WO2023045279A1 - 一种硼掺杂选择性发射极电池的制备方法 - Google Patents

一种硼掺杂选择性发射极电池的制备方法 Download PDF

Info

Publication number
WO2023045279A1
WO2023045279A1 PCT/CN2022/081389 CN2022081389W WO2023045279A1 WO 2023045279 A1 WO2023045279 A1 WO 2023045279A1 CN 2022081389 W CN2022081389 W CN 2022081389W WO 2023045279 A1 WO2023045279 A1 WO 2023045279A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
precursor
boron
selective emitter
preparing
Prior art date
Application number
PCT/CN2022/081389
Other languages
English (en)
French (fr)
Inventor
任常瑞
张佳舟
高治坤
符黎明
Original Assignee
常州时创能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州时创能源股份有限公司 filed Critical 常州时创能源股份有限公司
Publication of WO2023045279A1 publication Critical patent/WO2023045279A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of photovoltaics, in particular to a method for preparing a boron-doped selective emitter cell.
  • TOPCon solar cell tunnel oxide passivated contact, Tunnel Oxide Passivated Contact
  • the ultra-thin oxide layer can allow the multi-carrier electrons to tunnel into the polysilicon layer while blocking the recombination of the minority carrier-holes, and then the electrons are transported laterally in the polysilicon layer and collected by the metal, thereby greatly reducing the metal contact recombination current and improving the open circuit voltage and short circuit of the battery Current, which greatly improves the electrical performance of solar cells, is a very promising N-type solar cell structure.
  • BSG borosilicate glass
  • the feasible method to realize boron-doped selective emitter is mainly: first prepare the mask, form the electrode window by laser ablation or photolithography, and use the doping effect of the doping source in the masked and non-masked regions. The difference enables selective doping.
  • the mask is applied on the boron-diffused SE, and the requirements for the mask include:
  • the mask has high density and has a certain resistance to diffusion
  • the feasible mask preparation methods mainly include: thermal oxidation, LPCVD/PECVD and other methods to prepare silicon oxide, silicon nitride, silicon oxynitride and other thin films.
  • the thermal oxidation method oxidizes the silicon atoms on the surface of the silicon wafer to form a silicon oxide mask, but it cannot form a thick and dense film in a short period of time.
  • the thermal oxidation method requires a longer oxidation time. Time (about 30min) and higher temperature (about 900°C) aggravate the thermal damage of the silicon wafer.
  • methods such as LPCVD or PECVD use the silane oxidation process to form a film, and finally form silicon oxide or silicon nitride particles on the surface of the silicon wafer, but the density and uniformity of the film are difficult to guarantee.
  • the object of the present invention is to provide a method for preparing a boron-doped selective emitter cell, comprising preparing a mask before boron diffusion; the preparation mask includes the following steps:
  • Mask precursor chain deposition deposit mask precursor on the surface of silicon wafer in chain equipment, so that the surface of silicon wafer is covered with mask precursor;
  • Mask precursor chain curing in the chain equipment, the mask precursor covered on the surface of the silicon wafer is heated to cure the mask precursor into a mask;
  • Mask laser grooving using laser to remove the mask of part of the surface of the silicon wafer, the part of the surface of the silicon wafer corresponds to the heavily doped region doped with boron.
  • the mask precursor is prepared by the following steps: 10-50g of metal alkoxide, 50-300mL of absolute ethanol, 1-10mL of hydrochloric acid with a concentration of 0.1mol/L, 100-500mL of water and 0.05- After 5g of silane coupling agent is uniformly mixed, it is hydrolyzed at a constant temperature of 30-60° C. for 1-5 hours to obtain a transparent sol, which is a mask precursor.
  • the metal alkoxide is selected from one or more of tetraethyl orthosilicate, zirconium n-propoxide, and aluminum isopropoxide.
  • the silane coupling agent is selected from one or more of methyltriethoxysilane, vinyltriethoxysilane, propyltriethoxysilane, and mercaptopropyltrimethoxysilane.
  • one or more of roll coating, spray coating, doctor blade coating, drop coating, and slit coating is used for deposition.
  • nitrogen, oxygen or nitrogen-oxygen mixed gas is fed during heating, the heating temperature is controlled at 300-800°C, and the heating time is controlled at 20-300s.
  • light with a wavelength of 800-2000 nm is used to heat the mask precursor covered on the surface of the silicon wafer.
  • the mask is silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide or zirconium oxide.
  • the thickness of the mask is 100-5000 nm.
  • the preparation method of the boron-doped selective emitter battery its specific steps include:
  • Tunneling oxide layer is prepared on the back
  • the present invention adopts the method of precursor chain deposition and solidification to form a film, utilizes the hydrolysis and polycondensation of metal alkoxide, and the metal compound is solidified through solution, sol, and gel, so that the precursor is quickly cross-linked on the surface of the silicon wafer to form a film, and has Higher density mask.
  • the mask of the invention is a cross-linked silicon oxide film, a silicon nitride film or a silicon nitride oxide film attached to the surface of the silicon base, and has strong resistance to diffusion.
  • the thickness of the deposition mask can be adjusted, so that the thickness of the mask can be adjusted between 100-5000nm.
  • the density of the deposition mask can be adjusted.
  • the invention adopts the sol-gel method to prepare the mask precursor.
  • the silicon content in the precursor masks with different thicknesses and densities are prepared to obtain different diffusion barrier properties.
  • the thickness of the mask is controllable within 100-5000nm , and at the same time, the density is high, so that the doping surface concentration can be controlled within 10 20 -10 21 /cm 3 .
  • the raw material of the mask precursor of the present invention is easy to obtain, easy to prepare and has good stability
  • the mask obtained by curing in the present invention can be easily removed by simple means, will not remain on the surface of the silicon wafer, and will not introduce other impurities;
  • the invention is easy to operate, does not require multiple diffusion processes, and has a low curing temperature and a short curing time, which avoids the influence of long-term high temperature on the minority carrier life of silicon wafers;
  • the chain process of the present invention is easy to operate and has strong compatibility with the size of silicon wafers
  • the invention is low in cost, simple in coating, easy to use in a large area, and has good optical properties;
  • the uniformity of the mask of the present invention is good, so that the density of the mask is high, the thickness and hardness of the mask can be improved by simply adjusting the precursor, and the debugging space is large;
  • the deposition and curing of the precursor of the present invention adopts a chain process, which does not require complicated loading and unloading processes, and has good compatibility with the size of silicon wafers.
  • the invention provides a method for preparing a boron-doped selective emitter battery, the specific steps of which include:
  • the mask precursor is prepared by the following steps: 10-50g of metal alkoxide, 50-300mL of absolute ethanol, 1-10mL of hydrochloric acid with a concentration of 0.1mol/L, 100-500mL of water and 0.05-5g of silane After uniform mixing of the joint agent, it is hydrolyzed at a constant temperature of 30-60°C for 1-5 hours to obtain a transparent sol, which is a mask precursor;
  • the metal alkoxide is selected from one or more of tetraethylorthosilicate, zirconium n-propoxide, and aluminum isopropoxide;
  • the silane coupling agent is selected from one or more of methyltriethoxysilane, vinyltriethoxysilane, propyltriethoxysilane, and mercaptopropyltrimethoxysilane;
  • the mask precursor covered on the surface of the silicon wafer is heated to cure the mask precursor into a mask; light with a wavelength of 800-2000nm can be used to treat the silicon wafer
  • the mask precursor covered on the surface is heated; nitrogen, oxygen or nitrogen-oxygen mixed gas is passed through during heating, the heating temperature is controlled at 300-800°C, and the heating time is controlled at 20-300s;
  • the obtained mask is a silicon oxide film, Silicon nitride film, silicon oxynitride film, aluminum oxide film or zirconium oxide film, the thickness of the mask is 100-5000nm;
  • Mask laser grooving use laser to remove the mask of part of the surface of the silicon wafer, the part of the surface of the silicon wafer corresponds to the boron-doped heavily doped region;
  • Mask cleaning cleaning at 10-20% HF concentration for 300-600s, the mask can be completely removed without residue;
  • Tunneling oxide layer is prepared on the back
  • the mask precursor is prepared by the following steps: 14g of tetraethyl orthosilicate, 30mL of absolute ethanol, 1mL of hydrochloric acid with a concentration of 0.1mol/L, 70mL of water and 2g of methyl triethoxy After uniform mixing of base silane, it was hydrolyzed at a constant temperature of 40°C for 2 hours to obtain a transparent sol, which is a mask precursor;
  • step 3 nitrogen gas is introduced during heating, the heating temperature is controlled at 300°C, and the heating time is controlled at 200s.
  • the obtained mask is a silicon oxide film with a thickness of 536nm; after B diffuses, the four probes and ECV characterizes the difference in square resistance and doping surface concentration.
  • the silicon oxide film can effectively block the B diffusion process.
  • the square resistance is increased by 50 ⁇ , from 55 ⁇ / ⁇ without barrier layer to 105 ⁇ / ⁇
  • the doping surface concentration is reduced from 5.6*10 20 cm -3 without barrier layer to 1.2*10 20 cm -3 , which plays a good role in blocking diffusion.
  • the mask precursor is prepared by the following steps: 14g of zirconium n-propoxide, 30mL of absolute ethanol, 1mL of hydrochloric acid with a concentration of 0.1mol/L, 70mL of water and 2g of methyltriethoxy After the silane is uniformly mixed, it is hydrolyzed at a constant temperature of 40°C for 2 hours to obtain a transparent sol, which is a mask precursor;
  • step 3 oxygen is introduced during heating, the heating temperature is controlled at 300°C, and the heating time is controlled at 150s.
  • the obtained mask is a zirconia film, and the thickness of the zirconia film is 348nm; ECV characterizes the difference in square resistance and doping surface concentration.
  • the zirconia film can effectively block the B diffusion process.
  • the square resistance is increased by 37 ⁇ , from 55 ⁇ / ⁇ without barrier layer to 92 ⁇ / ⁇
  • the doping surface concentration is reduced from 5.6*10 20 cm -3 without barrier layer to 1.8*10 20 cm -3 , which plays a good role in blocking diffusion.
  • the mask precursor is prepared by the following steps: 14g of aluminum isopropoxide, 30mL of absolute ethanol, 1mL of hydrochloric acid with a concentration of 0.1mol/L, 70mL of water and 2g of propyltriethoxy After the silane is uniformly mixed, it is hydrolyzed at a constant temperature of 35°C for 1 hour to obtain a transparent sol, which is a mask precursor;
  • step 3 a mixture of nitrogen and oxygen is introduced during heating, the heating temperature is controlled at 450°C, and the heating time is controlled at 20s.
  • the obtained mask is a silicon nitride oxide film, and the thickness of the aluminum oxide film is 470nm; after B diffusion Four probes and ECV characterize the difference in square resistance and doping surface concentration.
  • the zirconia film can effectively block the B diffusion process.
  • the square resistance is increased by 68 ⁇ , which is improved from 55 ⁇ / ⁇ without barrier layer.
  • the doped surface concentration dropped from 5.6*10 20 cm -3 without barrier layer to 0.9*10 20 cm -3 , which played a good role in blocking diffusion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明公开了一种硼掺杂选择性发射极电池的制备方法,包括在硼扩散之前制备掩膜;所述制备掩膜包括如下步骤:掩膜前驱体链式沉积、掩膜前驱体链式固化和掩膜激光开槽。本发明采用前驱体链式沉积固化成膜的方式,使前驱体在硅片表面快速交联成膜,获得具有较高致密度的掩膜。本发明前驱体沉积和固化采用链式制程,不需要复杂上下料过程,对硅片尺寸兼容性良好。

Description

一种硼掺杂选择性发射极电池的制备方法 技术领域
本发明涉及光伏领域,具体涉及一种硼掺杂选择性发射极电池的制备方法。
背景技术
TOPCon太阳能电池(隧穿氧化层钝化接触,Tunnel Oxide Passivated Contact) 通过在电池背面制备一层超薄的隧穿氧化层和一层高掺杂的多晶硅薄层,形成钝化接触结构,为硅片的背面提供了良好的表面钝化。超薄氧化层可以使多子电子隧穿进入多晶硅层同时阻挡少子空穴复合,进而电子在多晶硅层横向传输被金属收集,从而极大地降低了金属接触复合电流,提升了电池的开路电压和短路电流,极大的提高了太阳能电池的电性能,是一种极具前景的N型太阳能电池结构。
目前商品化的N型太阳能电池,其发射极通常采用均匀结,其金属接触复合、短波响应及复合速率等往往并非最优。若使用硼硅玻璃(BSG)作为掺杂源进行激光掺杂,受BSG中B源浓度等条件限制,其重扩散区结深、表面浓度等与轻扩散区差异不明显,且激光也会引入额外损伤。因此,如何制备B掺杂的选择性发射极,获得更优的金属接触是目前TOPCon提效亟待解决的问题。
目前可行的实现硼掺杂选择性发射极的方法主要是:先制备掩膜,通过激光烧蚀或光刻形成电极窗口,利用掺杂源在有掩膜和无掩膜区域的掺杂效果的差异实现选择性掺杂。
将掩膜在硼扩散SE上进行应用,对掩膜的要求包括:
1)掩膜致密度高,对扩散有一定的阻挡能力;
2)掩膜均匀性好,使B扩散过程中形成均匀的扩散结。
目前可行的掩膜制备方法主要有:热氧化法、LPCVD/PECVD等方法制备氧化硅、氮化硅、氮氧化硅等薄膜。热氧化法使硅片表面硅原子氧化形成氧化硅掩膜,但在短时间内无法形成较厚且拥有一定致密度的薄膜,为获得能实现阻挡的氧化层,热氧化法需要较长的氧化时间(30min左右)和较高的温度(900℃左右),加重了硅片的热损伤。而LPCVD或PECVD等方法利用硅烷氧化过程形成薄膜,最终在硅片表面形成氧化硅或氮化硅颗粒,但薄膜致密度和均匀性难以保证。
技术解决方案
本发明的目的在于提供一种硼掺杂选择性发射极电池的制备方法,包括在硼扩散之前制备掩膜;所述制备掩膜包括如下步骤:
掩膜前驱体链式沉积:在链式设备中对硅片表面沉积掩膜前驱体,使硅片表面覆盖掩膜前驱体;
掩膜前驱体链式固化:在链式设备中对硅片表面覆盖的掩膜前驱体进行加热,使掩膜前驱体固化为掩膜;
掩膜激光开槽:采用激光去除硅片表面部分区域的掩膜,所述硅片表面部分区域与硼掺杂的重掺区相对应。
优选的,所述掩膜前驱体通过如下步骤制备:将10-50g的金属醇盐、50-300mL的无水乙醇、1-10mL浓度0.1mol/L的盐酸、100-500mL的水以及0.05-5g硅烷偶联剂均匀混合后,在30-60℃条件下恒温水解1-5h,得到透明溶胶,该透明溶胶为掩膜前驱体。
优选的,所述金属醇盐选自正硅酸乙酯、正丙醇锆、异丙醇铝中的一种或几种。
优选的,所述硅烷偶联剂选自甲基三乙氧基硅烷、乙烯基三乙氧基硅烷、丙基三乙氧基硅烷、巯丙基三甲氧基硅烷中的一种或几种。
优选的,所述掩膜前驱体链式沉积步骤中,沉积采用滚涂、喷涂、刮涂、滴涂、狭缝涂布中的一种或多种。
优选的,所述掩膜前驱体链式固化步骤中,加热时通入氮气、氧气或氮氧混合气,加热的温度控制在300-800℃,加热的时间控制在20-300s。
优选的,所述掩膜前驱体链式固化步骤中,采用波长为800-2000nm的光对硅片表面覆盖的掩膜前驱体进行加热。
优选的,所述掩膜为氧化硅、氮化硅、氮氧化硅、氧化铝或氧化锆。
优选的,所述掩膜的厚度为100-5000nm。
优选的,所述硼掺杂选择性发射极电池的制备方法,其具体步骤包括:
1)去除硅片表面损伤层;
2)掩膜前驱体链式沉积;
3)掩膜前驱体链式固化;
4)掩膜激光开槽;
5)硼扩散;
6)背面及边缘刻蚀;
7)背面抛光;
8)背面制备隧穿氧化层;
9)poly Si原位掺杂;
10)去绕镀;
11)去PSG;
12)钝化及金属化。
本发明的优点和有益效果在于:
本发明采用前驱体链式沉积固化成膜的方式,利用金属醇盐的水解缩聚作用,金属化合物经溶液、溶胶、凝胶而固化,使前驱体在硅片表面快速交联成膜,获得具有较高致密度的掩膜。
本发明的掩膜是附着在硅基底表面的交联氧化硅膜、氮化硅膜或氮氧化硅膜,对扩散的阻挡能力强。
通过调控前驱体中金属醇盐(正硅酸乙酯、正丙醇锆和异丙醇铝)的比例,可调控沉积掩膜的厚度,使掩膜的厚度在100-5000nm之间可调。
通过调控固化温度、固化灯管光照波长分布,可调控沉积掩膜致密度,固化温度越高,致密度越大,叠加灯管光照,能在短时间内获得较高致密度的薄膜。
本发明采用溶胶凝胶法制备掩膜前驱体,通过调整前驱体中硅含量,制备得到不同厚度、不同致密度的掩膜,获得不同的扩散阻挡性能,掩膜厚度在100-5000nm内可控,同时致密度高,使掺杂表面浓度在10 20-10 21/cm 3内可控。
有益效果
本发明还具有如下特点:
1、本发明的掩膜前驱体原料易得,易于制备且稳定性良好;
2、本发明固化得到的掩膜能较轻易的用简单的手段进行去除,不会在硅片表面残留,且无其他杂质的引入;
3、本发明操作简便,无需多次扩散过程,且固化温度低、时间短,避免长时间高温对硅片少子寿命的影响;
4、本发明链式过程操作简便,对硅片尺寸兼容性强;
5、本发明费用低、镀膜简单,易于大面积使用,并且具有良好的光学性能;
6、本发明掩膜均匀性好,使掩膜致密性高,掩膜厚度和硬度能通过简单的调整前驱体进行改善,调试空间大;
7、本发明前驱体沉积和固化采用链式制程,不需要复杂上下料过程,对硅片尺寸兼容性良好。
本发明的最佳实施方式
下面结合实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明提供一种硼掺杂选择性发射极电池的制备方法,其具体步骤包括:
1)去除硅片表面损伤层;
2)掩膜前驱体链式沉积:在链式设备中对硅片表面沉积掩膜前驱体,使硅片表面覆盖掩膜前驱体;沉积采用滚涂、喷涂、刮涂、滴涂、狭缝涂布中的一种或多种;
所述掩膜前驱体通过如下步骤制备:将10-50g的金属醇盐、50-300mL的无水乙醇、1-10mL浓度0.1mol/L的盐酸、100-500mL的水以及0.05-5g硅烷偶联剂均匀混合后,在30-60℃条件下恒温水解1-5h,得到透明溶胶,该透明溶胶为掩膜前驱体;
所述金属醇盐选自正硅酸乙酯、正丙醇锆、异丙醇铝中的一种或几种;
所述硅烷偶联剂选自甲基三乙氧基硅烷、乙烯基三乙氧基硅烷、丙基三乙氧基硅烷、巯丙基三甲氧基硅烷中的一种或几种;
3)掩膜前驱体链式固化:在链式设备中对硅片表面覆盖的掩膜前驱体进行加热,使掩膜前驱体固化为掩膜;可以采用波长为800-2000nm的光对硅片表面覆盖的掩膜前驱体进行加热;加热时通入氮气、氧气或氮氧混合气,加热的温度控制在300-800℃,加热的时间控制在20-300s;所得掩膜为氧化硅膜、氮化硅膜、氮氧化硅膜、氧化铝膜或氧化锆膜,掩膜的厚度为100-5000nm;
4)掩膜激光开槽:采用激光去除硅片表面部分区域的掩膜,所述硅片表面部分区域与硼掺杂的重掺区相对应;
5)硼扩散:硼扩散采用传统管式扩散+推进+氧化的扩散模式,扩散温度850-950℃,扩散时间10-30min,扩散氛围BBr 3:O 2为300:75;推进温度为950-1100℃,氮气氛围推进10-30min;氧化温度为950-1200℃,氧化氛围N 2:O 2=5:15,氧化30-60min;
掩膜清洗:在10-20%HF浓度下清洗300-600s,即可完全清除掩膜且无残留;
6)背面及边缘刻蚀;
7)背面抛光;
8)背面制备隧穿氧化层;
9)poly Si原位掺杂;
10)去绕镀;
11)去PSG;
12)钝化及金属化。
本发明更优选的实施例如下:
实施例1
在上述其他步骤不变的情况下,区别在于:
步骤2)中,所述掩膜前驱体通过如下步骤制备:将14g的正硅酸乙酯、30mL的无水乙醇、1mL浓度0.1mol/L的盐酸、70mL的水以及2g甲基三乙氧基硅烷均匀混合后,在40℃条件下恒温水解2h,得到透明溶胶,该透明溶胶为掩膜前驱体;
步骤3)中,加热时通入氮气,加热的温度控制在300℃,加热的时间控制在200s,所得掩膜为氧化硅膜,该氧化硅膜的厚度为536nm;B扩散后四探针和ECV表征方阻和掺杂表面浓度差异,该氧化硅膜能有效阻挡B扩散进程,相较于无掩膜的实验组,方阻提升50Ω,由无阻挡层的55Ω/□提升至105Ω/□,掺杂表面浓度由无阻挡层的5.6*10 20cm -3下降至1.2*10 20cm -3,起到良好的阻挡扩散的作用。
实施例2
在上述其他步骤不变的情况下,区别在于:
步骤2)中,所述掩膜前驱体通过如下步骤制备:将14g的正丙醇锆、30mL的无水乙醇、1mL浓度0.1mol/L的盐酸、70mL的水以及2g甲基三乙氧基硅烷均匀混合后,在40℃条件下恒温水解2h,得到透明溶胶,该透明溶胶为掩膜前驱体;
步骤3)中,加热时通入氧气,加热的温度控制在300℃,加热的时间控制在150s,所得掩膜为氧化锆膜,该氧化锆膜的厚度为348nm;B扩散后四探针和ECV表征方阻和掺杂表面浓度差异,该氧化锆膜能有效阻挡B扩散进程,相较于无掩膜的实验组,方阻提升37Ω,由无阻挡层的55Ω/□提升至92Ω/□,掺杂表面浓度由无阻挡层的5.6*10 20cm -3下降至1.8*10 20cm -3,起到良好的阻挡扩散的作用。
实施例3
在上述其他步骤不变的情况下,区别在于:
步骤2)中,所述掩膜前驱体通过如下步骤制备:将14g的异丙醇铝、30mL的无水乙醇、1mL浓度0.1mol/L的盐酸、70mL的水以及2g丙基三乙氧基硅烷均匀混合后,在35℃条件下恒温水解1h,得到透明溶胶,该透明溶胶为掩膜前驱体;
步骤3)中,加热时通入氮氧混合气,加热的温度控制在450℃,加热的时间控制在20s,所得掩膜为氮氧化硅膜,该氧化铝膜的厚度为470nm;B扩散后四探针和ECV表征方阻和掺杂表面浓度差异,该氧化锆膜能有效阻挡B扩散进程,相较于无掩膜的实验组,方阻提升68Ω,由无阻挡层的55Ω/□提升至123Ω/□,掺杂表面浓度由无阻挡层的5.6*10 20cm -3下降至0.9*10 20cm -3,起到良好的阻挡扩散的作用。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种硼掺杂选择性发射极电池的制备方法,包括在硼扩散之前制备掩膜;其特征在于,所述制备掩膜包括如下步骤:
    掩膜前驱体链式沉积:在链式设备中对硅片表面沉积掩膜前驱体,使硅片表面覆盖掩膜前驱体;
    掩膜前驱体链式固化:在链式设备中对硅片表面覆盖的掩膜前驱体进行加热,使掩膜前驱体固化为掩膜;
    掩膜激光开槽:采用激光去除硅片表面部分区域的掩膜,所述硅片表面部分区域与硼掺杂的重掺区相对应。
  2. 根据权利要求1所述的硼掺杂选择性发射极电池的制备方法,其特征在于,所述掩膜前驱体通过如下步骤制备:将10-50g的金属醇盐、50-300mL的无水乙醇、1-10mL浓度0.1mol/L的盐酸、100-500mL的水以及0.05-5g硅烷偶联剂均匀混合后,在30-60℃条件下恒温水解1-5h,得到透明溶胶,该透明溶胶为掩膜前驱体。
  3. 根据权利要求2所述的硼掺杂选择性发射极电池的制备方法,其特征在于,所述金属醇盐选自正硅酸乙酯、正丙醇锆、异丙醇铝中的一种或几种。
  4. 根据权利要求3所述的硼掺杂选择性发射极电池的制备方法,其特征在于,所述硅烷偶联剂选自甲基三乙氧基硅烷、乙烯基三乙氧基硅烷、丙基三乙氧基硅烷、巯丙基三甲氧基硅烷中的一种或几种。
  5. 根据权利要求1所述的硼掺杂选择性发射极电池的制备方法,其特征在于,所述掩膜前驱体链式沉积步骤中,沉积采用滚涂、喷涂、刮涂、滴涂、狭缝涂布中的一种或多种。
  6. 根据权利要求1所述的硼掺杂选择性发射极电池的制备方法,其特征在于,所述掩膜前驱体链式固化步骤中,加热时通入氮气、氧气或氮氧混合气,加热的温度控制在300-800℃,加热的时间控制在20-300s。
  7. 根据权利要求1所述的硼掺杂选择性发射极电池的制备方法,其特征在于,所述掩膜前驱体链式固化步骤中,采用波长为800-2000nm的光对硅片表面覆盖的掩膜前驱体进行加热。
  8. 根据权利要求1所述的硼掺杂选择性发射极电池的制备方法,其特征在于,所述掩膜为氧化硅、氮化硅、氮氧化硅、氧化铝或氧化锆。
  9. 根据权利要求1所述的硼掺杂选择性发射极电池的制备方法,其特征在于,所述掩膜的厚度为100-5000nm。
  10. 根据权利要求1所述的硼掺杂选择性发射极电池的制备方法,其特征在于,其具体步骤包括:
    1)去除硅片表面损伤层;
    2)掩膜前驱体链式沉积;
    3)掩膜前驱体链式固化;
    4)掩膜激光开槽;
    5)硼扩散;
    6)背面及边缘刻蚀;
    7)背面抛光;
    8)背面制备隧穿氧化层;
    9)poly Si原位掺杂;
    10)去绕镀;
    11)去PSG;
    12)钝化及金属化。
PCT/CN2022/081389 2021-09-23 2022-03-17 一种硼掺杂选择性发射极电池的制备方法 WO2023045279A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111114807.4A CN113871512B (zh) 2021-09-23 2021-09-23 一种硼掺杂选择性发射极电池的制备方法
CN202111114807.4 2021-09-23

Publications (1)

Publication Number Publication Date
WO2023045279A1 true WO2023045279A1 (zh) 2023-03-30

Family

ID=78993495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081389 WO2023045279A1 (zh) 2021-09-23 2022-03-17 一种硼掺杂选择性发射极电池的制备方法

Country Status (2)

Country Link
CN (1) CN113871512B (zh)
WO (1) WO2023045279A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871512B (zh) * 2021-09-23 2023-01-03 常州时创能源股份有限公司 一种硼掺杂选择性发射极电池的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253862A (ja) * 2009-04-28 2010-11-11 Dainippon Printing Co Ltd 透明ガスバリア性フィルム
CN105408986A (zh) * 2013-08-02 2016-03-16 东丽株式会社 掩模糊料组合物、使用其得到的半导体元件及半导体元件的制造方法
CN111063770A (zh) * 2019-11-27 2020-04-24 福建中晶科技有限公司 一种SiO2蓝宝石复合衬底
CN111370539A (zh) * 2020-03-19 2020-07-03 泰州中来光电科技有限公司 一种具有选择性发射极的太阳能电池的制备方法
CN111834492A (zh) * 2020-07-22 2020-10-27 常州时创能源股份有限公司 TOPCon电池的制备方法
CN112186074A (zh) * 2020-09-30 2021-01-05 浙江正泰太阳能科技有限公司 一种选择性发射极制备方法、太阳能电池及其制备方法
CN113363334A (zh) * 2021-06-01 2021-09-07 常州时创能源股份有限公司 一种硼掺杂选择性发射极的制备方法
CN113871512A (zh) * 2021-09-23 2021-12-31 常州时创能源股份有限公司 一种硼掺杂选择性发射极电池的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923906A1 (en) * 2005-08-12 2008-05-21 Sharp Kabushiki Kaisha Masking paste, method for producing same, and method for manufacturing solar cell using masking paste
JP2015153897A (ja) * 2014-02-14 2015-08-24 日立化成株式会社 p型拡散層形成組成物及び太陽電池素子の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253862A (ja) * 2009-04-28 2010-11-11 Dainippon Printing Co Ltd 透明ガスバリア性フィルム
CN105408986A (zh) * 2013-08-02 2016-03-16 东丽株式会社 掩模糊料组合物、使用其得到的半导体元件及半导体元件的制造方法
CN111063770A (zh) * 2019-11-27 2020-04-24 福建中晶科技有限公司 一种SiO2蓝宝石复合衬底
CN111370539A (zh) * 2020-03-19 2020-07-03 泰州中来光电科技有限公司 一种具有选择性发射极的太阳能电池的制备方法
CN111834492A (zh) * 2020-07-22 2020-10-27 常州时创能源股份有限公司 TOPCon电池的制备方法
CN112186074A (zh) * 2020-09-30 2021-01-05 浙江正泰太阳能科技有限公司 一种选择性发射极制备方法、太阳能电池及其制备方法
CN113363334A (zh) * 2021-06-01 2021-09-07 常州时创能源股份有限公司 一种硼掺杂选择性发射极的制备方法
CN113871512A (zh) * 2021-09-23 2021-12-31 常州时创能源股份有限公司 一种硼掺杂选择性发射极电池的制备方法

Also Published As

Publication number Publication date
CN113871512A (zh) 2021-12-31
CN113871512B (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
CN111029438B (zh) 一种n型钝化接触太阳能电池的制备方法
EP4027395A1 (en) Efficient back passivation crystalline silicon solar cell and manufacturing method therefor
JP2010504651A (ja) 改善された表面パッシベーションを有する結晶性シリコン太陽電池の製造方法
US20130298984A1 (en) Passivation of silicon surfaces using intermediate ultra-thin silicon oxide layer and outer passivating dielectric layer
CN111725359B (zh) 一种钝化接触太阳能电池的制备方法
CN114335250B (zh) 一种钝化接触结构的制备方法及应用方法
WO2023184955A1 (zh) 太阳能电池及其制备方法
TW201003961A (en) Solar cell spin-on based process for simultaneous diffusion and passivation
WO2022016920A1 (zh) TOPCon 电池的制备方法
WO2023124254A1 (zh) 一种硼掺杂选择性发射极的制备方法及应用
WO2024066207A1 (zh) 一种新型太阳能电池及其制作方法
CN116741871A (zh) 一种扩硼SE结构的N型TOPCon电池制作方法
CN112490325A (zh) 一种太阳能电池的制备方法
WO2023045279A1 (zh) 一种硼掺杂选择性发射极电池的制备方法
CN112820801A (zh) 一种减小se激光损伤的厚氧化层扩散工艺
CN115132852A (zh) 一种N型TOPCon太阳能电池及其制作方法
WO2018040990A1 (zh) 聚硅氧烷、半导体用材料、半导体及太阳能电池制备方法
JP6688244B2 (ja) 高効率太陽電池の製造方法及び太陽電池セルの製造システム
TWI650872B (zh) 太陽能電池及其製造方法、太陽能電池模組及太陽能電池發電系統
WO2024007495A1 (zh) 改性隧穿氧化层及制备方法、TOPCon结构及制备方法和太阳电池
CN116779717A (zh) 一种TOPCon电池正面选择性发射极的制作方法
CN116504879A (zh) 一种TOPCon电池制备方法及TOPCon电池
CN111755563B (zh) 一种p型单晶硅硼背场双面电池及其制备方法
JP2018174276A (ja) p型拡散層付き半導体基板の製造方法、p型拡散層付き半導体基板、太陽電池素子、及び太陽電池素子の製造方法
JP2015153897A (ja) p型拡散層形成組成物及び太陽電池素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE