WO2023043238A1 - 부유 세포용 바이오리액터 - Google Patents

부유 세포용 바이오리액터 Download PDF

Info

Publication number
WO2023043238A1
WO2023043238A1 PCT/KR2022/013820 KR2022013820W WO2023043238A1 WO 2023043238 A1 WO2023043238 A1 WO 2023043238A1 KR 2022013820 W KR2022013820 W KR 2022013820W WO 2023043238 A1 WO2023043238 A1 WO 2023043238A1
Authority
WO
WIPO (PCT)
Prior art keywords
bioreactor
inner space
supports
floating cells
medium
Prior art date
Application number
PCT/KR2022/013820
Other languages
English (en)
French (fr)
Inventor
장선호
한경구
서인용
이승훈
송재경
구송희
박희성
노형탁
김지영
이수연
조승민
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Publication of WO2023043238A1 publication Critical patent/WO2023043238A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/12Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • C12M3/06Tissue, human, animal or plant cell, or virus culture apparatus with filtration, ultrafiltration, inverse osmosis or dialysis means

Definitions

  • the present invention relates to a bioreactor for suspended cells.
  • Bioprocess refers to the process of producing desired therapeutic agents using living cells in the bio field.
  • Antibodies, stem cells, and immune cells are produced through cell culture and used to produce biopharmaceuticals, vaccines, and cell therapies.
  • Cells are classified into adherent cells that need to adhere to the surface substrate and floating cells that proliferate without adherence to the substrate surface according to their ability to adhere.
  • adherent cells are cultured while attached to a support that serves as a surface substrate, but floating cells are not cultured while attached to a support, but adhere to the surface of the support and then fall off.
  • the present invention has been devised in view of the above points, and an object of the present invention is to provide a bioreactor for floating cells that can promote the movement of floating cells floating in a culture medium.
  • Another object of the present invention is to provide a bioreactor for floating cells capable of culturing a large amount of floating cells even in a small size.
  • the frame portion a drive unit mounted on the frame unit; and a cell culture unit comprising a housing having an inner space filled with a medium containing floating cells, and a plurality of supports disposed in the inner space in multiple stages at intervals from each other, one end of which is axially coupled to the drive unit.
  • a bioreactor for suspended cells is provided.
  • the cell culture unit may swing through the drive of the driving unit so that the medium can flow in a space between two adjacent supporters.
  • the cell culture unit includes a gas inlet formed through a predetermined area in the housing so that gas can flow into the inner space from the outside, and the gas is prevented from leaking to the outside of the medium filled in the inner space.
  • a porous member covering the gas inlet may be further included to allow inflow from the outside into the inner space.
  • the porous member may be a water-repellent membrane.
  • the support may be a plate-shaped member having a predetermined area
  • the inner space may be divided into a plurality of culture spaces through a plurality of supports arranged in multiple stages at intervals along one direction of the housing, wherein the A medium containing floating cells may be stored in the inner space to fill each of the plurality of culture spaces.
  • the support may include a plate-shaped support member having a predetermined area and a pair of nanofiber membranes attached to both surfaces of the support member via an adhesive layer, wherein the nanofiber membrane is motif-coated. It may be a plate-shaped nanofibrous membrane.
  • the support body may further include a plurality of passage holes formed through the support member so that gas introduced into the inner space from the outside can pass smoothly.
  • the plurality of supports may maintain a state of being spaced apart at predetermined intervals via a spacer disposed between the two supports.
  • the medium may further include magnetic particles coated with a peptide motif.
  • cell-to-cell interactions and peptide signals can occur more frequently by promoting the movement of floating cells in a medium, thereby promoting the growth of floating cells.
  • FIG. 1 is a schematic diagram showing a bioreactor for floating cells according to an embodiment of the present invention
  • FIG. 2 is a diagram schematically showing a connection relationship between a drive unit and a cell culture unit in a bioreactor for floating cells according to an embodiment of the present invention
  • FIG. 3 is an operating state diagram of FIG. 1;
  • Figure 4 is a view separating the main components of the cell culture unit that can be applied to Figure 1;
  • Figure 5 is a view taken and separated from the support assembly in Figure 4.
  • FIG. 6 is a cross-sectional view in the A-A direction of FIG. 1;
  • FIG. 7 is a view showing one type of support that can be used in a bioreactor for floating cells according to an embodiment of the present invention.
  • FIG. 8 is a view showing another type of support that can be used in the bioreactor for floating cells according to an embodiment of the present invention.
  • the bioreactor 100 for floating cells may include a plurality of supports 136 and 136' for cell culture, and the plurality of supports 136 and 136' are arranged in the inner space S. It can be arranged in multiple stages at intervals of
  • the medium supplied from the outside is a culture space (In addition to S1), the plurality of supports 136 and 136' may be filled in the inner space S so that all of them may be submerged.
  • the medium may be a medium containing floating cells to be cultured, and the medium may further include magnetic particles coated with a peptide motif together with the floating cells as shown in FIG. 6 .
  • the floating cells included in the medium can repeat the process of falling after being in contact with the supports 136 and 136' while floating in the culture space S1 formed between the two supports 136 and 136'.
  • Cells may grow by receiving signals from the supports 136 and 136' while repeating a process of coming into contact with the supports 136 and 136' and then falling off.
  • the bioreactor 100 for floating cells can promote the movement of the floating cells by minimally flowing the medium filled in the culture space S1.
  • the bioreactor 100 for floating cells allows cell-to-cell interactions and peptide signals to occur more frequently without interfering with cell growth due to medium movement. It can promote the growth of suspended cells.
  • the bioreactor 100 for floating cells includes a frame part 110, a driving part 120 and a cell culture part 130 as shown in FIGS. 1 to 3 .
  • the drive unit 120 may be mounted on the frame unit 110, and one side of the cell culture unit 130 may be axially coupled to the drive unit 120.
  • the drive unit 120 is axially coupled to one side of the cell culture unit 130 while being fixed to the frame unit 110.
  • the cell culture unit 130 may swing back and forth through driving of the drive unit 120 .
  • the medium filled in the cell culture unit 130 can flow within the cell culture unit 130 through the reciprocating swing motion of the cell culture unit 130, and the floating cells included in the medium As the movement is promoted by the flow of the medium, it can smoothly contact the supports 136 and 136'.
  • the frame portion 110 includes a plate-shaped bottom plate 112 having a predetermined area and a mounting plate 114 extending from the bottom plate 112 to a predetermined height.
  • a plate-shaped bottom plate 112 having a predetermined area and a mounting plate 114 extending from the bottom plate 112 to a predetermined height.
  • the driving unit 120 may be fixed to the mounting plate 114 via a fixing table 116 fixed to the mounting plate 114 .
  • the drive unit 120 may be a known drive motor in which the rotation shaft 122 reciprocates in both directions when power is applied, and the drive unit 120 controls the rotational speed of the rotation shaft 122. It may include a reducer connected to the motor.
  • the cell culture unit 130 may be axially coupled to the rotational shaft 122 of the driving unit 120 via a power transmission member 135 provided on one side.
  • the drive unit 120 and the cell culture unit 130 coupled to each other can be installed on the mounting plate 114 while being spaced apart from the bottom plate 112 of the frame unit 110 at a predetermined height.
  • the cell culture unit 130 can swing smoothly in both directions by receiving a driving force through the power transmission member 135 when the rotating shaft 122 rotates. .
  • the medium containing the floating cells filled in the cell culture unit 130 can flow through the swinging motion of the cell culture unit 130, and the floating cells included in the medium can flow through the medium. As the movement is promoted by the flow of the support body 136 and 136 ′, it can be smoothly contacted.
  • one side of the cell culture unit 130 may be axially coupled to the drive unit 120 via the power transmission member 135, and may include a plurality of supports 136 and 136' for cell culture.
  • the plurality of supports 136 and 136' may be arranged in multiple stages inside the cell culture unit 130.
  • the cell culture unit 130 may include a housing 131 and a plurality of supports 136 and 136'.
  • the housing 131 may accommodate the plurality of supports 136 and 136' and the medium therein. To this end, the housing 131 may be formed in a box shape having an inner space (S).
  • the housing 131 includes a box-shaped body 131a having an inner space S with an open upper surface, and a cover covering the open top of the body 131a ( 131b) may be included.
  • the housing 131 includes an inlet 132a provided on one side of the body 131a to allow the medium supplied from the outside to flow into the inner space S, and the inner space S. It may include an outlet 132b provided on one side of the body 131a so as to discharge the medium to the outside, and the power transmission member 135 coupled to the rotational shaft 122 of the driving unit 120 It may be provided on one side of the body (131a).
  • the inner space (S) can be filled with a medium supplied from the outside through the inlet 132a, and after cell culture is completed, the medium can be discharged to the outside through the outlet 132b.
  • the body 131a may swing through the driving of the driving unit 120 .
  • inlet 132a and the outlet 132b are shown and described as being separately provided on one side of the body 131a, but the present invention is not limited thereto, and the inlet 132a and the outlet ( 132b) may be integrated into one port.
  • the bioreactor 100 for floating cells includes at least one gas inlet (S) communicating with the internal space (S) so that gas can flow into the medium filled in the internal space (S). 133) may be included.
  • the gas inlet 133 may be formed to pass through the cover 131b of the housing 131 .
  • Gas may be supplied to the inner space (S) of the housing 131 filled with the medium through the gas inlet 133 .
  • the incubator may be a space that provides a culture environment for floating cells included in the medium.
  • the incubator may be a chamber, and the inside of the chamber may be an environment in which temperature and concentration of carbon dioxide are kept constant.
  • the gas may be carbon dioxide gas, but is not limited thereto and may be appropriately changed depending on the cells to be cultured.
  • the incubator may include an air conditioning system for maintaining the internal temperature at a constant temperature, and stably supply gas required for cell culture to the inside of the incubator to reduce the gas concentration inside the incubator to a certain level. It may further include a gas supply means (not shown) for maintaining.
  • the gas existing inside the incubator can flow into the inner space S of the housing 131 through the gas inlet 133. And, the gas introduced into the inner space (S) can be dissolved in the medium filled in the inner space (S), and the medium can be maintained at an appropriate pH required for cell culture through the dissolution of the gas.
  • the medium filled in the inner space (S) can be maintained at an appropriate pH required for cell culture, so that the floating cells included in the medium can be cultured smoothly.
  • the gas inlet 133 may be covered by a plate-shaped porous member 134 having a predetermined area. That is, the porous member 134 may be attached to the cover 131b to cover the gas inlet 133 formed in the cover 131b.
  • the porous member 134 blocks the passage of foreign substances and liquids, while allowing gases such as carbon dioxide to pass through. Through this, the medium filled in the inner space (S) may be smoothly supplied with gas necessary for cell culture through the porous member 134 and the gas inlet 133, while other foreign substances may not be introduced.
  • the medium filled in the inner space (S) may not be contaminated by other foreign substances.
  • the porous member 134 may be a water-repellent nanofiber membrane.
  • the material of the porous member 134 is not limited thereto, and any material that blocks the passage of solid and liquid fluids while allowing gaseous fluids to pass therethrough may be used without limitation.
  • the floating cells included in the medium can repeat the process of floating in the medium and contacting the supports 136 and 136' and falling off after contacting the supports 136 and 136'.
  • signals may be transmitted from the supports 136 and 136' and nutrients may be supplied from the medium to grow.
  • the surface of the supports 136 and 136' may have a surface coated with a peptide having a property of cell proliferation.
  • the surface of the supports 136 and 136' may be coated with a peptide motif having a property of cell proliferation.
  • the supports 136 and 136' may be provided in a plate shape having a predetermined area so as to increase an area to which the floating cells included in the medium can contact, and the plurality of supports 136 and 136' may be provided in the housing ( 131) may be arranged in multiple stages at predetermined intervals in the inner space (S).
  • the inner space (S) can be divided into a plurality of culture spaces (S1) through a plurality of supports (136, 136') arranged in multiple stages at intervals along one direction of the housing 131, and the floating A medium containing cells may be stored in the inner space (S) to fill each of the plurality of culture spaces (S1).
  • the medium filled in each culture space S1 may further include magnetic particles coated with a peptide motif in addition to floating cells.
  • the bioreactor 100 for floating cells can increase the degree of integration of the supports 136 and 136' for cell culture, and each of the plurality of culture spaces S1 has upper and lower sides. Since the plate-shaped supports 136 and 136' are disposed in the cells, the floating cells floating in each culture space S1 can have a wider contact area with the surfaces of the supports 136 and 136'.
  • the bioreactor 100 for floating cells can culture a larger amount of cells through a single cultivation process, and the floating cells floating in the culture space S1 Since they can more smoothly come into contact with the surfaces of the supports 136 and 136', the floating cells can grow more smoothly in each culture space S1 separated from each other, and the cell-to-cell through the magnetic particles included in the medium. - Cell interactions and peptide signals can occur more frequently, which can promote the growth of floating cells.
  • the bioreactor 100 for floating cells since a plurality of supports 136 and 136' can be arranged in multiple stages in one cell culture unit 130, a large amount of cells can be cultured while The overall size of the cell culture unit 130 may be reduced.
  • the entire bioreactor 100 for floating cells according to an embodiment of the present invention is moved. Since it can move, the bioreactor 100 for floating cells according to an embodiment of the present invention can secure mobility and can culture a large amount of cells even in a space such as a small-scale incubator provided in a laboratory or laboratory. there is.
  • the support bodies 136 and 136' may include a nanofiber membrane 136a in which nanofibers are formed into a three-dimensional network structure through electrospinning, and the nanofiber membrane 136a is the amount of the supports 136 and 136'. They may be provided in pairs to form a surface.
  • the supports 136 and 136' have a five-layer structure in which a pair of nanofiber membranes 136a are attached to both sides of the support member 136c via an adhesive layer 136b as shown in FIGS. 7 and 8. can be
  • the support member 136c may be a plate-shaped film member, and may support one surface of the nanofiber membrane 136a. Through this, even if the nanofiber membrane 136a has flexibility and is formed in a plate shape, it can be supported through the support member 136c, thereby preventing bending or deflection. Accordingly, the supports 136 and 136' disposed in the inner space S of the housing 131 can maintain an unfolded state, so that cells can be cultured smoothly.
  • the nanofibrous membrane 136a forming the surface of the scaffolds 136 and 136' is a peptide motif having the property of cell proliferation so that the surface of the scaffolds 136 and 136' can have the property of cell proliferation, as described above.
  • the total number of the plurality of supports 136 and 136' arranged in multiple stages to define the plurality of culture spaces S1 in the inner space S Even if is increased, gas required for cell culture can be smoothly supplied to the medium filled in each of the culture spaces S1 defined by the two supports 136 and 136'.
  • the support 136' may include a plurality of through holes 136e.
  • the plurality of passage holes 136e serve as passages through which the gas introduced into the internal space S from the outside through the gas inlet 133 passes through the support 136' and moves downward. flowability can be improved.
  • the plurality of passage holes 136e may be formed in a portion of the support 136' that does not allow passage of gas.
  • the plurality of passage holes 136e may be formed in the support 136' so as to pass through the adhesive layer 136b and the support member 136c.
  • the gas introduced into the inner space (S) of the housing 131 through the gas inlet 133 can smoothly move downward through the plurality of passage holes 136e formed in the support 136'. there is.
  • the medium filled in each culture space (S1) can be smoothly supplied with gas through the plurality of passage holes (136e) regardless of position.
  • the cell culture unit 130 can smoothly culture a large amount of cells by increasing the degree of integration of the plurality of supports 136 and 136' disposed in the inner space S, enhances assembly, and separates the plurality of supports from each other.
  • the plurality of supports 136 and 136' may be integrated in an assembly form to maintain the dog culture space S1.
  • the plurality of supports 136 and 136' may be implemented as a support assembly P, and the support assembly P may be integrated with the plurality of supports 136 and 136' spaced apart from each other by a predetermined distance. there is.
  • the support assembly P may be configured as a stacked structure in which a plurality of supports 136 and 136 ′ are spaced apart in parallel along the height direction of the housing 131 .
  • the support assembly P may include a plurality of fastening bars 138 having a predetermined length and a plurality of spacers 137 and 137' fastened to the fastening bars 138, and the plurality of supports (136, 136') may be fitted in the fastening bar 138, respectively.
  • the spacers 137 and 137' may be ring-shaped members to be fastened to one fastening bar 138 as shown in FIG. 5, or to be fastened to a plurality of fastening bars 138 at the same time. It may also be a bar-shaped member in which a plurality of fastening holes are formed along the longitudinal direction.
  • the plurality of fastening bars 138 may be spaced apart from each other at predetermined intervals, and the plurality of fastening bars 138 are each fixed to a plate-shaped support plate 139 having both ends having a predetermined area. It can be.
  • the plurality of fastening bars 138 having both ends fixed to the two support plates 139 can maintain a spaced apart state, and the plurality of support bodies 136 and 136' can maintain the two support plates 139 ), and the plurality of supports 136 and 136' can be arranged in multiple stages so that one surface faces each other between the plurality of fastening holes 136d formed through the plurality of fastening bars 138 and corresponding positions. It may be fastened to the fastening bar 138, respectively.
  • the plurality of spacers 137 and 137' may be inserted into the plurality of fastening bars 138, respectively, similarly to the supports 136 and 136', and the plurality of spacers 137 and 137' and the plurality of supports ( 136 and 136') may be alternately fastened to each fastening bar 138.
  • the spacers 137 and 137' may be disposed between the two supports 136 and 136' arranged along the height direction of the housing 131, and the two supports 136 and 136' adjacent to each other may It is possible to maintain a spaced apart from each other through the spacer members 137 and 137'.
  • a plurality of culture spaces (S1) may be formed.
  • the support assembly P is not limited thereto, and various known methods can be applied as long as the plurality of supports 136 and 136 ′ are arranged parallel to each other along one direction and spaced apart from each other at a predetermined interval.
  • the rotation speed and rotation period of the drive unit 120 may be controlled through a separate control unit (not shown).
  • the control unit may control the overall operation of the bioreactor 100 for floating cells according to an embodiment of the present invention together with driving of the driving unit 120 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Water Supply & Treatment (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immunology (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)

Abstract

부유 세포용 바이오리액터가 제공된다. 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터는 프레임부; 상기 프레임부에 장착되는 구동부; 및 부유 세포를 포함하는 배지가 채워지는 내부공간을 갖는 하우징과, 상기 내부공간에 서로 간격을 두고 다단으로 배치되는 복수 개의 지지체를 포함하며, 일측이 상기 구동부에 축결합되는 세포배양부;를 포함할 수 있다.

Description

부유 세포용 바이오리액터
본 발명은 부유 세포용 바이오리액터에 관한 것이다.
바이오프로세스(Bioprocess)는 바이오 분야에서 살아있는 세포를 이용하여 원하는 치료제를 생산해내는 과정을 일컫는다.
세포 배양을 통해 항체, 줄기세포, 면역 세포 등을 생산하고 이를 이용해 바이오 의약품, 백신, 세포 치료제를 생산한다.
세포는 부착능력에 따라 표면기질에 부착되어야 하는 부착세포와 기질 표면의 부착 없이 증식하는 부유세포로 분류된다.
즉, 부착세포는 표면 기질이 되는 지지체에 부착된 상태에서 배양되지만 부유 세포는 지지체에 부착된 상태에서 배양되지 않고 지지체의 표면에 붙었다가 떨어지고 다시 지지체의 표면에 붙었다가 떨어지는 접촉-부유-접촉-부유의 과정을 반복하면서 신호전달을 받아 성장한다.
이와 같은 부유 세포는 스트레스에 매우 민감하기 때문에 소정의 배양공간 내에서 유동하지 않는 상태의 배지를 이용하여 배양된다.
그러나 부유 세포의 원활한 성장을 위해서는 상술한 바와 같이 지지체와 반복적으로 접촉되어야 하지만, 배양공간 내에서 배지가 유동하지 않기 때문에 지지체와 원활하게 접촉되지 못하는 문제가 있다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 배지에서 부유하는 부유 세포의 움직임을 촉진할 수 있는 부유 세포용 바이오리액터를 제공하는데 그 목적이 있다.
또한, 본 발명은 작은 사이즈에서도 대량의 부유 세포를 배양할 수 있는 부유 세포용 바이오리액터를 제공하는데 다른 목적이 있다.
상술한 과제를 해결하기 위하여 본 발명은, 프레임부; 상기 프레임부에 장착되는 구동부; 및 부유 세포를 포함하는 배지가 채워지는 내부공간을 갖는 하우징과, 상기 내부공간에 서로 간격을 두고 다단으로 배치되는 복수 개의 지지체를 포함하며, 일측이 상기 구동부에 축결합되는 세포배양부;를 포함하는 부유 세포용 바이오리액터를 제공한다.
또한, 상기 세포배양부는 상기 배지가 서로 이웃하는 두 개의 지지체 사이의 공간에서 유동될 수 있도록 상기 구동부의 구동을 통하여 스윙될 수 있다.
또한, 상기 세포배양부는, 외부로부터 상기 내부공간으로 기체가 유입될 수 있도록 상기 하우징에 소정의 면적으로 관통형성되는 기체유입구와, 상기 내부공간에 채워진 배지가 외부로 누액되는 것을 방지하면서 상기 기체가 외부에서 상기 내부공간으로 유입되는 것을 허용할 수 있도록 상기 기체유입구를 덮는 다공성부재를 더 포함할 수 있다. 이때, 상기 다공성부재는 발수처리된 멤브레인일 수 있다.
또한, 상기 지지체는 소정의 면적을 가지는 판상의 부재일 수 있고, 상기 내부공간은 상기 하우징의 일방향을 따라 간격을 두고 다단으로 배치되는 복수 개의 지지체를 통해 복수 개의 배양공간으로 구분될 수 있으며, 상기 부유 세포를 포함하는 배지는 상기 복수 개의 배양공간을 각각 채우도록 상기 내부공간에 저장될 수 있다.
또한, 상기 지지체는, 소정의 면적을 갖는 판상의 지지부재와, 접착층을 매개로 상기 지지부재의 양면에 각각 부착되는 한 쌍의 나노섬유 멤브레인을 포함할 수 있고, 상기 나노섬유 멤브레인은 모티프 코팅된 판상의 나노섬유 멤브레인일 수 있다.
또한, 상기 지지체는, 외부로부터 상기 내부공간으로 유입된 기체가 원활하게 통과할 수 있도록 상기 지지부재에 관통형성되는 복수 개의 통과홀을 더 포함할 수 있다.
또한, 상기 복수 개의 지지체는 두 개의 지지체 사이에 배치되는 이격부재를 매개로 일정간격 이격된 상태를 유지할 수 있다.
또한, 상기 배지는 펩타이드 모티프(peptide motif)가 코팅된 자성입자를 더 포함할 수 있다.
본 발명에 의하면, 배지 내에서 부유하는 부유 세포의 움직임을 촉진하여 cell-to-cell interaction 및 peptide signal이 보다 빈번하게 일어날 수 있음으로써 부유 세포의 성장을 촉진할 수 있다.
도 1은 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터를 나타낸 개략도,
도 2는 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터에서 구동부와 세포배양부의 연결관계를 개략적으로 나타낸 도면,
도 3은 도 1의 작동상태도,
도 4는 도 1에 적용될 수 있는 세포배양부의 주요구성을 분리한 도면,
도 5는 도 4에서 지지체 어셈블리를 발췌하여 분리한 도면,
도 6은 도 1의 A-A 방향 단면도,
도 7은 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터에 사용될 수 있는 지지체의 일형태를 나타낸 도면, 그리고,
도 8은 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터에 사용될 수 있는 지지체의 다른 형태를 나타낸 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.
본 발명의 일 실시예에 따른 부유 세포용 바이오리액터(100)는 세포 배양을 위한 복수 개의 지지체(136,136')를 포함할 수 있고, 상기 복수 개의 지지체(136,136')는 내부공간(S)에 소정의 간격을 두고 다단으로 배치될 수 있다.
또한, 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터(100)에서 외부로부터 공급되는 배지는 상기 내부공간(S)에서 서로 일정간격 이격된 두 개의 지지체(136,136') 사이에 형성된 배양공간(S1)과 더불어 상기 복수 개의 지지체(136,136')가 모두 잠길 수 있도록 상기 내부공간(S)에 채워질 수 있다.
여기서, 상기 배지는 배양될 부유 세포가 포함된 배지일 수 있으며, 상기 배지는 도 6에 도시된 바와 같이 상기 부유 세포와 함께 펩타이드 모티프(peptide motif)가 코팅된 자성입자를 더 포함할 수 있다.
이에 따라, 상기 배지에 포함된 부유 세포는 두 개의 지지체(136,136') 사이에 형성된 배양공간(S1) 내에서 부유하면서 상기 지지체(136,136')와 접촉된 후 떨어지는 과정을 반복할 수 있으며, 상기 부유 세포는 상기 지지체(136,136')와 접촉된 후 떨어지는 과정을 반복하면서 상기 지지체(136,136')로부터 신호를 전달받아 성장될 수 있다.
이때, 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터(100)는 상기 배양공간(S1)에 채워진 배지를 최소한으로 유동시킴으로써 상기 부유 세포의 움직임을 촉진할 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터(100)는 배지의 움직임에 의한 세포의 성장을 방해하지 않으면서도 cell-to-cell interaction 및 peptide signal이 보다 빈번하게 일어날 수 있도록 함으로써 부유 세포의 성장을 촉진할 수 있다.
이를 위해, 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터(100)는 도 1 내지 도 3에 도시된 바와 같이 프레임부(110), 구동부(120) 및 세포배양부(130)를 포함한다.
상기 구동부(120)는 상기 프레임부(110)에 장착될 수 있으며, 상기 세포배양부(130)는 일측이 상기 구동부(120)와 축결합될 수 있다.
즉, 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터(100)에서 상기 구동부(120)는 상기 프레임부(110)에 고정된 상태에서 상기 세포배양부(130)의 일측과 축결합되기 때문에 상기 세포배양부(130)는 상기 구동부(120)의 구동을 통하여 왕복 스윙될 수 있다.
이에 따라, 상기 세포배양부(130)에 채워진 배지는 상기 세포배양부(130)의 왕복스윙운동을 통하여 상기 세포배양부(130) 내에서 유동될 수 있으며, 상기 배지에 포함된 부유 세포는 상기 배지의 유동에 의해 움직임이 촉진됨으로써 상기 지지체(136,136')와 원활하게 접촉될 수 있다.
이를 위해, 상기 프레임부(110)는 도 1 내지 도 3에 도시된 바와 같이, 소정의 면적을 가지는 판상의 바닥판(112)과 상기 바닥판(112)으로부터 일정높이 연장되는 장착판(114)을 포함할 수 있다.
이와 같은 경우, 상기 구동부(120)는 상기 장착판(114)에 고정되는 고정대(116)를 매개로 상기 장착판(114)에 고정될 수 있다.
여기서, 상기 구동부(120)는 전원인가시 회전축(122)이 양방향으로 왕복회전하는 공지의 구동모터일 수 있고, 상기 구동부(120)는 상기 회전축(122)의 회전속도를 제어할 수 있도록 상기 구동모터와 연결되는 감속기를 포함할 수 있다.
이때, 상기 세포배양부(130)는 일측에 구비된 동력전달부재(135)를 매개로 상기 구동부(120)의 회전축(122)과 축결합될 수 있다.
이에 따라, 서로 축결합된 상기 구동부(120) 및 세포배양부(130)는 상기 프레임부(110)의 바닥판(112)으로부터 일정높이 이격된 상태로 상기 장착판(114)에 설치될 수 있으며, 도 2 및 도 3에 도시된 바와 같이 상기 세포배양부(130)는 상기 회전축(122)의 회전시 상기 동력전달부재(135)를 통해 구동력을 전달받음으로써 양 방향으로 원활하게 스윙될 수 있다.
이로 인해, 상술한 바와 같이 상기 세포배양부(130)에 채워진 부유 세포를 포함하는 배지는 상기 세포배양부(130)의 스윙운동을 통해 유동될 수 있으며, 상기 배지에 포함된 부유 세포는 상기 배지의 유동에 의해 움직임이 촉진됨으로써 상기 지지체(136,136')와 원활하게 접촉될 수 있다.
상기 세포배양부(130)는 상술한 바와 같이 일측이 동력전달부재(135)를 매개로 상기 구동부(120)와 축결합될 수 있고, 세포배양을 위한 복수 개의 지지체(136,136')를 포함할 수 있으며, 상기 복수 개의 지지체(136,136')는 상기 세포배양부(130)의 내부에 다단으로 배치될 수 있다.
이를 위해, 상기 세포배양부(130)는 하우징(131) 및 복수 개의 지지체(136,136')를 포함할 수 있다.
상기 하우징(131)은 상기 복수 개의 지지체(136,136') 및 배지를 내부에 수용할 수 있다. 이를 위해, 상기 하우징(131)은 내부공간(S)을 갖는 함체형상으로 형성될 수 있다.
일례로, 상기 하우징(131)은 도 4에 도시된 바와 같이, 상면이 개방된 내부공간(S)을 갖는 함체형상의 몸체(131a)와, 상기 몸체(131a)의 개방된 상부를 덮는 덮개(131b)를 포함할 수 있다.
이와 같은 경우, 상기 하우징(131)은 외부로부터 공급되는 배지를 상기 내부공간(S)으로 유입할 수 있도록 상기 상기 몸체(131a)의 일측에 구비되는 유입구(132a)와, 상기 내부공간(S)의 배지를 외부로 배출할 수 있도록 상기 몸체(131a)의 일측에 구비되는 유출구(132b)를 포함할 수 있으며, 상기 구동부(120)의 회전축(122)과 축결합되는 동력전달부재(135)가 상기 몸체(131a)의 일측에 구비될 수 있다.
이를 통해, 상기 내부공간(S)은 외부로부터 상기 유입구(132a)를 통해 공급되는 배지가 채워질 수 있고, 세포 배양이 완료된 후 상기 배지는 상기 유출구(132b)를 통해 외부로 배출될 수 있으며, 상기 몸체(131a)는 상기 구동부(120)의 구동을 통해 스윙될 수 있다.
도면과 설명에서는 상기 유입구(132a) 및 유출구(132b)가 상기 몸체(131a)의 일측에 각각 별도로 구비되는 것으로 도시하고 설명하였지만, 본 발명을 이에 한정하는 것은 아니며, 상기 유입구(132a) 및 유출구(132b)는 하나의 포트로 통합될 수도 있다.
이때, 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터(100)는 상기 내부공간(S)에 채워진 배지 측으로 기체가 유입될 수 있도록 상기 내부공간(S)과 연통되는 적어도 하나의 기체유입구(133)를 포함할 수 있다.
일례로, 상기 기체유입구(133)는 상기 하우징(131)의 덮개(131b)를 관통하도록 형성될 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터(100)를 이용한 세포 배양시, 상기 부유 세포용 바이오리액터(100)가 인큐베이터와 같은 챔버의 내부에 배치되면 상기 인큐베이터 내부에 존재하는 기체는 상기 기체유입구(133)를 통해 상기 배지가 채워진 하우징(131)의 내부공간(S)으로 공급될 수 있다.
여기서, 상기 인큐베이터는 상기 배지에 포함된 부유 세포의 배양환경을 제공하는 공간일 수 있다. 일례로, 상기 인큐베이터는 챔버일 수 있고, 상기 챔버의 내부는 온도와 이산화탄소의 농도가 일정하게 유지되는 환경일 수 있다.
또한, 상기 기체는 이산화탄소 가스일 수 있으나, 이에 한정하는 것은 아니며 배양될 세포에 따라 적절하게 변경될 수 있다.
이와 같은 경우, 상기 인큐베이터는 내부의 온도를 일정온도로 유지하기 위한 공조시스템을 포함할 수 있으며, 상기 인큐베이터의 내부로 세포의 배양시 필요한 기체를 안정적으로 공급하여 인큐베이터 내부의 기체 농도를 일정 수준으로 유지하기 위한 가스공급수단(미도시) 등을 더 포함할 수 있다.
이를 통해, 상기 인큐베이터의 내부에 배치된 부유 세포용 바이오리액터(100)는 인큐베이터의 내부에 존재하는 기체가 상기 기체유입구(133)를 통해 상기 하우징(131)의 내부공간(S)으로 유입될 수 있고, 상기 내부공간(S)으로 유입된 기체는 상기 내부공간(S)에 채워진 배지에 용존될 수 있으며, 상기 배지는 상기 기체의 용존을 통해 세포 배양시 필요한 적정 PH로 유지될 수 있다.
이로 인해, 상기 내부공간(S)에 채워진 배지는 세포 배양시 요구되는 적정 PH로 유지될 수 있음으로써 상기 배지에 포함된 부유 세포는 원활하게 배양될 수 있다.
한편, 상기 기체유입구(133)는 소정의 면적을 갖는 판상의 다공성부재(134)를 통해 덮어질 수 있다. 즉, 상기 다공성부재(134)는 상기 덮개(131b)에 형성된 기체유입구(133)를 덮도록 상기 덮개(131b)에 부착될 수 있다.
이러한 다공성부재(134)는 이물질 및 액체가 통과하는 것을 차단하는 한편, 이산화탄소 등과 같은 기체의 통과를 허용할 수 있다. 이를 통해, 상기 내부공간(S)에 채워진 배지는 상기 다공성부재(134) 및 기체유입구(133)를 통해 세포의 배양시 필요한 기체를 원활하게 공급받으면서도 다른 이물질이 유입되지 않을 수 있다.
이에 따라, 상기 기체유입구(133)를 통해 외부로부터 상기 내부공간(S) 측으로 기체가 유입되더라도, 상기 내부공간(S)에 채워진 배지는 다른 이물질에 의해 오염되지 않을 수 있다.
일례로, 상기 다공성부재(134)는 발수처리된 나노섬유 멤브레인일 수 있다. 그러나 상기 다공성부재(134)의 재질을 이에 한정하는 것은 아니며, 고상 및 액상의 유체가 통과하는 것은 차단하면서도 기상의 유체가 통과하는 것은 허용하는 재질이라면 제한없이 사용될 수 있다.
상기 복수 개의 지지체(136,136')는 상기 배지에서 부유하는 부유 세포가 접촉하면 상기 부유 세포 측으로 신호를 전달할 수 있다. 이에 따라, 상기 배지에 포함된 부유 세포는 상술한 바와 같이 상기 배지 내에서 부유하면서 상기 지지체(136,136')와 접촉된 후 떨어지는 과정을 반복할 수 있으며, 상기 지지체(136,136')와 접촉된 후 떨어지는 과정에서 상기 지지체(136,136')로부터 신호를 전달받고 상기 배지로부터 영양분을 공급받아 성장될 수 있다.
이를 위해, 상기 지지체(136,136')의 표면은 세포 증식의 성질을 가지는 펩타이드(peptid)가 코팅된 표면을 가질 수 있다.
즉, 상기 지지체(136,136')의 표면은 세포 증식의 성질을 가지는 peptide motif가 코팅된 것일 수 있다.
더불어, 상기 지지체(136,136')는 상기 배지에 포함된 부유 세포가 접촉될 수 있는 면적을 넓힐 수 있도록 소정의 면적을 갖는 판상으로 구비될 수 있으며, 상기 복수 개의 지지체(136,136')는 상기 하우징(131)의 내부공간(S)에 소정의 간격을 두고 다단으로 배치될 수 있다.
이에 따라, 상기 내부공간(S)은 상기 하우징(131)의 일방향을 따라 간격을 두고 다단으로 배치되는 복수 개의 지지체(136,136')를 통해 복수 개의 배양공간(S1)으로 구분될 수 있으며, 상기 부유 세포를 포함하는 배지는 상기 복수 개의 배양공간(S1)을 각각 채우도록 상기 내부공간(S)에 저장될 수 있다.
더불어, 각각의 배양공간(S1)에 채워진 배지는 상술한 바와 같이 부유 세포와 더불어 펩타이드 모티프(peptide motif)가 코팅된 자성입자를 더 포함할 수 있다.
이로 인해, 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터(100)는 세포 배양을 위한 지지체(136,136')의 집적도를 높여줄 수 있으며, 상기 복수 개의 배양공간(S1) 각각은 상측과 하측에 판상의 지지체(136,136')가 배치되기 때문에 각각의 배양공간(S1)에서 부유하는 부유 세포는 상기 지지체(136,136')의 표면과 접촉될 수 있는 면적이 더욱 넓어질 수 있다.
이를 통해, 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터(100)는 한 번의 배양공정을 통해 더욱 많은 양의 세포를 배양할 수 있고, 상기 배양공간(S1) 내에서 부유하는 부유 세포가 지지체(136,136')의 표면에 더욱 원활하게 접촉될 수 있기 때문에 상기 부유 세포는 서로 구분된 각각의 배양공간(S1)에서 더욱 원활하게 성장될 수 있으며, 배지 내에 포함된 자성입자를 통하여 cell-to-cell interaction 및 peptide signal이 보다 빈번하게 일어날 수 있음으로써 부유 세포의 성장을 촉진할 수 있다.
더불어, 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터(100)는 하나의 세포배양부(130)에 복수 개의 지지체(136,136')들이 다단으로 배치될 수 있기 때문에 대량의 세포배양이 가능하면서도 상기 세포배양부(130)의 전체크기를 줄일 수 있다.
이에 따라, 상술한 바와 같이 상기 세포배양부(130)와 축결합된 구동부(120)가 장착된 프레임부(110)를 이동시키면 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터(100) 전체를 이동시킬 수 있기 때문에 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터(100)는 이동성을 확보할 수 있으며, 실험실이나 연구실에 구비된 소규모의 인큐베이터와 같은 공간에서도 대량의 세포를 배양할 수 있다.
이때, 상기 지지체(136,136')는 나노섬유가 전기방사를 통하여 3차원 네트워크 구조로 형성된 나노섬유 멤브레인(136a)을 포함할 수 있으며, 상기 나노섬유 멤브레인(136a)은 상기 지지체(136,136')의 양 표면을 형성하도록 한 쌍으로 구비될 수 있다.
일례로써, 상기 지지체(136,136')는 도 7 및 도 8에 도시된 바와 같이 접착층(136b)을 매개로 한 쌍의 나노섬유 멤브레인(136a)이 지지부재(136c)의 양면에 부착된 5층구조일 수 있다.
여기서, 상기 지지부재(136c)는 판상의 필름부재일 수 있으며, 상기 나노섬유 멤브레인(136a)의 일면을 지지할 수 있다. 이를 통해, 상기 나노섬유 멤브레인(136a)이 유연성을 가지고 판상으로 형성되더라도 상기 지지부재(136c)를 통해 지지될 수 있음으로써 휘어짐이나 처짐이 방지될 수 있다. 이에 따라, 상기 하우징(131)의 내부공간(S)에 배치된 지지체(136,136')는 펼쳐진 상태를 유지할 수 있음으로써 세포가 원활하게 배양될 수 있다.
더불어, 상기 지지체(136,136')의 표면을 형성하는 상기 나노섬유 멤브레인(136a)은 상술한 바와 같이 상기 지지체(136,136')의 표면이 세포 증식의 성질을 가질 수 있도록 세포 증식의 성질을 가지는 peptide motif가 코팅된 판상의 나노섬유 멤브레인일 수 있다.
이때, 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터(100)는 상기 내부공간(S)에서 복수 개의 배양공간(S1)을 규정하도록 다단으로 배열된 복수 개의 지지체(136,136')의 전체개수가 증가하더라도 두 개의 지지체(136,136')를 통해 규정되는 각각의 배양공간(S1)에 채워진 배지 측으로 세포배양시 필요한 기체가 원활하게 공급될 수 있다.
이를 위해, 도 8에 도시된 바와 같이 상기 지지체(136')는 복수 개의 통과홀(136e)을 포함할 수 있다.
즉, 상기 복수 개의 통과홀(136e)은 상기 기체유입구(133)를 통해 외부로부터 상기 내부공간(S)으로 유입된 기체가 지지체(136')를 통과하여 하부로 이동하는 통로역할을 수행함으로써 기체의 흐름성을 개선할 수 있다.
이를 위해, 상기 복수 개의 통과홀(136e)은 상기 지지체(136') 중 기체의 통과를 허용하지 않는 부분에 형성될 수 있다.
일례로, 상기 복수 개의 통과홀(136e)은 상기 지지체(136')에서 상기 접착층(136b) 및 지지부재(136c)를 관통하도록 상기 지지체(136')에 형성될 수 있다.
이에 따라, 상기 기체유입구(133)를 통해 상기 하우징(131)의 내부공간(S)으로 유입된 기체는 상기 지지체(136')에 형성된 복수 개의 통과홀(136e)을 통해 하부 측으로 원활하게 이동할 수 있다.
이로 인해, 각각의 배양공간(S1)에 채워진 배지는 위치에 상관없이 상기 복수 개의 통과홀(136e)을 통해 기체를 원활하게 공급받을 수 있다.
한편, 상기 세포배양부(130)는 상기 내부공간(S)에 배치되는 복수 개의 지지체(136,136')들의 집적도를 높여 대량의 세포를 원활하게 배양할 수 있고, 조립성을 높이며, 서로 구분된 복수 개의 배양공간(S1)을 유지할 수 있도록 상기 복수 개의 지지체(136,136')가 어셈블리 형태로 일체화될 수 있다.
일례로, 상기 복수 개의 지지체(136,136')는 지지체 어셈블리(P)로 구현될 수 있으며, 상기 지지체 어셈블리(P)는 복수 개의 지지체(136,136')들이 서로 일정간격 이격된 상태로 일체화된 형태일 수 있다.
구체적으로, 상기 지지체 어셈블리(P)는 도 4 및 도 5에 도시된 바와 같이 상기 하우징(131)의 높이방향을 따라 복수 개의 지지체(136,136')들이 평행하게 이격배치되는 적층형으로 구성될 수 있다.
이를 위해, 상기 지지체 어셈블리(P)는 소정의 길이를 갖는 복수 개의 체결바(138)와 상기 체결바(138)에 체결되는 복수 개의 이격부재(137,137')를 포함할 수 있으며, 상기 복수 개의 지지체(136,136')들은 상기 체결바(138)에 각각 끼워지는 방식일 수 있다.
여기서, 상기 이격부재(137,137')는 도 5에 도시된 바와 같이 하나의 체결바(138)에 체결될 수 있도록 링형상의 부재일 수도 있고, 복수 개의 체결바(138)에 동시에 체결될 수 있도록 길이방향을 따라 복수 개의 체결공이 형성된 바형상의 부재일 수도 있다.
이와 같은 경우, 상기 복수 개의 체결바(138)들은 소정의 간격을 두고 서로 이격배치될 수 있으며, 상기 복수 개의 체결바(138)들은 양단부가 소정의 면적을 갖는 판상의 지지판(139)에 각각 고정될 수 있다.
이에 따라, 상기 두 개의 지지판(139)에 양단이 각각 고정된 복수 개의 체결바(138)들은 서로 간격을 두고 이격된 상태를 유지할 수 있고, 상기 복수 개의 지지체(136,136')들은 두 개의 지지판(139) 사이에서 일면이 서로 대면하도록 다단으로 배치될 수 있으며, 상기 복수 개의 지지체(136,136')들은 상기 복수 개의 체결바(138)들과 대응되는 위치에 관통형성된 복수 개의 체결공(136d)을 통하여 상기 체결바(138)에 각각 체결될 수 있다.
더불어, 상기 복수 개의 이격부재(137,137')는 상기 지지체(136,136')와 마찬가지로 상기 복수 개의 체결바(138)들에 각각 끼워질 수 있으며, 상기 복수 개의 이격부재(137,137')와 복수 개의 지지체(136,136')들은 각각의 체결바(138)에 교번적으로 체결될 수 있다.
이에 따라, 상기 이격부재(137,137')는 상기 하우징(131)의 높이방향을 따라 배열되는 두 개의 지지체(136,136') 사이에 각각 배치될 수 있으며, 서로 이웃하는 두 개의 지지체(136,136')들은 상기 이격부재(137,137')를 통해 서로 이격된 간격을 유지할 수 있다.
이를 통해, 복수 개의 지지체(136,136')들 사이에는 상기 이격부재(137,137')의 높이와 동일한 높이를 가지면서 상기 하우징(131)의 높이방향을 따라 배열되는 두 개의 지지체(136,136')를 통해 구분되는 복수 개의 배양공간(S1)이 형성될 수 있다.
그러나 상기 지지체 어셈블리(P)를 이에 한정하는 것은 아니며, 복수 개의 지지체(136,136')들이 일방향을 따라 서로 평행하게 배열되면서 서로 일정간격 이격된 상태를 유지할 수 있다면 공지의 다양한 방식이 모두 적용될 수 있다.
한편, 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터(100)는 별도의 제어부(미도시)를 통해 상기 구동부(120)의 회전속도, 회전주기 등이 조절될 수 있다. 또한, 상기 제어부는 상기 구동부(120)의 구동과 더불어 본 발명의 일 실시예에 따른 부유 세포용 바이오리액터(100)의 전반적인 동작을 제어할 수 있다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (9)

  1. 프레임부;
    상기 프레임부에 장착되는 구동부; 및
    부유 세포를 포함하는 배지가 채워지는 내부공간을 갖는 하우징과, 상기 내부공간에 서로 간격을 두고 다단으로 배치되는 복수 개의 지지체를 포함하며, 일측이 상기 구동부에 축결합되는 세포배양부;를 포함하는 부유 세포용 바이오리액터.
  2. 제1항에 있어서,
    상기 세포배양부는 상기 배지가 서로 이웃하는 두 개의 지지체 사이의 공간에서 유동될 수 있도록 상기 구동부의 구동을 통하여 스윙되는 부유 세포용 바이오리액터.
  3. 제1항에 있어서,
    상기 세포배양부는,
    외부로부터 상기 내부공간으로 기체가 유입될 수 있도록 상기 하우징에 소정의 면적으로 관통형성되는 기체유입구와, 상기 내부공간에 채워진 배지가 외부로 누액되는 것을 방지하면서 상기 기체가 외부에서 상기 내부공간으로 유입되는 것을 허용할 수 있도록 상기 기체유입구를 덮는 다공성부재를 더 포함하는 부유 세포용 바이오리액터.
  4. 제3항에 있어서,
    상기 다공성부재는 발수처리된 멤브레인인 부유 세포용 바이오리액터.
  5. 제1항에 있어서,
    상기 지지체는 소정의 면적을 가지는 판상의 부재이고,
    상기 내부공간은 상기 하우징의 일방향을 따라 간격을 두고 다단으로 배치되는 복수 개의 지지체를 통해 복수 개의 배양공간으로 구분되며,
    상기 부유 세포를 포함하는 배지는 상기 복수 개의 배양공간을 각각 채우도록 상기 내부공간에 저장되는 부유 세포용 바이오리액터.
  6. 제1항에 있어서,
    상기 지지체는,
    소정의 면적을 갖는 판상의 지지부재와, 접착층을 매개로 상기 지지부재의 양면에 각각 부착되는 한 쌍의 나노섬유 멤브레인을 포함하고,
    상기 나노섬유 멤브레인은 모티프 코팅된 판상의 나노섬유 멤브레인인 부유 세포용 바이오리액터.
  7. 제6항에 있어서,
    상기 지지체는, 외부로부터 상기 내부공간으로 유입된 기체가 원활하게 통과할 수 있도록 상기 지지부재에 관통형성되는 복수 개의 통과홀을 더 포함하는 부유 세포용 바이오리액터.
  8. 제1항에 있어서,
    상기 복수 개의 지지체는 두 개의 지지체 사이에 배치되는 이격부재를 매개로 일정간격 이격된 상태를 유지하는 부유 세포용 바이오리액터.
  9. 제1항에 있어서,
    상기 배지는 펩타이드 모티프(peptide motif)가 코팅된 자성입자를 더 포함하는 부유 세포용 바이오리액터.
PCT/KR2022/013820 2021-09-16 2022-09-15 부유 세포용 바이오리액터 WO2023043238A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210124295A KR20230040775A (ko) 2021-09-16 2021-09-16 부유 세포용 바이오리액터
KR10-2021-0124295 2021-09-16

Publications (1)

Publication Number Publication Date
WO2023043238A1 true WO2023043238A1 (ko) 2023-03-23

Family

ID=85603258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013820 WO2023043238A1 (ko) 2021-09-16 2022-09-15 부유 세포용 바이오리액터

Country Status (2)

Country Link
KR (1) KR20230040775A (ko)
WO (1) WO2023043238A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005312386A (ja) * 2004-04-30 2005-11-10 Hiroyuki Honda 細胞培養方法および培養細胞体
US20060019388A1 (en) * 2003-02-06 2006-01-26 Hutmacher Dietmar W Bioreactor for growing cell or tissue cultures
US20150093819A1 (en) * 2013-09-29 2015-04-02 Yongxin Zhang Bioreactor System and Methods for Alternative Cell Culture between Static and Dynamic
KR20170008024A (ko) * 2015-07-13 2017-01-23 재단법인 아산사회복지재단 3차원 조직 재생을 위한 적층 가능한 세포배양용장치 및 이를 이용한 배양방법
KR20210046117A (ko) * 2019-10-17 2021-04-28 주식회사 아모그린텍 세포배양장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060019388A1 (en) * 2003-02-06 2006-01-26 Hutmacher Dietmar W Bioreactor for growing cell or tissue cultures
JP2005312386A (ja) * 2004-04-30 2005-11-10 Hiroyuki Honda 細胞培養方法および培養細胞体
US20150093819A1 (en) * 2013-09-29 2015-04-02 Yongxin Zhang Bioreactor System and Methods for Alternative Cell Culture between Static and Dynamic
KR20170008024A (ko) * 2015-07-13 2017-01-23 재단법인 아산사회복지재단 3차원 조직 재생을 위한 적층 가능한 세포배양용장치 및 이를 이용한 배양방법
KR20210046117A (ko) * 2019-10-17 2021-04-28 주식회사 아모그린텍 세포배양장치

Also Published As

Publication number Publication date
KR20230040775A (ko) 2023-03-23

Similar Documents

Publication Publication Date Title
WO2021075808A1 (ko) 세포배양장치
US6933144B2 (en) Apparatus for growing cells
US6080581A (en) Culture vessel for growing or culturing cells, cellular aggregates, tissues and organoids and methods for using same
US20160355774A1 (en) Cell culturing device
WO2014178692A1 (ko) 마이크로플루이딕 멀티-웰 기반의 세포배양검사 장치
CN107400633B (zh) 中空纤维交换器及中空纤维交换式培养系统
US20130203106A1 (en) Apparatus and Method for Performing Experiments on Live Cells
JPH03502891A (ja) 動物細胞の培養のためのバイオリアクターおよび装置
KR102059248B1 (ko) 세포의 배양 방법 및 키트
CN102140422B (zh) 用于控制不同种细胞相互作用的装置、其制备方法及用途
WO2001025396A1 (en) Culture vessel for growing or culturing cells, cellular aggregates, tissues and organoids and methods for using same
US3827943A (en) Culture apparatus
WO2023043238A1 (ko) 부유 세포용 바이오리액터
WO2014062022A1 (ko) 이중구조 세포배양용기 및 이를 이용한 순환배양시스템
WO2017047986A1 (ko) 세포 스페로이드 배양기 및 이를 포함하는 세포 스페로이드 배양 시스템
WO2021075806A1 (ko) 세포배양장치
WO2023058925A1 (ko) 부유 세포용 바이오리액터
WO2017078190A1 (ko) 해마 신경 회로 재건용 미세유체채널 장치 및 이를 이용한 해마 신경 회로 재건 방법
WO2023177053A1 (ko) 간편하고 안정적인 설치구조를 포함하는 필터장치
WO2023043237A1 (ko) 포터블 바이오리액터
WO2024085682A1 (ko) 바이오리액터 시스템
WO2024085683A1 (ko) 바이오리액터
WO2022146028A1 (ko) 배지로부터 기포를 제거하기 위한 기포제거장치 및 이를 포함하는 배지순환식 세포배양 시스템
WO2020122367A1 (ko) 세포 탑재용 모듈 장치
WO2020130335A1 (ko) 바이오 칩용 필라 구조체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22870322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE