
  • the step (2) also includes obtaining the termination angle d n of the nth vertical jump:
  • d n d n-1 + (d 1 - c 1 ).
  • the first horizontal wire arrangement of the second horizontal layer is carried out; after the nth vertical step, the first horizontal wire arrangement of the n+1th horizontal layer is carried out ;
  • the manufacturing parameters of the traveler also include the initial angle a 1 of the first horizontal wire arrangement of the second transverse layer, that is, the rotation angle of the winding disc relative to the 0 degree line L at the beginning of the first transverse wire arrangement of the second transverse layer;
  • the step (2) also includes obtaining the starting angle a n of the first horizontal wire arrangement of the n+1th horizontal layer:
  • the manufacturing parameters of the traveler also include the termination angle b 1 of the first transverse wire arrangement of the second transverse layer, that is, the rotation angle of the winding disc relative to the 0 degree line L when the first transverse wire arrangement of the second transverse layer is terminated;
  • the step (2) also includes obtaining the termination angle b n of the first transverse wire arrangement of the n+1th transverse layer:
  • the manufacturing parameters of the traveler also include the number of lateral moving steps for the first wire arrangement of the k+1th horizontal layer after the kth horizontal layer jumps vertically to the k+1th horizontal layer.
  • the present invention also provides a circular arrangement control system for giant tire bead rings, which is used to realize the circular arrangement control method for giant tire bead rings as described above, including a PLC controller, a man-machine interface, and a winding servo motor Driver, lifting servo motor driver and wire arranging servo motor driver;
  • the man-machine interface is used to realize man-machine interaction
  • the PLC controller is used to control the winding servo motor driver, lifting servo motor driver and wire arranging servo motor driver.
  • the circular arrangement control method and system of giant tire bead rings of the present invention compared with the prior art, has the following beneficial effects:
  • Fig. 1 is an arrangement structure of an embodiment of a traveler in the prior art.
  • Fig. 2 is a structural schematic diagram of a traveler winding machine.
  • Fig. 3 is a schematic diagram of winding the first turn of the first transverse layer of the traveler.
  • Fig. 4 is a schematic diagram after the horizontal wire arrangement operation is performed during the winding process of the traveler.
  • Fig. 5 is a schematic view of the first transverse layer of the traveler when the winding is completed.
  • Fig. 6 is a schematic diagram after performing a vertical jump operation during the winding process of the traveler.
  • Fig. 7 is a schematic view when the second transverse layer of the traveler is wound.
  • Fig. 8 is a schematic diagram of the traveler in the prior art after winding.
  • Figure 9 is a schematic diagram of the position of the 0 degree line.
  • Fig. 10 is a schematic diagram of the rotation angle of the winding disc relative to the 0 degree line at the beginning of the transverse wire arrangement.
  • Fig. 11 is a schematic diagram of the rotation angle of the winding disc relative to the 0 degree line when the horizontal wire arrangement is terminated.
  • Fig. 12 is a schematic diagram of the rotation angle of the winding disc relative to the 0 degree line at the start of the vertical jump.
  • Fig. 13 is a schematic diagram of the rotation angle of the winding disc relative to the 0 degree line when the vertical jump is terminated.
  • Fig. 14 is a schematic diagram of an embodiment of a recipe editing screen.
  • Fig. 15 is a schematic diagram of an embodiment of a recipe list screen.
  • the invention provides a method for controlling the circular arrangement of giant tire bead rings, which includes the following steps:
  • the formula editing screen is an important screen, and the screen contains important parameters for creating a circular traveler, as shown in Figure 14, create a graphic screen on the man-machine interface, and create an input area on the screen, including the formula number input area 18, formula Name input area 17, layer number input area 16, steel wire diameter input area 15, wire arrangement start position input area 6, wire arrangement end position input area 7, lifting start position input area 8, lifting end position input area 9, etc., create and replace Recipe button 1, save button 2, call button 3, data clear button 4, edit confirmation button 5, layer number page down button 10, layer number page up button 19, create two numerical input parameters for each horizontal layer area, that is, the input area 11 for the number of roots of each layer, and the input area 12 for the step distance between layers; each recipe can be named and saved.
  • recipe 2 is named "R51", which is displayed in the recipe name display area 13, and multiple Recipe, the recipe name can be viewed through the recipe name page down button 25 and recipe name page up button 24; when the recipe is edited and confirmed, the value of the total winding length will be displayed in the winding total length display area 14.
  • the input and display content is not limited to the above content defined in this embodiment.
  • the formula list screen is a screen for displaying, replacing and calling formulas, and can display the arrangement graphics of steel wires.
  • the input area created on the screen includes the formula number input area 18, the formula name input area 17, and the button to create and replace the formula 1.
  • Call button 3 create formula name page down button 25, formula name page up button 24, create formula number serial number display area 26, create traveler section shape display area 27, each small circle represents a steel wire.
  • the input and display content is not limited to the above content defined in this embodiment.
  • the traveler manufacturing parameters include at least the number of transverse layers f in the cross section of the traveler, the number of travelers in each transverse layer, the diameter of the steel wire, and the starting angle c 1 of the first vertical jump; the transverse direction with the largest number of travelers layer is the middle layer; the transverse layers are arranged from bottom to top, then at least in some transverse layers below the middle layer, the number of travelers in the kth transverse layer is less than the number of travelers in the k+1th transverse layer, and the number is poor greater than or equal to 3.
  • the traveler manufacturing parameters also include the number of lateral moving steps for the first wire arrangement of the k+1th horizontal layer after the kth horizontal layer jumps vertically to the k+1th horizontal layer. This step can be used to manufacture a steel traveler whose section bottom tends to be circular, which makes the tire structure more reasonable and helps to improve tire performance and life.
  • the steel wire 100 is fixed on the winding wheel after passing through the guide wire head.
  • 102 axis connecting line is 0 degree line L.
  • the winding wheel rotates under the drive of the motor, and when the winding wheel rotates about one circle, the wire guide head is controlled to perform horizontal wire arrangement, that is, the wire guide head moves laterally by one step, as shown in Figure 4.
  • the rotation angle of the winding wheel relative to the 0-degree line at the beginning of the horizontal wire arranging is a, as shown in Figure 10; when the horizontal wire arranging ends, the rotation angle of the winding wheel relative to the 0-degree line is b, as shown in Figure 11.
  • the wire guide head moves to the position of the first turn of the second transverse layer, and then starts to wind the first turn of the second transverse layer, and then performs subsequent horizontal wire arrangement operations in sequence to complete the first turn of the second transverse layer 2-layer winding, as shown in Figures 5, 6, and 7.
  • the rotation angle of the winding wheel relative to the 0-degree line at the beginning of the vertical jump is c, as shown in FIG. 12 .
  • the rotation angle of the winding wheel relative to the 0 degree line is d, as shown in Figure 13.
  • Figure 8 since the jumping position of the traveler is concentrated at the lap position A, the thickness of this position is too thick compared with other positions, which will affect the overall dynamic balance of the tire.
  • the traveler manufacturing parameters input in step S3 also include: the end angle d 1 of the first vertical jump, the starting angle a 1 of the first horizontal wire arrangement of the second horizontal layer, End angle b 1 of the first transverse wire arrangement of the second transverse layer.
  • the initial angle c 1 of the first vertical jump is the rotation angle of the winding disc relative to the 0 degree line L when the first vertical jump starts, and the end angle d 1 of the first vertical jump is the first vertical jump.
  • the rotation angle of the winding disc relative to the 0-degree line L at the end of a vertical jump the starting angle a of the first horizontal wire arrangement of the second horizontal layer 1 is the winding disc at the beginning of the first horizontal wire arrangement of the second horizontal layer Relative to the rotation angle of the 0-degree line L
  • the termination angle b 1 of the first horizontal wire arrangement of the second transverse layer is the rotation angle of the winding disc relative to the 0-degree line L when the first transverse wire arrangement of the second transverse layer is terminated.
  • the present invention also comprises steps:
  • the starting angle c n of the nth vertical jump is the rotation angle of the winding disc relative to the 0 degree line L at the beginning of the nth vertical jump
  • the ending angle d n of the nth vertical jump is the rotation angle of the winding disc relative to the 0-degree line L when the nth vertical jump is terminated
  • the starting angle a n of the first horizontal row of the n+1th horizontal layer is the first horizontal row of the n+1th horizontal layer
  • the rotation angle of the winding disc relative to the 0-degree line L at the beginning of the wire, the end angle b n of the first horizontal wire arrangement of the n+1th transverse layer is the relative
  • the rotation angle of the 0 degree line L then:
  • d n d n-1 + (d 1 - c 1 ).
  • the skip position of the traveler can be evenly distributed in the circumferential direction of the traveler during the winding operation, which effectively reduces the width and thickness of the overlapping position of the traveler, and reduces the impact of the traveler on the overall dynamic balance of the tire. Influence.
  • the present invention also provides a circular arrangement control system for giant tire bead rings, which is used to realize the circular arrangement control method for giant tire bead rings as described in any one of the preceding items, including a PLC controller, a man-machine interface, a winding Servo motor driver, lifting servo motor driver and wire arranging servo motor driver;
  • the man-machine interface is used to realize man-machine interaction
  • the PLC controller is used to control the winding servo motor driver, lifting servo motor driver and wire arranging servo motor driver.
  • the circular arrangement control system of the giant tire traveler also includes a programming computer for writing programs into the PLC controller.
  • the winding servo motor driver is used to drive the winding servo motor
  • the lifting servo motor driver is used to drive the lifting servo motor
  • the wire discharging servo motor driver is used to drive the wire discharging servo motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tyre Moulding (AREA)
  • Ropes Or Cables (AREA)
  • Tires In General (AREA)

Abstract

一种巨型轮胎钢丝圈的圆形化排列控制方法,包括以下步骤:(1)编辑配方;(2)获得第n次竖向跳步的起始角度;(3)根据所述钢丝圈制造参数以及第n次竖向跳步起始角度控制钢丝圈缠绕机进行缠绕作业。以及一种巨型轮胎钢丝圈的圆形化排列控制系统,用于实现前述的巨型轮胎钢丝圈的圆形化排列控制方法,包括PLC控制器、人机界面、缠绕伺服电机驱动器、升降伺服电机驱动器以及排丝伺服电机驱动器;所述人机界面用于实现人机交互;所述PLC控制器用于控制所述缠绕伺服电机驱动器、升降伺服电机驱动器以及排丝伺服电机驱动器。采用上述系统和方法,制造截面底部趋于圆形化的钢丝圈,使轮胎构造更加合理,有助于提高轮胎性能和寿命。

Description

一种巨型轮胎钢丝圈的圆形化排列控制方法及系统 技术领域
本发明涉及一种巨型轮胎钢丝圈的圆形化排列控制方法及系统,属于巨型轮胎生产设备和方法技术领域。
背景技术
钢丝圈是由包胶钢丝一层层排列制成的刚性环,其作用是给予胎圈以必要的强度和刚性,使轮胎牢牢固定于轮辋上。直径为2.6m、宽0.8m以上的轮胎均可称为巨型轮胎。现有的巨型轮胎钢丝圈缠绕形状排列截面是六角形状,如图1所示,帘子布包紧后钢丝圈截面会有变圆趋势,钢丝会有应力未释放,从而影响轮胎的性能和寿命。钢丝圈缠绕使用的设备是钢丝圈缠绕机,如图2所示,钢丝圈缠绕机包括人机界面28、缠绕伺服电机29、升降伺服电机30、排丝伺服电机31、缠绕盘32,缠绕伺服电机驱动缠绕盘旋转,缠绕盘拉动钢丝缠绕,钢丝从钢丝盘上引出至导丝头,导丝头靠近缠绕盘设置,升降伺服电机根据钢丝排列的高度驱动导丝头进行升高从而进行竖向跳步,排丝电机根据程序算出的位置驱动导丝头进行左右移动从而进行横向排丝,缠绕盘凹槽箍住钢丝,最终钢丝圈成型在凹槽中。常规的触发升降和排丝电机动作是外部接近开关信号或缠绕盘旋转一圈伺服反馈的位置信号,这样会导致跳步位置不可调,并且由于缠绕速度的不同容易导致跳步的位置会存在差异性,而技术工艺要求跳步位置可调并且确定。
发明内容
因此,本发明的目的在于克服上述现有技术中的缺陷,提供一种巨型轮胎钢丝圈的圆形化排列控制方法及系统,通过人机界面和PLC进行组合,能够较为灵活地通过人机界面输入相应的参数,PLC编辑钢丝圈截面至少局部趋于圆形化排列形状程序,并控制缠绕伺服电机、升降伺服电机以及排丝伺服电机配合完成钢丝圈制造的控制方法。
为了实现上述目的,本发明的一种巨型轮胎钢丝圈的圆形化排列控制方法,包括以下步骤:
(1)编辑配方:
即输入钢丝圈制造参数;所述钢丝圈制造参数至少包括钢丝圈截面中的横向层数 量f、每一横向层的钢丝圈数量、钢丝直径以及第一次竖向跳步的起始角度c 1;钢丝圈数量最大的横向层为中间层;横向层由下而上排列,则至少在中间层的下方的部分横向层中,第k横向层的钢丝圈数量比第k+1横向层的钢丝圈数量少,并且数量差大于或等于3;
(2)获得第n次竖向跳步的起始角度:
第一次竖向跳步的起始角度c 1为第一次竖向跳步起始时缠绕盘相对于0度线L的旋转角度,第n次竖向跳步的起始角度c n为第n次竖向跳步起始时缠绕盘相对于0度线L的旋转角度,则:
Figure PCTCN2022086837-appb-000001
其中1<n<f;0度线L为在开始缠绕之前钢丝连接于缠绕盘的位置与缠绕盘轴心连接线;
(3)根据所述钢丝圈制造参数以及第n次竖向跳步起始角度控制钢丝圈缠绕机进行缠绕作业。
所述步骤(1)还包括:显示钢丝圈截面形状;
所述步骤(3)还包括:根据缠绕作业的进度,在显示的钢丝圈截面形状中,对与已经缠绕完成的钢丝圈相对应的圆形进行标记。
所述巨型轮胎钢丝圈的圆形化排列控制方法,还包括以下步骤:
保存输入的钢丝圈制造参数以及获得的第n次竖向跳步起始角度为存档配方;
在下一次缠绕作业之前调用存档配方。
所述巨型轮胎钢丝圈的圆形化排列控制方法,在步骤(1)之前,还包括以下步骤:
编制配方编辑画面,所述配方编辑画面包含用于输入钢丝圈制造参数的输入区;
编制配方列表画面,所述配方列表画面用于配方的显示、更换、调用,并用于显示钢丝圈截面形状。
所述钢丝圈制造参数还包括第一次竖向跳步的终止角度d 1,即第一次竖向跳步终止时缠绕盘相对于0度线L的旋转角度;
所述步骤(2)还包括获得第n次竖向跳步的终止角度d n
d n=d n-1+(d 1-c 1)。
在钢丝缠绕作业中,在第一次竖向跳步终止后,进行第2横向层的首次横向排丝; 在第n次竖向跳步后,进行第n+1横向层的首次横向排丝;
所述钢丝圈制造参数还包括第2横向层的首次横向排丝的起始角度a 1,即第2横向层的首次横向排丝起始时缠绕盘相对于0度线L的旋转角度;
所述步骤(2)还包括获得第n+1横向层的首次横向排丝的起始角度a n
Figure PCTCN2022086837-appb-000002
所述钢丝圈制造参数还包括第2横向层的首次横向排丝的终止角度b 1,即第2横向层的首次横向排丝终止时缠绕盘相对于0度线L的旋转角度;
所述步骤(2)还包括获得第n+1横向层的首次横向排丝的终止角度b n
b n=b n-1+(b 1-a 1)。
所述钢丝圈制造参数还包括在第k横向层向第k+1横向层竖向跳步后进行第k+1横向层的首次排丝的横向移动步距数量。
本发明还提供一种巨型轮胎钢丝圈的圆形化排列控制系统,用于实现如前所述的巨型轮胎钢丝圈的圆形化排列控制方法,包括PLC控制器、人机界面、缠绕伺服电机驱动器、升降伺服电机驱动器以及排丝伺服电机驱动器;
所述人机界面用于实现人机交互;
所述PLC控制器用于控制所述缠绕伺服电机驱动器、升降伺服电机驱动器以及排丝伺服电机驱动器。
采用上述技术方案,本发明的巨型轮胎钢丝圈的圆形化排列控制方法及系统,与现有技术相比,具有以下有益效果:
1、制造截面底部趋于圆形化的钢丝圈,使轮胎构造更加合理,有助于提高了轮胎性能和寿命;
2、跳步起始角度和终止角度参数化设置,满足了技术工艺的需求,使钢丝圈的质量进一步提高;
3、直接进行参数化输入,并且在缠绕作业中对钢丝圈截面形状以及作业进程进行直观显示,方便对作业进程的管理。
附图说明
图1为现有技术中钢丝圈的一种实施例的排布结构。
图2为钢丝圈缠绕机的结构示意图。
图3在缠绕钢丝圈的第1横向层第1圈时的示意图。
图4为钢丝圈缠绕过程中进行横向排丝操作后的示意图。
图5为钢丝圈的第1横向层缠绕完毕时的示意图。
图6为钢丝圈缠绕过程中进行竖向跳步操作后的示意图。
图7为缠绕钢丝圈第2横向层时的示意图。
图8为现有技术中的钢丝圈缠绕完成后的示意图。
图9为0度线的位置示意图。
图10为横向排丝起始时缠绕盘相对于0度线的旋转角度示意图。
图11为横向排丝终止时缠绕盘相对于0度线的旋转角度示意图。
图12为竖向跳步起始时缠绕盘相对于0度线的旋转角度示意图。
图13为竖向跳步终止时缠绕盘相对于0度线的旋转角度示意图。
图14为配方编辑画面的一种实施方式的示意图。
图15为配方列表画面的一种实施方式的示意图。
具体实施方式
以下通过附图和具体实施方式对本发明作进一步的详细说明。
本发明提供一种巨型轮胎钢丝圈的圆形化排列控制方法,包括一下步骤:
S1、编制配方编辑画面。配方编辑画面是重要的画面,画面包含创建圆形化钢丝圈的重要参数,如图14所示,在人机界面上创建图画面,在画面上创建输入区,包括配方号输入区18、配方名称输入区17、层数量输入区16、钢丝直径输入区15、排丝开始位置输入区6、排丝结束位置输入区7、升降开始位置输入区8、升降结束位置输入区9等,创建更换配方按钮1、保存按钮2、调用按钮3、数据清零按钮4、编辑确认按钮5、层号向下翻页按钮10、层号向上翻页按钮19,每一横向层创建两个数值输入参数区,即每层的根数输入区11、层跳步距输入区12;每个配方可以命名并可保存例如配方2命名为“R51”,在配方名称显示区13予以显示,可以创建多个配方,通过配方名向下翻页按钮25、配方名向上翻页按钮24能查看配方名;当配方编辑确认后,缠绕的总长度数值会在缠绕总长显示区14显示出来。当然,输入与显示的内容不限于本实施例限定的上述内容。
S2、编制配方列表画面。配方列表画面是配方的显示、更换、调用画面,并可以显示钢丝的排列图形,如图15所示,在画面上创建输入区包括配方号输入区18、配 方名输入区17,创建更换配方按钮1、调用按钮3,创建配方名向下翻页按钮25、配方名向上翻页按钮24,创建配方号序号显示区域26,创建钢丝圈截面形状显示区27,每个小圆圈代表一根钢丝。当然,输入与显示的内容不限于本实施例限定的上述内容。
S3、编辑配方,即输入钢丝圈制造参数。所述钢丝圈制造参数至少包括钢丝圈截面中的横向层数量f、每一横向层的钢丝圈数量、钢丝直径以及第一次竖向跳步的起始角度c 1;钢丝圈数量最大的横向层为中间层;横向层由下而上排列,则至少在中间层的下方的部分横向层中,第k横向层的钢丝圈数量比第k+1横向层的钢丝圈数量少,并且数量差大于或等于3。此外,所述钢丝圈制造参数还包括在第k横向层向第k+1横向层竖向跳步后进行第k+1横向层的首次排丝的横向移动步距数量。该步骤能够用于制造截面底部趋于圆形化的钢丝圈,使轮胎构造更加合理,有助于提高了轮胎性能和寿命。
在现有的钢丝圈缠绕工艺中,通常采用单点跳步的形式。如图3所示,钢丝100穿过导丝头后固定于缠绕轮上,导丝头101靠近缠绕轮102设置,如图9所示,此时钢丝100连接于缠绕轮102的位置与缠绕轮102轴心连接线为0度线L。缠绕轮在电机的驱动下转动,在缠绕轮旋转大约一周时控制导丝头进行横向排丝,即导丝头横向移动一个步距,如图4所示。在进行横向排丝时,横向排丝起始时缠绕轮相对于0度线旋转角度为a,如图10所示;横向排丝终止时缠绕轮相对于0度线旋转角度为b,如图11所示。随着缠绕轮继续旋转以及多次横向排丝,在缠绕至钢丝圈第1横向层的最后一圈结尾处时,需要控制导丝头上移,即进行竖向跳步,以用于进行第2横向层的缠绕,竖向跳步后还需要控制导丝头进行第2横向层的首次横向排丝,即导丝头横向移动一个步距(当然,也可以根据钢丝圈的排布形状不同而横向移动多个步距),以使导丝头移动至第2横向层第1圈的位置,然后开始缠绕第2横向层的第1圈,再依次进行后续的横向排丝操作以完成第2层的缠绕,如图5、6、7所示。在进行竖向跳步中,竖向跳步起始时缠绕轮相对于0度线的旋转角度为c,如图12所示。竖向跳步结束时缠绕轮相对于0度线的旋转角度为d,如图13所示。如图8所示,由于钢丝圈的跳步位置集中在搭头位置A,造成该位置的厚度与其他位置的厚度相比较而言过厚,会对轮胎的整体动平衡造成影响。
因此,在本发明中,所述步骤S3中输入的钢丝圈制造参数还包括:第一次竖向跳步的终止角度d 1、第2横向层的首次横向排丝的起始角度a 1、第2横向层的首次横向 排丝的终止角度b 1。第一次竖向跳步的起始角度c 1为第一次竖向跳步起始时缠绕盘相对于0度线L的旋转角度,第一次竖向跳步的终止角度d 1为第一次竖向跳步终止时缠绕盘相对于0度线L的旋转角度,第2横向层的首次横向排丝的起始角度a 1为第2横向层的首次横向排丝起始时缠绕盘相对于0度线L的旋转角度,第2横向层的首次横向排丝的终止角度b 1为第2横向层的首次横向排丝终止时缠绕盘相对于0度线L的旋转角度。
同时,本发明还包括步骤:
S4、获得第n次竖向跳步的起始角度c n、第n次竖向跳步的终止角度d n、获得第n+1横向层的首次横向排丝的起始角度a n、获得第2横向层的首次横向排丝的终止角度b n
其中,第n次竖向跳步的起始角度c n为第n次竖向跳步起始时缠绕盘相对于0度线L的旋转角度,第n次竖向跳步的终止角度d n为第n次竖向跳步终止时缠绕盘相对于0度线L的旋转角度,第n+1横向层的首次横向排丝的起始角度a n为第n+1横向层的首次横向排丝起始时缠绕盘相对于0度线L的旋转角度,第n+1横向层的首次横向排丝的终止角度b n为第n+1横向层的首次横向排丝终止时缠绕盘相对于0度线L的旋转角度,则:
Figure PCTCN2022086837-appb-000003
d n=d n-1+(d 1-c 1)。
Figure PCTCN2022086837-appb-000004
b n=b n-1+(b 1-a 1)。
其中1<n<f。
通过上述步骤,能够在缠绕作业中将钢丝圈跳步位置在钢丝圈的周向上均匀分散,有效减小了钢丝圈搭头位置的宽度和厚度,减小了钢丝圈对轮胎的整体动平衡的影响。
S5、根据以上参数控制钢丝圈缠绕机进行缠绕作业,并且根据缠绕作业的进度,在显示的钢丝圈截面形状中,对与已经缠绕完成的钢丝圈相对应的圆形进行标记,如图15所示,空心圆形表示待缠绕的钢丝圈,实心圆形表示缠绕完成的钢丝圈。
本发明还提供一种巨型轮胎钢丝圈的圆形化排列控制系统,用于实现如前任一项所述的巨型轮胎钢丝圈的圆形化排列控制方法,包括PLC控制器、人机界面、缠绕伺 服电机驱动器、升降伺服电机驱动器以及排丝伺服电机驱动器;
所述人机界面用于实现人机交互;
所述PLC控制器用于控制所述缠绕伺服电机驱动器、升降伺服电机驱动器以及排丝伺服电机驱动器。
所述巨型轮胎钢丝圈的圆形化排列控制系统还包括编程计算机,用于向PLC控制器写入程序。
所述缠绕伺服电机驱动器用于驱动缠绕伺服电机,所述升降伺服电机驱动器用于驱动升降伺服电机,所述排丝伺服电机驱动器用于驱动排丝伺服电机。
显然,上述实施例仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种巨型轮胎钢丝圈的圆形化排列控制方法,其特征在于,包括:
    (1)编辑配方:
    即输入钢丝圈制造参数;所述钢丝圈制造参数至少包括钢丝圈截面中的横向层数量f、每一横向层的钢丝圈数量、钢丝直径以及第一次竖向跳步的起始角度c 1;钢丝圈数量最大的横向层为中间层;横向层由下而上排列,则至少在中间层的下方的部分横向层中,第k横向层的钢丝圈数量比第k+1横向层的钢丝圈数量少,并且数量差大于或等于3;
    (2)获得第n次竖向跳步的起始角度:
    第一次竖向跳步的起始角度c 1为第一次竖向跳步起始时缠绕盘相对于0度线L的旋转角度,第n次竖向跳步的起始角度c n为第n次竖向跳步起始时缠绕盘相对于0度线L的旋转角度,则:
    Figure PCTCN2022086837-appb-100001
    其中1<n<f;0度线L为在开始缠绕之前钢丝连接于缠绕盘的位置与缠绕盘轴心连接线;
    (3)根据所述钢丝圈制造参数以及第n次竖向跳步起始角度控制钢丝圈缠绕机进行缠绕作业。
  2. 如权利要求1所述的巨型轮胎钢丝圈的圆形化排列控制方法,其特征在于,
    所述步骤(1)还包括:显示钢丝圈截面形状;
    所述步骤(3)还包括:根据缠绕作业的进度,在显示的钢丝圈截面形状中,对与已经缠绕完成的钢丝圈相对应的圆形进行标记。
  3. 如权利要求1所述的巨型轮胎钢丝圈的圆形化排列控制方法,其特征在于,还包括以下步骤:
    保存输入的钢丝圈制造参数以及获得的第n次竖向跳步起始角度为存档配方;
    在下一次缠绕作业之前调用存档配方。
  4. 如权利要求1所述的巨型轮胎钢丝圈的圆形化排列控制方法,其特征在于,在步骤(1)之前,还包括以下步骤:
    编制配方编辑画面,所述配方编辑画面包含用于输入钢丝圈制造参数的输入区;
    编制配方列表画面,所述配方列表画面用于配方的显示、更换、调用,并用于显 示钢丝圈截面形状。
  5. 如权利要求1-3任一项所述的巨型轮胎钢丝圈的圆形化排列控制方法,其特征在于,所述钢丝圈制造参数还包括第一次竖向跳步的终止角度d 1,即第一次竖向跳步终止时缠绕盘相对于0度线L的旋转角度;
    所述步骤(2)还包括获得第n次竖向跳步的终止角度d n
    d n=d n-1+(d 1-c 1)。
  6. 如权利要求5所述的巨型轮胎钢丝圈的圆形化排列控制方法,其特征在于,在钢丝缠绕作业中,在第一次竖向跳步终止后,进行第2横向层的首次横向排丝;在第n次竖向跳步后,进行第n+1横向层的首次横向排丝;
    所述钢丝圈制造参数还包括第2横向层的首次横向排丝的起始角度a 1,即第2横向层的首次横向排丝起始时缠绕盘相对于0度线L的旋转角度;
    所述步骤(2)还包括获得第n+1横向层的首次横向排丝的起始角度a n
    Figure PCTCN2022086837-appb-100002
  7. 如权利要求6所述的巨型轮胎钢丝圈的圆形化排列控制方法,其特征在于,所述钢丝圈制造参数还包括第2横向层的首次横向排丝的终止角度b 1,即第2横向层的首次横向排丝终止时缠绕盘相对于0度线L的旋转角度;
    所述步骤(2)还包括获得第n+1横向层的首次横向排丝的终止角度b n
    b n=b n-1+(b 1-a 1)。
  8. 如权利要求7所述的巨型轮胎钢丝圈的圆形化排列控制方法,其特征在于,所述钢丝圈制造参数还包括在第k横向层向第k+1横向层竖向跳步后进行第k+1横向层的首次排丝的横向移动步距数量。
  9. 一种巨型轮胎钢丝圈的圆形化排列控制系统,用于实现如权利要求1-8任一项所述的巨型轮胎钢丝圈的圆形化排列控制方法,其特征在于,包括PLC控制器、人机界面、缠绕伺服电机驱动器、升降伺服电机驱动器以及排丝伺服电机驱动器;
    所述人机界面用于实现人机交互;
    所述PLC控制器用于控制所述缠绕伺服电机驱动器、升降伺服电机驱动器以及排丝伺服电机驱动器。
  10. 如权利要求9所述的巨型轮胎钢丝圈的圆形化排列控制系统,其特征在于, 还包括编程计算机,用于向PLC控制器写入程序。
PCT/CN2022/086837 2021-09-26 2022-04-14 一种巨型轮胎钢丝圈的圆形化排列控制方法及系统 WO2023045308A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111130064.XA CN113560475B (zh) 2021-09-26 2021-09-26 一种巨型轮胎钢丝圈的圆形化排列控制方法及系统
CN202111130064.X 2021-09-26

Publications (1)

Publication Number Publication Date
WO2023045308A1 true WO2023045308A1 (zh) 2023-03-30

Family

ID=78174641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086837 WO2023045308A1 (zh) 2021-09-26 2022-04-14 一种巨型轮胎钢丝圈的圆形化排列控制方法及系统

Country Status (2)

Country Link
CN (1) CN113560475B (zh)
WO (1) WO2023045308A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113560475B (zh) * 2021-09-26 2021-12-31 天津赛象科技股份有限公司 一种巨型轮胎钢丝圈的圆形化排列控制方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06156024A (ja) * 1992-11-26 1994-06-03 Sumitomo Rubber Ind Ltd 乗用車用タイヤのビードコア
CN101058235A (zh) * 2007-06-01 2007-10-24 昊华南方(桂林)橡胶有限责任公司 六角型钢丝圈缠绕生产线
CN103707538A (zh) * 2013-12-30 2014-04-09 中国化工橡胶桂林轮胎有限公司 子午线轮胎用圆形截面钢丝圈制备方法
CN103717410A (zh) * 2011-07-29 2014-04-09 横滨橡胶株式会社 充气轮胎
CN103832215A (zh) * 2012-11-22 2014-06-04 东洋橡胶工业株式会社 充气轮胎及其制造方法
CN104411510A (zh) * 2012-10-03 2015-03-11 横滨橡胶株式会社 充气轮胎
CN105437585A (zh) * 2014-09-28 2016-03-30 青岛软控机电工程有限公司 一种轮胎缠绕机控制方法
CN109551797A (zh) * 2017-09-25 2019-04-02 东洋橡胶工业株式会社 充气轮胎及其制造方法
CN113523154A (zh) * 2021-09-16 2021-10-22 天津赛象科技股份有限公司 均步跳控制方法以及钢丝圈缠绕方法和系统
CN113560475A (zh) * 2021-09-26 2021-10-29 天津赛象科技股份有限公司 一种巨型轮胎钢丝圈的圆形化排列控制方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102441626A (zh) * 2011-11-07 2012-05-09 三角轮胎股份有限公司 近圆形钢丝圈
CN103223828B (zh) * 2013-05-13 2016-03-23 中国化工集团曙光橡胶工业研究设计院有限公司 六角形钢丝圈的子午线航空轮胎及六角形钢丝圈的制造方法
JP6834922B2 (ja) * 2017-12-01 2021-02-24 横浜ゴム株式会社 空気入りタイヤ
CN107804122A (zh) * 2017-12-07 2018-03-16 合肥万力轮胎有限公司 一种子午线轮胎的钢丝圈结构、缠绕盘及其缠绕方法
FR3100746A1 (fr) * 2019-09-18 2021-03-19 Compagnie Generale Des Etablissements Michelin Tringle comprenant des enroulements surgommés

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06156024A (ja) * 1992-11-26 1994-06-03 Sumitomo Rubber Ind Ltd 乗用車用タイヤのビードコア
CN101058235A (zh) * 2007-06-01 2007-10-24 昊华南方(桂林)橡胶有限责任公司 六角型钢丝圈缠绕生产线
CN103717410A (zh) * 2011-07-29 2014-04-09 横滨橡胶株式会社 充气轮胎
CN104411510A (zh) * 2012-10-03 2015-03-11 横滨橡胶株式会社 充气轮胎
CN103832215A (zh) * 2012-11-22 2014-06-04 东洋橡胶工业株式会社 充气轮胎及其制造方法
CN103707538A (zh) * 2013-12-30 2014-04-09 中国化工橡胶桂林轮胎有限公司 子午线轮胎用圆形截面钢丝圈制备方法
CN105437585A (zh) * 2014-09-28 2016-03-30 青岛软控机电工程有限公司 一种轮胎缠绕机控制方法
CN109551797A (zh) * 2017-09-25 2019-04-02 东洋橡胶工业株式会社 充气轮胎及其制造方法
CN113523154A (zh) * 2021-09-16 2021-10-22 天津赛象科技股份有限公司 均步跳控制方法以及钢丝圈缠绕方法和系统
CN113560475A (zh) * 2021-09-26 2021-10-29 天津赛象科技股份有限公司 一种巨型轮胎钢丝圈的圆形化排列控制方法及系统

Also Published As

Publication number Publication date
CN113560475B (zh) 2021-12-31
CN113560475A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2023045308A1 (zh) 一种巨型轮胎钢丝圈的圆形化排列控制方法及系统
CN105921851A (zh) 一种不锈钢零件弧焊增材制造方法
CN102797046B (zh) 替代丝鞘的装置及方法
CN105624848B (zh) 一种多粗纱喂入纺纱装置和纺纱方法
CN113523154A (zh) 均步跳控制方法以及钢丝圈缠绕方法和系统
CN203998380U (zh) 一种垂直纱路单面络筒机
CN108190623A (zh) 直捻卷线机
CN203546486U (zh) 双捻捻股机的控制装置
CN204809764U (zh) 收线装置
CN110531693B (zh) 一种绳锯机数控系统的图形编辑界面设计方法
CN207467883U (zh) 金属丝精密绕装置
CN113354276B (zh) 一种步进式超细纱拉丝成型工艺及其成型丝饼
CN201040424Y (zh) 六角型钢丝圈缠绕生产线
CN206626292U (zh) 一种缠绕装置
JP4635958B2 (ja) 紡機における管糸形成方法
CN201525979U (zh) 钢帘线修正机
CN212832013U (zh) 一种包纱机
CN114755977A (zh) 一种5轴Towpreg缠绕编程系统
CN108883583A (zh) 用于制造风轮机叶片构件的方法及系统
CN114380492A (zh) 一种石英玻璃棒多排拉丝装置及拉丝工艺
CN204760138U (zh) 编织线芯外径控制装置
CN103114355A (zh) 一种带锭翼的自动切换加捻卷绕机
CN205973255U (zh) 一种防止络筒大小头的装置
CN206726845U (zh) 一种成缆机
CN103625984A (zh) 自动缠丝机及其缠丝方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22871371

Country of ref document: EP

Kind code of ref document: A1