WO2023043043A1 - 플라즈마 처리 장치 - Google Patents

플라즈마 처리 장치 Download PDF

Info

Publication number
WO2023043043A1
WO2023043043A1 PCT/KR2022/010922 KR2022010922W WO2023043043A1 WO 2023043043 A1 WO2023043043 A1 WO 2023043043A1 KR 2022010922 W KR2022010922 W KR 2022010922W WO 2023043043 A1 WO2023043043 A1 WO 2023043043A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
sealing
pressure
plasma
electrode
Prior art date
Application number
PCT/KR2022/010922
Other languages
English (en)
French (fr)
Inventor
임유봉
Original Assignee
주식회사 플라즈맵
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210186633A external-priority patent/KR20230041559A/ko
Priority claimed from KR1020220013567A external-priority patent/KR20220133761A/ko
Priority claimed from KR1020220051210A external-priority patent/KR20220159266A/ko
Priority claimed from KR1020220053605A external-priority patent/KR20230041573A/ko
Priority claimed from KR1020220064367A external-priority patent/KR20220159294A/ko
Application filed by 주식회사 플라즈맵 filed Critical 주식회사 플라즈맵
Publication of WO2023043043A1 publication Critical patent/WO2023043043A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/01Palates or other bases or supports for the artificial teeth; Making same
    • A61C13/02Palates or other bases or supports for the artificial teeth; Making same made by galvanoplastic methods or by plating; Surface treatment; Enamelling; Perfuming; Making antiseptic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0003Not used, see subgroups
    • A61C8/0004Consolidating natural teeth
    • A61C8/0006Periodontal tissue or bone regeneration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes

Definitions

  • the present invention relates to a plasma processing apparatus, and more particularly, to a plasma processing apparatus for imparting characteristics according to plasma processing to an object to be processed.
  • Plasma treatment is used for various purposes in various industries such as semiconductor, display, agriculture and medical industries.
  • Plasma technology which has grown rapidly as a surface treatment technology in the semiconductor and display industries in the early 2000s, is mostly used for purposes such as etching or deposition, and such conventional technology is generally plasma treated by injecting discharge gas in a vacuum.
  • plasma treatment is applicable for sterilization and promotion of germination of seeds using non-thermal plasma.
  • This plasma treatment can have a sterilization effect of microorganisms present on the surface of the sprout by directly treating the surface of the seed with non-thermal plasma, and shortens the time required for germination by accelerating the germination rate and speed of sprout seed, which is required for production in agriculture. It has the effect of shortening the processing period and providing safer food.
  • plasma treatment is used in various ways, and is used to increase biocompatibility in implantation of biomaterials such as implants.
  • a treatment for implanting an artificial tooth generally referred to as an implant
  • an implant to replace a tooth after tooth extraction due to tooth decay or other reasons is used.
  • Implants used as artificial teeth are made of materials that are not rejected by the human body, and treatment is performed to restore functions as well as beauty to parts without bones and gums.
  • a fixture corresponding to the implant is planted in the alveolar bone from which the tooth has been extracted, and is fixed to restore the function of the tooth.
  • a primary procedure of placing the fixture into the alveolar bone and a secondary procedure of fixing a crown, which is the final prosthesis after waiting for 3 months or more for the fixture to osseointegrate into the alveolar bone are included.
  • commonly used fixtures are mainly made of titanium metal or titanium alloy. This material takes a long time to osseointegrate when implanted into the human body and creates an oxide film, so stability can be secured compared to metals of other materials. There is a need for securing more improved human body stability.
  • the rate and quality of osseointegration are closely related to the surface properties and chemical composition of implants, such as surface composition, surface roughness, and hydrophilicity.
  • an implant having a highly hydrophilic surface is advantageous for interaction with biological solutions, cells, and tissues.
  • hydrophilicity may be secured through a plasma surface treatment process.
  • hydrophilicity changes over time to hydrophobicity, and accordingly, it is difficult to secure existing biocompatibility.
  • the above problem is solved by using a quartz tube capable of securing the permeability of ultraviolet rays as a case and positioning and processing the object to be treated therein, but in terms of cost in using an expensive quartz tube
  • inconvenient management is required to prevent breakage, and since the treatment object located inside the quartz tube is isolated from the heat flow side, heat cannot escape by UV treatment and there is a problem due to thermal damage.
  • the conventional method of processing by generating plasma in an atmospheric pressure environment has a problem in that plasma processing performance is not constant, and high energy is transmitted locally, resulting in damage to the object to be treated and deterioration in the performance of the fixture.
  • the conventional plasma treatment method has a problem in that plasma generation and surface treatment are spatially inefficient because surface treatment is performed at atmospheric pressure.
  • a method of supplying a gas such as helium or argon to a space for plasma surface treatment.
  • this method has a limitation in that the gas must be continuously supplied, and there is a problem in that the sterility of the supplied gas must be secured.
  • a technical problem to be achieved by the present invention is to provide a plasma processing apparatus for plasma processing an object using a relatively low discharge voltage by exhausting the atmosphere in a certain space without a separate discharge gas to form a low pressure state.
  • the technical problem to be achieved by the present invention is to generate oxygen and nitrogen active species through plasma generation in a low pressure or density state using nitrogen and oxygen in the atmosphere without a separate discharge gas, and use them to treat the surface of the object to be treated.
  • the technical problem to be achieved by the present invention is to remove impurities from the surface of the object to be treated by exposing the object to be treated to a fluid flow and a low pressure state that exhaust the atmosphere, and to improve the removal performance by plasma and active species. It is to provide a plasma processing device.
  • a technical problem to be achieved by the present invention is to provide a plasma processing apparatus with improved processing performance by intensively generating plasma discharge around an object to be processed.
  • a technical problem to be achieved by the present invention is to provide a plasma processing apparatus that increases the visibility of the plasma discharge and improves the performance of active species by controlling the plasma discharge in a process pressure range so that the plasma generated around the object to be processed is variable.
  • a plasma processing apparatus in which the effect of plasma processing of an object to be processed is improved as the plasma discharge region is changed is provided.
  • an airtight sealing portion hermetically sealed against the external environment, a pressure adjusting portion forming a low-pressure atmosphere such that the internal pressure of the sealing portion is within a preset process pressure range, and an electric field formed inside the sealing portion.
  • a plasma processing apparatus including an electrode unit for discharging the low-pressure atmosphere is provided.
  • the plasma processing apparatus exhausts the atmosphere in a certain space without injecting a separate discharge gas to form a low pressure state, and can effectively plasma treat the surface of the object to be treated using a relatively low discharge voltage.
  • the plasma processing apparatus may generate oxygen and nitrogen active species through plasma generation in a low pressure or low density state using nitrogen and oxygen in the atmosphere without a separate discharge gas, so that the surface of the object to be treated may be plasma treated.
  • the plasma processing apparatus exposes the object to be treated to a fluid flow and a low pressure state in which air is exhausted to remove impurities from the surface of the object to be treated, and can perform plasma treatment with improved removal performance by plasma and active species.
  • the plasma processing device does not require a separate discharge gas supply device, so it is compact and can more easily secure sterility.
  • Plasma processing apparatuses may place a storage container in an airtight space and concentrate plasma discharge around an object to be processed accommodated therein through a hole formed in the storage container, thereby more effectively treating the object to be treated.
  • Plasma processing apparatuses may concentrate plasma discharge intensity around an object to be treated by using an induction member capable of inducing a change in intensity of plasma discharge in an enclosed space, and treat the surface of the object to be treated. effect can be amplified.
  • FIG. 1 is a block diagram showing a plasma processing apparatus of the present invention.
  • FIG. 2A to 2D are block diagrams for explaining another embodiment of the plasma processing apparatus of FIG. 1;
  • 3A and 3B are flowcharts sequentially illustrating a plasma processing method according to an embodiment of the present invention.
  • 4A to 4C are flowcharts for explaining another embodiment of a plasma processing method according to an embodiment of the present invention.
  • FIG 5 is a graph of internal pressure in an enclosed space over time while performing a plasma treatment method according to an embodiment of the present invention.
  • 6A to 6C are conceptual diagrams for explaining another embodiment of the plasma processing apparatus of FIG. 1 .
  • FIG. 7A to 7C are conceptual diagrams for explaining another embodiment of the plasma processing apparatus of FIG. 1 .
  • FIG. 8A to 8D are conceptual views for explaining another embodiment of the plasma processing apparatus of FIG. 1 .
  • FIG. 9 is a perspective view illustrating a plasma processing apparatus according to an embodiment of the present invention.
  • an airtight sealing portion hermetically sealed against the external environment, a pressure adjusting portion forming a low-pressure atmosphere such that the internal pressure of the sealing portion is within a preset process pressure range, and an electric field formed inside the sealing portion.
  • a plasma processing apparatus including an electrode unit for discharging the low-pressure atmosphere.
  • the pressure adjusting unit may form the low-pressure atmosphere by exhausting the internal atmosphere of the sealing unit.
  • the pressure adjusting unit may include an exhaust unit for exhausting air inside the sealing unit and a venting unit for injecting external air into the sealing unit.
  • the pressure adjusting unit may further include at least one valve that opens and closes a flow path connecting the exhaust unit or the venting unit and the sealing unit.
  • the internal pressure of the sealing part is variable in the process pressure range, and the region of the low pressure atmosphere discharged can be changed.
  • the internal pressure of the seal may be controlled to repeat a preset change.
  • the flow path connecting the sealing part and the venting part is closed, and the flow path connecting the sealing part and the exhaust part is repeatedly opened and closed so that the internal pressure of the sealing part is within the process pressure range.
  • a control unit for controlling the valve may be further included.
  • the flow passage connecting the sealing part and the exhaust part is opened, and the flow passage connecting the sealing part and the venting part is repeatedly opened and closed so that the internal pressure of the sealing part is included in the process pressure range.
  • a control unit controlling the valve may be further included.
  • the process pressure range may be greater than or equal to 1 Torr and less than 30 Torr.
  • an object to be treated is stored inside the sealing part, and after surface treatment of the object to be treated by the low pressure atmosphere discharged by the electrode part, connecting the sealing part and the venting part
  • a controller may further include a control unit that opens the passage and vents such that the internal pressure of the sealing unit becomes equal to the pressure of the external atmosphere.
  • control unit may stop the discharge of the low-pressure atmosphere, exhaust the atmosphere inside the sealing unit for a preset purification time, and then vent the plasma treatment to end the plasma treatment.
  • a sensor unit for measuring the internal pressure of the sealing unit is further included, and the control unit receives the internal pressure value of the sealing unit measured from the sensor unit, and the exhaust unit, the venting unit, and the At least one of the valves may be controlled.
  • the sealing part includes an exhaust flow path connected between the inside and the exhaust part and a venting flow path connected between the inside and the venting part, and the sensor unit is disposed inside the sealing part or through the exhaust flow path. Alternatively, it may be connected to the venting passage to obtain an internal pressure value of the sealing part.
  • the control unit for applying power to the electrode unit may be further included.
  • the sealing portion includes a first member and a second member separated, at least a portion of the first member or the second member has non-conductive properties, and the electrode portion is the first member. Alternatively, it may be disposed on the second member.
  • At least a portion of the first member or the second member is made of a transparent material, and a surface treatment process of the object to be treated stored in the sealing unit can be visually confirmed from the outside.
  • a portion of the first member or the second member having nonconductivity is transparent, or at least a portion of the first member or the second member is made of a transparent material having chemical resistance.
  • the electrode unit may include a first electrode disposed on the first member and a second electrode disposed on the second member.
  • the electrode unit may further include a power source for alternating voltage at a frequency of 10,000 Hz or more and 200,00 Hz or less.
  • an object to be treated is accommodated in the sealing part, and the object to be treated is exposed to plasma by the low-pressure atmosphere discharged by the electrode unit or exposed to active species generated by the plasma surface can be treated.
  • one component when one component is referred to as “connected” or “connected” to another component, the one component may be directly connected or directly connected to the other component, but in particular Unless otherwise described, it should be understood that they may be connected or connected via another component in the middle.
  • ⁇ unit means a unit that processes at least one function or operation, which includes a processor, a micro Processor (Micro Processor), Micro Controller, CPU (Central Processing Unit), GPU (Graphics Processing Unit), APU (Accelerate Processor Unit), DSP (Drive Signal Processor), ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), etc., or a combination of hardware and software, or may be implemented in a form combined with a memory storing data necessary for processing at least one function or operation. .
  • a micro Processor Micro Processor
  • Micro Controller CPU
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • APU Accelerate Processor Unit
  • DSP Drive Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • each component to be described below may be combined into one component, or one component may be divided into two or more for each more subdivided function.
  • each component to be described below may additionally perform some or all of the functions of other components in addition to its main function, and some of the main functions of each component may be performed by other components. Of course, it may be dedicated and performed by .
  • FIG. 1 is a block diagram showing a plasma processing device 10 of the present invention
  • FIGS. 2A to 2D are block diagrams for explaining another embodiment of the plasma processing device of FIG. 1 .
  • a plasma processing apparatus 10 includes a sealing part 100, a pressure adjusting part 110, and an electrode part 120.
  • the plasma processing apparatus 10 may further include a controller 130 and a sensor unit 140 .
  • a certain closed space is formed using the sealing part 100, and air in the closed space is exhausted to form an atmospheric atmosphere with a pressure lower than a preset pressure in the closed space. It is characterized in that a plasma discharge is generated by forming an electric field therein.
  • the plasma processing apparatus 10 generates a plasma discharge through the above operation in a state where the object M1 (see FIG. 8A) is accommodated in the sealing unit 100, thereby plasma-processing the object M1. be able to
  • the object to be treated M1 may be any object to which characteristics according to plasma treatment are imparted through plasma treatment, including dental implant fixtures, abutments, crowns, orthopedic implants, and bone graft materials. It may be a bio material including.
  • the plasma processing apparatus 10 causes an electric field to be formed around a region where an object to be treated, which is a treatment object, is located, and exposes the object to plasma or to active species generated by the plasma to perform plasma treatment. .
  • the processing object M1 itself may be accommodated in the sealing part 100, and the storage container L1 (see FIG. 8A) containing the processing object M1 is the sealing part 100 It can also be stored inside.
  • the object M1 may be transferred from the storage container L1 to the guide member or the fixing jig of the plasma processing apparatus 10 and stored in the plasma processing apparatus 10 together with the guide member or the fixing jig. At this time, a description of the induction member or fixing jig will be described later.
  • the object to be processed M1 may be stored in the sealing unit 100 in a state of being exposed to the outside of the storage container L1 by changing the shape of the storage container L1.
  • the object to be processed M1 is accommodated in the plasma processing apparatus 10 in a state of being stored in the deformable storage container L1, and then the object M1 is stored in the sealing unit 100 through a separate driving member in the plasma processing apparatus 10. may be exposed to the outside of the storage container L1.
  • the material to be treated M1 may be of any material, and may be a conductive material or a non-conductive material.
  • the object to be processed M1 may be made of a conductive material such as an implant fixture or a stem.
  • the object to be treated M1 may be made of a non-conductive material such as a bone graft material.
  • the inside of the sealing part 100 may be sealed against the external environment.
  • An object to be treated M1 or a storage container L1 accommodating the object to be treated M1 may be accommodated in the sealed space formed or inside the sealing unit 100 .
  • the sealing part 100 may have any shape as long as it provides a space capable of accommodating therein and can accommodate the object to be treated M1 or the storage container L1 containing the object M1 to be treated.
  • the sealing part 100 may have a cylindrical shape, a rectangular parallelepiped shape, a hemispherical shape, or the like, or may be made of an atypical shape.
  • the sealing part 100 has an internal pressure equal to atmospheric pressure when the storage container L1 containing the object M1 or the object M1 to be treated is stored for the first time.
  • the pressure adjusting unit 110 is fluidly connected to the sealing unit 100 and may form a low pressure atmosphere by exhausting air inside the sealing unit 100 .
  • the pressure adjusting unit 110 may perform a function of adjusting the internal pressure of the closed space by exhausting or venting air inside the sealing unit 100 .
  • the pressure adjusting unit 110 is an exhaust unit 113 for exhausting air in the sealing unit 100 and injecting external air into the sealing unit 100 or ventilating the inside of the sealing unit 100.
  • a venting part 112 may be included.
  • the pressure adjusting unit 110 includes an exhaust valve 113-1 that opens and closes an exhaust passage connecting the exhaust part 113 and the sealing part 100 and a venting passage connecting the venting part 112 and the sealing part 100. It may include a venting valve 112-1 that opens and closes.
  • the exhaust flow path and the venting flow path may have one integrated flow path and may be configured as a valve that opens and closes the integrated flow path.
  • the control unit 130 In the pressure adjusting unit 110, the exhaust unit 113, the venting unit 112, and one or more valves 112-1 and 113-1 are controlled by the control unit 130 to adjust the pressure inside the sealing unit 100. can be adjusted
  • the exhaust unit 113 may include at least one vacuum pump.
  • the vacuum pump has a maximum vacuum degree, and the process pressure range may be set based on the maximum vacuum degree of the vacuum pump constituting the plasma processing apparatus.
  • the process pressure range is greater than 1 Torr and less than 30 Torr.
  • the maximum degree of vacuum of the vacuum pump may be 0.001 Torr (1 mtorr) or more and less than 30 Torr.
  • the control unit 130 opens and closes the passage connecting the venting unit 112 and the sealing unit 100 even if the exhaust unit 113 continues to operate.
  • the internal pressure of the sealing part 100 may be controlled to be included in the process pressure range.
  • the control unit 130 opens and closes a passage connecting the exhaust unit 113 and the sealing unit 100 so that the internal pressure of the sealing unit 100 is within the process pressure range. You can control it.
  • control unit 130 controls based on the internal pressure value of the sealing unit 100 received from the sensor unit 140 or controls the exhaust valve 113-1 or the venting valve 112-1 based on a preset time.
  • the opening and closing of 1) can be controlled.
  • the pressure at which the plasma discharge is made can be varied. Through this, the plasma discharge area inside the sealing part 100 can be varied.
  • control unit 130 closes the passage connecting the sealing part 100 and the venting part 112 and opens the passage connecting the sealing part 100 and the exhaust part 113 to maximize exhaust performance of the vacuum pump.
  • the internal pressure of the sealing part 100 can be controlled to be included in the process pressure range.
  • control unit 130 may lower the internal pressure of the sealing part 100 by the maximum exhaust performance of the vacuum pump for a preset reference time, but if it is greater than the process pressure range, the sealing part 100 may be sealed due to an error.
  • control unit 130 may stop the operation of the device and notify the user when the internal pressure of the sealing unit 100 provided from the sensor unit 140 does not reach the standard pressure after a preset reference time has elapsed.
  • the electrode unit 120 forms an electric field inside the sealing unit 100 to discharge the low-pressure atmosphere.
  • the control unit 130 performs a function of controlling components of the plasma processing apparatus 10 .
  • the control unit 130 may control the pressure adjusting unit 110 so that the internal pressure of the closed space reaches a preset process pressure range.
  • the control unit 130 may control power to be applied to the electrode unit 120 after the internal pressure of the closed space reaches a preset process pressure range.
  • a function of controlling components of the plasma processing apparatus 10 in the control unit 130 may function according to a protocol set in advance.
  • the controller 130 may operate the electrode unit 120 after a preset time has elapsed based on the start time of exhaust or venting.
  • the plasma processing device 10 further includes a sensor unit 140 that measures the internal pressure of the closed space, and the control unit 130 controls the plasma processing device according to the sensing value provided from the sensor unit 140.
  • the components of (10) can be controlled.
  • the sensor unit 140 may be disposed inside the closed space to measure the internal pressure of the closed space, but is not limited thereto.
  • the sensor unit 140 may be disposed on an exhaust flow path or a venting flow path communicating with the sealing part 100 to measure the internal pressure of the sealing part 100 by measuring the pressure inside the exhaust flow path or the venting flow path.
  • the sensor unit 140 may measure the internal pressure of the sealing part 100 by measuring the flow rate flowing in or out through the exhaust passage or the venting passage.
  • 6A to 6C are conceptual diagrams for explaining another embodiment of the plasma processing apparatus of FIG. 1 .
  • the pressure adjusting unit 110 is characterized in that the pressure is adjusted by exhausting or venting the air (a) inside the sealing unit 100, pressure adjustment For this purpose, no additional gas is injected.
  • a conventional plasma processing apparatus injects a discharge gas into a discharge space for plasma discharge, and generates plasma by forming an electric field in the discharge gas.
  • a plasma processing apparatus has a problem in that a separate discharge gas injection means must be provided, and management for ensuring sterility of the discharge gas is difficult.
  • the present invention can generate a plasma discharge by forming a low-pressure atmosphere below a preset reference pressure in the sealing part 100 using the pressure adjusting unit 110 and applying an electric field to the low-pressure atmosphere. there is.
  • the intensity of the electric field applied to the low-pressure atmosphere is significantly lower than the intensity of the electric field to be applied under the atmospheric pressure atmosphere, so that the plasma processing apparatus 10 according to the present invention can generate plasma discharge more stably and efficiently.
  • the electrode unit 120 may include a power supply unit 125 for alternating voltage at a specific frequency.
  • the electrode unit 120 includes a first electrode 121 and a second electrode 122 disposed spaced apart from the first electrode 121, and the first electrode 121 and the second electrode ( 122), a plasma discharge may be formed using a voltage difference applied to the voltage difference.
  • the electrode unit 120 may form a plasma discharge within the sealing unit 100 by using the coil-shaped first electrode 121 surrounding the sealing unit 100 .
  • the electrode unit 120 may have a different structure or arrangement according to the electric field formation method.
  • the plasma processing apparatus 10 may generate plasma in the closed space S1 through dielectric barrier discharge (DBD).
  • DBD dielectric barrier discharge
  • the plasma processing apparatus 10 includes corona discharge, atmospheric pressure glow discharge, arc plasma torch, micro hollow cathode discharge, Plasma may be generated using atmospheric pressure magnetic induction plasma (ICP) or the like.
  • ICP atmospheric pressure magnetic induction plasma
  • the electrode unit 120 may form a plasma discharge within the sealing unit 100 by using the fourth electrode 124 in the form of a coil surrounding the sealing unit 100 .
  • the plasma processing apparatus 10 may generate a plasma discharge using an atmospheric pressure magnetic induction plasma (ICP) method. Since the coil-shaped second electrode 124 surrounds the sealing part 100, when power is applied to the second electrode 124, an induced electric field is formed in the sealing part 100, and a plasma discharge can be generated ( S1).
  • ICP atmospheric pressure magnetic induction plasma
  • the applied voltage may be selected from a preset range according to a low pressure atmospheric environment or a discharge method.
  • the specific frequency of the alternating voltage may be selected from the range of low frequency ( ⁇ kHz), radio frequency ( ⁇ MHz), etc. can be set.
  • the voltage may be applied in a preset input waveform, such as a sine wave, a triangular wave, a square wave, a sawtooth wave, or a pulse wave, and the plasma discharge characteristics may be controlled through this.
  • a preset input waveform such as a sine wave, a triangular wave, a square wave, a sawtooth wave, or a pulse wave
  • the plasma processing apparatus 10 may include a sealing part 100 made of non-conductive members 101 and 102 .
  • the non-conductive members 101 and 102 may include a first member 101 and a second member 102 separated from each other.
  • the first member 101 and the second member 102 may be coupled to form a certain space for accommodating the storage container L1 containing the object M1 to be processed.
  • the predetermined space means the same space as the aforementioned closed space, and may be a space in which the object to be processed M1 or the storage container L1 containing the object M1 is sealed from the external environment.
  • the internal pressure of a certain space may be adjusted by the pressure adjusting unit 110 .
  • a through hole H1 penetrating the storage container L1 may be formed on one side of the storage container L1 storing the object M1 to be treated for plasma treatment of the object M1.
  • the through hole H1 is formed in the upper portion of the storage container L1 as an example, but the position, shape, and number of the through hole H1 are not limited.
  • the storage container L1 may have the same internal pressure as a predetermined space through the through hole H1, and through this, a plasma discharge may be generated around the object M1 inside the storage container L1.
  • the first member 101 and the second member 102 may be coupled by relative movement.
  • the second member 102 disposed at the upper portion of the drawing may move relative to the first member 101 by being connected to an elevating unit (not shown) that elevates and descends in the vertical direction.
  • the second member 102 may be fixed to the upper portion, and the first member 101 positioned at the lower portion may move relative to the second member 102 to be coupled with the second member 102 .
  • the first member 101 and the second member 102 may both move relative to each other and be coupled.
  • At least a portion of the first member 101 or the second member 102 is made of a transparent material so that a user can visually check it from the outside when a plasma discharge occurs in an enclosed space.
  • the first member 101 is shown as an integral member, but may be formed separately as a floor member on which the storage container L1 is seated and a wall member surrounding the floor member.
  • a seating portion (not shown) on which the storage container L1 can be stably seated may be provided on the bottom member of the first member 101 .
  • the seating portion (not shown) may place the storage container L1 in the central region of the first member 101 to generate concentrated plasma discharge around the object M1.
  • the sealing portion 100 is a sealing member 105 for sealing between the first member 101 and the second member 102 when the separated first member 101 and the second member 102 are coupled.
  • the sealing member 105 may be made of a flexible material such as silicone or rubber.
  • the sealing member 105 may be disposed along one surface of the first member 101 or may be disposed along one surface of the second member 102 . Alternatively, the sealing member 105 may be disposed on both one surface of the first member 101 and one surface of the second member 102 and may be formed in an interlocking manner.
  • the electrode unit 120 may include a first electrode 121 and a second electrode 122 spaced apart from the first electrode 121 .
  • the first electrode 121 may be disposed on the first member 101 and the second electrode 122 may be disposed on the second member 102 .
  • the first electrode 121 and the second electrode 122 may be disposed to face each other.
  • the plasma processing device 10 generates a plasma discharge by exhausting the air in the sealing unit 100 and forming an electric field using the electrode unit 120 in the closed space S1 in which a low pressure atmosphere below a preset reference pressure is formed. can make it
  • first electrode 121 and the second electrode 122 are disposed in a facing structure, discharge concentrated in the closed space S1 may be induced.
  • the object M1 when the object M1 is made of a conductive material, the object M1 may be electrically connected to the first electrode 121 to function as an electrode. In this case, since the distance to the object M1 is closer than the distance of the first electrode 121 to the second electrode 122, a stronger electric field is formed around the object M1 S2. can
  • the first electrode 121 can minimize exposure in the closed space by using the storage container L1, and through this, plasma discharge is generated more intensively on the object M1 to be treated, thereby increasing the treatment effect. can make it
  • FIG. 8A to 8D are conceptual views for explaining another embodiment of the plasma processing apparatus of FIG. 1 .
  • the plasma processing apparatus 10 may include a sealing part 100 made of non-conductive members 101 and 102 .
  • the non-conductive members 101 and 102 may include a first member 101 and a second member 102 separated from each other.
  • the first member 101 and the second member 102 may be coupled to form a certain space for accommodating the storage container L1 containing the object M1 to be processed.
  • the predetermined space may not be a space that seals the storage container L1 containing the object M1 to be processed from the external environment or a space in which a low-pressure atmosphere below a preset pressure is formed.
  • the internal pressure of a certain space is not adjusted by the pressure adjusting unit 110, but the internal pressure of the container L1 in which the object to be processed M1 is stored is adjusted and the plasma discharges in the container L1. can cause
  • the storage container L1 accommodating the object M1 may form an airtight space surrounding the object M1. At least a part of the storage container L1 may be made of a dielectric material to form a dielectric barrier.
  • a side portion disposed adjacent to the second electrode 122 may be formed of a dielectric material.
  • the storage container L1 may include a side portion and an upper portion of a single cover member, and the cover member may be made of a dielectric material.
  • a portion through which the flow path generator 111 penetrates is formed of an elastic material, so that the inside of the storage container L1 is sealed even when the flow path generator 111 passes through, thereby maintaining a vacuum state.
  • at least one area of the storage container L1 may be made of a styrene-based ABS material, a silicon material having a hardness of 10, or a mixture thereof.
  • the non-conductive member 101 of FIG. 8C accommodates the storage container L1 using the first member 101, and the second member 102 is the first member. It may be made of a lid member (not shown) coupled with (101).
  • the second member 102 may be coupled to the first member 101 by hinge coupling or sliding coupling.
  • a sealing member 105 may be disposed on one side of the second member 102 to seal a gap between the first member 101 and the second member 102 when coupled to the first member 101 .
  • the electrode unit 120 may include a first electrode 121 and a second electrode 122 spaced apart from the first electrode 121 .
  • the first electrode 121 and the second electrode 122 may be disposed on the first member 101 .
  • the first electrode 121 may be disposed on the floor member of the first member 101
  • the second electrode 122 may be disposed on the wall member of the first member 101.
  • the first electrode 121 may be electrically connected to the object to be processed M1.
  • the first electrode 121 may be integrally formed with the flow path generating unit 111, and for example, a hole for exhausting air may be formed.
  • the second electrode 122 is disposed on the wall member of the first member 101, and may be disposed adjacent to the object M1 when the storage container L1 is stored.
  • the second electrode 122 may be formed in the form of a ring-shaped electrode surrounding the wall member of the first member 101 or may be formed on the wall member according to a predetermined pattern.
  • the second electrode 122 may be formed of a plurality of electrode members facing each other.
  • the second electrode 122 may be made of a transparent electrode for external visibility of the plasma discharge.
  • the electrode unit 120 may further include a third electrode (not shown) disposed spaced apart from the first electrode 121 and the second electrode 122 .
  • the third electrode may be disposed on the second member 102, and when the second member 102 is combined with the first member 101, the third electrode may be disposed above the object M1. there is.
  • a voltage of the same level as that of the first electrode 121 or the second electrode 122 may be applied to the third electrode.
  • the present invention is not limited thereto, and the third electrode 123 may be a floating electrode to which a voltage of a different level from that of the first electrode 121 or the second electrode 122 is applied or not electrically connected. there is.
  • the plasma processing apparatus 10 may accommodate the container L1 without the second member 102 and perform the plasma processing.
  • FIG. 7A to 7C are conceptual diagrams for explaining another embodiment of the plasma processing apparatus of FIG. 1 .
  • the sealing part 100 may include a first member 101 and a second member 102 .
  • the first member 101 may be made of a bottom member for seating the storage container L1
  • the second member 102 has a shape surrounding the storage container L1 stored in the first member 101. can be formed
  • the second member 102 is shown as a cup shape with a hollow inside.
  • the sealing unit 100 lowers the second member 102 when the storage container L1 containing the object M1 is accommodated in the first member 101 to dispose of the object M1. It can be sealed from the external environment.
  • the second member 102 may be formed in a tubular shape, and the upper surface is provided as a separate member, and as the position of the second member 102 moves up and down in a fixed state, the first member 101 ) and an enclosed space may be formed.
  • the lower surface of the second member 102 may include a sealing member 105 that seals between the first member 101 and the second member 102 when coupled to the first member 101 .
  • the sealing member 105 may be disposed on the lower surface of the second member 102 or the upper surface of the first member 101, and is disposed on both the upper surface of the first member 101 and the lower surface of the second member 102, It may be formed in an interlocking shape.
  • the second member 102 may have a double wall structure including an inner wall 102-1 and an outer wall 102-2.
  • an inner wall 102-1 When the lower surface of the second member 102 comes into contact with the upper surface of the first member 101 while the second member 102 descends, the inside of the second member 102 forms an enclosed space together with the first member 101.
  • the inner surface of the inner wall 102-1 forms the inner surface of the closed space, and the outer surface of the outer wall 102-2 forms the outer surface of the sealing part 100.
  • the inner wall 102-1 of the second member 102 may be made of a dielectric barrier layer.
  • the electrode unit 120 may include a first electrode 121 and a second electrode 122 spaced apart from the first electrode 121 .
  • the first electrode 121 may be disposed on the first member 101 and the second electrode 122 may be disposed on the second member 102 .
  • a portion of the first electrode 121 may be exposed into the closed space, and when the storage container L1 equipped with the object to be treated M1 is seated, the lower surface of the storage container L1 is the first electrode ( 121) comes into contact. When the object M1 of the storage container L1 is seated in the sealing part 100, it may be electrically connected to the first electrode 121.
  • the second electrode 122 may be disposed on an inner surface or an outer surface of the second member 102 .
  • the second electrode 122 may be disposed on an outer surface of the second member 102 to use the second member 102 as a dielectric barrier layer.
  • the second electrode 122 is disposed on the inner surface of the second member 102, and at this time, the storage container L1 itself may be used as a dielectric barrier layer.
  • the second electrode 122 is illustrated as being formed over the entire area of the second member 102 along the side surface and upper surface of the second member 102, it is not necessarily limited thereto. As another example, the second electrode 122 may be formed in a ring shape on the side of the second member 102 . As another example, the second electrode 122 may be formed on the second member 102 with a specific pattern.
  • the second electrode 122 may be interposed between the inner wall 102-1 and the outer wall 102-2.
  • the second electrode 122 may be formed by coating the outer surface of the inner wall 102-1 and the inner surface of the outer wall 102-2.
  • the double wall structure of the second member 102 and the second electrode 122 are made of a transparent material, when the plasma surface treatment is performed on the object M1, the plasma surface treatment process can be confirmed with the naked eye.
  • At least a portion of the first member 101 or the second member 102 is non-conductive.
  • at least a part of the first member 101 or the second member 102 having non-conductivity may be made of a transparent material.
  • At least a portion of the first member 101 or the second member 102 may be made of a transparent material having chemical resistance, for example, a quartz material including glass.
  • a coating layer C1 may be formed on the inner surface of the inner wall 102-1.
  • the coating layer C1 may be formed of a material capable of withstanding high temperature and high voltage to prevent damage to the inner surface of the inner wall 102-1 or elution of foreign substances due to high temperature and high voltage during plasma discharge.
  • the coating layer (C1) has plasma resistance, and when the inside of the sealing part 100 is treated with plasma by the electrode part 120, the inner surface of the inner wall 102-1 is damaged and eluted or foreign substances are eluted. It functions to prevent foreign matter from adhering to the object to be treated M1.
  • the coating layer C1 may be made of a material containing calcium.
  • the calcium can be adhered to the surface of the object to be treated M1 by inducing elution of calcium by plasma treatment.
  • the inflammatory reaction is alleviated or the implantation or engraftment is strengthened.
  • the implantation rate or engraftment rate can be guaranteed.
  • the material to be treated (M1) can be more safely placed on the human body or can be engrafted.
  • the plasma processing apparatus 10 includes a sealing portion 100 made of non-conductive members 101 and 102, a first electrode 121 and a second electrode 122. It may include an induction member 150a that is electrically connected to the electrode unit 120 including the and the first electrode 121 and induces a change in plasma discharge intensity.
  • any one of the first electrode 121 and the second electrode 122 may be electrically connected to the object M1 or exposed to the inside of the closed space so as to be disposed adjacent to the object M1.
  • the first electrode 121 is electrically connected to the object to be processed (M1) or exposed to the inside of the closed space so as to be disposed adjacent to the object to be treated (M1) will be described. do it with
  • the object to be treated M1 may be made of a conductive material.
  • the non-conductive members 101 and 102 may include a first member 101 and a second member 102 separated from each other.
  • the first member 101 and the second member 102 may be coupled to form a certain space for accommodating the object M1 to be processed.
  • the predetermined space means the same space as the aforementioned closed space, and may be a space that seals the object M1 from the external environment.
  • the internal pressure of a certain space may be adjusted by the pressure adjusting unit 110 .
  • the pressure adjusting unit 110 is briefly indicated as a pump 113, but is not limited thereto, and the pressure adjusting unit 110 described throughout the specification can be applied, of course.
  • the first member 101 and the second member 102 may be coupled by relative movement.
  • the second member 102 disposed at the upper portion of the drawing may move relative to the first member 101 by being connected to an elevating unit (not shown) that elevates and descends in the vertical direction.
  • the electrode unit 120 may include a first electrode 121 and a second electrode 122 spaced apart from the first electrode 121 .
  • a first electrode 121 may be disposed on the first member 101
  • a second electrode 122 may be disposed on the second member 102 .
  • the first electrode 121 and the second electrode 122 may be disposed to face each other.
  • the guide member 150a is disposed within the sealing unit 100 and serves to induce a change in plasma discharge intensity for the object M1 to be treated within the closed space.
  • the guide member 150a changes the position of the object to be processed M1 in the closed space or changes the dielectric constant for each region by changing the thickness of the dielectric within the closed space.
  • a change in plasma discharge intensity can be induced.
  • the induction member 150a also performs a function of seating the processing target object M1 in the sealing unit 100, and may be described as being mixed with a fixing jig, a gripping device, a connecting member, and the like.
  • the induction member 150a may have a different shape or structure depending on the type of the object to be processed M1, and the plasma processing apparatus 10 includes a plurality of induction members 150a, so that the induction member 150a is provided as needed. can be used interchangeably.
  • the guide member 150a may be made of any material for changing the intensity of plasma discharge generated around the object M1 while fixing the object M1.
  • the induction member 150a may be made of a conductive material.
  • the induction member 150a connects the first electrode 121 and the object M1 to be treated, and since both are made of a conductive material, the object M1 can be electrically connected to the first electrode 121. .
  • the object to be processed M1 may function as the same electrode as the first electrode 121 .
  • the surface of the object to be treated M1 is modified from hydrophobic to hydrophilic by the plasma surface treatment of the plasma treatment apparatus 10 .
  • the object to be treated M1 may be a dental implant used in dentistry.
  • the object to be treated M1 may be taken out of the package in which the object M1 is sealed by the guide member 150a.
  • the guide member 150a grips the object M1 at one end to take out the object M1 from the packaging material, it may be seated in the sealing part 100 in a gripped state. At this time, the first electrode 121 may be exposed on one surface of the sealing part 100, and the other end of the induction member 150a may be seated on the exposed first electrode 121.
  • a seating groove corresponding to the shape of the induction member 150a may be formed around the first electrode 121 . Also, since the first electrode 121 is made of a magnetic material, the induction member 150a can be stably fixed.
  • the induction member 150a has an object to be processed M1 at one end, is connected to the first electrode 121 through the other end, and may extend a certain length from the other end to one end. Through this, the induction member 150a can position the object M1 closer to the second electrode 122 than the first electrode 121, and the object M1 functions as an electrode. A stronger electric field strength can be formed between the electrodes 122 .
  • plasma discharge may be concentrated around the object M1 held by the induction member 150a.
  • FIGS. 4A to 4C are for explaining another embodiment of the plasma processing method according to an embodiment of the present invention. It is a flow chart.
  • FIG 5 is a graph of internal pressure in an enclosed space over time while performing a plasma treatment method according to an embodiment of the present invention.
  • the inside of the sealing unit 100 of the plasma processing apparatus may be sealed from the external environment. (S10).
  • step S10 the storage container in which the object to be processed is accommodated in the plasma processing apparatus, and then the container may be sealed from the external environment by the sealing unit 100 .
  • the plasma processing apparatus 10 may determine whether to store the storage container or the object to be treated when the storage container 100 is stored in the sealing unit 100 .
  • the plasma processing apparatus 10 may detect when the storage container L1 is received using the sensor unit 140 and provide the result to the control unit 130 .
  • the sensor unit 140 of the plasma processing apparatus 10 may further include a sensor for determining whether the storage container L1 is stored in addition to a sensor for detecting pressure.
  • the present invention is not limited thereto, and when the storage container L1 is accommodated in the sealing part 100, the plasma processing apparatus 10 transmits electrical signals generated through electrical connection with electrodes to the storage container L1. ) can be determined.
  • the first member 101 or the second member 102 of the sealing portion 100 is moved relative to the sealing portion 100. ) can be sealed inside.
  • the plasma treatment method exhausts the atmosphere inside the sealing part 100 to form a low-pressure atmosphere and check it (S20).
  • control unit 130 may control the pressure adjusting unit 110 so that the internal pressure of the sealing unit 100 reaches a preset reference pressure (P BASE ) or reaches a process pressure range.
  • P BASE preset reference pressure
  • control unit 130 may control the pressure adjusting unit 110 so that the internal pressure of the sealing unit 100 measured by the sensor unit 140 reaches the reference pressure (P BASE ).
  • control unit 130 may form a low-pressure atmosphere within the sealing unit 100 by evacuating the internal atmosphere of the sealing unit 100 for a reference time period t1 to a pressure lower than a preset pressure.
  • control unit 130 may lower the internal pressure of the sealing part 100 by the maximum exhaust performance of the vacuum pump for a preset reference time, but if it is greater than the process pressure range, the sealing part 100 may be sealed due to an error.
  • control unit 130 may stop the operation of the device and notify the user when the internal pressure of the sealing unit 100 provided from the sensor unit 140 does not reach the standard pressure after a preset reference time has elapsed.
  • the plasma treatment method may adjust the internal pressure of the sealed space to form a low-pressure atmosphere to be included in a preset process pressure range (S30).
  • control unit 130 closes the connection between the sealing part 100 and the venting part 112 and opens the connection between the sealing part 100 and the exhaust part 113, and the internal pressure of the sealing part 100
  • a low-pressure atmosphere may be formed to be included in this process pressure range (S20a).
  • control unit 130 may control the exhaust unit 113 to operate, the exhaust valve 113-1 to open, and the venting valve 112-1 to close.
  • control unit 130 closes the connection between the sealing part 100 and the venting part 112 and repeatedly opens and closes the connection between the sealing part 100 and the exhaust part 113 to close the sealing part 100.
  • a low-pressure atmosphere may be formed such that the internal pressure of is included in the process pressure range (S20b).
  • control unit 130 may operate the exhaust unit 113, close the venting valve 112-1, and open and close the exhaust valve 113-1. Through this, it is possible to control the internal pressure of the sealing part 100 so that it does not become lower than the process pressure range.
  • control unit 130 operates the exhaust unit 113, closes the venting valve 112-1, and opens and closes the exhaust valve 113-1 to form, intensity or concentration of plasma inside the sealing unit 100. It is possible to control or control the concentration of active species by plasma inside the sealing part 100.
  • the controller 130 opens and closes the connection between the sealing part 100 and the exhaust part 113 and repeatedly opens and closes the connection between the sealing part 100 and the venting part 112 to close the sealing part 100.
  • a low-pressure atmosphere may be formed such that the internal pressure is included in the process pressure range (S20c).
  • control unit 130 may control to open the exhaust valve 113-1, operate the exhaust unit 113, and open and close the venting valve 112-1. Through this, it is possible to control the internal pressure of the sealing part 100 so that it does not become lower than the process pressure range.
  • control unit 130 may control the fluid flow inside the sealing part 100 by opening the exhaust valve 113-1, operating the exhaust unit 113, and opening and closing the venting valve 112-1. .
  • control unit 130 may apply power to the electrode unit 120 after the internal pressure of the closed space reaches a preset reference pressure or a process pressure range. It can (S40).
  • the control unit 130 may control the electrode unit 120 to apply an AC voltage at a specific frequency.
  • the applied voltage may be selected from a preset range according to a low-pressure standby environment or a discharge method. As an example, the applied voltage may be set within a range of 5,000 V or less.
  • control unit 130 may continue to exhaust the closed space while power is applied using the pressure adjusting unit 110 . While the low-pressure atmosphere is discharged by the electrode unit 120, the control unit 130 may control the pressure adjusting unit 110 so that the internal pressure of the closed space maintains a preset reference pressure P BASE .
  • control unit 130 closes the exhaust valve 113-1 and the venting valve 112-1 while the low-pressure atmosphere is discharged by the electrode unit 120 to isolate the closed space.
  • the controller 130 may isolate the closed space for a preset time.
  • the ozone (O 3 ) generated in the plasma surface treatment process is not exhausted, so that the concentration of ozone (O 3 ) is maintained or increased. will do As such, as the concentration of ozone (O 3 ) increases inside the closed space, the sterilization of the object to be treated M1 can be effectively performed.
  • step S60 after the step of discharging the low-pressure atmosphere, the step of venting the closed space is performed (S60).
  • the control unit 130 may ventilate the closed space or inject outside air into the sealed unit 100 by controlling the venting unit 112 or the venting valve 112-1 of the pressure adjusting unit 110.
  • a filter means may be further included between the flow passage communicating with the venting part 112 and the sealing part 100 .
  • the filter means (not shown) performs a function of filtering or purifying pollutants contained in the external air.
  • the filter means (not shown) may include a HEPA filter (High Efficiency Particulate Air filter). there is.
  • control unit 130 may control the pressure adjusting unit 110 to exhaust impurities desorbed from the surface of the object M1 by the discharged low-pressure atmosphere.
  • control unit 130 turns off the power supply unit 125 of the electrode unit 120 to stop the generation of plasma.
  • the inside of the closed space is continuously exhausted (S50).
  • the inside of the closed space maintains the reference pressure (P BASE ) or becomes lower.
  • P BASE reference pressure
  • the plasma gas remaining inside the sealing part 100 can be removed.
  • the surface treatment of the object M1 is performed by repeatedly generating and stopping plasma.
  • the control unit 130 controls the 'On' and 'Off' of the power supply unit 125 to generate plasma by turning the power unit 'On' for a preset generation time (Ta), and generates plasma by controlling the power unit for a preset generation stop time (Tb). 'Off' stops plasma generation.
  • the generation time Ta is a time period during which plasma generation continues, and is preset in the control unit 130 .
  • the production stop time Tb is a time period during which plasma production is stopped, and is preset in the control unit 130 .
  • the object to be treated ( The effect of increasing the hydrophilicity on the surface of M1) and the effect of removing hydrocarbons are further enhanced. That is, the surface treatment efficiency of the object to be treated M1 is increased.
  • the plasma discharge is generated in a random area inside the closed space.
  • plasma is generated and stopped in a pulse form, plasma is generated in a larger area than the existing plasma production alone. Since the possibility is increased and plasma discharge is performed in a wider area, the efficiency of plasma surface treatment can be increased.
  • the generation time (Ta) and the generation stop time (Tb) satisfy the relation 'generation time (Ta) > generation stop time (Tb)'. This is to increase the time during which the surface treatment is performed by plasma discharge by making the generation time Ta longer than the generation stop time Tb.
  • the generation time (Ta) is 4 seconds
  • the generation stop time (Tb) is preferably 2 seconds.
  • Figure 3a has been described with a focus on maintaining a constant process pressure level inside the sealing unit during the plasma treatment process
  • Figure 3b describes that the internal pressure of the sealing unit is varied during the plasma treatment process.
  • the step of discharging the low-pressure atmosphere by forming an electric field inside the sealing unit may include varying the pressure inside the sealing unit while the low-pressure atmosphere is being discharged (S40-2). Through this, the plasma generating region can be varied.
  • FIG. 9 is a perspective view illustrating a plasma processing apparatus according to an embodiment of the present invention.
  • the plasma processing apparatus 10 includes a seating portion 12 on which a storage container L1 is seated, and an airtight portion that moves relative to the seating portion 12 and seals the storage container L1 from the external environment. (14), an electrode part (not shown) for discharging plasma inside the sealing part 14 sealed from the external environment, and a pressure adjusting part (not shown) for exhausting the air inside the sealing part 14 sealed from the external environment. ), an upper block 13 disposed above the seating portion 12, and a main body 11 forming an exterior.
  • Seating part 12 is disposed to be located in front of the main body 11, may be disposed to be located in the lower portion of the upper block (13).
  • An electrode for applying power to the storage container L1 may be formed on the upper surface of the seating portion 12 .
  • the protruding electric power A hole (not shown) for accommodating a connecting member (not shown) may be formed.
  • a magnet is provided in the seating portion 12, and contact force can be strengthened by magnetic force with an electrical connection member (not shown).
  • the magnet may be provided on the bottom surface of the hole (not shown).
  • the sealing portion 14 moves relative to the seating portion 12 to seal the storage container L1 from the external environment.
  • the sealing part 14 is raised and lowered so that the lower part of the sealing part 14 comes into contact with the upper surface of the seating part 12, thereby forming a sealed space inside the sealing part 14. .
  • the upper block 13 may be disposed to be positioned in front of the main body 11 and above the seating portion 12 .
  • the upper block 13 may be provided with a lifting part (not shown) for lifting and lowering the sealing part 14 .
  • the electrode part (not shown) When the sealing part 14 descends and the seating part 12 and the sealing part 14 are sealed, the electrode part (not shown) discharges plasma into the hollow of the sealing part 14 constituting the closed space for plasma treatment. can perform the function of
  • the electrode part (not shown) includes a first electrode (not shown) provided on the seating part 12 to be electrically connected to the storage container L1 and a sealing part 14 provided to surround the storage container L1.
  • a second electrode (not shown) and a power supply unit (not shown) for applying power to the first electrode (not shown) and the second electrode (not shown) may be provided.
  • the pressure adjusting unit (not shown) may perform a function of exhausting air inside the sealed sealing part 14 from the external environment.
  • a plasma processing apparatus is provided.
  • embodiments of the present invention can be applied to a technique of sterilizing an object to be treated or treating the surface of an object to be treated using plasma.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biomedical Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명의 일 실시예는, 내부가 외부 환경에 대해 밀폐된 밀폐부, 상기 밀폐부의 내부 압력이 사전에 설정된 공정 압력 범위에 포함되도록 저압 대기를 형성하는 압력조정부 및 상기 밀폐부의 내부에 전기장을 형성하여, 상기 저압 대기를 방전하는 전극부를 포함하는, 플라즈마 처리 장치를 제공한다. 이러한 본 발명의 일 실시예에 따른 플라즈마 처리 장치는 별도의 공정 가스를 사용하지 않고 대기 공기를 배기하여 저압 대기를 이용하여 플라즈마 처리하는 플라즈마 처리 장치를 제공한다.

Description

플라즈마 처리 장치
본 발명은 플라즈마 처리 장치에 관한 것으로, 보다 상세하게는 피처리물에 플라즈마 처리에 따른 특성을 부여하기 위한 플라즈마 처리 장치에 관한 것이다.
플라즈마 처리는 반도체, 디스플레이, 농업 및 의료산업 등 다양한 산업에서 다양한 목적으로 사용된다.
2000년대 초반에 반도체, 디스플레이 산업의 표면처리 기술로 급성장한 플라즈마 기술은 식각이나 증착과 같은 목적으로 사용되는 것이 대부분이고 이와 같은 종래의 기술은 진공에서 방전 가스를 주입하여 플라즈마 처리하는 것이 일반적이다.
농업 분야에서는, 플라즈마 처리는 비열 플라즈마를 이용한 종자의 살균 및 발아촉진을 위해 적용 가능하다. 이러한 플라즈마 처리는 종자 표면에 직접 비열 플라즈마 처리를 함으로써 새싹 표면에 존재하는 미생물의 살균효과를 가질 수 있고, 새싹 종자의 발아율과 발아 속도를 촉진하여 발아에 필요한 시간을 단축시켜 농업에서의 생산에 소요되는 기간을 단축할 수 있고, 보다 안전한 식품을 제공할 수 있다는 효과를 가진다.
또한, 최근 의료산업의 발달에 따라 다양한 방식으로 플라즈마 처리가 사용되고 있으며, 임플란트와 같은 바이오 소재의 이식에 있어 생체 적합성을 높이기 위해 사용되고 있다. 특히, 치과 치료에 있어서 충치 또는 기타 사유에 의해 발치된 후 치아를 대체하기 위한 인공 치아(일반적으로 임플란트라 일컬음)를 이식하기 위한 치료가 사용된다.
인공 치아로 사용되는 임플란트는 인체에 거부반응이 없는 재질로 제작되며, 뼈와 잇몸이 없는 부분에 대해서 미용뿐만 아니라 기능까지 회복시키는 치료를 하게 된다. 이러한 치료에 있어서, 임플란트에 해당하는 픽스쳐(fixture)는 치아가 빠져나간 치조골에 심어지고, 고정되어 치아의 기능을 회복하도록 한다.
여기서 픽스쳐를 치조골에 식립하는 1차 시술과 픽스쳐가 치조골에 골융합되는 시간이 3개월 이상 기다린 후 최종보철물인 크라운(crown)을 고정시키는 2차 시술을 포함한다. 현재 일반적으로 사용되는 픽스쳐는 티타늄 금속 혹은 티타늄 합금이 주로 이용되는데, 이 재질은 인체에 이식시 골융합(osteointegration)에 시간이 오래 걸리고, 산화 피막이 생성되어 다른 재질의 금속에 비해 안정성이 확보될 수 있지만 이보다 더욱 개선된 인체 안정성 확보를 위한 필요성이 요구된다.
이러한 단점을 보완하기 위하여 타이타늄 및 티타늄 합금 재료의 표면을 적절히 처리함으로써 골융합을 강화할 수 있는 기술들이 개발 및 적용되고 있다.
골융합 속도와 품질은 표면 조성, 표면 거칠기, 친수성 등과 같은 임플란트의 표면 특성 및 화학적 조성과 밀접한 관계가 있다. 특히, 친수성이 높은 표면을 가진 임플란트가 생체 용액, 세포 및 조직들과의 상호 작용에 유리한 것으로 알려져 있다. 임플란트의 생산단계에서 플라즈마 표면처리 공정을 통하여 친수성을 확보할 수도 있다. 하지만, 생산, 운송과 유통과정, 그리고 보관하는 과정에서 산화막의 형성 등의 이유로 친수성에서 소수성으로 경시변화가 발생하고, 이에 따라 기존 생체 친화성을 확보하는 것에 어려움이 있다.
이에, 종래의 경시변화 문제를 해결하기 위해 간단한 장비로 임플란트 시술 전에 픽스쳐의 표면처리를 통해 생체 친화성을 확보하는 기술이 개발되고 있다. 플라즈마 표면처리 및 자외선을 조사하여 친수성 및 골융합 효율을 향상시킬 수 있는 기술이 대표적이다. 하지만 임플란트와 같은 인체 삽입이 되는 의료기기의 경우 무균성에 대한 보증이 요구되지만, 플라즈마 표면처리나 자외선 조사 등에서 픽스쳐의 무균 포장을 제거하고 외부에서 처리하기 때문에 무균성 보증이 불가하며 처리 대상체가 오염될 수 있는 문제가 있다.
이에 자외선 조사의 경우에는 자외선의 투과성을 확보할 수 있는 석영관을케이스로 사용하고 그 내부에 처리 대상체를 위치시키고 처리하는 방식으로 상기 문제를 해결하지만, 고가의 석영관을 사용하는데 있어 비용 측면에서 그리고 파손 방지를 위해 불편한 관리가 요구되는 문제가 있으며, 또한 석영관 내부에 위치하고 있는 처리 대상체는 열의 흐름 측면에서 고립되어 있기에 자외선 처리로 열이 빠져나가지 못하고 열적 손상에 따른 문제가 있다.
종래의 플라즈마 처리의 경우, 픽스쳐의 표면처리를 위해서 무균 포장을 제거하고 특정 전극 연결부와의 체결을 위해 무균성 보증이 어려운 문제가 있다.
또한, 대기압 환경에서 플라즈마를 발생시켜 처리하는 종래의 방식은 플라즈마 처리 성능이 일정하지 못하고, 국소적으로 높은 에너지가 전달되어 처리 대상체가 손상되어 픽스쳐의 성능 저하가 발생할 수 있는 문제가 있다.
종래의 플라즈마 처리 방식은 대기압에서의 표면처리를 하기 대문에 플라즈마 발생 및 표면처리가 공간적으로 비효율적인 문제가 있다. 이를 개선하기 위하여, 헬륨 혹은 아르곤 등의 가스를 플라즈마 표면처리를 위한 공간에 공급하는 방식이 있었다. 하지만, 이러한 방식은 가스를 지속적으로 공급하여야 하는 한계가 있고, 공급되는 가스의 무균성이 확보되어야 하는 문제가 있다.
임플란트의 표면처리하는 과정에서 무균성이 보장되더라도, 공기 중의 탄화수소(hydrocarbon, CHx)와 같은 유기물의 증착으로 소수성으로 경시변화가 발생하고 이에 따라 표면처리를 통해 확보된 생체 친화성의 유지가 어려운 문제가 있다. 따라서, 생산단계에서 표면처리 기술을 적용하지 못하는 문제와 임플란트 시술 전에 표면처리하더라도 상대적으로 짧은 보관 과정이나 이 과정에서 표면처리에서 확보된 생체 친화성의 유지 성능이 저하되는 문제가 있다.
본 발명이 이루고자 하는 기술적 과제는 별도의 방전가스 없이 일정 공간 내 대기를 배기하여 저압 상태를 형성하여 상대적으로 낮은 방전 전압을 이용하여 피처리물을 플라즈마 처리하기 위한 플라즈마 처리 장치를 제공하는 것이다.
또한, 본 발명이 이루고자 하는 기술적 과제는 별도의 방전가스 없이 대기의 질소와 산소를 이용하여 낮은 압력 또는 밀도 상태에서 플라즈마 발생을 통해 산소 및 질소 활성종을 발생시키고 이를 이용하여 피처리물의 표면처리하기 위한 플라즈마 처리 장치를 제공하는 것이다.
또한, 본 발명이 이루고자 하는 기술적 과제는 피처리물이 대기를 배기하는 유체 흐름 및 저압 상태에 노출되어 처리 대상체의 표면의 불순물이 제거되며, 플라즈마 및 활성종에 의해서 그 제거 성능을 향상시킬 수 있는 플라즈마 처리 장치를 제공하는 것이다.
또한, 본 발명이 이루고자 하는 기술적 과제는 피처리물 주변에 집중적으로 플라즈마 방전을 발생시켜 처리 성능을 높인 플라즈마 처리 장치를 제공하는 것이다.
또한, 본 발명이 이루고자 하는 기술적 과제는 피처리물 주변에 발생시키는 플라즈마가 가변되도록 공정 압력 범위로서 플라즈마 방전을 제어하여 플라즈마 방전의 시인성을 높이고 활성종의 성능을 향상시킨 플라즈마 처리 장치를 제공하는 것이다. 또한, 플라즈마 방전 영역이 변화함에 따라 피처리물의 플라즈마 처리 효과가 향상된 플라즈마 처리 장치를 제공한다.
본 발명의 일 실시예는, 내부가 외부 환경에 대해 밀폐된 밀폐부, 상기 밀폐부의 내부 압력이 사전에 설정된 공정 압력 범위에 포함되도록 저압 대기를 형성하는 압력조정부 및 상기 밀폐부의 내부에 전기장을 형성하여, 상기 저압 대기를 방전하는 전극부를 포함하는, 플라즈마 처리 장치를 제공한다.
본 발명의 실시예들에 따른 플라즈마 처리 장치는 별도의 방전가스 주입 없이 일정 공간 내 대기를 배기하여 저압 상태를 형성하여 상대적으로 낮은 방전 전압을 이용하여, 피처리물의 표면을 효과적으로 플라즈마 처리할 수 있다. 또한, 플라즈마 처리 장치는 별도의 방전가스 없이 대기의 질소와 산소를 이용하여 낮은 압력 또는 낮은 밀도 상태에서 플라즈마 발생을 통해 산소 및 질소 활성종을 발생시켜, 피처리물의 표면을 플라즈마 처리할 수 있다. 또한, 플라즈마 처리 장치는 피처리물이 대기가 배기되는 유체 흐름 및 저압 상태에 노출되어 피처리물 표면의 불순물이 제거되며, 향상된 플라즈마 및 활성종에 의한 제거성능으로 플라즈마 처리할 수 있다. 또한, 플라즈마 처리 장치는 별도의 방전 가스 공급 장치가 필요없어 컴팩트하면서 무균성을 더욱 용이하게 확보할 수 있다.
본 발명의 실시예들에 따른 플라즈마 처리 장치는 밀폐공간 내에 수납 용기를 배치하고, 수납 용기에 형성된 홀을 통해 내부에 수용된 피처리물 주변에 플라즈마 방전을 집중시킬 수 있어, 피처리물을 보다 효과적으로 처리할 수 있다.
본 발명의 실시예들에 따른 플라즈마 처리 장치는 밀폐공간 내에서 플라즈마 방전 세기의 변화를 유도할 수 있는 유도 부재를 이용하여 피처리물 주변의 플라즈마 방전 세기를 집중시킬 수 있고, 피처리물 표면 처리 효과를 증대시킬 수 있다.
도 1은 본 발명의 플라즈마 처리 장치를 나타내는 블록도이다.
도 2a 내지 도 2d는 도1의 플라즈마 처리장치의 다른 실시형태를 설명하기 위한 블록도이다.
도 3a 및 도 3b는 본 발명의 일 실시예에 따른 플라즈마 처리 방법을 순차적으로 도시한 순서도이다.
도 4a 내지 도 4c는 본 발명의 일 실시예에 따른 플라즈마 처리 방법의 다른 실시형태를 설명하기 위한 순서도이다.
도 5는 본 발명의 일 실시예에 따른 플라즈마 처리 방법을 수행하는 동안, 시간에 따른 밀폐 공간에서의 내부 압력 그래프이다.
도 6a 내지 도 6c는 도1의 플라즈마 처리 장치의 또 다른 실시형태를 설명하기 위한 개념도이다.
도 7a 내지 도 7c는 도1의 플라즈마 처리 장치의 또 다른 실시형태를 설명하기 위한 개념도이다.
도 8a 내지 도 8d는 도1의 플라즈마 처리 장치의 또 다른 실시형태를 설명하기 위한 개념도이다.
도 9는 본 발명의 일 실시예에 따른 플라즈마 처리 장치를 도시한 사시도이다.
본 발명의 일 실시예는, 내부가 외부 환경에 대해 밀폐된 밀폐부, 상기 밀폐부의 내부 압력이 사전에 설정된 공정 압력 범위에 포함되도록 저압 대기를 형성하는 압력조정부 및 상기 밀폐부의 내부에 전기장을 형성하여, 상기 저압 대기를 방전하는 전극부 를 포함하는, 플라즈마 처리 장치를 제공한다.
본 발명의 일 실시예에 있어서, 상기 압력조정부는, 상기 밀폐부의 내부 대기를 배기하여 상기 저압 대기를 형성할 수 있다.
본 발명의 일 실시예에 있어서, 상기 압력조정부는, 상기 밀폐부의 내부 대기를 배기하는 배기부 및 상기 밀폐부의 내부로 외기를 주입하는 벤팅부를 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 압력조정부는, 상기 배기부 또는 상기 벤팅부와 상기 밀폐부를 연결하는 유로를 개폐하는 적어도 하나의 밸브를 더 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 밀폐부의 내부 압력은 상기 공정 압력 범위에서 가변되어 방전한 상기 저압 대기의 영역이 변화될 수 있다.
본 발명의 일 실시예에 있어서, 상기 밀폐부의 내부 압력은 사전에 설정된 변화를 반복하도록 제어될 수 있다.
본 발명의 일 실시예에 있어서, 상기 밀폐부와 상기 벤팅부를 연결하는 유로를 폐쇄하고, 상기 밀폐부와 상기 배기부를 연결하는 유로를 반복적으로 개폐하여 상기 밀폐부의 내부 압력이 상기 공정 압력 범위에 포함되도록 상기 밸브를 제어하는 제어부를 더 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 밀폐부와 상기 배기부를 연결하는 유로를 열고, 상기 밀폐부와 상기 벤팅부를 연결하는 유로를 반복적으로 개폐하여 상기 밀폐부의 내부 압력이 상기 공정 압력 범위에 포함되도록 상기 밸브를 제어하는 제어부를 더 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 공정 압력 범위는 1 Torr 이상 30 Torr 미만일 수 있다.
본 발명의 일 실시예에 있어서, 상기 밀폐부의 내부에는 피처리물이 수납되고, 상기 피처리물을 상기 전극부가 방전한 상기 저압 대기에 의해 표면 처리한 후, 상기 밀폐부와 상기 벤팅부를 연결하는 유로를 열어 상기 밀폐부의 내부 압력이 외부 대기의 압력과 동일해지도록 벤팅하는 제어부를 더 포함될 수 있다.
본 발명의 일 실시예에 있어서, 상기 제어부는, 상기 저압 대기의 방전을 중지하고 사전에 설정된 정화시간동안 상기 밀폐부의 내부 대기를 배기한 후, 벤팅하여 플라즈마 처리를 종료할 수 있다.
본 발명의 일 실시예에 있어서, 상기 밀폐부의 내부 압력을 측정하는 센서부를 더 포함하며, 상기 제어부는 상기 센서부로부터 측정한 상기 밀폐부의 내부 압력 값을 수신하여 상기 배기부, 상기 벤팅부 및 상기 밸브 중 적어도 하나를 제어될 수 있다.
본 발명의 일 실시예에 있어서, 상기 밀폐부는, 내부와 상기 배기부 간 연결된 배기유로 및 내부와 상기 벤팅부 간 연결된 벤팅유로를 포함하고, 상기 센서부는 상기 밀폐부의 내부에 배치되거나, 상기 배기유로 또는 상기 벤팅유로와 연결되어 상기 밀폐부의 내부 압력 값을 획득할 수 있다.
본 발명의 일 실시예에 있어서, 상기 밀폐부의 내부 대기를 배기하여 상기 밀폐부의 내부 압력이 상기 공정 압력 범위에 포함된 후 상기 전극부에 전원을 인가하는 제어부를 더 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 밀폐부는 분리된 제1 부재와 제2 부재를 포함하고, 상기 제1 부재 또는 상기 제2 부재의 적어도 일부는 부도성을 가지며, 상기 전극부는 상기 제1 부재 또는 상기 제2 부재에 배치될 수 있다.
본 발명의 일 실시예에 있어서, 상기 제1 부재 또는 상기 제2 부재의 적어도 일부는 투명한 재질로 이루어져 상기 밀폐부에 수납된 피처리물의 표면 처리 과정이 외부에서 육안으로 확인할 수 있다.
본 발명의 일 실시예에 있어서, 상기 제1 부재 또는 상기 제2 부재의 부도성을 가진 일부가 투명하거나, 상기 제1 부재 또는 상기 제2 부재의 적어도 일부가 내화학성을 가진 투명 소재로 구성될 수 있다.
본 발명의 일 실시예에 있어서, 상기 전극부는 상기 제1 부재에 배치된 제1 전극과 상기 제2 부재에 배치된 제2 전극을 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 전극부는 10,000 Hz 이상 200,00 Hz 이하의 주파수로 전압을 교류하는 전원부를 더 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 밀폐부의 내부에는 피처리물이 수납되고, 상기 피처리물이 상기 전극부가 방전한 상기 저압 대기에 의해 플라즈마에 노출되거나 상기 플라즈마로 발생된 활성종에 노출되어 표면처리될 수 있다.
이하, 첨부된 도면을 참조하여 이하의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
본 발명의 기술적 사상은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 이를 상세히 설명하고자 한다. 그러나, 이는 본 발명의 기술적 사상을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 기술적 사상의 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명의 기술적 사상을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 본 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제1, 제2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "접속된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결되거나 또는 직접 접속될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결되거나 또는 접속될 수도 있다고 이해되어야 할 것이다.
또한, 본 명세서에 기재된 "~부", "~기", "~자", "~모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 프로세서(Processor), 마이크로 프로세서(Micro Processer), 마이크로 컨트롤러(Micro Controller), CPU(Central Processing Unit), GPU(Graphics Processing Unit), APU(Accelerate Processor Unit), DSP(Drive Signal Processor), ASIC(Application Specific Integrated Circuit), FPGA(Field Programmable Gate Array) 등과 같은 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있으며, 적어도 하나의 기능이나 동작의 처리에 필요한 데이터를 저장하는 메모리(memory)와 결합되는 형태로 구현될 수도 있다.
그리고 본 명세서에서의 구성부들에 대한 구분은 각 구성부가 담당하는 주기능 별로 구분한 것에 불과함을 명확히 하고자 한다. 즉, 이하에서 설명할 2개 이상의 구성부가 하나의 구성부로 합쳐지거나 또는 하나의 구성부가 보다 세분화된 기능별로 2개 이상으로 분화되어 구비될 수도 있다. 그리고 이하에서 설명할 구성부 각각은 자신이 담당하는 주기능 이외에도 다른 구성부가 담당하는 기능 중 일부 또는 전부의 기능을 추가적으로 수행할 수도 있으며, 구성부 각각이 담당하는 주기능 중 일부 기능이 다른 구성부에 의해 전담되어 수행될 수도 있음은 물론이다.
도 1은 본 발명의 플라즈마 처리 장치(10)를 나타내는 블록도이고, 도 2a 내지 도 2d는 도1의 플라즈마 처리장치의 다른 실시형태를 설명하기 위한 블록도이다.
도 1과 도 2a 내지 도 2d를 참조하면, 본 발명의 일 실시예에 따른 플라즈마 처리 장치(10)는 밀폐부(100), 압력조정부(110) 및 전극부(120)를 포함한다. 또한, 본 발명의 일 실시예에 따른 플라즈마 처리 장치(10)는 제어부(130) 및 센서부(140)를 더 포함할 수 있다.
본 발명에 따른 플라즈마 처리 장치(10)는 밀폐부(100)를 이용하여 일정한 밀폐 공간을 형성하고, 밀폐 공간의 공기를 배기시켜 밀폐 공간을 사전에 설정된 압력 이하의 대기 분위기를 형성한 후, 공간 내에 전기장을 형성하여 플라즈마 방전을 발생시키는 것을 특징으로 한다.
플라즈마 처리 장치(10)는 밀폐부(100) 내에 피처리물(M1, 도 8a 참조)을 수납한 상태에서 상기와 같은 동작을 통해 플라즈마 방전을 발생시킴으로써, 피처리물(M1)을 플라즈마 처리할 수 있게 된다.
여기서, 피처리물(M1)은 플라즈마 처리를 통해 플라즈마 처리에 따른 특성이 부여되는 어떠한 물체든 대상이 될 수 있으며, 치과용 임플란트 픽스쳐, 어버트먼트, 크라운을 비롯하여 정형외과용 임플란트, 골이식재를 비롯한 바이오 소재 등일 수 있다.
플라즈마 처리 장치(10)는 처리 대상체가 되는 피처리물이 위치하는 영역 주변에 전기장이 형성되도록 하여, 피처리물을 플라즈마에 노출시키거나 플라즈마로 발생된 활성종에 노출되도록 함으로써 플라즈마 처리가 되도록 한다.
플라즈마 처리 장치(10)는 피처리물(M1) 자체로 밀폐부(100) 내에 수납될 수도 있고, 피처리물(M1)을 수납한 수납 용기(L1, 도 8a 참조)이 밀폐부(100) 내에 수납될 수도 있다.
또는 피처리물(M1)은 수납 용기(L1)로부터 플라즈마 처리 장치(10)의 유도 부재 또는 고정 지그로 옮겨져 유도 부재 또는 고정 지그와 함께 플라즈마 처리 장치(10)에 수납될 수 있다. 이때, 상기한 유도 부재 또는 고정 지그에 대한 설명은 후술하기로 한다.
또는, 피처리물(M1)은 수납 용기(L1)의 형태를 변형시켜 수납 용기(L1)의 외부로 노출된 상태로 밀폐부(100)에 수납될 수도 있다.
또는 피처리물(M1)은 변형가능한 수납 용기(L1)에 수납된 상태로 플라즈마 처리 장치(10)로 수납된 후, 플라즈마 처리 장치(10) 내의 별도의 구동 부재를 통해 밀폐부(100) 내에서 수납 용기(L1)의 외부로 노출될 수도 있다.
한편, 피처리물(M1)은 어떠한 재질이든 상관없으며, 전도성 재질 또는 부도체 재질일 수 있다. 일 실시예로서, 피처리물(M1)은 임플란트 픽스쳐, 스템과 같이 전도성 재질로 이루어질 수 있다. 다른 실시예로서, 피처리물(M1)은 골이식재와 같이 비전도성 재질로 이루어질 수도 있다.
밀폐부(100)는 내부가 외부 환경에 대해 밀폐될 수 있다. 밀폐부(100)의 내부 또는 형성된 밀폐 공간에는 피처리물(M1) 또는 피처리물(M1)을 수납한 수납 용기(L1)가 수납될 수 있다.
밀폐부(100)는 내부에 수용할 수 있는 공간을 마련하고, 피처리물(M1) 또는 피처리물(M1)을 수납한 수납 용기(L1)를 수용할 수 있는 형태면 어떠한 형상이든 상관없다. 예를 들면, 밀폐부(100)는 원통 형상, 직육면체 형상, 반구 형상 등일 수 있으며, 또는 비정형 형상으로 이루어질 수 있다.
밀폐부(100)는 피처물(M1) 또는 피처리물(M1)을 수납한 수납 용기(L1)가 처음 수납되면 대기압과 동일한 압력의 내부 압력을 갖는다.
압력조정부(110)는 밀폐부(100)와 유체적으로 연결되며, 밀폐부(100) 내부의 공기를 배기하여 저압 대기를 형성할 수 있다. 일 실시예로서, 압력조정부(110)는 밀폐부(100) 내부의 공기를 배기하거나 벤팅하여, 밀폐 공간의 내부 압력을 조정하는 기능을 수행할 수 있다. 일 실시예로서, 압력조정부(110)는 밀폐부(100) 내의 공기를 배기하기 위한 배기부(113) 및 밀폐부(100) 내부에 외부 대기를 주입하거나 밀폐부(100) 내부를 환기하기 위한 벤팅부(112)를 포함할 수 있다.
압력조정부(110)는 배기부(113)와 밀폐부(100)를 연결하는 배기유로를 개폐하는 배기밸브(113-1)와 벤팅부(112)와 밀폐부(100)를 연결하는 벤팅유로를 개폐하는 벤팅밸브(112-1)를 포함할 수 있다. 일 실시예로서, 배기유로와 벤팅유로는 하나의 통합된 유로를 가지며, 통합된 유로를 개폐하는 밸브로 구성될 수 있다.
압력조정부(110)는 제어부(130)에 의해 배기부(113), 벤팅부(112) 및 하나 이상의 밸브(112-1, 113-1) 등이 제어되어, 밀폐부(100) 내부의 압력을 조정할 수 있다.
배기부(113)는 적어도 하나의 진공 펌프를 포함할 수 있다. 진공 펌프는 최대 진공도를 가지며, 공정 압력 범위는 플라즈마 처리 장치를 구성하는 진공 펌프의 최대 진공도를 기준으로 설정될 수 있다.
일 실시예에서, 공정 압력 범위는 1 Torr 이상 30 Torr 미만이다. 또한, 진공 펌프의 최대 진공도는 0.001 Torr(1 mtorr) 이상 30 Torr 미만일 수 있다.
공정 압력 범위가 진공 펌프의 최대 진공도로 형성되는 압력보다 높은 경우, 제어부(130)는 배기부(113)를 계속 동작시키더라도 벤팅부(112)와 밀폐부(100)를 연결하는 유로를 개폐함으로써 밀폐부(100)의 내부 압력을 공정 압력 범위에 포함되도록 제어할 수 있다. 또는, 제어부(130)는 배기부(113)를 계속 동작시키더라도 배기부(113)와 밀폐부(100)를 연결하는 유로를 개폐함으로써 밀폐부(100)의 내부 압력을 공정 압력 범위에 포함되도록 제어할 수 있다.
이 때, 제어부(130)는 센서부(140)로부터 수신한 밀폐부(100)의 내부 압력 값을 기준으로 제어하거나 사전에 설정된 시간을 기준으로 배기밸브(113-1) 또는 벤팅밸브(112-1)의 개폐를 제어할 수 있다.
또한, 공정 압력 범위가 진공 펌프의 최대 진공도로 형성되는 압력보다 낮은 경우, 복수의 진공 펌프를 사용하고 이를 제어부(140)는 이를 제어함으로써 밀폐부(100) 내부 압력이 공정 압력 범위에 포함되도록 할 수 있다.
공정 압력이 일정한 범위를 가짐으로써, 플라즈마 방전이 이뤄지는 압력이 가변할 수 있게 된다. 이를 통해, 밀폐부(100) 내부의 플라즈마 방전 영역이 가변될 수 있다.
일 실시예에서, 제어부(130)는 밀폐부(100)와 벤팅부(112)가 연결된 유로를 폐쇄하고 밀폐부(100)와 배기부(113)를 연결하는 유로를 열어 진공 펌프의 최대 배기 성능에 의해 밀폐부(100)의 내부 압력이 공정 압력 범위에 포함되도록 제어할 수 있다.
다른 실시예에서, 제어부(130)는 사전에 설정된 기준 시간 동안 진공 펌프의 최대 배기 성능에 의해 밀폐부(100)의 내부 압력을 낮추었음에도 공정 압력 범위보다 크다면 밀폐부(100)의 밀폐성 오류로 판단할 수 있다. 구체적으로, 제어부(130)는 사전에 설정된 기준 시간이 경과한 후 센서부(140)로부터 제공되는 밀폐부(100)의 내부 압력이 기준 압력에 도달하지 않는 경우 장치의 동작을 멈추고 이를 사용자에게 알릴 수 있다.
전극부(120)는 밀폐부(100)의 내부에 전기장을 형성하여, 저압 대기를 방전하는 기능을 수행한다.
제어부(130)는 플라즈마 처리 장치(10)의 구성들을 제어하는 기능을 수행한다. 제어부(130)는 밀폐 공간의 내부 압력을 사전에 설정된 공정 압력 범위에 도달하도록 압력조정부(110)를 제어할 수 있다. 또한, 제어부(130)는 밀폐 공간의 내부 압력이 사전에 설정된 공정 압력 범위에 도달한 후, 전극부(120)에 전원을 인가하도록 제어할 수 있다.
제어부(130)에서 플라즈마 처리 장치(10)의 구성들을 제어하는 기능은, 사전에 설정된 프로토콜에 의해서 기능할 수 있다. 일 실시예로서, 제어부(130)는 배기 또는 벤팅의 시작 시간을 기준으로 사전에 설정된 시간이 지난 후 전극부(120)를 동작시킬 수 있다.
다른 실시예로서, 플라즈마 처리 장치(10)는 밀폐 공간의 내부 압력을 측정하는 센서부(140)를 더 포함하고, 제어부(130)는 센서부(140)로부터 제공되는 센싱값에 따라 플라즈마 처리 장치(10)의 구성들을 제어할 수 있다.
센서부(140)는 밀폐 공간의 내부 압력을 측정하기 위해, 밀폐 공간의 내부에 배치될 수 있으나, 이에 제한되지 않는다. 센서부(140)는 밀폐부(100)와 연통되는 배기유로 또는 벤팅유로 상에 배치되어 배기유로 또는 벤팅유로 내부의 압력을 측정하여 밀폐부(100)의 내부 압력을 측정할 수 있다. 또는, 센서부(140)는 배기유로 또는 벤팅유로를 통해 유입 또는 유출되는 유량을 측정하여 밀폐부(100)의 내부 압력을 측정할 수도 있다.
도 6a 내지 도 6c는 도1의 플라즈마 처리 장치의 또 다른 실시형태를 설명하기 위한 개념도이다.
도 6a 내지 도 6c를 참조하면, 본 발명의 일 실시예에 따른 압력조정부(110)는 밀폐부(100) 내부의 공기(a)를 배기하거나 벤팅시켜 압력을 조정하는 것을 특징으로 하며, 압력 조정을 위해 별도의 가스를 추가적으로 주입하지 않는다.
플라즈마 방전을 위한 방법으로 종래의 플라즈마 처리 장치는 플라즈마 방전을 위해서 방전 공간 내에 방전 가스를 주입하고, 방전 가스에 전기장을 형성하여 플라즈마를 발생시켰다. 그러나, 이러한 플라즈마 처리 장치는 별도의 방전 가스 주입 수단을 구비하여야 하며, 방전 가스의 무균성 확보를 위한 관리가 까다롭다는 문제점이 존재했다.
일반적으로 플라즈마 방전은 대기압 분위기에서도 가능하나 방전을 위해서 전기장의 세기를 매우 높여야 하는 문제점이 있다.
본 발명은 이러한 문제점을 해결하기 위해, 압력조정부(110)를 이용하여 밀폐부(100) 내에 사전에 설정된 기준 압력 이하의 저압 대기를 형성하고, 저압 대기에 전기장을 인가하여 플라즈마 방전을 발생시킬 수 있다.
이때, 저압 대기에 인가되는 전기장의 세기는 대기압 분위기 하에서 인가되어야 하는 전기장의 세기보다 현저히 낮아 본 발명에 따른 플라즈마 처리 장치(10)는 보다 안정적이면서 효율적으로 플라즈마 방전을 발생시킬 수 있다.
전극부(120)는 특정 주파수로 전압을 교류하는 전원부(125)를 포함할 수 있다. 일 실시예로서, 전극부(120)는 제1 전극(121) 및 제1 전극(121)과 이격되어 배치되는 제2 전극(122)을 포함하고, 제1 전극(121)과 제2 전극(122)에 인가되는 전압차를 이용하여 플라즈마 방전을 형성할 수 있다.
다른 실시예로서, 전극부(120)는 밀폐부(100)를 감싸는 코일 형태의 제1 전극(121)을 이용하여 밀폐부(100) 내에 플라즈마 방전을 형성할 수도 있다.
전극부(120)는 전기장 형성 방법에 따라 전극의 구조 또는 배치를 다르게 할 수 있다.
본 발명의 일 실시예에 따른 플라즈마 처리 장치(10)는 유전체 장벽 방전(Dielectric Barrier Discharge, DBD)을 통해 밀폐 공간(S1)에 플라즈마를 발생시킬 수 있다. 그러나 이에 제한되지 않으며, 플라즈마 처리 장치(10)는 코로나 방전(corona discharge), 대기압 글로 방전(atmospheric pressure glow discharge), 아크 토치 플라즈마(arc plasma torch), 미세공동 음극 방전(micro hollow cathode discharge), 대기압 자기유도 플라즈마(Inductively coupled plasma:ICP) 등을 이용하여 플라즈마를 발생시킬 수 있다.
본 발명의 다른 실시예에 다른 전극부(120)는 밀폐부(100)를 감싸는 코일 형태의 제4 전극(124)를 이용하여 밀폐부(100) 내에 플라즈마 방전을 형성할 수 있다.
플라즈마 처리 장치(10)는 대기압 자기유도 플라즈마(Inductively coupled plasma:ICP) 방식을 이용하여 플라즈마 방전을 발생시킬 수 있다. 코일 형태의 제2 전극(124)이 밀폐부(100)를 감싸고 있으므로, 제2 전극(124)에 전원이 인가되면 밀폐부(100) 내에 유도 전기장이 형성되며, 플라즈마 방전이 발생될 수 있다(S1).
이때, 인가되는 전압은 저압 대기 환경 또는 방전 방식에 따라 사전에 설정된 범위에서 선택될 수 있다.
또한, 교류되는 전압의 특정 주파수는 저주파(low frequency, ~kHz), 라디오파(radio frequency, ~MHz) 등의 범위에서 선택될 수 있으며, 일 실시예로서, 10,000 Hz 이상 200,000 Hz 이하의 범위에서 설정될 수 있다.
또한, 전압은 사전에 설정된 입력 파형, 예를 들면 사인파, 삼각파, 사각파, 톱니파, 펄스파 등의 입력 파형으로 인가될 수 있으며, 이를 통해 플라즈마 방전 특성을 제어할 수 있다.
본 발명의 일 실시예에 따른 플라즈마 처리 장치(10)는 부도체 부재(101, 102)로 이루어진 밀폐부(100)를 포함할 수 있다.
부도체 부재(101, 102)는 분리된 제1 부재(101) 및 제2 부재(102)를 포함할 수 있다. 제1 부재(101)와 제2 부재(102)는 결합하여, 피처리물(M1)을 수납한 수납 용기(L1)을 수용하기 위한 일정 공간을 형성할 수 있다.
여기서, 일정 공간은 전술한 밀폐 공간과 동일한 공간을 의미하며, 피처리물(M1) 또는 피처리물(M1)을 수납한 수납 용기(L1)을 외부 환경으로부터 밀폐시키는 공간일 수 있다. 일정 공간은 압력조정부(110)에 의해 내부 압력이 조정될 수 있다.
이때, 피처리물(M1)을 수납한 수납 용기(L1)는 피처리물(M1)의 플라즈마 처리를 위해 일측에 수납 용기(L1)를 관통하는 관통홀(H1)이 형성될 수 있다. 도면에서는 관통홀(H1)이 수납 용기(L1)의 상부에 형성되는 것을 예시로 도시하였으나, 관통홀(H1)의 위치, 형상 및 개수에는 제한이 없다.
수납 용기(L1)는 관통홀(H1)을 통해 일정 공간과 동일한 내부 압력을 가질 수 있으며, 이를 통해 수납 용기(L1) 내부 피처리물(M1) 주변에서 플라즈마 방전이 발생될 수 있다.
제1 부재(101)와 제2 부재(102)는 상대적 이동에 의해 결합될 수 있다. 일 실시예로서, 도면 상 상부에 배치된 제2 부재(102)는 상하 방향으로 승하강시키는 승하강부(미도시)와 연결되어 제1 부재(101)에 대해 상대이동할 수 있다.
다른 실시예로서, 제2 부재(102)는 상부에 고정되고, 하부에 위치하는 제1 부재(101)가 상대이동하여 제2 부재(102)와 결합할 수도 있다. 또는, 제1 부재(101)와 제2 부재(102)는 서로에 대해 모두 이동하여 결합될 수도 있다.
제1 부재(101) 또는 제2 부재(102)의 적어도 일부는 투명한 재질로 이루어져 밀폐 공간에서 플라즈마 방전 발생 시 사용자가 외부에서 육안으로 확인할 수 있게 한다.
도면에서 제1 부재(101)는 일체로 이루어진 부재로 도시하였으나, 수납 용기(L1)이 안착되는 바닥부재와 바닥부재를 둘러싸는 벽체부재로 분리되어 형성될 수도 있다.
제1 부재(101)의 바닥부재에는 수납 용기(L1)가 안정적으로 안착될 수 있는 안착부(미도시)가 구비될 수 있다. 안착부(미도시)는 수납 용기(L1)를 제1 부재(101) 내의 중심 영역에 배치시켜 피처리물(M1) 주변에 집중된 플라즈마 방전이 발생되도록 할 수 있다.
한편, 밀폐부(100)는 분리된 제1 부재(101)와 제2 부재(102)가 결합될 때, 제1 부재(101)와 제2 부재(102) 사이를 밀폐시키는 실링 부재(105)를 더 포함할 수 있다. 실링 부재(105)는 실리콘 또는 고무와 같은 유연한 재질로 이루어질 수 있다.
실링 부재(105)는 제1 부재(101)의 일면을 따라 배치될 수도 있고, 제2 부재(102)의 일면을 따라 배치될 수도 있다. 또는 실링부재(105)는 제1 부재(101)의 일면 및 제2 부재(102)의 일면에 모두 배치되고 맞물리는 형태로 형성될 수도 있다.
전극부(120)는 제1 전극(121) 및 제1 전극(121)과 이격되어 배치되는 제2 전극(122)을 포함할 수 있다.
본 실시예에 있어서, 제1 부재(101)에는 제1 전극(121)이 배치되고, 제2 부재(102)에는 제2 전극(122)이 배치될 수 있다. 이때, 제1 전극(121)과 제2 전극(122)은 서로 마주보도록 배치될 수 있다.
플라즈마 처리 장치(10)는 밀폐부(100) 내의 공기를 배기하여 사전에 설정된 기준 압력 이하의 저압 대기가 형성된 밀폐 공간(S1) 내에 전극부(120)를 이용하여 전기장을 형성함으로써 플라즈마 방전을 발생시킬 수 있다.
제1 전극(121)과 제2 전극(122)은 마주보는 구조로 배치되어 있어, 밀폐 공간(S1) 내에 집중된 방전을 유도할 수 있다.
한편, 피처리물(M1)이 전도성 재질로 이루어지는 경우, 피처리물(M1)은 제1 전극(121)과 전기적으로 연결되어 전극으로서 기능할 수 있다. 이 경우, 제2 전극(122)에 대한 제1 전극(121) 거리보다 피처리물(M1)과의 거리가 더 가깝기 때문에, 피처리물(M1) 주변(S2)으로 더 강한 전기장이 형성될 수 있다.
또한, 제1 전극(121)은 수납 용기(L1)을 이용하여 밀폐 공간 내에서 노출을 최소화시킬 수 있고, 이를 통해, 피처리물(M1)에 더 집중적으로 플라즈마 방전이 발생되어 처리 효과를 증대시킬 수 있다.
도 8a 내지 도 8d는 도1의 플라즈마 처리 장치의 또 다른 실시형태를 설명하기 위한 개념도이다.
도 8a 및 도 28를 참조하면, 본 발명의 일 실시예에 따른 플라즈마 처리 장치(10)는 부도체 부재(101, 102)로 이루어진 밀폐부(100)를 포함할 수 있다.
부도체 부재(101, 102)는 분리된 제1 부재(101) 및 제2 부재(102)를 포함할 수 있다. 제1 부재(101)와 제2 부재(102)는 결합하여, 피처리물(M1)을 수납한 수납 용기(L1)을 수용하기 위한 일정 공간을 형성할 수 있다.
여기서, 일정 공간은 피처리물(M1)을 수납한 수납 용기(L1)을 외부 환경으로부터 밀폐시키는 공간이나, 사전에 설정된 압력 이하의 저압 대기가 형성되는 공간은 아닐 수 있다.
다시 말해, 일정 공간이 압력조정부(110)에 의해 내부 압력이 조정되는 것이 아니라, 피처리물(M1)이 수납된 수납 용기(L1)의 내부 압력을 조정하고 수납 용기(L1) 내에서 플라즈마 방전을 발생시킬 수 있다.
이때, 피처리물(M1)을 수납한 수납 용기(L1)는 피처리물(M1)을 둘러싸는 밀폐 공간을 형성할 수 있다. 수납 용기(L1)는 유전체 장벽 형성을 위해 적어도 일부가 유전체 물질로 이루어질 수 있다. 예를 들면, 수납 용기(L1)가 제1 부재(101)에 수용되었을 때, 제2 전극(122)과 인접하게 배치되는 측부를 유전체 물질로 형성할 수 있다. 또는, 수납 용기(L1)은 측부와 상부를 하나의 커버부재로 구성할 수 있고, 커버부재가 유전체 물질로 이루어질 수도 있다.
또한, 수납 용기(L1)는 유로 생성부(111)가 내부로 관통되는 부분을 탄성 재질로 형성하여, 유로 생성부(111)에 의해 관통되더라도 수납 용기(L1)의 내부가 밀봉되어 진공상태를 유지할 수 있다. 이를 위해, 수납 용기(L1)의 적어도 일 영역은 스타이렌(styrene)을 기반으로 한 ABS 소재, 경도 10의 실리콘 소재 또는 이의 혼합 소재로 구성될 수 있다.
도 8a의 부도체 부재(101, 102)와 달리, 도 8c의 부도체 부재(101)는 제1 부재(101)를 이용하여 수납 용기(L1)를 수용하며, 제2 부재(102)는 제1 부재(101)와 결합되는 뚜껑부재(미도시)로 이루어질 수 있다.
제2 부재(102)는 힌지 결합 또는 슬라이딩 결합에 의해 제1 부재(101)와 결합될 수 있다. 제2 부재(102)의 일측에는 제1 부재(101)와의 결합 시 제1 부재(101)와 제2 부재(102) 사이의 틈을 밀폐시키는 실링 부재(105)가 배치될 수 있다.
한편, 전극부(120)는 제1 전극(121) 및 제1 전극(121)과 이격되어 배치되는 제2 전극(122)을 포함할 수 있다.
본 실시예에 있어서, 제1 부재(101)에는 제1 전극(121) 및 제2 전극(122)이 배치될 수 있다. 제1 전극(121)은 제1 부재(101)의 바닥부재에 배치될 수 있으며, 제2 전극(122)은 제1 부재(101)의 벽체부재에 배치될 수 있다.
제1 전극(121)은 피처리물(M1)과 전기적으로 연결될 수 있다. 이때, 제1 전극(121)는 유로 생성부(111)가 일체로 형성될 수 있으며, 예를 들면, 공기를 배기하기 위한 홀이 형성될 수도 있다.
제2 전극(122)은 제1 부재(101)의 벽체부재에 배치되되, 수납 용기(L1)가 수납되었을 때 피처리물(M1)에 인접한 위치에 배치될 수 있다. 또한, 제2 전극(122)은 제1 부재(101)의 벽체 부재를 둘러싸는 링 형태의 전극 형태로 형성될 수도 있고, 정해진 패턴에 따라 벽체 부재에 형성될 수도 있다. 또는, 제2 전극(122)은 마주보는 형태의 복수의 전극부재로 이루어질 수도 있다.
제2 전극(122)은 후술하겠지만, 플라즈마 방전의 외부 시인성을 위해 투명한 전극으로 이루어질 수 있다.
한편, 전극부(120)는 제1 전극(121) 및 제2 전극(122)와 이격되어 배치되는 제3 전극(미도시)을 더 포함할 수 있다.
본 실시예에 있어서, 제3 전극은 제2 부재(102)에 배치될 수 있으며, 제2 부재(102)가 제1 부재(101)와 결합 시 피처리물(M1)의 상부에 배치될 수 있다.
제3 전극은 제1 전극(121) 또는 제2 전극(122)과 동일한 레벨의 전압이 인가될 수 있다. 그러나 본 발명은 이에 제한되지 않으며 제3 전극(123)은 제1 전극(121) 또는 제2 전극(122)과 다른 레벨의 전압이 인가되거나, 전기적으로 연결되지 않은 플로팅 전극(floating electrode)일 수 있다.
다른 실시형태로서 플라즈마 처리 장치(10)는 제2 부재(102) 없이 수납 용기(L1)을 수납하고, 플라즈마 처리를 수행할 수 있다.
도 7a 내지 도 7c는 도1의 플라즈마 처리 장치의 또 다른 실시형태를 설명하기 위한 개념도이다.
도 7a 내지 도 7c를 참조하면, 또 다른 실시형태에 따른 밀폐부(100)는 제1 부재(101)와 제2 부재(102)로 이루어질 수 있다.
이때, 제1 부재(101)는 수납 용기(L1)를 안착시키기 위한 바닥부재로 이루어질 수 있으며, 제2 부재(102)는 제1 부재(101)에 수납된 수납 용기(L1)를 감싸는 형상으로 형성될 수 있다.
도면에서는 제2 부재(102)를 내부에 중공이 형성된 컵 형상으로 도시하였다. 이 경우, 밀폐부(100)는 제1 부재(101)에 피처리물(M1)을 포함하는 수납 용기(L1)이 수납되면, 제2 부재(102)를 하강시켜 피처리물(M1)을 외부 환경으로부터 밀폐시킬 수 있다.
다른 실시예로서, 제2 부재(102)는 관 형태로 형성될 수 있으며, 상면은 별도의 부재로 구비되어 고정된 상태에서 제2 부재(102)의 위치가 상하이동됨에 따라 제1 부재(101)와 밀폐 공간을 형성할 수도 있다.
제2 부재(102)의 하면에는 제1 부재(101)와 결합될 때, 제1 부재(101)와 제2 부재(102) 사이를 밀폐시키는 실링 부재(105)를 포함할 수 있다. 실링 부재(105)는 제2 부재(102)의 하면 또는 제1 부재(101)의 상면에 배치될 수 있으며, 제1 부재(101)의 상면과 제2 부재(102)의 하면에 모두 배치되고 맞물리는 형태로 형성될 수도 있다.
제2 부재(102)는 내벽(102-1) 및 외벽(102-2)을 포함하는 이중벽 구조로 구성될 수 있다. 제2 부재(102)가 하강하면서 제2 부재(102)의 하면이 제1 부재(101)의 상면에 접하게 되면, 제2 부재(102)의 내부는 제1 부재(101)와 함께 밀폐 공간을 형성하게 된다. 내벽(102-1)의 내면은 밀폐 공간의 내면을 이루게 되며, 외벽(102-2)의 외면은 밀폐부(100)의 외면을 이루게 된다.
제2 부재(102)의 내벽(102-1)은 유전체 장벽층으로 이루어질 수 있다.
한편, 전극부(120)는 제1 전극(121) 및 제1 전극(121)과 이격되어 배치되는 제2 전극(122)을 포함할 수 있다. 제1 전극(121)은 제1 부재(101)에 배치되고, 제2 전극(122)은 제2 부재(102)에 배치될 수 있다.
제1 전극(121)은 밀폐 공간의 내부로 일부가 노출될 수 있으며, 피처리물(M1)이 구비된 수납 용기(L1)이 안착될 때, 수납 용기(L1)의 하면이 제1 전극(121)과 접하게 된다. 수납 용기(L1)의 피처리물(M1)은 밀폐부(100)에 안착될 때, 제1 전극(121)과 전기적으로 연결될 수 있다.
제2 전극(122)은 제2 부재(102)의 내면 또는 외면에 배치될 수 있다. 제2 전극(122)은 제2 부재(102)를 유전체 장벽층으로 이용하기 위해 제2 부재(102)의 외면에 배치될 수 있다. 또는, 제2 전극(122)은 제2 부재(102)의 내면에 배치되며, 이때, 수납 용기(L1) 자체를 유전체 장벽층으로 사용할 수도 있다.
제2 부재(102)의 측면 및 상면을 따라 제2 전극(122)이 제2 부재(102)의 전 영역에 형성되는 것으로 도시하였으나, 반드시 이에 제한되지 않는다. 다른 실시예로서, 제2 전극(122)은 제2 부재(102)의 측면에 링 형태로 형성될 수도 있다. 또 다른 실시예로서, 제2 전극(122)은 특정 패턴을 갖고 제2 부재(102)에 형성될 수도 있다.
제2 부재(102)가 이중벽 구조를 갖는 경우, 제2 전극(122)은 내벽(102-1)과 외벽(102-2) 사이에 개재되어 구비될 수 있다. 제2 전극(122)은 내벽(102-1)의 외면과 외벽(102-2)의 내면에 코팅하여 형성될 수 있다.
여기서, 제2 부재(102)의 이중벽 구조 및 제2 전극(122)은 투명한 재질로 이루어져, 피처리물(M1)에 플라즈마 표면 처리를 수행할 때, 육안으로 플라즈마 표면처리 과정을 확인할 수 있다.
일 실시예에서, 제1 부재(101) 또는 제2 부재(102) 중 적어도 일부는 부도성을 가진다. 또한, 부도성을 가진 제1 부재(101) 또는 제2 부재(102) 중 적어도 일부는 투명한 재질로 이루어질 수 있다.
다른 실시예에서, 제1 부재(101) 또는 제2 부재(102) 중 적어도 일부는 내화학성을 가진 투명 소재, 예를 들어 유리를 비롯한 쿼츠 소재로 이루어질 수 있다.
내벽(102-1)의 내면에는 코팅층(C1)이 형성될 수 있다. 코팅층(C1)은 플라즈마 방전시 고온, 고전압에 의해 내벽(102-1)의 내면이 파손되거나, 이물질이 용출되는 것을 방지하도록 고온, 고전압을 견딜 수 있는 재질로 이루어질 수 있다. 다시 말해, 코팅층(C1)은 내플라즈마성을 가지고 있어, 전극부(120)에 의해 밀폐부(100)의 내부에 플라즈마 처리시 내벽(102-1)의 내면이 파손되어 용출되거나 이물질들이 용출되어 피처리물(M1)에 이물질이 달라붙게 되는 것을 방지하는 기능을 한다.
코팅층(C1)은 칼슘이 포함된 재질로 이루어질 수 있다. 이처럼, 코팅층(C1)이 칼슘이 포함된 재질로 이루어질 경우, 플라즈마 처리에 의해 칼슘의 용출을 유도시켜 피처리물(M1)의 표면에 칼슘이 달라붙게 할 수 있다. 이처럼, 인위적으로 피처리물(M1)의 표면에 칼슘이 달라붙게 함으로써, 인체에 피처리물(M1)을 식립 또는 생착 시, 염증 반응을 완화시키거나, 식립 또는 생착이 견고해지게 함으로써, 높은 식립률 또는 생착률을 보장할 수 있다.
위와 같이, 코팅층(C1)에 생체 친화성 물질을 포함시켜, 플라즈마 처리시 생체 친화성 물질이 피처리물(M1)의 표면에 달라붙게 함으로써, 피처리물(M1)을 인체에 더욱 안전하게 식립 또는 생착시킬 수 있다.
다시 도 8d을 참조하면, 본 발명의 일 실시예에 따른 플라즈마 처리 장치(10)는 부도체 부재(101, 102)로 이루어진 밀폐부(100), 제1 전극(121) 및 제2 전극(122)을 포함하는 전극부(120) 및 제1 전극(121)과 전기적으로 연결되며, 플라즈마 방전 세기의 변화를 유도하는 유도 부재(150a)을 포함할 수 있다.
여기서, 제1 전극(121) 및 제2 전극(122) 중 어느 하나는 피처리물(M1)과 전기적으로 연결되거나 피처리물(M1)과 인접하게 배치되도록 밀폐 공간의 내부로 노출될 수 있다. 설명의 편의를 위해, 이하에서는 제1 전극(121)이 피처리물(M1)과 전기적으로 연결되거나 피처리물(M1)과 인접하게 배치되도록 밀폐 공간의 내부로 노출되는 경우를 중심으로 설명하기로 한다.
한편, 피처리물(M1)이 수납된 수납 용기(L1)를 밀폐 공간에 배치시키는 기술에 대해서는 전술하였는바, 본 실시예는 피처리물(M1)이 직접 밀폐부(100)에 수용되어 플라즈마 처리되는 기술을 중심으로 설명하기로 한다.
이때, 피처리물(M1)은 전도성 재질로 이루어질 수 있다.
부도체 부재(101, 102)는 분리된 제1 부재(101) 및 제2 부재(102)를 포함할 수 있다. 제1 부재(101)와 제2 부재(102)는 결합하여, 피처리물(M1)을 수용하기 위한 일정 공간을 형성할 수 있다.
여기서, 일정 공간은 전술한 밀폐 공간과 동일한 공간을 의미하며, 피처리물(M1)을 외부 환경으로부터 밀폐시키는 공간일 수 있다. 일정 공간은 압력조정부(110)에 의해 내부 압력이 조정될 수 있다. 도면에서는 압력조정부(110)를 펌프(113)로 간략히 표시하였으나, 이에 한정되는 것은 아니며, 명세서 전반에 걸쳐 설명된 압력조정부(110)가 적용될 수 있음은 물론이다.
제1 부재(101)와 제2 부재(102)는 상대적 이동에 의해 결합될 수 있다. 일 실시예로서, 도면 상 상부에 배치된 제2 부재(102)는 상하 방향으로 승하강시키는 승하강부(미도시)와 연결되어 제1 부재(101)에 대해 상대이동할 수 있다.
전극부(120)는 제1 전극(121) 및 제1 전극(121)과 이격되어 배치되는 제2 전극(122)을 포함할 수 있다. 제1 부재(101)에는 제1 전극(121)이 배치되고, 제2 부재(102)에는 제2 전극(122)이 배치될 수 있다. 이때, 제1 전극(121)과 제2 전극(122)은 서로 마주보도록 배치될 수 있다.
한편, 유도 부재(150a)는 밀폐부(100) 내에 배치되며, 밀폐 공간 내에서 피처리물(M1)에 대한 플라즈마 방전 세기의 변화를 유도하는 기능을 수행한다. 다시 말해, 유도 부재(150a)는 밀폐 공간에서의 피처리물(M1)의 위치를 변경하거나, 밀폐 공간 내에서 유전체의 두께 등을 달리 하여 영역별 유전상수를 다르게 하는 것에 의해, 밀폐 공간 내에서의 플라즈마 방전 세기의 변화를 유도할 수 있다.
유도 부재(150a)는 피처리물(M1)을 밀폐부(100) 내에 안착시키는 기능도 수행하며, 고정 지그, 파지 장치, 연결 부재 등으로 혼용되어 설명될 수 있다. 유도 부재(150a)는 피처리물(M1)의 종류에 따라 형상이나 구조가 다를 수 있으며, 플라즈마 처리 장치(10)는 복수의 유도 부재(150a)를 구비하여 필요에 따라 유도 부재(150a)를 교환하여 사용할 수 있다.
유도 부재(150a)는 피처리물(M1)을 고정시키면서 피처리물(M1)의 주변에 발생되는 플라즈마 방전 세기를 변화시키기 위한 어떠한 재질로 이루어질 수 있다.
일 실시예로서, 유도 부재(150a)는 전도성 재질로 이루어질 수 있다. 유도 부재(150a)는 제1 전극(121)과 피처리물(M1)을 연결하며, 모두 전도성 재질로 이루어지므로, 피처리물(M1)은 제1 전극(121)과 전기적 연결이 가능할 수 있다. 이를 통해, 피처리물(M1)은 제1 전극(121)과 동일한 전극으로서 기능할 수 있다.
피처리물(M1)은 플라즈마 처리 장치(10)의 플라즈마 표면 처리에 의해 그 표면이 소수성에서 친수성으로 개질된다. 이러한 피처리물(M1)은, 치과에서 사용되는 치아용 임플란트일 수 있다. 피처리물(M1)은 피처리물(M1)이 밀봉된 포장재로부터 유도 부재(150a)에 의해 꺼내질 수 있다.
유도 부재(150a)는 피처리물(M1)을 일단에 파지하여 포장재에서 피처리물(M1)을 꺼낸 후, 파지한 상태로 밀폐부(100) 내에 안착될 수 있다. 이때, 밀폐부(100)의 일면에는 제1 전극(121)이 노출되고, 유도 부재(150a)의 타단은 노출된 제1 전극(121) 상에 안착될 수 있다.
유도 부재(150a)를 안정적으로 안착시키기 위해서, 제1 전극(121) 주변에는 유도 부재(150a) 형상에 대응되는 안착홈이 형성될 수도 있다. 또한, 제1 전극(121)은 자성 재질로 이루어져, 유도 부재(150a)를 안정적으로 고정시킬 수 있다.
유도 부재(150a)는 일단에 피처리물(M1)이 구비되고, 타단을 통해 제1 전극(121)과 연결되며, 타단으로부터 일단까지 일정한 길이로 연장될 수 있다. 이를 통해, 유도 부재(150a)는 제1 전극(121)보다 피처리물(M1)을 제2 전극(122)에 가까이 위치시킬 수 있으며, 피처리물(M1)은 전극으로서 기능하므로, 제2 전극(122) 사이에 더 강한 전기장 세기를 형성할 수 있다.
도 8d에 도시된 바와 같이, 유도 부재(150a)를 통해 파지된 피처리물(M1) 주변으로 플라즈마 방전이 집중될 수 있다.
도 3a 및 도 3b는 본 발명의 일 실시예에 따른 플라즈마 처리 방법을 순차적으로 도시한 순서도이고, 도 4a 내지 도 4c는 본 발명의 일 실시예에 따른 플라즈마 처리 방법의 다른 실시형태를 설명하기 위한 순서도이다.
도 5는 본 발명의 일 실시예에 따른 플라즈마 처리 방법을 수행하는 동안, 시간에 따른 밀폐 공간에서의 내부 압력 그래프이다.
도 3a, 도 3b, 도 4a 내지 도 4c 및 도 5를 참조하면, 본 발명의 일 실시예에 따른 플라즈마 처리 방법은 먼저, 플라즈마 처리 장치의 밀폐부(100) 내부를 외부 환경으로부터 밀폐시킬 수 있다(S10).
일 실시예에 있어서, S10 단계는 플라즈마 처리 장치에 피처리물이 수납된 수납용기를 수납시킨 후, 밀폐부(100)에 의해 수납용기를 외부 환경으로부터 밀폐시킬 수 있다.
이때, 플라즈마 처리 장치(10)는 밀폐부(100)에 수납용기 또는 피처리물이 수납되면, 수납여부를 판단할 수 있다. 플라즈마 처리 장치(10)는 센서부(140)를 이용하여 수납 용기(L1)가 수납되면 이를 감지하고, 이를 제어부(130)로 제공할 수 있다. 플라즈마 처리 장치(10)의 센서부(140)는 압력을 감지하는 센서뿐만 아니라 수납 용기(L1)의 수납여부를 판단하는 센서를 더 구비할 수 있다.
그러나, 본 발명은 이에 제한되지 않으며, 플라즈마 처리 장치(10)는 밀폐부(100)에 수납 용기(L1)가 수납되면, 전극과의 전기적 연결이 이루어져 생성되는 전기 신호를 통해, 수납 용기(L1)의 수납여부를 판단할 수 있다.
이후, 플라즈마 처리 방법은 밀폐부(100)에 수납 용기(L1)가 수납되었다고 판단되면, 밀폐부(100)의 제1 부재(101) 또는 제2 부재(102)를 상대이동시켜 밀폐부(100) 내부를 밀폐시킬 수 있다.
이후, 플라즈마 처리 장법은 밀폐부(100) 내부의 대기를 배기하여 저압 대기를 형성하고 확인할 수 있다(S20).
이 때, 제어부(130)는 밀폐부(100)의 내부 압력을 사전에 설정된 기준 압력(PBASE)에 도달하거나 공정 압력 범위에 도달하도록 압력조정부(110)를 제어할 수 있다.
일 실시예로서, 제어부(130)는 센서부(140)를 통해 측정된 밀폐부(100)의 내부 압력이 기준 압력(PBASE)에 도달하도록 압력조정부(110)를 제어할 수 있다.
다른 실시예로서, 제어부(130)는 밀폐부(100)의 내부 대기를 기준 시간(t1)동안 배기하여 밀폐부(100)의 내부에 사전에 설정된 압력 이하의 저압 대기를 형성할 수 있다.
다른 실시예에서, 제어부(130)는 사전에 설정된 기준 시간 동안 진공 펌프의 최대 배기 성능에 의해 밀폐부(100)의 내부 압력을 낮추었음에도 공정 압력 범위보다 크다면 밀폐부(100)의 밀폐성 오류로 판단할 수 있다. 구체적으로, 제어부(130)는 사전에 설정된 기준 시간이 경과한 후 센서부(140)로부터 제공되는 밀폐부(100)의 내부 압력이 기준 압력에 도달하지 않는 경우 장치의 동작을 멈추고 이를 사용자에게 알릴 수 있다.
이후, 플라즈마 처리 방법은 밀폐시긴 공간의 내부 압력을 조정하여 사전에 설정된 공정 압력 범위에 포함되도록 저압 대기를 형성할 수 있다(S30).
또 다른 실시예로서, 제어부(130)는 밀폐부(100)와 벤팅부(112)의 연결을 폐쇄하고 밀폐부(100)와 배기부(113)의 연결을 열어 밀폐부(100)의 내부 압력이 공정 압력 범위에 포함되도록 저압 대기를 형성할 수 있다(S20a).
구체적으로, 제어부(130)는 배기부(113)를 동작시키고, 배기밸브(113-1)를 열며 벤팅밸브(112-1)를 폐쇄하도록 제어할 수 있다.
또다른 실시예로서, 제어부(130)는 밀폐부(100)와 벤팅부(112)의 연결을 폐쇄하고 밀폐부(100)와 배기부(113)의 연결을 반복적으로 개폐하여 밀폐부(100)의 내부 압력이 공정 압력 범위에 포함되도록 저압 대기를 형성할 수 있다(S20b).
구체적으로, 제어부(130)는 배기부(113)를 동작시키고, 벤팅밸브(112-1)를 폐쇄하고 배기밸브(113-1)를 열고 닫도록 제어할 수 있다. 이를 통해, 밀폐부(100)의 내부 압력이 공정 압력 범위보다 낮아지지 않도록 제어할 수 있다.
또한, 제어부(130)는 배기부(113)를 동작시키고, 벤팅밸브(112-1)를 폐쇄하고 배기밸브(113-1)를 열고 닫음으로써 밀폐부(100) 내부의 플라즈마 형상, 세기 또는 농도를 제어하거나, 밀폐부(100) 내부의 플라즈마에 의한 활성종의 농도를 제어할 수 있다.
또다른 실시예로서, 제어부(130)는 밀폐부(100)와 배기부(113)의 연결을 열고 밀폐부(100)와 벤팅부(112)의 연결을 반복적으로 개폐하여 밀폐부(100)의 내부 압력이 공정 압력 범위에 포함되도록 저압 대기를 형성할 수 있다(S20c).
구체적으로, 제어부(130)는 배기밸브(113-1)를 열고 배기부(113)를 동작시키고, 벤팅밸브(112-1)를 열고 닫도록 제어할 수 있다. 이를 통해, 밀폐부(100)의 내부 압력이 공정 압력 범위보다 낮아지지 않도록 제어할 수 있다.
또한, 제어부(130)는 배기밸브(113-1)를 열고 배기부(113)를 동작시키고, 벤팅밸브(112-1)를 열고 닫음으로써 밀폐부(100) 내부의 유체 흐름을 제어할 수 있다.
이후, 도 5의 S200단계를 추가로 참조하면, 제어부(130)는 밀폐 공간의 내부 압력이 사전에 설정된 기준 압력에 도달하거나 공정 압력 범위에 도달한 후, 전극부(120)에 전원을 인가할 수 있다(S40).
제어부(130)는 전극부(120)가 특정 주파수로 교류 전압을 인가하도록 제어할 수 있다. 인가되는 전압은 저압 대기 환경 또는 방전 방식에 따라 사전에 설정된 범위에서 선택될 수 있으며, 일 실시예로서, 인가되는 전압은 5,000 V 이하의 범위에서 설정될 수 있다.
이때, 제어부(130)는 압력조정부(110)를 이용하여 전원이 인가되는 동안 밀폐 공간의 배기를 지속할 수 있다. 제어부(130)는 전극부(120)에 의해 저압 대기가 방전되는 동안, 밀폐 공간의 내부 압력이 사전에 설정된 기준 압력(PBASE)을 유지하도록 압력조정부(110)를 제어할 수 있다.
다른 실시예로서, 제어부(130)는 전극부(120)에 의해 저압 대기가 방전되는 동안, 배기밸브(113-1)와 벤팅밸브(112-1)를 폐쇄하여 밀폐 공간은 고립시킬 수 있다. 제어부(130)는 사전에 설정된 시간 동안 밀폐 공간을 고립시킬 수 있다.
위와 같이, 밀폐 공간의 내부가 외부와 폐쇄된 상태로 플라즈마 표면 처리가 이루어지게 되면, 플라즈마 표면처리 과정에서 발생되는 오존(O3)이 배기되지 않게 되어 오존(O3)의 농도가 유지 또는 상승하게 된다. 이처럼, 밀폐 공간 내부에 오존(O3)의 농도가 상승함에 따라, 피처리물(M1)의 살균이 효과적으로 이루어질 수 있다.
또한, 밀폐 공간의 내부가 외부와 폐쇄된 상태가 되면, 배기 유로가 밸브에 의해 폐쇄되더라도, 리크가 발생하게 되어 밀폐 공간의 내부압력이 약간 상승하게 된다. 전술한 바와 같이, 폐쇄단계에서는 리크에 의해 밀폐 공간의 내부 압력이 상승하므로, t1에서 t2 까지의 구간에서 압력은 기준압력(PBASE)에서 소정의 압력으로 상승하게 된다.
도 5의 S300단계를 추가로 참조하면, 저압 대기를 방전하는 단계 이후, 밀폐 공간을 벤팅하는 단계가 수행된다(S60). 제어부(130)는 압력조정부(110)의 벤팅부(112) 또는 벤팅밸브(112-1)를 제어하여 밀폐 공간을 환기시키거나 밀폐부(100) 내부로 외부 공기를 주입시킬 수 있다.
벤팅부(112)와 밀폐부(100)를 연통하는 유로 사이에는 필터수단(미도시)을 더 포함할 수 있다. 필터수단(미도시)은 외부 공기에 포함되는 오염물질을 거르거나 정화하는 기능을 수행하며, 예를 들면, 필터수단(미도시)은 헤파필터(HEPA filter, High Efficiency Particulate Air filter)를 포함할 수 있다.
다른 실시예로서, 제어부(130)는 방전한 저압 대기에 의해 피처리물(M1)의 표면에서 탈리된 불순물을 배기하도록 압력조정부(110)를 제어할 수 있다.
구체적으로, 저압 대기를 방전하는 단계 이후, 제어부(130)는 전극부(120)의 전원부(125)를 'off'시켜 플라즈마의 생성을 중단시킨다.
이후, 배기부의 작동을 계속적으로 유지시켜 밀폐 공간의 내부를 계속적으로 배기시킨다(S50). 이 경우, 밀폐 공간의 내부는 기준압력(PBASE)을 유지하거나 보다 낮아지게 된다. 위와 같이, 저압대기를 방전한 후 플라즈마 표면처리 없이 밀폐 공간 내부 공기의 배기만이 이루어질 경우, 플라즈마 표면처리에 의해 발생된 탄화 수소 등과 같은 불순물을 배기하여, 불순물이 피처리물(M1)에 재증착되는 것을 방지할 수 있다. 또한, 밀폐부(100) 내부에 잔존하는 플라즈마 가스를 제거할 수 있다.
이후, 밀폐 공간을 벤팅하는 단계가 수행된다(S60).
한편, 다른 실시예로서, 저압 대기를 방전하는 단계(S200)는 플라즈마의 생성 및 중단이 반복적으로 수행하여 피처리물(M1)의 표면처리를 수행한다.
제어부(130)는 전원부(125)의 'On', 'Off'를 제어하여 기설정된 생성시간(Ta)동안 전원부를 'On'시켜 플라즈마를 생성하고, 기설정된 생성중단시간(Tb)동안 전원부를 'Off' 시켜 플라즈마의 생성을 중단하게 된다.
생성시간(Ta)은 플라즈마의 생성을 지속하는 시간으로, 제어부(130)에 기설정된다. 생성중단시간(Tb)은 플라즈마의 생성중단을 지속하는 시간으로, 제어부(130)에 기설정된다. 이처럼, 저압 대기를 방전하는 단계에서는 플라즈마의 생성 및 생성중단을 반복적으로 수행함으로써, 플라즈마 방전에 의한 피처리물(M1)의 표면처리를 수행하게 된다.
밀폐 공간 내에서 플라즈마 방전이 발생하게 되면, 플라즈마에 의해 피처리물(M1) 표면의 탄화수소가 제거되어 피처리물(M1)의 탄소 함유량이 낮아지는 표면 처리가 이루어지게 된다. 피처리물(M1)에서 탄화수소가 제거되어 피처리물(M1)의 탄소함유량이 낮아지게 되면, 피처리물(M1) 표면의 친수성이 높아지게 된다.
저압 대기를 방전하는 단계에서 플라즈마의 생성 및 생성중단을 반복하여 일종의 펄스(PULSE) 형태로 플라즈마의 방전을 수행하게 되면, 기존의 플라즈마의 생성만 지속하는 플라즈마 표면처리와 비교하여, 피처리물(M1)의 표면에 친수성을 높이는 효과 및 탄화수소 제거의 효과가 더욱 높아지게 된다. 즉, 피처리물(M1)의 표면 처리 효율이 높아지게 된다.
이는, 기존의 플라즈마의 생성만을 지속하는 경우, 플라즈마 방전시간이 지속되면 밀폐 공간의 내부에서 플라즈마 방전 상태에서 안정화가 이루어지게 되며, 이로 인해, 피처리물(M1)의 표면의 탄화수소의 제거가 많이 이루어지지 않게 된다. 즉, 플라즈마처리 시간이 길어짐에 따라 플라즈마 표면처리의 효율이 떨어지게 되는 것이다.
그러나, 펄스 형태로 플라즈마의 생성 및 생성중단이 반복적으로 이루어지게 되면, 전술한 플라즈마 방전 상태에서의 안정화가 이루어지기 전에 플라즈마의 생성이 중단된 후, 다시 플라즈마가 생성된다. 따라서, 플라즈마 방전 상태에서의 안정화에 의해 플라즈마 표면처리의 효율이 떨어지는 것을 방지할 수 있다.
또한, 플라즈마의 방전은 밀폐 공간의 내부에서 랜덤한 영역에서 생성되는데, 펄스 형태로 플라즈마의 생성 및 생성중단이 반복될 경우, 기존의 플라즈마의 생성만을 지속하는 것보다 더욱 많은 영역에서의 플라즈마의 생성 가능성이 높아지게 되어 더욱 넓은 영역에서의 플라즈마 방전이 이루어지게 되므로, 플라즈마 표면처리의 효율이 높아질 수 있다.
또한, 기존의 플라즈마의 생성만 지속하는 플라즈마 표면처리와 비교하여, 공정 온도가 낮아지는 효과를 가진다.
저압 대기를 방전하는 단계(S200)에서 생성시간(Ta)과 생성중단시간(Tb)은 '생성시간(Ta) > 생성중단시간(Tb)' 관계를 만족하는 것이 바람직하다. 이는, 생성시간(Ta)을 생성중단시간(Tb)보다 길게 함으로써, 플라즈마의 방전에 의해 표면처리가 진행되는 시간을 늘리기 위함이다. 한 예로써, 바람직하게는 생성시간(Ta)은 4초, 생성중단시간(Tb)은 2초인 것이 바람직하다.
또한, 도 3a는 플라즈마 처리 과정에서 밀폐부 내부가 일정한 공정 압력 수준을 유지하는 것을 중심으로 설명하였다면 도 3b는 플라즈마 처리 과정에서 밀폐부의 내부 압력이 가변되는 것을 설명한다.
즉, 밀폐부의 내부에 전기장을 형성하여 저압 대기를 방전하는 단계(S40-1)는 저압 대기가 방전되는 동안 밀폐부 내부의 압력을 가변하는 단계(S40-2)를 포함할 수 있다. 이를 통해, 플라즈마 발생 영역이 가변될 수 있다.
도 9는 본 발명의 일 실시예에 따른 플라즈마 처리 장치를 도시한 사시도이다.
도 9을 참조하면, 플라즈마 처리 장치(10)는 수납 용기(L1)가 안착되는 안착부(12)와, 안착부(12)와 상대 이동되어 수납 용기(L1)를 외부 환경으로부터 밀폐시키는 밀폐부(14)와, 외부 환경으로부터 밀폐된 밀폐부(14) 내부에 플라즈마를 방전시키는 전극부(미도시)와, 외부 환경으로부터 밀폐된 밀폐부(14) 내부의 공기를 배기하는 압력조정부(미도시)와, 안착부(12)의 상부에 배치되는 상부 블록(13)과, 외관을 형성하는 본체(11)를 구비할 수 있다.
안착부(12)는 본체(11)의 전방에 위치하도록 배치되며, 상부 블록(13)의 하부에 위치하도록 배치될 수 있다. 안착부(12)의 상면에는 수납 용기(L1)에 전원을 인가하는 전극이 형성될 수 있다.
이때, 안착부(12)는 수납 용기(L1) 하부 전체를 수용하는 홀(미도시)이 형성되거나, 수납 용기(L1)의 전기 연결 부재(미도시)가 돌출된 구조일 경우, 돌출된 전기 연결 부재(미도시)를 수용하는 홀(미도시)이 형성될 수 있다.
또한, 안착부(12)에는 마그넷이 구비되어, 전기 연결 부재(미도시)와의 자력으로 접촉력을 강화시킬 수 있다. 마그넷은 홀(미도시)의 바닥면에 구비될 수 잇다.
밀폐부(14)는 안착부(12)와 상대 이동되어 수납 용기(L1)를 외부 환경으로부터 밀폐시킨다. 본 발명에서는 하나의 예로써, 밀폐부(14)가 승하강되어 밀폐부(14)의 하부가 안착부(12)의 상면에 접함으로써, 밀폐부(14)의 내부에 밀폐 공간이 형성되게 된다.
상부 블록(13)은 본체(11)의 전방 및 안착부(12)의 상부에 위치하도록 배치될 수 있다. 상부 블록(13)에는 밀폐부(14)를 승하강시키는 승하강부(미도시)가 구비될 수 있다.
전극부(미도시)는 밀폐부(14)가 하강하여 안착부(12)와 밀폐부(14)가 밀폐될 때, 밀폐공간을 이루는 밀폐부(14)의 중공 내부에 플라즈마를 방전시켜 플라즈마 처리를 하는 기능을 수행할 수 있다. 전극부(미도시)는 수납 용기(L1)와 전기적으로 연결되도록 안착부(12)에 구비되는 제1 전극(미도시)과, 수납 용기(L1)를 둘러싸도록 밀폐부(14)에 구비되는 제2 전극(미도시)과, 제1 전극(미도시)과 제2 전극(미도시)에 전원을 인가하는 전원부(미도시)를 구비할 수 있다.
압력조정부(미도시)는 외부 환경으로부터 밀폐된 밀폐부(14)의 내부의 공기를 배기하는 기능을 수행할 수 있다.
이와 같이 본 발명은 도면에 도시된 일 실시예를 참고로 하여 설명하였으나 이는 예시적인 것에 불과하며 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 실시예의 변형이 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
본 발명의 일 실시예에 의하면, 플라즈마 처리 장치를 제공한다. 또한, 플라즈마를 이용하여 피처리물을 살균 또는 피처리물의 표면을 처리하는 기술 등에 본 발명의 실시예들을 적용할 수 있다.

Claims (20)

  1. 내부가 외부 환경에 대해 밀폐된 밀폐부;
    상기 밀폐부의 내부 압력이 사전에 설정된 공정 압력 범위에 포함되도록 저압 대기를 형성하는 압력조정부; 및
    상기 밀폐부의 내부에 전기장을 형성하여, 상기 저압 대기를 방전하는 전극부;를 포함하는, 플라즈마 처리 장치.
  2. 제1 항에 있어서,
    상기 압력조정부는, 상기 밀폐부의 내부 대기를 배기하여 상기 저압 대기를 형성하는, 플라즈마 처리 장치.
  3. 제2 항에 있어서,
    상기 압력조정부는, 상기 밀폐부의 내부 대기를 배기하는 배기부 및 상기 밀폐부의 내부로 외기를 주입하는 벤팅부를 포함하는, 플라즈마 처리 장치.
  4. 제3 항에 있어서,
    상기 압력조정부는, 상기 배기부 또는 상기 벤팅부와 상기 밀폐부를 연결하는 유로를 개폐하는 적어도 하나의 밸브를 더 포함하는, 플라즈마 처리 장치.
  5. 제1 항에 있어서,
    상기 밀폐부의 내부 압력은 상기 공정 압력 범위에서 가변되어 방전한 상기 저압 대기의 영역이 변화되는, 플라즈마 처리 장치.
  6. 제5 항에 있어서,
    상기 밀폐부의 내부 압력은 사전에 설정된 변화를 반복하는, 플라즈마 처리 장치.
  7. 제4 항에 있어서,
    상기 밀폐부와 상기 벤팅부를 연결하는 유로를 폐쇄하고, 상기 밀폐부와 상기 배기부를 연결하는 유로를 반복적으로 개폐하여 상기 밀폐부의 내부 압력이 상기 공정 압력 범위에 포함되도록 상기 밸브를 제어하는 제어부를 더 포함하는, 플라즈마 처리 장치.
  8. 제4 항에 있어서,
    상기 밀폐부와 상기 배기부를 연결하는 유로를 열고, 상기 밀폐부와 상기 벤팅부를 연결하는 유로를 반복적으로 개폐하여 상기 밀폐부의 내부 압력이 상기 공정 압력 범위에 포함되도록 상기 밸브를 제어하는 제어부를 더 포함하는, 플라즈마 처리 장치.
  9. 제6 항 내지 제8 항에 있어서,
    상기 공정 압력 범위는 1 Torr 이상 30 Torr 미만인, 플라즈마 처리 장치.
  10. 제4 항에 있어서,
    상기 밀폐부의 내부에는 피처리물이 수납되고,
    상기 피처리물을 상기 전극부가 방전한 상기 저압 대기에 의해 표면 처리한 후, 상기 밀폐부와 상기 벤팅부를 연결하는 유로를 열어 상기 밀폐부의 내부 압력이 외부 대기의 압력과 동일해지도록 벤팅하는 제어부를 더 포함하는, 플라즈마 처리.
  11. 제10 항에 있어서,
    상기 제어부는, 상기 저압 대기의 방전을 중지하고 사전에 설정된 정화시간동안 상기 밀폐부의 내부 대기를 배기한 후, 벤팅하여 플라즈마 처리를 종료하는, 플라즈마 처리 장치.
  12. 제2 항에 있어서,
    상기 밀폐부의 내부 압력을 측정하는 센서부;를 더 포함하며,
    상기 센서부로부터 측정한 상기 밀폐부의 내부 압력 값을 수신하여 상기 배기부, 상기 벤팅부 및 상기 밸브 중 적어도 하나를 제어하는 제어부를 더 포함하는, 플라즈마 처리 장치.
  13. 제12 항에 있어서,
    상기 밀폐부는, 내부와 상기 배기부 간 연결된 배기유로 및 내부와 상기 벤팅부 간 연결된 벤팅유로를 포함하고,
    상기 센서부는 상기 밀폐부의 내부에 배치되거나, 상기 배기유로 또는 상기 벤팅유로와 연결되어 상기 밀폐부의 내부 압력 값을 획득하는, 플라즈마 처리 장치.
  14. 제2 항에 있어서,
    상기 밀폐부의 내부 대기를 배기하여 상기 밀폐부의 내부 압력이 상기 공정 압력 범위에 포함된 후 상기 전극부에 전원을 인가하는 제어부를 더 포함하는, 플라즈마 처리 장치.
  15. 제2 항에 있어서,
    상기 밀폐부는 분리된 제1 부재와 제2 부재를 포함하고,
    상기 제1 부재 또는 상기 제2 부재의 적어도 일부는 부도성을 가지며,
    상기 전극부는 상기 제1 부재 또는 상기 제2 부재에 배치되는, 플라즈마처리 장치.
  16. 제15 항에 있어서,
    상기 제1 부재 또는 상기 제2 부재의 적어도 일부는 투명한 재질로 이루어져 상기 밀폐부에 수납된 피처리물의 표면 처리 과정이 외부에서 육안으로 확인할 수 있는, 플라즈마 처리 장치.
  17. 제16 항에 있어서,
    상기 제1 부재 또는 상기 제2 부재의 부도성을 가진 일부가 투명하거나, 상기 제1 부재 또는 상기 제2 부재의 적어도 일부가 내화학성을 가진 투명 소재로 구성되는, 플라즈마 처리 장치.
  18. 제15 항에 있어서,
    상기 전극부는 상기 제1 부재에 배치된 제1 전극과 상기 제2 부재에 배치된 제2 전극을 포함하는, 플라즈마 처리 장치.
  19. 제18 항에 있어서,
    상기 전극부는 10,000 Hz 이상 200,00 Hz 이하의 주파수로 전압을 교류하는 전원부를 더 포함하는, 플라즈마 처리 장치.
  20. 제1 항에 있어서,
    상기 밀폐부의 내부에는 피처리물이 수납되고,
    상기 피처리물이 상기 전극부가 방전한 상기 저압 대기에 의해 플라즈마에 노출되거나 상기 플라즈마로 발생된 활성종에 노출되어 표면처리되는, 플라즈마 처리 장치.
PCT/KR2022/010922 2021-09-17 2022-07-25 플라즈마 처리 장치 WO2023043043A1 (ko)

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
KR1020210124946 2021-09-17
KR10-2021-0124946 2021-09-17
KR10-2021-0124944 2021-09-17
KR10-2021-0124952 2021-09-17
KR1020210124944 2021-09-17
KR1020210124952 2021-09-17
KR20210146784 2021-10-29
KR10-2021-0146784 2021-10-29
KR1020210186633A KR20230041559A (ko) 2021-09-17 2021-12-23 플라즈마 처리 장치 및 이를 이용한 방법
KR10-2021-0186633 2021-12-23
KR10-2021-0186977 2021-12-24
KR1020210186977 2021-12-24
KR10-2022-0013567 2022-01-28
KR1020220013567A KR20220133761A (ko) 2021-03-25 2022-01-28 수납 용기
KR10-2022-0051210 2022-04-26
KR1020220051210A KR20220159266A (ko) 2021-05-25 2022-04-26 수납 용기
KR1020220053605A KR20230041573A (ko) 2021-09-17 2022-04-29 피처리물 파지 장치
KR10-2022-0053605 2022-04-29
KR1020220064367A KR20220159294A (ko) 2021-05-25 2022-05-25 수납 용기
KR10-2022-0064367 2022-05-25

Publications (1)

Publication Number Publication Date
WO2023043043A1 true WO2023043043A1 (ko) 2023-03-23

Family

ID=85603089

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2022/010922 WO2023043043A1 (ko) 2021-09-17 2022-07-25 플라즈마 처리 장치
PCT/KR2022/011775 WO2023043060A1 (ko) 2021-09-17 2022-08-08 플라즈마 처리 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011775 WO2023043060A1 (ko) 2021-09-17 2022-08-08 플라즈마 처리 장치

Country Status (4)

Country Link
EP (1) EP4183367A1 (ko)
KR (1) KR20230041591A (ko)
CN (1) CN116137806A (ko)
WO (2) WO2023043043A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230257135A1 (en) * 2020-04-16 2023-08-17 Harbin Institute Of Technology Micro-cathode arc propulsion system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120005104A (ko) * 2010-07-08 2012-01-16 (주)에스이피 플라즈마를 이용한 임플란트 유닛의 표면처리방법 및 그 방법으로 제조된 임플란트 유닛 및 임플란트 유닛의 플라즈마 표면처리장치
US20180138022A1 (en) * 2015-05-11 2018-05-17 Nova Plasma Ltd. Apparatus and method for handling an implant
KR102036169B1 (ko) * 2018-05-16 2019-10-24 (주)폴리바이오텍 치과용 임플란트의 저압 플라즈마 표면처리장치
CN112188715A (zh) * 2020-09-29 2021-01-05 北京环境特性研究所 一种等离子发生装置及方法
KR20210112020A (ko) * 2020-03-04 2021-09-14 주식회사 플라즈맵 플라즈마 처리 장치 및 이를 이용한 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313775A (ja) 2001-04-12 2002-10-25 Matsushita Electric Ind Co Ltd プラズマ処理装置およびプラズマ処理方法
KR100467813B1 (ko) * 2002-05-02 2005-01-24 동부아남반도체 주식회사 포토레지스트 미제거 경고 장치 및 이를 사용한 반도체소자의 제조방법
US20050205210A1 (en) * 2004-01-06 2005-09-22 Devine Daniel J Advanced multi-pressure workpiece processing
US7700494B2 (en) 2004-12-30 2010-04-20 Tokyo Electron Limited, Inc. Low-pressure removal of photoresist and etch residue
KR20160065698A (ko) 2014-12-01 2016-06-09 계명대학교 산학협력단 광학 플라즈마를 이용한 임플란트 표면 처리 방법 및 이를 수행하는 임플란트 표면 처리 장치
KR101930617B1 (ko) * 2016-08-02 2018-12-18 주식회사 피글 임플란트 처리 장치
KR102312813B1 (ko) 2019-10-17 2021-10-15 (주) 디엠에스 플라즈마를 이용한 임플란트 표면 친수성 처리 장치
KR102267375B1 (ko) * 2020-05-07 2021-06-22 주식회사 플라즈맵 임플란트 보관 용기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120005104A (ko) * 2010-07-08 2012-01-16 (주)에스이피 플라즈마를 이용한 임플란트 유닛의 표면처리방법 및 그 방법으로 제조된 임플란트 유닛 및 임플란트 유닛의 플라즈마 표면처리장치
US20180138022A1 (en) * 2015-05-11 2018-05-17 Nova Plasma Ltd. Apparatus and method for handling an implant
KR102036169B1 (ko) * 2018-05-16 2019-10-24 (주)폴리바이오텍 치과용 임플란트의 저압 플라즈마 표면처리장치
KR20210112020A (ko) * 2020-03-04 2021-09-14 주식회사 플라즈맵 플라즈마 처리 장치 및 이를 이용한 방법
CN112188715A (zh) * 2020-09-29 2021-01-05 北京环境特性研究所 一种等离子发生装置及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230257135A1 (en) * 2020-04-16 2023-08-17 Harbin Institute Of Technology Micro-cathode arc propulsion system

Also Published As

Publication number Publication date
WO2023043060A1 (ko) 2023-03-23
KR20230041591A (ko) 2023-03-24
CN116137806A (zh) 2023-05-19
EP4183367A1 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
WO2023043043A1 (ko) 플라즈마 처리 장치
AU685401B2 (en) Method for preparing implant surfaces
WO2000008670A3 (en) Dose monitor for plasma-monitor ion implantation doping system
WO2016028037A1 (ko) 플라즈마 살균 필름 및 플라즈마 살균 포장 용기
WO2017099506A1 (ko) 이산화염소 가스 및 이산화염소수 발생 장치 및 방법
WO2018212527A1 (ko) 대기압 플라즈마 장치
CN101715601A (zh) 去除抗蚀剂的方法和装置
US20010002584A1 (en) Enhanced plasma mode and system for plasma immersion ion implantation
WO2019066113A1 (ko) 플렉서블 활성종 발생기 및 이의 용도
WO2020045824A1 (ko) 치아 임플란트용 포장용기
WO2017138743A1 (ko) 복합 소독유체 분무식 멸균장치 및 방법
US9520274B2 (en) Ion implanter provided with a plurality of plasma source bodies
WO2021256891A1 (ko) 임플란트 보관 용기의 제조방법 및 임플란트 보관 용기의 플라즈마 처리 방법
US20080055813A1 (en) Electrostatic chuck, substrate processing apparatus having the same, and substrate processing method using the same
PL370588A1 (en) Method of cleaning the surface of a material coated with an organic substance and a generator and device for carrying out said method
WO2018226057A1 (ko) 살균 장치
WO2022177370A1 (ko) 플라즈마 처리 장치 및 이를 이용한 방법
WO2023043235A1 (ko) 플라즈마 표면 처리를 위한 장치
WO2021246727A1 (ko) 플라즈마 처리 장치 및 이를 이용한 방법
WO2022045778A1 (ko) 플라즈마 피부 관리기
WO2019083329A2 (en) PLASMA GENERATOR AND ELECTRICAL APPLIANCE COMPRISING THE SAME
WO2023121428A1 (ko) 포장용기, 플라즈마 처리장치 및 처리방법
KR101096492B1 (ko) 플라즈마 이온 도핑 장치
JPH10208651A (ja) イオン源装置およびそれを用いたイオン注入方法
KR102611478B1 (ko) 플라즈마 처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22870130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE