WO2023074488A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2023074488A1
WO2023074488A1 PCT/JP2022/038881 JP2022038881W WO2023074488A1 WO 2023074488 A1 WO2023074488 A1 WO 2023074488A1 JP 2022038881 W JP2022038881 W JP 2022038881W WO 2023074488 A1 WO2023074488 A1 WO 2023074488A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat exchanger
outdoor
outdoor air
indoor
Prior art date
Application number
PCT/JP2022/038881
Other languages
English (en)
French (fr)
Inventor
将和 後藤田
準市 馬場
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280071261.5A priority Critical patent/CN118140098A/zh
Publication of WO2023074488A1 publication Critical patent/WO2023074488A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to air conditioners.
  • an air conditioner that is composed of an indoor unit arranged inside a room to be air-conditioned and an outdoor unit arranged outdoors.
  • This air conditioner is configured to supply outdoor air from the outdoor unit to the indoor unit.
  • the present disclosure provides an air conditioner capable of suppressing a decrease in dehumidification efficiency.
  • An air conditioner includes an outdoor unit having an outdoor heat exchanger, a compressor and an expansion valve; an indoor unit having an indoor heat exchanger; a refrigerant pipe that connects the outdoor heat exchanger, the compressor, the expansion valve, and the indoor heat exchanger and through which refrigerant circulates; a first temperature sensor that acquires a first temperature of a portion of the indoor heat exchanger that is upstream in the flow direction of the refrigerant and downstream of an inflow portion of the indoor heat exchanger where the refrigerant flows into the indoor heat exchanger; , a ventilation device that supplies outdoor air toward a downstream region in the flow direction of the refrigerant in the indoor heat exchanger; a control unit that controls the compressor, the expansion valve, and the ventilator based on the first temperature in a dehumidifying operation including supplying the outdoor air; Prepare.
  • the air conditioner of one aspect of the present disclosure configured as described above can suppress a decrease in dehumidification efficiency.
  • FIG. 1 is a schematic diagram of an air conditioner according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of a ventilator.
  • FIG. 3 is a schematic diagram of the ventilator during ventilation operation.
  • FIG. 4 is a schematic diagram of the ventilator during humidification operation.
  • FIG. 5 is a schematic diagram of the ventilation system during dehumidification operation.
  • FIG. 6 is a block diagram showing a configuration for controlling an air conditioner.
  • FIG. 7A is a schematic diagram showing an example of the internal structure of the indoor unit.
  • FIG. 7B is a schematic diagram showing an example of refrigerant flow in an indoor heat exchanger.
  • FIG. 8 is a schematic diagram showing an example of arrangement of a plurality of temperature sensors in an indoor heat exchanger.
  • FIG. 8 is a schematic diagram showing an example of arrangement of a plurality of temperature sensors in an indoor heat exchanger.
  • FIG. 9 is a flow chart showing an example of the operation of the air conditioner.
  • FIG. 10 is a flow chart showing an example of adsorption operation control.
  • FIG. 11 is a timing chart of an example of air conditioner control.
  • FIG. 12 is a flow chart showing the adsorption operation control of the modification.
  • FIG. 13 is a flow chart showing the adsorption operation control of the modification.
  • FIG. 14 is a flow chart showing the adsorption operation control of the modification.
  • condensation may occur in the indoor heat exchanger of the indoor unit during cooling operation or dehumidifying operation.
  • outdoor air is supplied to a portion of the indoor heat exchanger where condensation has occurred, the heat of the outdoor air evaporates the condensed water.
  • humid outdoor air is supplied indoors, and there is a problem that dehumidification cannot be performed efficiently.
  • the present inventors found a configuration that suppresses the occurrence of dew condensation in the region where the outdoor air is supplied in the indoor heat exchanger by controlling the expansion valve and the compressor of the outdoor unit, leading to the following disclosure. rice field.
  • An air conditioner includes an outdoor unit having an outdoor heat exchanger, a compressor, and an expansion valve, an indoor unit having an indoor heat exchanger, the outdoor heat exchanger, the compressor, and the expansion valve. and a refrigerant pipe that connects the indoor heat exchanger and through which refrigerant circulates; and an inflow portion that is upstream in the flow direction of the refrigerant in the indoor heat exchanger and through which the refrigerant flows into the indoor heat exchanger.
  • a first temperature sensor that acquires a first temperature of a portion further downstream; a ventilator that supplies outdoor air toward a region downstream in the flow direction of the refrigerant in the indoor heat exchanger; and the outdoor air and a control unit that controls the compressor, the expansion valve, and the ventilator based on the first temperature in a dehumidifying operation including supplying the.
  • control unit obtains an indoor temperature and a set temperature, and when it determines that the indoor temperature is lower than the set temperature, switches to the dehumidifying operation, reduces the opening of the expansion valve, and reduces the compression.
  • the frequency of the machine may be lowered.
  • the controller may start supplying the outdoor air from the ventilator when the first temperature reaches or exceeds a first threshold.
  • control unit may stop supplying the outdoor air from the ventilator when the first temperature becomes equal to or lower than a second threshold.
  • the air conditioner further includes a second temperature sensor that obtains a second temperature of the inflow portion, and the controller controls the compressor and the expansion valve based on the second temperature.
  • control unit may calculate a temperature difference between the first temperature and the second temperature, and control the compressor, the expansion valve, and the ventilator based on the temperature difference.
  • control unit may stop supplying the outdoor air from the ventilation device when the temperature difference becomes equal to or less than a third threshold.
  • control unit may increase the degree of opening of the expansion valve and increase the frequency of the compressor when the second temperature becomes equal to or lower than a fourth threshold.
  • the air conditioner further includes a third temperature sensor that acquires a third temperature of a region on the downstream side in the flow direction of the refrigerant in the indoor heat exchanger, and the control unit controls, in cooling operation, the The compressor and the expansion valve may be controlled based on the third temperature.
  • control unit acquires an indoor temperature and a set temperature in the dehumidification operation, and when determining that the indoor temperature is higher than the set temperature, stops supplying the outdoor air from the ventilation device,
  • the degree of opening of the expansion valve may be increased and the frequency of the compressor may be increased.
  • the ventilator includes an absorbent that absorbs moisture in the outdoor air, a flow path that connects the outdoor and the indoor unit, a flow path through which the outdoor air flows, and an upstream of the absorbent in the flow path.
  • a heater arranged on the side of the controlling the heater to heat and dry the absorbent; controlling the fan to dry the outdoor air by passing it through the absorbent; controlling the damper device to dry the outdoor air; may be distributed to the indoor units.
  • FIG. 1 is a schematic diagram of an air conditioner 10 according to an embodiment of the present disclosure.
  • the air conditioner 10 has an indoor unit 20 arranged in the indoor Rin to be air-conditioned, and an outdoor unit 30 arranged in the outdoor Rout.
  • the indoor unit 20 includes an indoor heat exchanger 22 that exchanges heat with the indoor air A1, and invites the indoor air A1 into the indoor unit 20, and the indoor air A1 after heat exchange with the indoor heat exchanger 22 is introduced into the room.
  • a fan 24 that blows to Rin is provided.
  • the outdoor unit 30 includes an outdoor heat exchanger 32 that exchanges heat with the outdoor air A2, and invites the outdoor air A2 into the outdoor unit 30.
  • a fan 34 blowing to Rout is provided.
  • the outdoor unit 30 is provided with a compressor 36, an expansion valve 38, and a four-way valve 40 for executing a refrigerating cycle with the indoor heat exchanger 22 and the outdoor heat exchanger 32.
  • the indoor heat exchanger 22, the outdoor heat exchanger 32, the compressor 36, the expansion valve 38, and the four-way valve 40 are connected by refrigerant pipes 42 through which refrigerant flows.
  • the air conditioner 10 is configured such that the refrigerant flows from the compressor 36 through the four-way valve 40, the outdoor heat exchanger 32, the expansion valve 38, and the indoor heat exchanger 22 in order. Execute the freeze cycle back to 36.
  • the air conditioner 10 executes a refrigeration cycle in which refrigerant flows from the compressor 36 through the four-way valve 40, the indoor heat exchanger 22, the expansion valve 38, the outdoor heat exchanger 32 in order, and then returns to the compressor 36. .
  • the air conditioner 10 performs an air-conditioning operation that introduces the outdoor air A3 into the room Rin in addition to the air-conditioning operation using the refrigeration cycle. Therefore, the air conditioner 10 has a ventilator 50 .
  • the ventilation device 50 is provided in the outdoor unit 30.
  • FIG. 2 is a schematic diagram of the ventilation device 50.
  • FIG. 2 is a schematic diagram of the ventilation device 50.
  • the ventilator 50 includes an absorbent 52 through which outdoor air A3 and A4 pass.
  • the absorbent material 52 is a member through which air can pass, and is a member that collects moisture from the passing air or gives moisture to the passing air.
  • the absorber 52 is disc-shaped and rotates around a rotation center line C1 passing through the center thereof.
  • the absorbing material 52 is rotationally driven by a motor 54 .
  • the absorbent material 52 is preferably a polymer sorbent material that sorbs moisture in the air.
  • the polymeric sorbent material is composed of, for example, a crosslinked sodium polyacrylate. Compared to adsorbents such as silica gel and zeolite, polymer sorbents absorb a large amount of water per unit volume, can desorb water at low heating temperatures, and hold water for a long time. be able to.
  • a first flow path P1 and a second flow path P2 are provided inside the ventilator 50, through which the outdoor air A3 and A4 pass through the absorbent material 52, respectively.
  • the first flow path P1 and the second flow path P2 pass through the absorbent material 52 at different positions.
  • the first flow path P1 is a flow path through which the outdoor air A3 flows toward the inside of the indoor unit 20.
  • the outdoor air A3 flowing through the first flow path P1 is supplied into the indoor unit 20 via the ventilation conduit 56. As shown in FIG.
  • the first flow path P1 includes a plurality of branch flow paths P1a and P1b on the upstream side with respect to the absorbent 52. It should be noted that “upstream” and “downstream” are used herein with respect to air flow.
  • the plurality of branch channels P1a and P1b merge with the absorbent 52 on the upstream side.
  • a first heater 58 and a second heater 60 for heating the outdoor air A3 are provided in the plurality of branch passages P1a and P1b, respectively.
  • the first heater 58 and the second heater 60 may be heaters with the same heating capacity, or may be heaters with different heating capacities.
  • the first heater 58 and the second heater 60 are PTC (Positive Temperature Coefficient) heaters that increase in electric resistance when current flows and the temperature rises, that is, can suppress excessive heating temperature rises. preferable.
  • PTC Physical Temperature Coefficient
  • the heating temperature surface temperature
  • the PTC heater eliminates the need to monitor the heating temperature because the heater itself regulates the heating temperature within a certain temperature range.
  • a first fan 62 that generates a flow of the outdoor air A3 toward the inside of the indoor unit 20 is provided in the first flow path P1.
  • the first fan 62 is arranged downstream with respect to the absorbent 52 .
  • the outdoor air A 3 flows from the outdoor Rout into the first flow path P 1 and passes through the absorbent 52 .
  • the first flow path P1 is provided with a damper device 64 that distributes the outdoor air A3 flowing through the first flow path P1 to the indoor Rin (that is, the indoor unit 20) or the outdoor Rout.
  • the damper device 64 is arranged downstream of the first fan 62 .
  • the outdoor air A3 distributed to the indoor unit 20 by the damper device 64 enters the indoor unit 20 via the ventilation conduit 56 and is blown out by the fan 24 to the indoor unit Rin.
  • the second flow path P2 is a flow path through which the outdoor air A4 flows. Unlike the outdoor air A3 flowing through the first flow path P1, the outdoor air A4 flowing through the second flow path P2 does not go to the indoor unit 20. The outdoor air A4 flowing through the second flow path P2 flows out to the outdoor Rout after passing through the absorbent 52 .
  • a second fan 66 that generates a flow of outdoor air A4 is provided in the second flow path P2.
  • the second fan 66 is arranged downstream with respect to the absorbent 52 .
  • the outdoor air A4 flows from the outdoor Rout into the second flow path P2, passes through the absorbent 52, and then flows out to the outdoor Rout.
  • the ventilator 50 selectively uses the absorber 52, the motor 54, the first heater 58, the second heater 60, the first fan 62, the damper device 64, and the second fan 66 for ventilation operation; Humidification operation and dehumidification operation are selectively executed.
  • Fig. 3 is a schematic diagram of the ventilation system during ventilation operation.
  • the ventilation operation is an air conditioning operation in which the outdoor air A3 is directly supplied to the indoor Rin (that is, the indoor unit 20) via the ventilation conduit 56.
  • the motor 54 is in the ON state and continues to rotate the absorbent material 52 .
  • the first heater 58 and the second heater 60 are in the OFF state and do not heat the outdoor air A3.
  • the first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1.
  • the damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 .
  • the second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
  • the outdoor air A3 flows into the first flow path P1 and passes through the absorbent 52 without being heated by the first heater 58 and the second heater 60.
  • the outdoor air A3 that has passed through the absorbent 52 is distributed to the indoor units 20 by the damper device 64 .
  • the outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 .
  • the outdoor air A3 is supplied to the room Rin as it is, and the room Rin is ventilated.
  • Fig. 4 is a schematic diagram of the ventilator during humidification operation.
  • the humidification operation is an air conditioning operation that humidifies the outdoor air A3 and supplies the humidified outdoor air A3 to the indoor Rin (that is, the indoor unit 20).
  • the motor 54 continues to rotate the absorbent 52 in the ON state during the humidification operation.
  • the first heater 58 and the second heater 60 are in the ON state and heat the outdoor air A3.
  • the first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1.
  • the damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 .
  • the second fan 66 is in the ON state, thereby causing the outdoor air A4 to flow through the second flow path P2.
  • the outdoor air A3 flows into the first flow path P1, is heated by the first heater 58 and the second heater 60, and passes through the absorbent 52. At this time, the heated outdoor air A3 can deprive the absorbent 52 of a larger amount of moisture than when it is not heated. As a result, the outdoor air A3 carries a large amount of moisture.
  • the outdoor air A3 that has passed through the absorbent 52 and carries a large amount of moisture is distributed to the indoor unit 20 by the damper device 64 .
  • the outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 .
  • the outdoor air A3 carrying a large amount of moisture is supplied to the room Rin, and the room Rin is humidified.
  • the amount of moisture taken from the absorbent 52 by the outdoor air A3 is reduced. may be performed.
  • the absorbent 52 As the heated outdoor air A3 deprives moisture, the amount of water retained by the absorbent 52 decreases, that is, the absorbent 52 dries. When the absorbent 52 dries, the outdoor air A3 flowing through the first flow path P1 cannot deprive the absorbent 52 of moisture. As a countermeasure, the absorbent 52 deprives the outdoor air A4 flowing through the second flow path P2 of water. As a result, the amount of water retained in the absorbent material 52 is kept substantially constant, and the humidification operation can be continued.
  • Fig. 5 is a schematic diagram of the ventilation system during dehumidification operation.
  • the dehumidification operation is an air conditioning operation in which the outdoor air A3 is dehumidified and the dehumidified outdoor air A3 is supplied to the indoor Rin (that is, the indoor unit 20). As shown in FIG. 5, in the dehumidifying operation, the adsorption operation and the regeneration operation are alternately performed.
  • the adsorption operation is an operation in which the moisture carried in the outdoor air A3 is adsorbed by the absorbent material 52, thereby dehumidifying the outdoor air A3.
  • the motor 54 continues to rotate the absorbent 52 in the ON state during the adsorption operation.
  • the first heater 58 and the second heater 60 are in the OFF state and do not heat the outdoor air A3.
  • the first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1.
  • the damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 .
  • the second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
  • the outdoor air A3 flows into the first flow path P1 and passes through the absorbent 52 without being heated by the first heater 58 and the second heater 60. At this time, the moisture carried in the outdoor air A3 is absorbed by the absorbent 52 . As a result, the amount of moisture carried by the outdoor air A3 is reduced, that is, the outdoor air A3 is dried.
  • the outdoor air A3 dried by passing through the absorbent 52 is distributed to the indoor unit 20 by the damper device 64 .
  • the outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 .
  • the dry outdoor air A3 is supplied to the room Rin, and the room Rin is dehumidified.
  • a regeneration operation is performed to regenerate the absorbent 52 in order to recover its adsorption capacity.
  • the motor 54 continues to rotate the absorbent 52 in the ON state.
  • the first heater 58 and the second heater 60 are in the ON state and heat the outdoor air A3.
  • the first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1.
  • the damper device 64 distributes the outdoor air A3 in the first flow path P1 not to the indoor unit 20 but to the outdoor Rout.
  • the second fan 66 is in the OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
  • the outdoor air A3 flows into the first flow path P1, is heated by the first heater 58 and the second heater 60, and passes through the absorbent 52.
  • the heated outdoor air A3 deprives the absorbent 52 of a large amount of moisture.
  • a large amount of moisture is carried in the outdoor air A3.
  • the water retention capacity of the absorbent 52 decreases, ie, the absorbent 52 dries and its adsorption capacity is regenerated.
  • the outdoor air A3 that passes through the absorbent 52 and carries a large amount of moisture is distributed to the outdoor route by the damper device 64 and is discharged to the outdoor route.
  • the outdoor air A3 carrying a large amount of moisture due to the regeneration of the absorbent 52 is not supplied to the indoor Rin.
  • the adsorption capacity of the absorbent 52 is maintained, and the dehumidification operation can be continuously performed.
  • the air-conditioning operation (cooling operation, dehumidifying operation (weak cooling operation), heating operation) by the above-described refrigeration cycle and the air-conditioning operation (ventilation operation, humidification operation, dehumidification operation) by the ventilation device 50 can be performed separately, and at the same time It is also possible to execute For example, if the dehumidification operation by the refrigeration cycle and the dehumidification operation by the ventilation device 50 are simultaneously executed, it is possible to dehumidify the room Rin while maintaining the room temperature constant.
  • the air conditioning operation performed by the air conditioner 10 is selected by the user. For example, when a user selects the remote controller 70 shown in FIG. 1, the air conditioner 10 performs the air conditioning operation corresponding to the operation.
  • FIG. 6 is a block diagram showing the configuration for controlling the air conditioner.
  • the components of the air conditioner 10 are controlled by a control unit 90.
  • the control unit 90 includes, for example, a memory storing a program and a processing circuit corresponding to a processor such as a CPU (Central Processing Unit).
  • the functions of the control unit 90 may be configured only by hardware, or may be realized by combining hardware and software.
  • the control unit 90 reads data and programs stored in the memory and performs various arithmetic processing, thereby realizing a predetermined function.
  • the control unit 90 includes the compressor 36, the expansion valve 38, the motor 54, the first heater 58, the second heater 60, the first fan 62, the damper device 64, the second fan 66, and the to control.
  • FIG. 7A is a schematic diagram showing an example of the internal structure of the indoor unit 20.
  • FIG. 7A is a schematic diagram showing an example of the internal structure of the indoor unit 20.
  • the indoor unit 20 has an indoor heat exchanger 22, a fan 24 and nozzles 57.
  • the nozzle 57 is provided inside the indoor unit 20 so as to blow out the outdoor air A3 supplied from the ventilation device 50 into the indoor unit 20 through the ventilation pipe 56 .
  • the nozzle 57 is arranged in the indoor unit 20 so that the blown outdoor air A3 avoids the wet path PA1 in the indoor heat exchanger 22 and passes through the area DP1 in the dry path PA2 toward the fan 24.
  • Fan 24 is, for example, a cross-flow fan.
  • the “wet path PA1” and the “dry path PA2” control the frequency of the compressor 36 and the opening degree of the expansion valve 38 during the weak cooling operation (dehumidification operation) of the air conditioner 10.
  • the resulting wet and dry areas are shown.
  • the wet path PA1 reduces the flow of refrigerant in the indoor heat exchanger 22 by lowering the frequency of the compressor 36 and reducing the opening of the expansion valve 38 in the weak cooling operation (dehumidifying operation). It is the wet region that forms upstream in the direction.
  • the dry path PA2 is formed downstream of the wet path PA1 in the indoor heat exchanger 22 by lowering the frequency of the compressor 36 and reducing the opening of the expansion valve 38 in the weak cooling operation (dehumidification operation). It is a dry area where
  • Region DP1 is a region in the indoor heat exchanger 22 that is drier than other regions.
  • the region DP1 is a region on the downstream side of the indoor heat exchanger 22 in the refrigerant flow direction, and is a region to which the outdoor air A3 from the ventilator 50 is supplied.
  • the region DP1 is formed downstream of the dry path PA2. Such "region DP1" can be identified experimentally or by simulation.
  • the indoor heat exchanger 22 partially surrounds the fan 24 ( In the case of the present embodiment, it is provided inside the indoor unit 20 so as to surround the fan 24 except below.
  • the indoor heat exchanger 22 is also composed of a first portion 22a located behind the fan 24 and a second portion 22b located in front of the fan 24. As shown in FIG. Refrigerant supplied from the compressor 36 flows through the indoor heat exchanger 22 as described above.
  • FIG. 7B is a schematic diagram showing an example of refrigerant flow in the indoor heat exchanger 22.
  • FIG. 7B is a schematic diagram showing an example of refrigerant flow in the indoor heat exchanger 22.
  • the refrigerant is (A) ⁇ (B) ⁇ (C1 , C2, C3) ⁇ (D, E1, E2, F) ⁇ (G1, G2, G3, G4).
  • the refrigerant flows from the refrigerant inlet 22c of the indoor heat exchanger 22 into the first refrigerant flow path "(A) ⁇ (B)".
  • the first refrigerant flow path "(A) ⁇ (B)" is provided on the outer surface side of the central portion of the first portion 22a of the indoor heat exchanger 22, and is a flow path through which the refrigerant flows downward.
  • the outer surface of the first portion 22a is the surface of the first portion 22a on the side where the housing of the indoor unit 20 that houses the indoor heat exchanger 22 is located.
  • the refrigerant flows through the second refrigerant flow path "(B) ⁇ (C1, C2, C3)".
  • the second refrigerant flow path “(B) ⁇ (C1, C2, C3)” is provided on the outer surface side of the central portion of the second portion 22b of the indoor heat exchanger 22, and the refrigerant flows upward. flow path.
  • the outer surface of the second portion 22b is the surface of the second portion 22b on the side where the housing of the indoor unit 20 that houses the indoor heat exchanger 22 is located.
  • the temperature of the refrigerant that has flowed in from the refrigerant inlet 22c is lower than that of other portions. Therefore, the upstream side of the refrigerant flow path of the indoor heat exchanger 22 functions as a cooling section and becomes wet.
  • the cooling portion is a portion where the refrigerant flowing inside the indoor heat exchanger 22 is in a state of low-pressure liquid refrigerant by narrowing the opening degree of the expansion valve 38 .
  • the first refrigerant flow path "(A) ⁇ (B)" and the second refrigerant flow path "(B) ⁇ (C1, C2, C3)" function as cooling units, and wet paths PA1.
  • the refrigerant After flowing through the second refrigerant channel "(B) ⁇ (C1, C2, C3)", the refrigerant is further divided into three refrigerant channels and flows.
  • the three refrigerant flow paths are a third refrigerant flow path "(C1) ⁇ (D)", a fourth refrigerant flow path "(C2) ⁇ (E1, E2)", and a fifth refrigerant flow path "(C3 ) ⁇ (F)”.
  • the third coolant channel "(C1) ⁇ (D)" is provided in the central portion of the second portion 22b from the outer surface toward the inner surface of the second portion 22b, and the coolant flows through the second portion 22b. It is a channel that flows from the outer surface toward the inner surface of the portion 22b.
  • the inner surface of the second portion 22b is the surface of the second portion 22b on which the fan 24 is located. After flowing through the third refrigerant flow path "(C1) ⁇ (D)", the refrigerant flows through the sixth refrigerant flow path "(D) ⁇ (G1)".
  • the fourth coolant flow path "(C2) ⁇ (E1, E2)" is provided above the central portion of the second portion 22b from the outer surface toward the inner surface of the second portion 22b, It is a channel through which the coolant flows from the outer surface toward the inner surface of the second portion 22b.
  • the refrigerant After flowing through the fourth refrigerant flow path "(C2) ⁇ (E1, E2)", the refrigerant is further divided into two refrigerant flow paths.
  • the two refrigerant flow paths include a seventh refrigerant flow path "(E1) ⁇ (G2)" and an eighth refrigerant flow path "(E2) ⁇ (G3)".
  • the fifth coolant channel "(C3) ⁇ (F)" is provided above the fourth coolant channel from the outer surface toward the inner surface of the second portion 22b, and the coolant flows from the second is a flow path flowing from the outer surface toward the inner surface of the portion 22b. After flowing through the fifth refrigerant flow path "(C3) ⁇ (F)", the refrigerant flows through the ninth refrigerant flow path "(F) ⁇ (G4)".
  • the sixth coolant flow path "(D) ⁇ (G1)" is provided below the central portion of the second portion 22b from the outer surface toward the inner surface of the second portion 22b. is a flow path from the outer surface to the inner surface of the second portion 22b.
  • the seventh coolant flow path "(E1) ⁇ (G2)" extends from the outer surface to the inner surface of the first portion 22a above the central portion of the first portion 22a. It is a flow path provided from the upper side to the lower side, through which the coolant flows from the outer surface of the first portion 22a to the inner surface side and downward.
  • the eighth coolant flow path "(E2) ⁇ (G3)" extends from the outer surface to the inner surface of the first portion 22a in the central portion of the first portion 22a, and extends from the central portion of the first portion 22a. It is a flow path provided downward, through which the coolant flows from the outer surface to the inner surface of the first portion 22a.
  • the ninth refrigerant flow path "(F) ⁇ (G4)" is located below the central portion of the second portion 22b and from the sixth sixth refrigerant flow path "(D) ⁇ (G1)". In the upper side of the second portion 22b, it is provided from the outer surface to the inner surface side, and is a flow path through which the coolant flows from the outer surface to the inner surface of the second portion 22b.
  • the refrigerant flows through the sixth refrigerant flow path "(D) ⁇ (G1)", the seventh refrigerant flow path "(E1) ⁇ (G2)", and the eighth refrigerant flow path "(E2) ⁇ (G3)". and the ninth refrigerant passage "(F) ⁇ (G4)", merge, and are discharged from the refrigerant outlet 22d.
  • the third to ninth refrigerant flow paths function as superheaters and are in a dry state.
  • the superheated portion is a portion where the refrigerant reaches the saturation temperature but does not undergo a phase change and has a higher temperature than the cooling portion.
  • the third to ninth refrigerant flow paths are dry paths PA2.
  • the first refrigerant flow path and the second refrigerant flow path form the wet path PA1
  • the third to ninth refrigerant flow paths form the dry path PA2.
  • the temperature of the refrigerant rises while flowing from the upstream to the downstream of the indoor heat exchanger 22, in the region DP1 located downstream of the dry path PA2, condensation is less likely to occur (adhesion) than other portions. less condensed water).
  • the sixth coolant channel "(D) ⁇ (G1)" and the 9 coolant channel "(F) ⁇ (G4)" are the region DP1.
  • the first to ninth coolant flow paths are formed by, for example, pipes.
  • a plurality of temperature sensors 26 to 28 are arranged in the indoor heat exchanger 22 .
  • the plurality of temperature sensors 26-28 includes a first temperature sensor 26, a second temperature sensor 27 and a third temperature sensor 28.
  • FIG. 8 is a schematic diagram showing an example of the arrangement of multiple temperature sensors in an indoor heat exchanger.
  • the indoor heat exchanger 22 is provided with a refrigerant inlet 22c through which the refrigerant flows and a refrigerant outlet 22d through which the refrigerant flows out.
  • the refrigerant inlet 22 c is an opening that is connected to the refrigerant pipe 42 in the indoor heat exchanger 22 and allows the refrigerant to flow into the indoor heat exchanger 22 from the refrigerant pipe 42 .
  • the refrigerant outlet 22 d is an opening connected to the refrigerant pipe 42 in the indoor heat exchanger 22 and through which the refrigerant flows out from the indoor heat exchanger 22 to the refrigerant pipe 42 .
  • the refrigerant inlet 22c is provided in the flow path connected to the first refrigerant flow path of the indoor heat exchanger 22.
  • the coolant outlet 22d is provided in a channel connected to the fifth to eighth coolant channels.
  • the refrigerant inlet 22c side is upstream in the refrigerant flow direction, and the refrigerant outlet 22d side is downstream in the refrigerant flow direction.
  • a region DP1 to which the outdoor air A3 is supplied in the indoor heat exchanger 22 is located downstream in the refrigerant flow direction in the indoor heat exchanger 22.
  • the region DP1 is positioned downstream in the coolant flow direction between the coolant inlet 22c and the coolant outlet 22d.
  • the region DP1 is located below the second portion 22b of the indoor heat exchanger 22 .
  • the first temperature sensor 26 acquires a first temperature T1 of a portion upstream of the indoor heat exchanger 22 in the flow direction of the refrigerant and downstream of the inflow portion where the refrigerant flows into the indoor heat exchanger 22. do. Specifically, the first temperature sensor 26 obtains the first temperature T1 of the indoor heat exchanger 22 at the outlet of the wet path PA1 downstream from the inlet of the wet path PA1.
  • the outlet of the wet path PA1 is the outlet of the portion on the upstream side of the refrigerant channel in the indoor heat exchanger 22, through which the refrigerant having a temperature relatively lower than that on the downstream side of the refrigerant channel flows. In other words, the exit of wet path PA1 is the boundary between the cooling section and the heating section.
  • the first temperature sensor 26 is arranged in the central portion of the second portion 22b of the indoor heat exchanger 22 on the outer surface side of the second portion 22b. Specifically, the first temperature sensor 26 is arranged at the outlet of the second refrigerant flow path "(B) ⁇ (C1, C2, C3)".
  • the second temperature sensor 27 acquires the second temperature T2 of the indoor heat exchanger 22 at the inflow portion where the refrigerant flows into the indoor heat exchanger 22 . Specifically, the second temperature sensor 27 acquires the second temperature T2 of the indoor heat exchanger 22 at the refrigerant inlet 22c.
  • the second temperature sensor 27 is arranged near or at the coolant inlet 22c. In this embodiment, the second temperature sensor 27 is arranged on the outer surface side of the first portion 22a in the central portion of the first portion 22a. Specifically, the second temperature sensor 27 is arranged at the inlet of the first coolant channel "(A) ⁇ (B)".
  • the third temperature sensor 28 acquires the third temperature T3 of the region DP1 on the downstream side in the refrigerant flow direction of the indoor heat exchanger 22 .
  • the third temperature sensor 28 acquires a third temperature T3 of the indoor heat exchanger 22 downstream of the first temperature sensor 26 in the refrigerant flow direction.
  • the third temperature T3 may be the temperature of the indoor heat exchanger 22 at the refrigerant outlet 22d.
  • the third temperature sensor 28 is arranged below the second portion 22b. Specifically, the third temperature sensor 28 is arranged at the inlet of the sixth coolant channel "(D) ⁇ (G1)".
  • FIG. 9 is a flowchart showing an example of the operation of the air conditioner.
  • FIG. 10 is a flowchart showing an example of adsorption operation control.
  • FIG. 11 is a timing chart of an example of air conditioner control.
  • FIGS. 9 and 10 The processing shown in FIGS. 9 and 10 is performed by controlling the components of the air conditioner 10 by the control unit 90. Note that the processes shown in FIGS. 9 and 10 are examples, and the present embodiment is not limited to the processes shown in FIGS.
  • the processing shown in FIG. 9 is started, for example, when the cooling operation is turned ON by the user's selection operation on the remote controller 70 shown in FIG.
  • step S10 the control unit 90 determines whether or not the start condition is satisfied.
  • the process proceeds to step S20.
  • the process repeats step S10.
  • the start condition is a condition for starting cooling operation, and may include, for example, at least one of operation mode, humidity, humidity control, operation frequency, inverter current, temperature, or presence or absence of abnormality.
  • control unit 90 may perform control for the start condition to be satisfied.
  • the control unit 90 controls the cooling operation. Specifically, the control unit 90 controls the compressor 36, the expansion valve 38, and the four-way valve 40, and the refrigerant flows from the compressor 36 to the four-way valve 40, the outdoor heat exchanger 32, the expansion valve 38, and the indoor heat exchanger 22. , and return to the compressor 36 in a refrigerating cycle.
  • control unit 90 controls the compressor 36 and the expansion valve 38 based on the third temperature T3 acquired by the third temperature sensor 28. Specifically, the controller 90 controls the frequency of the compressor 36 and the degree of opening of the expansion valve 38 based on the third temperature T3.
  • the controller 90 increases the opening of the expansion valve 38 and increases the frequency of the compressor 36.
  • the controller 90 controls the opening of the expansion valve 38 to about 40% or more and about 50% or less and controls the frequency of the compressor 36 to about 80 Hz at the start of the cooling operation.
  • the controller 90 reduces the opening degree of the expansion valve 38 and lowers the frequency of the compressor 36.
  • the controller 90 reduces the degree of opening of the expansion valve 38 within a range of about 50% to about 8% according to the third temperature T3.
  • Controller 90 reduces the frequency of compressor 36 to a range of approximately 80 Hz to approximately 30 Hz.
  • the controller 90 acquires the indoor temperature Tr and the set temperature Ts.
  • the controller 90 may acquire the indoor temperature Tr from an indoor temperature sensor provided in the indoor unit 20 .
  • the control unit 90 may acquire the set temperature Ts from the storage unit. in this case.
  • the storage unit may store information on the set temperature Ts input to the remote controller 70 by the user.
  • the control unit 90 controls the frequency of the compressor 36 and the degree of opening of the expansion valve 38 based on the third temperature T3 until the room temperature Tr becomes lower than the set temperature Ts.
  • the controller 90 controls the frequency of the compressor 36 and the degree of opening of the expansion valve 38 based on the third temperature T3 until the room temperature Tr becomes one degree lower than the set temperature Ts.
  • step S30 the controller 90 determines whether the room temperature Tr is lower than the set temperature Ts.
  • the process proceeds to step S40.
  • the control unit 90 determines that the indoor temperature Tr has not become lower than the set temperature Ts, the process returns to step S30.
  • step S40 the control unit 90 performs dehumidification operation control including supplying the outdoor air A3 to the indoor unit 20.
  • the dehumidifying operation control repeats the regeneration operation control in step S50 and the adsorption operation control in step S60 (see FIG. 5).
  • the controller 90 controls the opening degree of the expansion valve 38 in step S61. Specifically, as shown in FIG. 11, the controller 90 reduces the degree of opening of the expansion valve 38 compared to that during cooling operation. For example, the controller 90 controls the degree of opening of the expansion valve 38 to 0% or more and less than 7%.
  • the control unit 90 controls the frequency of the compressor 36. Specifically, as shown in FIG. 11, the control unit 90 lowers the frequency of the compressor 36 compared to that during the cooling operation. For example, the control unit 90 controls the frequency of the compressor 36 to 0 Hz or more and 20 Hz or less.
  • the cooling section is formed on the upstream side and the heating section is formed on the downstream side.
  • the cooling section is formed on the outer surface side of the central portion of the first portion 22a of the indoor heat exchanger 22 and the outer surface side of the central portion of the second portion 22b.
  • the cooling portions are formed in the first coolant channel "(A) ⁇ (B)" and the second coolant channel "(B) ⁇ (C1, C2, C3)".
  • the superheating section is formed from the upper portion to the lower portion of the first portion 22a of the indoor heat exchanger 22 and from the upper portion to the lower portion of the second portion 22b, except for the outer surface side of the central portion of the first portion 22a.
  • the superheating portion is formed from the upper portion to the lower portion of the second portion 22b of the indoor heat exchanger 22 except for the outer surface side of the central portion of the second portion 22b.
  • the superheated portions are formed in the third to ninth refrigerant flow paths.
  • the first temperature sensor 26 is arranged near the boundary between the cooling section and the heating section.
  • the second temperature sensor 27 is arranged on the upstream side of the cooling section in the flow direction of the coolant.
  • the third temperature sensor 28 is arranged downstream of the superheater in the flow direction of the refrigerant.
  • the second temperature T2 indicates the temperature of the cooling section, which has decreased from 17°C to about 5°C.
  • the first temperature T1 indicates the temperature near the boundary between the superheating section and the cooling section, and rises from 17°C to 22°C. That is, in the indoor heat exchanger 22, the inlet of the first refrigerant flow path "(A) ⁇ (B)", which is the inlet of the wet path PA1, is cooled from 17° C. to 5° C. and is the outlet of the wet path PA1.
  • the outlet of the second refrigerant flow path "(B) ⁇ (C1, C2, C3)" is warmed from 17°C to 22°C.
  • the control unit 90 determines whether or not the first temperature T1 is equal to or higher than the first threshold value L1. When the control unit 90 determines that the first temperature T1 is equal to or higher than the first threshold value L1, the process proceeds to step S64. When the control unit 90 determines that the first temperature T1 is lower than the first threshold value L1, the process repeats steps S61 and S62.
  • the first threshold L1 is, for example, 22[°C].
  • the control unit 90 determines that the first temperature T1 is equal to or higher than the first threshold value L1. Then, the process proceeds to step S64.
  • step S64 the control unit 90 controls the ventilation device 50 to supply the outdoor air A3 to the indoor heat exchanger 22. Specifically, the control unit 90 controls the first fan 62, the motor 54, and the damper device 64 to supply dry outdoor air A3 to the indoor heat exchanger 22 of the indoor unit 20 from the outdoor Rout.
  • the controller 90 turns on the first heater 58 and the second heater 60 to heat and dry the absorbent 52 .
  • the controller 90 rotates the first fan 62 to allow the outdoor air A ⁇ b>3 to pass through the absorbent 52 .
  • the moisture in the outdoor air A3 is absorbed by the absorbent 52, and the outdoor air A3 is dried.
  • the outdoor air A3 is warmed by the absorbent material 52 heated by the first heater 58 and the second heater 60 .
  • the control unit 90 opens the damper device 64 to distribute the dry outdoor air A3 to the indoor units 20 .
  • the outdoor air A3 is supplied to the indoor heat exchanger 22 of the indoor unit 20 through the ventilation conduit 56 .
  • the outdoor air A3 is supplied to the region DP1 located downstream of the superheating section of the indoor heat exchanger 22, that is, the lower portion of the second portion 22b.
  • the overheating section is a section that is hotter than the cooling section and is drier than the cooling section. For this reason, dew condensation water is less likely to occur in the heating portion. As a result, when the outdoor air A3 is blown out to the overheating section, the outdoor air A3 is blown out from the room Rin without becoming wet.
  • step S65 the control unit 90 controls the opening degree of the expansion valve 38 based on the first temperature T1 acquired by the first temperature sensor 26. For example, the control unit 90 increases the degree of opening of the expansion valve 38 when the first temperature T1 decreases, and decreases the degree of opening of the expansion valve 38 when the first temperature T1 increases.
  • the controller 90 adjusts the opening degree of the expansion valve 38 to adjust the first temperature T1 to a desired temperature. For example, the controller 90 adjusts the first temperature T1 to about 22° C. by adjusting the degree of opening of the expansion valve 38 . In this way, it is possible to prevent the temperature of the overheating section from decreasing.
  • the controller 90 controls the frequency of the compressor 36 based on the indoor temperature Tr. For example, the control unit 90 increases the frequency of the compressor 36 when the indoor temperature Tr increases, and decreases the frequency of the compressor 36 when the indoor temperature Tr decreases. For example, the controller 90 adjusts the frequency of the compressor 36 to adjust the indoor temperature Tr to be equal to or lower than the set temperature Ts. In this manner, an increase in the room temperature Tr is suppressed.
  • step S67 the control unit 90 determines whether or not the first temperature T1 is equal to or lower than the second threshold value L2.
  • the process proceeds to step S68.
  • the control unit 90 determines that the first temperature T1 is higher than the second threshold value L2, the process repeats steps S64 to S66.
  • the second threshold L2 is 18[°C].
  • the control unit 90 controls the ventilation device 50 to stop the supply of the outdoor air A3. Specifically, the control unit 90 closes the damper device 64 to stop supplying the dry outdoor air A3 to the indoor heat exchanger 22 of the indoor unit 20 .
  • the control unit 90 controls the ventilator 50 to stop the supply of the outdoor air A3.
  • control unit 90 switches from dehumidifying operation control to cooling operation control after stopping the supply of outdoor air A3.
  • the controller 90 may control the compressor 36, the expansion valve 38 and the ventilator 50 based on the first temperature T1 and the second temperature T2.
  • the control unit 90 may calculate a temperature difference Td1 between the first temperature T1 and the second temperature T2, and control the compressor 36, the expansion valve 38, and the ventilator 50 based on the temperature difference Td1. . With such a configuration, it is possible to further suppress a decrease in dehumidification efficiency.
  • control unit 90 determines to stop supplying the outdoor air A3 based on the first temperature T1. is not limited to
  • FIGS. 12 to 14 are flowcharts showing the adsorption operation control of the modified example.
  • the processes of FIGS. 12 and 13 are the same as those of FIG. 10 except that steps S67A and S67B are different from step S67 of FIG.
  • the process of FIG. 14 is the same as the process of FIG. 10 except that steps S67C and S68A are different from steps S67 and S68 of FIG.
  • the control unit 90 controls the ventilation device 50 to supply of outdoor air A3 may be stopped.
  • the third threshold L3 is 5[°C].
  • the control unit 90 acquires the indoor temperature Tr and the set temperature Ts, and when it determines that the indoor temperature Tr is higher than the set temperature Ts, the outdoor air from the ventilation device 50 The supply of air A3 may be stopped. Further, the control unit 90 may increase the degree of opening of the expansion valve 38 and increase the frequency of the compressor 36 to perform cooling operation control, for example. With such a configuration, comfort can be improved.
  • the control unit 90 controls the opening degree of the expansion valve 38 and the frequency of the compressor 36 when the second temperature T2 becomes equal to or lower than the fourth threshold value L4.
  • the controller 90 may increase the opening degree of the expansion valve 38 and increase the frequency of the compressor 36 when the second temperature T2 becomes equal to or lower than the fourth threshold value L4.
  • the fourth threshold L4 is 0[°C]. With such a configuration, it is possible to suppress freezing of the refrigerant due to a temperature lower than the dew point temperature. Note that the fourth threshold L4 may be greater than the dew point temperature.
  • the air conditioner includes an outdoor heat exchanger, an outdoor unit having a compressor and an expansion valve, an indoor unit having an indoor heat exchanger, the outdoor heat exchanger, the a refrigerant pipe that connects the compressor, the expansion valve, and the indoor heat exchanger and through which refrigerant circulates; a first temperature sensor for obtaining a first temperature of a portion downstream from an inflow portion into which a refrigerant flows; and a controller that controls the compressor, the expansion valve, and the ventilator based on the first temperature.
  • the present disclosure is applicable to air conditioners equipped with indoor units and outdoor units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本開示の一態様の空気調和機は、室外熱交換器、圧縮機及び膨張弁を有する室外機と、室内熱交換器を有する室内機と、前記室外熱交換器、前記圧縮機、前記膨張弁及び前記室内熱交換器を接続し、冷媒が循環する冷媒配管と、前記室内熱交換器において前記冷媒の流れ方向の上流側であって、前記室内熱交換器内に前記冷媒が流入する流入部分より下流の部分の第1の温度を取得する第1の温度センサと、前記室内熱交換器において前記冷媒の流れ方向の下流側の領域に向かって室外空気を供給する換気装置と、前記室外空気を供給することを含む除湿運転において、前記第1の温度に基づいて、前記圧縮機、前記膨張弁及び前記換気装置を制御する制御部と、を備える。

Description

空気調和機
 本開示は、空気調和機に関する。
 従来、例えば、特許文献1に記載するように、空気調和対象の室内に配置される室内機と、室外に配置される室外機とから構成される空気調和機が知られている。この空気調和機は、室外機から室内機に室外空気を供給できるように構成されている。
特開2001-91000号公報
 除湿の効率低下を抑制することが可能な空気調和機が求められている。
 そこで、本開示は、除湿の効率低下を抑制することが可能な空気調和機を提供する。
 本開示の一態様の空気調和機は、
 室外熱交換器、圧縮機及び膨張弁を有する室外機と、
 室内熱交換器を有する室内機と、
 前記室外熱交換器、前記圧縮機、前記膨張弁及び前記室内熱交換器を接続し、冷媒が循環する冷媒配管と、
 前記室内熱交換器において前記冷媒の流れ方向の上流側であって、前記室内熱交換器内に前記冷媒が流入する流入部分より下流の部分の第1の温度を取得する第1の温度センサと、
 前記室内熱交換器において前記冷媒の流れ方向の下流側の領域に向かって室外空気を供給する換気装置と、
 前記室外空気を供給することを含む除湿運転において、前記第1の温度に基づいて、前記圧縮機、前記膨張弁及び前記換気装置を制御する制御部と、
を備える。
 上記のように構成された本開示の一態様の空気調和機は、除湿の効率低下を抑制することができる。
図1は本開示の一実施の形態に係る空気調和機の概略図である。 図2は換気装置の概略図である。 図3は換気運転中の換気装置の概略図である。 図4は加湿運転中の換気装置の概略図である。 図5は除湿運転中の換気装置の概略図である。 図6は空気調和機を制御する構成を示すブロック図である。 図7Aは室内機の内部構造の一例を示す概略図である。 図7Bは室内熱交換器の冷媒の流れの一例を示す概略図である。 図8は室内熱交換器における複数の温度センサの配置の一例を示す模式図である。 図9は空気調和機の動作の一例を示すフローチャートである。 図10は吸着運転制御の一例を示すフローチャートである。 図11は空気調和機の制御の一例のタイミングチャートである。 図12は変形例の吸着運転制御を示すフローチャートである。 図13は変形例の吸着運転制御を示すフローチャートである。 図14は変形例の吸着運転制御を示すフローチャートである。
 (本開示に至った経緯)
 近年、冷房運転時又は除湿運転時に乾燥した室外空気を室内へ供給する空気調和機が知られている。このような空気調和機は、室外空気を室内機の室内熱交換器へ供給することによって、室内機から室内へ室外空気を供給している。これにより、冷房運転による冷え過ぎを抑制したり、室内湿度を低下させたりしている。
 しかしながら、冷房運転又は除湿運転時において、室内機の室内熱交換器に結露が生じる場合がある。室内熱交換器において結露が生じた部分に室外空気を供給すると、室外空気の熱により結露水が蒸発する。これにより、湿った室外空気が室内へ供給されてしまい、除湿を効率良く行うことができないという問題がある。
 そこで、本発明者らは、室外機の膨張弁及び圧縮機を制御することによって室内熱交換器において室外空気が供給される領域での結露の発生を抑制する構成を見出し、以下の開示に至った。
 本開示の一態様の空気調和機は、室外熱交換器、圧縮機及び膨張弁を有する室外機と、室内熱交換器を有する室内機と、前記室外熱交換器、前記圧縮機、前記膨張弁及び前記室内熱交換器を接続し、冷媒が循環する冷媒配管と、前記室内熱交換器において前記冷媒の流れ方向の上流側であって、前記室内熱交換器内に前記冷媒が流入する流入部分より下流の部分の第1の温度を取得する第1の温度センサと、前記室内熱交換器において前記冷媒の流れ方向の下流側の領域に向かって室外空気を供給する換気装置と、前記室外空気を供給することを含む除湿運転において、前記第1の温度に基づいて、前記圧縮機、前記膨張弁及び前記換気装置を制御する制御部と、を備える。
 本開示の一態様の空気調和機によれば、除湿の効率低下を抑制することができる。
 例えば、前記制御部は、室内温度と設定温度とを取得し、前記室内温度が前記設定温度より低いと判定したとき、前記除湿運転に切り替え、前記膨張弁の開度を小さくし、かつ前記圧縮機の周波数を低くしてもよい。
 例えば、前記制御部は、前記第1の温度が第1の閾値以上となったとき、前記換気装置からの前記室外空気の供給を開始してもよい。
 例えば、前記制御部は、前記第1の温度が第2の閾値以下となったとき、前記換気装置からの前記室外空気の供給を停止してもよい。
 例えば、空気調和機は、前記流入部分の第2の温度を取得する第2の温度センサを更に備え、前記制御部は、前記第2の温度に基づいて前記圧縮機及び前記膨張弁を制御してもよい。
 例えば、前記制御部は、前記第1の温度と前記第2の温度との温度差を算出し、前記温度差に基づいて前記圧縮機、前記膨張弁及び前記換気装置を制御してもよい。
 例えば、前記制御部は、前記温度差が第3の閾値以下となったとき、前記換気装置からの前記室外空気の供給を停止してもよい。
 例えば、前記制御部は、前記第2の温度が第4の閾値以下となったとき、前記膨張弁の開度を大きくし、かつ前記圧縮機の周波数を高くしてもよい。
 例えば、空気調和機は、前記室内熱交換器において前記冷媒の流れ方向の下流側の領域の第3の温度を取得する第3の温度センサを更に備え、前記制御部は、冷房運転において、前記第3の温度に基づいて前記圧縮機及び前記膨張弁を制御してもよい。
 例えば、前記制御部は、前記除湿運転において、室内温度と設定温度とを取得し、前記室内温度が前記設定温度より高いと判定したとき、前記換気装置からの前記室外空気の供給を停止し、前記膨張弁の開度を大きくし、かつ前記圧縮機の周波数を高くしてもよい。
 例えば、前記換気装置は、前記室外空気の水分を吸収する吸収材と、前記室外と前記室内機とを流路によって繋ぎ、前記室外空気が流れる流路と、前記流路において前記吸収材の上流側に配置されるヒータと、前記流路に前記室外空気を送るファンと、前記流路を流れる前記室外空気を、前記室外と前記室内機とに振り分けるダンパ装置と、を含み、前記制御部は、前記ヒータを制御し、前記吸収材を加熱して乾燥させ、前記ファンを制御し、前記室外空気を前記吸収材に通過させることによって乾燥させ、前記ダンパ装置を制御し、乾燥した前記室外空気を前記室内機に振り分けてもよい。
 (実施の形態)
 以下、本開示の一実施の形態について図面を参照しながら説明する。
 図1は、本開示の一実施の形態に係る空気調和機10の概略図である。
 図1に示すように、本実施の形態に係る空気調和機10は、空調対象の室内Rinに配置される室内機20と、室外Routに配置される室外機30とを有する。
 室内機20には、室内空気A1と熱交換を行う室内熱交換器22と、室内空気A1を室内機20内に誘引するとともに、室内熱交換器22と熱交換した後の室内空気A1を室内Rinに吹き出すファン24とが設けられている。
 室外機30には、室外空気A2と熱交換を行う室外熱交換器32と、室外空気A2を室外機30内に誘引するとともに、室外熱交換器32と熱交換した後の室外空気A2を室外Routに吹き出すファン34とが設けられている。また、室外機30には、室内熱交換器22および室外熱交換器32と冷凍サイクルを実行する圧縮機36、膨張弁38、および四方弁40が設けられている。
 室内熱交換器22、室外熱交換器32、圧縮機36、膨張弁38、および四方弁40それぞれは、冷媒が流れる冷媒配管42によって接続されている。冷房運転および除湿運転(弱冷房運転)の場合、空気調和機10は、冷媒が圧縮機36から四方弁40、室外熱交換器32、膨張弁38、室内熱交換器22を順に流れて圧縮機36に戻る冷凍サイクルを実行する。暖房運転の場合、空気調和機10は、冷媒が圧縮機36から四方弁40、室内熱交換器22、膨張弁38、室外熱交換器32を順に流れて圧縮機36に戻る冷凍サイクルを実行する。
 空気調和機10は、冷凍サイクルによる空調運転の他に、室外空気A3を室内Rinに導入する空調運転を実行する。そのために、空気調和機10は、換気装置50を有する。
 換気装置50は、室外機30に設けられている。
 図2は、換気装置50の概略図である。
 図2に示すように、換気装置50は、その内部に室外空気A3、A4が通過する吸収材52を備える。
 吸収材52は、空気が通過可能な部材であって、通過する空気から水分を捕集するまたは通過する空気に水分を与える部材である。本実施の形態の場合、吸収材52は、円盤状であって、その中心を通過する回転中心線C1を中心にして回転する。吸収材52は、モータ54によって回転駆動される。
 吸収材52は、空気中の水分を収着する高分子収着材が好ましい。高分子収着材は、例えば、ポリアクリル酸ナトリウム架橋体から構成される。高分子収着材は、シリカゲルやゼオライトなどの吸着材に比べて、同一体積あたり水分を吸収する量が多く、低い加熱温度で担持する水分を脱着することができ、そして水分を長時間担持することができる。
 換気装置50の内部には、室外空気A3、A4が、吸収材52を通過し、それぞれ流れる第1の流路P1と第2の流路P2とが設けられている。第1の流路P1と第2の流路P2は、異なる位置で吸収材52を通過する。
 第1の流路P1は、室内機20内に向かう室外空気A3が流れる流路である。第1の流路P1を流れる室外空気A3は、換気導管56を介して、室内機20内に供給される。
 本実施の形態の場合、第1の流路P1は、吸収材52に対して上流側に複数の支流路P1aおよびP1bを含んでいる。なお、本明細書において、「上流」および「下流」は、空気の流れに対して使用される。
 複数の支流路P1aおよびP1bは、吸収材52に対して上流側で合流する。複数の支流路P1aおよびP1bには、室外空気A3を加熱する第1のヒータ58および第2のヒータ60がそれぞれ設けられている。
 第1のヒータ58および第2のヒータ60は、同一の加熱能力を備えるヒータであってもよいし、異なる加熱能力を備えるヒータであってもよい。また、第1のヒータ58および第2のヒータ60は、電流が流れて温度が上昇すると電気抵抗が増加する、すなわち過剰な加熱温度の上昇を抑制することができるPTC(Positive Temperature Coefficient)ヒータが好ましい。ニクロム線やカーボン繊維などを用いるヒータの場合、電流が流れ続けると加熱温度(表面温度)が上昇し続けるため、その温度をモニタリングする必要がある。PTCヒータの場合、ヒータ自体が加熱温度を一定の温度範囲内で調節するために、加熱温度をモニタリングする必要がなくなる。
 第1の流路P1には、室内機20内に向かう室外空気A3の流れを発生させる第1のファン62が設けられている。本実施の形態の場合、第1のファン62は、吸収材52に対して下流側に配置されている。第1のファン62が作動することにより、室外空気A3が、室外Routから第1の流路P1内に流入し、吸収材52を通過する。
 また、第1の流路P1には、第1の流路P1を流れる室外空気A3を室内Rin(すなわち室内機20)または室外Routに振り分けるダンパ装置64が設けられている。本実施の形態の場合、ダンパ装置64は、第1のファン62に対して下流側に配置されている。ダンパ装置64によって室内機20に振り分けられた室外空気A3は、換気導管56を介して室内機20内に入り、ファン24によって室内Rinに吹き出される。
 第2の流路P2は、室外空気A4が流れる流路である。第1の流路P1を流れる室外空気A3と異なり、第2の流路P2を流れる室外空気A4は、室内機20に向かうことはない。第2の流路P2を流れる室外空気A4は、吸収材52を通過した後、室外Routに流出する。
 第2の流路P2には、室外空気A4の流れを発生させる第2のファン66が設けられている。本実施の形態の場合、第2のファン66は、吸収材52に対して下流側に配置されている。第2のファン66が作動することにより、室外空気A4が、室外Routから第2の流路P2内に流入し、吸収材52を通過し、そして室外Routに流出する。
 換気装置50は、吸収材52、モータ54、第1のヒータ58、第2のヒータ60、第1のファン62、ダンパ装置64、および第2のファン66を選択的に使用して換気運転、加湿運転、および除湿運転を選択的に実行する。
 図3は、換気運転中の換気装置の概略図である。
 換気運転は、室外空気A3をそのまま換気導管56を介して室内Rin(すなわち室内機20)に供給する空調運転である。図3に示すように、換気運転中、モータ54は、ON状態で、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、OFF状態であって、室外空気A3を加熱していない。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を室内機20に振り分ける。第2のファン66は、OFF状態であって、それにより第2の流路P2内に室外空気A4の流れが発生していない。
 このような換気運転によれば、室外空気A3は、第1の流路P1に流入し、第1のヒータ58および第2のヒータ60に加熱されることなく吸収材52を通過する。吸収材52を通過した室外空気A3は、ダンパ装置64によって室内機20に振り分けられる。ダンパ装置64を通過して換気導管56を介して室内機20に到達した室外空気A3は、ファン24によって室内Rinに吹き出される。このような換気運転により、室外空気A3がそのまま室内Rinに供給され、室内Rinが換気される。
 図4は、加湿運転中の換気装置の概略図である。
 加湿運転は、室外空気A3を加湿し、その加湿された室外空気A3を室内Rin(すなわち室内機20)に供給する空調運転である。図4に示すように、加湿運転中、モータ54は、ON状態で、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、ON状態であって、室外空気A3を加熱している。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を室内機20に振り分ける。第2のファン66は、ON状態であって、それにより第2の流路P2内を室外空気A4が流れている。
 このような加湿運転によれば、室外空気A3は、第1の流路P1に流入し、第1のヒータ58および第2のヒータ60に加熱されて吸収材52を通過する。このとき、加熱された室外空気A3は、加熱されていない場合に比べて、吸収材52からより多量の水分を奪うことができる。それにより、室外空気A3が多量の水分を担持する。吸収材52を通過して多量の水分を担持する室外空気A3は、ダンパ装置64によって室内機20に振り分けられる。ダンパ装置64を通過して換気導管56を介して室内機20に到達した室外空気A3は、ファン24によって室内Rinに吹き出される。このような加湿運転により、多量の水分を担持する室外空気A3が室内Rinに供給され、室内Rinが加湿される。
 なお、第1のヒータ58と第2のヒータ60のいずれか一方をOFF状態にすることによって室外空気A3が吸収材52から奪う水分量を少なくする、すなわち室内Rinの加湿量が少ない弱加湿運転が実行されてもよい。
 加熱された室外空気A3に水分が奪われることにより、吸収材52の保水量が減少する、すなわち吸収材52が乾燥する。吸収材52が乾燥すると、第1の流路P1を流れる室外空気A3は吸収材52から水分を奪うことができない。その対処として、吸収材52は、第2の流路P2を流れる室外空気A4から水分を奪う。それにより、吸収材52の保水量がほぼ一定に維持され、加湿運転を継続することができる。
 図5は、除湿運転中の換気装置の概略図である。
 除湿運転は、室外空気A3を除湿し、その除湿された室外空気A3を室内Rin(すなわち室内機20)に供給する空調運転である。図5に示すように、除湿運転では、吸着運転と再生運転とが交互に実行される。
 吸着運転は、室外空気A3に担持されている水分を吸収材52に吸着させ、それにより室外空気A3を除湿する運転である。図5に示すように、吸着運転中、モータ54は、ON状態で、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、OFF状態であって、室外空気A3を加熱していない。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を室内機20に振り分ける。第2のファン66は、OFF状態であって、それにより第2の流路P2内に室外空気A4の流れが発生していない。
 このような吸着運転によれば、室外空気A3は、第1の流路P1に流入し、第1のヒータ58および第2のヒータ60に加熱されることなく吸収材52を通過する。このとき、室外空気A3に担持されている水分が吸収材52に吸着する。それにより、室外空気A3の水分の担持量が減少する、すなわち室外空気A3が乾燥される。吸収材52を通過して乾燥した室外空気A3は、ダンパ装置64によって室内機20に振り分けられる。ダンパ装置64を通過して換気導管56を介して室内機20に到達した室外空気A3は、ファン24によって室内Rinに吹き出される。このような吸着運転により、乾燥した室外空気A3が室内Rinに供給され、室内Rinが除湿される。
 吸着運転が続くと、吸収材52の保水量が増加し続け、その結果、室外空気A3に担持されている水分に対する吸収材52の吸着能力が低下する。その吸着能力を回復するために吸収材52を再生させる再生運転が実行される。
 再生運転中、モータ54は、ON状態で、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、ON状態であって、室外空気A3を加熱している。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を、室内機20ではなく、室外Routに振り分ける。
 第2のファン66は、OFF状態であって、それにより第2の流路P2内に室外空気A4の流れが発生していない。
 このような再生運転によれば、室外空気A3は、第1の流路P1に流入し、第1のヒータ58および第2のヒータ60に加熱されて吸収材52を通過する。このとき、加熱された室外空気A3は、吸収材52から多量の水分を奪う。それにより、室外空気A3に多量の水分が担持される。それとともに、吸収材52の保水量が減少する、すなわち吸収材52が乾燥してその吸着能力が再生する。吸収材52を通過して多量の水分を担持する室外空気A3は、ダンパ装置64によって室外Routに振り分けられ、室外Routに排出される。これにより、除湿運転における再生運転中に、吸収材52の再生によって多量の水分を担持する室外空気A3が室内Rinに供給されることがない。
 このような吸着運転と再生運転を交互に行うことにより、吸収材52の吸着能力が維持され、除湿運転を継続的に実行することができる。
 上述の冷凍サイクルによる空調運転(冷房運転、除湿運転(弱冷房運転)、暖房運転)と換気装置50による空調運転(換気運転、加湿運転、除湿運転)は、別々に実行可能であり、また同時に実行することも可能である。例えば、冷凍サイクルによる除湿運転と換気装置50による除湿運転を同時に実行すれば、室温を一定に維持した状態で室内Rinを除湿することが可能である。
 空気調和機10が実行する空調運転は、ユーザによって選択される。例えば、図1に示すリモートコントローラ70に対するユーザの選択操作により、その操作に対応する空調運転を空気調和機10は実行する。
 ここまでは、本実施の形態に係る空気調和機10の構成および動作について概略的に説明してきた。ここからは、本実施の形態に係る空気調和機10の更なる特徴について説明する。
 図6は、空気調和機を制御する構成を示すブロック図である。
 図6に示すように、空気調和機10の構成要素は、制御部90によって制御される。制御部90は、例えば、プログラムを記憶したメモリと、CPU(Central Processing Unit)などのプロセッサに対応する処理回路を備える。制御部90の機能は、ハードウェアのみで構成してもよいし、ハードウェアとソフトウェアとを組み合わせることにより実現してもよい。制御部90は、メモリに格納されたデータやプログラムを読み出して種々の演算処理を行うことで、所定の機能を実現する。本実施の形態の場合、制御部90は、圧縮機36、膨張弁38、モータ54、第1のヒータ58、第2のヒータ60、第1のファン62、ダンパ装置64、第2のファン66を制御する。
 図7Aは、室内機20の内部構造の一例を示す概略図である。
 図7Aに示すように、室内機20は、室内熱交換器22、ファン24及びノズル57を有する。ノズル57は、室内機20内に換気装置50から換気導管56を介して供給された室外空気A3を吹き出すように、室内機20内に設けられている。具体的には、ノズル57は、吹き出した室外空気A3が室内熱交換器22における湿りパスPA1を避けて乾きパスPA2における領域DP1を通過してファン24に向かうように室内機20内に配置されている。ファン24は、例えばクロスフローファンである。
 「湿りパスPA1」及び「乾きパスPA2」は、空気調和機10の弱冷房運転(除湿運転)時に圧縮機36の周波数及び膨張弁38の開度を制御することによって、室内熱交換器22に生じる湿った領域及び乾いた領域を示す。具体的には、湿りパスPA1は、弱冷房運転(除湿運転)おいて圧縮機36の周波数を低くし、かつ膨張弁38の開度を小さくすることによって、室内熱交換器22における冷媒の流れ方向の上流側に形成される湿った領域である。乾きパスPA2は、弱冷房運転(除湿運転)おいて圧縮機36の周波数を低くし、かつ膨張弁38の開度を小さくすることによって、室内熱交換器22において湿りパスPA1の下流側に形成される乾いた領域である。
 「領域DP1」とは、室内熱交換器22において他の領域に比べて乾燥している領域である。領域DP1は、室内熱交換器22において冷媒の流れ方向の下流側の領域であって、換気装置50からの室外空気A3が供給される領域である。領域DP1は、乾きパスPA2の下流側に形成される。このような「領域DP1」は、実験的にまたはシミュレーションによって特定することができる。
 本実施の形態の場合、図7Aに示すように、ファン24の回転中心線の延在方向視(U軸方向視)で、室内熱交換器22は、ファン24を部分的に囲むように(本実施の形態の場合はファン24の下方を除いて囲むように)室内機20内に設けられている。室内熱交換器22はまた、ファン24の後方に位置する第1の部分22aと、ファン24の前側に位置する第2の部分22bとから構成されている。このような室内熱交換器22内を、圧縮機36から供給された冷媒が流れる。
 図7Bは、室内熱交換器22の冷媒の流れの一例を示す概略図である。
 図7Bに示すように、空気調和機10の冷房運転または弱冷房運転(除湿運転)時、ファン24の回転中心線の延在方向視で、冷媒は、(A)→(B)→(C1、C2、C3)→(D、E1、E2、F)→(G1、G2、G3、G4)の順に流れる。
 冷媒は、室内熱交換器22の冷媒入口22cから第1の冷媒流路「(A)→(B)」に流入する。第1の冷媒流路「(A)→(B)」は、室内熱交換器22の第1の部分22aの中央部の外面側に設けられており、冷媒が下方向へ流れる流路である。第1の部分22aの外面とは、第1の部分22aにおいて、室内熱交換器22を収納する室内機20の筐体が位置する側の面である。
 冷媒は、第1の冷媒流路「(A)→(B)」を流れた後、第2の冷媒流路「(B)→(C1、C2、C3)」を流れる。第2の冷媒流路「(B)→(C1、C2、C3)」は、室内熱交換器22の第2の部分22bの中央部の外面側に設けられており、冷媒が上方向へ流れる流路である。第2の部分22bの外面とは、第2の部分22bにおいて、室内熱交換器22を収納する室内機20の筐体が位置する側の面である。
 室内熱交換器22において、冷媒入口22cから流入した冷媒の温度は、他の部分に比べて低い。このため、室内熱交換器22の冷媒流路の上流側は、冷却部として機能し、湿った状態となる。冷却部とは、膨張弁38の開度を絞ることで室内熱交換器22内を流れる冷媒が圧力の低い液冷媒の状態となる部分である。本実施形態では、第1の冷媒流路「(A)→(B)」および第2の冷媒流路「(B)→(C1、C2、C3)」が、冷却部として機能し、湿りパスPA1となっている。
 冷媒は、第2の冷媒流路「(B)→(C1、C2、C3)」を流れた後、さらに3つの冷媒流路に分かれて流れる。3つの冷媒流路は、第3の冷媒流路「(C1)→(D)」、第4の冷媒流路「(C2)→(E1、E2)」及び第5の冷媒流路「(C3)→(F)」を含む。
 第3の冷媒流路「(C1)→(D)」は、第2の部分22bの中央部において、第2の部分22bの外面から内面側に向かって設けられており、冷媒が第2の部分22bの外面から内面に向かって流れる流路である。第2の部分22bの内面とは、第2の部分22bにおいて、ファン24が位置する側の面である。冷媒は、第3の冷媒流路「(C1)→(D)」を流れた後、第6の冷媒流路「(D)→(G1)」を流れる。
 第4の冷媒流路「(C2)→(E1、E2)」は、第2の部分22bの中央部よりも上側において、第2の部分22bの外面から内面側に向かって設けられており、冷媒が第2の部分22bの外面から内面に向かって流れる流路である。冷媒は、第4の冷媒流路「(C2)→(E1、E2)」を流れた後、さらに2つの冷媒流路に分かれて流れる。2つの冷媒流路は、第7の冷媒流路「(E1)→(G2)」と第8の冷媒流路「(E2)→(G3)」とを含む。
 第5の冷媒流路「(C3)→(F)」は、第4の冷媒流路よりも上側において、第2の部分22bの外面から内面側に向かって設けられており、冷媒が第2の部分22bの外面から内面に向かって流れる流路である。冷媒は、第5の冷媒流路「(C3)→(F)」を流れた後、第9の冷媒流路「(F)→(G4)」を流れる。
 第6の冷媒流路「(D)→(G1)」は、第2の部分22bの中央部よりも下側において、第2の部分22bの外面から内面側に向かって設けられており、冷媒が第2の部分22bの外面から内面に向かって流れる流路である。
 第7の冷媒流路「(E1)→(G2)」は、第1の部分22aの中央部よりも上側において、第1の部分22aの外面から内面側に向かうと共に、第1の部分22aの上側から下側に向かって設けられており、冷媒が第1の部分22aの外面から内面側、且つ下方向へ向かって流れる流路である。
 第8の冷媒流路「(E2)→(G3)」は、第1の部分22aの中央部において、第1の部分22aの外面から内面側に向かうと共に、第1の部分22aの中央部から下側に向かって設けられており、冷媒が第1の部分22aの外面から内面に向かって流れる流路である。
 第9の冷媒流路「(F)→(G4)」は、第2の部分22bの中央部よりも下側、且つ第6の第6の冷媒流路「(D)→(G1)」よりも上側において、第2の部分22bの外面から内面側に向かって設けられており、冷媒が第2の部分22bの外面から内面に向かって流れる流路である。
 冷媒は、第6の冷媒流路「(D)→(G1)」、第7の冷媒流路「(E1)→(G2)」、第8の冷媒流路「(E2)→(G3)」および第9の冷媒流路「(F)→(G4)」を流れた後、合流し、冷媒出口22dから排出される。
 第3~第9の冷媒流路は、過熱部として機能し、乾いた状態となる。過熱部とは、冷媒が飽和温度に達しているが相変化せずに、冷却部と比べて高温となっている部分である。本実施形態では、第3~第9の冷媒流路は、乾きパスPA2となっている。
 このような冷媒の流れの結果、室内熱交換器22において、第1の冷媒流路及び第2の冷媒流路が湿りパスPA1となり、第3~第9の冷媒流路が乾きパスPA2となる。冷媒は室内熱交換器22の上流から下流に向かって流れている間に温度が上昇するので、乾きパスPA2の下流に位置する領域DP1では、他の部分に比べて結露が生じにくい(付着する結露水が少ない)。本実施形態では、第6の冷媒流路「(D)→(G1)」及び9の冷媒流路「(F)→(G4)」が、領域DP1となっている。
 第1~第9の冷媒流路は、例えば、配管で形成されている。
 室内熱交換器22には、複数の温度センサ26~28が配置されている。本実施の形態では、複数の温度センサ26~28は、第1の温度センサ26、第2の温度センサ27及び第3の温度センサ28を含む。
 図8は、室内熱交換器における複数の温度センサの配置の一例を示す模式図である。
 図8に示すように、室内熱交換器22には、冷媒が流入する冷媒入口22cと、冷媒が流出する冷媒出口22dと、が設けられている。冷媒入口22cは、室内熱交換器22において冷媒配管42と接続され、冷媒配管42から室内熱交換器22内に冷媒が流入する開口である。冷媒出口22dは、室内熱交換器22において冷媒配管42と接続され、室内熱交換器22から冷媒配管42へ冷媒が流出する開口である。
 本実施の形態では、冷媒入口22cは、室内熱交換器22の第1の冷媒流路に接続される流路に設けられている。冷媒出口22dは第5~第8の冷媒流路に接続される流路に設けられている。
 室内熱交換器22において、冷媒入口22c側が冷媒の流れ方向における上流となり、冷媒出口22d側が冷媒の流れ方向における下流となる。
 室内熱交換器22において室外空気A3が供給される領域DP1は、室内熱交換器22において冷媒の流れ方向の下流側に位置する。言い換えると、領域DP1は、冷媒入口22cと冷媒出口22dとの間において冷媒の流れ方向の下流側に位置する。具体的には、領域DP1は、室内熱交換器22の第2の部分22bの下部に位置する。
 第1の温度センサ26は、室内熱交換器22において冷媒の流れ方向の上流側であって、室内熱交換器22内に冷媒が流入する流入部分より下流の部分の第1の温度T1を取得する。具体的には、第1の温度センサ26は、湿りパスPA1の入口より下流の湿りパスPA1の出口における室内熱交換器22の第1の温度T1を取得する。湿りパスPA1の出口とは、室内熱交換器22における冷媒流路の上流側であって、冷媒流路の下流側と比べて比較的温度の低い冷媒が流れる部分の出口である。言い換えると、湿りパスPA1の出口は、冷却部と過熱部との境界である。本実施形態では、第1の温度センサ26は、室内熱交換器22の第2の部分22bの中央部において、第2の部分22bの外面側に配置されている。具体的には、第1の温度センサ26は、第2の冷媒流路「(B)→(C1、C2、C3)」の出口に配置されている。
 第2の温度センサ27は、室内熱交換器22内に冷媒が流入する流入部分における室内熱交換器22の第2の温度T2を取得する。具体的には、第2の温度センサ27は、冷媒入口22cにおける室内熱交換器22の第2の温度T2を取得する。第2の温度センサ27は、冷媒入口22cの近傍又は冷媒入口22cに配置されている。本実施の形態では、第2の温度センサ27は、第1の部分22aの中央部において、第1の部分22aの外面側に配置されている。具体的には、第2の温度センサ27は、第1の冷媒流路「(A)→(B)」の入口に配置されている。
 第3の温度センサ28は、室内熱交換器22において冷媒の流れ方向の下流側の領域DP1の第3の温度T3を取得する。第3の温度センサ28は、冷媒の流れ方向において、第1の温度センサ26よりも下流側の室内熱交換器22の第3の温度T3を取得する。第3の温度T3は、冷媒出口22dにおける室内熱交換器22の温度であってもよい。本実施の形態では、第3の温度センサ28は、第2の部分22bの下部に配置されている。具体的には、第3の温度センサ28は、第6の冷媒流路「(D)→(G1)」の入口に配置されている。
 図9は、空気調和機の動作の一例を示すフローチャートである。図10は、吸着運転制御の一例を示すフローチャートである。図11は、空気調和機の制御の一例のタイミングチャートである。
 図9及び図10に示す処理は、制御部90によって空気調和機10の構成要素を制御することによって実施される。なお、図9及び図10に示す処理は一例であって、本実施の形態は図9及び図10に示す処理に限定されない。
 図9に示す処理は、例えば、図1に示すリモートコントローラ70に対するユーザの選択操作により、冷房運転がONになったときに開始する。
 図9に示すように、ステップS10では、制御部90が、開始条件が成立しているか否かを判定する。制御部90が、開始条件が成立していると判定した場合、処理はステップS20に進む。制御部90が、開始条件が成立していないと判定した場合、処理はステップS10を繰り返す。
 開始条件は、冷房運転を開始するための条件であり、例えば、運転モード、湿度、湿度コントロール、運転周波数、インバータ電流、温度又は異常の有無のうち少なくとも1つを含んでいてもよい。
 なお、制御部90が、開始条件が成立していないと判定した場合、制御部90は開始条件が成立するための制御を実施してもよい。
 ステップS20では、制御部90が冷房運転制御を実施する。具体的には、制御部90は、圧縮機36、膨張弁38及び四方弁40を制御し、冷媒が圧縮機36から四方弁40、室外熱交換器32、膨張弁38、室内熱交換器22を順に流れて圧縮機36に戻る冷凍サイクルを実行する。
 冷房運転時において、制御部90は、第3の温度センサ28で取得した第3の温度T3に基づいて、圧縮機36及び膨張弁38を制御する。具体的には、制御部90は、第3の温度T3に基づいて圧縮機36の周波数及び膨張弁38の開度を制御する。
 例えば、図11に示すように、冷房運転開始時の第3の温度T3が比較的高いとき、制御部90は、膨張弁38の開度を大きくし、圧縮機36の周波数を高くしている。例えば、制御部90は、冷房運転開始時に膨張弁38の開度を約40%以上約50%以下に制御し、圧縮機36の周波数を約80Hzに制御する。
 冷房運転において、第3の温度T3の低下に伴い、制御部90は、膨張弁38の開度を小さくし、圧縮機36の周波数を低くする。例えば、制御部90は、第3の温度T3に応じて、膨張弁38の開度を約50%から約8%までの範囲で小さくする。制御部90は、圧縮機36の周波数を約80Hzから約30Hzまでの範囲で低くする。
 冷房運転制御において、制御部90は、室内温度Trと設定温度Tsとを取得する。例えば、制御部90は、室内機20に設けられた室内温度センサから室内温度Trを取得してもよい。例えば、制御部90は、記憶部から設定温度Tsを取得してもよい。この場合。記憶部は、ユーザがリモートコントローラ70に入力した設定温度Tsの情報を記憶していてもよい。
 制御部90は、室内温度Trが設定温度Tsより低くなるまで、第3の温度T3に基づいて圧縮機36の周波数及び膨張弁38の開度を制御する。例えば、制御部90は、室内温度Trが設定温度Tsより1度低くなるまで、第3の温度T3に基づいて圧縮機36の周波数及び膨張弁38の開度を制御する。
 図9に戻って、ステップS30では、制御部90が、室内温度Trが設定温度Tsより小さくなっているか否かを判定する。制御部90が、室内温度Trが設定温度Tsより低くなっていると判定した場合、処理はステップS40に進む。制御部90が、室内温度Trが設定温度Tsより低くなっていないと判定した場合、処理はステップS30に戻る。
 図11に示す例では、室内温度Trが設定温度Tsより1度低く温度Tr1になったとき、即ち、図11に示すタイミングtmg1のとき、制御部90は、室内温度Trが設定温度Tsより低くなっていると判定する。室内温度Trが温度Tr1より高い場合、制御部90は、室内温度Trが設定温度Tsより低くなっていないと判定する。
 ステップS40では、制御部90が、室外空気A3を室内機20に供給することを含む除湿運転制御を実施する。除湿運転制御は、ステップS50の再生運転制御と、ステップS60の吸着運転制御と、を繰り返す(図5参照)。
 次に、図10を用いて本実施の形態における吸着運転制御について説明する。
 図10に示すように、吸着運転制御を開始すると、ステップS61では、制御部90が、膨張弁38の開度を制御する。具体的には、図11に示すように、制御部90は、冷房運転時に比べて膨張弁38の開度を小さくする。例えば、制御部90は、膨張弁38の開度を0%以上7%未満に制御する。
 ステップS62では、制御部90が、圧縮機36の周波数を制御する。具体的には、図11に示すように、制御部90は、冷房運転時に比べて圧縮機36の周波数を低くする。例えば、制御部90は、圧縮機36の周波数を0Hz以上20Hz以下に制御する。
 ステップS61、S62を実施することによって、室内熱交換器22において、上流側に冷却部を形成し、下流側に過熱部を形成する。
 本実施の形態では、冷却部は、室内熱交換器22の第1の部分22aの中央部の外面側と、第2の部分22bの中央部の外面側と、に形成される。言い換えると、冷却部は、第1の冷媒流路「(A)→(B)」および第2の冷媒流路「(B)→(C1、C2、C3)」に形成される。過熱部は、室内熱交換器22の第1の部分22aの中央部の外面側を除いて、第1の部分22aの上部から下部および第2の部分22bの上部から下部にかけて形成されている。また、過熱部は、室内熱交換器22の第2の部分22bの中央部の外面側を除いて、第2の部分22bの上部から下部にかけて形成されている。言い換えると、過熱部は、第3~第9の冷媒流路に形成される。
 第1の温度センサ26は、冷却部と過熱部との境界付近に配置されている。第2の温度センサ27は、冷媒の流れ方向において冷却部の上流側に配置されている。第3の温度センサ28は、冷媒の流れ方向において過熱部の下流側に配置されている。
 図11に示す例では、第2の温度T2は、冷却部の温度を示しており、17℃から5℃程度まで低下している。第1の温度T1は、過熱部と冷却部の境界付近の温度を示しており、17℃から22℃まで上昇している。即ち、室内熱交換器22において、湿りパスPA1の入口である第1の冷媒流路「(A)→(B)」の入口が17℃から5℃に冷やされ、湿りパスPA1の出口である第2の冷媒流路「(B)→(C1、C2、C3)」の出口が17℃から22℃まで暖められている。
 ステップS63では、制御部90が、第1の温度T1が第1の閾値L1以上であるか否かを判定する。制御部90が、第1の温度T1が第1の閾値L1以上であると判定したとき、処理はステップS64に進む。制御部90が、第1の温度T1が第1の閾値L1より小さいと判定したとき、処理はステップS61、S62を繰り返す。第1の閾値L1は、例えば、22[℃]である。
 図11に示す例では、第1の温度T1が第1の閾値L1を示す温度T11となるタイミングtmg2のとき、制御部90は、第1の温度T1が第1の閾値L1以上であると判定し、処理がステップS64に進む。
 ステップS64では、制御部90が、換気装置50を制御し、室外空気A3を室内熱交換器22に供給する。具体的には、制御部90は、第1のファン62、モータ54及びダンパ装置64を制御し、室外Routから室内機20の室内熱交換器22に乾燥した室外空気A3を供給する。
 例えば、制御部90は、第1のヒータ58と第2のヒータ60をオンにし、吸収材52を加熱して乾燥させる。制御部90は、第1のヒータ58と第2のヒータ60をオフにした後、第1のファン62を回転させ、室外空気A3を吸収材52に通過させる。これにより、室外空気A3の水分が吸収材52に吸収され、室外空気A3が乾燥する。また、室外空気A3は、第1のヒータ58と第2のヒータ60で加熱された吸収材52によって暖められる。制御部90は、ダンパ装置64を開き、乾燥した室外空気A3を室内機20に振り分ける。これにより、室外空気A3は、換気導管56を通って室内機20の室内熱交換器22に供給される。
 室外空気A3は、室内熱交換器22の過熱部の下流に位置する領域DP1、即ち第2の部分22bの下部に供給される。過熱部は冷却部と比べて高温となっている部分であり、冷却部に比べて乾燥している。このため、過熱部には、結露水が発生しにくい。その結果、過熱部に対して室外空気A3を吹き出す場合、室外空気A3が湿った状態にならずに、室内Rinから吹き出される。
 ステップS65では、制御部90は、第1の温度センサ26で取得した第1の温度T1に基づいて膨張弁38の開度を制御する。例えば、制御部90は、第1の温度T1が低くなると膨張弁38の開度を大きくし、第1の温度T1が高くなると膨張弁38の開度を小さくする。制御部90は、膨張弁38の開度を調節することによって、第1の温度T1を所望の温度に調節している。例えば、制御部90は、膨張弁38の開度を調節することによって、第1の温度T1を約22℃に調節する。このようにして、過熱部の温度が低下することを抑制している。
 ステップS66では、制御部90は、室内温度Trに基づいて圧縮機36の周波数を制御する。例えば、制御部90は、室内温度Trが高くなると圧縮機36の周波数を高くし、室内温度Trが低くなると圧縮機36の周波数を低くする。例えば、制御部90は、圧縮機36の周波数を調節することによって、室内温度Trを設定温度Ts以下に調節する。このようにして、室内温度Trが上昇することを抑制している。
 ステップS67では、制御部90は、第1の温度T1が第2の閾値L2以下になっているか否かを判定する。制御部90が、第1の温度T1が第2の閾値L2以下になっていると判定したとき、処理はステップS68に進む。制御部90は、第1の温度T1が第2の閾値L2より大きいと判定したとき、処理はステップS64~ステップS66を繰り返す。例えば、第2の閾値L2は、18[℃]である。
 ステップS68では、制御部90が、換気装置50を制御し、室外空気A3の供給を停止する。具体的には、制御部90は、ダンパ装置64を閉じ、室内機20の室内熱交換器22に乾燥した室外空気A3を供給することを停止する。
 図11に示す例では、第1の温度T1が第2の閾値L2を示す温度T12となるタイミングtmg3のとき、制御部90は、換気装置50を制御し、室外空気A3の供給を停止する。
 本実施の形態では、制御部90は、室外空気A3の供給を停止した後、除湿運転制御から冷房運転制御に切り替える。
 以上のような本実施の形態によれば、室内熱交換器22において室外空気A3が供給される領域DP1で結露が発生することを抑制できる。これにより、空気調和機10における除湿の効率低下を抑制することができる。
 以上、上述の実施の形態を挙げて本開示を説明したが、本開示は上述の実施の形態に限定されない。
 上述の実施の形態の場合、除湿運転時において、制御部90は、第1の温度T1に基づいて圧縮機36、膨張弁38及び換気装置50を制御する例について説明したが、これに限定されない。例えば、制御部90は、第1の温度T1と第2の温度T2とに基づいて圧縮機36、膨張弁38及び換気装置50を制御してもよい。例えば、制御部90は、第1の温度T1と第2の温度T2との温度差Td1を算出し、温度差Td1に基づいて圧縮機36、膨張弁38及び換気装置50を制御してもよい。このような構成により、除湿の効率低下を更に抑制することができる。
 上述の実施の形態の場合、図10のステップS67、S68に示すように、制御部90は、第1の温度T1に基づいて室外空気A3の供給の停止を判定する例について説明したが、これに限定されない。
 図12~図14は、変形例の吸着運転制御を示すフローチャートである。図12及び図13の処理は、それぞれ、ステップS67A及びステップS67Bが図10のステップS67と異なる点を除いて、図10の処理と同様である。図14の処理は、ステップS67C、S68Aが図10のステップS67、S68と異なる点を除いて、図10の処理と同様である。
 図12に示すように、ステップS67A、S68では、制御部90は、第1の温度T1と第2の温度T2との温度差Td1が第3の閾値L3以下となったとき、換気装置50からの室外空気A3の供給を停止してもよい。例えば、第3の閾値L3は5[℃]である。
 このような構成により、このような構成により、除湿の効率低下を更に抑制することができる。
 図13に示すように、ステップS67B、S68では、制御部90は、室内温度Trと設定温度Tsとを取得し、室内温度Trが設定温度Tsより高いと判定したとき、換気装置50からの室外空気A3の供給を停止してもよい。また、制御部90は、膨張弁38の開度を大きくし、かつ圧縮機36の周波数を高くし、例えば、冷房運転制御を実施してもよい。このような構成により、快適性を向上させることができる。
 図14に示すように、ステップS67C、S68Aでは、制御部90は、第2の温度T2が第4の閾値L4以下となったとき、膨張弁38の開度及び圧縮機36の周波数を制御してもよい。具体的には、制御部90は、第2の温度T2が第4の閾値L4以下となったとき、膨張弁38の開度を大きくし、かつ圧縮機36の周波数を高くしてもよい。例えば、第4の閾値L4は0[℃]である。このような構成により、冷媒が露点温度以下になり、凍結することを抑制することができる。なお、第4の閾値L4は露点温度より大きくてもよい。
 なお、本明細書において、「第1」、「第2」などの用語は、説明のためだけに用いられるものであり、相対的な重要性または技術的特徴の順位を明示または暗示するものとして理解されるべきではない。「第1」と「第2」と限定されている特徴は、1つまたはさらに多くの当該特徴を含むことを明示または暗示するものである。
 本開示の実施の形態に係る空気調和機は、広義には、室外熱交換器、圧縮機及び膨張弁を有する室外機と、室内熱交換器を有する室内機と、前記室外熱交換器、前記圧縮機、前記膨張弁及び前記室内熱交換器を接続し、冷媒が循環する冷媒配管と、前記室内熱交換器において前記冷媒の流れ方向の上流側であって、前記室内熱交換器内に前記冷媒が流入する流入部分より下流の部分の第1の温度を取得する第1の温度センサと、前記室内熱交換器において前記冷媒の流れ方向の下流側の領域に向かって室外空気を供給する換気装置と、前記第1の温度に基づいて、前記圧縮機、前記膨張弁及び前記換気装置を制御する制御部と、を備える。
 本開示は、室内機と室外機を備える空気調和機に適用可能である。
   10   空気調和機
   20   室内機
   22   室内熱交換器
   22a  第1の部分
   22b  第2の部分
   22c  冷媒入口
   22d  冷媒出口
   26   第1の温度センサ
   27   第2の温度センサ
   28   第3の温度センサ
   30   室外機
   32   室外熱交換器
   36   圧縮機
   38   膨張弁
   40   四方弁
   42   冷媒配管
   50   換気装置
   52   吸収材
   54   モータ
   56   換気導管
   57   ノズル
   58   第1のヒータ
   60   第2のヒータ
   62   ファン(第1のファン)
   64   ダンパ装置
   66   ファン(第2のファン)
   70   リモートコントローラ
   90   制御部
   DP1  領域
   P1   流路(第1の流路)
   P2   流路(第2の流路)
   PA1  湿りパス
   PA2  乾きパス

Claims (11)

  1.  室外熱交換器、圧縮機及び膨張弁を有する室外機と、
     室内熱交換器を有する室内機と、
     前記室外熱交換器、前記圧縮機、前記膨張弁及び前記室内熱交換器を接続し、冷媒が循環する冷媒配管と、
     前記室内熱交換器において前記冷媒の流れ方向の上流側であって、前記室内熱交換器内に前記冷媒が流入する流入部分より下流の部分の第1の温度を取得する第1の温度センサと、
     前記室内熱交換器において前記冷媒の流れ方向の下流側の領域に向かって室外空気を供給する換気装置と、
     前記室外空気を供給することを含む除湿運転において、前記第1の温度に基づいて、前記圧縮機、前記膨張弁及び前記換気装置を制御する制御部と、
    を備える、空気調和機。
  2.  前記制御部は、
      室内温度と設定温度とを取得し、
      前記室内温度が前記設定温度より小さいと判定したとき、前記除湿運転に切り替え、
    前記膨張弁の開度を小さくし、かつ前記圧縮機の周波数を低くする、
    請求項1に記載の空気調和機。
  3.  前記制御部は、前記第1の温度が第1の閾値以上となったとき、前記換気装置からの前記室外空気の供給を開始する、
    請求項1又は2に記載の空気調和機。
  4.  前記制御部は、前記第1の温度が第2の閾値以下となったとき、前記換気装置からの前記室外空気の供給を停止する、
    請求項1~3のいずれか一項に記載の空気調和機。
  5.  前記流入部分の第2の温度を取得する第2の温度センサを更に備え、
     前記制御部は、前記第2の温度に基づいて前記圧縮機及び前記膨張弁を制御する、
    請求項1~4のいずれか一項に記載の空気調和機。
  6.  前記制御部は、前記第1の温度と前記第2の温度との温度差を算出し、前記温度差に基づいて前記圧縮機、前記膨張弁及び前記換気装置を制御する、
    請求項5に記載の空気調和機。
  7.  前記制御部は、前記温度差が第3の閾値以下となったとき、前記換気装置からの前記室外空気の供給を停止する、
    請求項6に記載の空気調和機。
  8.  前記制御部は、前記第2の温度が第4の閾値以下となったとき、前記膨張弁の開度を大きくし、かつ前記圧縮機の周波数を高くする、
    請求項5~7のいずれか一項に記載の空気調和機。
  9.  前記室内熱交換器において前記冷媒の流れ方向の下流側の領域の第3の温度を取得する第3の温度センサを更に備え、
     前記制御部は、冷房運転において、前記第3の温度に基づいて前記圧縮機及び前記膨張弁を制御する、
    請求項5~8のいずれか一項に記載の空気調和機。
  10.  前記制御部は、
      前記除湿運転において、室内温度と設定温度とを取得し、
      前記室内温度が前記設定温度より大きいと判定したとき、前記換気装置からの前記室外空気の供給を停止し、前記膨張弁の開度を大きくし、かつ前記圧縮機の周波数を高くする、
    請求項1~9のいずれか一項に記載の空気調和機。
  11.  前記換気装置は、
      前記室外空気の水分を吸収する吸収材と、
      前記室外と前記室内機とを接続し、前記室外空気が流れる流路と、
      前記流路において前記吸収材の上流側に配置されるヒータと、
      前記流路に前記室外空気を送るファンと、
      前記流路を流れる前記室外空気を、前記室外と前記室内機とに振り分けるダンパ装置と、
    を含み、
     前記制御部は、
      前記ヒータを制御し、前記吸収材を加熱して乾燥させ、
      前記ファンを制御し、前記室外空気を前記吸収材に通過させることによって乾燥させ、
      前記ダンパ装置を制御し、乾燥した前記室外空気を前記室内機に振り分ける、
    請求項1~10のいずれか一項に記載の空気調和機。
PCT/JP2022/038881 2021-10-29 2022-10-19 空気調和機 WO2023074488A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280071261.5A CN118140098A (zh) 2021-10-29 2022-10-19 空气调节机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-178036 2021-10-29
JP2021178036A JP2023067072A (ja) 2021-10-29 2021-10-29 空気調和機

Publications (1)

Publication Number Publication Date
WO2023074488A1 true WO2023074488A1 (ja) 2023-05-04

Family

ID=86159377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038881 WO2023074488A1 (ja) 2021-10-29 2022-10-19 空気調和機

Country Status (3)

Country Link
JP (1) JP2023067072A (ja)
CN (1) CN118140098A (ja)
WO (1) WO2023074488A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139190A (ja) * 2008-12-12 2010-06-24 Daikin Ind Ltd 空調機の外気導入装置
JP2018017403A (ja) * 2016-07-06 2018-02-01 シャープ株式会社 検知システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139190A (ja) * 2008-12-12 2010-06-24 Daikin Ind Ltd 空調機の外気導入装置
JP2018017403A (ja) * 2016-07-06 2018-02-01 シャープ株式会社 検知システム

Also Published As

Publication number Publication date
JP2023067072A (ja) 2023-05-16
CN118140098A (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
JP4525465B2 (ja) 空調システム
WO2006126572A1 (ja) 空調システム
JP7113659B2 (ja) 空気調和装置
JP2010151337A (ja) 空調システム
JP2009109091A (ja) 調湿装置
JP2005195285A (ja) 空気調和機
JP5983235B2 (ja) 調湿装置
WO2023074488A1 (ja) 空気調和機
JP2010084970A (ja) 空調システムおよび熱交換ユニット
JP7126611B2 (ja) 空気調和装置
JP2001174074A (ja) 除湿装置
JP6120759B2 (ja) 空気調和システム
WO2023063239A1 (ja) 空気調和機
JP2009109150A (ja) 調湿装置
WO2023042623A1 (ja) 空気調和機
WO2023042627A1 (ja) 空気調和機
JP2024058407A (ja) 空気調和機、空気調和機の制御方法、プログラム及びコンピュータ読み取り可能な記憶媒体
JP2024046347A (ja) 空気調和機、空気調和機の制御方法、プログラム及びコンピュータ読み取り可能な記憶媒体
WO2023042656A1 (ja) 空気調和機
WO2023074487A1 (ja) 除湿制御方法、空気調和機、およびプログラム
WO2023042628A1 (ja) 空気調和機
JP2024046341A (ja) 空気調和機
WO2023042622A1 (ja) 空気調和機
WO2023042630A1 (ja) 空気調和機
WO2023042631A1 (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886816

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280071261.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE