WO2023042656A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2023042656A1
WO2023042656A1 PCT/JP2022/032615 JP2022032615W WO2023042656A1 WO 2023042656 A1 WO2023042656 A1 WO 2023042656A1 JP 2022032615 W JP2022032615 W JP 2022032615W WO 2023042656 A1 WO2023042656 A1 WO 2023042656A1
Authority
WO
WIPO (PCT)
Prior art keywords
outdoor
relative humidity
fan
absorbent
air
Prior art date
Application number
PCT/JP2022/032615
Other languages
English (en)
French (fr)
Inventor
優生 大西
悠二 渡邉
晴之 宮崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280061373.2A priority Critical patent/CN117957408A/zh
Publication of WO2023042656A1 publication Critical patent/WO2023042656A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0087Indoor units, e.g. fan coil units with humidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to air conditioners.
  • an air conditioner that is composed of an indoor unit arranged inside a room to be air-conditioned and an outdoor unit arranged outdoors.
  • This air conditioner is configured to supply humidified outdoor air from the outdoor unit to the indoor unit.
  • the present disclosure provides an air conditioner that can efficiently perform humidification operation based on the outdoor relative humidity.
  • An air conditioner according to one aspect of the present disclosure is an air conditioner that includes an indoor unit and an outdoor unit.
  • An air conditioner according to an aspect of the present disclosure is provided in an outdoor unit and includes an absorbent that absorbs moisture in outdoor air, a moisture absorption channel that passes through the absorbent and allows the outdoor air to flow from the outdoor to the outdoor, and the moisture absorption flow and a moisture absorption fan for generating a flow of outdoor air in the passageway.
  • An air conditioner includes a motor that rotationally drives an absorbent, a moisture absorbing fan, a control unit that controls the motor, a regeneration flow path through which outdoor air flows through the absorbent, A regeneration fan that sends outdoor air to the regeneration channel and a heater that heats the outdoor air on the upstream side of the absorbent in the regeneration channel are provided.
  • the control unit acquires outdoor relative humidity information, and based on the outdoor relative humidity information, adjusts at least one of the rotation speed of the motor, the rotation speed of the moisture absorption fan, the rotation speed of the regeneration fan, and the input voltage of the heater. control one.
  • the air conditioner according to one aspect of the present disclosure can efficiently perform the humidification operation based on the outdoor relative humidity.
  • FIG. 1 Schematic diagram showing the configuration of the air conditioner according to Embodiment 1 of the present disclosure
  • Schematic diagram showing the configuration of a ventilator according to Embodiment 1 Schematic diagram showing the operating state of the ventilator during ventilation operation
  • Schematic diagram showing the operating state of the ventilation system during dehumidification operation Block diagram showing a configuration for controlling the same air conditioner Flowchart showing overall operation from ON to OFF of humidification operation Graph showing the relationship between the relative humidity of the outdoor air and the rotational speed of the motor
  • Water vapor adsorption isotherm showing the relationship between adsorption amount of polymer sorbent and relative humidity
  • Flowchart showing operation of humidification operation control of modification 1 Graph showing magnitude relationship between relative humidity of outdoor air and rotational speed (number of rotations) of second fan
  • Flowchart showing operation of humidification operation control of modification 2 Graph showing magnitude relationship between relative humidity of outdoor air and rotation speed (number of rotations) of first fan
  • An air conditioner is an air conditioner that includes an indoor unit and an outdoor unit.
  • An air conditioner is provided in an outdoor unit, and includes an absorbent material that absorbs moisture in outdoor air, a moisture absorption channel through which outdoor air flows from the outside to the outside through the absorption material, and a moisture absorption channel that directs the flow of outdoor air. and a moisture absorption fan for generating moisture.
  • the air conditioner includes a control unit that controls a motor that rotationally drives the absorbent, a moisture absorbing fan, and the motor, a regeneration flow path through which the outdoor air flows through the absorbent, and an outdoor A regeneration fan for blowing air and a heater for heating the outdoor air upstream of the absorbent in the regeneration flow path.
  • the control unit acquires outdoor relative humidity information, and based on the outdoor relative humidity information, adjusts at least one of the rotation speed of the motor, the rotation speed of the moisture absorption fan, the rotation speed of the regeneration fan, and the input voltage of the heater. control one.
  • the air conditioner according to this aspect can efficiently perform the humidification operation based on the outdoor relative humidity.
  • control unit may reduce the rotational speed of the motor when the outdoor relative humidity increases, and may accelerate the motor rotational speed when the outdoor relative humidity decreases.
  • control unit reduces the rotational speed of the motor when the outdoor relative humidity is higher than a first threshold, and rotates the motor when the outdoor relative humidity is lower than a second threshold lower than the first threshold. You can speed it up.
  • control unit may accelerate the rotation speed of the moisture absorption fan when the outdoor relative humidity rises, and decelerate the rotation speed of the moisture absorption fan when the outdoor relative humidity drops.
  • control unit accelerates the rotation speed of the moisture absorption fan when the outdoor relative humidity is higher than a third threshold, and accelerates the rotation speed of the moisture absorption fan when the outdoor relative humidity is lower than a fourth threshold lower than the third threshold. may be reduced.
  • control unit may accelerate the rotation speed of the regeneration fan when the outdoor relative humidity increases, and decelerate the rotation speed of the regeneration fan when the outdoor relative humidity decreases.
  • control unit accelerates the rotation speed of the regeneration fan when the outdoor relative humidity is higher than the fifth threshold, and accelerates the rotation speed of the regeneration fan when the outdoor relative humidity is lower than the sixth threshold, which is lower than the fifth threshold. may be reduced.
  • control unit may increase the heater input voltage when the outdoor relative humidity increases, and decrease the heater input voltage when the outdoor relative humidity decreases.
  • the control unit increases the heater input voltage when the outdoor relative humidity is higher than a seventh threshold, and increases the heater input voltage when the outdoor relative humidity is lower than an eighth threshold that is lower than the seventh threshold. Input voltage may be lowered.
  • the air conditioner may further include a relative humidity sensor arranged upstream of the absorbent in the moisture absorption channel, and the outdoor relative humidity information may be detected by the relative humidity sensor.
  • the air conditioner may further include a sensor cover that covers the relative humidity sensor and has a labyrinth structure.
  • the absorbent may be a polymer sorbent.
  • FIG. 1 is a schematic diagram showing the configuration of an air conditioner 10 according to Embodiment 1 of the present disclosure.
  • the air conditioner 10 has an indoor unit 20 arranged in the indoor Rin to be air-conditioned, and an outdoor unit 30 arranged in the outdoor Rout.
  • the indoor unit 20 includes an indoor heat exchanger 22 that exchanges heat with the indoor air A1, and invites the indoor air A1 into the indoor unit 20, and the indoor air A1 after heat exchange with the indoor heat exchanger 22 is introduced into the room.
  • a fan 24 that blows to Rin is provided.
  • the outdoor unit 30 includes an outdoor heat exchanger 32 that exchanges heat with the outdoor air A2, and invites the outdoor air A2 into the outdoor unit 30.
  • a fan 34 blowing to Rout is provided.
  • the outdoor unit 30 is provided with a compressor 36, an expansion valve 38, and a four-way valve 40 for executing a refrigerating cycle with the indoor heat exchanger 22 and the outdoor heat exchanger 32.
  • the indoor heat exchanger 22, the outdoor heat exchanger 32, the compressor 36, the expansion valve 38, and the four-way valve 40 are connected by refrigerant pipes through which refrigerant flows.
  • the air conditioner 10 is configured such that the refrigerant flows from the compressor 36 through the four-way valve 40, the outdoor heat exchanger 32, the expansion valve 38, and the indoor heat exchanger 22 in order. Execute the freeze cycle back to 36.
  • the air conditioner 10 executes a refrigeration cycle in which refrigerant flows from the compressor 36 through the four-way valve 40, the indoor heat exchanger 22, the expansion valve 38, the outdoor heat exchanger 32 in order, and then returns to the compressor 36. .
  • the air conditioner 10 performs an air-conditioning operation that introduces the outdoor air A3 into the room Rin in addition to the air-conditioning operation using the refrigeration cycle. Therefore, the air conditioner 10 has a ventilator 50 .
  • a ventilation device 50 is provided in the outdoor unit 30 . That is, the outdoor unit 30 has a ventilator 50 .
  • FIG. 2 is a schematic diagram showing the configuration of the ventilation device 50 according to Embodiment 1.
  • FIG. 2 is a schematic diagram showing the configuration of the ventilation device 50 according to Embodiment 1.
  • the ventilator 50 includes an absorbent 52 through which outdoor air A3 and A4 pass.
  • the absorbent material 52 is a member through which air can pass, and is a member that collects moisture from the passing air or gives moisture to the passing air.
  • the absorber 52 is disc-shaped and rotates around a rotation center line C1 passing through the center thereof.
  • the absorbing material 52 is rotationally driven by a motor 54 .
  • the absorbent material 52 is preferably a polymer sorbent material that sorbs moisture in the air.
  • the polymeric sorbent material is composed of, for example, a crosslinked sodium polyacrylate. Compared to adsorbents such as silica gel and zeolite, polymer sorbents absorb more water per unit volume, can desorb water at low heating temperatures, and can retain water for a long time. can be done.
  • first flow path P1 and a second flow path P2 through which the outdoor air A3 and A4 respectively pass through the absorbent material 52.
  • the first flow path P1 and the second flow path P2 pass through the absorbent material 52 at different positions.
  • the first flow path P1 corresponds to the "regeneration flow path” of the present disclosure
  • the second flow path P2 corresponds to the "moisture absorption flow path" of the present disclosure.
  • the first flow path P1 is a flow path through which the outdoor air A3 flows toward the inside of the indoor unit 20.
  • the outdoor air A3 flowing through the first flow path P1 is supplied into the indoor unit 20 via the ventilation conduit 56. As shown in FIG.
  • the first flow path P1 includes a plurality of branch flow paths P1a and P1b on the upstream side with respect to the absorbent 52. It should be noted that “upstream” and “downstream” are used herein with respect to air flow.
  • the plurality of tributaries P1a and P1b merge with the absorbent 52 on the upstream side.
  • First and second heaters 58 and 60 for heating the outdoor air A3 are provided in the plurality of branch passages P1a and P1b, respectively. That is, the first and second heaters 58, 60 heat the outdoor air A3 on the upstream side of the absorbent 52 in the first flow path P1.
  • the first and second heaters 58, 60 may be heaters with the same heating capacity, or may be heaters with different heating capacities.
  • the first and second heaters 58 and 60 are preferably PTC (Positive Temperature Coefficient) heaters, which increase electrical resistance when current flows and the temperature rises, that is, can suppress excessive heating temperature rises. .
  • PTC Physical Temperature Coefficient
  • a heater using a nichrome wire, carbon fiber, or the like may be used, but in this case, if the current continues to flow, the heating temperature (surface temperature) will continue to rise, so it is necessary to monitor the temperature.
  • the PTC heater eliminates the need to monitor the heating temperature because the heater itself regulates the heating temperature within a certain temperature range. In this respect, the PTC heater is more preferable.
  • first and second heaters 58 and 60 correspond to the "heaters” of the present disclosure, but the number of “heaters” of the present disclosure may not be plural, that is, the first and second heaters One of 58, 60 may correspond to the "heater” of the present disclosure.
  • a first fan 62 that generates a flow of the outdoor air A3 toward the inside of the indoor unit 20 is provided in the first flow path P1.
  • the first fan 62 is arranged downstream with respect to the absorbent 52 .
  • the outdoor air A 3 flows from the outdoor Rout into the first flow path P 1 and passes through the absorbent 52 . That is, the first fan 62 causes the outdoor air A3 to flow into the first flow path P1, that is, sends the outdoor air A3 to the first flow path P1.
  • the first fan 62 corresponds to the "reproduction fan" of the present disclosure.
  • the first flow path P1 is provided with a damper device 64 that distributes the outdoor air A3 flowing through the first flow path P1 to the indoor Rin (that is, the indoor unit 20) or the outdoor Rout.
  • the damper device 64 is arranged downstream of the first fan 62 .
  • the outdoor air A3 distributed to the indoor unit 20 by the damper device 64 enters the indoor unit 20 via the ventilation conduit 56 and is blown out by the fan 24 to the indoor unit Rin.
  • the second flow path P2 is a flow path through which the outdoor air A4 flows. Unlike the outdoor air A3 flowing through the first flow path P1, the outdoor air A4 flowing through the second flow path P2 does not go to the indoor unit 20. The outdoor air A4 flowing through the second flow path P2 flows out to the outdoor Rout after passing through the absorbent 52 .
  • a second fan 66 that generates a flow of outdoor air A4 is provided in the second flow path P2.
  • the second fan 66 is arranged downstream with respect to the absorbent 52 .
  • the outdoor air A4 flows from the outdoor Rout into the second flow path P2, passes through the absorbent 52, and then flows out to the outdoor Rout.
  • the second fan 66 corresponds to the "moisture absorption fan" of the present disclosure.
  • the ventilator 50 selectively uses the absorber 52, the motor 54, the first heater 58, the second heater 60, the first fan 62, the damper device 64, and the second fan 66 for ventilation operation; Humidification operation and dehumidification operation are selectively executed.
  • FIG. 3 is a schematic diagram showing the operating state of the ventilator 50 during ventilation operation.
  • the ventilation operation is an air conditioning operation in which the outdoor air A3 is directly supplied to the indoor Rin (that is, the indoor unit 20) via the ventilation conduit 56.
  • motor 54 continues to rotate absorbent material 52 during ventilation operation.
  • the first heater 58 and the second heater 60 are in the OFF state and do not heat the outdoor air A3.
  • the first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1.
  • the damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 .
  • the second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
  • the outdoor air A3 flows into the first flow path P1 and passes through the absorbent 52 without being heated by the first and second heaters 58, 60.
  • the outdoor air A3 that has passed through the absorbent 52 is distributed to the indoor units 20 by the damper device 64 .
  • the outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 .
  • the outdoor air A3 is supplied to the room Rin as it is, and the room Rin is ventilated.
  • FIG. 4 is a schematic diagram showing the operating state of the ventilator 50 during humidification operation.
  • the humidification operation is an air conditioning operation that humidifies the outdoor air A3 and supplies the humidified outdoor air A3 to the indoor Rin (that is, the indoor unit 20).
  • the motor 54 continues to rotate the absorbent 52 during the humidification operation.
  • the first heater 58 and the second heater 60 are in the ON state and heat the outdoor air A3.
  • the first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1.
  • the damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 .
  • the second fan 66 is in the ON state, thereby causing the outdoor air A4 to flow through the second flow path P2.
  • the outdoor air A3 flows into the first flow path P1, is heated by the first and second heaters 58 and 60, and passes through the absorbent 52. At this time, the heated outdoor air A3 can deprive the absorbent 52 of a larger amount of moisture than when it is not heated. As a result, the outdoor air A3 carries a large amount of moisture.
  • the outdoor air A3 that has passed through the absorbent 52 and carries a large amount of moisture is distributed to the indoor unit 20 by the damper device 64 .
  • the outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 .
  • the outdoor air A3 carrying a large amount of moisture is supplied to the room Rin, and the room Rin is humidified.
  • the amount of moisture taken from the absorbent 52 by the outdoor air A3 is reduced. may be performed.
  • the absorbent 52 As the heated outdoor air A3 deprives moisture, the amount of water retained by the absorbent 52 decreases, that is, the absorbent 52 dries. When the absorbent 52 dries, the outdoor air A3 flowing through the first flow path P1 cannot deprive the absorbent 52 of moisture. As a countermeasure, the absorbent 52 deprives the outdoor air A4 flowing through the second flow path P2 of water. As a result, the amount of water retained in the absorbent material 52 is kept substantially constant, and the humidification operation can be continued.
  • FIG. 5 is a schematic diagram showing the operating state of the ventilation device 50 during dehumidification operation.
  • the dehumidification operation is an air conditioning operation in which the outdoor air A3 is dehumidified and the dehumidified outdoor air A3 is supplied to the indoor Rin (that is, the indoor unit 20). As shown in FIG. 5, in the dehumidifying operation, the adsorption operation and the regeneration operation are alternately performed.
  • the adsorption operation is an operation in which the moisture carried in the outdoor air A3 is adsorbed by the absorbent material 52, thereby dehumidifying the outdoor air A3.
  • the motor 54 continues to rotate the absorbent 52 during the adsorption operation.
  • the first heater 58 and the second heater 60 are in the OFF state and do not heat the outdoor air A3.
  • the first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1.
  • the damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 .
  • the second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
  • the outdoor air A3 flows into the first flow path P1 and passes through the absorbent 52 without being heated by the first and second heaters 58, 60. At this time, the moisture carried in the outdoor air A3 is absorbed by the absorbent 52 . As a result, the amount of moisture carried by the outdoor air A3 is reduced, that is, the outdoor air A3 is dried.
  • the outdoor air A3 dried by passing through the absorbent 52 is distributed to the indoor unit 20 by the damper device 64 .
  • the outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 .
  • the dry outdoor air A3 is supplied to the room Rin, and the room Rin is dehumidified.
  • a regeneration operation is performed to regenerate the absorbent 52 in order to recover its adsorption capacity.
  • the motor 54 continues to rotate the absorbent 52 during the regeneration operation.
  • the first heater 58 and the second heater 60 are in the ON state and heat the outdoor air A3.
  • the first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1.
  • the damper device 64 distributes the outdoor air A3 in the first flow path P1 not to the indoor unit 20 but to the outdoor Rout.
  • the second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
  • the outdoor air A3 flows into the first flow path P1, is heated by the first and second heaters 58 and 60, and passes through the absorbent 52.
  • the heated outdoor air A3 deprives the absorbent 52 of a large amount of moisture.
  • a large amount of moisture is carried in the outdoor air A3.
  • the water retention capacity of the absorbent 52 decreases, ie, the absorbent 52 dries and its adsorption capacity is regenerated.
  • the outdoor air A3 that passes through the absorbent 52 and carries a large amount of moisture is distributed to the outdoor route by the damper device 64 and is discharged to the outdoor route.
  • the outdoor air A3 carrying a large amount of moisture due to the regeneration of the absorbent 52 is not supplied to the indoor Rin.
  • the adsorption capacity of the absorbent 52 is maintained, and the dehumidification operation can be continuously performed.
  • the air-conditioning operation (cooling operation, dehumidifying operation (weak cooling operation), heating operation) by the above-described refrigeration cycle and the air-conditioning operation (ventilation operation, humidification operation, dehumidification operation) by the ventilation device 50 can be performed separately, and at the same time It is also possible to execute For example, if the dehumidification operation by the refrigeration cycle and the dehumidification operation by the ventilation device 50 are simultaneously executed, it is possible to dehumidify the room Rin while maintaining the room temperature constant.
  • the air conditioning operation performed by the air conditioner 10 is selected by the user. For example, when a user selects the remote controller 70 shown in FIG. 1, the air conditioner 10 performs the air conditioning operation corresponding to the operation.
  • FIG. 6 is a block diagram showing a configuration for controlling the air conditioner 10. As shown in FIG.
  • the components of the air conditioner 10 are controlled by a control unit 90.
  • the control unit 90 includes, for example, a memory storing a program and a processing circuit corresponding to a processor such as a CPU (Central Processing Unit).
  • the functions of the control unit 90 may be configured only by hardware, or may be realized by combining hardware and software.
  • the control unit 90 reads data and programs stored in the memory and performs various arithmetic processing, thereby realizing a predetermined function.
  • the program executed by the processor is pre-recorded in the memory here, it may be recorded in a non-temporary recording medium such as a memory card and provided, or may be provided through an electric communication line such as the Internet. may be provided.
  • the controller 90 controls the motor 54 , first heater 58 , second heater 60 , first fan 62 , damper device 64 and second fan 66 .
  • the control unit 90 preferably has a communication unit (not shown) that can be connected to the Internet, for example.
  • the communication unit may be, for example, one capable of performing communication according to standards such as Wi-Fi (registered trademark), IEEE802.2, IEEE802.3, 3G, and LTE.
  • Wi-Fi registered trademark
  • IEEE802.2, IEEE802.3, 3G, and LTE standards
  • the communication unit communicates via intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual dedicated network, telephone line network, mobile communication network, satellite communication network, etc., infrared rays, and Bluetooth (registered trademark). You may
  • FIG. 7 is a flow chart showing the entire operation from ON to OFF of the humidification operation. Note that the processing shown in FIG. 7 is performed by controlling the components of the air conditioner 10 by the control unit 90 . Note that the processing shown in FIG. 7 is an example, and the present embodiment is not limited to the processing shown in FIG. Also, in this specification, the first and second heaters 58, 60 may be simply referred to as "heaters 58, 60".
  • the processing shown in FIG. 7 is started, for example, when the humidification operation is turned ON by the user's selection operation on the remote controller 70 shown in FIG.
  • step S10 the control unit 90 determines whether or not the start condition is satisfied.
  • step S10: YES the process proceeds to step S20. While the control unit 90 determines that the start condition is not satisfied (step S10: NO), the process repeats step S10.
  • the start condition is a condition for starting humidification operation, and may include, for example, at least one of operation mode, humidity, humidity control, operation frequency, inverter current, temperature, and presence/absence of abnormality.
  • the control unit 90 performs damper "open” control.
  • the damper “open” control is control to open the damper device 64 and distribute the outdoor air A3 flowing through the first flow path P1 to the indoor units 20 . As a result, the outdoor air A3 flows into the indoor unit 20 through the ventilation conduit 56 .
  • step S30 the control unit 90 performs humidification operation control.
  • the humidification operation control ON of the heaters 58 and 60 (step S31), acquisition of relative humidity information of the outdoor route (step S32), and control of the rotation speed of the motor 54 (step S33) are executed. Steps S31 to S33 will be described in detail below.
  • the controller 90 turns on the heaters 58 and 60.
  • the control unit 90 performs a weak humidification operation in which either one of the heaters 58 and 60 is turned on, or a humidification operation in which both the heaters 58 and 60 are turned on. can carry out driving. For example, when the humidity in the room Rin approaches the target value, the control unit 90 turns ON one of the heaters 58 and 60 and turns the other OFF to perform a weak humidification operation, and adjusts the humidity in the room Rin to an appropriate value. adjust to
  • the control unit 90 turns on either one of the heaters 58 and 60, it is preferable to turn on the heater arranged downstream with respect to the rotation direction of the absorbent 52 .
  • the second heater 60 is arranged on the upstream side with respect to the rotation direction
  • the first heater 58 is arranged on the downstream side with respect to the rotation direction.
  • the outdoor air A3 that has passed through the heater on the downstream side is dehumidified by the absorbent material 52 depriving it of moisture.
  • the dehumidified outdoor air A3 that has passed through the downstream heater and the humidified air that has passed through the upstream heater are mixed, resulting in a decrease in the amount of humidification.
  • the outdoor air A3 that has passed through the heater on the upstream side (turned off) is saturated with moisture in the absorbent 52. pass through. Therefore, the outdoor air A3 can pass through the absorbent 52 without being deprived of most of its moisture. Therefore, power consumption can be reduced and the humidification operation can be performed efficiently.
  • the control unit 90 acquires the relative humidity information of the outdoor Route that flows through the second flow path P2.
  • the control unit 90 can acquire relative humidity information obtained by a hygrometer placed on the outdoor route via the communication unit as the relative humidity information on the outdoor route.
  • the control unit 90 can acquire relative humidity information of a weather forecast or the like via the Internet as the relative humidity information of the outdoor route.
  • the relative humidity information of the outdoor route for example, the relative humidity information obtained by a hygrometer arranged on the outdoor route, the relative humidity information of the weather forecast, or the like can be used.
  • the control unit 90 controls the rotational speed of the motor 54 in step S33. Specifically, the controller 90 reduces the rotational speed of the motor 54 when the relative humidity of the outdoor Rout increases, and accelerates the rotational speed of the motor 54 when the relative humidity of the outdoor Rout decreases.
  • FIG. 8 is a graph showing the magnitude relationship between the relative humidity of the outdoor air (the relative humidity of the outdoor Rout) and the rotational speed of the motor 54.
  • first threshold a predetermined threshold
  • second threshold value a predetermined threshold value
  • control unit 90 reduces the rotational speed of the motor 54 in accordance with the increase in the relative humidity of the outdoor Rout.
  • the rotational speed of the motor 54 is accelerated in accordance with the decrease in relative humidity.
  • Fig. 9 is a water vapor adsorption isotherm showing the relationship between the adsorption amount of the polymer sorbent and the relative humidity. As shown in FIG. 9, the amount of water adsorbed by the polymer sorbent material increases as the relative humidity increases. When a polymer sorbent material is used as the material of the absorbent 52 as in the present embodiment, the adsorption amount of the absorbent 52 increases as the relative humidity of the outdoor Rout increases.
  • the relative humidity of the outdoor Rout when the relative humidity of the outdoor Rout is high, the adsorption amount of the absorbent 52 increases, so the rotational speed of the motor 54 is reduced to slowly rotate the absorbent 52 . In this way, when the relative humidity of the outdoor Rout is high, more moisture can be absorbed by the absorbent material 52 . In this case, when the outdoor air A3 flowing through the first flow path P1 passes through the absorbent 52, the outdoor air A3 can contain more moisture, and the humidification operation can be performed efficiently.
  • step S40 the control unit 90 determines whether or not to end the humidification operation control. If the controller 90 determines to end the humidification operation control (step S40: YES), the process ends. When the controller 90 determines not to end the humidification operation control (step S40: NO), the process returns to step S30.
  • FIG. 10 is a flow chart showing the operation of the humidification operation control of Modification 1.
  • the humidification operation control of Modification 1 differs from the humidification operation control of the above-described embodiment in that the control unit 90 according to Modification 1 controls the rotational speed of the second fan 66 . That is, the humidification operation control of Modification 1 controls the rotation speed of the second fan 66 (step S33A in FIG. 10) instead of controlling the rotation speed of the motor 54 (step S33 in FIG. 7).
  • step S33A will be described below.
  • step S32 the control unit 90 according to Modification 1 acquires the relative humidity information of the outdoor Rout, and then controls the rotational speed of the second fan 66 in step S33A. Specifically, the control unit 90 according to Modification 1 accelerates the rotation speed of the second fan 66 when the relative humidity of the outdoor Route increases, and rotates the second fan 66 when the relative humidity of the outdoor Route decreases. Decrease speed.
  • FIG. 11 is a graph showing the magnitude relationship between the relative humidity of the outdoor air (relative humidity of the outdoor Rout) and the rotation speed (number of rotations) of the second fan 66 .
  • the control unit 90 according to Modification 1 performs the second The rotation speed of the fan 66 is kept constant at high speed.
  • the control unit 90 according to the first modification causes the rotation of the second fan 66 Keep the speed slow and constant.
  • the control unit 90 when the relative humidity of the outdoor route is equal to or higher than the fourth threshold value L4 and equal to or lower than the third threshold value L3, the control unit 90 according to the first modification operates the second fan 66 according to the increase in the relative humidity of the outdoor route.
  • the rotational speed is accelerated, and the rotational speed of the second fan 66 is decelerated as the relative humidity of the outdoor Rout decreases.
  • the control unit 90 accelerates the rotational speed of the second fan 66 to push more outdoor air A4 to the second flow path P2.
  • the absorbent material 52 can adsorb more moisture. Therefore, in the first flow path P1, the outdoor air A3 can take more moisture from the absorbent 52, and the humidification operation can be performed efficiently.
  • the adsorption amount of the absorbent 52 decreases. Therefore, when the relative humidity of the outdoor Rout is low, even if a large amount of the outdoor air A4 is taken into the second flow path P2, the water content of the absorbent 52 is saturated. Therefore, power consumption can be suppressed by lowering the rotational speed of the second fan 66 .
  • FIG. 12 is a flow chart showing the operation of humidification operation control of Modification 2.
  • the humidification operation control of Modification 2 differs from the humidification operation control of the above-described embodiment in that the controller 90 according to Modification 2 controls the rotation speed of the first fan 62 . That is, the humidification operation control of Modification 2 controls the rotation speed of the first fan 62 (step S33B in FIG. 12) instead of controlling the rotation speed of the motor 54 (step S33 in FIG. 7).
  • step S33B will be described below.
  • step S32 the control unit 90 according to Modification 2 obtains the relative humidity information of the outdoor Rout, and then controls the rotational speed of the first fan 62 in step S33B. Specifically, the control unit 90 according to Modification 2 accelerates the rotational speed of the first fan 62 when the relative humidity of the outdoor route increases, and rotates the first fan 62 when the relative humidity of the outdoor route decreases. Decrease speed.
  • FIG. 13 is a graph showing the magnitude relationship between the relative humidity of the outdoor air (relative humidity of the outdoor Rout) and the rotation speed (number of rotations) of the first fan 62 .
  • a predetermined threshold for example, when the relative humidity of the outdoor Rout is higher than a predetermined threshold (fifth threshold) L5, the control unit 90 according to Modification 2 sets the first To keep the rotation speed of the fan 62 constant at high speed.
  • a predetermined threshold value (sixth threshold value) L6 that is lower than the fifth threshold value L5
  • the control unit 90 according to the second modification causes the rotation of the first fan 62 Keep the speed slow and constant.
  • the control unit 90 when the relative humidity of the outdoor route is equal to or greater than the sixth threshold value L6 and equal to or smaller than the fifth threshold value L5, the control unit 90 according to the second modification causes the first fan 62 to operate according to the increase in the relative humidity of the outdoor route.
  • the rotational speed is accelerated, and the rotational speed of the first fan 62 is decelerated as the relative humidity of the outdoor Rout decreases.
  • the heating temperatures of the heaters 58 and 60 change according to the amount of air passing through the heaters 58 and 60 . Specifically, when the amount of air passing through the heaters 58, 60 is large, the heat generation temperature of the heaters 58, 60 increases, and when the amount of air passing through the heaters 58, 60 is small, the heat generation of the heaters 58, 60 increases. temperature drops.
  • the control unit 90 accelerates the rotational speed of the first fan 62 to A large amount of outdoor air A3 is taken in by one flow path P1. By doing so, the heat generation temperature of the heaters 58 and 60 rises, and more moisture can be desorbed by the outdoor air A3. Therefore, the humidification operation can be performed efficiently.
  • the control unit 90 reduces the rotational speed of the first fan 62 to a low speed.
  • the amount of outdoor air A3 taken into the flow path P1 is reduced.
  • the heat generation temperature of the heaters 58 and 60 is lowered, and excessive drying of the absorbent 52 can be prevented.
  • the adsorption amount of the absorbent 52 is also small. Water cannot be desorbed. Therefore, power consumption can be reduced by lowering the rotation speed of the first fan 62 and lowering the heat generation temperature of the heaters 58 and 60 .
  • FIG. 14 is a flow chart showing the operation of the humidification operation control of Modification 3.
  • the humidification operation control of Modification 3 differs from the humidification operation control of the above-described embodiment in that the control unit 90 according to Modification 3 controls the input voltages of the heaters 58 and 60 . That is, the humidification operation control of Modification 3 controls the input voltage of the heaters 58 and 60 (step S33C in FIG. 14) instead of controlling the rotation speed of the motor 54 (step S33 in FIG. 7). Now, the processing of step S33C will be described.
  • step S32 the control unit 90 according to Modification 3 acquires the relative humidity information of the outdoor Rout, and then controls the input voltages of the heaters 58 and 60 in step S33C.
  • the control unit 90 according to Modification 3 increases the input voltage of the heaters 58 and 60 when the relative humidity of the outdoor Rout increases, and decreases the input voltage of the heaters 58 and 60 when the relative humidity of the outdoor Rout decreases.
  • FIG. 15 is a graph showing magnitude relationships between the relative humidity of the outdoor air and the input voltages of the heaters 58 and 60.
  • FIG. 15 in the present embodiment, for example, when the relative humidity of the outdoor Rout is higher than a predetermined threshold (seventh threshold) L7, the control unit 90 according to Modification 3 controls the heater 58, The input voltage of 60 is kept constant at high input. Further, for example, when the relative humidity of the outdoor Rout is lower than a predetermined threshold (eighth threshold) L8 that is lower than the seventh threshold L7, the control unit 90 according to the third modification controls the input voltage of the heaters 58 and 60 constant at low input.
  • the control unit 90 controls the heaters 58 and 60 according to the increase in the relative humidity of the outdoor route.
  • the voltage is increased, and the input voltage to the heaters 58, 60 is decreased according to the decrease in the relative humidity of the outdoor Rout.
  • the control unit 90 increases the input voltages of the heaters 58 and 60 . In this way, the temperature of the outdoor air A3 passing through the heaters 58 and 60 can be raised to make the outdoor air A3 contain more moisture, and the humidification operation can be performed efficiently.
  • control unit 90 controls the rotation speed of the motor 54, the rotation speed of the second fan 66, the rotation speed of the first fan 62, and the rotation speed of the first fan 62 based on the relative humidity information of the outdoor route. and control of the input voltages of the heaters 58 and 60 may be combined.
  • Embodiment 2 An air conditioner 10 according to Embodiment 2 of the present disclosure will be described. In addition, in Embodiment 2, mainly different points from Embodiment 1 will be described. In the second embodiment, the same reference numerals are assigned to the same or equivalent configurations as in the first embodiment. As will be described later, the air conditioner 10 according to Embodiment 2 and the ventilation device 50 according to Embodiment 2 are different from the air conditioner 10 according to Embodiment 1 and the ventilation device 50 according to Embodiment 1. It has a different configuration (relative humidity sensor 82), but with the exception of using the same reference numerals.
  • control unit 90 according to the second embodiment differs from the control unit 90 according to the first embodiment in that it performs control based on the relative humidity information of the outdoor Rout from the above-described relative humidity sensor 82, but the exception the same reference numerals are used.
  • the description overlapping with the first embodiment is omitted.
  • FIG. 16 is a block diagram showing the configuration of the air conditioner 10 according to the second embodiment.
  • FIG. 17 is a plan view showing the configuration of part of the ventilation device 50 according to the second embodiment.
  • the air conditioner 10 according to Embodiment 2 differs from the air conditioner 10 according to Embodiment 1 in that it has a relative humidity sensor 82 .
  • the relative humidity sensor 82 is arranged upstream of the absorbent 52 in the second flow path P2, as shown in FIG.
  • the relative humidity sensor 82 can detect the relative humidity of the outdoor Rout.
  • the relative humidity sensor 82 may be a temperature/humidity sensor capable of detecting the relative humidity and temperature of the outdoor Route.
  • the relative humidity information of the outdoor route is detected by the relative humidity sensor 82, and the control unit 90 according to the second embodiment converts the value detected by the relative humidity sensor 82 into the relative humidity of the outdoor route. Get it as information.
  • FIG. 18 is a cross-sectional view taken along line AA in FIG. 17, showing the configuration of the ventilator 50 according to Embodiment 2.
  • FIG. 19 is an enlarged view showing the configuration of region R1 in FIG.
  • air conditioner 10 includes sensor cover 84 that covers relative humidity sensor 82 .
  • the sensor cover 84 is arranged on the bottom of the housing 51 of the ventilator 50 .
  • the sensor cover 84 is provided with an outer wall 84a and an inner wall 84b extending toward the bottom of the housing 51.
  • the outer wall 84a and the inner wall 84b of the sensor cover 84 combine with the wall 51a extending from the bottom of the housing 51 to form a labyrinth structure.
  • the wall 51 a of the housing 51 is arranged between the outer wall 84 a and the inner wall 84 b of the sensor cover 84 .
  • a gap is formed between the wall 51a of the housing 51 and the outer wall 84a and the inner wall 84b of the sensor cover 84.
  • a meandering flow path (labyrinth structure) is formed inside the sensor cover 84 .
  • Outdoor air A4 can pass through this labyrinth structure.
  • Such a structure allows outdoor air A4 to pass through the labyrinth structure as indicated by the arrow in FIG. 19, while preventing water from entering the sensor cover 84.
  • the outside air A4 can be taken into the inside of the sensor cover 84 while rainwater or the like can be prevented from entering, so that the relative humidity sensor 82 can accurately detect the relative humidity.
  • the present disclosure is applicable to any air conditioner equipped with an indoor unit and an outdoor unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Humidification (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Abstract

空気調和機は、室外機に設けられ、室外空気の水分を吸収する吸収材と、吸収材を通過し、室外空気が室外から室外に流れる吸湿流路と、吸湿流路に室外空気の流れを発生させる吸湿ファンと、を備える。また、空気調和機は、吸収材を回転駆動するモータと、吸湿ファンと、モータと、を制御する制御部と、吸収材を通過し、室外空気が流れる再生流路と、再生流路に室外空気を送る再生ファンと、再生流路における吸収材に対する上流側で室外空気を加熱するヒータと、を備える。制御部は、室外の相対湿度情報を取得し、室外の相対湿度情報に基づいて、モータの回転速度、吸湿ファンの回転速度、再生ファンの回転速度、およびヒータの入力電圧、のうちの少なくとも1つを制御する。

Description

空気調和機
 本開示は、空気調和機に関する。
 従来、例えば、特許文献1に記載するように、空気調和対象の室内に配置される室内機と、室外に配置される室外機とから構成される空気調和機が知られている。この空気調和機は、室外機から室内機に加湿された室外空気を供給できるように構成されている。
特開2001-91000号公報
 ところで、空気調和機の室外の相対湿度に基づいて効率よく加湿運転を実行したいというニーズがある。
 そこで、本開示は、室外の相対湿度に基づいて効率よく加湿運転を実行することのできる空気調和機を提供する。
 本開示の一態様に係る空気調和機は、室内機と室外機とを備える空気調和機である。本開示の一態様に係る空気調和機は、室外機に設けられ、室外空気の水分を吸収する吸収材と、吸収材を通過し、室外空気が室外から室外に流れる吸湿流路と、吸湿流路に室外空気の流れを発生させる吸湿ファンと、を備える。本開示の一態様に係る空気調和機は、吸収材を回転駆動するモータと、吸湿ファンと、モータと、を制御する制御部と、吸収材を通過し、室外空気が流れる再生流路と、再生流路に室外空気を送る再生ファンと、再生流路における吸収材に対する上流側で室外空気を加熱するヒータと、を備える。制御部は、室外の相対湿度情報を取得し、室外の相対湿度情報に基づいて、モータの回転速度、吸湿ファンの回転速度、再生ファンの回転速度、およびヒータの入力電圧、のうちの少なくとも1つを制御する。
 本開示の一態様に係る空気調和機は、室外の相対湿度に基づいて効率よく加湿運転を実行することができる。
本開示の実施の形態1に係る空気調和機の構成を示す概略図 実施の形態1に係る換気装置の構成を示す概略図 換気運転中の同換気装置の動作状態を示す概略図 加湿運転中の同換気装置の動作状態を示す概略図 除湿運転中の同換気装置の動作状態を示す概略図 同空気調和機を制御する構成を示すブロック図 加湿運転ONからOFFまでの全体の動作を示すフローチャート 室外空気の相対湿度とモータの回転速度の大小関係を示すグラフ 高分子収着材の吸着量と相対湿度との関係を示す水蒸気吸着等温線 変形例1の加湿運転制御の動作を示すフローチャート 室外空気の相対湿度と第2のファンの回転速度(回転数)との大小関係を示すグラフ 変形例2の加湿運転制御の動作を示すフローチャート 室外空気の相対湿度と第1のファンの回転速度(回転数)との大小関係を示すグラフ 変形例3の加湿運転制御の動作を示すフローチャート 室外空気の相対湿度とヒータの入力電圧との大小関係を示すグラフ 実施の形態2に係る空気調和機の構成を示すブロック図 実施の形態2に係る換気装置の一部の構成を示す平面図 同換気装置の構成を示す図17のA-A断面図 図18の領域R1の構成を示す拡大図
 本開示の一態様に係る空気調和機は、室内機と室外機とを備える空気調和機である。空気調和機は、室外機に設けられ、室外空気の水分を吸収する吸収材と、吸収材を通過し、室外空気が室外から室外に流れる吸湿流路と、吸湿流路に室外空気の流れを発生させる吸湿ファンと、を備える。また、空気調和機は、吸収材を回転駆動するモータと、吸湿ファンと、モータと、を制御する制御部と、吸収材を通過し、室外空気が流れる再生流路と、再生流路に室外空気を送る再生ファンと、再生流路における吸収材に対する上流側で室外空気を加熱するヒータと、を備える。制御部は、室外の相対湿度情報を取得し、室外の相対湿度情報に基づいて、モータの回転速度、吸湿ファンの回転速度、再生ファンの回転速度、およびヒータの入力電圧、のうちの少なくとも1つを制御する。
 このような一態様に係る空気調和機は、室外の相対湿度に基づいて効率よく加湿運転を実行することができる。
 例えば、制御部は、室外の相対湿度が上昇した場合にモータの回転速度を減速し、室外の相対湿度が下降した場合にモータの回転速度を加速してもよい。一例として、制御部は、室外の相対湿度が第1の閾値より高い場合にモータの回転速度を減速し、室外の相対湿度が第1の閾値より低い第2の閾値より低い場合にモータの回転速度を加速してもよい。
 例えば、制御部は、室外の相対湿度が上昇した場合に吸湿ファンの回転速度を加速し、室外の相対湿度が下降した場合に吸湿ファンの回転速度を減速してもよい。一例として、制御部は、室外の相対湿度が第3の閾値より高い場合に吸湿ファンの回転速度を加速し、室外の相対湿度が第3の閾値より低い第4の閾値より低い場合に吸湿ファンの回転速度を減速してもよい。
 例えば、制御部は、室外の相対湿度が上昇した場合に再生ファンの回転速度を加速し、室外の相対湿度が下降した場合に再生ファンの回転速度を減速してもよい。一例として、制御部は、室外の相対湿度が第5の閾値より高い場合に再生ファンの回転速度を加速し、室外の相対湿度が第5の閾値より低い第6の閾値より低い場合に再生ファンの回転速度を減速してもよい。
 例えば、制御部は、室外の相対湿度が上昇した場合に、ヒータの入力電圧を高くし、室外の相対湿度が下降した場合にヒータの入力電圧を低くしてもよい。一例として、制御部は、室外の相対湿度が第7の閾値より高い場合に、ヒータの入力電圧を高くし、室外の相対湿度が第7の閾値より低い第8の閾値より低い場合にヒータの入力電圧を低くしてもよい。
 例えば、空気調和機は、吸湿流路の吸収材の上流側に配置された相対湿度センサをさらに備え、室外の相対湿度情報は、相対湿度センサにより検出されてもよい。
 例えば、空気調和機は、相対湿度センサを覆い、ラビリンス構造を有するセンサカバー、をさらに備えてもよい。
 例えば、吸収材は、高分子収着材であってもよい。
 以下、本開示の一実施の形態について図面を参照しながら説明する。
 (実施の形態1)
 図1は、本開示の実施の形態1に係る空気調和機10の構成を示す概略図である。
 図1に示すように、本実施の形態に係る空気調和機10は、空調対象の室内Rinに配置される室内機20と、室外Routに配置される室外機30とを有する。
 室内機20には、室内空気A1と熱交換を行う室内熱交換器22と、室内空気A1を室内機20内に誘引するとともに、室内熱交換器22と熱交換した後の室内空気A1を室内Rinに吹き出すファン24とが設けられている。
 室外機30には、室外空気A2と熱交換を行う室外熱交換器32と、室外空気A2を室外機30内に誘引するとともに、室外熱交換器32と熱交換した後の室外空気A2を室外Routに吹き出すファン34とが設けられている。また、室外機30には、室内熱交換器22および室外熱交換器32と冷凍サイクルを実行する圧縮機36、膨張弁38、および四方弁40が設けられている。
 室内熱交換器22、室外熱交換器32、圧縮機36、膨張弁38、および四方弁40それぞれは、冷媒が流れる冷媒配管によって接続されている。冷房運転および除湿運転(弱冷房運転)の場合、空気調和機10は、冷媒が圧縮機36から四方弁40、室外熱交換器32、膨張弁38、室内熱交換器22を順に流れて圧縮機36に戻る冷凍サイクルを実行する。暖房運転の場合、空気調和機10は、冷媒が圧縮機36から四方弁40、室内熱交換器22、膨張弁38、室外熱交換器32を順に流れて圧縮機36に戻る冷凍サイクルを実行する。
 空気調和機10は、冷凍サイクルによる空調運転の他に、室外空気A3を室内Rinに導入する空調運転を実行する。そのために、空気調和機10は、換気装置50を有する。換気装置50は、室外機30に設けられている。すなわち、室外機30は、換気装置50を有する。
 図2は、実施の形態1に係る換気装置50の構成を示す概略図である。
 図2に示すように、換気装置50は、その内部に室外空気A3、A4が通過する吸収材52を備える。
 吸収材52は、空気が通過可能な部材であって、通過する空気から水分を捕集するまたは通過する空気に水分を与える部材である。本実施の形態の場合、吸収材52は、円盤状であって、その中心を通過する回転中心線C1を中心にして回転する。吸収材52は、モータ54によって回転駆動される。
 吸収材52は、空気中の水分を収着する高分子収着材が好ましい。高分子収着材は、例えば、ポリアクリル酸ナトリウム架橋体から構成される。高分子収着材は、シリカゲルやゼオライトなどの吸着材に比べて、同一体積当たりの水分吸収量が多く、低い加熱温度で担持する水分を脱着することができ、そして水分を長時間担持することができる。
 換気装置50の内部には、吸収材52をそれぞれ通過し、室外空気A3、A4がそれぞれ流れる第1の流路P1と第2の流路P2とが設けられている。第1の流路P1と第2の流路P2は、異なる位置で吸収材52を通過する。なお、第1の流路P1が、本開示の「再生流路」に相当し、第2の流路P2が、本開示の「吸湿流路」に相当する。
 第1の流路P1は、室内機20内に向かう室外空気A3が流れる流路である。第1の流路P1を流れる室外空気A3は、換気導管56を介して、室内機20内に供給される。
 本実施の形態の場合、第1の流路P1は、吸収材52に対して上流側に複数の支流路P1a、P1bを含んでいる。なお、本明細書において、「上流」および「下流」は、空気の流れに対して使用される。
 複数の支流路P1a、P1bは、吸収材52に対して上流側で合流する。複数の支流路P1a、P1bそれぞれには、室外空気A3を加熱する第1および第2のヒータ58、60が設けられている。すなわち、第1および第2のヒータ58、60は、第1の流路P1における吸収材52に対する上流側で室外空気A3を加熱する。
 第1および第2のヒータ58、60は、同一の加熱能力を備えるヒータであってもよいし、異なる加熱能力を備えるヒータであってもよい。また、第1および第2のヒータ58、60は、電流が流れて温度が上昇すると電気抵抗が増加する、すなわち過剰な加熱温度の上昇を抑制することができるPTC(Positive Temperature Coefficient)ヒータが好ましい。ニクロム線やカーボン繊維などを用いるヒータを用いてもよいが、この場合、電流が流れ続けると加熱温度(表面温度)が上昇し続けるため、その温度をモニタリングする必要がある。一方、PTCヒータの場合、ヒータ自体が加熱温度を一定の温度範囲内で調節するために、加熱温度をモニタリングする必要がなくなる。この点で、PTCヒータがより好ましい。なお、第1および第2のヒータ58、60が、本開示の「ヒータ」に相当するが、本開示の「ヒータ」の数は複数でなくてもよく、すなわち、第1および第2のヒータ58、60の一方が、本開示の「ヒータ」に相当するとしてもよい。
 第1の流路P1には、室内機20内に向かう室外空気A3の流れを発生させる第1のファン62が設けられている。本実施の形態の場合、第1のファン62は、吸収材52に対して下流側に配置されている。第1のファン62が作動することにより、室外空気A3が、室外Routから第1の流路P1内に流入し、吸収材52を通過する。すなわち、第1のファン62は、第1の流路P1に室外空気A3を流入させる、つまり第1の流路P1に室外空気A3を送る。なお、第1のファン62が本開示の「再生ファン」に相当する。
 また、第1の流路P1には、第1の流路P1を流れる室外空気A3を室内Rin(すなわち室内機20)または室外Routに振り分けるダンパ装置64が設けられている。本実施の形態の場合、ダンパ装置64は、第1のファン62に対して下流側に配置されている。ダンパ装置64によって室内機20に振り分けられた室外空気A3は、換気導管56を介して室内機20内に入り、ファン24によって室内Rinに吹き出される。
 第2の流路P2は、室外空気A4が流れる流路である。第1の流路P1を流れる室外空気A3と異なり、第2の流路P2を流れる室外空気A4は、室内機20に向かうことはない。第2の流路P2を流れる室外空気A4は、吸収材52を通過した後、室外Routに流出する。
 第2の流路P2には、室外空気A4の流れを発生させる第2のファン66が設けられている。本実施の形態の場合、第2のファン66は、吸収材52に対して下流側に配置されている。第2のファン66が作動することにより、室外空気A4が、室外Routから第2の流路P2内に流入し、吸収材52を通過し、そして室外Routに流出する。なお、第2のファン66が、本開示の「吸湿ファン」に相当する。
 換気装置50は、吸収材52、モータ54、第1のヒータ58、第2のヒータ60、第1のファン62、ダンパ装置64、および第2のファン66を選択的に使用して換気運転、加湿運転、および除湿運転を選択的に実行する。
 図3は、換気運転中の換気装置50の動作状態を示す概略図である。
 換気運転は、室外空気A3をそのまま換気導管56を介して室内Rin(すなわち室内機20)に供給する空調運転である。図3に示すように、換気運転中、モータ54は吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、OFF状態であって、室外空気A3を加熱していない。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を室内機20に振り分ける。第2のファン66は、OFF状態であって、それにより第2の流路P2内に室外空気A4の流れが発生していない。
 このような換気運転によれば、室外空気A3は、第1の流路P1に流入し、第1および第2のヒータ58、60に加熱されることなく吸収材52を通過する。吸収材52を通過した室外空気A3は、ダンパ装置64によって室内機20に振り分けられる。ダンパ装置64を通過して換気導管56を介して室内機20に到達した室外空気A3は、ファン24によって室内Rinに吹き出される。このような換気運転により、室外空気A3がそのまま室内Rinに供給され、室内Rinが換気される。
 図4は、加湿運転中の換気装置50の動作状態を示す概略図である。
 加湿運転は、室外空気A3を加湿し、その加湿された室外空気A3を室内Rin(すなわち室内機20)に供給する空調運転である。図4に示すように、加湿運転中、モータ54は、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、ON状態であって、室外空気A3を加熱している。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を室内機20に振り分ける。第2のファン66は、ON状態であって、それにより第2の流路P2内を室外空気A4が流れている。
 このような加湿運転によれば、室外空気A3は、第1の流路P1に流入し、第1および第2のヒータ58、60に加熱されて吸収材52を通過する。このとき、加熱された室外空気A3は、加熱されていない場合に比べて、吸収材52からより多量の水分を奪うことができる。それにより、室外空気A3が多量の水分を担持する。吸収材52を通過して多量の水分を担持する室外空気A3は、ダンパ装置64によって室内機20に振り分けられる。ダンパ装置64を通過して換気導管56を介して室内機20に到達した室外空気A3は、ファン24によって室内Rinに吹き出される。このような加湿運転により、多量の水分を担持する室外空気A3が室内Rinに供給され、室内Rinが加湿される。
 なお、第1のヒータ58と第2のヒータ60のいずれか一方をOFF状態にすることによって室外空気A3が吸収材52から奪う水分量を少なくする、すなわち室内Rinの加湿量が少ない弱加湿運転が実行されてもよい。
 加熱された室外空気A3に水分が奪われることにより、吸収材52の保水量が減少する、すなわち吸収材52が乾燥する。吸収材52が乾燥すると、第1の流路P1を流れる室外空気A3は吸収材52から水分を奪うことができない。その対処として、吸収材52は、第2の流路P2を流れる室外空気A4から水分を奪う。それにより、吸収材52の保水量がほぼ一定に維持され、加湿運転を継続することができる。
 図5は、除湿運転中の換気装置50の動作状態を示す概略図である。
 除湿運転は、室外空気A3を除湿し、その除湿された室外空気A3を室内Rin(すなわち室内機20)に供給する空調運転である。図5に示すように、除湿運転では、吸着運転と再生運転とが交互に実行される。
 吸着運転は、室外空気A3に担持されている水分を吸収材52に吸着させ、それにより室外空気A3を除湿する運転である。図5に示すように、吸着運転中、モータ54は、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、OFF状態であって、室外空気A3を加熱していない。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を室内機20に振り分ける。第2のファン66は、OFF状態であって、それにより第2の流路P2内に室外空気A4の流れが発生していない。
 このような吸着運転によれば、室外空気A3は、第1の流路P1に流入し、第1および第2のヒータ58、60に加熱されることなく吸収材52を通過する。このとき、室外空気A3に担持されている水分が吸収材52に吸着する。それにより、室外空気A3の水分の担持量が減少する、すなわち室外空気A3が乾燥される。吸収材52を通過して乾燥した室外空気A3は、ダンパ装置64によって室内機20に振り分けられる。ダンパ装置64を通過して換気導管56を介して室内機20に到達した室外空気A3は、ファン24によって室内Rinに吹き出される。このような吸着運転により、乾燥した室外空気A3が室内Rinに供給され、室内Rinが除湿される。
 吸着運転が続くと、吸収材52の保水量が増加し続け、その結果、室外空気A3に担持されている水分に対する吸収材52の吸着能力が低下する。その吸着能力を回復するために吸収材52を再生させる再生運転が実行される。
 再生運転中、モータ54は、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、ON状態であって、室外空気A3を加熱している。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を、室内機20ではなく、室外Routに振り分ける。第2のファン66は、OFF状態であって、それにより第2の流路P2内に室外空気A4の流れが発生していない。
 このような再生運転によれば、室外空気A3は、第1の流路P1に流入し、第1および第2のヒータ58、60に加熱されて吸収材52を通過する。このとき、加熱された室外空気A3は、吸収材52から多量の水分を奪う。それにより、室外空気A3に多量の水分が担持される。それとともに、吸収材52の保水量が減少する、すなわち吸収材52が乾燥してその吸着能力が再生する。吸収材52を通過して多量の水分を担持する室外空気A3は、ダンパ装置64によって室外Routに振り分けられ、室外Routに排出される。これにより、除湿運転における再生運転中に、吸収材52の再生によって多量の水分を担持する室外空気A3が室内Rinに供給されることがない。
 このような吸着運転と再生運転を交互に行うことにより、吸収材52の吸着能力が維持され、除湿運転を継続的に実行することができる。
 上述の冷凍サイクルによる空調運転(冷房運転、除湿運転(弱冷房運転)、暖房運転)と換気装置50による空調運転(換気運転、加湿運転、除湿運転)は、別々に実行可能であり、また同時に実行することも可能である。例えば、冷凍サイクルによる除湿運転と換気装置50による除湿運転を同時に実行すれば、室温を一定に維持した状態で室内Rinを除湿することが可能である。
 空気調和機10が実行する空調運転は、ユーザによって選択される。例えば、図1に示すリモートコントローラ70に対するユーザの選択操作により、その操作に対応する空調運転を空気調和機10は実行する。
 ここまでは、本実施の形態に係る空気調和機10の構成および動作について概略的に説明してきた。ここからは、本実施の形態に係る空気調和機10の更なる特徴について説明する。
 図6は、空気調和機10を制御する構成を示すブロック図である。
 図6に示すように、空気調和機10の構成要素は、制御部90によって制御される。制御部90は、例えば、プログラムを記憶したメモリと、CPU(Central Processing Unit)などのプロセッサに対応する処理回路を備える。制御部90の機能は、ハードウェアのみで構成してもよいし、ハードウェアとソフトウェアとを組み合わせることにより実現してもよい。制御部90は、メモリに格納されたデータやプログラムを読み出して種々の演算処理を行うことで、所定の機能を実現する。なお、プロセッサが実行するプログラムは、ここではメモリに予め記録されているとしたが、メモリカード等の非一時的な記録媒体に記録されて提供されてもよいし、インターネット等の電気通信回線を通じて提供されてもよい。本実施の形態の場合、制御部90は、モータ54、第1のヒータ58、第2のヒータ60、第1のファン62、ダンパ装置64および第2のファン66を制御する。
 制御部90は、例えばインターネットとの接続が可能な通信部(図示省略)を有していることが好ましい。通信部は、例えば、Wi-Fi(登録商標)、IEEE802.2、IEEE802.3、3G、LTE等の規格に従い通信を行うことができるものであればよい。通信部は、インターネットの他、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網、電話回線網、移動体通信網、衛星通信網等、赤外線、Bluetooth(登録商標)で通信してもよい。
 <加湿運転のフロー>
 図7は、加湿運転ONからOFFまでの全体の動作を示すフローチャートである。なお、図7に示す処理は、制御部90によって空気調和機10の構成要素を制御することによって実施される。なお、図7に示す処理は一例であって、本実施の形態は図7に示す処理に限定されない。また、本明細書では、第1および第2のヒータ58、60を、単に「ヒータ58、60」と称する場合がある。
 図7に示す処理は、例えば、図1に示すリモートコントローラ70に対するユーザの選択操作により、加湿運転がONになったときに開始する。
 図7に示すように、ステップS10では、制御部90が、開始条件が成立しているか否かを判定する。制御部90が、開始条件が成立していると判定した場合(ステップS10:YES)、処理はステップS20に進む。制御部90が、開始条件が成立していないと判定している間(ステップS10:NO)、処理はステップS10を繰り返す。
 開始条件は、加湿運転を開始するための条件であり、例えば、運転モード、湿度、湿度コントロール、運転周波数、インバータ電流、温度および異常の有無のうちの少なくとも1つを含んでいてもよい。
 ステップS20では、制御部90が、ダンパ「開」制御を実施する。ダンパ「開」制御とは、ダンパ装置64を開いて、第1の流路P1を流れる室外空気A3を室内機20に振り分ける制御である。これにより、室外空気A3が換気導管56を通って室内機20に流入する。
 ステップS30では、制御部90が、加湿運転制御を実施する。加湿運転制御では、ヒータ58、60のON(ステップS31)、室外Routの相対湿度情報の取得(ステップS32)、およびモータ54の回転速度の制御(ステップS33)が実行される。以下、ステップS31~S33について詳細に説明する。
 ステップS31で、制御部90が、ヒータ58、60をONにする。なお、加湿運転制御中、室内Rinの温度または湿度に応じて、制御部90は、ヒータ58、60のいずれか一方をONにする弱加湿運転、またはヒータ58、60の両方をONにする加湿運転を実行することができる。例えば、室内Rinの湿度が目標値に近付いた場合に、制御部90は、ヒータ58、60の一方をON、他方をOFFにして、弱加湿運転を実行し、室内Rinの湿度を適切な値に調整する。
 制御部90がヒータ58、60のうちいずれか一方をONにする場合、吸収材52の回転方向に対して下流側に配置されるヒータをONにするとよい。例えば、後述する図17では、吸収材52が反時計回りに回転する場合、第2のヒータ60が回転方向に対して上流側に配置され、第1のヒータ58が回転方向に対して下流側に配置されている。このように、吸収材52が反時計回りに回転する場合、第2のヒータ60をOFF、第1のヒータ58をONにするとよい。
 上流側のヒータをONにすると、下流側のヒータを通過した室外空気A3が吸収材52により水分を奪われて除湿される。この場合、除湿された下流側ヒータを通過した室外空気A3と、加湿された上流側ヒータを通過した空気が混合されて、加湿量が低下してしまう。一方で、回転方向に対して上流側のヒータをOFF、下流側のヒータをONにする場合、上流側のヒータ(OFF)を通過した室外空気A3は、水分が飽和に近い状態の吸収材52を通過する。このため、室外空気A3はほとんど水分を奪われることなく吸収材52を通過することができる。したがって、消費電力を低減して効率よく加湿運転を行うことができる。
 次に、ステップS32で制御部90が、第2の流路P2を流れる室外Routの相対湿度情報を取得する。例えば、制御部90は、室外Routの相対湿度情報として、室外Routに配置された湿度計による相対湿度情報を、通信部を介して取得することができる。または、制御部90は、室外Routの相対湿度情報として、天気予報の相対湿度情報等を、インターネットを介して取得することができる。室外Routの相対湿度情報は、例えば、室外Routに配置された湿度計による相対湿度情報、または天気予報の相対湿度情報等を使用することができる。
 ステップS32で取得した室外Routの相対湿度情報に基づいて、ステップS33で、制御部90は、モータ54の回転速度を制御する。具体的には、制御部90は、室外Routの相対湿度が上昇するとモータ54の回転速度を減速させ、室外Routの相対湿度が下降するとモータ54の回転速度を加速させる。
 図8は、室外空気の相対湿度(室外Routの相対湿度)とモータ54の回転速度の大小関係を示すグラフである。図8に示すように、本実施の形態では、制御部90は、例えば、室外Routの相対湿度が、所定の閾値(第1の閾値)L1より高い場合に、モータ54の回転速度を低速で一定にする。また、制御部90は、例えば、室外Routの相対湿度が第1の閾値L1よりも低い所定の閾値(第2の閾値)L2より低い場合に、モータ54の回転速度を高速で一定にする。また、制御部90は、室外Routの相対湿度が第2の閾値L2以上第1の閾値L1以下の場合に、室外Routの相対湿度の上昇に応じてモータ54の回転速度を減速し、室外Routの相対湿度の下降に応じてモータ54の回転速度を加速する。
 図9は、高分子収着材の吸着量と相対湿度との関係を示す水蒸気吸着等温線である。図9に示すように、高分子収着材は、相対湿度の上昇に伴って水分の吸着量が増加する。本実施の形態のように、吸収材52の材料として高分子収着材を用いる場合、室外Routの相対湿度が上昇すると、吸収材52の吸着量が増加する。
 したがって、室外Routの相対湿度が高い場合には吸収材52の吸着量が多くなるため、モータ54の回転速度を低速にして吸収材52をゆっくり回転させる。このようにすると、室外Routの相対湿度が高い場合に、吸収材52により多くの水分を吸着させることができる。この場合、第1の流路P1を流れる室外空気A3が吸収材52を通過する際に室外空気A3がより多くの水分を含むことができ、効率よく加湿運転を実行することができる。
 逆に、室外Routの相対湿度が下降すると、吸収材52の吸着量が減少する。このため、吸収材52をゆっくり回転させると第2の流路P2において、吸収材52に吸着した水分が飽和状態となってしまう。このため、室外Routの相対湿度が第2の閾値L2よりも低い場合には、モータ54の回転速度を高速にして、吸収材52を速く回転させる。このようにすると、第2の流路P2における吸収材52への水分の吸着から、第1の流路P1における吸収材52からの水分の脱離までのサイクルを速くすることができる。このため、吸収材52の保水量を適切に維持しつつ、効率よく加湿運転を実行することができる。
 図7に戻って、ステップS40では、制御部90が、加湿運転制御を終了するか否かを判定する。制御部90が加湿運転制御を終了すると判定した場合(ステップS40:YES)、処理は終了する。制御部90が加湿運転制御を終了しないと判定した場合(ステップS40:NO)、処理はステップS30に戻る。
 次に、変形例1の加湿運転制御について説明する。図10は、変形例1の加湿運転制御の動作を示すフローチャートである。変形例1の加湿運転制御は、変形例1に係る制御部90が第2のファン66の回転速度を制御する点で、上述した実施の形態の加湿運転制御と異なる。すなわち、変形例1の加湿運転制御は、モータ54の回転速度の制御(図7のステップS33)に代えて、第2のファン66の回転速度の制御(図10のステップS33A)を行うため、以下では、ステップS33Aの処理について説明する。
 図10に示すように、ステップS32で、変形例1に係る制御部90が、室外Routの相対湿度情報を取得した後、ステップS33Aで第2のファン66の回転速度を制御する。具体的には、変形例1に係る制御部90は、室外Routの相対湿度が上昇すると第2のファン66の回転速度を加速させ、室外Routの相対湿度が下降すると第2のファン66の回転速度を減速させる。
 図11は、室外空気の相対湿度(室外Routの相対湿度)と第2のファン66の回転速度(回転数)との大小関係を示すグラフである。図11に示すように、本実施の形態では、変形例1に係る制御部90は、例えば、室外Routの相対湿度が、所定の閾値(第3の閾値)L3より高い場合に、第2のファン66の回転速度を高速で一定にする。また、変形例1に係る制御部90は、例えば、室外Routの相対湿度が第3の閾値L3よりも低い所定の閾値(第4の閾値)L4より低い場合に、第2のファン66の回転速度を低速で一定にする。また、変形例1に係る制御部90は、室外Routの相対湿度が第4の閾値L4以上第3の閾値L3以下の場合に、室外Routの相対湿度の上昇に応じて第2のファン66の回転速度を加速し、室外Routの相対湿度の下降に応じて第2のファン66の回転速度を減速する。
 上述したように、室外Routの相対湿度が高い場合には、吸収材52の吸着量が増加する。このため、室外Routの相対湿度が高い場合には、変形例1に係る制御部90は、第2のファン66の回転速度を加速し、より多くの室外空気A4を第2の流路P2に取り込むことで、吸収材52はより多くの水分を吸着することができる。したがって、第1の流路P1において、室外空気A3が吸収材52からより多くの水分を奪うことができ、効率よく加湿運転を実行することができる。
 また、室外Routの相対湿度が低い場合には、吸収材52の吸着量が減少する。このため、室外Routの相対湿度が低い場合には、多くの室外空気A4を第2の流路P2に取り込んでも、吸収材52の水分が飽和状態となってしまう。このため、第2のファン66の回転速度を低下させることで、電力消費を抑制することができる。
 次に、変形例2の加湿運転制御について説明する。図12は、変形例2の加湿運転制御の動作を示すフローチャートである。変形例2の加湿運転制御は、変形例2に係る制御部90が第1のファン62の回転速度を制御する点で、上述した実施の形態の加湿運転制御と異なる。すなわち、変形例2の加湿運転制御は、モータ54の回転速度の制御(図7のステップS33)に代えて、第1のファン62の回転速度の制御(図12のステップS33B)を行うため、以下では、ステップS33Bの処理について説明する。
 図12に示すように、ステップS32で、変形例2に係る制御部90が、室外Routの相対湿度情報を取得した後、ステップS33Bで第1のファン62の回転速度を制御する。具体的には、変形例2に係る制御部90は、室外Routの相対湿度が上昇すると第1のファン62の回転速度を加速させ、室外Routの相対湿度が下降すると第1のファン62の回転速度を減速させる。
 図13は、室外空気の相対湿度(室外Routの相対湿度)と第1のファン62の回転速度(回転数)との大小関係を示すグラフである。図13に示すように、本実施の形態では、変形例2に係る制御部90は、例えば、室外Routの相対湿度が、所定の閾値(第5の閾値)L5より高い場合に、第1のファン62の回転速度を高速で一定にする。また、変形例2に係る制御部90は、例えば、室外Routの相対湿度が第5の閾値L5よりも低い所定の閾値(第6の閾値)L6より低い場合に、第1のファン62の回転速度を低速で一定にする。また、変形例2に係る制御部90は、室外Routの相対湿度が第6の閾値L6以上第5の閾値L5以下の場合に、室外Routの相対湿度の上昇に応じて第1のファン62の回転速度を加速し、室外Routの相対湿度の下降に応じて第1のファン62の回転速度を減速する。
 例えば、ヒータ58、60がPTCヒータである場合、ヒータ58、60を通過する風量に応じてヒータ58、60の発熱温度が変わる。具体的には、ヒータ58、60を通過する風量が多い場合には、ヒータ58、60の発熱温度が高くなり、ヒータ58、60を通過する風量が少ない場合には、ヒータ58、60の発熱温度が低くなる。
 このため、室外Routの相対湿度が高く、吸収材52がより多くの水分を吸着する場合には、変形例2に係る制御部90は、第1のファン62の回転速度を加速して、第1の流路P1により多くの室外空気A3を取り込む。このようにすると、ヒータ58、60の発熱温度が上昇し、室外空気A3により多くの水分を脱離させることができる。このため、効率よく加湿運転を実行することができる。
 一方、室外Routの相対湿度が低く、吸収材52の水分の吸着量が少ない場合には、変形例2に係る制御部90は、第1のファン62の回転速度を低速にして、第1の流路P1に取り込まれる室外空気A3の量を減らす。このようにすると、ヒータ58、60の発熱温度が下がり、吸収材52の過乾燥を防止することができる。また、室外Routの相対湿度が低い場合、吸収材52の吸着量も少なくなるため、ヒータ58、60の発熱温度を高くしても第1の流路P1を通過する室外空気A3はそれほど多くの水分を脱離することができない。このため、第1のファン62の回転速度を低速にして、ヒータ58、60の発熱温度を下げることにより、消費電力を低減することができる。
 次に、変形例3の加湿運転制御について説明する。図14は、変形例3の加湿運転制御の動作を示すフローチャートである。変形例3の加湿運転制御は、変形例3に係る制御部90がヒータ58、60の入力電圧を制御する点で、上述した実施の形態の加湿運転制御と異なる。すなわち、変形例3の加湿運転制御は、モータ54の回転速度の制御(図7のステップS33)に代えて、ヒータ58、60の入力電圧の制御(図14のステップS33C)を行うため、以下では、ステップS33Cの処理について説明する。
 図14に示すように、ステップS32で、変形例3に係る制御部90が、室外Routの相対湿度情報を取得した後、ステップS33Cでヒータ58、60の入力電圧を制御する。変形例3に係る制御部90は、室外Routの相対湿度が上昇するとヒータ58、60の入力電圧を上昇させ、室外Routの相対湿度が下降するとヒータ58、60の入力電圧を下降させる。
 図15は、室外空気の相対湿度とヒータ58、60の入力電圧との大小関係を示すグラフである。図15に示すように、本実施の形態では、変形例3に係る制御部90は、例えば、室外Routの相対湿度が、所定の閾値(第7の閾値)L7より高い場合に、ヒータ58、60の入力電圧を高入力で一定にする。また、変形例3に係る制御部90は、例えば、室外Routの相対湿度が第7の閾値L7よりも低い所定の閾値(第8の閾値)L8より低い場合に、ヒータ58、60の入力電圧を低入力で一定にする。また、変形例3に係る制御部90は、室外Routの相対湿度が第8の閾値L8以上第7の閾値L7以下の場合に、室外Routの相対湿度の上昇に応じてヒータ58、60の入力電圧を上昇させ、室外Routの相対湿度の下降に応じてヒータ58、60の入力電圧を下降させる。
 室外Routの相対湿度が高い場合、吸収材52の吸着量が増加するため、吸収材52を通過する室外空気A3により多くの水分を含ませることができる。このため、室外Routの相対湿度が高い場合に、変形例3に係る制御部90は、ヒータ58、60の入力電圧を高くする。このようにすると、ヒータ58、60を通過する室外空気A3の温度を上昇させて、室外空気A3により多くの水分を含ませることができ、効率よく加湿運転を実行することができる。
 一方で、室外Routの相対湿度が低い場合、吸収材52の吸着量が減少するため、ヒータ58、60の入力電圧を低くしても、吸収材52を通過する室外空気A3が脱離する水分量は減らない。このため、消費電力を低減することができる。
 なお、更なる変形例に係る制御部90は、室外Routの相対湿度情報に基づいて、モータ54の回転速度の制御、第2のファン66の回転速度の制御、第1のファン62の回転速度の制御、およびヒータ58、60の入力電圧の制御、を組み合わせて実行してもよい。
 (実施の形態2)
 本開示の実施の形態2に係る空気調和機10について説明する。なお、実施の形態2では、主に実施の形態1と異なる点について説明する。実施の形態2においては、実施の形態1と同一または同等の構成については同じ符号を付して説明する。なお、後述するように、実施の形態2に係る空気調和機10および実施の形態2に係る換気装置50は、実施の形態1に係る空気調和機10および実施の形態1に係る換気装置50と異なる構成(相対湿度センサ82)を有するが、例外的に同じ符号を用いている。また、実施の形態2に係る制御部90は、上述の記相対湿度センサ82からの室外Routの相対湿度情報に基づく制御を行う点で、実施の形態1に係る制御部90と異なるが、例外的に同じ符号を用いている。また、実施の形態2では、実施の形態1と重複する記載は省略する。
 図16は、実施の形態2に係る空気調和機10の構成を示すブロック図である。図17は、実施の形態2に係る換気装置50の一部の構成を示す平面図である。
 図16および図17に示すように、実施の形態2に係る空気調和機10は、相対湿度センサ82を有する点で、実施の形態1に係る空気調和機10と異なる。
 相対湿度センサ82は、図17に示すように、第2の流路P2において、吸収材52の上流側に配置される。相対湿度センサ82は、室外Routの相対湿度を検出することができる。相対湿度センサ82は、室外Routの相対湿度および温度を検出することのできる温湿度センサであってもよい。
 したがって、本実施の形態では、室外Routの相対湿度情報は、相対湿度センサ82により検出され、実施の形態2に係る制御部90は、相対湿度センサ82により検出した値を、室外Routの相対湿度情報として取得する。
 図18は、実施の形態2に係る換気装置50の構成を示す図17のA-A断面図である。図19は、図18の領域R1の構成を示す拡大図である。図18および図19に示すように、本実施の形態では、空気調和機10は、相対湿度センサ82を覆うセンサカバー84を備える。センサカバー84は、換気装置50の筐体51の底部に配置される。また、センサカバー84には、図19に示すように、筐体51の底部に向かって延びる外壁84aと内壁84bとが設けられている。センサカバー84の外壁84aと内壁84bとは、筐体51の底部から延びる壁51aと組み合わせて、ラビリンス構造を形成する。具体的には、センサカバー84の外壁84aと内壁84bとの間に筐体51の壁51aが配置されている。さらに、筐体51の壁51aと、センサカバー84の外壁84aおよび内壁84bとの間に隙間が形成されている。このため、センサカバー84の内部に蛇行した流路(ラビリンス構造)が形成される。このラビリンス構造には、室外空気A4を通過させることができる。このような構造により、図19の矢印で示すように室外空気A4はラビリンス構造を通過することができる一方で、センサカバー84の内部への水の浸入を防止することができる。
 すなわち、センサカバー84の内部に室外空気A4を取り入れつつ雨水等の侵入を防止することができるため、相対湿度センサ82により正確な相対湿度を検出することができる。
 なお、本明細書において、「第1」、「第2」などの用語は、説明のためだけに用いられるものであり、相対的な重要性または技術的特徴の順位を明示または暗示するものとして理解されるべきではない。「第1」と「第2」と限定されている特徴は、1つまたはさらに多くの当該特徴を含むことを明示または暗示するものである。
 本開示は、室内機と室外機を備える空気調和機であれば適用可能である。
   10   空気調和機
   20   室内機
   22   室内熱交換器
   24   ファン
   30   室外機
   32   室外熱交換器
   34   ファン
   36   圧縮機
   38   膨張弁
   40   四方弁
   50   換気装置
   51   筐体
   51a  壁
   52   吸収材
   54   モータ
   56   換気導管
   58   第1のヒータ(ヒータ)
   60   第2のヒータ(ヒータ)
   62   第1のファン(再生ファン)
   64   ダンパ装置
   66   第2のファン(吸湿ファン)
   70   リモートコントローラ
   82   相対湿度センサ
   84   センサカバー
   84a  外壁
   84b  内壁
   90   制御部
   A1   室内空気
   A2   室外空気
   A3   室外空気
   A4   室外空気
   C1   回転中心線
   L1   第1の閾値
   L2   第2の閾値
   L3   第3の閾値
   L4   第4の閾値
   L5   第5の閾値
   L6   第6の閾値
   L7   第7の閾値
   L8   第8の閾値
   P1   第1の流路(再生流路)
   P1a  支流路
   P1b  支流路
   P2   第2の流路(吸湿流路)
   Rin  室内
   Rout 室外

Claims (8)

  1.  室内機と室外機とを備える空気調和機であって、
     前記室外機に設けられ、室外空気の水分を吸収する吸収材と、
     前記吸収材を通過し、室外空気が室外から室外に流れる吸湿流路と、
     前記吸湿流路に室外空気の流れを発生させる吸湿ファンと、
     前記吸収材を回転駆動するモータと、
     前記吸収材を通過し、室外空気が流れる再生流路と、
     前記再生流路に室外空気を送る再生ファンと、
     前記再生流路における前記吸収材に対する上流側で室外空気を加熱するヒータと、
     前記吸湿ファンと、前記モータと、を制御する制御部と、
    を備え、
     前記制御部は、室外の相対湿度情報を取得し、前記室外の相対湿度情報に基づいて、前記モータの回転速度、前記吸湿ファンの回転速度、前記再生ファンの回転速度、および前記ヒータの入力電圧、のうちの少なくとも1つを制御する、
     空気調和機。
  2.  前記制御部は、前記室外の相対湿度が上昇した場合に前記モータの回転速度を減速し、前記室外の相対湿度が下降した場合に前記モータの回転速度を加速する、
     請求項1に記載の空気調和機。
  3.  前記制御部は、前記室外の相対湿度が上昇した場合に前記吸湿ファンの回転速度を加速し、前記室外の相対湿度が下降した場合に前記吸湿ファンの回転速度を減速する、
     請求項1または2に記載の空気調和機。
  4.  前記制御部は、前記室外の相対湿度が上昇した場合に前記再生ファンの回転速度を加速し、前記室外の相対湿度が下降した場合に前記再生ファンの回転速度を減速する、
     請求項1から3のいずれか1項に記載の空気調和機。
  5.  前記制御部は、前記室外の相対湿度が上昇した場合に、前記ヒータの入力電圧を高くし、前記室外の相対湿度が下降した場合に前記ヒータの入力電圧を低くする、
     請求項1から4のいずれか1項に記載の空気調和機。
  6.  前記吸湿流路の前記吸収材の上流側に配置された相対湿度センサをさらに備え、
     前記室外の相対湿度情報は、前記相対湿度センサにより検出される、
     請求項1から5のいずれか1項に記載の空気調和機。
  7.  前記相対湿度センサを覆い、ラビリンス構造を有するセンサカバー、をさらに備える、
     請求項6に記載の空気調和機。
  8.  前記吸収材は、高分子収着材である、
     請求項1から7のいずれか1項に記載の空気調和機。
PCT/JP2022/032615 2021-09-17 2022-08-30 空気調和機 WO2023042656A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280061373.2A CN117957408A (zh) 2021-09-17 2022-08-30 空气调节机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021151750A JP2023043971A (ja) 2021-09-17 2021-09-17 空気調和機
JP2021-151750 2021-09-17

Publications (1)

Publication Number Publication Date
WO2023042656A1 true WO2023042656A1 (ja) 2023-03-23

Family

ID=85602169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032615 WO2023042656A1 (ja) 2021-09-17 2022-08-30 空気調和機

Country Status (3)

Country Link
JP (1) JP2023043971A (ja)
CN (1) CN117957408A (ja)
WO (1) WO2023042656A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178399A (ja) * 1994-12-28 1996-07-12 Matsushita Electric Ind Co Ltd 除加湿装置
JP2002022246A (ja) * 2000-07-04 2002-01-23 Daikin Ind Ltd 加湿装置およびそれを用いた空気調和機
JP2010038382A (ja) * 2008-07-31 2010-02-18 Daikin Ind Ltd 空気調和機
JP2012107781A (ja) * 2010-11-15 2012-06-07 Mitsubishi Electric Corp 調湿装置及び調湿方法
CN214198932U (zh) * 2020-12-10 2021-09-14 广东美的制冷设备有限公司 加湿装置、空调室外机与空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178399A (ja) * 1994-12-28 1996-07-12 Matsushita Electric Ind Co Ltd 除加湿装置
JP2002022246A (ja) * 2000-07-04 2002-01-23 Daikin Ind Ltd 加湿装置およびそれを用いた空気調和機
JP2010038382A (ja) * 2008-07-31 2010-02-18 Daikin Ind Ltd 空気調和機
JP2012107781A (ja) * 2010-11-15 2012-06-07 Mitsubishi Electric Corp 調湿装置及び調湿方法
CN214198932U (zh) * 2020-12-10 2021-09-14 广东美的制冷设备有限公司 加湿装置、空调室外机与空调器

Also Published As

Publication number Publication date
CN117957408A (zh) 2024-04-30
JP2023043971A (ja) 2023-03-30

Similar Documents

Publication Publication Date Title
JP4455363B2 (ja) 除加湿装置及び換気システム
WO2017183689A1 (ja) 外気処理システム、外気処理システムの制御装置及び制御方法
JP5007098B2 (ja) 吸着体、調湿装置及び空気調和機の室内機
JP5355501B2 (ja) 空調システム
WO2023042656A1 (ja) 空気調和機
JP3099590B2 (ja) 除加湿装置
WO2022172485A1 (ja) 換気装置及び換気装置を備える空気調和機
WO2023063239A1 (ja) 空気調和機
JP2000283498A (ja) 吸着除湿式空調装置の運転方法、及び、吸着除湿式空調装置
JP2007170786A (ja) 換気システム
JP2001174074A (ja) 除湿装置
JP2002001051A (ja) 調湿機
WO2023042623A1 (ja) 空気調和機
WO2023042627A1 (ja) 空気調和機
JP3588691B2 (ja) 除・加湿装置
JP2011177657A (ja) 除湿装置
WO2023074487A1 (ja) 除湿制御方法、空気調和機、およびプログラム
WO2023074488A1 (ja) 空気調和機
WO2023042655A1 (ja) 空気調和機の換気制御方法、換気制御装置、およびプログラム
JP2024046347A (ja) 空気調和機、空気調和機の制御方法、プログラム及びコンピュータ読み取り可能な記憶媒体
JP2024046341A (ja) 空気調和機
KR100624729B1 (ko) 공기조화기
WO2023042628A1 (ja) 空気調和機
JPH1194317A (ja) 除・加湿装置
JP3099588B2 (ja) 除加湿装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869803

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280061373.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE