WO2023041030A1 - 压阻式压力传感器的检测电路、检测方法和电子设备 - Google Patents

压阻式压力传感器的检测电路、检测方法和电子设备 Download PDF

Info

Publication number
WO2023041030A1
WO2023041030A1 PCT/CN2022/119292 CN2022119292W WO2023041030A1 WO 2023041030 A1 WO2023041030 A1 WO 2023041030A1 CN 2022119292 W CN2022119292 W CN 2022119292W WO 2023041030 A1 WO2023041030 A1 WO 2023041030A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection unit
detection
output terminal
voltage output
voltage
Prior art date
Application number
PCT/CN2022/119292
Other languages
English (en)
French (fr)
Inventor
林庆宗
Original Assignee
歌尔微电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔微电子股份有限公司 filed Critical 歌尔微电子股份有限公司
Publication of WO2023041030A1 publication Critical patent/WO2023041030A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/55Testing for incorrect line connections

Definitions

  • the application belongs to the technical field of power electronics, and in particular relates to a detection circuit, detection method and electronic equipment of a piezoresistive pressure sensor.
  • Pressure sensors are the key sensing components of mobile phones and wearable devices. Under the various innovative applications of artificial intelligence, the number and demand of pressure sensors are increasing. Due to the limited space available on mobile phones and wearable devices, most sensors use MEMS (Microelectromechanical Systems) pressure sensors to meet the miniaturization requirements, among which piezoresistive MEMS pressure sensors are the most common.
  • MEMS Microelectromechanical Systems
  • the piezoresistive pressure sensor In the application of the piezoresistive pressure sensor, it must be connected to the signal processing chip by wire bonding. After the output signal of the piezoresistive pressure sensor is sent to the signal processing chip, the signal is processed by the signal processing circuit.
  • the resistance value of the piezoresistive pressure sensor bridge arm will be wrong or the wiring connection will be wrong, which will cause problems such as decreased signal accuracy, decreased product yield, and increased cost.
  • the purpose of the embodiment of the present application is to provide a detection circuit, detection method and electronic equipment of a piezoresistive pressure sensor, which can detect the problems of the bridge arm resistance and circuit connection error of the piezoresistive pressure sensor proposed in the present disclosure.
  • an embodiment of the present application provides a detection circuit for a piezoresistive pressure sensor, the piezoresistive pressure sensor adopts a Wheatstone bridge circuit, and the piezoresistive pressure sensor includes a first voltage output terminal and a second voltage output terminal.
  • the detection circuit includes At least one detection unit in the first detection unit, the second detection unit, the third detection unit and the fourth detection unit; each detection unit includes a current source and a switch connected in series with the current source, the control terminal of the switch connected to the processing chip; wherein, the first detection unit is a detection unit used to be connected between the first voltage output terminal and the first ground terminal; the second detection unit is used to be connected to the first ground terminal A detection unit between a power supply terminal and the first voltage output terminal; the third detection unit is a detection unit for connecting between the second voltage output terminal and the first ground terminal; the The fourth detection unit is a detection unit connected between the first power supply terminal and the second voltage output terminal.
  • the detection circuit includes at least two detection units among the first detection unit, the second detection unit, the third detection unit and the fourth detection unit, wherein the at least two detection units include the A detection unit connected to the first voltage output terminal and a detection unit connected to the second voltage output terminal.
  • the detection circuit includes the first detection unit, the second detection unit, the third detection unit and the fourth detection unit.
  • the switch is a switch tube.
  • the current values of the current sources of the detection units in the detection circuit are equal.
  • the detection circuit further includes a reference current circuit, and the current source of each detection unit in the detection circuit is a mirror current source corresponding to the reference current circuit.
  • the reference current circuit includes an operational amplifier, a first PMOS transistor, a second PMOS transistor, a first NMOS transistor, a second NMOS transistor and a resistor;
  • the first input terminal of the operational amplifier is a reference power supply input terminal, so The second input end of the operational amplifier is connected to the source of the first NMOS transistor, the output end of the operational amplifier is connected to the gate of the first NMOS transistor, and the resistor is connected to the second input end and the first ground terminal;
  • the source of the first PMOS transistor and the source of the second PMOS transistor are connected to the first power supply terminal, and the drain of the first PMOS transistor is connected to the The drain of the first NMOS transistor is connected, the gate of the first PMOS transistor is connected with the drain of the first PMOS transistor and the gate of the second PMOS transistor;
  • the drain of the second PMOS transistor connected to the drain of the second NMOS transistor, the source of the second NMOS transistor is connected to the first ground terminal, and the gate of the second NMOS transistor is
  • the embodiment of the present application provides a detection method based on the detection circuit described in any one of the first aspect, which is characterized in that it includes: a detection unit for determining the detection state in the detection circuit; wherein, in a When the detection unit enters the detection state, other detection units are in the non-detection state with the switch off; for the detection unit entering the detection state, the switch of the detection unit is first controlled to be disconnected, and then the switch of the detection unit is controlled to turn on.
  • the detection unit and the pressure-sensitive element on a bridge arm of the piezoresistive pressure sensor are connected in series between the first power supply terminal and the first ground terminal; when the switch is disconnected, respectively obtain a first voltage value at the first voltage output terminal of the piezoresistive pressure sensor and a second voltage value at the second voltage output terminal, and calculate a first voltage difference between the second voltage value and the first voltage value; When the switch is turned on, obtain the third voltage value of the first voltage output terminal and the fourth voltage value of the second voltage output terminal respectively, and calculate the fourth voltage value and the third voltage The second voltage difference between values; compare the first voltage difference with the second voltage difference to obtain a comparison result; according to the comparison result, the current value of the current source of the detection unit and the The standard resistance value of the pressure-sensitive element, obtain and output the first detection result of whether the connection between at least one voltage output terminal and the processing chip is wrong, and the second detection result of whether the actual resistance value of the pressure-sensitive element is consistent with the standard resistance value Two detection results; wherein, the at least
  • an embodiment of the present application provides an electronic device, including: a processing chip; a piezoresistive pressure sensor, the piezoresistive pressure sensor adopts a Wheatstone bridge circuit, and the piezoresistive pressure sensor includes a first A voltage output terminal and a second voltage output terminal, the first voltage output terminal is connected to the first voltage input pin of the processing chip, and the second voltage output terminal is connected to the second voltage input pin of the processing chip connection; and, the detection circuit, the detection circuit is the detection circuit according to any one of claims 1 to 7, the control terminal of the switch of the detection unit in the detection circuit and the control signal output of the processing chip Pin connection, different switches correspond to different control signal output pins.
  • processing chip is used to implement the method described in the second aspect under the control of a computer program stored in the memory.
  • a detection circuit and a reference current circuit providing a current source for the detection circuit are set between the output terminals INP and INN of the piezoresistive pressure sensor to determine whether the piezoresistive pressure sensor is connected correctly and whether the piezoresistive pressure sensor is connected correctly. Whether there is a problem with the resistance value of the pressure-sensitive part of the sensor, so as to assist production and improve the signal accuracy and product qualification rate of the piezoresistive pressure sensor.
  • Fig. 1 is a schematic structural diagram of a piezoresistive pressure sensor provided in this embodiment
  • Fig. 2 is a detection circuit diagram of a piezoresistive pressure sensor provided in this embodiment
  • Fig. 3 is a working principle diagram of the first detection circuit in a detection circuit provided by this embodiment
  • Fig. 4 is a working principle diagram of a second detection circuit in a detection circuit provided by this embodiment
  • FIG. 5 is a reference current circuit in a detection circuit provided by this embodiment
  • FIG. 6 is a flowchart of a detection method of a detection circuit provided in this embodiment.
  • FIG. 7 is a schematic structural diagram of an electronic device provided in this embodiment.
  • a piezoresistive pressure sensor provided in this embodiment adopts a Wheatstone bridge circuit.
  • the piezoresistive pressure sensor includes a first voltage output terminal INN and a second voltage output terminal INP, and the first voltage output terminal INN is connected to the second voltage output terminal of the processing chip.
  • a voltage input pin is connected, and the second voltage output terminal INP is connected to the second voltage input pin of the processing chip, so that the processing chip can receive the voltage signal output by the piezoresistive pressure sensor, and the processing chip is used to control the piezoresistive pressure sensor.
  • the voltage signal output by the sensor is processed.
  • the piezoresistive pressure sensor includes four pressure-sensitive elements, and the four pressure-sensitive elements are connected to form a Wheatstone bridge circuit, wherein the first pressure-sensitive element RA is connected to the second power supply input terminal VDDB and the first Between the voltage output terminals INN, the second pressure sensitive element RB is connected between the first voltage output terminal INN and the second ground terminal VSSB, and the third pressure sensitive element RC is connected between the second power supply input terminal VDDB and the second voltage output terminal Between INP, the fourth pressure sensitive element RD is connected between the second voltage output terminal INP and the second ground terminal VSSB.
  • the detection circuit includes the first At least one detection unit among the first detection unit, the second detection unit, the third detection unit and the fourth detection unit.
  • Each detection unit includes a current source and a switch connected in series with the current source, and the control terminal of the switch is connected with the processing chip.
  • the first detection unit includes a current source IA and a switch SA
  • the second detection unit includes a current source IB and a switch SB
  • the third detection unit includes a current source IC and a switch SC
  • the fourth detection unit includes a current source ID and a switch SD.
  • the first detection unit, the second detection unit, the third detection unit and the fourth detection unit are used to detect whether the resistance value of the piezoresistive pressure sensor and whether the wiring is wrong, and the current source is used to provide each detection unit The current is detected, and the switch is used to control the on-off of the current source.
  • the first detection unit is a detection unit used to be connected between the first voltage output terminal INN and the first ground terminal; the second detection unit is used to be connected between the first power supply terminal and the first voltage output terminal INN The detection unit; the third detection unit is used to connect the detection unit between the second voltage output terminal INP and the first ground terminal; the fourth detection unit is used to connect the first power supply terminal and the second voltage output terminal INP Between detection units.
  • the first detection unit is used to detect whether the RA connection circuit fails
  • the second detection unit is used to detect whether the RB connection circuit fails
  • the third detection unit is used to detect whether the RC connection circuit fails
  • the fourth detection unit Used to detect failure of the RD connection circuit.
  • the detection circuit includes at least one detection unit among the first detection unit, the second detection unit, the third detection unit and the fourth detection unit, so that the detection of the piezoresistive sensor can be realized.
  • the circuit connection between at least one detection unit and each pressure-sensitive element can be realized through a selection switch, such as a single-pole multiple-throw switch, so as to realize the detection of each pressure-sensitive element.
  • the detection circuit may further include at least two detection units among the first detection unit, the second detection unit, the third detection unit and the fourth detection unit, wherein at least two detection units include A detection unit connected to a voltage output terminal and a detection unit connected to a second voltage output terminal. That is, each voltage output terminal corresponds to a detection unit, so as to more accurately detect whether the pressure-sensitive element fails.
  • the detection circuit includes a first detection unit, a second detection unit, a third detection unit and a fourth detection unit, that is, each pressure sensitive element corresponds to one detection unit.
  • the switch of each detection unit is a switching tube, such as a PMOS tube or an NMOS tube, and the current source is switched on and off by using the circuit conduction characteristics of the PMOS tube or the NMOS tube.
  • FIG. 3 is an operation diagram of the activation switch SA of the first detection unit.
  • the reading value of the processing chip can determine whether the piezoresistive pressure sensor is normally connected to the processing chip, or whether the bridge arm resistance RA is abnormal.
  • FIG. 4 is an operation diagram of the start switch SB of the second detection unit.
  • the read value of the chip can determine whether the piezoresistive pressure sensor is normally connected to the chip, or whether the bridge arm resistance RB is abnormal.
  • the detection principle of the third detection unit is the same as that of the first detection unit, and the detection principle of the fourth detection unit is the same as that of the second detection unit, which will not be repeated here.
  • the detection circuit further includes a reference current circuit, and the reference current circuit is used to provide a current source for each detection unit in the detection circuit, wherein, referring to FIG. 5 , the current source of each detection unit in the detection circuit is mirror current source.
  • the reference current circuit includes an operational amplifier OPAMP, a first PMOS transistor MP0, a second PMOS transistor MP1, a first NMOS transistor MN0, a second NMOS transistor MN1 and a resistor R1.
  • the first input terminal of the operational amplifier is the reference power input terminal, the input voltage VREF of the reference power supply input terminal, the second input terminal of the operational amplifier is connected to the source of the first NMOS transistor MN0, the output terminal of the operational amplifier is connected to the first NMOS transistor
  • the gate of MN0 is connected, the resistor R1 is connected between the second input terminal of OPAMP and the first ground terminal; the source of the first PMOS transistor MP0 and the source of the second PMOS transistor MP1 are connected to the first power supply terminal, and the second PMOS transistor MP1 is connected to the first power supply terminal.
  • the drain of a PMOS transistor MP0 is connected to the drain of the first NMOS transistor MN0, the gate of the first PMOS transistor MP0 is connected to the drain of the first PMOS transistor MP0 and the gate of the second PMOS transistor MP1;
  • the drain of MP1 is connected to the drain of the second NMOS transistor MN1 , the source of the second NMOS transistor MN1 is connected to the first ground terminal, and the gate of the second NMOS transistor MN1 is connected to the drain of the second NMOS transistor MN1 .
  • the current source IB of the second detection unit and the current source ID of the fourth detection unit correspond to the mirror current source of the first PMOS transistor; the current source IA of the first detection unit and the current source of the third detection unit are corresponding to the second NMOS tube mirror current source.
  • the reference current circuit further includes a third PMOS transistor MP2 and a fourth PMOS transistor MP3, the sources of MP2 and MP3 are connected to the first power supply terminal, the gates of MP2 and MP3 are connected to the gate of the second PMOS transistor, The drain of MP2 outputs the IB current source, and the drain of MP3 outputs the ID current source.
  • the reference current circuit also includes a third NMOS transistor MN2 and a fourth NMOS transistor MN3, the sources of MN2 and MN3 are connected to the first ground terminal, the gates of MN2 and MN3 are connected to the gate of the second NMOS transistor, and the drain of MN2 The pole outputs the IA current source, and the drain of MN3 outputs the IC current source.
  • MP0, MP1, MP2, and MP3 are PMOS current mirror circuits, which amplify the IR multiples to generate the required IB and ID currents for the second detection unit and the fourth detection unit.
  • MN1, MN2, and MN3 are NMOS current mirror circuits. This circuit amplifies IR2 to generate the required IA and IC currents for the first detection unit and the third detection unit. use.
  • the first power supply connected to the first power terminal is VDD
  • the first ground terminal is the ground port of the circuit.
  • a detection circuit and a reference current circuit providing a current source for the detection circuit are provided between the output terminals INP and INN of the piezoresistive pressure sensor to judge the piezoresistive pressure sensor. Whether the pressure sensor is connected correctly and whether there is any problem with the resistance value of the pressure sensor of the piezoresistive pressure sensor, so as to assist production and improve the signal accuracy and product qualification rate of the piezoresistive pressure sensor.
  • This embodiment also provides a detection method for a detection circuit. Referring to FIG. 6, the method includes:
  • the detection unit entering the detection state can be the first detection unit, the second detection unit, the third detection unit and any one of the fourth detection units.
  • the detection unit and the pressure sensitive element on a bridge arm of the piezoresistive pressure sensor are connected in series between the first power supply terminal and the first ground terminal, for example, IA, SA and RA in Fig. 3 are connected in series between VDDB and ground between.
  • the first voltage difference is the voltage difference when the detection unit is not connected, that is, the normal output value of the piezoresistive pressure sensor. If the first voltage difference is the same as the theoretical normal output value, it indicates The connection between the piezoresistive pressure sensor and the processing chip is normal, and the comparison result shows that the circuit connection between the piezoresistive pressure sensor and the processing chip is normal; otherwise, if the first voltage difference is different from the theoretical normal output value If they are the same, it indicates that the connection between the piezoresistive pressure sensor and the processing chip is abnormal, and the comparison result shows that the circuit connection between the piezoresistive pressure sensor and the processing chip is abnormal.
  • the second voltage difference value is the voltage difference value when the detection unit is connected, and is used to detect whether the resistance value of the pressure-sensitive element of the piezoresistive pressure sensor is normal under the condition of a fixed current. If the second voltage difference If the value is the same as the normal output value under the theoretical standard resistance value, it indicates that the resistance value of the pressure-sensitive element of the piezoresistive pressure sensor is normal, and the comparison result shows that the resistance value of the pressure-sensitive element of the piezoresistive pressure sensor is normal.
  • the second voltage difference is different from the normal output value of the voltage difference under the theoretical standard resistance value, it indicates that the resistance value of the pressure-sensitive element of the piezoresistive pressure sensor is abnormal, and the comparison result is a piezoresistive pressure sensor.
  • the resistance value of the pressure sensitive part of the sensor is abnormal.
  • the current value of the current source of the detection unit, and the standard resistance value of the pressure-sensitive element obtain and output the first detection result of whether the connection between at least one voltage output terminal and the processing chip is wrong, and the pressure-sensitive element The second detection result of whether the actual resistance value is consistent with the standard resistance value.
  • the first detection result indicates that the circuit connection between the piezoresistive pressure sensor and the processing chip is normal, or that the circuit connection between the piezoresistive pressure sensor and the processing chip is abnormal.
  • the second detection result indicates that the resistance value of the pressure sensitive element of the piezoresistive pressure sensor is normal, or indicates that the resistance value of the pressure sensitive element of the piezoresistive pressure sensor is abnormal.
  • At least one voltage output terminal is at least one of the first voltage output terminal and the second voltage output terminal.
  • the detection method of the detection circuit of the piezoresistive pressure sensor provided in this embodiment is based on the detection circuit of the piezoresistive pressure sensor, and judges whether the piezoresistive pressure sensor is Check whether the connection is correct and whether there is any problem with the resistance value of the pressure-sensitive element of the piezoresistive pressure sensor, so as to assist production and improve the signal accuracy and product qualification rate of the piezoresistive pressure sensor.
  • This embodiment also provides an electronic device, referring to FIG. 7 , including:
  • the processing chip 730 is configured to receive the voltage signal output by the piezoresistive pressure sensor, and process the voltage signal output by the piezoresistive pressure sensor.
  • the piezoresistive pressure sensor 710 the piezoresistive pressure sensor adopts a Wheatstone bridge circuit, the piezoresistive pressure sensor includes a first voltage output terminal and a second voltage output terminal, the first voltage output terminal and the first voltage input of the processing chip pin connection, the second voltage output terminal is connected to the second voltage input pin of the processing chip;
  • the detection circuit 720 the detection circuit is the detection circuit provided in the above embodiments, such as the detection circuits in FIG. 2 and FIG. 5 .
  • the control end of the switch of the detection unit in the detection circuit 720 is connected to the control signal output pin of the processing chip, and different switches correspond to different control signal output pins, so that when one detection unit enters the detection state, other detection units It is in a non-detection state where the switch is turned off, so as to detect each pressure-sensitive element of the piezoresistive pressure sensor one by one.
  • the detection circuit 720 includes at least one detection unit in the first detection unit, the second detection unit, the third detection unit and the fourth detection unit; each detection unit includes a current source and a switch connected in series with the current source, and the control terminal of the switch It is connected with the processing chip; wherein, the first detection unit is a detection unit used to be connected between the first voltage output terminal and the first ground terminal; the second detection unit is used to be connected between the first power supply terminal and the first voltage output terminal The detection unit between the terminals; the third detection unit is a detection unit used to be connected between the second voltage output terminal and the first ground terminal; the fourth detection unit is used to be connected between the first power supply terminal and the second voltage output terminal detection unit between terminals.
  • the detection circuit 720 also includes a reference current circuit, and the current source of each detection unit in the detection circuit is a mirror current source corresponding to the reference current circuit.
  • the reference current circuit includes an operational amplifier, a first PMOS transistor, a second PMOS transistor, a first NMOS transistor, a second NMOS transistor and a resistor; the first input terminal of the operational amplifier is a reference power supply input terminal, and the second input terminal of the operational amplifier is connected to the The source of the first NMOS transistor is connected, the output terminal of the operational amplifier is connected to the gate of the first NMOS transistor, and the resistor is connected between the second input terminal and the first ground terminal; the source of the first PMOS transistor is connected to the first ground terminal.
  • the sources of the two PMOS transistors are connected to the first power supply terminal, the drain of the first PMOS transistor is connected to the drain of the first NMOS transistor, and the gate of the first PMOS transistor is connected to the drain of the first PMOS transistor and the second PMOS transistor.
  • the gate of the transistor is connected; the drain of the second PMOS transistor is connected to the drain of the second NMOS transistor, the source of the second NMOS transistor is connected to the first ground terminal, and the gate of the second NMOS transistor is connected to the second NMOS transistor.
  • the drain of the tube is connected; the current sources of the second detection unit and the fourth detection unit correspond to the mirror current source of the first PMOS tube; the current sources of the first detection unit and the third detection unit are mirror images corresponding to the second NMOS tube Battery.
  • the specific structure and connection relationship of the detection circuit are described in the above detection circuit of the piezoresistive pressure sensor, and will not be repeated here.
  • the processing chip of this embodiment is used to implement a detection method of a detection circuit shown in FIG. 6 under the control of a computer program stored in a memory.
  • the memory may be a memory of a processing chip, or an external memory of a non-processing chip.
  • the embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by the processing chip, each process of the detection method embodiment of the detection circuit described above is realized, and can To achieve the same technical effect, in order to avoid repetition, no more details are given here.
  • the processing chip is the processing chip in the electronic device described in the above embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD) contains several instructions to enable a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in various embodiments of the present application.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种压阻式压力传感器的检测电路、检测方法和电子设备,属于电力电子技术领域,压阻式压力传感器采用惠斯通电桥电路,压阻式压力传感器包括第一电压输出端(INN)和第二电压输出端(INP),第一电压输出端(INN)与处理芯片的第一电压输入引脚连接,第二电压输出端(INP)与所述处理芯片的第二电压输入引脚连接;压阻式压力传感器的检测电路包括第一检测单元、第二检测单元、第三检测单元和第四检测单元中的至少一个检测单元;每一检测单元包括电流源(IA,IB,IC,ID)和与电流源(IA,IB,IC,ID)串联连接的开关(SA,SB,SC,SD),开关(SA,SB,SC,SD)的控制端与处理芯片连接。

Description

压阻式压力传感器的检测电路、检测方法和电子设备
本公开要求于2021年09月16日提交中国专利局,申请号为202111090431.8,申请名称为“压阻式压力传感器的检测电路、检测方法和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电力电子技术领域,具体涉及一种压阻式压力传感器的检测电路、检测方法和电子设备。
背景技术
压力传感器为手机与穿戴式装置的关键感测组件,在人工智能的各种创新应用下,压力传感器的数量及需求更是上升。因为手机、穿戴式装置上可使用空间有限,因此,大多数传感器采用MEMS(Microelectromechanical Systems)压力传感器,以达到微型化需求,其中,压阻式MEMS压力传感器最为普遍。
压阻式压力传感器在应用上,必须利用打线与讯号处理芯片连接,将压阻式压力传感器的输出端讯号送入讯号处理芯片后,由讯号处理电路做讯号处理。然而,在量产的过程中,会造成压阻式压力传感器桥臂阻值错误或打线连接错误,从而造成讯号精准度下降、产品良率降低、成本提高等问题。
发明内容
本申请实施例的目的是提供一种压阻式压力传感器的检测电路、检测方法和电子设备,能够检测出本公开提出的压阻式压力传感器桥臂阻值及线路连接出错的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种压阻式压力传感器的检测电路,所述压阻式压力传感器采用惠斯通电桥电路,所述压阻式压力传感器包括第一电 压输出端和第二电压输出端,所述第一电压输出端与处理芯片的第一电压输入引脚连接,所述第二电压输出端与所述处理芯片的第二电压输入引脚连接;所述检测电路包括第一检测单元、第二检测单元、第三检测单元和第四检测单元中的至少一个检测单元;每一检测单元包括电流源和与所述电流源串联连接的开关,所述开关的控制端与所述处理芯片连接;其中,所述第一检测单元为用于连接在所述第一电压输出端与第一接地端之间的检测单元;所述第二检测单元为用于连接在第一电源端与所述第一电压输出端之间的检测单元;所述第三检测单元为用于连接在所述第二电压输出端与所述第一接地端之间的检测单元;所述第四检测单元为用于连接在所述第一电源端与所述第二电压输出端之间的检测单元。
进一步地,所述检测电路包括所述第一检测单元、第二检测单元、第三检测单元和第四检测单元中的至少两个检测单元,其中,所述至少两个检测单元包括与所述第一电压输出端连接的检测单元和与所述第二电压输出端连接的检测单元。
进一步地,所述检测电路包括所述第一检测单元、所述第二检测单元、所述第三检测单元和所述第四检测单元。
进一步地,所述开关为开关管。
进一步地,所述检测电路中各检测单元的电流源的电流值相等。
进一步地,所述检测电路还包括基准电流电路,所述检测电路中各检测单元的电流源为对应于所述基准电流电路的镜像电流源。
进一步地,所述基准电流电路包括运算放大器、第一PMOS管、第二PMOS管、第一NMOS管、第二NMOS管和电阻;所述运算放大器的第一输入端为参考电源输入端,所述运算放大器的第二输入端与所述第一NMOS管的源极连接,所述运算放大器的输出端与所述第一NMOS管的栅极连接,所述电阻连接在所述第二输入端与所述第一接地端之间;所述第一PMOS管的源极和所述第二PMOS管的源极均与所述第一电源端连接,所述第一PMOS管的漏极与所述第一NMOS管的漏极连接,所述第一PMOS管的栅极与所述第一PMOS管的漏极和所述第二PMOS管的栅极连接;所述第二PMOS管的漏极与所述第二NMOS管的漏极连接,所述第二NMOS管的源极与所述第一 接地端连接,所述第二NMOS管的栅极与所述第二NMOS管的漏极连接;所述第二检测单元和所述第四检测单元的电流源对应于所述第一PMOS管的镜像电流源;所述第一检测单元和所述第三检测单元的电流源为对应于所述第二NMOS管的镜像电流源。
第二方面,本申请实施例提供了一种基于第一方面任一项所述检测电路的检测方法,其特征在于,包括:确定检测电路中的进入检测状态的一检测单元;其中,在一检测单元进入检测状态的情况下,其他检测单元均处于开关断开的非检测状态;对于进入检测状态的检测单元,先控制所述检测单元的开关断开,再控制所述检测单元的开关导通;其中,所述检测单元与压阻式压力传感器的一桥臂上的压感件串联连接在第一电源端与第一接地端之间;在所述开关断开的情况下,分别获取压阻式压力传感器的第一电压输出端的第一电压值和第二电压输出端的第二电压值,并计算所述第二电压值与所述第一电压值之间的第一电压差值;在所述开关导通的情况下,分别获取所述第一电压输出端的第三电压值和所述第二电压输出端的第四电压值,并计算所述第四电压值与所述第三电压值之间的第二电压差值;比较所述第一电压差值与所述第二电压差值,得到比较结果;根据所述比较结果、所述检测单元的电流源的电流值和所述压感件的标准阻值,获得并输出至少一个电压输出端与处理芯片间的连接是否错误的第一检测结果、及所述压感件的实际阻值与所述标准阻值是否一致的第二检测结果;其中,所述至少一个电压输出端为所述第一电压输出端和所述第二电压输出端中的至少一个。
第三方面,本申请实施例提供了一种电子设备,包括:处理芯片;压阻式压力传感器,所述压阻式压力传感器采用惠斯通电桥电路,所述压阻式压力传感器包括第一电压输出端和第二电压输出端,所述第一电压输出端与所述处理芯片的第一电压输入引脚连接,所述第二电压输出端与所述处理芯片的第二电压输入引脚连接;以及,所述检测电路,所述检测电路为权利要求1至7中任一项所述的检测电路,所述检测电路中检测单元的开关的控制端与所述处理芯片的控制信号输出引脚连接,不同开关对应不同的控制信号输出引脚。
进一步地,所述处理芯片用于在存储于存储器中的计算机程序的控制下,实现第二方面所述的方法。
在本申请实施例中,在压阻式压力传感器输出端INP和INN之间设置检测电路和为检测电路提供电流源的基准电流电路,来判断压阻式压力传感器是否连接正确以及压阻式压力传感器的压感件阻值是否有问题,从而辅助生产,提高压阻式压力传感器的讯号精准度和产品合格率。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本申请的实施例,并且连同其说明一起用于解释本申请的原理。
图1是本实施例提供的一种压阻式压力传感器的结构示意图;
图2是本实施例提供的一种压阻式压力传感器的检测电路图;
图3是本实施例提供的一种检测电路中第一检测电路的工作原理图;
图4是本实施例提供的一种检测电路中第二检测电路的工作原理图;
图5是本实施例提供的一种检测电路中基准电流电路;
图6是本实施例提供的一种检测电路的检测方法流程图;
图7是本实施例提供的一种电子设备的结构示意图。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步 讨论。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的压阻式压力传感器的检测电路、检测方法和电子设备进行详细地说明。
本实施例提供的一种压阻式压力传感器采用惠斯通电桥电路,压阻式压力传感器包括第一电压输出端INN和第二电压输出端INP,第一电压输出端INN与处理芯片的第一电压输入引脚连接,第二电压输出端INP与处理芯片的第二电压输入引脚连接,以使处理芯片能够接收压阻式压力传感器输出的电压信号,处理芯片用于对压阻式压力传感器输出的电压信号进行处理。
其中,参考图1,压阻式压力传感器包括四个压感件,四个压感件连接形成惠斯通电桥电路,其中,第一压感件RA连接在第二电源输入端VDDB与第一电压输出端INN之间,第二压感件RB连接在第一电压输出端INN与第二接地端VSSB之间,第三压感件RC连接在第二电源输入端VDDB与第二电压输出端INP之间,第四压感件RD连接在第二电压输出端INP与第二接地端VSSB之间。其工作原理为:当压力产生变化时RA及RD阻值会由原本R增加到R+ΔR,而RB及RC阻值则由原本R减少到R-ΔR,其中,R为RA、RB、RC、RD的电压值,ΔR为阻值变化值。
基于背景技术提到的上述压阻式压力传感器存在桥臂感压件阻值错误及线路连接错误,本实施例提供一种压阻式压力传感器的检测电路,参考图2,该检测电路包括第一检测单元、第二检测单元、第三检测单元和第四检测单元中的至少一个检测单元。每一检测单元包括电流源和与电流源串联连接的开关,开关的控制端与处理芯片连接。参考图2,第一检测单元包括电流源IA和开关SA,第二检测单元包括电流源IB和开关SB,第三检测单元包括电流源IC和开关SC,第四检测单元包括电流源ID和开关SD。
其中,第一检测单元、第二检测单元、第三检测单元和第四检测单元用于对压阻式压力传感器的阻值和连线是否错误进行检测,电流源用于为每一检测单元提供检测电流,开关用于控制电流源的通断。
其中,第一检测单元为用于连接在第一电压输出端INN与第一接地端之间的检测单元;第二检测单元为用于连接在第一电源端与第一电压输出端INN之间的检测单元;第三检测单元为用于连接在第二电压输出端INP与第一接 地端之间的检测单元;第四检测单元为用于连接在第一电源端与第二电压输出端INP之间的检测单元。参考图2,第一检测单元用于检测RA连接电路是否发生故障,第二检测单元用于检测RB连接电路是否发生故障,第三检测单元用于检测RC连接电路是否发生故障,第四检测单元用于检测RD连接电路是否发生故障。
在一个可行的实施例中,检测电路包含第一检测单元、第二检测单元、第三检测单元和第四检测单元中的至少一个检测单元,即可实现对压阻式传感器的检测,当然,可以通过选择开关,如单刀多掷开关实现至少一个检测单元与每一个压感件之间的电路连接,从而实现对每一压感件的检测。
在一个可行的实施例中,检测电路还可以包括第一检测单元、第二检测单元、第三检测单元和第四检测单元中的至少两个检测单元,其中,至少两个检测单元包括与第一电压输出端连接的检测单元和与第二电压输出端连接的检测单元。也就是每一电压输出端对应一个检测单元,从而更精确的检测压感件是否发生故障。
在一个可行的实施例中,检测电路包括第一检测单元、第二检测单元、第三检测单元和第四检测单元,也就是说,每一个压感件对应一个检测单元。
本实施例中,每一检测单元的开关为开关管,例如PMOS管或NMOS管,利用PMOS管或NMOS管的电路导通特性实现电流源的接入和断开。
本实施例中,由于每一压感件电阻相同,为了保证电路的稳定性,以及计算方便,本实施例的检测电路中各检测单元的电流源的电流值相等,例如,IA=IB=IC=ID=0.25uA。
下面对各检测单元的检测原理进行说明:
参考图3,图3为第一检测单元启动开关SA运作图。当SA关闭,IA流过RA,此时可产生增加压降VA=IA*RA,假设IA=0.25uA,RA=4k,则VA=0.25uA*4k=1mV。利用正常讯号INP-INN及流过IA电流后讯号INP-INN+VA的差异,处理芯片的读值可判断出压阻式压力传感器是否正常连接到处理芯片,或者桥臂电阻RA是否异常。
同理,参考图4,图4为第二检测单元启动开关SB运作图。当SB关闭,IB流过RB,此时可产生增加压降VB=IB*RB,假设IB=0.25uA而RB=4kΩ, 则VB=0.25uA*4kΩ=1mV。利用正常讯号INP-INN及流过IB电流后讯号INP-INN-VB的差异,芯片的读值可判断出压阻式压力传感器是否正常连接到芯片,或者桥臂电阻RB是否异常。
第三检测单元的检测原理和第一检测单元同理,第四检测单元的检测原理和第二检测单元同理,在此不再赘述。
本实施例中,检测电路还包括基准电流电路,基准电流电路用于为检测电路中各检测单元提供电流源,其中,参考图5,检测电路中各检测单元的电流源为对应于基准电流电路的镜像电流源。
本实施例中,基准电流电路包括运算放大器OPAMP、第一PMOS管MP0、第二PMOS管MP1、第一NMOS管MN0、第二NMOS管MN1和电阻R1。述运算放大器的第一输入端为参考电源输入端,参考电源输入端输入电压VREF,运算放大器的第二输入端与第一NMOS管MN0的源极连接,运算放大器的输出端与第一NMOS管MN0的栅极连接,电阻R1连接在OPAMP的第二输入端与第一接地端之间;第一PMOS管MP0的源极和第二PMOS管MP1的源极均与第一电源端连接,第一PMOS管MP0的漏极与第一NMOS管MN0的漏极连接,第一PMOS管MP0的栅极与第一PMOS管MP0的漏极和第二PMOS管MP1的栅极连接;第二PMOS管MP1的漏极与第二NMOS管MN1的漏极连接,第二NMOS管MN1的源极与第一接地端连接,第二NMOS管MN1的栅极与第二NMOS管MN1的漏极连接。
第二检测单元的电流源IB和第四检测单元的电流源ID对应于第一PMOS管的镜像电流源;第一检测单元的电流源IA和第三检测单元的电流源为对应于第二NMOS管的镜像电流源。
其中,基准电流电路还包括第三PMOS管MP2、第四PMOS管MP3,MP2和MP3的源极均与第一电源端连接,MP2和MP3的栅极均和第二PMOS管的栅极连接,MP2的漏极输出IB电流源,MP3的漏极输出ID电流源。
基准电流电路还包括第三NMOS管MN2、第四NMOS管MN3,MN2和MN3的源极与第一接地端连接,MN2和MN3的栅极均和第二NMOS管的栅极连接,MN2的漏极输出IA电流源,MN3的漏极输出IC电流源。
本实施例利用OPAMP、MN0、R1形成一负回授电路,VREF输入此负回授电路产生参考电流IR=VREF/R1。MP0、MP1、MP2、MP3为PMOS电流镜电路,此电路将IR做倍数放大产生所需要的IB及ID电流给第二检测单元和第四检测单元使用。MN1、MN2、MN3为NMOS电流镜电路,此电路将IR2做倍数放大产生所需要的IA及IC电流给第一检测单元和第三检测单元使用。使用。
本实施例中的第一电源端所接入的第一电源为VDD,第一接地端即电路的对地端口。
以上,为本实施例提供的压阻式压力传感器的检测电路,在压阻式压力传感器输出端INP和INN之间设置检测电路和为检测电路提供电流源的基准电流电路,来判断压阻式压力传感器是否连接正确以及压阻式压力传感器的压感件阻值是否有问题,从而辅助生产,提高压阻式压力传感器的讯号精准度和产品合格率。
本实施例还提供一种检测电路的检测方法,参考图6,该方法包括:
S6100、确定检测电路中的进入检测状态的一检测单元。
其中,在一检测单元进入检测状态的情况下,其他检测单元均处于开关断开的非检测状态,该进入检测状态的一检测单元可以是第一检测单元、第二检测单元、第三检测单元和第四检测单元中的任一检测单元。
S6200、对于进入检测状态的检测单元,先控制检测单元的开关断开,再控制检测单元的开关导通。
其中,检测单元与压阻式压力传感器的一桥臂上的压感件串联连接在第一电源端与第一接地端之间,例如,图3中的IA、SA和RA串联在VDDB与地之间。
S6300、在开关断开的情况下,分别获取压阻式压力传感器的第一电压输出端的第一电压值和第二电压输出端的第二电压值,并计算第二电压值与第一电压值之间的第一电压差值,参考图2,该第一电压差值也就是INP-INN。
S6400、在开关导通的情况下,分别获取第一电压输出端的第三电压值和第二电压输出端的第四电压值,并计算第四电压值与所述第三电压值之间的第 二电压差值,参考图3,当进入检测状态的检测单元为第一检测单元时,参考图3,该第二电压差值为INP-INN+VA。
S6500、比较第一电压差值与第二电压差值,得到比较结果。
本实施例中,第一电压差值为未连接检测单元时的电压差值,也就是压阻式压力传感器的正常输出值,若第一电压差值与理论上的正常输出值相同,则表明该压阻式压力传感器与处理芯片之间的连接正常,则比较结果为压阻式压力传感器与处理芯片之间的电路连接正常,反之,若第一电压差值与理论上的正常输出值不相同,则表明该压阻式压力传感器与处理芯片之间的连接异常,则比较结果为压阻式压力传感器与处理芯片之间的电路连接异常。
本实施例中,第二电压差值为连接检测单元时的电压差值,用于检测在固定的电流情况下,压阻式压力传感器的压感件的阻值是否正常,若第二电压差值与理论上标准阻值下的正常输出值相同,则表明该压阻式压力传感器的压感件的阻值正常,则比较结果为压阻式压力传感器的压感件阻值正常。反之,若第二电压差值与理论上标准阻值下的电压差值的正常输出值不相同,则表明该压阻式压力传感器的压感件阻值异常,则比较结果为压阻式压力传感器的压感件阻值异常。
S6500、根据比较结果、检测单元的电流源的电流值和压感件的标准阻值,获得并输出至少一个电压输出端与处理芯片间的连接是否错误的第一检测结果、及压感件的实际阻值与标准阻值是否一致的第二检测结果。
基于上述步骤S6400可知,第一检测结果表征压阻式压力传感器与处理芯片之间的电路连接正常,或压阻式压力传感器与处理芯片之间的电路连接异常。第二检测结果表征压阻式压力传感器的压感件阻值正常,或表征压阻式压力传感器的压感件阻值异常。在输出的第一检测结果和第二检测结果中的任一检测结果表征电路出现异常时,可以采取对应措施进行处理,以使压阻式压力传感器正常工作,从而提高压阻式压力传感器的讯号精准度、增加产品合格率。
其中,本实施例中,至少一个电压输出端为第一电压输出端和第二电压输出端中的至少一个。
以上,为本实施例提供的压阻式压力传感器的检测电路的检测方法,基于压阻式压力传感器的检测电路,通过检测电路在开启和关闭时的不同数据, 来判断压阻式压力传感器是否连接正确以及压阻式压力传感器的压感件阻值是否有问题,从而辅助生产,提高压阻式压力传感器的讯号精准度和产品合格率。
本实施例还提供一种电子设备,参考图7,包括:
处理芯片730,用于接收压阻式压力传感器输出的电压信号,对压阻式压力传感器输出的电压信号进行处理。
压阻式压力传感器710,压阻式压力传感器采用惠斯通电桥电路,压阻式压力传感器包括第一电压输出端和第二电压输出端,第一电压输出端与处理芯片的第一电压输入引脚连接,第二电压输出端与处理芯片的第二电压输入引脚连接;
检测电路720,检测电路为上述实施例提供的检测电路,例如图2和图5中的检测电路。
检测电路720中检测单元的开关的控制端与处理芯片的控制信号输出引脚连接,不同开关对应不同的控制信号输出引脚,以实现在一检测单元进入检测状态的情况下,其他检测单元均处于开关断开的非检测状态,从而逐一对压阻式压力传感器的每一压感件进行检测。
检测电路720包括第一检测单元、第二检测单元、第三检测单元和第四检测单元中的至少一个检测单元;每一检测单元包括电流源和与电流源串联连接的开关,开关的控制端与处理芯片连接;其中,第一检测单元为用于连接在第一电压输出端与第一接地端之间的检测单元;第二检测单元为用于连接在第一电源端与第一电压输出端之间的检测单元;第三检测单元为用于连接在第二电压输出端与第一接地端之间的检测单元;第四检测单元为用于连接在第一电源端与第二电压输出端之间的检测单元。
检测电路720还包括基准电流电路,检测电路中各检测单元的电流源为对应于所述基准电流电路的镜像电流源。基准电流电路包括运算放大器、第一PMOS管、第二PMOS管、第一NMOS管、第二NMOS管和电阻;运算放大器的第一输入端为参考电源输入端,运算放大器的第二输入端与第一NMOS管的源极连接,运算放大器的输出端与第一NMOS管的栅极连接,电阻连接 在第二输入端与所述第一接地端之间;第一PMOS管的源极和第二PMOS管的源极均与第一电源端连接,第一PMOS管的漏极与第一NMOS管的漏极连接,第一PMOS管的栅极与第一PMOS管的漏极和第二PMOS管的栅极连接;第二PMOS管的漏极与第二NMOS管的漏极连接,第二NMOS管的源极与第一接地端连接,第二NMOS管的栅极与所述第二NMOS管的漏极连接;第二检测单元和第四检测单元的电流源对应于第一PMOS管的镜像电流源;第一检测单元和第三检测单元的电流源为对应于第二NMOS管的镜像电流源。该检测电路的具体结构和连接关系,在上述压阻式压力传感器的检测电路中均有描述,在此不再赘述。
需要说明的是,本实施例的处理芯片用于在存储于存储器中的计算机程序的控制下,实现图6所示的一种检测电路的检测方法。该存储器可以是处理芯片的内存,也可以是非处理芯片的外部存储器。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理芯片执行时实现上述检测电路的检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理芯片为上述实施例中所述的电子设备中的处理芯片。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (10)

  1. 一种压阻式压力传感器的检测电路,其特征在于,所述压阻式压力传感器采用惠斯通电桥电路,所述压阻式压力传感器包括第一电压输出端和第二电压输出端,所述第一电压输出端与处理芯片的第一电压输入引脚连接,所述第二电压输出端与所述处理芯片的第二电压输入引脚连接;
    所述检测电路包括第一检测单元、第二检测单元、第三检测单元和第四检测单元中的至少一个检测单元;每一检测单元包括电流源和与所述电流源串联连接的开关,所述开关的控制端与所述处理芯片连接;
    其中,所述第一检测单元为用于连接在所述第一电压输出端与第一接地端之间的检测单元;所述第二检测单元为用于连接在第一电源端与所述第一电压输出端之间的检测单元;所述第三检测单元为用于连接在所述第二电压输出端与所述第一接地端之间的检测单元;所述第四检测单元为用于连接在所述第一电源端与所述第二电压输出端之间的检测单元。
  2. 根据权利要求1所述的检测电路,其特征在于,所述检测电路包括所述第一检测单元、第二检测单元、第三检测单元和第四检测单元中的至少两个检测单元,其中,所述至少两个检测单元包括与所述第一电压输出端连接的检测单元和与所述第二电压输出端连接的检测单元。
  3. 根据权利要求1或2所述的检测电路,其特征在于,所述检测电路包括所述第一检测单元、所述第二检测单元、所述第三检测单元和所述第四检测单元。
  4. 根据权利要求1至3任一项所述的检测电路,其特征在于,所述开关为开关管。
  5. 根据权利要求1至4任一项所述的检测电路,其特征在于,所述检测电路中各检测单元的电流源的电流值相等。
  6. 根据权利要求1至5任一项所述的检测电路,其特征在于,所述检测电路还包括基准电流电路,所述检测电路中各检测单元的电流源为对应于所述基准电流电路的镜像电流源。
  7. 根据权利要求1至6任一项所述的检测电路,其特征在于,所述基准电流电路包括运算放大器、第一PMOS管、第二PMOS管、第一NMOS管、第二NMOS管和电阻;
    所述运算放大器的第一输入端为参考电源输入端,所述运算放大器的第二输入端与所述第一NMOS管的源极连接,所述运算放大器的输出端与所述第一NMOS管的栅极连接,所述电阻连接在所述第二输入端与所述第一接地端之间;所述第一PMOS管的源极和所述第二PMOS管的源极均与所述第一电源端连接,所述第一PMOS管的漏极与所述第一NMOS管的漏极连接,所述第一PMOS管的栅极与所述第一PMOS管的漏极和所述第二PMOS管的栅极连接;所述第二PMOS管的漏极与所述第二NMOS管的漏极连接,所述第二NMOS管的源极与所述第一接地端连接,所述第二NMOS管的栅极与所述第二NMOS管的漏极连接;
    所述第二检测单元和所述第四检测单元的电流源对应于所述第一PMOS管的镜像电流源;
    所述第一检测单元和所述第三检测单元的电流源为对应于所述第二NMOS管的镜像电流源。
  8. 一种基于权利要求1至7中任一项所述的检测电路的检测方法,其特征在于,包括:
    确定检测电路中的进入检测状态的一检测单元;其中,在一检测单元进入检测状态的情况下,其他检测单元均处于开关断开的非检测状态;
    对于进入检测状态的检测单元,先控制所述检测单元的开关断开,再控制所述检测单元的开关导通;其中,所述检测单元与压阻式压力传感器的一桥臂上的压感件串联连接在第一电源端与第一接地端之间;
    在所述开关断开的情况下,分别获取压阻式压力传感器的第一电压输出端的第一电压值和第二电压输出端的第二电压值,并计算所述第二电压值与所述第一电压值之间的第一电压差值;
    在所述开关导通的情况下,分别获取所述第一电压输出端的第三电压值和所述第二电压输出端的第四电压值,并计算所述第四电压值与所述第三电压值之间的第二电压差值;
    比较所述第一电压差值与所述第二电压差值,得到比较结果;
    根据所述比较结果、所述检测单元的电流源的电流值和所述压感件的标准阻值,获得并输出至少一个电压输出端与处理芯片间的连接是否错误的第一检测结果、及所述压感件的实际阻值与所述标准阻值是否一致的第二检测结果;其中,所述至少一个电压输出端为所述第一电压输出端和所述第二电压输出端中的至少一个。
  9. 一种电子设备,其特征在于,包括:
    处理芯片;
    压阻式压力传感器,所述压阻式压力传感器采用惠斯通电桥电路,所述压阻式压力传感器包括第一电压输出端和第二电压输出端,所述第一电压输出端与所述处理芯片的第一电压输入引脚连接,所述第二电压输出端与所述处理芯片的第二电压输入引脚连接;以及,
    所述检测电路,所述检测电路为权利要求1至7中任一项所述的检测电路,所述检测电路中检测单元的开关的控制端与所述处理芯片的控制信号输出引脚连接,不同开关对应不同的控制信号输出引脚。
  10. 根据权利要求9所述的电子设备,其特征在于,所述处理芯片用于在存储于存储器中的计算机程序的控制下,实现根据权利要求8所述的检测方法。
PCT/CN2022/119292 2021-09-16 2022-09-16 压阻式压力传感器的检测电路、检测方法和电子设备 WO2023041030A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111090431.8 2021-09-16
CN202111090431.8A CN113865757A (zh) 2021-09-16 2021-09-16 压阻式压力传感器的检测电路、检测方法和电子设备

Publications (1)

Publication Number Publication Date
WO2023041030A1 true WO2023041030A1 (zh) 2023-03-23

Family

ID=78996275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119292 WO2023041030A1 (zh) 2021-09-16 2022-09-16 压阻式压力传感器的检测电路、检测方法和电子设备

Country Status (2)

Country Link
CN (1) CN113865757A (zh)
WO (1) WO2023041030A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112764566A (zh) * 2019-11-01 2021-05-07 福州京东方光电科技有限公司 触控屏的控制方法、装置以及电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113865757A (zh) * 2021-09-16 2021-12-31 歌尔微电子股份有限公司 压阻式压力传感器的检测电路、检测方法和电子设备
CN115950470B (zh) * 2022-12-20 2024-04-19 陕西宝成航空仪表有限责任公司 一种传感器功能自检电路

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304074B1 (en) * 1998-11-13 2001-10-16 U.S. Philips Corporation Method for the offset calibration of a magnetoresistive angle sensor including at least one wheatstone bridge
US20060250146A1 (en) * 2005-05-06 2006-11-09 Augustin Braun Method and device for the temperature compensation of a measuring bridge
CN102368086A (zh) * 2011-08-31 2012-03-07 华东光电集成器件研究所 一种惠斯通电桥补偿电阻的测试方法
CN104796127A (zh) * 2015-04-10 2015-07-22 西安电子科技大学 用于红外接近感测器的红外发光二极管驱动电路
CN104793057A (zh) * 2015-04-28 2015-07-22 华东光电集成器件研究所 一种加速度传感器桥臂电阻测试系统
CN108872907A (zh) * 2017-05-09 2018-11-23 迈来芯电子科技有限公司 电桥式传感器错误检查
CN110501572A (zh) * 2019-09-26 2019-11-26 中国兵器工业集团第二一四研究所苏州研发中心 一种惠斯通电桥电阻的测试方法
CN111601429A (zh) * 2020-06-03 2020-08-28 西安中颖电子有限公司 一种恒流驱动电路
CN113865757A (zh) * 2021-09-16 2021-12-31 歌尔微电子股份有限公司 压阻式压力传感器的检测电路、检测方法和电子设备

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3204621B2 (ja) * 1996-11-06 2001-09-04 タカラベルモント株式会社 医療用フットコントロールスイッチ
JP2004191189A (ja) * 2002-12-11 2004-07-08 Hitachi Unisia Automotive Ltd ブリッジ型抵抗回路装置
EP2485028B1 (de) * 2011-02-07 2015-04-01 ELMOS Semiconductor AG Druckempfindliche Verstärkerstufe
CN102156019B (zh) * 2011-03-28 2013-11-27 豪展医疗科技股份有限公司 压力传感器
CN103105265B (zh) * 2011-11-11 2015-04-29 沈阳金凯瑞科技有限公司 一种负荷传感器在线检测仪
CN103245372B (zh) * 2012-02-13 2017-04-12 富泰华工业(深圳)有限公司 电桥式传感器侦测电路
CN102981032B (zh) * 2012-11-13 2015-09-16 深圳鼎信芯微电子有限公司 一种用于全电感电流波形的检测电路及方法
CN103234695B (zh) * 2013-04-24 2015-09-02 武汉航空仪表有限责任公司 一种压力变送器的检测校验电路及其方法
CN103323153B (zh) * 2013-06-27 2015-10-21 无锡信大气象传感网科技有限公司 一种压阻式压力变送器
WO2015190331A1 (ja) * 2014-06-09 2015-12-17 日立オートモティブシステムズ株式会社 力学量測定装置およびそれを用いた圧力センサ
CN104075841B (zh) * 2014-06-13 2016-06-08 四川亚美动力技术有限公司 航空发动机压力传感器检测电路
US10054511B2 (en) * 2014-10-01 2018-08-21 Sensata Technologies, Inc. Pressure sensor with correction of offset drift in cyclic signal
CN104483043B (zh) * 2014-12-19 2017-06-16 深圳供电局有限公司 一种瓷柱绝缘子应力检测装置及方法
CN205079891U (zh) * 2015-09-01 2016-03-09 宁波希磁电子科技有限公司 一种磁性压力传感器
CN108235748B (zh) * 2017-02-10 2020-01-03 深圳市汇顶科技股份有限公司 压阻式传感器、压力检测装置、电子设备
US10557770B2 (en) * 2017-09-14 2020-02-11 Sensata Technologies, Inc. Pressure sensor with improved strain gauge
CN107907269A (zh) * 2017-09-28 2018-04-13 芯海科技(深圳)股份有限公司 一种电阻电桥传感器诊断电路
CN110220537A (zh) * 2019-06-12 2019-09-10 五邑大学 一种应用于压阻式传感器的检测电路
CN210807747U (zh) * 2019-11-18 2020-06-19 深圳市富满电子集团股份有限公司 Led短路检测电路及驱动芯片
CN211347212U (zh) * 2019-11-18 2020-08-25 长春理工大学 全桥压力传感器快速检测装置
CN211013318U (zh) * 2019-12-19 2020-07-14 南京科技职业学院 一种压力传感器测量电路
CN112254875B (zh) * 2020-10-26 2022-03-08 南通大学 一种电桥式传感器连接状态的判别电路及判别方法
CN112432721A (zh) * 2020-11-24 2021-03-02 武汉飞恩微电子有限公司 压力传感器故障检测电路、方法及压力传感器
CN112798180A (zh) * 2021-01-04 2021-05-14 珠海格力电器股份有限公司 力传感器的故障检测方法及计算机可读存储介质
CN113053861A (zh) * 2021-03-09 2021-06-29 歌尔微电子股份有限公司 封装模组、封装工艺及电子设备
CN113029403B (zh) * 2021-03-09 2023-03-31 歌尔微电子股份有限公司 压力传感器及其制作方法、及电子设备
CN112697343B (zh) * 2021-03-23 2021-07-16 上海艾为微电子技术有限公司 电阻桥式压力传感器的检测电路、方法、电子设备及芯片
CN113301190B (zh) * 2021-04-16 2022-08-05 荣耀终端有限公司 压力传感器和电子设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304074B1 (en) * 1998-11-13 2001-10-16 U.S. Philips Corporation Method for the offset calibration of a magnetoresistive angle sensor including at least one wheatstone bridge
US20060250146A1 (en) * 2005-05-06 2006-11-09 Augustin Braun Method and device for the temperature compensation of a measuring bridge
CN102368086A (zh) * 2011-08-31 2012-03-07 华东光电集成器件研究所 一种惠斯通电桥补偿电阻的测试方法
CN104796127A (zh) * 2015-04-10 2015-07-22 西安电子科技大学 用于红外接近感测器的红外发光二极管驱动电路
CN104793057A (zh) * 2015-04-28 2015-07-22 华东光电集成器件研究所 一种加速度传感器桥臂电阻测试系统
CN108872907A (zh) * 2017-05-09 2018-11-23 迈来芯电子科技有限公司 电桥式传感器错误检查
CN110501572A (zh) * 2019-09-26 2019-11-26 中国兵器工业集团第二一四研究所苏州研发中心 一种惠斯通电桥电阻的测试方法
CN111601429A (zh) * 2020-06-03 2020-08-28 西安中颖电子有限公司 一种恒流驱动电路
CN113865757A (zh) * 2021-09-16 2021-12-31 歌尔微电子股份有限公司 压阻式压力传感器的检测电路、检测方法和电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112764566A (zh) * 2019-11-01 2021-05-07 福州京东方光电科技有限公司 触控屏的控制方法、装置以及电子设备

Also Published As

Publication number Publication date
CN113865757A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2023041030A1 (zh) 压阻式压力传感器的检测电路、检测方法和电子设备
US8787098B2 (en) System and method of reference cell testing
EP2443628B1 (en) Differential sense amplifier with current mirroring and reference memory cell
WO2014203704A1 (ja) ボルテージレギュレータ
KR102478249B1 (ko) 자동-추적 전류 비교기를 이용한 오디오 마이크로폰 검출
WO2017211193A1 (zh) 电压检测与判断电路和具有其的动力电池系统
US6486710B1 (en) Differential voltage magnitude comparator
JP5278114B2 (ja) センサ装置
JP4233711B2 (ja) センサ閾値回路
CN110858109B (zh) 自测试方法及对应电路和设备
CN112781752A (zh) 温度检测电路及芯片
JP5129302B2 (ja) センサ閾値決定回路
TWI434048B (zh) 電壓偵測電路
US9454174B2 (en) Power supply voltage monitoring circuit, and electronic circuit including the power supply voltage monitoring circuit
US10006958B2 (en) Semiconductor device and method of inspecting a semiconductor device
US20140240080A1 (en) Fuse circuit and semiconductor integrated circuit device
US6696846B1 (en) Self-balanced active current bridge for measuring the impedance of an external device
JP4352555B2 (ja) 圧力センサ
CN110957694A (zh) 电源装置、电流侦测电路及电流侦测方法
TW201930906A (zh) 測試裝置
Zhang et al. A High Accuracy and Wide Input Voltage Range Current Sense Amplifier for Bidirectional High-Side and Low-Side Current-Sensing
US7218171B1 (en) Voltage offset measurement for calibration of an integrated circuit amplifier
US20240213976A1 (en) High Side Current Detection Circuit, Overcurrent Protection Circuit, Calibration Method and Electronic Devices
KR101928016B1 (ko) 미세 전류 감지 기술을 적용한 가스 터빈 이산화탄소 소화 설비 시스템
JP2021051037A (ja) 検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE