WO2023043216A1 - 표면품질이 우수한 고강도 강판 및 이의 제조방법 - Google Patents

표면품질이 우수한 고강도 강판 및 이의 제조방법 Download PDF

Info

Publication number
WO2023043216A1
WO2023043216A1 PCT/KR2022/013778 KR2022013778W WO2023043216A1 WO 2023043216 A1 WO2023043216 A1 WO 2023043216A1 KR 2022013778 W KR2022013778 W KR 2022013778W WO 2023043216 A1 WO2023043216 A1 WO 2023043216A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
layer
surface quality
rgo
excellent surface
Prior art date
Application number
PCT/KR2022/013778
Other languages
English (en)
French (fr)
Inventor
이강민
이정환
강기철
김남아
장윤모
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP22870300.5A priority Critical patent/EP4403656A1/en
Priority to JP2024505380A priority patent/JP2024530449A/ja
Priority to CN202280062394.6A priority patent/CN117940589A/zh
Publication of WO2023043216A1 publication Critical patent/WO2023043216A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes

Definitions

  • the present invention relates to a high-strength steel sheet having improved plating properties and excellent surface quality, and a manufacturing method thereof.
  • TRansformation Induced Plasticity a Giga-class high formability steel, has the advantage of excellent elongation compared to other Giga-class steels by utilizing the austenite phase, while 1.5% by weight for high formability during welding.
  • LME liquid metal embrittlement
  • the LME phenomenon is a phenomenon in which liquid zinc (Zn) penetrates into the crystal grain boundaries of the surface layer of base iron during the spot welding process, causing cracks and accelerating these cracks. It is greatly influenced by the ratio of C to Si.
  • Patent Document 1 Korean Patent Registration No. 10-1630976
  • One aspect of the present invention is to provide a high-strength steel sheet having excellent surface quality and a manufacturing method thereof by suppressing LME cracking by minimizing surface concentration of Mn, Si, etc. present in the steel.
  • One aspect of the present invention is,
  • the ferrite layer has an internal oxide layer on which an Fe-Ni alloy layer is formed,
  • the inner oxide layer is formed from the surface of the ferrite layer to a maximum depth of 3 ⁇ m in the thickness direction along the grain boundary of the base structure of the base steel sheet, and
  • the Fe-Ni alloy layer is formed in the inner oxide layer from the surface of the ferrite layer to a depth of up to 2 ⁇ m in the thickness direction along the grain boundary of the matrix structure of the base steel sheet, and provides a high-strength steel sheet having excellent surface quality.
  • Another aspect of the present invention preparing a holding steel plate; Forming a Ni+Fe/rGO composite coating layer on at least one surface of the base steel sheet; and annealing and heat-treating the base steel sheet on which the composite coating layer is formed,
  • the annealing heat treatment provides a method for producing a high-strength steel sheet having excellent surface quality, which is performed at a temperature range of up to 850 ° C and a dew point temperature of -10 to +5 ° C.
  • the present invention it is possible to suppress the LME phenomenon more effectively than the prior art for suppressing the LME phenomenon of TRIP steel, and in particular, by minimizing the formation of oxides near the steel surface, not only the plating property of the TRIP steel but also the surface quality is improved. It has the effect of providing a steel plate.
  • FIG. 1 is a schematic diagram showing a cross-section of a high-strength steel sheet in the thickness direction according to an embodiment of the present invention.
  • TRIP steel containing a certain amount of oxidizing elements has excellent ductility and is suitable for high formability
  • the present inventors have studied in depth a method for effectively suppressing the problem of surface concentration of the oxidizing elements during welding to generate defects such as LME. studied.
  • the high-strength steel sheet having excellent surface quality provided by the present invention includes a holding steel sheet; and a ferrite layer formed on a surface layer of the base steel sheet, and the ferrite layer may have an internal oxide layer formed thereon with a Fe—Ni alloy layer.
  • the base steel sheet is a TRIP steel having high strength, and the alloy composition thereof is not particularly limited, but as an example, in weight percent, carbon (C): 0.17 ⁇ 0.19%, silicon (Si): 1.3 ⁇ 1.7%, manganese (Mn): 2.4 to 2.7%, aluminum (Al): 0.01 to 0.7%, phosphorus (P): 0.01% or less, sulfur (S): 0.003% or less, the balance may include Fe and other unavoidable impurities.
  • Carbon (C) is an important element added to secure strength and stabilize retained austenite. In order to sufficiently obtain the above-described effects, it may be included in an amount of 0.17% or more, but if the content is excessive, a problem in that weldability is deteriorated occurs, so in consideration of this, the content may be limited to 0.19% or less.
  • Silicon (Si) is an element that suppresses precipitation of carbides in ferrite and promotes diffusion of carbon into austenite in ferrite, and contributes to the stabilization of retained austenite. In order to sufficiently obtain the above-mentioned effects, Si may be included in an amount of 1.3% or more. However, if the content is excessive, rollability is deteriorated and plating properties are deteriorated by forming Si oxide on the surface of the steel sheet. It can be limited to 1.7% or less.
  • Manganese (Mn) is an element that contributes to the formation and stabilization of retained austenite and is effective in securing strength and ductility. In order to sufficiently obtain the above-mentioned effects, it is advantageous to include Mn at 2.4% or more, but if the content is excessive, mechanical properties may be deteriorated due to segregation caused in the casting and hot rolling process. can be limited
  • Aluminum (Al) is an element added for deoxidation of steel, and is effective in stabilizing retained austenite by suppressing the precipitation of cementite. If the Al content is less than 0.01%, the deoxidation effect is insufficient and the cleanliness of the steel is deteriorated. On the other hand, in order to increase the effect of stabilizing the retained austenite, it is advantageous to add 0.1% or more of Al, but if the content exceeds 0.7%, there is a problem in that castability and coating adhesion of the steel deteriorate.
  • Phosphorus (P) is a solid solution strengthening element, but when its content is excessive, brittleness of steel may occur, so the upper limit of P may be limited to 0.01%.
  • S is an impurity element in steel, and its content may be limited to 0.003% or less because ductility and weldability of steel may be impaired.
  • the remaining component of the present invention is iron (Fe).
  • Fe iron
  • the present invention has technical significance in minimizing the surface enrichment of oxidizing elements such as Mn and Si existing in the steel with respect to steel containing a certain amount of oxidizing elements such as Mn and Si.
  • the high-strength steel sheet of the present invention includes a ferrite layer formed on the surface layer of the base steel sheet, and the ferrite layer is characterized in that it has an internal oxide layer on which a Fe-Ni alloy layer is formed (FIG. 1).
  • the surface layer portion of the steel sheet may be referred to as a region extending from the outermost surface of the ferrite layer to a maximum of 50 ⁇ m, more advantageously, to a maximum of 30 ⁇ m in the thickness direction of the steel sheet.
  • the ferrite layer may exist up to 50 ⁇ m, preferably up to 30 ⁇ m, inside the base steel plate based on the thickness direction of the base steel plate.
  • the internal oxide layer is formed from the surface of the ferrite layer to a maximum depth of 3 ⁇ m in the thickness direction along the grain boundary of the matrix structure of the base steel sheet, and the Fe-Ni alloy layer is formed from the surface of the ferrite layer.
  • the Fe-Ni alloy layer and the inner oxide layer may be continuously present along the grain boundary at a maximum depth of 2 ⁇ m and 3 ⁇ m, respectively, from the outermost surface of the ferrite layer, or may be discontinuously present at a predetermined distance.
  • the grain boundary refers to the grain boundary of the base structure of the base steel sheet, and means not only ferrite grain boundary, but also austenite grain boundary, bainite grain boundary, and martensite grain boundary, and at least one of each phase It is revealed that it can exist at the grain boundary of
  • the base steel sheet may be a plated steel sheet having a plated layer on at least one surface of the base steel sheet, and in this case, a ferrite layer may be included directly below the plating layer, that is, at an interface between the base steel sheet and the plating layer. At this time, the surface directly under the plating layer may be determined as the outermost surface of the ferrite layer.
  • an Fe-Ni alloy layer may be formed inside the plating layer adjacent to the ferrite layer.
  • the Fe-Ni alloy layer and the inner oxide layer on the top of the ferrite layer can be formed by performing an annealing heat treatment process after forming a Ni composite coating layer prior to annealing heat treatment of the base steel sheet.
  • the Ni composite coating layer may be formed from a mixed composition of reduced graphene oxide, that is, rGO-coated Fe oxide and a Ni compound, and Fe oxide in the coating layer formed therefrom is transferred into the steel sheet in a subsequent annealing heat treatment process. It diffuses to suppress the surface diffusion of Mn, Si, etc. in the steel, while combining with Ni, which diffuses faster into the steel sheet than the Fe, to form a Fe-Ni oxide layer on the surface.
  • both Fe-Si and Fe-Mn are at the level of 10 ⁇ 90 kJ / mol, and Ni-Si Negative value, Ni-Mn has positive value. That is, at the Ni-Mn grain boundary, segregation of Mn becomes an easy condition, but diffusion of Mn to the surface becomes difficult due to diffusion of Ni into Fe.
  • the surface diffusion of Si is easy, but the rGO contained in the Ni composite coating layer also diffuses into the substrate and exists together in the Fe-Ni alloy layer, and the pyridinic and graphitic (pyridinic) present in the rGO Due to the high oxygen reactivity of graphitic), surface diffusion of oxidizing elements in steel including Si can be effectively suppressed.
  • the ferrite layer present on the surface of the base steel sheet may be present in a thickness of up to 50 ⁇ m inside the base steel plate based on the thickness direction of the base steel plate (FIG. 1).
  • the ferrite layer is formed by a reaction in which oxygen (O) atoms of the inner oxide layer formed during annealing heat treatment combine with carbon in steel to decarburize into carbon monoxide (CO).
  • the ferrite layer Since the ferrite layer has a soft property, it is difficult to crack and has an effect of suppressing the LME phenomenon. In order to sufficiently express these effects, it is preferable to include a ferrite phase in an area fraction of 50% or more in the ferrite layer.
  • the base steel sheet may be a cold-rolled steel sheet having the aforementioned alloy composition, or may be a coated steel sheet including a plating layer on at least one surface of the cold-rolled steel sheet.
  • the plating layer is not particularly limited, but may generally be a zinc-based plating layer, and this plating layer may be formed on top of a ferrite layer present on the surface of the base steel sheet (cold rolled steel sheet) reveal
  • the holding steel sheet is TRIP steel, and its alloy composition is not particularly limited, but as an example, in weight%, carbon (C): 0.17 ⁇ 0.19%, silicon (Si): 1.3 ⁇ 1.7 %, manganese (Mn): 2.4 ⁇ 2.7%, aluminum (Al): 0.01 ⁇ 0.7%, phosphorus (P): 0.01% or less, sulfur (S): 0.003% or less, the balance may contain Fe and other unavoidable impurities there is.
  • the base steel sheet may be a cold rolled steel sheet, and the description of each element is replaced with the above description.
  • a composite coating layer containing Ni, preferably a Ni+Fe/rGO composite coating layer, may be formed on at least one surface of the base steel sheet prepared as described above.
  • the Ni+Fe/rGO composite coating layer may be formed from a coating composition prepared by preparing a nickel (Ni) compound and an Fe/rGO aqueous solution, respectively, and then mixing them.
  • rGO which is a reduced graphene oxide
  • the rGO can be obtained by oxidizing graphite and reducing graphene oxide (GO) containing oxygen (O) atoms on the surface.
  • hydrazine monohydrate 1 to 10 ml is added based on 200 ml of a solution in which 0.001 to 0.01 g of graphene oxide (GO) is dispersed per 1 ml of distilled water, and then maintained at a high temperature. Thereafter, rGO may be prepared by adding 50 to 100 ml of sulfuric acid and then ultrasonicating.
  • GO graphene oxide
  • the process of maintaining at a high temperature may be performed at 70 to 90 ° C. for 1 to 3 hours, and ultrasonic treatment may be performed for 20 to 40 minutes.
  • the maintenance process is performed at a temperature exceeding 90° C. for more than 3 hours, it is difficult to obtain an appropriate level of solution due to an excessive amount of evaporated water.
  • the ultrasonic treatment is less than 20 minutes, it is difficult to secure uniform rGO, and since the ultrasonic process is again involved in the subsequent Fe coating process, it can be performed in 40 minutes or less in consideration of this.
  • the rGO may be coated with Fe.
  • the Fe is effective in forming an alloy phase with Ni in the composite coating layer, and the rGO is effective in suppressing surface layer diffusion of oxidizing elements in the base steel sheet.
  • the process of coating the rGO with Fe may be performed by mixing the prepared rGO with an iron (Fe) oxide aqueous solution and then ultrasonicating the mixed solution.
  • the Fe oxide may be coated in a size of several tens of nanometers (nm) by the above-described ultrasonic process, and preferably may have a size of 10 to 50 nm.
  • a coating composition for forming a composite coating layer may be prepared by mixing a nickel (Ni) compound with the Fe/rGO aqueous solution prepared as described above.
  • Ni+Fe/rGO coating composition may be obtained by adding the Fe/rGO aqueous solution into the Watt bath.
  • the Ni+Fe/rGO coating composition may have a pH of 1 to 2.
  • the pH of the coating composition may be adjusted to the above range, the graphene (rGO) contained in the composition can be uniformly dispersed in the coating layer.
  • the rGO By uniformly dispersing the rGO in the coating layer, corrosion resistance, electrical and physical properties of the steel sheet can be improved.
  • the Ni+Fe/rGO coating composition prepared as described above may be coated on at least one surface of the previously prepared base steel sheet, and at this time, an intended Ni+Fe/rGO composite coating layer is formed from the coating treatment through electroplating. can do.
  • the deposition amount of 200 to 800 mg per unit area (m 2 ) based on the Ni adhesion amount. If the amount of Ni attached per unit area is less than 200 mg, surface layer diffusion of oxidizing elements inside the steel cannot be effectively suppressed, whereas if it exceeds 800 mg, the effect is saturated and becomes economically unfavorable. More advantageously, it can be carried out with an adhesion amount of 400 mg or more per unit area (m 2 ).
  • the electrical conductivity increases and the plating efficiency improves.
  • the temperature exceeds 60 ° C. the solution evaporation significantly increases, so it can be performed at 60 ° C. or less, and it is advantageous to perform at a temperature of 30 ° C. or higher to obtain a certain level of electrical conductivity.
  • the annealing heat treatment it is preferable to perform the annealing at a dew point temperature of -10 to +5 ° C and a temperature range of up to 850 ° C to promote internal oxidation while suppressing the surface layer diffusion of oxidizing elements in the steel sheet.
  • the dew point temperature exceeds +5° C. during the annealing heat treatment, the base iron itself may be oxidized. However, if the temperature is excessively low, there is a problem in that plating performance is deteriorated. In consideration of this, the lower limit of the dew point temperature may be limited to -10°C.
  • heat treatment may be performed in a temperature range of up to 850 ° C., preferably 750 to 850 ° C. during annealing in the annealing furnace in which the atmosphere is controlled. If the temperature during the heat treatment is less than 750 ° C, there is a concern that internal oxidation may not sufficiently occur, whereas if the temperature exceeds 850 ° C, decarburization may be excessive and tensile properties may be inferior.
  • moist nitrogen may be introduced when the temperature is raised to a heating section during heating, preferably 700 ° C. or higher. This is to induce internal oxidation and decarburization of oxidizable elements, and it is advantageous to input at 50 to 200 m 3 /h. At this time, if the amount of moist nitrogen injected is less than 50 m 3 /h, the effect of raising the dew point is insufficient, so that some internal oxide layer may be formed, but it becomes difficult to induce decarburization. There is a problem that the base iron itself is oxidized because it is excessively high.
  • Fe oxide coated on rGO of the Ni+Fe/rGO composite coating layer formed on at least one surface of the base steel sheet by performing annealing heat treatment under the above-described conditions is reduced to Fe in the surface layer by the reducing atmosphere in the annealing furnace, in this way A part of the reduced Fe diffuses into the inside of the base steel sheet.
  • oxidizing elements present in the steel are suppressed from surface enrichment by the Fe-Ni oxide layer, while being oxidized by water vapor in the nitrogen atmosphere of the annealing furnace or pyridinic or graphitic of rGO, It forms an oxide layer.
  • Both the Fe-Ni oxide layer and the inner oxide layer may be formed along grain boundaries, and may be formed to have a size (length) of up to 2 ⁇ m and up to 3 ⁇ m, respectively.
  • an internal oxide layer is formed instead of the annealed concentrate, so that water vapor is dissociated into O atoms in the surface layer of the steel sheet, and the O atoms combine with carbon (C) in the steel to decarburize into carbon monoxide (CO).
  • CO carbon monoxide
  • a ferrite layer having a certain thickness is formed from the surface of the steel sheet to the inside of the steel sheet, and the ferrite layer includes an internal oxide layer having an Fe-Ni alloy layer formed thereon.
  • the presence of the ferrite layer having the inner oxide layer in which the Fe-Ni oxide layer is formed on the surface layer portion of the steel sheet has an effect of minimizing the propagation of cracks, and as a result, has an effect of suppressing the occurrence of LME.
  • a coating composition for the coating treatment was prepared as follows.
  • the Fe / rGO contains 3% by weight of 10 nm Fe oxide.
  • Ni+Fe/rGo coating composition of 1 was obtained.
  • Ni+Fe/rGo coating composition prepared as described above was coated on one side of the above-mentioned base steel sheet, and at this time, electroplating was performed at 50° C. with an Ni adhesion amount of 200 to 800 mg/m 2 .
  • each of the base steel sheets coated with different amounts of Ni was subjected to an annealing heat treatment by raising the temperature to 850 ° C. in an annealing furnace containing 3 to 5% by volume of nitrogen.
  • the dew point temperature was applied at -50 ° C, -10 ° C or +5 ° C, and 100 m 3 /h of moist nitrogen was injected in the 700 ° C section.
  • Table 1 shows the results of analyzing the Mn and Si contents from the outermost surface of each specimen to 100 nm in the thickness direction by GDS after electroplating and annealing heat treatment. At this time, the results according to the presence or absence of Fe / rGO were compared together with the change according to the dew point temperature during the annealing heat treatment and the Ni adhesion amount during electroplating using the Ni + Fe / rGo coating composition.
  • Table 2 shows the results of measuring the depth ( ⁇ m) of the inner oxide layer of each specimen after electroplating and annealing heat treatment.
  • the results according to the presence or absence of Fe / rGO were compared together with the change according to the dew point temperature during the annealing heat treatment and the Ni adhesion amount during electroplating using the Ni + Fe / rGo coating composition.
  • the depth of the inner oxide layer was measured by observing the cross section with SEM after cutting the specimen in a direction perpendicular to the rolling direction.
  • the adhesion amount is 800mg/m 2
  • the thickness of the internal oxide layer is reduced compared to 400mg/m 2 . This is confirmed to be due to the formation of a residual layer because some Ni remains without diffusion as the coating layer becomes relatively thick.
  • Table 3 shows the results of measuring the ferrite fraction (area %) from the outermost surface of each specimen to 50 ⁇ m in the thickness direction after electroplating and annealing heat treatment. At this time, using the Ni + Fe / rGO coating composition, the results according to the presence or absence of Fe / rGO were compared together with the change according to the dew point temperature during the annealing heat treatment and the amount of Ni adhesion during electroplating.
  • Table 4 shows the results of observing the surface quality of each specimen after alloying hot-dip galvanizing treatment after electroplating and annealing heat treatment.
  • the alloying hot-dip galvanizing treatment was performed by hot-dip galvanizing treatment using a conventional zinc plating bath and then alloying heat treatment at 480 ° C.
  • results according to the presence or absence of Fe / rGO were compared together with the change according to the dew point temperature during the annealing heat treatment and the Ni adhesion amount during electroplating using the Ni + Fe / rGo coating composition. At this time, non-plating was observed using a surface microanalyzer, and specimens in which non-plating was not observed were judged as 'good'.
  • the surface was improved when the Ni adhesion amount was 400 mg/m 2 or more at the dew point temperature of -50°C, and the surface was improved when the Ni adhesion amount was 200 mg/m 2 or more at the dew point temperature -10°C.
  • the surface was improved, and at +5°C, the surface quality was good regardless of the Ni adhesion amount.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating With Molten Metal (AREA)

Abstract

본 발명은 도금성이 향상되어 우수한 표면품질을 갖는 고강도 강판 및 이의 제조방법에 관한 것이다.

Description

표면품질이 우수한 고강도 강판 및 이의 제조방법
본 발명은 도금성이 향상되어 우수한 표면품질을 갖는 고강도 강판 및 이의 제조방법에 관한 것이다.
기가(Giga)급 고 성형강인 변태유기소성강(TRansformation Induced Plasticity, TRIP강)은 오스테나이트 상을 활용함으로써 다른 기가급 강 대비 연신율이 우수하다는 장점이 있는 반면, 용접시 고 성형을 위해 1.5중량% 수준으로 첨가되는 Si로 인한 액체금속취화(Liquid Metal Embrittlement, LME)가 발생하는 문제가 있다.
LME 현상은 강을 점 용접하는 과정에서 액상의 아연(Zn)이 소지철 표층부의 결정립계로 침투하여 균열을 발생시키고, 이러한 균열을 가속화시키는 현상으로서, 점 용접시의 입열량과 열응력, 강 내 C와 Si의 비율에 영향을 크게 받는다.
이러한 LME 현상을 억제하기 위하여, TRIP 강을 제조하는 과정에서 소둔 열처리 중에 강을 약 600℃ 부근에서 산화시킨 다음 700~800℃에서 다시 환원시키는 산화-환원법을 적용하거나, 강 내에 안티몬(Sb), 주석(Sn) 등을 첨가하여 산화성 원소들(Mn, Si 등)의 내부 산화를 억제하는 방법 등을 적용함으로써 소재의 특성을 개선시키고자 하였다.
그런데, 상기 방법들을 적용하더라도 LME 현상을 개선하는 효과가 그리 크지 않다는 단점이 있다.
이에, 산화성 원소들을 일정량 함유하는 TRIP 강의 LME 현상을 크게 억제함으로써 도금성, 표면품질 등을 개선할 수 있는 방안이 요구되고 있는 실정이다.
[선행기술문헌]
(특허문헌 1) 한국 등록특허공보 제10-1630976호
본 발명의 일 측면은, 강 내에 존재하는 Mn, Si 등의 표면 농화를 최소화함으로써 LME 균열 현상이 억제되어 표면품질이 우수한 고강도 강판 및 이의 제조방법을 제공하고자 하는 것이다.
본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일 측면은,
소지강판; 및
상기 소지강판의 표층부에 형성된 페라이트 층을 포함하며,
상기 페라이트 층은 그 상부에, Fe-Ni 합금층이 형성되어 있는 내부산화층을 가지며,
상기 내부 산화층은 상기 페라이트 층의 표면으로부터 상기 소지강판의 기지조직의 결정립계를 따라 그 두께방향으로 최대 3㎛ 깊이까지 형성되어 있으며, 그리고
상기 Fe-Ni 합금층은 상기 페라이트 층의 표면으로부터 상기 소지강판 기지조직의 결정립계를 따라 그 두께방향으로 최대 2㎛ 깊이까지 상기 내부 산화층 내에 형성되어 있는 표면품질이 우수한 고강도 강판을 제공한다.
본 발명의 다른 일 측면은, 소지강판을 준비하는 단계; 상기 소지강판의 적어도 일 면에 Ni+Fe/rGO 복합 코팅층을 형성하는 단계; 및 상기 복합 코팅층이 형성된 소지강판을 소둔 열처리하는 단계를 포함하고,
상기 소둔 열처리는 최대 850℃의 온도범위, -10~+5℃의 이슬점 온도에서 행하는 것인 표면품질이 우수한 고강도 강판의 제조방법을 제공한다.
본 발명에 의하면, TRIP 강의 LME 현상을 억제하기 위한 종래기술들 대비 더욱 효과적으로 LME 현상을 억제할 수 있으며, 특히 강 표면 부근에서 산화물의 형성을 최소화시킴으로써 상기 TRIP 강의 도금성뿐만 아니라 표면품질이 향상된 고강도 강판을 제공하는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 고강도 강판의 두께 방향 단면을 도식화하여 나타낸 것이다.
본 발명자들은 산화성 원소들을 일정량 함유하는 TRIP 강은 연성이 우수하여 고 성형에 적합한 반면, 용접 과정에서 상기 산화성 원소들이 표면 농화되어 LME 등의 결함을 발생시키는 문제를 효과적으로 억제할 수 있는 방안에 대하여 깊이 연구하였다.
그 결과, TRIP 강 제조시 소둔 열처리에 앞서 Ni 코팅을 행하는 한편, 상기 Ni 코팅시 특정 물질을 더 첨가하여 복합 코팅층을 형성하면서, 이후의 소둔 열처리 공정을 최적화함으로써 산화성 원소들의 표면 농화를 근본적으로 억제할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
이하, 본 발명에 대하여 상세히 설명한다.
우선, 본 발명에서 제공하는 표면품질이 우수한 고강도 강판은 소지강판; 및 상기 소지강판의 표층부에 형성된 페라이트 층을 포함하며, 상기 페라이트 층 은 그 상부에, Fe-Ni 합금층이 형성된 내부 산화층을 가질 수 있다.
상기 소지강판은 고강도를 갖는 TRIP 강으로서, 이의 합금조성에 대해서는 특별히 한정하지 아니하나, 한 가지 예로서 중량%로 탄소(C): 0.17~0.19%, 실리콘(Si): 1.3~1.7%, 망간(Mn): 2.4~2.7%, 알루미늄(Al): 0.01~0.7%, 인(P): 0.01% 이하, 황(S): 0.003% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다.
탄소(C)는 강도 확보 및 잔류 오스테나이트 안정화를 위해서 첨가되는 중요한 원소이다. 상술한 효과를 충분히 얻기 위해서는 0.17% 이상으로 포함할 수 있으나, 그 함량이 과다할 경우 용접성이 열위해지는 문제가 발생하므로, 이를 고려하여 0.19% 이하로 제한할 수 있다.
실리콘(Si)은 페라이트 내에서 탄화물의 석출을 억제하고, 페라이트 내 탄소가 오스테나이트로 확산하는 것을 조장하는 원소로써 잔류 오스테나이트의 안정화에 기여하는 원소이다. 상술한 효과를 충분히 얻기 위해서는 1.3% 이상으로 Si을 포함할 수 있으나, 그 함량이 과다할 경우 압연성이 열위해지며 강판 표면에 Si 산화물을 형성함으로써 도금성을 저해하는 문제가 있으므로, 이를 고려하여 1.7% 이하로 제한할 수 있다.
망간(Mn)은 잔류 오스테나이트의 형성 및 안정화에 기여하는 원소로써, 강도 및 연성 확보에 효과적인 원소이다. 상술한 효과를 충분히 얻기 위해서는 2.4% 이상으로 Mn을 포함하는 것이 유리하나, 그 함량이 과다할 경우 주조 및 열연공정에서 유발된 편석에 의해 기계적 물성이 저하될 수 있으므로, 이를 고려하여 2.7% 이하로 제한할 수 있다.
알루미늄(Al)은 강의 탈산을 위해 첨가하는 원소이며, 세멘타이트의 석출을 억제하여 잔류 오스테나이트를 안정하는 데에 효과적이다. 이러한 Al의 함량이 0.01% 미만이면 탈산 효과가 미비하여 강의 청정성이 열화된다. 한편, 잔류 오스테나이트 안정화 효과를 높이기 위해서는 상기 Al을 0.1% 이상으로 첨가하는 것이 유리하나, 그 함량이 0.7%를 초과하게 되면 강의 주조성 및 도금밀착성이 저하되는 문제가 있다.
인(P)은 고용강화 원소이나, 그 함량이 과다할 경우 강의 취성이 발생할 수 있으므로 상기 P의 상한을 0.01%로 제한할 수 있다.
황(S)은 강 중 불순물 원소로서 강의 연성 및 용접성이 저해될 수 있으므로 그 함량을 0.003% 이하로 제한할 수 있다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
즉, 본 발명은 Mn, Si와 같은 산화성 원소들을 일정량 함유하는 강을 대상으로, 상기 강 내에 존재하는 Mn, Si 등의 산화성 원소들의 표면 농화를 최소화함에 기술적 의의가 있다.
본 발명의 고강도 강판은 상기 소지강판의 표층부에 형성된 페라이트 층을 포함하며, 상기 페라이트 층은 그 상부에, Fe-Ni 합금층이 형성된 내부 산화층을 가지는 것에 특징이 있다(도 1).
우선, 상기 소지강판의 표층부는 상기 페라이트 층의 최 표면으로부터 상기 소지강판의 두께 방향으로 최대 50㎛까지, 보다 유리하게는 최대 30㎛ 까지의 영역으로 지칭할 수 있다. 이에 따라, 본 발명에서 상기 페라이트 층은 상기 소지강판의 두께 방향을 기준, 상기 소지강판 내부로 최대 50㎛까지, 바람직하게는 최대 30㎛까지 존재할 수 있다. 상기 페라이트 층 내에서 상기 내부 산화층은 상기 페라이트 층의 표면으로부터 상기 소지강판의 기지조직의 결정립계를 따라 그 두께방향으로 최대 3㎛ 깊이까지 형성되고, 상기 Fe-Ni 합금층은 상기 페라이트 층의 표면으로부터 상기 소지강판 기지조직의 결정립계를 따라 그 두께방향으로 최대 2㎛ 깊이까지 상기 내부 산화층 내에 형성될 수 있다. 이때, 상기 Fe-Ni 합금층과 내부 산화층은 상기 페라이트 층의 최 표면으로부터 각각 최대 2㎛, 3㎛ 깊이로 결정립계를 따라 연속해서 존재하거나, 일정 거리를 두고 불연속적으로 존재할 수도 있다. 여기서, 결정립계라 함은 소지강판의 기지조직의 결정입계를 말하는 것으로, 페라이트 입계뿐만 아니라 오스테나이트 입계, 베이나이트 입계, 마르텐사이트 입계를 의미하며, 각 상(phase) 중 적어도 한 가지 상(phase)의 입계에 존재할 수 있음을 밝혀둔다.
상기 소지강판은 도금처리되어 상기 소지강판의 적어도 일 면에 도금층이 존재하는 도금강판일 수 있으며, 이 경우에는 상기 도금층 직하, 즉 상기 소지강판과 도금층의 계면에 페라이트 층을 포함할 수 있다. 이때, 상기 도금층 직하의 면을 상기 페라이트 층의 최 표면으로 정할 수 있을 것이다.
본 발명에서는, 예컨데, GA 도금강판의 경우, 상기 페라이트 층에 인접하는 도금층 내부에는 Fe-Ni 합금층이 형성될 수도 있다.
후술하여 구체적으로 설명하겠지만, 상기 페라이트 층 상부의 Fe-Ni 합금층과 내부 산화층은 상기 소지강판을 소둔 열처리하기에 앞서 Ni 복합 코팅층을 형성한 후에 소둔 열처리 공정을 행함으로써 형성할 수 있다.
보다 구체적으로, 상기 Ni 복합 코팅층은 환원된 그래핀 산화물 즉, rGO가 코팅된 Fe 산화물과 Ni 화합물의 혼합 조성물로부터 형성할 수 있으며, 이로부터 형성된 코팅층 내의 Fe 산화물이 후속 소둔 열처리 과정에서 소지강판 내로 확산하여 강 내의 Mn, Si 등의 표면 확산을 억제하는 한편, 상기 Fe 보다 소지강판 내로의 확산이 더 빠른 Ni과 결합하여 표면에서 Fe-Ni 산화층을 형성하게 된다.
Ni-X 또는 Fe-X (여기서, X는 Si 또는 Mn)계의 결정립에서 각 원소별 segregation energy를 확인해 보면, Fe-Si과 Fe-Mn는 모두 10~90kJ/mol 수준이며, Ni-Si은 음의 값, Ni-Mn은 양의 값을 갖는다. 즉, Ni-Mn 결정립계에서 Mn은 편석(segregation)이 일어나기 용이한 조건이 되지만, Fe 내로 Ni의 확산에 의해 Mn은 표면으로의 확산이 어려워진다.
한편, 이 과정에서 Si의 표면 확산은 용이하나, Ni 복합 코팅층 내에 함유된 rGO 역시 소지 내로 확산되어 상기 Fe-Ni 합금층 내에 함께 존재하며, 상기 rGO 내에 존재하는 피리디닉(pyridinic)과 그래피틱(graphitic)의 높은 산소반응성으로 인하여 Si을 비롯한 강 내의 산화성 원소들의 표면 확산을 유효하게 억제할 수 있다.
또한, 상기 소둔 열처리 과정에서 이슬점을 높이기 위해 함습 질소를 투입하는데, 이로 인해 Si, Mn 등이 표층 내에서 내부 산화층을 형성한다.
한편, 상기 소지강판의 표면에 존재하는 페라이트 층은 상기 소지강판의 두께 방향 기준, 상기 소지강판 내부로 최대 50㎛의 두께로 존재할 수 있다 (도 1).
본 발명에서 상기 페라이트 층은 소둔 열처리 과정에서 형성된 내부 산화층의 산소(O) 원자가 강 내의 탄소와 결합하여 일산화탄소(CO)로 탈탄되는 반응에 의해 형성된다.
상기 페라이트 층은 연질의 성질을 가지므로, 균열이 생기기 어려워져 LME 현상을 억제하는 효과가 있다. 이러한 효과가 충분히 발현되기 위해서는 상기 페라이트 층 내에서 면적분율 50% 이상으로 페라이트(ferrite) 상을 포함하는 것이 바람직하다.
본 발명에서 소지강판은 앞서 언급한 합금조성을 가지는 냉연강판일 수 있으며, 상기 냉연강판의 적어도 일 면에 도금층을 포함하는 도금강판일 수도 있다.
상기 소지강판이 도금강판인 경우, 상기 도금층은 특별히 한정하지 아니하나, 보편적으로 아연계 도금층일 수 있으며, 이 도금층은 상기 소지강판(냉연강판)의 표면에 존재하는 페라이트 층 상부에 형성될 수 있음을 밝혀둔다.
이하, 본 발명에서 제공하는 표면품질이 우수한 고강도 강판을 제조하는 방법에 대하여 상세히 설명한다.
간략히 설명하면, 소지강판을 준비한 후, 상기 소지강판의 적어도 일 면에 Ni을 함유하는 복합 코팅층을 형성한 다음, 상기 복합 코팅층이 형성된 소지강판을 소둔 열처리하는 단계를 포함할 수 있다.
각 공정 조건에 대해서는 하기에 상세히 설명한다.
우선, 소지강판은 앞서 설명한 바와 같이, TRIP 강으로서, 이의 합금조성에 대해서는 특별히 한정하지 아니하나, 한 가지 예로서 중량%로 탄소(C): 0.17~0.19%, 실리콘(Si): 1.3~1.7%, 망간(Mn): 2.4~2.7%, 알루미늄(Al): 0.01~0.7%, 인(P): 0.01% 이하, 황(S): 0.003% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다.
상기 소지강판은 냉연강판일 수 있으며, 상기 각 원소의 설명은 상술한 내용으로 대체함을 밝혀둔다.
상기에 따라 준비된 소지강판의 적어도 일 면에 Ni을 함유한 복합 코팅층, 바람직하게는 Ni+Fe/rGO 복합 코팅층을 형성할 수 있다.
상기 Ni+Fe/rGO 복합 코팅층은 니켈(Ni) 화합물과 Fe/rGO 수용액을 각각 제조한 후, 이를 혼합하여 제조한 코팅 조성물로부터 형성할 수 있다.
우선, 환원된 그래핀 산화물인 rGO를 제조한다. 상기 rGO는 흑연을 산화시켜 표면에 산소(O) 원자를 포함하는 산화 그래핀(graphene oxide, GO)을 환원시킴으로써 얻을 수 있다.
구체적으로, 산화 그래핀(GO)을 증류수 1ml 당 0.001~0.01g으로 분산시킨 용액 200ml 기준으로 하이드라진 모노하이드레이트(hydrazine monohydrate)를 1~10ml 첨가한 다음 고온에서 유지한다. 이후, 50~100ml의 황산을 첨가한 다음 초음파 처리함으로써 rGO를 제조할 수 있다.
이때, 고온에서 유지하는 공정은 70~90℃에서 1~3시간 동안 행할 수 있으며, 초음파 처리는 20~40분간 행할 수 있다. 상기 유지 공정시 90℃를 초과하는 온도에서 3시간 넘게 수행되면 증발되는 물의 양이 과다해져 적정 수준의 용액을 얻기 어렵다. 또한, 초음파 처리시 20분 미만이면 균일한 rGO를 확보하는 데에 어려움이 있으며, 후속 Fe 코팅 공정시 초음파 공정이 다시 수반되므로 이를 고려하여 40분 이하로 행할 수 있다.
본 발명은 상기 rGO를 Fe 코팅시킬 수 있다. 상기 Fe은 복합 코팅층 내의 Ni과 합금상을 형성하는 데에 유효하며, 상기 rGO는 소지강판 내의 산화성 원소들의 표층 확산을 억제하는 데에 유효하다.
상기 rGO를 Fe로 코팅시키는 공정은 상기에 따라 제조된 rGO를 철(Fe) 산화물 수용액에 혼합한 다음, 이 혼합된 용액을 초음파 처리하여 행할 수 있다.
구체적으로, rGO 10ml/L 기준으로 FeSO4 또는 FeCl3 수화물이 포화된 수용액 1~10mg/L와 상기 rGO를 100~500ml의 순수(pure water)에 넣고 혼합한 다음, 60~600분간 초음파 처리하여 나노 사이즈의 Fe 산화물이 최대 3중량%로 함유된 Fe/rGO를 얻을 수 있다. 상기 초음파 처리 시간이 60분 미만이면 Fe 코팅양이 미비하여 Fe 코팅된 rGO를 원활히 형성할 수 없으며, 반면 600분을 초과하게 되면 오히려 Fe 코팅이 어려워지는 문제가 있다.
상술한 초음파 공정에 의해 상기 Fe 산화물은 수십 나노 사이즈(nm)로 코팅될 수 있으며, 바람직하게 그 크기가 10~50nm일 수 있다.
상기에 따라 제조된 Fe/rGO 수용액에 니켈(Ni) 화합물을 혼합하여 복합 코팅층 형성을 위한 코팅 조성물을 제조할 수 있다.
구체적으로, 상기 Fe/rGO 수용액 10ml 기준, 1~1.5M(mol)의 NiSO4, 0.1~0.5M의 NiCl2 및 0.1~0.5M H3BO3로 구성된 와트욕(Watts bath)을 제조한 다음, 상기 Fe/rGO 수용액을 상기 와트욕 내에 첨가하여 Ni+Fe/rGO 코팅 조성물을 얻을 수 있다.
상기 Ni+Fe/rGO 코팅 조성물은 pH가 1~2일 수 있다. 이와 같이, 코팅 조성물의 pH를 상술한 범위로 조절함으로써 조성물 내에 함유된 그래핀(rGO)을 코팅층 내에 균일하게 분산시킬 수 있다. 상기 rGO를 코팅층 내에 균일하게 분산시킴으로써 강판의 내부식성, 전기적, 물리적 물성 등을 향상시킬 수 있다.
상기 와트욕 내에 첨가되는 Fe/rGO 수용액의 양이 과도하게 되면 다량의 침지가 발생하여 용액 안정성의 확보가 곤란해지는 문제가 있다.
본 발명에서는 상기에 따라 제조된 Ni+Fe/rGO 코팅 조성물을 앞서 준비한 소지강판의 적어도 일 면에 코팅 처리할 수 있으며, 이때 전기도금을 통한 코팅 처리로부터 의도하는 Ni+Fe/rGO 복합 코팅층을 형성할 수 있다.
상기 전기도금을 통해 복합 코팅층 형성시 Ni 부착량 기준 단위면적(m2) 당 200~800mg의 부착량으로 행하는 것이 바람직하다. 상기 Ni 부착량이 단위면적 당 200mg 미만이면 강 내부 산화성 원소들의 표층 확산을 효과적으로 억제할 수 없고, 반면 800mg를 초과하게 되면 그 효과가 포화되며 경제적으로 불리해진다. 보다 유리하게는 단위면적(m2) 당 400mg 이상의 부착량으로 행할 수 있다.
상기 전기도금시 용액의 온도를 높일수록 전기전도도가 상승하여 도금 효율이 향상된다. 하지만, 그 온도가 60℃를 초과하게 되면 용액 증발량이 현저히 증가하게 되므로 60℃ 이하에서 행할 수 있으며, 일정 수준의 전기전도도를 얻기 위해서는 30℃ 이상의 온도에서 행하는 것이 유리하다.
상기 전기도금을 완료하여 적어도 일 면에 Ni+Fe/rGO 복합 코팅층이 형성된 소지강판을 소둔 열처리하는 것이 바람직하다.
상기 소둔 열처리시 소지강판 내 산화성 원소들의 표층 확산을 억제하면서, 내부 산화를 촉진하기 위하여 -10~+5℃의 이슬점 온도, 최대 850℃의 온도범위에서 행하는 것이 바람직하다.
상기 소둔 열처리시 이슬점 온도가 +5℃를 초과하게 되면 소지철 자체가 산화될 우려가 있다. 다만, 그 온도가 과도하게 낮으면 도금 성능이 열화되는 문제가 있으므로, 이를 고려하여 상기 이슬점 온도의 하한을 -10℃로 제한할 수 있다.
상기와 같이 분위기가 제어된 소둔로 내에서 소둔시 최대 850℃, 바람직하게는 750~850℃의 온도범위에서 열처리를 행할 수 있다. 상기 열처리시 온도가 750℃ 미만이면 내부 산화가 충분히 일어나지 못하게 될 우려가 있으며, 반면 그 온도가 850℃를 초과하게 되면 탈탄이 과도해지고, 인장 물성이 열위하게 될 우려가 있다.
한편, 상기 소둔 열처리를 위해 가열시 가열 구간, 바람직하게 700℃ 이상으로 승온되었을 때 함습 질소를 투입할 수 있다. 이는, 산화성 원소들의 내부 산화와 탈탄을 유도하기 위함으로서, 50~200m3/h로 투입하는 것이 유리하다. 이때, 투입되는 함습 질소의 양이 50m3/h 미만이면 이슬점 상승 효과가 불충분하여 내부 산화층은 일부 형성될 수 있지만 탈탄을 유도하기 어려워지며, 반면 200m3/h를 초과하게 되면 이슬점이 5℃를 초과하여 과도하게 높아져 소지철 자체가 산화되는 문제가 있다.
본 발명은 상술한 조건으로 소둔 열처리를 행함에 의해 소지강판의 적어도 일 면에 형성된 Ni+Fe/rGO 복합 코팅층의 rGO에 입혀진 Fe 산화물은 소둔로 내 환원 분위기에 의해 표층에서 Fe로 환원되고, 이렇게 환원된 Fe의 일부가 소지강판 내부로 확산된다.
이때, 복합 코팅층 내 Ni은 Fe로 확산함에 따라 표층에서 Fe-Ni 산화층을 형성하게 된다.
그리고, 강 내부에 존재하는 산화성 원소들(Mn, Si 등)은 상기 Fe-Ni 산화층에 의해 표면 농화가 억제되는 한편, 소둔로 분위기 질소 내의 수증기 또는 rGO의 피리디닉, 그래피틱에 의해 산화되어 내부 산화층을 형성하게 된다.
상기 Fe-Ni 산화층과 내부 산화층은 모두 결정립계를 따라 형성될 수 있으며, 각각 최대 2㎛, 최대 3㎛의 크기(길이)로 형성될 수 있다.
상기 소둔 열처리 과정에서 소둔 농화물 대신 내부 산화층이 형성됨에 의해 수증기가 소지강판의 표층에서 O 원자로 해리되고, 이 O 원자가 강 중의 탄소(C)와 결합하여 일산화탄소(CO)로 탈탄되는 반응이 후속적으로 수반된다. 이로 인해, 소지강판 표면에서 소지강판 내부 방향으로 일정 두께의 페라이트 층이 형성되며, 상기 페라이트 층은 그 상부에, Fe-Ni 합금층이 형성되어 있는 내부산화층을 포함한다.
이와 같이, 소지강판 표층부에, 상기 Fe-Ni 산화층이 형성되어 있는 내부 산화층을 갖는 페라이트 층이 존재함으로 인해 균열의 전파를 최소화하는 효과가 있고, 결과적으로 LME 발생을 억제하는 효과가 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
(실시예)
중량%로, 0.18%C-1.5%Si-2.5%Mn-0.05%Al-0.005%P-0.0015%S (잔부 Fe 및 불가피한 불순물)로 조성된 두께 1.5mm의 냉연강판(TRIP강)을 준비한 후, 상기 냉연강판의 일 면을 코팅 처리하였다.
상기 코팅 처리를 위한 코팅 조성물을 다음에 따라 제조하였다.
[rGO 제조]
증류수 1ml당 산화 그래핀(GO)이 0.01g이 분산된 산화 그래핀 분산액(200 ml)에 하이드라진 모노하이드레이트 10ml을 천천히 적가한 후, 80℃에서 2시간 동안 교반하였다. 이후, 상기 용액에 황산을 첨가한 후 30분 동안 초음파 처리하여 산화 그래핀이 환원된 rGO가 분산된 용액을 얻었다.
[코팅 조성물 제조]
상기 제조된 rGO 용액 10ml와 FeSO4 수화물이 포화된 수용액 10mg/L를 500ml의 순수에 첨가하여 혼합한 다음, 60분간 초음파 처리하여 Fe/rGO 수용액을 얻었다. 이때, 상기 Fe/rGO는 10nm의 Fe 산화물이 3중량%로 함유된 것이다.
이후, 상기 Fe/rGO 수용액 10ml를 황산니켈(262.7g, 1M), 염화니켈(64.9g, 0.5M) 및 붕산(30.4g, 0.5M)이 용해된 와트욕에 첨가한 후 1시간 교반하여 pH 1의 Ni+Fe/rGo 코팅 조성물을 얻었다.
상기에 따라 제조된 Ni+Fe/rGo 코팅 조성물을 앞서 언급한 소지강판의 일 면에 코팅 처리하였으며, 이때 200~800mg/m2의 Ni 부착량으로 50℃에서 전기도금을 실시하였다.
이후, Ni 부착량을 다르게 하여 코팅 처리한 각각의 소지강판을 3~5부피%로 질소를 함유하는 소둔로 내에서 850℃까지 승온시켜 소둔 열처리를 행하였다. 이때, 이슬점 온도를 -50℃, -10℃ 또는 +5℃로 적용하였으며, 700℃ 구간에서 함습 질소 100m3/h를 투입하였다.
하기 표 1은 전기도금 및 소둔 열처리 후 각 시편의 최 표면으로부터 두께 방향 100nm까지의 Mn, Si 함량을 GDS로 분석한 결과를 나타낸 것이다. 이때, Ni+Fe/rGo 코팅 조성물을 이용하여 전기도금시 Ni 부착량과 소둔 열처리시 이슬점 온도에 따른 변화와 함께, Fe/rGO의 유무에 따른 결과를 함께 비교하였다.
조건\원소 Mn Si
이슬점(℃) -50 -50 -10 +5 -50 -50 -10 +5
Fe/rGO(ml/L) 0 10 10 10 0 10 10 10
Ni 부착량
(mg/m2)
0 1.059 0.318 0.350 0.360 0.328 0.203 0.199 0.197
200 0.556 0.312 0.322 0.325 0.253 0.229 0.159 0.132
400 0.439 0.314 0.303 0.300 0.232 0.266 0.148 0.104
800 0.284 0.308 0.294 0.288 0.212 0.204 0.113 0.078
(표 1에서 각 원소의 단위는 중량%×㎛ 이다.)
상기 표 1에 나타낸 바와 같이, 코팅 조성물이 Ni 단독 조성물 대비 Ni+Fe/rGO 코팅 조성물인 경우, 표면에서의 Mn, Si 농화가 크게 억제되는 것을 확인할 수 있다.
뿐만 아니라, 이슬점 온도가 높을수록, Ni 부착량이 높을수록 산화성 원소들의 표면 확산을 억제하는 경향이 커짐을 알 수 있다.
하기 표 2는 전기도금 및 소둔 열처리 후 각 시편의 내부 산화층의 깊이(㎛)를 측정한 결과를 나타낸 것이다. 이때, Ni+Fe/rGo 코팅 조성물을 이용하여 전기도금시 Ni 부착량과 소둔 열처리시 이슬점 온도에 따른 변화와 함께, Fe/rGO의 유무에 따른 결과를 함께 비교하였다. 내부 산화층의 깊이는 시편을 압연방향의 직각방향으로 절단한 후, 그 단면을 SEM으로 관찰하여 측정하였다.
이슬점(℃) -50 -50 -10 +5
Fe/rGO(ml/L) 0 10 10 10
Ni 부착량
(mg/m2)
0 - - 0.8±0.3 1.2±0.5
200 - - 1.2±0.5 1.6±0.7
400 - 1.1±0.4 2.1±0.8 2.5±1.2
800 - 0.5±0.2 1.4±0.4 1.8±0.5
상기 표 2에 나타낸 바와 같이, 코팅 조성물이 Ni 단독인 경우에는 내부 산화층이 관찰되지 않음을 알 수 있다. 한편, Ni+Fe/rGO 코팅 조성물을 이용하는 경우, 이슬점 온도가 -50℃에서는 Ni 부착량이 400mg/m2 이상일 때 내부 산화층이 관찰되며, 이슬점 온도가 -10℃, +5℃에서는 Ni 부착량이 클수록 최대 2.5±1.2㎛까지 형성되었다.
한편, 부착량이 800mg/m2인 경우에는 400mg/m2 대비 내부 산화층의 두께가 줄어든 것을 알 수 있다. 이는, 코팅층이 상대적으로 두꺼워짐에 따라 확산되지 않고 일부 Ni이 잔류하여 잔존층을 형성함에 기인하는 것으로 확인된다.
하기 표 3은 전기도금 및 소둔 열처리 후 각 시편의 최 표면으로부터 두께 방향 50㎛까지의 페라이트 분율(면적%)을 측정한 결과를 나타낸 것이다. 이때, Ni+Fe/rGO 코팅 조성물을 이용하여 전기도금시 Ni 부착량과 소둔 열처리시 이슬점 온도에 따른 변화와 함께, Fe/rGO의 유무에 따른 결과를 함께 비교하였다.
이슬점(℃) -50 -50 -10 +5
Fe/rGO(ml/L) 0 10 10 10
Ni 부착량
(mg/m2)
0 - - 33.0 49.0
200 - 6.5 51.3 68.3
400 - 28.7 65.0 78.5
800 - 17.8 57.8 72.8
상기 표 3에 나타낸 바와 같이, 코팅 조성물이 Ni 단독인 경우에는 탈탄이 전혀 일어나지 아니한 것을 알 수 있다. 그리고, 이슬점 온도가 높을수록, Ni 부착량이 높을수록 탈탄이 유리하게 일어남에 의해 페라이트 분율이 높아짐을 알 수 있다.
하기 표 4는 전기도금 및 소둔 열처리 후 합금화 용융아연도금처리한 다음, 각 시편의 표면 품질을 관찰한 결과를 나타낸 것이다. 이때, 합금화 용융아연도금처리는 통상의 아연도금욕을 이용하여 용융아연도금처리한 후 480℃에서 합금화 열처리로 행하였다.
그리고, Ni+Fe/rGo 코팅 조성물을 이용하여 전기도금시 Ni 부착량과 소둔 열처리시 이슬점 온도에 따른 변화와 함께, Fe/rGO의 유무에 따른 결과를 함께 비교하였다. 이때, 표면 마이크로 분석기를 이용하여 미도금 여부를 관찰하였으며, 미도금이 관찰되지 않은 시편에 대해서 '양호'로 판정하였다.
이슬점(℃) -50 -50 -10 +5
Fe/rGO(ml/L) 0 10 10 10
Ni 부착량
(mg/m2)
0 미도금 미도금 미도금 양호
200 ζ+δ η상 양호 양호
400 ζ+δ 양호 양호 양호
800 δ상 조대 양호 양호 양호
상기 표 4에 나타낸 바와 같이, 코팅 조성물이 Ni 단독인 경우에는 Ni 부착량에 관계없이 미도금이 발생하거나 합금화도가 불량하게 나타났다. 즉, 표면 개선 효과가 전혀 나타나지 아니하였다.
반면, Ni+Fe/rGo 코팅 조성물을 이용한 경우, 이슬점 온도 -50℃에서는 Ni 부착량이 400mg/m2 이상일 때 표면이 개선되는 현상을 보였으며, 이슬점 온도 -10℃에서는 부착량이 200mg/m2 이상일 때부터 표면이 개선되었고, +5℃에서는 Ni 부착량에 무관하게 표면 품질이 양호하였다.

Claims (14)

  1. 소지강판; 및
    상기 소지강판의 표층부에 형성된 페라이트 층을 포함하며,
    상기 페라이트 층은 그 상부에, Fe-Ni 합금층이 형성되어 있는 내부산화층을 가지며,
    상기 내부 산화층은 상기 페라이트 층의 표면으로부터 상기 소지강판의 기지조직의 결정립계를 따라 그 두께방향으로 최대 3㎛ 깊이까지 형성되어 있으며, 그리고
    상기 Fe-Ni 합금층은 상기 페라이트 층의 표면으로부터 상기 소지강판 기지조직의 결정립계를 따라 그 두께방향으로 최대 2㎛ 깊이까지 상기 내부 산화층 내에 형성되어 있는 표면품질이 우수한 고강도 강판.
  2. 제 1항에 있어서,
    상기 페라이트 층은 상기 소지강판의 두께 방향을 기준, 상기 소지강판 내부로 최대 50㎛의 두께로 존재하는 표면품질이 우수한 고강도 강판.
  3. 제 2항에 있어서,
    상기 페라이트 층은 면적분율 50% 이상으로 페라이트(ferrite) 상을 포함하는 표면품질이 우수한 고강도 강판.
  4. 제 1항에 있어서,
    상기 페라이트 층은 상기 소지강판의 두께 방향을 기준, 상기 소지강판 내부로 최대 30㎛의 두께로 존재하는 표면품질이 우수한 고강도 강판.
  5. 제 1항에 있어서,
    상기 Fe-Ni 합금층 내에는 환원된 그래핀 산화물(rGO)을 더 포함하는 표면품질이 우수한 고강도 강판.
  6. 제 1항에 있어서,
    상기 소지강판은 중량%로 탄소(C): 0.17~0.19%, 실리콘(Si): 1.3~1.7%, 망간(Mn): 2.4~2.7%, 알루미늄(Al): 0.01~0.7%, 인(P): 0.01% 이하, 황(S): 0.003% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 냉연강판인 표면품질이 우수한 고강도 강판.
  7. 제 1항에 있어서,
    상기 페라이트 층 표면에 형성되어 있는 도금층을 추가로 포함하며,
    상기 페라이트 층에 접하는 도금층 내부에는 Fe-Ni 합금층이 형성되어 있는 표면품질이 우수한 고강도 강판.
  8. 소지강판을 준비하는 단계;
    상기 소지강판의 적어도 일 면에 Ni+Fe/rGO 복합 코팅층을 형성하는 단계; 및
    상기 복합 코팅층이 형성된 소지강판을 소둔 열처리하는 단계를 포함하고,
    상기 소둔 열처리는 최대 850℃의 온도범위, -10~+5℃의 이슬점 온도에서 행하는 것인 표면품질이 우수한 고강도 강판의 제조방법.
  9. 제 8항에 있어서,
    상기 복합 코팅층의 Fe/rGO는 rGO 표면에 Fe 산화물이 코팅된 것인 표면품질이 우수한 고강도 강판의 제조방법.
  10. 제 8항에 있어서,
    상기 복합 코팅층을 형성하는 단계는,
    i) rGO를 제조하는 단계;
    ii) 상기 제조된 rGO를 철 산화물 수용액에 혼합하고, 상기 수용액을 초음파처리하는 단계;
    iii) 상기 초음파 처리된 수용액과 니켈 화합물을 혼합하여 코팅 조성물을 형성하는 단계; 및
    iv) 상기 코팅 조성물을 상기 소지강판의 적어도 일면에 전기도금 처리하는 단계를 포함하는 것인 표면품질이 우수한 고강도 강판의 제조방법.
  11. 제 10항에 있어서,
    상기 코팅 조성물은 pH가 1~2인 표면품질이 우수한 고강도 강판의 제조방법.
  12. 제 10항에 있어서
    상기 전기도금 단계는 Ni 부착량 기준 단위면적(m2) 당 200~800mg의 부착량으로 행하는 것인 표면품질이 우수한 고강도 강판의 제조방법.
  13. 제 8항에 있어서,
    상기 소둔 열처리시 승온 온도가 700℃ 이상일 때 50~200m3/h의 함습 질소를 투입하는 것인 표면품질이 우수한 고강도 강판의 제조방법.
  14. 제 8항에 있어서,
    상기 소지강판은 중량%로 탄소(C): 0.17~0.19%, 실리콘(Si): 1.3~1.7%, 망간(Mn): 2.4~2.7%, 알루미늄(Al): 0.01~0.7%, 인(P): 0.01% 이하, 황(S): 0.003% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 냉연강판인 표면품질이 우수한 고강도 강판의 제조방법.
PCT/KR2022/013778 2021-09-16 2022-09-15 표면품질이 우수한 고강도 강판 및 이의 제조방법 WO2023043216A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22870300.5A EP4403656A1 (en) 2021-09-16 2022-09-15 High-strength steel sheet having excellent surface quality and manufacturing method therefor
JP2024505380A JP2024530449A (ja) 2021-09-16 2022-09-15 表面品質に優れた高強度鋼板及びその製造方法
CN202280062394.6A CN117940589A (zh) 2021-09-16 2022-09-15 表面质量优异的高强度钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0123764 2021-09-16
KR20210123764 2021-09-16

Publications (1)

Publication Number Publication Date
WO2023043216A1 true WO2023043216A1 (ko) 2023-03-23

Family

ID=85603263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013778 WO2023043216A1 (ko) 2021-09-16 2022-09-15 표면품질이 우수한 고강도 강판 및 이의 제조방법

Country Status (5)

Country Link
EP (1) EP4403656A1 (ko)
JP (1) JP2024530449A (ko)
KR (1) KR20230040928A (ko)
CN (1) CN117940589A (ko)
WO (1) WO2023043216A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150118411A1 (en) * 2013-10-28 2015-04-30 Institut National De La Recherche Scientifique Method of producing a graphene coating on a stainless steel surface
KR101630976B1 (ko) 2014-12-08 2016-06-16 주식회사 포스코 표면품질 및 도금 밀착성이 우수한 초고강도 용융아연도금강판 및 그 제조방법
KR101736640B1 (ko) * 2015-12-24 2017-05-17 주식회사 포스코 도금성 및 점용접성이 우수한 아연계 도금강판 및 그 제조방법
KR20170075126A (ko) * 2015-12-22 2017-07-03 주식회사 포스코 그래핀 산화물의 분리방법 및 그래핀 코팅강판의 제조방법
KR101808445B1 (ko) * 2016-09-12 2017-12-12 현대제철 주식회사 고장력 용융도금강판 및 그 제조방법
KR20210000027A (ko) * 2019-06-24 2021-01-04 주식회사 포스코 도금품질이 우수한 고강도 용융아연도금강판 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150118411A1 (en) * 2013-10-28 2015-04-30 Institut National De La Recherche Scientifique Method of producing a graphene coating on a stainless steel surface
KR101630976B1 (ko) 2014-12-08 2016-06-16 주식회사 포스코 표면품질 및 도금 밀착성이 우수한 초고강도 용융아연도금강판 및 그 제조방법
KR20170075126A (ko) * 2015-12-22 2017-07-03 주식회사 포스코 그래핀 산화물의 분리방법 및 그래핀 코팅강판의 제조방법
KR101736640B1 (ko) * 2015-12-24 2017-05-17 주식회사 포스코 도금성 및 점용접성이 우수한 아연계 도금강판 및 그 제조방법
KR101808445B1 (ko) * 2016-09-12 2017-12-12 현대제철 주식회사 고장력 용융도금강판 및 그 제조방법
KR20210000027A (ko) * 2019-06-24 2021-01-04 주식회사 포스코 도금품질이 우수한 고강도 용융아연도금강판 및 그 제조방법

Also Published As

Publication number Publication date
CN117940589A (zh) 2024-04-26
EP4403656A1 (en) 2024-07-24
JP2024530449A (ja) 2024-08-21
KR20230040928A (ko) 2023-03-23

Similar Documents

Publication Publication Date Title
WO2018117716A1 (ko) 내식성이 우수한 알루미늄계 도금 강재, 이를 이용한 알루미늄계 합금화 도금 강재 및 이들의 제조방법
WO2015099455A1 (ko) 액체금속취화에 의한 크랙 저항성이 우수한 용융아연도금강판
WO2010074435A2 (ko) 강판의 소둔장치, 이를 포함한 도금강판의 제조장치 및 이를 이용한 도금강판의 제조방법
WO2020130666A1 (ko) 열간성형 후 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 이들의 제조방법
WO2013032173A2 (ko) 도금밀착성이 우수한 고망간강 및 이로부터 용융아연도금강판을 제조하는 방법
WO2017111449A1 (ko) 도금성이 우수한 고강도 용융 아연계 도금 강재 및 그 제조방법
WO2019132336A1 (ko) 가공 후 내식성 우수한 아연합금도금강재 및 그 제조방법
WO2017111431A1 (ko) 내식성이 우수한 열간 프레스 성형품 및 그 제조방법
WO2020116876A2 (ko) 수소취성에 대한 저항성이 우수한 열간 프레스 성형 부재 및 그 제조방법
WO2022139367A1 (ko) 실러 접착성이 우수한 도금 강판 및 이의 제조방법
KR102365409B1 (ko) 내식성이 우수한 핫스탬핑 부품의 제조방법 및 이에 의해 제조된 핫스탬핑 부품
WO2021112584A1 (ko) 표면품질과 점 용접성이 우수한 아연도금강판 및 그 제조방법
WO2023043216A1 (ko) 표면품질이 우수한 고강도 강판 및 이의 제조방법
WO2020111883A1 (ko) 수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 철-알루미늄계 도금 강판 및 그 제조방법
WO2022131848A1 (ko) 열간 프레스 성형용 도금강판 및 그 제조 방법
WO2022124826A1 (ko) 도금품질이 우수한 고강도 용융아연도금강판, 도금용 강판 및 이들의 제조방법
WO2020122558A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2022124825A1 (ko) 도금품질이 우수한 고강도 용융아연도금강판, 도금용 강판 및 이들의 제조방법
WO2020111741A1 (ko) 방향성 전기강판 및 그의 제조방법
KR20140081617A (ko) 도금성 및 도금밀착성이 우수한 초고강도 용융아연도금강판 및 그 제조방법
KR102010077B1 (ko) 표면품질 및 도금밀착성이 우수한 고강도 용융아연도금강판 및 그 제조방법
WO2022139355A1 (ko) 인산염 반응성이 우수한 강판 및 이의 제조방법
WO2022234901A1 (ko) (001) 집합조직으로 구성된 전기강판 및 그의 제조방법
WO2020032446A1 (ko) 강도 및 도금성이 우수한 저비중 클래드 강판 및 그 제조방법
WO2023239206A1 (ko) 도금품질이 우수한 고강도 용융아연도금강판, 도금용 강판 및 이들의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22870300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024505380

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280062394.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022870300

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022870300

Country of ref document: EP

Effective date: 20240416