WO2023045190A1 - 遮蔽装置和半导体工艺设备 - Google Patents

遮蔽装置和半导体工艺设备 Download PDF

Info

Publication number
WO2023045190A1
WO2023045190A1 PCT/CN2022/071373 CN2022071373W WO2023045190A1 WO 2023045190 A1 WO2023045190 A1 WO 2023045190A1 CN 2022071373 W CN2022071373 W CN 2022071373W WO 2023045190 A1 WO2023045190 A1 WO 2023045190A1
Authority
WO
WIPO (PCT)
Prior art keywords
tray
shielding
correction
side wall
sensor
Prior art date
Application number
PCT/CN2022/071373
Other languages
English (en)
French (fr)
Inventor
赵康宁
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2023045190A1 publication Critical patent/WO2023045190A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of semiconductor processing, in particular to a shielding device in semiconductor processing equipment and semiconductor processing equipment.
  • Burn In removes oxides and other impurities on the surface of the target through a process.
  • the shutter disk (Shutter Disk) is usually placed on the surface of the base or electrostatic chuck. The shutter disk is used to accept the Particles sputtered from the target, avoiding contamination of the susceptor or electrostatic chuck by these particles.
  • a PVD chamber generally includes a main chamber part and a shielded chamber part communicated with the main chamber part, wherein the main chamber part is provided with a target and a base, and the base is used to support a wafer.
  • the shadow chamber part is used to accommodate the shadow disk.
  • a tray is also provided in the PVD chamber, and the tray is used to support the shielding disk and can drive the shielding disk to move between the main chamber part and the shielding chamber part.
  • the tray drives the shielding disc to rotate into the main chamber, and then the support pins in the main chamber lift up the shielding disc; after the shielding disc is lifted, the tray rotates into the shielding chamber ; Afterwards, the base rises to lift the masking plate on the support needle to the process position, and then the Burn In process is carried out.
  • the masking disk is dropped on the tray through a similar process, and then the tray rotates the masking disk into the masking chamber.
  • a conical protrusion is provided at the center of the tray, and a corresponding conical groove is provided at the bottom of the shielding disc.
  • the two are positioned through the cooperation of the conical protrusion and the conical groove.
  • the positioning effect of conical protrusions and conical grooves is only applicable to the case where the offset of the shielding disc on the tray is small. When the offset is large, the conical protrusions and conical grooves will not be able to Play a positioning role again.
  • the present invention aims to solve at least one of the above technical problems, and provides a shielding device in semiconductor process equipment and semiconductor process equipment, which can improve the accuracy of the alignment between the shielding disk and the tray.
  • an embodiment of the present invention provides a shielding device in a semiconductor process equipment, which is used to shield a base provided in a process chamber of the semiconductor process equipment, the base is used to carry a wafer,
  • the shielding device includes: a shielding disc and a tray for carrying the shielding disc, wherein,
  • the shielding tray includes: a shielding tray body and a protrusion provided on the shielding tray body, the protrusion is located on a side of the shielding tray body facing the tray;
  • the tray is provided with a plurality of correction mechanisms, and the plurality of correction mechanisms are distributed along the circumference of the tray, and the plurality of correction mechanisms are used to adjust the position of the shielding plate during the process of falling to the tray.
  • the projection is moved to a target position on the upper surface of the tray under the force of gravity of the shielding disc.
  • the tray is provided with a plurality of first installation holes, and a plurality of the calibration mechanisms are installed in the plurality of first installation holes in a one-to-one correspondence;
  • Each of the correction mechanisms includes a correction assembly and an elastic member, wherein the correction assembly is rotatably connected to the side wall of the first mounting hole and is located on a side away from the center of the tray; the elastic The first end of the member is connected to the correction assembly, the second end of the elastic member is connected to the side wall of the first installation hole, and the elastic member is used to apply elastic force to the correction assembly, so that The correction component is located at a first position against the side wall of the first mounting hole when no external force acts; and a part of the correction component is higher than the first position when located at the first position the upper surface of the tray;
  • the correction assembly is configured to be able to rotate from the first position toward a side close to the center of the tray under the action of gravity of the shielding disc, and push the protrusion to move to the target during the rotation. Location.
  • each of the correction components includes: a correction piece and a support piece, the first end of the correction piece is connected to the first end of the support piece, and the connection is connected to the first installation hole through a rotating shaft
  • the second end of the support member is located on the side of the second end of the correction member close to the center of the tray, and is used to contact the bottom surface of the protrusion so that when the shielding plate falls to During the process of the tray, the second end of the support member can rotate around the rotating shaft toward the side close to the center of the tray under the gravity of the shielding disc, and drive the correcting member around the rotating shaft turn;
  • the second end of the correction member is used to rotate under the drive of the support member, and contact the side of the protruding part during the rotation, and push the protruding part;
  • the first end of the elastic member is connected to one of the correction member and the support member.
  • the elastic member is a torsion spring
  • the torsion spring is sleeved on the rotating shaft, and the first end of the torsion spring is connected to one of the correction member and the support member, the The second end of the torsion spring is connected to the side wall of the first installation hole.
  • the second end of the correction member is provided with a first roller, and the first roller is used for rolling contact with the bottom surface of the protrusion; the second end of the support member is provided with a second roller a wheel; the second roller for rolling contact with the side of the protrusion.
  • the side of the protruding part is provided with an arc-shaped inner concave part, and the radius of the inner concave part is 1.5 times to 2 times the radius of the first roller; and/or
  • the axial thickness of the protrusion is 2.5 to 4 times the radius of the first roller.
  • both the correction member and the support member are plate-shaped bent structures, and they are integrally formed.
  • a limiting portion is formed on the side wall of the first installation hole, and the correcting member abuts against the limiting portion under the elastic action of the elastic member when there is no external force;
  • the limiting portion is an inclined plane formed on the side wall of the first installation hole and located on a side away from the center of the tray, and the diameter of the first installation hole on the inclined plane increases from bottom to top.
  • a second mounting hole is provided on the tray near the center;
  • the shielding device further includes a first indentation sensor, the first indentation sensor is arranged in the second installation hole, and the probe of the first indentation sensor protrudes from the tray in a natural state the upper surface of the upper surface; the first indentation sensor is used to detect the position state of the shielding plate by detecting the degree to which the probe is pressed into the first indentation sensor by the shielding plate.
  • the present invention also provides a semiconductor process equipment, comprising: a process chamber, a rotary driving device, and the above-mentioned shielding device provided by the present invention, and the shielding device is located in the process chamber;
  • the process chamber includes: a main chamber part and a shielded chamber part communicated with the main chamber part, the shielded chamber part is located on one side of the main chamber part; wherein, the main chamber The base is arranged in the part; the rotation driving device is connected with the tray of the shielding device, and is used to drive the tray to rotate, so that the tray can drive the shielding disk between the main chamber part and the The shielding chamber moves between sections.
  • the tray includes a supporting part and a connecting arm, the supporting part is used to carry the shielding disk, the supporting part is connected with the rotation driving device through the connecting arm, and the shielding cavity
  • the side wall of the chamber part is provided with a second indentation sensor, the probe of the second intrusion sensor protrudes from the side wall of the shielding chamber part towards the connecting arm in a natural state, and the second The indentation sensor is used to detect the position state of the tray by detecting the degree to which the probe is pressed into the second indentation sensor by the connecting arm.
  • the second push-in sensor is arranged outside the side wall of the shielded chamber part, and a through hole is provided on the side wall of the shielded chamber part, and the second push-in sensor The probe protrudes into the shielded chamber part through the through hole, and the second press-in sensor is sealingly connected with the side wall of the shielded chamber part through the bellows to seal the through hole .
  • a protrusion is provided on the shielding disk, and a plurality of correction structures distributed along its circumference are arranged on the tray, and the plurality of correction mechanisms can drop to the bottom of the tray when the shielding disk falls.
  • the protrusion is pushed to move to the target position on the upper surface of the tray, so that the position of the protrusion on the tray can be corrected, that is, the position of the shielding disc is self-corrected, thereby The accuracy of the alignment between the masking disc and the tray is improved.
  • FIG. 1 is a schematic diagram of semiconductor processing equipment provided in one example.
  • Fig. 2 is a schematic diagram of a shielding device provided in some embodiments of the present invention.
  • Fig. 3 is a cross-sectional view of a correction mechanism provided in some embodiments of the present invention.
  • Fig. 4 is a top view of a correction mechanism provided in some embodiments of the present invention.
  • Fig. 5 is a partial cross-sectional view of a correction mechanism and a shadow disk provided in some embodiments of the present invention.
  • Fig. 6 is a schematic diagram of a process in which a plurality of correction mechanisms push a protruding part provided in some embodiments of the present invention.
  • Fig. 7 is a schematic diagram of the principle of correction of the shadow disc by multiple correction mechanisms provided in some embodiments of the present invention.
  • FIG. 8 is a schematic diagram of semiconductor processing equipment provided in some embodiments of the present invention.
  • Figure 9 is a top view of a shielded chamber section provided by some embodiments of the present invention.
  • FIG. 1 is a schematic diagram of semiconductor process equipment provided in an example.
  • the semiconductor process equipment may be PVD equipment for performing a PVD process.
  • the semiconductor process equipment includes: a main chamber part 4, a shielding chamber part 6, a mounting part 3 and a target 1, wherein the shielding chamber part 6 is located on one side of the main chamber part 4, and the mounting part The part 3 is located on the top of the main chamber part 4, and the installation part 3 is used for installing the process component 5, and the process component 5 has a hollow window.
  • the target material 1 is located on the top of the installation part 3, the main chamber part 4, the shielding chamber part 6, the installation part 3 and the target material 1 form a closed chamber, and the closed chamber is connected with a vacuum pump, so that the inside of the chamber can reach Vacuum environment.
  • the base 18 is arranged in the main chamber part 4 for supporting the wafer, and can be moved up and down.
  • the base 18 is, for example, an electrostatic chuck for fixing the wafer by adsorption.
  • a plurality of support pins 19 are installed in the base 18 , and the lifting mechanism 30 is used to drive the plurality of support pins 19 to move up and down.
  • the tray 20 is used to carry the shielding disc 10, wherein the upper surface of the tray 20 is provided with a conical protrusion 11, and the bottom of the shielding disc 10 is provided with a conical groove.
  • the shielding disc 10 When the shielding disc 10 is placed on the tray 20, the shielding disc 10 It is positioned with the tray 20 through the cooperation of the conical protrusion 11 and the conical groove.
  • the tray 20 is connected to the rotary driving device through the magnetic fluid bearing 13 so as to rotate under the driving action of the rotary driving device.
  • the rotary driving device may include, for example: a motor 16 , a reducer 15 and a coupling 14 .
  • the shielding disk 10 is placed on the tray 20, and the two are positioned by the conical protrusion 11 on the tray 20 and the conical groove on the shielding disk 10.
  • the tray 20 drives the shielding disk 10 to rotate under the drive of the rotary drive device, and rotates into the main chamber part 4.
  • the support pin 19 rises, thereby lifting the shielding disk 10, and separating the shielding disk 10 from the tray 20;
  • the tray 20 is rotated back into the shielding chamber part 6 under the drive of the rotary drive mechanism.
  • the base 18 rises, and holds up the shielding disk 10 in the process of rising, so that the shielding disk 10 is separated from the support needle 19; When the hollow window), the Burn In process can be carried out.
  • the base 18 descends.
  • the support pins 19 lift up the shielding disc 10 on the base 18 to separate the shielding disc 10 from the base 18; after that, the rotary drive device drives the tray 20 Rotate to a position below the shielding disc 10 and above the base 18 ; afterward, the support pin 19 descends, and during the descent, the shielding disc 10 falls on the tray 20 , and the tray 20 rotates back into the shielding chamber portion 6 .
  • an optical sensor can be used to detect whether the tray 20 is rotated in place.
  • the shielding plate 10 and the tray 20 can be positioned through the cooperation of the conical protrusion 11 and the conical groove, the positioning effect of the conical protrusion 11 and the conical groove It is only applicable to the case that the offset of the shielding disc 10 on the tray 20 is small, and when the offset is large, the conical protrusion 11 and the conical groove can no longer play a positioning role.
  • an optical sensor is used to detect whether the tray 20 is rotated in place, and the light is easily affected by the diffuse reflection of the parts or the vibration of the parts, thus causing detection errors.
  • an embodiment of the present invention provides a shielding device in a semiconductor process equipment, the shielding device is used to shield a susceptor in a process chamber of a semiconductor process equipment, and the susceptor is used to carry a wafer round.
  • FIG. 2 is a schematic diagram of a shielding device provided in some embodiments of the present invention. As shown in FIG. 2 , the shielding device includes: a shielding disc 10 and a tray 20 for carrying the shielding disc 10 .
  • the shielding tray 10 includes: a shielding tray body 10 a and a protrusion 10 b disposed on the shielding tray body 10 a, the protrusion 10 b is located on the side of the shielding tray body 10 a facing the tray 20 , that is, at the bottom of the shielding tray 10 .
  • a plurality of correction mechanisms 40 are arranged on the tray 20, and the plurality of correction mechanisms 40 are distributed along the circumference of the tray 20. The plurality of correction mechanisms 40 are used to correct the gravity of the shield disk 10 when the shadow disk 10 falls to the tray 20.
  • the lower push protrusion 10 b moves to a target position on the upper surface of the tray 20 .
  • the target position is the position where the axis of the tray 20 coincides with the axis of the shielding disk 10 (or the protruding portion 10 b ), that is, the centering of the tray 20 and the shielding disk 10 is realized.
  • the shielding plate 10 is provided with a protruding portion 10b
  • the tray 20 is provided with a plurality of correction structures distributed along its circumference
  • the plurality of correction mechanisms 40 can , under the action of gravity of the shielding disc 10, the protruding portion 10b is pushed to move to the target position on the upper surface of the tray 20, that is to say, during the entire process when the shielding disc 10 descends to the upper surface of the tray 20, when the shielding disc 10
  • the protruding part 10b at the bottom descends to a position where it contacts with multiple correction structures
  • the gravity of the shielding plate 10 can act as a driving force on each correction structure, driving each correction structure to push the protruding part 10b to move.
  • a plurality of correction structures are distributed along the circumference of the tray 20, which can automatically push the protrusion 10b to the center position of the circumference where the plurality of correction structures are located by acting together, that is, can automatically push the protrusion 10b to the center of the tray 20.
  • the axis coincides with the above-mentioned target position of the axis of the shielding disc 10 (or the protrusion 10b), so that the position of the protrusion 10b on the tray 20 can be corrected, that is, the position of the shielding disc 10 can be self-corrected, thereby improving the shielding
  • the alignment accuracy of disc 10 and tray 20 are provided.
  • the number of correction mechanisms 40 may be 6, or other numbers.
  • a plurality of calibration mechanisms 40 are evenly distributed along the circumference of the tray 20 .
  • the tray 20 is provided with a plurality of first installation holes V1 , and a plurality of calibration mechanisms 40 are installed in the plurality of first installation holes V1 correspondingly.
  • Fig. 3 is a sectional view of the correction mechanism provided in some embodiments of the present invention
  • Fig. 4 is a top view of the correction mechanism provided in some embodiments of the present invention, as shown in Fig. 3 and Fig.
  • each correction mechanism 40 includes The correction component 41 and the elastic member 43, wherein the correction component 41 is rotatably connected to the side wall of the first installation hole V1, and is located on the side away from the center of the tray 20; the first end of the elastic member 43 is connected to the correction component 41 , the second end of the elastic member 43 is connected to the side wall of the first installation hole V1, and the first installation hole V1 is used to apply an elastic force to the correction assembly 41, so that the correction assembly 41 is located against the At the first position (as shown in FIG. 3 ) on the side wall of the first installation hole V1; and, a part of the calibration assembly 41 is higher than the upper surface of the tray 20 when it is located at the first position, so that the protrusion 10b Access to individual correction structures is possible during the fall.
  • the calibration assembly 41 is configured to be able to rotate from the above-mentioned first position toward the side close to the center of the tray 20 under the action of gravity of the shielding plate 10 , and push the protrusion 10 b to move to the above-mentioned target position during the rotation. It should be noted that the gravitational force of the shielding disc 10 should be sufficient to enable the calibration assembly 41 to rotate toward the side close to the center of the tray 20 against the elastic force exerted by the elastic member 43 on the calibration assembly 41 .
  • each correction component 41 is driven to rotate toward the side near the center of the tray 20, and at the same time, the protruding part 10b is pushed to move. Rotation, they can automatically push the protruding part 10b to the above-mentioned target position through mutual action.
  • the entire parts of the plurality of calibration components 41 are completely located in the first mounting holes V1, and will not be higher than the upper surface of the tray 20. , so as to ensure that the bottom of the protruding portion 10b can be attached to the upper surface of the tray 20 .
  • the correction assembly 41 can be reset to the above-mentioned first position.
  • the structure of the correction assembly 41 can be various, for example, as shown in Figure 3 and Figure 4, the correction assembly 41 includes: a correction piece 41a and a support piece 41b, the first end of the correction piece 41a and the first end of the support piece 41b connected, and the joint is connected to the side wall of the first installation hole V1 through the rotating shaft 42, and the second end of the support member 41b is located on the side of the second end of the correction member 41a close to the center of the tray 20, for connecting with the bottom surface of the protruding part 10b Contact, so that in the process of the shielding disk 10 falling to the tray 20, the second end of the support member 41b can rotate around the rotating shaft 42 toward the side close to the center of the tray 20 under the gravity of the shielding disk 10, and drive the correction member 41a around The rotating shaft 42 rotates toward the side close to the center of the tray 20, and the second end of the correcting member 41a is used to rotate toward the side near the center of the tray 20 driven by the supporting member 41b, and contacts the side of the protrusion
  • both the correction piece 41a and the support piece 41b are plate-shaped bending structures, specifically, the second end of the support piece 41b can be bent and extended to a position where it is easy to contact with the bottom surface of the protrusion 10b The second end of the correction member 41a can be bent and extended to a position where it is easy to contact the side of the protruding portion 10b. Therefore, this plate-shaped bending structure facilitates the respective functions of the correction member 41a and the support member 41b.
  • the correcting member 41a and the supporting member 41b can also adopt other arbitrary shapes, for example, arc shape, which is not particularly limited in the embodiment of the present invention.
  • the correcting member 41a and the supporting member 41b may be integrally formed, or fixedly connected by means of welding or the like.
  • the correcting piece 41a and the supporting piece 41b can be rotatably connected to the rotating shaft 42, and the rotating shaft 42 is fixedly connected to the side wall of the first installation hole V1, or the correcting piece 41a and the supporting piece 41b can also be fixedly connected to the rotating shaft 42, and the rotating shaft 42 is connected to the second mounting hole V1.
  • a side wall of the mounting hole V1 is rotatably connected.
  • the first end of the elastic member 43 is connected to the correction member 41a or the support member 41b, and the second end is connected to the side wall of the first installation hole V1. 41a or support 41b to apply the force.
  • the elastic member 43 can be a torsion spring, and the torsion spring is sleeved on the rotating shaft 42, and the first end of the torsion spring is connected to the correction member 41a and the support One of the parts 41b is connected, and the second end of the torsion spring is connected with the side wall of the first mounting hole V1.
  • the second end of the support member 41b and the second end of the correction member 41a are both exposed from the first installation hole V1 and protrude from the bottom of the tray 20.
  • the correction piece 41a is in an open state (that is, the correction piece 41a abuts against the side wall of the first installation hole V1 away from the center of the tray 20, the second end of the correction piece 41a and the second end of the support piece 41b with the opening between them facing upwards).
  • the shielding plate 10 falls and presses on the supporting member 41b, the supporting member 41b and the correcting member 41a rotate around the rotating shaft 42, and then the second end of the correcting member 41a rotates toward the side of the protruding portion 10b.
  • a limit portion 20a is formed on the side wall of the first installation hole V1, and the correction member 41a abuts against the limit portion under the action of the elastic member 43 when there is no external force.
  • the limit part 20a is an inclined plane formed on the side wall of the first installation hole V1 and located on the side away from the center of the tray 20, and the diameter of the first installation hole V1 at the inclined plane is from bottom to top increment. In this way, the correcting member 41a can be in the above-mentioned open state when it abuts against the inclined surface.
  • Fig. 5 is a partial cross-sectional view of the correction mechanism and the shielding disc provided in some embodiments of the present invention.
  • the side of the protrusion 10b is provided with an arc-shaped inner recess 10s, In this way, when the second end of the correction piece 41a is in contact with the side of the protruding portion 10b, it can extend into the inner concave portion 10s, so that the second end of the correction piece 41a can be matched with the inner concave portion 10s to ensure the alignment of the correction piece. 41a is always in contact with the protruding part 10b during the rotation process. In other words, when the correcting parts 41a in the plurality of correcting structures 40 are matched with the inner concave part 10s, they can clamp the protruding part 10b so that they can The correction member 41a is rotated to move.
  • the second end of the correction piece 41a is provided with a first roller 44, the first roller 44 is used to In rolling contact with the bottom surface of the protruding part 10b, this can avoid the relative movement between the second end of the calibration piece 41a and the bottom surface of the protruding part 10b being hindered and possible wear caused by excessive friction.
  • the arrangement of the first roller 44 is, for example, as follows: the second end of the correction member 41a is provided with a first rotating shaft 46, and the first roller 44 is rotatably arranged on the first rotating shaft 46.
  • the first roller 44 A shaft sleeve is arranged between the first rotating shaft 46 to prevent the first roller 44 from being worn after a long time of operation.
  • the second end of the support member 41b is provided with a second roller 45, and the second roller 45 is used for rolling contact with the side of the protruding portion 10b, so as to avoid the contact between the second end of the support member 41b and the protruding portion 10b.
  • the frictional force between the sides is too large to hinder the relative movement between them and the possible abrasion, so as to ensure that the correction member 41a can push the protruding part 10b to move.
  • the setting mode of the second roller 45 is, for example: the second end of the support member 41b is provided with a second rotating shaft 47, and the second roller 45 is arranged on the second rotating shaft 47.
  • the second roller 45 and the second A shaft sleeve is arranged between the rotating shafts 47 to prevent the second roller 45 from being worn after a long time of operation.
  • the axial thickness D of the protrusion 10 b may be 2.5 to 4 times, for example 3 times, the radius R1 of the first roller 44 .
  • the radius R2 of the inner recess 10s can be 1.5 times to 2 times the radius R1 of the first roller 44, so that the first roller 44 can enter the inner recess 10s more easily, and the correction
  • the cooperation between the second end of the piece 41a and the inner concave portion 10s can ensure that the correcting piece 41a is always in contact with the protruding portion 10b during the rotation process.
  • an outer convex portion 10s1 is provided on the side of the protruding portion 10b, and the outer convex portion 10s1 is connected to the inner concave portion 10s, and is located at the side of the inner concave portion 10s away from the shielding plate body 10a.
  • a rounded corner 10c with a smooth transition is formed, so that the first roller 44 can rotate smoothly to In the inner recess 10s.
  • the second end of the correction member 41a can be restrained in the inner recess 10s by means of the outer convex portion 10s1, so as to further ensure that the correction member 41a is always in contact with the protruding portion 10b during the rotation process.
  • Fig. 6 is a schematic diagram of the process of multiple correction mechanisms pushing the protruding parts provided in some embodiments of the present invention, wherein (a) in Fig. 6 is a schematic diagram when the shielding disc 10 is just in contact with the correction structure 40, and in Fig. 6 Figure (b) is a schematic diagram when the masking disk 10 falls on the tray 20 .
  • the correction member 41a is opened under the elastic force of the elastic member 43 state, the shielding disc 10 continues to fall, and the bottom surface of its protruding portion 10b will first contact the second roller 45.
  • the shielding disc 10 Since the gravity of the shielding disc 10 is much greater than the elastic force of the elastic member 43, the shielding disc 10 will overcome the elastic force of the elastic member 43 and continue to fall. Press the second roller 45, so that the correcting member 41a and the supporting member 41b rotate around the shaft 42 synchronously. At this time, the movement directions of the first roller 44 and the second roller 45 are shown by the arrows in FIG. 6(a). Then, the shielding disc 10 continues to press down the second roller 45, and the first roller 44 enters the arc-shaped inner recess 10s on the side of the protruding part 10b to push the protruding part 10b to move until the shielding disc 10 falls on the tray 20, as As shown in (b) of FIG. 6 , at this time, the masking disk 10 moves to the above-mentioned target position (that is, the center of the masking disk 10 coincides with the center of the tray 20 ) after being calibrated by a plurality of calibration mechanisms 40 .
  • Fig. 7 is a schematic diagram of the principle of correction of the masking disc by a plurality of correction mechanisms provided in some embodiments of the present invention. O deviates from the target position O'. In this case, when the masking disc 10 descends to touch the second roller 45 of the correction mechanism 40, the first roller 44 of the left correction mechanism 40 first enters the inner recess 10s, and the right The first roller 44 of the correcting mechanism 40 does not enter the inner recess 10s; after that, the shielding disc 10 continues to descend, and the first roller 44 of the left correcting mechanism 40 will push to the right during the rotation toward the center of the tray 20 The protrusion 10b of the disc 10 is shielded, and the first roller 44 of the right correction mechanism 40 will gradually enter the arc-shaped inner recess 10s during the rotation toward the center of the tray 20.
  • the shielding disk 10 will be corrected to the center position of the tray 20.
  • the number of the correction mechanism 40 is 6 or more, it can The deflection of the shadow disk 10 in 6 or more directions is corrected.
  • a second installation hole is provided on the tray 20 near the center, and the shielding device further includes: a first press-in sensor 50 , the first press-in sensor 50
  • the sensor 50 is arranged in the above-mentioned second installation hole, and the probe of the first intrusion sensor 50 protrudes from the upper surface of the tray 20 in a natural state;
  • the position state of the shielding disc 10 is detected by inserting the above-mentioned first push-in sensor. After the shadow disk 10 is dropped onto the tray 20 , at least a portion of the probe of the first indent sensor 50 is pressed into the first indent sensor 50 to trigger the first indent sensor 50 .
  • the first push-in sensor 50 may include a first body 51 and a first probe 52 that is movably connected with the first body 51, the first body 51 is fixed in the above-mentioned second mounting hole, the first The first probe 52 of the push-in sensor 50 protrudes from the upper surface of the tray 20 in a natural state. After the shielding disk 10 falls onto the tray 20 , under the action of gravity of the shielding disk 10 , the first probe 52 is pressed by the shielding disk 10 , and at least a part thereof is pressed into the first body 51 . Wherein, when the indentation amount of the first probe 52 reaches the first indentation amount, the first indentation sensor 50 generates a trigger signal. Wherein, the first indentation amount may be determined according to the trigger position of the first indentation sensor 50 , for example, the first indentation amount may be 1.5 mm.
  • the first probe 52 of the first indentation sensor 50 when the shielding plate 10 falls on the tray 20, the first probe 52 of the first indentation sensor 50 is indented by a certain amount, and when the indentation amount reaches the first indentation amount, the first The push-in sensor 50 generates a trigger signal indicating that the shadow disk 10 is dropped into place.
  • the first probe 52 When the bottom of the shielding plate 10 does not touch the tray 20 or the shielding plate 10 is tilted, the first probe 52 is not squeezed or the indentation amount does not reach the first indentation amount. At this time, the first indentation sensor 50 will not Generate a trigger signal.
  • the first indentation sensor 50 can accurately detect whether the shielding disk 10 is dropped on the tray 20 or whether it is tilted by detecting the indentation amount of the first probe 52 .
  • an embodiment of the present invention also provides a semiconductor process equipment, preferably, it may be a PVD equipment for performing a PVD process.
  • Fig. 8 is a schematic diagram of semiconductor process equipment provided in some embodiments of the present invention. As shown in Fig. 8, the semiconductor process equipment includes: a process chamber, a driving device and the above-mentioned shielding device. Wherein, the shielding device is located in the process chamber.
  • the process chamber includes: a main chamber part 4, a shielding chamber part 6, an installation part 3 and a target 1, the shielding chamber part 6 is located on one side of the main chamber part 4, and the installation part 3 is located on the side of the main chamber part 4 On the top, the installation part 3 is used to install the process component 5, and the process component 5 has a hollow window.
  • the target material 1 is located on the top of the installation part 3, the main chamber part 4, the shielding chamber part 6, the installation part 3 and the target material 1 form a closed chamber, and the closed chamber is connected with a vacuum pump, so that the inside of the chamber can reach Vacuum environment.
  • the base 18 is arranged in the main chamber part 4 for supporting the wafer, and can be moved up and down.
  • the base 18 is, for example, an electrostatic chuck for fixing the wafer by adsorption.
  • a plurality of support pins 19 are installed in the base 18 , and the lifting mechanism 30 is used to drive the plurality of support pins 19 to move up and down.
  • the rotation driving device is connected with the tray 20 of the shielding device, and is used to drive the tray 20 to rotate, so that the tray 20 can drive the shielding disc 10 to move between the main chamber part 4 and the shielding chamber part 6 .
  • Fig. 9 is a top view of the shielding chamber part provided by some embodiments of the present invention, as shown in Fig. 8 and Fig. 9, a plurality of (for example, 6) correction mechanisms 40 are arranged on the tray 20, and a plurality of correction mechanisms 40 are arranged along the tray. 20 are uniformly distributed in the circumferential direction, and when the shadow disk 10 falls on the tray 20 , a plurality of correction mechanisms 40 are located at the edge of the protruding part of the shadow disk 10 .
  • a plurality of (for example, 6) correction mechanisms 40 are arranged on the tray 20, and a plurality of correction mechanisms 40 are arranged along the tray. 20 are uniformly distributed in the circumferential direction, and when the shadow disk 10 falls on the tray 20 , a plurality of correction mechanisms 40 are located at the edge of the protruding part of the shadow disk 10 .
  • the tray 20 may include a supporting portion 21 and a connecting arm 22 , the supporting portion 21 is used to carry the shielding disk 10 , and the supporting portion 21 may be connected to the rotation driving device through the connecting arm 22 .
  • the rotary driving device may include: a motor 16 , a reducer 15 and a shaft coupling 14 .
  • the reducer 15 is connected between the motor 16 and the shaft coupling 14, and the supporting part 21 is connected to the shaft coupling 14 through a connecting arm 22, wherein the connecting arm 22 can be connected to the shaft coupling 14 through a magnetic fluid bearing 13, and the magnetic fluid
  • the bearing 13 can ensure that the process chamber maintains a vacuum state during the movement of the tray 20 .
  • the magnetic fluid bearing 13 can also be provided with an installation channel, and the signal line 71 is arranged in the installation channel for electrically connecting the first press-in sensor 50 on the tray 20 with an external processor, and the processor can be connected according to the first press-in sensor.
  • the trigger signal generated by the sensor 50 determines whether the masking tray 10 has fallen on the tray 20 or whether it is tilted.
  • a second indentation sensor 90 is provided on the side wall of the shielded chamber portion 6 , and the probe of the second indentation sensor 90 protrudes from the shielded chamber portion 6 toward the connecting arm 22 in a natural state.
  • the second push-in sensor 90 is used to detect the position of the tray 20 by detecting the degree to which the probe is pressed into the second push-in sensor 90 by the connecting arm 22 .
  • the second push-in sensor 90 includes: a second body part 90a and a second probe 90b connected to the second body part 90a, the second body part 90a is arranged on the side wall of the shielding chamber part 6, and the second probe 90b protrudes from the side wall of the shielding chamber part 6 toward the connecting arm 22 in a natural state, and when the shielding device moves to a designated position in the shielding chamber part 6, at least a part of the second probe 90b is pressed by the connecting arm 22. into the second body part 90a.
  • the second main body part 90a may be arranged outside the side wall of the shielded chamber part 6, and a through hole is provided on the side wall of the shielded chamber part 6, through which the second probe 90b of the second push-in sensor 90 passes.
  • the through hole protrudes into the shielding chamber part 6, and the second press-in sensor 90 is sealingly connected with the side wall of the shielding chamber part 6 through a bellows, so as to seal the through hole.
  • the connecting arm 22 presses the second probe 90b of the second push-in sensor 90, thereby pressing at least a part of the second probe 90b into the In the second main body part 90a, when the pushing amount of the second probe 90b reaches the second pushing amount, the second pushing-in sensor 90 generates a trigger signal, indicating that the tray 20 has reached the designated position.
  • the detection method using the second push-in sensor 90 is more accurate.
  • the above-mentioned second pressing amount can be set according to actual needs, for example, the second pressing amount can be 1.5 mm.
  • the shielding plate is provided with protrusions
  • the tray is provided with a plurality of correction structures distributed along its circumference.
  • the protrusion is pushed to move to the target position on the upper surface of the tray under the action of gravity of the shielding disc, so that the position of the protrusion on the tray can be corrected, that is, the position of the shielding disc can be corrected.
  • Self-calibration thereby improving the alignment accuracy of the masking disc and the tray.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供了一种遮蔽装置和半导体工艺设备,该遮蔽装置用于遮蔽设置于半导体工艺设备的工艺腔室中基座,该基座用于承载晶圆,遮蔽装置包括:遮蔽盘和用于承载遮蔽盘的托盘,其中,遮蔽盘包括:遮蔽盘本体和设置在遮蔽盘本体上的突出部,突出部位于遮蔽盘本体朝向托盘的一侧;托盘上设置有多个校正机构,多个校正机构沿托盘的周向分布,多个校正机构用于在遮蔽盘下落至托盘的过程中,在遮蔽盘的重力作用下推动突出部移动至托盘的上表面上的目标位置。本发明能够提高遮蔽盘与托盘对位的准确性。

Description

遮蔽装置和半导体工艺设备 技术领域
本发明涉及半导体加工技术领域,具体涉及一种半导体工艺设备中的遮蔽装置和半导体工艺设备。
背景技术
物理气相沉积(Physical Vapor Deposition,PVD)工艺过程中有一种工艺是预烧靶材(Burn In)。Burn In是通过工艺的方式清除靶材表面的氧化物和其他杂质,在进行Burn In工艺时,通常会将遮蔽盘(Shutter Disk)放置到基座或静电卡盘表面,遮蔽盘用于承接从靶材溅射出的粒子,避免这些粒子污染基座或静电卡盘。
PVD腔室通常包括主腔室部以及与该主腔室部连通的遮蔽腔室部,其中,主腔室部中设置有靶材和基座,基座用于支撑晶圆。遮蔽腔室部用于容置遮蔽盘。而且,PVD腔室中还设置有托盘,托盘用于支撑遮蔽盘,且能够带动遮蔽盘在主腔室部和遮蔽腔室部之间移动。在进行Burn In工艺时,托盘带动遮蔽盘转动至主腔室部中,之后,主腔室部中的支撑针将遮蔽盘顶起;遮蔽盘被顶起后,托盘转动至遮蔽腔室部中;之后,基座上升,以将支撑针上的遮蔽盘托起至工艺位置,然后进行Burn In工艺。在Burn In工艺完成后,通过类似的流程,使遮蔽盘落在托盘上,再由托盘将遮蔽盘转动至遮蔽腔室部中。
通常,托盘中心设置有圆锥形凸起,遮蔽盘底部设置有相应的圆锥形凹槽,遮蔽盘放置在托盘上时,二者通过圆锥形凸起和圆锥形凹槽的配合进行定位。但是,圆锥形凸起和圆锥形凹槽的定位作用只适用于遮蔽盘在托盘上的偏移量较小的情况,当偏移量较大时,圆锥形凸起和圆锥形凹槽将无法再 起到定位作用。
发明内容
本发明旨在至少解决上述技术问题之一,提供了一种半导体工艺设备中的遮蔽装置和半导体工艺设备,其能够提高遮蔽盘与托盘对位的准确性。
为了实现上述目的,本发明实施例提供了一种半导体工艺设备中的遮蔽装置,用于遮蔽设置于所述半导体工艺设备的工艺腔室中的基座,所述基座用于承载晶圆,所述遮蔽装置包括:遮蔽盘和用于承载所述遮蔽盘的托盘,其中,
所述遮蔽盘包括:遮蔽盘本体和设置在所述遮蔽盘本体上的突出部,所述突出部位于所述遮蔽盘本体朝向所述托盘的一侧;
所述托盘上设置有多个校正机构,多个所述校正机构沿所述托盘的周向分布,多个所述校正机构用于在所述遮蔽盘下落至所述托盘的过程中,在所述遮蔽盘的重力作用下推动所述突出部移动至所述托盘的上表面上的目标位置。
可选地,所述托盘上设置有多个第一安装孔,多个所述校正机构一一对应地安装于多个所述第一安装孔中;
每个所述校正机构均包括校正组件和弹性件,其中,所述校正组件可转动地连接在所述第一安装孔的侧壁上,且位于远离所述托盘中心的一侧;所述弹性件的第一端与所述校正组件连接,所述弹性件的第二端与所述第一安装孔的侧壁连接,所述弹性件用于向所述校正组件施加弹性作用力,以使所述校正组件在没有外力作用时,位于抵靠在所述第一安装孔的侧壁上的第一位置处;并且,所述校正组件的一部分在位于所述第一位置处时高于所述托盘的上表面;
所述校正组件被设置为能够在所述遮蔽盘的重力作用下,自所述第一位 置朝靠近所述托盘中心的一侧转动,并在转动过程中推动所述突出部移动至所述目标位置。
可选地,每个所述校正组件均包括:校正件和支撑件,所述校正件的第一端和所述支撑件的第一端连接,且连接处通过转轴与所述第一安装孔的侧壁连接,所述支撑件的第二端位于所述校正件的第二端的靠近所述托盘中心的一侧,用于与所述突出部的底面接触,以在所述遮蔽盘下落至所述托盘的过程中,所述支撑件的第二端能够在所述遮蔽盘的重力作用下绕所述转轴朝靠近所述托盘中心的一侧转动,并带动所述校正件绕所述转轴转动;
所述校正件的第二端用于在所述支撑件的带动下转动,并在转动过程中与所述突出部的侧面接触,并推动所述突出部;
所述弹性件的所述第一端与所述校正件和支撑件中的一者连接。
可选地,所述弹性件为扭转弹簧,所述扭转弹簧套设在所述转轴上,且所述扭转弹簧的第一端头与所述校正件和支撑件中的一者连接,所述扭转弹簧的第二端头与所述第一安装孔的侧壁连接。
可选地,所述校正件的第二端设置有第一辊轮,所述第一辊轮用于与所述突出部的底面滚动接触;所述支撑件的第二端设置有第二辊轮;所述第二辊轮用于与所述突出部的侧面滚动接触。
可选地,所述突出部的侧面设置有弧形的内凹部,所述内凹部的半径为所述第一辊轮的半径的1.5倍~2倍;和/或
所述突出部的轴向厚度为所述第一辊轮的半径的2.5倍~4倍。
可选地,所述校正件和所述支撑件均为板状弯折结构,且二者一体成型设置。
可选地,所述第一安装孔的侧壁上形成有限位部,所述校正件在没有外力作用时,在所述弹性件的弹性作用下抵靠在所述限位部上;所述限位部为在所述第一安装孔的侧壁上,且位于远离所述托盘中心的一侧形成的斜面, 所述第一安装孔在所述斜面处的直径由下而上递增。
可选地,所述托盘上,且靠近中心的位置处设置有第二安装孔;
所述遮蔽装置还包括第一压入式传感器,所述第一压入式传感器设置在所述第二安装孔中,所述第一压入式传感器的探头在自然状态下突出于所述托盘的上表面;所述第一压入式传感器用于通过检测所述探头被所述遮蔽盘压入所述第一压入式传感器的程度,来检测所述遮蔽盘的位置状态。
作为另一个技术方案,本发明还提供一种半导体工艺设备,包括:工艺腔室、旋转驱动装置和本发明提供的上述遮蔽装置,所述遮蔽装置位于所述工艺腔室内;
所述工艺腔室包括:主腔室部以及与所述主腔室部连通的遮蔽腔室部,所述遮蔽腔室部位于所述主腔室部的一侧;其中,所述主腔室部中设置有所述基座;所述旋转驱动装置与所述遮蔽装置的托盘连接,用于驱动所述托盘转动,以使所述托盘能够带动所述遮蔽盘在所述主腔室部和所述遮蔽腔室部之间移动。
可选地,所述托盘包括承托部和连接臂,所述承托部用于承载所述遮蔽盘,所述承托部通过所述连接臂与所述旋转驱动装置连接,所述遮蔽腔室部的侧壁上设置有第二压入式传感器,所述第二压入式传感器的探头在自然状态下朝向所述连接臂突出于所述遮蔽腔室部的侧壁,所述第二压入式传感器用于通过检测所述探头被所述连接臂压入所述第二压入式传感器的程度,来检测所述托盘的位置状态。
可选地,所述第二压入式传感器设置在所述遮蔽腔室部的侧壁外侧,且在所述遮蔽腔室部的侧壁上设置有通孔,所述第二压入式传感器的探头经由所述通孔而伸入所述遮蔽腔室部中,并且所述第二压入式传感器通过波纹管与所述遮蔽腔室部的侧壁密封连接,用以密封所述通孔。
本发明实施例具有以下有益效果:
在本发明实施例提供的遮蔽装置和半导体工艺设备中,遮蔽盘上设置有突出部,托盘上设置有沿其周向分布的多个校正结构,多个校正机构能够在遮蔽盘下落至托盘的过程中,在遮蔽盘的重力作用下推动突出部移动至托盘的上表面上的目标位置,从而可以对突出部在托盘上的位置进行校正,也即,对遮蔽盘的位置进行自校正,从而提高了遮蔽盘与托盘对位的准确性。此外,由于多个校正结构沿托盘的周向分布,这样可以避免现有技术中圆锥形凸起和圆锥形凹槽因遮蔽盘偏移量较大无法配合而导致的定位作用失效的问题,从而可以适用于遮蔽盘在托盘上的偏移量较大的情况。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为一示例中提供的半导体工艺设备的示意图。
图2为本发明的一些实施例中提供的遮蔽装置的示意图。
图3为本发明的一些实施例中提供的校正机构的剖视图。
图4为本发明的一些实施例中提供的校正机构的俯视图。
图5为本发明的一些实施例中提供的校正机构和遮蔽盘的局部剖视图。
图6为本发明的一些实施例中提供的多个校正机构推动突出部的过程示意图。
图7为本发明的一些实施例中提供的多个校正机构对遮蔽盘的校正原理示意图。
图8为本发明的一些实施例中提供的半导体工艺设备的示意图。
图9为本发明的一些实施例提供的遮蔽腔室部的俯视图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
这里用于描述本发明的实施例的术语并非旨在限制和/或限定本发明的范围。例如,除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。应该理解的是,本发明中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。
图1为一示例中提供的半导体工艺设备的示意图,优选地,该半导体工艺设备可以为PVD设备,用于进行PVD工艺。如图1所示,该半导体工艺设备包括:主腔室部4、遮蔽腔室部6、安装部3和靶材1,其中,遮蔽腔室部6位于主腔室部4的一侧,安装部3位于主腔室部4的顶部,安装部3用于安装工艺组件5,工艺组件5上具有镂空窗口。靶材1位于安装部3顶部,主腔室部4、遮蔽腔室部6、安装部3和靶材1组成一封闭的腔室,该封闭的腔室与真空泵连接,可以使腔室内部达到真空环境。基座18设置在主腔室部4内,用于支撑晶圆,并可以进行升降运动。基座18例如为静电卡盘,用于采用吸附的方式固定晶圆。多个支撑针19均穿设于基座18中,升降机构30用于带动多个支撑针19进行升降运动。托盘20用于承载遮蔽盘10,其中,托盘20的上表面上设置有圆锥形凸起11,遮蔽盘10的底部设置有圆锥形凹槽,遮蔽盘10放置在托盘20上时,遮蔽盘10和托盘20通过圆锥形凸起11 和圆锥形凹槽的配合进行定位。托盘20通过磁流体轴承13连接到旋转驱动装置,从而在该旋转驱动装置的驱动作用下旋转。旋转驱动装置例如可以包括:电机16、减速机15和联轴器14。
在进行Burn In工艺时,遮蔽盘10放置在托盘20上,二者通过托盘20上的圆锥形凸起11和遮蔽盘10上的圆锥形凹槽进行定位。托盘20在旋转驱动装置的驱动下带动遮蔽盘10旋转,并转动至主腔室部4中,此时,支撑针19上升,从而将遮蔽盘10顶起,使遮蔽盘10与托盘20分离;之后,托盘20在旋转驱动机构的驱动下旋转回遮蔽腔室部6中。然后,基座18上升,并在上升过程中托起遮蔽盘10,使遮蔽盘10与支撑针19分离;当基座18带动遮蔽盘10上升至工艺位(该工艺位对应于工艺组件5的镂空窗口处)时,可以进行Burn In工艺。Burn In工艺完成后,基座18下降,在此下降过程中,支撑针19将基座18上的遮蔽盘10顶起,使遮蔽盘10与基座18分离;之后,旋转驱动装置带动托盘20旋转至遮蔽盘10下方且位于基座18上方的位置;之后,支撑针19下降,在此下降过程中,遮蔽盘10下落在托盘20上,托盘20再旋转回遮蔽腔室部6中。
当托盘20旋转回遮蔽腔室部6时,可以通过光学传感器检测托盘20是否旋转到位。
在图1所示的半导体工艺设备中,虽然遮蔽盘10与托盘20能够通过圆锥形凸起11和圆锥形凹槽的配合进行定位,但是,圆锥形凸起11和圆锥形凹槽的定位作用只适用于遮蔽盘10在托盘20上的偏移量较小的情况,当偏移量较大时,圆锥形凸起11和圆锥形凹槽将无法再起到定位作用。另外,采用光学传感器来检测托盘20是否旋转到位,光线容易受到零件产生的漫反射影响或受到零件震动的影响,从而造成检测错误。
为了至少解决上述技术问题之一,本发明实施例提供了一种半导体工艺设备中的遮蔽装置,该遮蔽装置用于遮蔽半导体工艺设备的工艺腔室中的基 座,该基座用于承载晶圆。图2为本发明的一些实施例中提供的遮蔽装置的示意图,如图2所示,遮蔽装置包括:遮蔽盘10和用于承载该遮蔽盘10的托盘20。其中,遮蔽盘10包括:遮蔽盘本体10a和设置在该遮蔽盘本体10a上的突出部10b,该突出部10b位于遮蔽盘本体10a朝向托盘20的一侧,即,位于遮蔽盘10底部。托盘20上设置有多个校正机构40,多个校正机构40沿托盘20的周向分布,多个校正机构40用于在遮蔽盘10下落至托盘20的过程中,在遮蔽盘10的重力作用下推动突出部10b移动至托盘20的上表面上的目标位置。该目标位置即为托盘20的轴线与遮蔽盘10(或者突出部10b)的轴线重合的位置,即,实现托盘20与遮蔽盘10的对中。
在本发明实施例中,遮蔽盘10上设置有突出部10b,托盘20上设置有沿其周向分布的多个校正结构,多个校正机构40能够在遮蔽盘10下落至托盘20的过程中,在遮蔽盘10的重力作用下推动突出部10b移动至托盘20的上表面上的目标位置,也就是说,在遮蔽盘10下降至托盘20的上表面上的整个过程中,当遮蔽盘10底部的突出部10b下降至与多个校正结构相接触的位置时,遮蔽盘10的重力可以作为驱动力施加于各个校正结构,驱使各个校正结构推动突出部10b移动,在此移动过程中,由于多个校正结构是沿托盘20的周向分布的,其通过共同作用可以自动将突出部10b推动至多个校正结构所在圆周的中心位置处,即,能够自动将突出部10b推动至使托盘20的轴线与遮蔽盘10(或者突出部10b)的轴线重合的上述目标位置,从而可以对突出部10b在托盘20上的位置进行校正,也即对遮蔽盘10的位置进行自校正,从而提高了遮蔽盘10与托盘20对位的准确性。
此外,由于多个校正结构沿托盘20的周向分布,这使得只要遮蔽盘10在托盘20上的偏移量没有超出太多,就能够保证突出部10b在下落过程中接触到各个校正结构,从而可以避免现有技术中圆锥形凸起11和圆锥形凹槽因遮蔽盘偏移量较大无法配合而导致的定位作用失效的问题,进而可以适用于 遮蔽盘10在托盘20上的偏移量较大的情况。
下面结合附图对本发明实施例中的遮蔽装置进行具体介绍。
在一些可选的实施例中,校正机构40的数量可以为6个,或者为其他数量。多个校正机构40沿托盘20的周向均匀分布。如图2所示,托盘20上设置有多个第一安装孔V1,多个校正机构40一一对应地安装于多个第一安装孔V1中。图3为本发明的一些实施例中提供的校正机构的剖视图,图4为本发明的一些实施例中提供的校正机构的俯视图,如图3和图4所示,每个校正机构40均包括校正组件41和弹性件43,其中,校正组件41可转动地连接在第一安装孔V1的侧壁上,且位于远离托盘20中心的一侧;弹性件43的第一端与校正组件41连接,弹性件43的第二端与第一安装孔V1的侧壁连接,第一安装孔V1用于向校正组件41施加弹性作用力,以使校正组件41在没有外力作用时,位于抵靠在第一安装孔V1的侧壁上的第一位置(如图3所在位置)处;并且,校正组件41的一部分在位于上述第一位置处时高于托盘20的上表面,以使得突出部10b在下落过程中能够接触到各个校正结构。
校正组件41被设置为能够在遮蔽盘10的重力作用下,自上述第一位置朝靠近托盘20中心的一侧转动,并在转动过程中推动突出部10b移动至上述目标位置。需要说明的是,遮蔽盘10的重力作用的大小应满足使校正组件41能够克服弹性件43向校正组件41施加的弹性作用力朝靠近托盘20中心的一侧转动。
在遮蔽盘10下降至托盘20的上表面上的整个过程中,当遮蔽盘10底部的突出部10b下降至与多个校正组件41相接触的位置时,遮蔽盘10的重力可以作为驱动力施加于各个校正组件41,驱使各个校正组件41朝靠近托盘20中心的一侧转动,同时推动突出部10b移动,在此移动过程中,由于多个校正组件41均是朝靠近托盘20中心的一侧转动,其通过共同作用可以自 动将突出部10b推动至上述目标位置。当遮蔽盘10下降至托盘20的上表面上之后,在遮蔽盘10的重力作用下,多个校正组件41的整个部分完全位于第一安装孔V1中,而不会高于托盘20的上表面,以保证突出部10b的底部能够与托盘20的上表面相贴合。此外,在遮蔽盘10自托盘20移开之后,在上述弹性件43的弹力作用下,可以使校正组件41复位至上述第一位置处。
上述校正组件41的结构可以有多种,例如,如图3和图4所示,校正组件41包括:校正件41a和支撑件41b,校正件41a的第一端和支撑件41b的第一端连接,且连接处通过转轴42与第一安装孔V1的侧壁连接,支撑件41b的第二端位于校正件41a的第二端的靠近托盘20中心的一侧,用于与突出部10b的底面接触,以在遮蔽盘10下落至托盘20的过程中,支撑件41b的第二端能够在遮蔽盘10的重力作用下绕转轴42朝靠近托盘20中心的一侧转动,并带动校正件41a绕转轴42朝靠近托盘20中心的一侧转动,校正件41a的第二端用于在支撑件41b的带动下朝靠近托盘20中心的一侧转动,并在转动过程中与突出部10b的侧面接触,并推动突出部10b。弹性件43的第一端与校正件41a和支撑件41b中的一者连接。
在一些可选的实施例中,校正件41a和支撑件41b均为板状弯折结构,具体地,支撑件41b的第二端能够弯折延伸至容易与突出部10b的底面接触的位置处;校正件41a的第二端能够弯折延伸至容易与突出部10b的侧面接触的位置处,因此,这种板状弯折结构便于校正件41a和支撑件41b实现各自的功能。当然,校正件41a和支撑件41b在实现各自功能的前提下,二者也可以采用其他任意形状,例如,弧形,本发明实施例对此没有特别的限制。
在一些可选的实施例中,校正件41a和支撑件41b可以一体成型设置,或者也可以采用焊接等方式固定连接。另外,校正件41a和支撑件41b可以与转轴42转动连接,转轴42与第一安装孔V1的侧壁固定连接,或者校正件41a和支撑件41b也可以与转轴42固定连接,转轴42与第一安装孔V1 的侧壁转动连接。
弹性件43的第一端与校正件41a或支撑件41b连接,第二端与第一安装孔V1的侧壁连接,弹性件43用于在遮蔽盘10远离托盘20的过程中,向校正件41a或支撑件41b施加作用力。在一些可选的实施例中,如图3和图4所示,弹性件43可以为扭转弹簧,该扭转弹簧套设在转轴42上,且扭转弹簧的第一端头与校正件41a和支撑件41b中的一者连接,扭转弹簧的第二端头与第一安装孔V1的侧壁连接。
当遮蔽盘10远离托盘20时,在上述扭转弹簧的弹力作用下,支撑件41b的第二端和校正件41a的第二端均从第一安装孔V1中露出,并凸出于托盘20的上表面,此时校正件41a处于打开状态(即,校正件41a抵靠在第一安装孔V1的远离托盘20中心的侧壁上,校正件41a的第二端和支撑件41b的第二端之间的开口朝上)。当遮蔽盘10下落而压在支撑件41b上时,支撑件41b和校正件41a绕转轴42转动,进而使校正件41a的第二端朝向突出部10b的侧面转动。
在一些可选的实施例中,如图3所示,第一安装孔V1的侧壁上形成有限位部20a,校正件41a在没有外力作用时,在弹性件43的作用下抵靠在限位部20a上;该限位部20a为在第一安装孔V1的侧壁上,且位于远离托盘20中心的一侧形成的斜面,第一安装孔V1在该斜面处的直径由下而上递增。这样,可以使校正件41a在抵靠在该斜面上时能够处于上述打开状态。
图5为本发明的一些实施例中提供的校正机构和遮蔽盘的局部剖视图,如图5所示,在一些可选的实施例中,突出部10b的侧面设置有弧形的内凹部10s,这样,校正件41a的第二端在与突出部10b的侧面接触时,可以伸入该内凹部10s中,从而可以通过使校正件41a的第二端与内凹部10s相配合,来保证校正件41a在转动的过程中始终与突出部10b保持接触,换句话说,多个校正结构40中的校正件41a当均与内凹部10s相配合时,可以夹持 住突出部10b,使之能够随校正件41a的转动而移动。
为了使得校正件41a的第二端能够顺利进入突出部10b侧面的内凹部10s中,如图4所示,校正件41a的第二端设置有第一辊轮44,该第一辊轮44用于与突出部10b的底面滚动接触,这样可以避免因校正件41a的第二端与突出部10b的底面之间的摩擦力过大而阻碍二者之间的相对移动以及可能产生的磨损。第一辊轮44的设置方式例如为:校正件41a的第二端设置有第一转轴46,第一辊轮44可转动地设置在第一转轴46上,可选的,第一辊轮44与第一转轴46之间设置有轴套,以防止第一辊轮44长时间运转后发生磨损。另外,支撑件41b的第二端设置有第二辊轮45,该第二辊轮45用于与突出部10b的侧面滚动接触,这样可以避免因支撑件41b的第二端与突出部10b的侧面之间的摩擦力过大而阻碍二者之间的相对移动以及可能产生的磨损,从而可以保证校正件41a能够推动突出部10b移动。第二辊轮45的设置方式例如为:支撑件41b的第二端设置有第二转轴47,第二辊轮45设置在第二转轴47上,可选的,第二辊轮45与第二转轴47之间设置有轴套,以防止第二辊轮45长时间运转后发生磨损。
在一些可选的实施例中,如图5所示,突出部10b的轴向厚度D可以为第一辊轮44的半径R1的2.5倍~4倍,例如3倍。和/或,内凹部10s的半径R2可以为第一辊轮44的半径R1的1.5倍~2倍,这样既可以使第一辊轮44能够更容易地进入内凹部10s中,又可以使校正件41a的第二端与内凹部10s之间的配合能够保证校正件41a在转动的过程中始终与突出部10b保持接触。
在一些可选的实施例中,如图5所示,突出部10b的侧面还设置有外凸部10s1,该外凸部10s1与内凹部10s连接,并位于内凹部10s远离遮蔽盘本体10a的一侧,在外凸部10s1与内凹部10s之间以及在外凸部10s1与突出部10b的底面之间均形成有平滑过渡的圆角10c,从而可以使第一辊轮44能够顺滑地转动至内凹部10s中。此外,借助外凸部10s1,可以起到将校正件 41a的第二端限制在内凹部10s中的作用,从而可以进一步保证校正件41a在转动的过程中始终与突出部10b保持接触。
图6为本发明的一些实施例中提供的多个校正机构推动突出部的过程示意图,其中,图6中的(a)图为遮蔽盘10与校正结构40刚接触时的示意图,图6中的(b)图为遮蔽盘10下落在托盘20上时的示意图。如图6中的(a)图所示,当遮蔽盘10下落但未接触到支撑件41b的第二端上的第二辊轮45时,校正件41a在弹性件43的弹力作用下处于打开状态,遮蔽盘10继续下落,其突出部10b的底面首先会接触到第二辊轮45,由于遮蔽盘10的重力远大于弹性件43的弹力,遮蔽盘10会克服弹性件43的弹力继续下压第二辊轮45,从而使校正件41a和支撑件41b同步绕转轴42转动,此时第一辊轮44和第二辊轮45的运动方向如图6(a)中的箭头所示。然后,遮蔽盘10继续下压第二辊轮45,第一辊轮44进入突出部10b侧面的弧形内凹部10s内,以推动突出部10b移动,直至遮蔽盘10落在托盘20上,如图6中的(b)图所示,此时,经多个校正机构40的校正,遮蔽盘10移动至上述目标位置(即,遮蔽盘10的中心与托盘20的中心重合)。
图7为本发明的一些实施例中提供的多个校正机构对遮蔽盘的校正原理示意图,如图7所示,若遮蔽盘10下落时向左偏移(如图7中遮蔽盘10的中心O偏离目标位置O’,这种情况下,当遮蔽盘10下降接触至校正机构40的第二辊轮45时,左侧校正机构40的第一辊轮44先进入内凹部10s中,而右侧校正机构40的第一辊轮44并没有进入内凹部10s中;之后,遮蔽盘10继续下降,左侧校正机构40的第一辊轮44会在朝托盘20中心转动的过程中,向右推动遮蔽盘10的突出部10b,而右侧校正机构40的第一辊轮44会在朝托盘20中心转动的过程中,逐渐进入弧形内凹部10s中。由此左、右两侧的校正机构40在遮蔽盘10的重力作用下,会在遮蔽盘10下落在托盘20上时,将遮蔽盘10校正至托盘20的中心位置。校正机构40的数量为6个或更多个 时,可以对遮蔽盘10在6个方向或更多方向上的偏移进行校正。
在一些可选的实施例中,如图2所示,托盘20上,且靠近中心的位置处设置有第二安装孔,遮蔽装置还包括:第一压入式传感器50,该第一压入式传感器50设置在上述第二安装孔中,第一压入式传感器50的探头在自然状态下突出于托盘20的上表面;第一压入式传感器50用于通过检测探头被遮蔽盘10压入上述第一压入式传感器的程度,来检测遮蔽盘10的位置状态。在遮蔽盘10下落至托盘20上之后,第一压入式传感器50的探头的至少一部分被压入第一压入式传感器50,以触发第一压入式传感器50。
例如,如图2所示,第一压入式传感器50可以包括第一本体51以及与第一本体51活动连接的第一探头52,第一本体51固定在上述第二安装孔中,第一压入式传感器50的第一探头52在自然状态下突出于托盘20的上表面。遮蔽盘10下落至托盘20上之后,在遮蔽盘10的重力作用下,第一探头52受到遮蔽盘10的挤压,其至少一部分被压入第一本体51中。其中,当第一探头52的压入量达到第一压入量时,第一压入式传感器50产生触发信号。其中,第一压入量可以根据第一压入式传感器50的触发位置决定,例如,第一压入量可以为1.5mm。
在本发明实施例中,当遮蔽盘10下落在托盘20上时,第一压入式传感器50的第一探头52被压入一定量,且压入量达到第一压入量时,第一压入式传感器50产生触发信号,表明遮蔽盘10落入到位。当遮蔽盘10底部未接触到托盘20或遮蔽盘10发生倾斜时,第一探头52未受到挤压或压入量未达到第一压入量,此时,第一压入式传感器50不会产生触发信号。第一压入式传感器50通过检测第一探头52的压入量,可以准确地检测出遮蔽盘10是否落在托盘20上,或者是否发生倾斜。
作为另一个技术方案,本发明实施例还提供了一种半导体工艺设备,优选地,其可以为PVD设备,用于进行PVD工艺。图8为本发明的一些实施 例中提供的半导体工艺设备的示意图,如图8所示,该半导体工艺设备包括:工艺腔室、驱动装置和上述遮蔽装置。其中,遮蔽装置位于工艺腔室内。工艺腔室包括:主腔室部4、遮蔽腔室部6、安装部3和靶材1,遮蔽腔室部6位于主腔室部4的一侧,安装部3位于主腔室部4的顶部,安装部3用于安装工艺组件5,工艺组件5上具有镂空窗口。靶材1位于安装部3顶部,主腔室部4、遮蔽腔室部6、安装部3和靶材1组成一封闭的腔室,该封闭的腔室与真空泵连接,可以使腔室内部达到真空环境。基座18设置在主腔室部4内,用于支撑晶圆,并可以进行升降运动。基座18例如为静电卡盘,用于采用吸附的方式固定晶圆。多个支撑针19均穿设于基座18中,升降机构30用于带动多个支撑针19进行升降运动。旋转驱动装置与遮蔽装置的托盘20连接,用于驱动托盘20转动,以使托盘20能够带动遮蔽盘10在主腔室部4和遮蔽腔室部6之间移动。
图9为本发明的一些实施例提供的遮蔽腔室部的俯视图,如图8和图9所示,托盘20上设置有多个(例如6个)校正机构40,多个校正机构40沿托盘20的周向均匀分布,当遮蔽盘10下落在托盘20上时,多个校正机构40位于遮蔽盘10的突出部的边缘处。
在一些可选的实施例中,托盘20可以包括承托部21和连接臂22,承托部21用于承载遮蔽盘10,承托部21可以通过连接臂22与旋转驱动装置连接。其中,旋转驱动装置可以包括:电机16、减速机15和联轴器14。减速机15连接在电机16与联轴器14之间,承托部21通过连接臂22与联轴器14连接,其中,连接臂22可以通过磁流体轴承13连接到联轴器14,磁流体轴承13可以保证工艺腔室在托盘20运动过程中保持真空状态。磁流体轴承13还可以设置安装通道,信号线71设置在安装通道中,用于将托盘20上的第一压入式传感器50与外接的处理器电连接,处理器可以根据第一压入式传感器50所产生的触发信号判断出遮蔽盘10是否已下落在托盘20上或者是否 发生倾斜。
图8中的PVD设备进行Burn In工艺的过程与上文描述的图1中的PVD设备类似,这里不再赘述。
如图9所示,遮蔽腔室部6的侧壁上设置有第二压入式传感器90,该第二压入式传感器90的探头在自然状态下朝向连接臂22突出于遮蔽腔室部6的侧壁,第二压入式传感器90用于通过检测探头被连接臂22压入第二压入式传感器90的程度,来检测托盘20的位置状态。例如,第二压入式传感器90包括:第二主体部90a以及与第二主体部90a连接的第二探头90b,第二主体部90a设置在遮蔽腔室部6的侧壁上,第二探头90b在自然状态下朝向连接臂22突出于遮蔽腔室部6的侧壁,并且,当遮蔽装置移动至遮蔽腔室部6中的指定位置时,第二探头90b的至少一部分被连接臂22压入第二主体部90a。其中,第二主体部90a可以设置在遮蔽腔室部6的侧壁外侧,且在遮蔽腔室部6的侧壁上设置有通孔,第二压入式传感器90的第二探头90b经由该通孔而伸入遮蔽腔室部6中,并且第二压入式传感器90通过波纹管与遮蔽腔室部6的侧壁密封连接,用以密封上述通孔。
如上文所述,在进行Burn In工艺时,托盘20的承托部21将遮蔽盘10送入主腔室部4中后,会转回遮蔽腔室部6中;另外,在完成Burn In工艺后,承载有遮蔽盘10的承托部21也会转回遮蔽腔室部6中。当承托部21从主腔室部4转回遮蔽腔室部6中时,连接臂22挤压第二压入式传感器90的第二探头90b,从而将第二探头90b的至少一部分压入第二主体部90a中,当第二探头90b的压入量达到第二压入量时,第二压入式传感器90产生触发信号,表示托盘20已到达指定位置。与光学传感器进行检测的方式相比,利用第二压入式传感器90进行检测的方式更加准确。
需要说明的是,上述第二压入量可以根据实际需要来进行设定,例如,第二压入量可以为1.5mm。
综上所述,本发明实施例提供的遮蔽装置和半导体工艺设备中,遮蔽盘上设置有突出部,托盘上设置有沿其周向分布的多个校正结构,多个校正机构能够在遮蔽盘下落至托盘的过程中,在遮蔽盘的重力作用下推动突出部移动至托盘的上表面上的目标位置,从而可以对突出部在托盘上的位置进行校正,也即,对遮蔽盘的位置进行自校正,从而提高了遮蔽盘与托盘对位的准确性。此外,由于多个校正结构沿托盘的周向分布,这样可以避免现有技术中圆锥形凸起和圆锥形凹槽因遮蔽盘偏移量较大无法配合而导致的定位作用失效的问题,从而可以适用于遮蔽盘在托盘上的偏移量较大的情况。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (12)

  1. 一种半导体工艺设备中的遮蔽装置,用于遮蔽设置于所述半导体工艺设备的工艺腔室中的基座,所述基座用于承载晶圆,其特征在于,所述遮蔽装置包括:遮蔽盘和用于承载所述遮蔽盘的托盘,其中,
    所述遮蔽盘包括:遮蔽盘本体和设置在所述遮蔽盘本体上的突出部,所述突出部位于所述遮蔽盘本体朝向所述托盘的一侧;
    所述托盘上设置有多个校正机构,多个所述校正机构沿所述托盘的周向分布,多个所述校正机构用于在所述遮蔽盘下落至所述托盘的过程中,在所述遮蔽盘的重力作用下推动所述突出部移动至所述托盘的上表面上的目标位置。
  2. 根据权利要求1所述的遮蔽装置,其特征在于,所述托盘上设置有多个第一安装孔,多个所述校正机构一一对应地安装于多个所述第一安装孔中;
    每个所述校正机构均包括校正组件和弹性件,其中,所述校正组件可转动地连接在所述第一安装孔的侧壁上,且位于远离所述托盘中心的一侧;所述弹性件的第一端与所述校正组件连接,所述弹性件的第二端与所述第一安装孔的侧壁连接,所述弹性件用于向所述校正组件施加弹性作用力,以使所述校正组件在没有外力作用时,位于抵靠在所述第一安装孔的侧壁上的第一位置处;并且,所述校正组件的一部分在位于所述第一位置处时高于所述托盘的上表面;
    所述校正组件被设置为能够在所述遮蔽盘的重力作用下,自所述第一位置朝靠近所述托盘中心的一侧转动,并在转动过程中推动所述突出部移动至所述目标位置。
  3. 根据权利要求2所述的遮蔽装置,其特征在于,每个所述校正组件 均包括:校正件和支撑件,所述校正件的第一端和所述支撑件的第一端连接,且连接处通过转轴与所述第一安装孔的侧壁连接,所述支撑件的第二端位于所述校正件的第二端的靠近所述托盘中心的一侧,用于与所述突出部的底面接触,以在所述遮蔽盘下落至所述托盘的过程中,所述支撑件的第二端能够在所述遮蔽盘的重力作用下绕所述转轴朝靠近所述托盘中心的一侧转动,并带动所述校正件绕所述转轴转动;
    所述校正件的第二端用于在所述支撑件的带动下转动,并在转动过程中与所述突出部的侧面接触,并推动所述突出部;
    所述弹性件的所述第一端与所述校正件和支撑件中的一者连接。
  4. 根据权利要求3所述的遮蔽装置,其特征在于,所述弹性件为扭转弹簧,所述扭转弹簧套设在所述转轴上,且所述扭转弹簧的第一端头与所述校正件和支撑件中的一者连接,所述扭转弹簧的第二端头与所述第一安装孔的侧壁连接。
  5. 根据权利要求3所述的遮蔽装置,其特征在于,所述校正件的第二端设置有第一辊轮,所述第一辊轮用于与所述突出部的底面滚动接触;所述支撑件的第二端设置有第二辊轮;所述第二辊轮用于与所述突出部的侧面滚动接触。
  6. 根据权利要求5所述的遮蔽装置,其特征在于,所述突出部的侧面设置有弧形的内凹部,所述内凹部的半径为所述第一辊轮的半径的1.5倍~2倍;和/或
    所述突出部的轴向厚度为所述第一辊轮的半径的2.5倍~4倍。
  7. 根据权利要求3所述的遮蔽装置,其特征在于,所述校正件和所述支撑件均为板状弯折结构,且二者一体成型设置。
  8. 根据权利要求3所述的遮蔽装置,其特征在于,所述第一安装孔的侧壁上形成有限位部,所述校正件在没有外力作用时,在所述弹性件的弹性作用下抵靠在所述限位部上;所述限位部为在所述第一安装孔的侧壁上,且位于远离所述托盘中心的一侧形成的斜面,所述第一安装孔在所述斜面处的直径由下而上递增。
  9. 根据权利要求1至8中任意一项所述的遮蔽装置,其特征在于,所述托盘上,且靠近中心的位置处设置有第二安装孔;
    所述遮蔽装置还包括第一压入式传感器,所述第一压入式传感器设置在所述第二安装孔中,所述第一压入式传感器的探头在自然状态下突出于所述托盘的上表面;所述第一压入式传感器用于通过检测所述探头被所述遮蔽盘压入所述第一压入式传感器的程度,来检测所述遮蔽盘的位置状态。
  10. 一种半导体工艺设备,其特征在于,包括:工艺腔室、旋转驱动装置和权利要求1至9中任意一项所述的遮蔽装置,所述遮蔽装置位于所述工艺腔室内;
    所述工艺腔室包括:主腔室部以及与所述主腔室部连通的遮蔽腔室部,所述遮蔽腔室部位于所述主腔室部的一侧;其中,所述主腔室部中设置有所述基座;所述旋转驱动装置与所述遮蔽装置的托盘连接,用于驱动所述托盘转动,以使所述托盘能够带动所述遮蔽盘在所述主腔室部和所述遮蔽腔室部之间移动。
  11. 根据权利要求10所述的半导体工艺设备,其特征在于,所述托盘包括承托部和连接臂,所述承托部用于承载所述遮蔽盘,所述承托部通过所述连接臂与所述旋转驱动装置连接,所述遮蔽腔室部的侧壁上设置有第二压入式传感器,所述第二压入式传感器的探头在自然状态下朝向所述连接臂突 出于所述遮蔽腔室部的侧壁,所述第二压入式传感器用于通过检测所述探头被所述连接臂压入所述第二压入式传感器的程度,来检测所述托盘的位置状态。
  12. 根据权利要求11所述的半导体工艺设备,其特征在于,所述第二压入式传感器设置在所述遮蔽腔室部的侧壁外侧,且在所述遮蔽腔室部的侧壁上设置有通孔,所述第二压入式传感器的探头经由所述通孔而伸入所述遮蔽腔室部中,并且所述第二压入式传感器通过波纹管与所述遮蔽腔室部的侧壁密封连接,用以密封所述通孔。
PCT/CN2022/071373 2021-09-24 2022-01-11 遮蔽装置和半导体工艺设备 WO2023045190A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111123228.6A CN113897588B (zh) 2021-09-24 2021-09-24 遮蔽装置和半导体工艺设备
CN202111123228.6 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023045190A1 true WO2023045190A1 (zh) 2023-03-30

Family

ID=79029176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071373 WO2023045190A1 (zh) 2021-09-24 2022-01-11 遮蔽装置和半导体工艺设备

Country Status (3)

Country Link
CN (1) CN113897588B (zh)
TW (1) TWI821858B (zh)
WO (1) WO2023045190A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116815140A (zh) * 2023-06-21 2023-09-29 北京北方华创微电子装备有限公司 半导体工艺设备及其工艺腔室

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113897588B (zh) * 2021-09-24 2023-09-08 北京北方华创微电子装备有限公司 遮蔽装置和半导体工艺设备
CN115074692B (zh) * 2022-06-24 2023-10-13 北京北方华创微电子装备有限公司 半导体工艺设备及其工艺腔室

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074816A (ja) * 1996-08-29 1998-03-17 Hitachi Techno Eng Co Ltd ウェファ搬送装置
US20080099970A1 (en) * 2006-10-27 2008-05-01 Daihen Corporation Work holding mechanism
JP2010275574A (ja) * 2009-05-27 2010-12-09 Panasonic Corp スパッタリング装置および半導体装置製造方法
CN102945788A (zh) * 2011-08-16 2013-02-27 北京北方微电子基地设备工艺研究中心有限责任公司 遮蔽装置及具有其的半导体处理设备
CN103031514A (zh) * 2011-09-30 2013-04-10 北京北方微电子基地设备工艺研究中心有限责任公司 遮蔽装置、具有其的pvd设备及pvd设备的控制方法
CN111725129A (zh) * 2020-06-29 2020-09-29 北京北方华创微电子装备有限公司 晶圆承载装置及半导体工艺设备
CN113897588A (zh) * 2021-09-24 2022-01-07 北京北方华创微电子装备有限公司 遮蔽装置和半导体工艺设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950329B1 (ko) * 2008-04-18 2010-03-31 (주)테크윙 테스트핸들러용 테스트트레이 위치교정기 및 언로딩장치
US10851453B2 (en) * 2018-04-11 2020-12-01 Applied Materials, Inc. Methods and apparatus for shutter disk assembly detection
CN112501581B (zh) * 2020-11-12 2022-02-22 北京北方华创微电子装备有限公司 半导体加工设备中的遮蔽盘承载装置及半导体加工设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074816A (ja) * 1996-08-29 1998-03-17 Hitachi Techno Eng Co Ltd ウェファ搬送装置
US20080099970A1 (en) * 2006-10-27 2008-05-01 Daihen Corporation Work holding mechanism
JP2010275574A (ja) * 2009-05-27 2010-12-09 Panasonic Corp スパッタリング装置および半導体装置製造方法
CN102945788A (zh) * 2011-08-16 2013-02-27 北京北方微电子基地设备工艺研究中心有限责任公司 遮蔽装置及具有其的半导体处理设备
CN103031514A (zh) * 2011-09-30 2013-04-10 北京北方微电子基地设备工艺研究中心有限责任公司 遮蔽装置、具有其的pvd设备及pvd设备的控制方法
CN111725129A (zh) * 2020-06-29 2020-09-29 北京北方华创微电子装备有限公司 晶圆承载装置及半导体工艺设备
CN113897588A (zh) * 2021-09-24 2022-01-07 北京北方华创微电子装备有限公司 遮蔽装置和半导体工艺设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116815140A (zh) * 2023-06-21 2023-09-29 北京北方华创微电子装备有限公司 半导体工艺设备及其工艺腔室
CN116815140B (zh) * 2023-06-21 2024-03-26 北京北方华创微电子装备有限公司 半导体工艺设备及其工艺腔室

Also Published As

Publication number Publication date
CN113897588A (zh) 2022-01-07
TWI821858B (zh) 2023-11-11
TW202314936A (zh) 2023-04-01
CN113897588B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
WO2023045190A1 (zh) 遮蔽装置和半导体工艺设备
US7723709B2 (en) Substrate holding apparatus, and inspection or processing apparatus
US9564348B2 (en) Shutter blade and robot blade with CTE compensation
JP3638521B2 (ja) 粒子発生の少ないウエハホルダを備えた真空処理装置
WO2017056643A1 (ja) ウエハ検査方法及びウエハ検査装置
US20120103793A1 (en) Vacuum film-forming apparatus and position detection method for shutter plate of vacuum film-forming apparatus
KR100304998B1 (ko) 웨이퍼부착면및리프팅수단
JPH0783856B2 (ja) 基板支持装置
JP2003273187A (ja) 薄板材の移載方法及び装置
US4669076A (en) Optical disk drive apparatus with means for accurate disk positioning
CN109659265B (zh) 基板对准装置、基板处理装置和基板处理方法
JP4616812B2 (ja) 位置決め装置、ステージおよび検査または処理の装置
JP2013239594A (ja) 基板設置補助装置
JP7131334B2 (ja) 基板支持装置、基板搬送ロボットおよびアライナ装置
JP7473748B2 (ja) ウェーハ回転装置、ウェーハ検査装置及びウェーハの検査方法
KR100574919B1 (ko) 반도체 장치 제조용 이온 주입 장비의 디스크 사이트 어셈블리및 이를 이용한 웨이퍼의 리프팅 보정방법
CN114959609B (zh) 半导体工艺腔室及其遮挡盘监测方法
JPH0685035A (ja) 円盤状部品の搬送方法及びその装置
CN208637404U (zh) 静电吸附装置
KR100542726B1 (ko) 웨이퍼 베이크 장치
TW202314949A (zh) 處理擋板裝置
KR20060028872A (ko) 웨이퍼 센터링 가이드장치
TW202347597A (zh) 基板處理裝置及使用其的基板處理方法
JP2002307343A (ja) 薄板材の移載方法および装置
TW202122158A (zh) 塗佈系統及其校正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE