WO2023040689A1 - 基于图像传感器位移式的三轴光学防抖系统、方法和装置 - Google Patents

基于图像传感器位移式的三轴光学防抖系统、方法和装置 Download PDF

Info

Publication number
WO2023040689A1
WO2023040689A1 PCT/CN2022/117045 CN2022117045W WO2023040689A1 WO 2023040689 A1 WO2023040689 A1 WO 2023040689A1 CN 2022117045 W CN2022117045 W CN 2022117045W WO 2023040689 A1 WO2023040689 A1 WO 2023040689A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
axis
image sensor
displacement
mover part
Prior art date
Application number
PCT/CN2022/117045
Other languages
English (en)
French (fr)
Inventor
王炜
秦诗鑫
黄昌福
林威智
何瑛勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023040689A1 publication Critical patent/WO2023040689A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0038Movement of one or more optical elements for control of motion blur by displacing the image plane with respect to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2217/00Details of cameras or camera bodies; Accessories therefor
    • G03B2217/005Blur detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras

Definitions

  • the present application relates to the field of image technology, and in particular to a three-axis optical anti-shake system based on image sensor displacement, a method, a camera module, electronic equipment, and a computer-readable storage medium.
  • anti-shake methods can be divided into electronic image stabilization (Electric Image Stabilization, EIS) and optical image stabilization (Optical Image Stabilization, OIS).
  • EIS Electronic Image Stabilization
  • OIS optical Image stabilization
  • EIS Electronic Image Stabilization
  • OIS optical Image Stabilization
  • OIS can include Lens-shift Optical Image Stabilization (LS OIS) and image sensor-shift OIS (Sensor-shift Optical Image Stabilization, SS OIS).
  • the process of image sensor translation OIS includes: collecting jitter data in the direction of yaw (yaw) and pitch (pitch) through the gyroscope; according to the jitter data, the driver chip drives the image sensor through the OIS motor to perform X-axis and/or Y-axis direction translation to compensate for jitter in the yaw and/or pitch direction.
  • the present application provides a three-axis optical image stabilization system based on image sensor displacement, a method, a camera module, electronic equipment, and a computer-readable storage medium, which can realize three-axis optical image stabilization based on image sensor displacement.
  • Embodiments of the present application provide a three-axis optical image stabilization system and method based on image sensor displacement, a camera module, electronic equipment, and a computer-readable storage medium, which can realize three-axis optical image stabilization based on image sensor displacement.
  • an embodiment of the present application provides a three-axis optical image stabilization system based on image sensor displacement, and the system includes a sensor, a controller, a driver chip, and an optical image stabilization motor.
  • the senor is used to collect first shaking data in the first direction, second shaking data in the second direction, and third shaking data in the third direction.
  • the controller is used for obtaining the displacement of the image sensor along the first axis, the displacement of the second axis and the displacement of the third axis according to the first shake data, the second shake data and the third shake data.
  • the driver chip is used to drive the image sensor to displace in each axis through the optical anti-shake motor according to the displacement of the image sensor in the first axis, the displacement of the second axis and the displacement of the third axis respectively .
  • the optical anti-shake motor includes an image sensor movable part, a magnet, a first coil, a second coil and a third coil; the first coil is arranged on the first side of the image sensor movable part, and the second coil is arranged on the image sensor movable part.
  • the third coil is arranged on the third side of the moving part of the image sensor, the first side and the second side are opposite sides, and the third side and the first side are adjacent sides; the magnet is used to generate a magnetic field .
  • the mover part of the image sensor After the first coil, the second coil and the third coil are energized, under the action of the magnetic field, a force acting on the mover part of the image sensor is generated to push the mover part of the image sensor to displace in each axis.
  • the mover part of the image sensor is connected with the image sensor, and the image sensor moves along with the movement of the mover part of the image sensor.
  • the image sensor is pushed to move along the first axis, the second axis and the third axis to perform the first Shake compensation on the first axis, the second axis, and the third axis, thus realizing three-axis optical image stabilization.
  • first direction, second direction, and third direction may be a pitch (pitch) direction, a yaw (yaw) direction, and a rotation (roll) direction, respectively.
  • the above-mentioned driver chip is specifically used for:
  • the first coil will generate the first Lorentz force acting on the mover part of the image sensor under the action of the magnetic field, the first Lorentz force
  • the Z force is used to drive the mover part of the image sensor to translate along the first axis.
  • the second coil will generate a second Lorentz force acting on the mover part of the image sensor under the action of a magnetic field, and the second Lorentz force
  • the Z force is used to generate a rotational moment to drive the mover part of the image sensor to rotate along the second axis.
  • the third coil will generate the third Lorentz force acting on the mover part of the image sensor under the action of the magnetic field, the third Lorentz force
  • the Z force is used to drive the mover part of the image sensor to translate along the third axis.
  • the first centerline of the first coil passes through the center point of the mover part of the image sensor, and the first centerline passes through the center of the first coil and is parallel to the first axis.
  • the second centerline of the second coil does not pass through the center point of the mover part of the image sensor, the second centerline passes through the center of the second coil and is parallel to the first axis.
  • a third centerline of the third coil passes through a center point of the mover part of the image sensor, and the third centerline passes through a center of the third coil and is parallel to the third axis.
  • three-axis optical image stabilization is achieved through a three-coil electromagnetic drive scheme. Furthermore, by setting the positions of the first coil, the second coil, and the third coil, the "multi-core integration" of the mover part of the image sensor can be realized. Furthermore, generation of crosstalk is reduced, and driving control precision is improved. However, if crosstalk compensation is required, the crosstalk compensation during the driving control process is reduced, and the real-time performance of the driving control is improved.
  • the first axis is the X axis
  • the second axis is the Y axis
  • the third axis is the R axis.
  • the first coil includes a fourth coil and a fifth coil
  • the second coil includes a sixth coil and a seventh coil
  • the fourth coil and the sixth coil are arranged oppositely
  • the fifth coil and the The seventh coil is arranged oppositely.
  • the above driver chip is specifically used for:
  • the fourth coil will act on the image sensor mover under the action of the magnetic field Part of the fourth Lorentz force, and the sixth coil generates the fifth Lorentz force acting on the mover part of the image sensor under the action of the magnetic field.
  • the fifth coil acts on the image sensor mover under the action of the magnetic field Part of the sixth Lorentz force
  • the seventh coil generates a seventh Lorentz force acting on the mover part of the image sensor under the action of the magnetic field.
  • the sixth current signal is applied to the third coil, so that the third coil generates a Lorentz force acting on the mover part of the image sensor under the action of a magnetic field to drive the mover part of the image sensor displacement in the third axis;
  • the mover part of the image sensor moves upward along the first axis and/or the second axis displacement.
  • three-axis optical image stabilization is achieved through a five-coil electromagnetic drive scheme.
  • the number of coils is more, the driving force that can be provided is greater, and the driving stability is better.
  • the fourth centerline of the fourth coil, the fifth centerline of the fifth coil, the sixth centerline of the sixth coil, and the seventh centerline of the seventh coil are not passing through the center point of the mover part of the image sensor;
  • the fourth centerline passes through the center of the fourth coil and is parallel to the first axis
  • the fifth centerline passes through the center of the fifth coil and is parallel to the first axis
  • the sixth centerline passes through the sixth coil and is parallel to the first axis parallel
  • the seventh centerline passes through the center of the seventh coil and the first axes are parallel.
  • a third centerline of the third coil may pass through a center point of the mover part of the image sensor, the third centerline passes through a center of the third coil and is parallel to the third axis.
  • the coils of the fourth coil, the fifth coil, the sixth coil, and the seventh coil are all the same; or, the coils of the fourth coil and the sixth coil have the same size, and the fifth coil and the sixth coil The coil size of the seventh coil is the same, and the coil size of the fourth coil is different from that of the fifth coil.
  • the third coil includes an eighth coil and a ninth coil; the above-mentioned driving chip is specifically used for:
  • the eighth coil will generate the eighth Lorentz force acting on the mover part of the image sensor under the action of the magnetic field
  • the ninth coil generates a ninth Lorentz force acting on the mover part of the image sensor under the action of the magnetic field
  • the mover part of the image sensor translates along the third axis under the joint action of the eighth Lorentz force and the ninth Lorentz force.
  • the distance between the center point of the mover part of the image sensor and the center of the eighth coil is equal to the distance between the center point of the mover part of the image sensor and the center of the ninth coil.
  • the center of gravity of the mover part of the image sensor coincides with the geometric center of the mover part of the image sensor.
  • the center of gravity, the geometric center and the mechanical center of the mover part of the image sensor coincide, and the mechanical center is the center of the Lorentz force along the first axis and the Lorentz force along the third axis.
  • the system includes a position detection module, configured to detect the position of the image sensor.
  • the position detection module includes a first position sensor, a second position sensor, and a third position sensor;
  • the first position sensor is used to cooperate with the first magnet to acquire the position signal of the image sensor on the first axis;
  • the second position sensor is used to cooperate with the second magnet to obtain the position signal of the image sensor on the second axis;
  • the third position sensor is used to cooperate with the third magnet to acquire the position signal of the image sensor on the third axis;
  • the first position sensor is arranged in the middle area of the first coil; the second position sensor is arranged in the middle area of the second coil; the third position sensor is arranged in the middle area of the third coil;
  • the first magnet is arranged in the middle area of the fifth coil, and the second magnet is arranged in the middle area of the seventh coil,
  • the third magnet is arranged in the middle area of the third coil;
  • the first coil includes the fourth coil and the fifth coil
  • the second coil includes the sixth coil and the seventh coil
  • the third coil includes the eighth coil and the ninth coil
  • the first magnet is arranged in the middle area of the fifth coil
  • the second magnet is arranged in the middle area of the seventh coil
  • the third magnet is arranged in the middle area of the eighth coil
  • the magnets include a first magnet, a second magnet and a third magnet.
  • the three-axis negative feedback of the image sensor can be realized, and then the closed-loop negative feedback control process in the three-axis optical image stabilization can be realized, and the precision of the drive control can be improved.
  • the controller is specifically configured to: obtain the target position of the image sensor according to the first jitter data, the second jitter data, and the third jitter data; Position, obtain the displacement of the image sensor on the first axis, the displacement on the second axis and the displacement on the third axis; the initial position of the image sensor is detected by the position detection module.
  • the controller is specifically configured to: acquire the position signal of the image sensor fed back by the position detection module, the position signal of the image sensor is used to describe the current position of the image sensor; Whether the error between the current position of the sensor and the target position is within the preset range; when the error between the current position of the image sensor and the target position is not within the preset range, according to the current position of the image sensor and the target position, the image sensor is obtained The displacement on the first axis, the displacement on the second axis and the displacement on the third axis;
  • the driver is specifically used to: read the crosstalk calibration data pre-stored in the optical anti-shake motor; find the crosstalk compensation amount of the first axis, the crosstalk compensation amount of the second axis and the crosstalk compensation of the third axis from the crosstalk calibration data Quantity; use the crosstalk compensation amount of the first axis to perform crosstalk compensation on the displacement of the first axis to obtain the displacement after crosstalk compensation on the first axis, and use the crosstalk compensation amount of the second axis to calculate the displacement of the second axis
  • Crosstalk compensation is performed on the displacement in the third axis to obtain the crosstalk-compensated displacement in the second axis, and crosstalk compensation is performed on the displacement in the third axis using the crosstalk compensation in the third axis to obtain the displacement in the third axis
  • the displacement after crosstalk compensation according to the displacement after crosstalk compensation on the first axis, the image sensor is driven to move along the first axis through the optical image stabilization motor; according to the displacement after crosstalk compensation
  • the crosstalk compensation amount of the first axis includes the crosstalk compensation amount of the displacement of the image sensor along the second axis to the displacement along the first axis, and the crosstalk compensation of the displacement of the image sensor along the third axis to the displacement along the first axis
  • the amount of crosstalk compensation in the second axis includes the amount of crosstalk compensation of the displacement of the image sensor along the first axis to the displacement along the second axis, and the crosstalk compensation of the displacement of the image sensor along the third axis to the displacement along the second axis
  • the amount of crosstalk compensation in the third axis includes the amount of crosstalk compensation of the displacement of the image sensor along the first axis to the displacement along the third axis, and the compensation of crosstalk between the displacement of the image sensor along the second axis and the displacement of the image sensor along the third axis quantity.
  • the driver chip uses the pre-calibrated crosstalk compensation amount in the closed-loop negative feedback process to perform crosstalk compensation on the displacement of the image sensor in each axis direction, which reduces the influence of crosstalk and improves the anti-shake drive control.
  • the accuracy makes the optical image more stable, no image rotation or small image rotation.
  • the senor includes a gyroscope and an accelerometer.
  • the embodiment of the present application provides a three-axis optical image stabilization method based on image sensor displacement, which is applied to the driver chip.
  • the method includes: obtaining the displacement of the image sensor in the first axis, the second axis The amount of displacement on the first axis, and the amount of displacement on the third axis; according to the amount of displacement on the first axis, the amount of displacement on the second axis, and the amount of displacement on the third axis, the image is driven by an optical anti-shake motor The sensor is displaced in each axis.
  • the optical anti-shake motor includes an image sensor movable part, a magnet, a first coil, a second coil and a third coil; the first coil is arranged on the first side of the image sensor movable part, and the second coil is arranged on the image sensor movable part.
  • the third coil is arranged on the third side of the image sensor mover part, the first side and the second side are opposite sides, and the third side and the first side are adjacent sides; the image sensor mover part
  • the image sensor is connected with the image sensor, and the image sensor moves with the movement of the image sensor mover part, and the magnet is used to generate a magnetic field; after the first coil, the second coil and the third coil are energized, under the action of the magnetic field, they will act on the image sensor mover.
  • the force of the sub-part to push the mover part of the image sensor to displace in each axis.
  • the image sensor is driven by an optical anti-shake motor in each Axial upward displacement, including:
  • the first coil will generate the first Lorentz force acting on the mover part of the image sensor under the action of the magnetic field, the first Lorentz force Z force is used to drive the mover part of the image sensor to translate along the first axis;
  • the second coil will generate a second Lorentz force acting on the mover part of the image sensor under the action of a magnetic field, and the second Lorentz force
  • the z force is used to generate a rotational moment to drive the mover part of the image sensor to rotate along the second axis;
  • the third coil will generate the third Lorentz force acting on the mover part of the image sensor under the action of the magnetic field, the third Lorentz force Z force is used to drive the mover part of the image sensor to translate along the third axis;
  • the first centerline of the first coil passes through the center point of the mover part of the image sensor, and the first centerline passes through the center of the first coil and is parallel to the first axis;
  • the second centerline of the second coil does not pass through the center point of the mover part of the image sensor, and the second centerline passes through the center of the second coil and is parallel to the first axis;
  • a third centerline of the third coil passes through a center point of the mover part of the image sensor, and the third centerline passes through a center of the third coil and is parallel to the third axis.
  • the first coil includes a fourth coil and a fifth coil
  • the second coil includes a sixth coil and a seventh coil
  • the fourth coil and the sixth coil are arranged oppositely, and the fifth coil and the The seven coils are set relative to each other;
  • the optical anti-shake motor drives the image sensor to move in each axis, including:
  • the fourth coil will act on the image sensor mover under the action of the magnetic field Part of the fourth Lorentz force, and the sixth coil generates the fifth Lorentz force acting on the mover part of the image sensor under the action of the magnetic field;
  • the fifth coil acts on the image sensor mover under the action of the magnetic field Part of the sixth Lorentz force
  • the seventh coil generates the seventh Lorentz force acting on the mover part of the image sensor under the action of the magnetic field
  • the sixth current signal is applied to the third coil, so that the third coil generates a Lorentz force acting on the mover part of the image sensor under the action of a magnetic field to drive the mover part of the image sensor displacement in the third axis;
  • the mover part of the image sensor moves upward along the first axis and/or the second axis displacement.
  • the fourth centerline of the fourth coil, the fifth centerline of the fifth coil, the sixth centerline of the sixth coil, and the seventh centerline of the seventh coil are not Passes through the center point of the mover part of the image sensor; the third centerline of the third coil passes through the center point of the mover part of the image sensor, the third centerline passes through the center of the third coil and is parallel to the third axis.
  • the fourth centerline passes through the center of the fourth coil and is parallel to the first axis
  • the fifth centerline passes through the center of the fifth coil and is parallel to the first axis
  • the sixth centerline passes through the sixth coil and is parallel to the first axis parallel
  • the seventh centerline passes through the center of the seventh coil and the first axes are parallel.
  • the coils of the fourth coil, the fifth coil, the sixth coil and the seventh coil are all the same;
  • the fourth coil and the sixth coil have the same coil size
  • the fifth coil and the seventh coil have the same coil size
  • the fourth coil and the fifth coil have different coil sizes.
  • the third coil includes an eighth coil and a ninth coil
  • the sixth current signal is applied to the third coil, so that the third coil can generate a Lorentz force acting on the mover part of the image sensor under the action of the magnetic field, including:
  • the eighth coil will generate the eighth Lorentz force acting on the mover part of the image sensor under the action of the magnetic field
  • the ninth coil generates a ninth Lorentz force acting on the mover part of the image sensor under the action of the magnetic field
  • the mover part of the image sensor translates along the third axis under the joint action of the eighth Lorentz force and the ninth Lorentz force.
  • the distance between the center point of the mover part of the image sensor and the center of the eighth coil is equal to the distance between the center point of the mover part of the image sensor and the center of the ninth coil.
  • the center of gravity of the mover part of the image sensor coincides with the geometric center of the mover part of the image sensor.
  • the image sensor is driven by an optical anti-shake motor to Before the upward displacement of each axis, the method also includes:
  • the crosstalk compensation amount of the first axis includes the crosstalk compensation amount of the displacement of the image sensor along the second axis to the displacement along the first axis, and the crosstalk compensation of the displacement of the image sensor along the third axis to the displacement along the first axis quantity;
  • the crosstalk compensation amount in the second axis includes the crosstalk compensation amount of the displacement of the image sensor along the first axis to the displacement along the second axis, and the crosstalk compensation of the displacement of the image sensor along the third axis to the displacement along the second axis;
  • the crosstalk compensation amount in the third axis includes the crosstalk compensation amount of the displacement of the image sensor along the first axis versus the displacement along the third axis, and the crosstalk compensation amount of displacement of the image sensor along the second axis versus displacement along the third axis.
  • an embodiment of the present application provides a camera module, including the three-axis optical image stabilization system based on image sensor displacement according to any one of the above first aspect.
  • an embodiment of the present application provides an electronic device, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program, any one of the above-mentioned first aspects can be realized. system.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the method according to any one of the above-mentioned second aspects is implemented.
  • an embodiment of the present application provides a chip system, the chip system includes a processor, the processor is coupled to a memory, and the processor executes a computer program stored in the memory to implement the above-mentioned second aspect. method.
  • the chip system can be a single chip, or a chip module composed of multiple chips.
  • an embodiment of the present application provides a computer program product, which, when the computer program product is run on an electronic device, causes the electronic device to execute the method described in any one of the above-mentioned second aspects.
  • FIG. 1 is a schematic diagram of a dual-axis optical image stabilization provided in an embodiment of the present application
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a camera module 210 provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a video shooting scene provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of an image sensor displacement-based optical anti-shake system provided in an embodiment of the present application
  • FIG. 6 is a schematic diagram of a three-axis optical image stabilization system based on image sensor displacement provided by an embodiment of the present application
  • FIG. 7 is a schematic block diagram of a three-axis optical image stabilization drive control based on image sensor displacement provided by an embodiment of the present application;
  • FIG. 8 is a schematic diagram of the three-axis optical image stabilization driving process provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of a three-coil electromagnetic drive scheme provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a five-coil electromagnetic drive scheme provided by the embodiment of the present application.
  • Fig. 11 is another schematic diagram of the five-coil electromagnetic drive scheme provided by the embodiment of the present application.
  • Fig. 12 is a schematic diagram of a six-coil electromagnetic drive scheme provided by the embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a process of an image sensor displacement-based optical image stabilization method provided by an embodiment of the present application.
  • the electromagnetic coil can only generate current thrust in the two-axis direction after being energized, and can only push the image sensor to move in the two-axis direction. Realize dual-axis optical image stabilization in pitch and yaw directions.
  • the existing electromagnetic driving scheme can only push the image sensor to translate along the X-axis direction and/or translate along the Y-axis direction, but cannot push the image sensor to rotate on the XY plane, and thus cannot perform shake compensation in the roll direction.
  • the crosstalk in the embodiment of the present application means that when the image sensor is driven to be displaced in any direction, the image sensor will generate additional displacement in other directions.
  • the driving chip can drive the image sensor 100 to translate ⁇ x 1 along the X-axis direction through the image sensor actuating structure (not shown in FIG. 1 ).
  • the image sensor actuating structure is used to drive the image sensor to move along the X-axis and/or the Y-axis.
  • the mechanical center refers to the mechanical center of the force along the X-axis direction and the force along the Y-axis direction.
  • the image sensor 100 when the image sensor 100 translates ⁇ x 1 along the X-axis direction, the image sensor 100 will generate a corresponding translation amount y 1 in the Y-axis direction, and will also generate a rotation angle in the XY plane. Therefore, the actual possible position of the image sensor 100 is ( ⁇ x 1 , y 1 ).
  • the driving chip drives the image sensor 100 to translate ⁇ y 1 along the Y-axis direction.
  • the image sensor 100 will generate an additional translation amount x 1 in the X-axis direction, and will also generate a rotation angle in the XY plane. Therefore, the actual possible position of the image sensor 100 is (x 1 , ⁇ y 1 ).
  • the driving chip drives the image sensor 100 to translate ⁇ x 1 along the X-axis direction and ⁇ y 1 along the Y-axis direction. Due to the crosstalk problem, the image sensor 100 generates an additional translation amount of x 2 in the X-axis direction, an additional translation amount of y 2 in the Y-axis direction, and a rotation angle ⁇ 1 in the XY plane. Therefore, the actual possible position of the image sensor 100 is ( ⁇ x 1 +x 2 , ⁇ y 1 +y 2 ).
  • the embodiment of the present application provides a three-axis optical image stabilization solution based on image sensor displacement to realize three-axis optical image stabilization in pitch (pitch), yaw (yaw) and rotation (roll) directions. shake.
  • the precision of the anti-shake drive control is high, the optical image stability is high, and there is no image rotation or image rotation smaller.
  • the "multi-center integration" of the optical image stabilization motor is realized to reduce the crosstalk compensation made by the control algorithm.
  • the optical image stabilization solution based on image sensor displacement can be applied to a camera module of an electronic device, so as to suppress shake in a corresponding direction when shooting through the camera module.
  • the electronic device 200 includes a camera module 210 .
  • the camera module 210 may be a telephoto camera module or a periscope telephoto camera module, a wide-angle camera module, or other types of camera modules, which are not limited herein.
  • the camera module 210 includes devices such as lenses and image sensors.
  • the camera module 210 may include a lens group 2101 and an image sensor 2102 .
  • the lens group 2101 includes a plurality of lenses for transmitting the imaging light beam to the image sensor 2102, and the image sensor 2102 is used for converting the imaging light beam into electrical signals to obtain image data.
  • FIG. 3 also shows the coordinate system in the camera module.
  • the axis parallel to the optical axis of the lens group 2101 is the Z axis, and the axes perpendicular to the Z axis are respectively the Y axis and the X axis.
  • Rotation around the Y axis is called yaw
  • rotation around the X axis is called pitch
  • rotation around the Z axis is called roll.
  • the optical anti-shake solution provided by the embodiments of the present application can realize shake suppression in three directions: yaw, pitch and roll.
  • the camera module 210 may also include other devices for optical image stabilization, for example, an optical image stabilization motor, and a position sensor for detecting the position of the image sensor, etc. .
  • the electronic device 200 is exemplarily a mobile phone.
  • the electronic device 200 may also be a notebook computer, a tablet computer, a driving recorder, a camera, or a monitoring device, etc., which is not limited herein.
  • the electronic device 200 when the user holds the mobile phone 400 for video shooting, the body of the mobile phone 400 will shake due to shaking hands.
  • the mobile phone 400 acquires angular velocity signals in three directions of yaw, pitch, and roll through the integrated gyroscope and accelerometer. Based on the angular velocity signals in these three directions, the image is driven by an optical image stabilization motor.
  • the sensor performs shake displacement compensation in three directions of yaw, pitch and roll to realize three-axis optical image stabilization.
  • the driving recorder when the electronic device 200 is a driving recorder, the driving recorder is set on the vehicle, and it will vibrate due to the shaking of the vehicle during the running of the vehicle.
  • the driving recorder collects vibration data in three directions through integrated gyroscopes and accelerometers, and realizes vibration displacement compensation in three directions based on the vibration data in three directions.
  • the optical anti-shake system is firstly introduced, and in the process of introducing the optical anti-shake system, the crosstalk compensation process is exemplarily introduced. After introducing the optical anti-shake system, the electromagnetic drive scheme of the optical anti-shake motor will be introduced.
  • the optical image stabilization system 500 may include a signal acquisition module 51 , a signal processing module 52 , a position acquisition module 53 , an image sensor drive module 54 and a position detection module 55 .
  • the signal acquisition module 51 is used to acquire raw angular velocity signals in various directions.
  • the original angular velocity signal is an analog signal.
  • the above-mentioned signal acquisition module 51 can acquire the original angular velocity signal in the corresponding direction according to the actual anti-shake needs. For example, when it is necessary to realize three-axis optical image stabilization, the signal acquisition module 51 collects the original angular velocity signals in the three directions of yaw, pitch and roll, so as to realize yaw, pitch and yaw. ) and vibration suppression in three directions of rotation (roll). For another example, when dual-axis optical anti-shake needs to be realized, the signal acquisition module 51 collects the original angular velocity signals in two directions of yaw (yaw) and pitch (pitch), so as to realize two directions of yaw (yaw) and pitch (pitch). jitter suppression.
  • the signal acquisition module 51 can also only acquire the raw angular velocity signal in one direction. It is not limited here.
  • the signal acquisition module 51 may include an inertial measurement unit, which exemplarily includes a gyroscope, an accelerometer, and the like.
  • the signal processing module 52 is used for processing the analog angular velocity signal collected by the signal collecting module 51 to obtain the processed angular velocity signal.
  • the processed angular velocity signal is a digital signal.
  • the processing of the angular velocity analog signal may include but not limited to: analog-to-digital conversion, filtering, integration, and Fourier transform. That is, through an analog-to-digital converter (analoguetodigital conversion, ADC), the angular velocity analog signal collected by the signal acquisition module 51 is subjected to analog-to-digital conversion to obtain an angular velocity digital signal; and then a low-pass filter (Lowpass filter, LPF) is used to filter the angular velocity digital signal , to filter out the high-frequency signal and environmental noise in the angular velocity digital signal, and retain the low-frequency angular velocity digital signal; finally, integrate and Fourier transform the filtered low-frequency angular velocity digital signal to obtain the frequency spectrum and angle signal.
  • the frequency spectrum can be obtained through Fourier transform
  • the angle signal can be obtained through integration.
  • processes such as analog-to-digital conversion, filtering, integration, and Fourier transform are performed on the angular velocity analog signal in each direction.
  • the signal acquisition module 51 respectively acquires raw angular velocity signals in three directions of yaw, pitch and roll.
  • the frequency spectrum and angle signal corresponding to the pitch direction are obtained through an analog-to-digital converter, a low-pass filter, an integrating circuit and a Fourier transform circuit in sequence.
  • the position acquisition module 53 is used to determine the target position that the image sensor should reach according to the output of the signal processing module 52 .
  • the position acquisition module 53 can process the output of the signal processing module 52 to obtain the shaking frequency and shaking amplitude in each direction; then according to the shaking frequency and shaking amplitude in each direction, obtain The target position to be reached.
  • the output of the signal processing module 52 includes a frequency spectrum and an angle signal corresponding to a pitch direction, a frequency spectrum and an angle signal corresponding to a yaw direction, and a frequency spectrum and an angle signal corresponding to a roll direction.
  • the position acquisition module 53 extracts the jitter frequency and jitter amplitude in the pitch (pitch) direction from the frequency spectrum and angle signal corresponding to the pitch (pitch) direction; extracts the frequency spectrum and angle signal corresponding to the yaw (yaw) direction to obtain The jitter frequency and jitter amplitude in the deflection (yaw) direction; from the frequency spectrum and angle signal corresponding to the rotation (roll) direction, the jitter frequency and jitter amplitude in the rotation (roll) direction are extracted.
  • the position obtaining module 53 is also used to determine the displacement amount that the image sensor should move in each direction according to the target position that the image sensor should reach and the starting position of the image sensor.
  • the displacement amount to be moved is the shake displacement compensation amount.
  • the initial position of the image sensor can be detected by the position detection module 55 .
  • the initial position of the image sensor refers to the current position of the image sensor. Through the initial position of the image sensor, the initial relative positional relationship between the reference point on the image sensor and the center of the optical path can be quickly and accurately judged.
  • the position acquisition module 53 After determining the shake displacement compensation amount of the image sensor in each direction, the position acquisition module 53 transmits the shake displacement compensation amount to the image sensor drive module 54 . And according to the shake displacement compensation amount and the position of the image sensor fed back by the position detection module 55 , closed-loop negative feedback control is performed.
  • the position acquisition module 53 may transmit the shake displacement compensation amounts in various directions to the image sensor drive module 54 through control signals, and the control signals carry the shake displacement compensation amounts in each direction.
  • the image sensor driving module 54 is used to drive the image sensor to move in each direction according to the displacement in each direction after obtaining the displacement of the image sensor in each direction, so as to perform optical shake compensation.
  • the position detection module 55 can also be used to detect the position of the image sensor after shake compensation, and feed back the position of the image sensor after shake compensation to the position acquisition Module 53.
  • the position acquisition module 53 is configured to perform closed-loop negative feedback control according to the position of the image sensor fed back by the position detection module 55 .
  • the position detection module 55 may include a position detection sensor, which is used to detect the position of the image sensor.
  • the closed-loop negative feedback control process is as follows:
  • the position obtaining module 53 obtains the shake displacement compensation amount of the image sensor in each direction according to the shake frequency and the shake amplitude in each direction, and generates the first control signal according to the shake displacement compensation amount.
  • the first control signal carries displacements of the image sensor in various directions.
  • the image sensor drive module 54 After the image sensor drive module 54 receives the control signal from the position acquisition module 53, it analyzes the control signal to obtain the displacement of the image sensor in each direction.
  • the image sensor driving module 54 drives the image sensor to displace in the corresponding direction according to the displacement in the direction.
  • the image sensor drive module 54 translates along the X-axis direction according to the image sensor; for the yaw direction, according to the displacement corresponding to the yaw direction
  • the image sensor driving module 54 rotates along the R-axis direction according to the image sensor.
  • the image sensor for each direction, is driven to displace in the corresponding direction according to the displacement amount corresponding to the direction.
  • the driving control in each direction is uncoupled, that is, the motion control driving the image sensor in each direction is decoupled from each other.
  • motion control of the image sensor along the X-axis direction, motion control of the image sensor along the Y-axis direction, and motion control of the image sensor along the R-axis direction are decoupled.
  • the image sensor drive module 54 drives the image sensor to move in various directions according to the control signal to perform optical shake compensation.
  • the position detection module 55 can detect the position of the image sensor in various directions, and compare the re-detected position of the image sensor with the above-mentioned target For position comparison, when the deviation between the re-detected position of the image sensor and the above-mentioned target position is within the allowable range, the detected position signal of the image sensor is output to the position acquisition module 53 .
  • the position detection module 55 can realize decoupling negative feedback in each direction, that is, the position detection module 55 can respectively detect the positions of the image sensor in each direction.
  • the position acquisition module 53 acquires the image sensor position signal fed back by the position detection module 55, then according to the re-detected image sensor position signal, judges whether the error between the current position of the image sensor and the target position is within the preset range, if yes, Then end the drive control process; if not, continue the drive control.
  • the position acquiring module 53 can continue the process of driving control according to the re-detected image sensor position signal as follows:
  • the position acquisition module 53 determines the displacement of the image sensor in each direction according to the difference between the current position of the image sensor and the target position, and generates a control signal according to the displacement in each direction, and transmits the control signal to the image sensor.
  • Sensor driver module 54 determines the displacement of the image sensor in each direction according to the difference between the current position of the image sensor and the target position, and generates a control signal according to the displacement in each direction, and transmits the control signal to the image sensor.
  • Sensor driver module 54 determines the displacement of the image sensor in each direction according to the difference between the current position of the image sensor and the target position, and generates a control signal according to the displacement in each direction, and transmits the control signal to the image sensor.
  • the image sensor driving module 54 may include an image sensor actuating structure, and the image sensor actuating structure may be used to drive the image sensor to move in various directions.
  • the image sensor actuating structure may include a movable stage, a base and an actuating member.
  • the base is fixedly arranged, the movable carrier is connected with the base, and the movable carrier can move relative to the base.
  • the movable carrier is fixedly connected with the actuator.
  • the movable stage is used to carry the image sensor.
  • the actuator is used to drive the movable stage to move relative to the base.
  • the image sensor can move along with the movement of the movable platform.
  • the actuator may be an electromagnetic actuator, and the movable stage is a mover part of the image sensor. In other embodiments, the actuator can also be other types of actuators.
  • the image sensor driving module 54 after the image sensor driving module 54 obtains the displacement of each axis, it can drive the image sensor to displace on each axis by means of electromagnetic driving, or drive the image sensor to move on each axis by other driving means. axis displacement.
  • the driving mode is not limited here.
  • the image sensor driving module 54 After the image sensor driving module 54 obtains the displacement of the image sensor in each direction according to the control signal, it continues to drive the image sensor to displace along each axis according to the displacement in each direction. This cycle continues until the position acquisition module 53 judges that the error between the current position of the image sensor and the target position is within a preset range according to the position signal of the image sensor fed back by the position detection module 55 . At this time, there will be a crosstalk problem.
  • the displacement of the image sensor in each direction may be compensated by using a pre-calibrated crosstalk compensation amount during the closed-loop negative feedback control process.
  • the image sensor driving module 54 obtains the amount of displacement of the image sensor in each direction according to the control signal, and then obtains the amount of crosstalk compensation in each direction from the crosstalk calibration data. For each direction, crosstalk compensation is performed on the displacement by using the crosstalk compensation amount, and the displacement after crosstalk compensation is obtained. Finally, according to the displacements after crosstalk compensation in each direction, the image sensor is respectively driven to move in corresponding directions.
  • the crosstalk calibration data is obtained through the crosstalk calibration process in advance; based on the crosstalk calibration data, the crosstalk compensation amount in different directions and different positions can be found; according to the crosstalk compensation amount, the displacement amount is compensated for crosstalk.
  • the position acquiring module 53 determines that the displacement amount that the image sensor should move in the X-axis direction is ⁇ x 2
  • the displacement amount that the image sensor should move in the Y-axis direction is ⁇ y 2 according to the re-detected image sensor position signal and the target position.
  • the amount of displacement that should be moved in the R-axis direction is ⁇ 2 .
  • the crosstalk compensation amount of X-axis translation ⁇ x 2 to Y-axis translation is y 3
  • the crosstalk of X-axis translation ⁇ x 2 to R-axis rotation is ⁇ 1 .
  • the crosstalk compensation amount of Y-axis translation ⁇ y 2 to X-axis translation is x 3
  • the crosstalk of Y-axis translation ⁇ y 2 to R-axis translation is ⁇ 2 .
  • the crosstalk compensation amount of R-axis rotation ⁇ 2 to X-axis translation is x 4
  • the crosstalk of R-axis rotation ⁇ 2 to Y-axis translation is y 4 .
  • the displacement amount after crosstalk compensation ⁇ x 2 +x 3 +x 4 .
  • the displacement after crosstalk compensation ⁇ y 2 +y 3 +y 4 .
  • the displacement after crosstalk compensation ⁇ 2 + ⁇ 1 + ⁇ 2 .
  • the crosstalk compensation amount of X-axis translation ⁇ x 2 to Y-axis translation is y 3
  • the crosstalk of X-axis translation ⁇ x 2 to R-axis rotation is ⁇ 1 .
  • the displacement after crosstalk compensation ⁇ 1 .
  • the displacement amount that the image sensor should move in the X-axis direction is ⁇ x 2
  • the displacement amount that should be moved in the Y-axis direction is ⁇ y 2
  • the displacement amount that should be moved in the R-axis direction is 0.
  • the crosstalk compensation amount of X-axis translation ⁇ x 2 to Y-axis translation is y 3
  • the crosstalk of X-axis translation ⁇ x 2 to R-axis rotation is ⁇ 1 .
  • the crosstalk compensation amount of Y-axis translation ⁇ y 2 to X-axis translation is x 3
  • the crosstalk of Y-axis translation ⁇ y 2 to R-axis translation is ⁇ 2 .
  • the displacement amount after crosstalk compensation ⁇ x 2 +x 3 .
  • the displacement after crosstalk compensation ⁇ y 2 +y 3 .
  • the displacement after crosstalk compensation ⁇ 1 + ⁇ 2 .
  • the crosstalk compensation amount of the X-axis translation ⁇ x 3 to the Y-axis translation is y 5 .
  • the crosstalk compensation amount of the Y-axis translation ⁇ y 3 to the X-axis translation is x 5 .
  • the displacement amount after crosstalk compensation ⁇ x 3 + ⁇ x 3 .
  • the displacement after crosstalk compensation ⁇ y 3 +y 5 .
  • the crosstalk compensation method in the embodiment of the present application may be applied to three-axis optical image stabilization, may be applied to two-axis optical image stabilization, and may also be applied to optical image stabilization with other axes, which is not limited herein.
  • the image sensor driving module 54 compensates the displacement of the image sensor on each axis using the crosstalk compensation amount, and after obtaining the displacement amount after crosstalk compensation on each axis, drives the image sensor according to the displacement amount after crosstalk compensation on each axis. Move the corresponding displacement in each direction, so that the image sensor reaches the target position, and realize the shake displacement compensation.
  • the image sensor driving module 54 respectively drives the image sensor to translate ⁇ x 2 along the X-axis direction, translate y 3 along the Y-axis direction, and rotate ⁇ 1 along the R-axis direction.
  • the position detection module 55 re-detects the position signal of the image sensor in each direction, and judges according to the re-detected position signal Whether the error between the current position of the image sensor and the target position is within the allowable range, if so, output the position signal of the image sensor to the position acquisition module 53 .
  • the position acquisition module 53 judges whether the error between the current position of the image sensor and the target position is within the preset range according to the acquired image sensor position signal, if it is within the preset range, if it is, it will end this driving control, if not, it will continue to drive negative feedback control.
  • the position acquisition module 53 determines the amount of displacement that the image sensor should move in each direction according to the current position and the target position of the image sensor, and then transmits the displacement amount to the image sensor driving module 54, and the image sensor driving module 54 continues to perform crosstalk calibration data Search to obtain the crosstalk compensation amount, use the crosstalk compensation amount to compensate the displacement amount, obtain the crosstalk compensated displacement amount, and finally drive the image sensor to move in various directions according to the crosstalk compensated displacement amount. This cycle continues until the error between the current position of the image sensor and the target position fed back by the position detection module 55 is within the preset range.
  • crosstalk compensation is performed on the displacement of the image sensor in each direction by using the amount of crosstalk compensation, and then based on the displacement of the image sensor in each direction
  • the amount of displacement after crosstalk compensation drives the image sensor to move the corresponding displacement in all directions, thereby reducing the influence of crosstalk, improving the precision of anti-shake drive control, and making the optical image more stable without image rotation.
  • the optical image stabilization system based on image sensor displacement mentioned above can be applied not only to two-axis optical image stabilization, but also to three-axis optical image stabilization. Moreover, in the process of closed-loop negative feedback control, crosstalk compensation may or may not be performed.
  • the original angular velocity signals in two directions of yaw (yaw) and pitch (pitch) are collected, and the original angular velocity signals in these two directions are respectively
  • the target position that the image sensor should reach is obtained, and then according to the target position and the starting position that the image sensor should reach , to obtain the shake displacement compensation amount of the image sensor in the X-axis direction and the Y-axis direction; and according to the shake displacement compensation amount of the image sensor in the X-axis direction, drive the image sensor to move along the X-axis direction, according to the image sensor in the Y-axis direction
  • the amount of jitter displacement compensation is used to drive the image sensor to move along the Y-axis direction; and, the closed-loop negative feedback control of the position signal of the image sensor is realized through the position sensor.
  • the image is determined again according to the current position of the image sensor and the target position.
  • the displacement of the sensor in the X-axis direction and the displacement in the Y-axis direction and search the crosstalk calibration data to obtain the crosstalk compensation amount in the X-axis direction, the crosstalk compensation amount in the Y-axis direction, and the crosstalk compensation amount in the R-axis direction , and then drive the image sensor to move along each axis according to the crosstalk compensation amount and the displacement amount of each axis.
  • the image sensor in the closed-loop negative feedback process, can be driven to move in the opposite direction according to the additional rotation angle of the image sensor in the XY plane, so as to offset the additional rotation angle.
  • the crosstalk of the two-axis optical image stabilization is reduced, thereby improving the driving control accuracy of the optical image stabilization, and improving the stability of the optical image without image rotation.
  • the original angular velocity signals in the three directions of yaw, pitch, and roll are collected, and according to the original angular velocity signals in these three directions, the image stabilization in the three directions is realized. Jitter suppression. At this time, crosstalk compensation may or may not be performed.
  • the three-axis optical anti-shake system is exemplarily introduced below with reference to the schematic diagram of the three-axis optical anti-shake system based on image sensor displacement shown in FIG. 6 .
  • the signal acquisition module 51 includes a gyroscope and an accelerometer.
  • the signal processing module 52 may include an analog-to-digital converter, a low-pass filter, an integrating circuit, and a Fourier transform circuit.
  • the position acquisition module 53 may include a target position controller and a comparator.
  • the image sensor driving module 54 includes a driving chip, a PWM driving current, an image sensor moving optical anti-shake motor, and an image sensor mover part.
  • the position detection module 55 includes a home position detection sensor and a position detection sensor.
  • the home position detection sensor and the position detection sensor may exemplarily include one or more of a Hall sensor, a Tunneling Magneto Resistance (TMR) sensor, a Giant Magneto Resistance (GMR) sensor, and the like.
  • workflow of the system can be as follows:
  • the body of the electronic device When a user holds an electronic device to take pictures, the body of the electronic device will inevitably shake due to shaking hands. At this time, through the gyroscope and accelerometer integrated on the electronic device, the body shake caused by hand shake is detected, that is, the hand shake signal is collected through the gyroscope and accelerometer to obtain yaw (yaw), pitch (pitch) ) and the original angular velocity signals of the three directions of rotation (roll).
  • the electronic device may include the three-axis optical image stabilization system shown in FIG. 6 . Further, all or part of the three-axis optical image stabilization system shown in FIG. 6 is integrated in the camera module of the electronic device.
  • the gyroscope and the accelerometer After the gyroscope and the accelerometer acquire the original angular velocity signals in three directions, they transmit the collected original angular velocity signals to the analog-to-digital converter to convert the original angular velocity analog signals into angular velocity digital signals; then transmit the angular velocity digital signals to low pass filter to filter out high-frequency interference signals and noise, and retain hand shake signals at lower frequencies; finally, pass the hand shake signals at lower frequencies through Fourier transform circuits and integration circuits to obtain frequency spectrum and angle Signal.
  • the target position controller After the target position controller acquires the frequency spectrum and the angle signal, based on the frequency spectrum and the angle signal, extract the jitter amplitude and jitter frequency in the yaw (yaw) direction, the jitter amplitude and jitter frequency in the pitch (pitch) direction, and The jitter amplitude and jitter frequency in the direction of rotation (roll), that is, the target position controller further decomposes and decouples the hand jitter signal according to the output of the signal processing module, and obtains the jitter amplitude and jitter frequency in each direction.
  • the target position controller obtains the target position that the image sensor should reach in the shaking scene according to the shaking amplitude and shaking frequency in each direction.
  • the target position controller After the target position controller obtains the target position of the image sensor, it transmits the target position and the initial position of the image sensor to the comparator, and obtains the shake compensation displacement and deflection ( The jitter displacement compensation amount in the yaw) direction, and the jitter displacement compensation amount in the rotation (roll) direction.
  • the shake displacement compensation amount refers to the displacement amount that should be moved to compensate for shake.
  • the initial position of the image sensor can be detected by the initial position sensor.
  • the home position sensor After the home position sensor detects the home position signal of the image sensor, it transmits the home position signal to the analog-to-digital converter, so that the collected home position signal is converted into a digital signal through the analog-to-digital converter, and then the digital signal form The starting position signal of the signal is passed to the comparator.
  • the target position controller After the target position controller obtains the jitter displacement compensation amount in each direction through the feedback function of the comparator, it generates a control signal according to the jitter displacement compensation amount in each direction, and transmits the control signal to the driver chip.
  • the control signal carries the shake displacement compensation amount of the image sensor in each direction.
  • the driver chip After the driver chip receives the control signal from the target position controller, it can analyze the control signal to obtain the jitter displacement compensation amount of the image sensor in the pitch (pitch) direction and the jitter displacement compensation amount in the yaw (yaw) direction. And the jitter displacement compensation amount in the direction of rotation (roll).
  • the driver chip After the driver chip obtains the jitter displacement compensation amount in each direction, it controls the PWM drive structure to generate a PWM current signal of corresponding magnitude and direction according to the jitter displacement compensation amount and displacement direction of each direction, and applies the PWM current signal to the image Sensor moving optical anti-shake motor, so that the optical anti-shake motor can drive the moving part of the image sensor to move in various directions, so as to drive the image sensor to move along each axis, and realize the drive image according to the amount of shake displacement compensation of the image sensor in each direction The sensor moves along each axis.
  • the mover part of the image sensor can be regarded as the mover of the optical image stabilization motor, and the mover part can move under the action of the driving force.
  • the mover part of the image sensor is connected with the image sensor, and when the mover part of the image sensor moves, the image sensor also moves accordingly. Therefore, the image sensor can be displaced in various directions by driving the mover part of the image sensor to move in various directions, so as to compensate for shaking.
  • the drive control of the image sensor in each direction is decoupled from each other.
  • the driver chip obtains the displacement amount and displacement direction of the image sensor along the X-axis direction according to the jitter displacement compensation amount in the pitch direction, and then generates the corresponding size and corresponding image sensor according to the displacement amount and displacement direction along the X-axis direction.
  • Direction of the current signal, and the current signal is applied to the optical anti-shake motor, so that the optical anti-shake motor drives the image sensor to move a certain amount of displacement along the X-axis direction.
  • the driver chip obtains the displacement amount and displacement direction of the image sensor along the Y-axis direction according to the jitter displacement compensation amount in the deflection (yaw) direction, and then generates the corresponding size and corresponding value according to the displacement amount and displacement direction along the Y-axis direction.
  • Direction of the current signal, and the current signal is applied to the optical anti-shake motor, so that the optical anti-shake motor drives the image sensor to move a certain amount of displacement along the Y-axis direction.
  • the driver chip obtains the rotation angle and rotation direction of the image sensor along the R-axis direction according to the jitter displacement compensation amount in the rotation (roll) direction, and then generates a current of corresponding magnitude and direction according to the rotation angle and rotation direction along the R-axis direction signal, and apply the current signal to the optical anti-shake motor, so that the optical anti-shake motor drives the image sensor to rotate a certain angle along the R-axis direction.
  • the driver chip drives the mover part of the image sensor to move in various directions through the current signal to perform optical shake compensation.
  • the position detection sensor can re-detect the position signal of the image sensor and feed back the position signal of the image sensor to the target position controller.
  • the image sensor position signal is used to describe the position of the image sensor.
  • the position detection sensor can realize three-axis decoupling negative feedback. Specifically, the position detection sensor can independently detect the position of the image sensor on the X axis, the position on the Y axis, and the position on the R axis, and feed back the positions of the image sensor on each axis to the target position controller.
  • the target position controller After the target position controller receives the feedback position signal of the image sensor, it compares the current position of the image sensor with the target position to obtain the error between the two, and then judges whether the error is within a preset range. If the error is within the preset range, the target position controller will end the drive control process; if the error is not within the preset range, the target position controller will obtain the current position of the image sensor from the image sensor position signal fed back by the position detection sensor, The current position and the target position of the image sensor are transmitted to the comparator, and through the feedback of the comparator, the displacement amount that the image sensor should move in each direction is obtained.
  • the amount of displacement that should be moved in each direction includes the amount of displacement in the direction of the X axis, the amount of displacement in the direction of the Y axis, and the amount of displacement in the direction of the R axis. According to the amount of displacement that the image sensor should move in each direction, a control signal is generated, and finally the control signal is transmitted to the driver chip.
  • the driver chip may not perform crosstalk compensation during the closed-loop negative feedback control process.
  • the driver chip receives the control signal from the target position controller, it analyzes the control signal to obtain the displacement of the image sensor in various directions; The magnitude and corresponding direction of the PWM current signal, and the generated PWM current signal is applied to the coil in the optical anti-shake motor, so that the image sensor mover part moves along each axis through the optical anti-shake motor. This cycle continues until the driver chip judges that the error between the current position of the image sensor and the target position is within a preset range according to the position signal of the image sensor detected by the position detection sensor.
  • crosstalk calibration data may be used for crosstalk compensation.
  • the driver chip receives the control signal from the target position controller, it analyzes the control signal to obtain the displacement of the image sensor in each direction;
  • Crosstalk compensation amount For each direction, use the crosstalk compensation amount to perform crosstalk compensation on the jitter displacement compensation amount to obtain the displacement amount after crosstalk compensation.
  • the driver chip searches for crosstalk calibration data according to the displacement in the Y-axis direction and the displacement in the R-axis direction to obtain the crosstalk compensation amount in the X-axis direction, and then calculates the crosstalk compensation amount in the X-axis direction It is added to the displacement in the X-axis direction to obtain the displacement in the X-axis direction after crosstalk compensation.
  • the driver chip searches the crosstalk calibration data according to the displacement in the X-axis direction and the displacement in the R-axis direction to obtain the crosstalk compensation amount in the Y-axis direction, and then calculates the crosstalk compensation amount in the Y-axis direction and The displacements in the Y-axis direction are added to obtain the displacement in the Y-axis direction after crosstalk compensation.
  • the driver chip searches the crosstalk calibration data according to the displacement in the X-axis direction and the displacement in the Y-axis direction to obtain the crosstalk compensation amount in the R-axis direction, and then calculates the crosstalk compensation amount in the R-axis direction and the R-axis direction The displacements are added together to obtain the displacement after crosstalk compensation in the R-axis direction.
  • the driver chip After obtaining the displacement after crosstalk compensation, the driver chip outputs current signals of corresponding directions and sizes through the PWM driving structure according to the displacement after crosstalk compensation of each axis, so as to drive the mover part of the image sensor to move along each axis. Moreover, the position detection sensor will also feed back the position signal of the image sensor to the target position controller. If the target position controller judges that the error between the re-detected image sensor position and the target position is not within the preset range, it will continue to determine the amount of displacement that the image sensor should move in each direction, and the driver chip will continue to move according to the amount of displacement that should be moved in each direction.
  • the amount of displacement is searched for crosstalk calibration data to obtain the amount of crosstalk compensation in each direction, and the crosstalk compensation amount is used to perform crosstalk compensation on the displacement amount to obtain the displacement amount of crosstalk compensation.
  • the image sensor is driven along each direction according to the displacement amount after crosstalk compensation. Axial movement. This loop continues until the target position controller judges that the error between the current position of the image sensor and the target position is within the allowable range according to the position signal of the image sensor, and then the closed-loop negative feedback control process of this driving is ended.
  • the calibration data of the optical anti-shake motor is the calibration data obtained by performing crosstalk calibration on the optical anti-shake motor in advance.
  • the crosstalk calibration is performed with the obtained magnetic susceptibility matrix, and the crosstalk calibration data is obtained.
  • the recalibration data is stored in the memory of the optical image stabilization motor.
  • the crosstalk calibration process can be exemplified as follows:
  • the driver chip applies current signals in three different directions of the X-axis direction, the Y-axis direction, and the R-axis direction to the optical image stabilization motor, and obtains three signals in the X-axis direction, Y-axis direction, and R-axis direction.
  • the relationship between the current Code and the stroke in different directions, and the relationship between the image sensor position Code and the stroke of the position sensor position feedback. Stroke information can be obtained through a high-precision laser.
  • the actual displacement of the image sensor changes, the actual displacement changes, and the magnitude of the current also changes accordingly.
  • the driver chip obtains the displacement in each direction by analyzing the control signal of the target position controller, and determines the driving current in the X-axis direction according to the displacement in the pitch direction as 90mA; according to the displacement in the deflection (yaw) direction, determine the driving current in the Y-axis direction as 90mA; according to the displacement in the rotation (roll) direction, determine the driving current in the R-axis direction as 90mA.
  • the driving current in the X-axis direction is determined to be 90 mA; according to the displacement in the yaw (yaw) direction after crosstalk compensation, determine the Y-axis direction
  • the magnitude of the driving current on the R axis is 80mA; according to the displacement after crosstalk compensation in the direction of rotation (roll), the driving current in the direction of the R axis is determined to be 90mA. It can be seen from the comparison that before the crosstalk compensation is performed, the driving current in the Y-axis direction is 90 mA, and after the crosstalk compensation, the driving current in the Y-axis direction is 80 mA.
  • the driver chip applies a current of 90mA to the coil acting in the X-axis translation direction to generate an electromagnetic thrust in the X-axis translation direction, which acts on the mover part of the image sensor. Under the action of the electromagnetic thrust, the mover part of the image sensor translates a certain displacement along the X-axis direction. The magnitude and direction of this electromagnetic thrust are determined by the magnitude and direction of the current applied to the coil.
  • the driver chip applies a current of 80mA to the coil acting on the Y-axis translation direction to generate an electromagnetic thrust in the Y-axis translation direction to act on the mover part of the image sensor.
  • the mover part of the image sensor translates a certain amount of displacement along the Y-axis direction.
  • the magnitude and direction of this electromagnetic thrust are determined by the magnitude and direction of the current applied to the coil.
  • the driver chip applies a current of 90mA to the coil acting in the R-axis direction to generate an electromagnetic thrust in the R-axis translation direction, which acts on the mover part of the image sensor.
  • the mover part of the image sensor Under the action of the electromagnetic thrust, the mover part of the image sensor generates a torque in a certain direction, so that the mover part of the image sensor rotates at a certain angle in the XY plane.
  • the magnitude and direction of this torque is determined by the magnitude and direction of the current applied to the coil.
  • the drive chip applies currents of corresponding directions and corresponding magnitudes to the coils in each direction to drive the mover part of the image sensor to move along the X-axis direction, the Y-axis direction, and the R-axis direction respectively, and These three directions of motion and control are decoupled from each other.
  • the original angular velocity signals in the pitch direction, yaw direction, and roll direction are respectively collected by the gyroscope and the accelerometer, and the original angular velocity signals are sequentially passed through ADC, filtering, integration and Fourier leaf transformation, etc., to obtain the jitter amplitude and jitter frequency in each direction; after the control drive chip obtains the jitter amplitude and jitter frequency in each direction, according to the jitter amplitude and jitter frequency in each direction, the target that the image sensor should reach is obtained Position, and then through the position detection sensor system, the initial position signal of the image sensor is obtained; based on the initial position signal of the image sensor and the target position, the amount of vibration displacement compensation of the image sensor on the X axis and the vibration displacement on the Y axis are determined Compensation amount, and the shake displacement compensation amount on the R axis.
  • Control the drive chip to drive the image sensor to move along each axis according to the amount of shake displacement compensation on each axis, and obtain the position of the image sensor after shake compensation through the position detection sensor system; then according to the position of the image sensor fed back by the position detection sensor system and Target position, determine the displacement of the image sensor in each axis direction, then read the optical image stabilization motor calibration data from the memory of the optical image stabilization motor, and then perform a calibration data search based on the optical image stabilization motor calibration data to obtain X
  • the crosstalk compensation amount of the X axis includes the crosstalk compensation of the Y axis translation to the X axis translation and the crosstalk compensation of the R axis rotation to the X axis translation.
  • the crosstalk compensation amount of the Y axis includes the crosstalk compensation of the X axis translation to the Y axis translation and the crosstalk compensation of the R axis rotation to the Y axis translation.
  • the crosstalk compensation amount of the R axis includes the crosstalk compensation of the X axis translation to the R axis rotation and the crosstalk compensation of the Y axis translation to the R axis rotation.
  • the control driver chip uses the X-axis crosstalk compensation amount to compensate the jitter displacement compensation amount in the X-axis direction to obtain the crosstalk-compensated displacement amount of the image sensor in the X-axis direction.
  • the jitter displacement compensation amount in the Y-axis direction is compensated by using the crosstalk compensation amount of the Y-axis, so as to obtain the displacement amount of the image sensor in the Y-axis direction after crosstalk compensation.
  • the control drive chip drives the image sensor to perform X-axis translation, Y-axis translation, and R-axis rotation through the optical anti-shake motor according to the displacement of each axis after crosstalk compensation.
  • the displacement detection sensing system can detect the real-time position of the image sensor in real time, and feed back the position of the image sensor to the control drive chip.
  • the control drive chip continues to perform closed-loop negative feedback control of the drive according to the feedback image sensor position and target position.
  • control driving chip in FIG. 7 may include the target position controller, comparator and driving chip in FIG. 6 .
  • the position detection sensing system includes a home position detection sensor and a position detection sensor.
  • the position of the image sensor 81 is the initial position
  • the position of the image sensor 82 is the target position.
  • the image sensor 81 and the image sensor 82 are the same image sensor, and the two different positions of the same sensor are distinguished by different labels.
  • the center point on the image sensor at the starting position is O'
  • the center point on the image sensor at the target position is O.
  • the position of the pixel unit on the image sensor at the starting position is A'
  • the position of the pixel unit on the image sensor at the target position is A.
  • the image sensor In order to suppress the shaking, it is necessary to drive the image sensor to move from the initial position to the target position.
  • the image sensor can be moved from the initial position to the target position by moving the pixel unit in the image sensor from point A' to point A.
  • the driving order can be arbitrary.
  • the image sensor may be driven to move along the X-axis direction first, then the image sensor may be driven to move along the Y-axis direction, and finally the image sensor may be driven to move along the R-axis direction.
  • the image sensor can be driven to move along the X axis, the Y axis and the R axis respectively at the same time.
  • the three-axis optical anti-shake system based on image sensor displacement provided by the embodiment of the present application has less crosstalk, high optical image stability, no image rotation, high precision of anti-shake drive control, and realizes Shake suppression in pitch, yaw and roll directions.
  • the driver chip can drive the mover part of the image sensor through the optical anti-shake motor to drive the image sensor to move in various directions for optical shake compensation.
  • the OIS motor may include, but is not limited to, coils and magnets. After the coil is energized, a Lorentz force will be generated under the action of the magnet, and the Lorentz force can act on the mover part of the image sensor to push the mover part of the image sensor to move.
  • the magnitude and direction of the Lorentz force can be controlled by controlling the current magnitude and direction of the coil, so as to control the displacement and displacement direction of the image sensor on each axis.
  • coils are provided on the first side, the second side and the third side of the mover part of the image sensor, and the image sensor is pushed along the X axis and the Y axis through the coils on the first side, the second side and the third side. And the displacement in the R-axis direction to achieve three-axis optical image stabilization.
  • the number of coils on each side, the position of the coils on each side, and the size of the coils can be set according to actual needs, and are not limited here.
  • the optical anti-shake motor may include a first coil, a second coil and a third coil.
  • the first coil is disposed on a first side of the image sensor mover portion
  • the second coil is disposed on a second side of the image sensor mover portion.
  • the first side and the second side are opposite sides, ie the first coil is located on the opposite side of the second coil.
  • the third coil is arranged on the third side of the mover part of the image sensor, and the third side is adjacent to the first side and the second side.
  • the drive chip outputs a first current signal through a current generating structure (such as a PWM driving structure) according to the displacement and direction of the image sensor in the X-axis direction; the first current signal is applied to the first coil to allow the first coil to Under the action of the magnetic field, an active force acting on the mover part of the image sensor is generated, so as to apply a force along the X-axis direction to the mover part of the image sensor, and then drive the mover part of the image sensor to translate along the X-axis direction.
  • a current generating structure such as a PWM driving structure
  • the driver chip outputs a second current signal through a current generating structure (such as a PWM driving structure) according to the displacement and displacement direction of the image sensor in the R-axis direction; the second current signal is applied to the second coil, so that the second coil Under the action of the magnetic field, an active force acting on the mover part of the image sensor is generated to apply a torque along the R-axis to the mover part of the image sensor, thereby driving the mover part of the image sensor to rotate along the R-axis.
  • a current generating structure such as a PWM driving structure
  • the driver chip outputs a third current signal through a current generating structure (for example, a PWM driving structure) according to the displacement and direction of the image sensor in the Y-axis direction; the third current signal is applied to the third coil, so that the third coil Under the action of the magnetic field, an active force acting on the mover part of the image sensor is generated, so as to apply a force along the Y-axis direction to the mover part of the image sensor, and then drive the mover part of the image sensor to translate along the Y-axis.
  • a current generating structure for example, a PWM driving structure
  • the mechanical center in order to further reduce crosstalk and reduce crosstalk compensation in drive control, in the design of the mechanical structure, can coincide with the geometric center of the mover part of the image sensor and the center of gravity of the mover part of the image sensor, So as to realize the "unity of multiple hearts".
  • the mechanical center is the mechanical center of the force along the X-axis direction and the force along the Y-axis direction generated by the third coil.
  • the normal line passing through the center of the first coil passes through the geometric center of the mover part of the image sensor
  • the normal line passing through the center of the second coil does not pass through the geometric center of the mover part of the image sensor
  • the normal line passing through the center of the third coil passes through the image sensor
  • the geometric center of the mover part of the sensor Moreover, the center of gravity of the mover part of the image sensor coincides with the geometric center.
  • the normal line passing through the center of the first coil and the normal line passing through the center of the second coil may not pass through the center of the mover part of the image sensor.
  • more crosstalk will be generated when the mover part of the image sensor is moved along each axis, and the control algorithm needs to do more crosstalk compensation.
  • the control algorithm needs to perform more crosstalk compensation, which will reduce the real-time performance of the OIS compensation control.
  • the coil 2 After the coil 2, the coil 5 and the coil 6 are energized, under the action of the magnet 8, the magnet 9 and the magnet 10, a force acting on the mover part 3 of the image sensor can be generated.
  • the Lorentz force is used to push the mover part 3 of the image sensor to move on the X axis, the Y axis and the R axis.
  • coil 6 corresponds to the above first coil
  • coil 5 corresponds to the above second coil
  • coil 2 corresponds to the above third coil. Therefore, in FIG. 9 , the first side is the left side of the image sensor mover part 3 , the second side is the right side of the image sensor mover part 3 , and the third side is the upper side of the image sensor mover part 3 .
  • the magnetization direction of the magnet may be that one magnet is uniformly magnetized with four poles, or two identical magnets are magnetized with two poles and then connected together. As shown in Figure 9, the two magnets including the N pole and the S pole are connected together, and after the coil is energized, a leftward Lorentz force F is generated in the magnetic field of the two magnets.
  • the magnetization direction of the magnet can also be opposite to that shown in FIG. 9 , which is not limited here.
  • the positions of the coil 6 and the coil 2 are set so that the normal line passing through the center of the coil 6 passes through the center point O, and the normal line passing through the center of the coil 2 passes through the center point O.
  • the mechanical center of F y produced by coil 2 and F x produced by coil 6 coincides with the center point O of the image sensor mover part 3, so F y and F x will not generate additional torque to point O, and will not Allow image sensor mover part 3 to generate additional rotation.
  • the crosstalk can be reduced, thereby reducing the crosstalk compensation in the drive control, and improving the real-time performance of the drive control.
  • F x only contributes to the translation of the image sensor mover part 3 along the X-axis direction, and will not generate additional torque to point O, and will not cause additional rotation of the image sensor mover part 3 in the XY plane , and will not cause additional translation of the mover part of the image sensor in the Y-axis direction.
  • F y only contributes to the translation of the image sensor mover part 3 along the Y-axis direction, and will not generate additional torque to the O point, and thus will not cause the image sensor mover part 3 to generate additional rotation in the XY plane. It also does not cause additional translation of the mover part of the image sensor in the X-axis direction.
  • the driver chip can determine the magnitude and direction of the current applied to the coil 6 according to the displacement and direction of the image sensor in the X-axis direction; determine the applied current according to the displacement and direction of the image sensor in the Y-axis direction The magnitude and direction of the current to coil 2.
  • the mover part of the image sensor can realize "multi-center integration", so that when the mover part of the image sensor is driven to displace along the X-axis, Y-axis, and R-axis directions, it will not Create crosstalk.
  • the product assembled according to the theoretical mechanical design still cannot achieve complete "multi-center integration", and there are certain errors. Therefore, crosstalk still occurs when the mover part of the image sensor is driven to displace along the X-axis, Y-axis, and R-axis.
  • the pre-calibrated crosstalk compensation amount can be used to compensate the displacement in each axis direction during the closed-loop negative feedback control process; it is also possible not to perform crosstalk compensation, that is, not in the closed-loop negative feedback control process Compensate for crosstalk.
  • the mover part of the image sensor moves along the positive direction of the X axis under the action of F x , and moves along the negative direction of the Y axis under the action of F y .
  • the mover part 3 of the image sensor can rotate along the R axis in the XY plane under the action of the torque M R . In FIG. 9, the image sensor mover part 3 rotates counterclockwise in the XY plane under the action of the torque MR .
  • position sensor 1 position sensor 4 and position sensor 7 are also shown in FIG. 9 .
  • the position sensor 1 is placed in the middle area of the coil 2
  • the position sensor 4 is placed in the middle area of the coil 5
  • the position sensor 7 is placed in the middle area of the coil 6 .
  • the position sensor 1 is matched with the magnet 9 to realize the position detection of the image sensor.
  • the position sensor 4 is matched with the magnet 8 to realize the position detection of the image sensor.
  • the position sensor 7 is matched with the magnet 10 to realize the position detection of the image sensor.
  • the position sensor 1 can detect the position of the image sensor in the yaw direction in real time, and feed back the detected position to the target position controller.
  • the position sensor 4 can detect the position of the image sensor in the direction of rotation (roll) in real time, and feed back the detected position to the target position controller.
  • the position sensor 7 can detect the position of the image sensor in the pitch direction in real time, and feed back the detected position to the target position controller.
  • FIG. 9 including the position sensor 1 , the coil 2 , the mover part 3 of the image sensor, the position sensor 4 , the coil 5 , the coil 6 and the position sensor 7 is a top view.
  • the illustrations of the magnet 8, the magnet 9 and the magnet 10 are front views seen from the negative direction of the Y axis to the positive direction of the Y axis.
  • the magnet including the N pole and the S pole is shown as a side view viewed from the positive direction of the X axis to the negative direction of the X axis.
  • the target position controller obtains the position of the image sensor fed back by the position sensor 7 in the pitch direction, by comparing the position of the current feedback image sensor in the pitch direction , and the position that the image sensor should reach in the pitch direction, judge whether the error between the current position of the image sensor in the yaw direction and the position it should reach is within the allowable range; if so, end X
  • the closed-loop drive control in the axis translation direction if not, the driver chip will obtain the displacement of the image sensor in the pitch direction according to the current position of the image sensor in the pitch direction and the position it should reach, and The displacement is transmitted to the driver chip.
  • the driver chip applies a current of corresponding size and direction to the coil 6 according to the displacement amount that the image sensor should move in the pitch direction, so that the coil 6 generates Lorentz force under the action of the magnetic field to push the mover part of the image sensor 3 Translate along the X axis.
  • the position sensor 7 is matched with the magnet 10 to detect the position of the image sensor in the pitch direction, and the position is fed back to the target position controller. This cycle continues until the error between the current position of the image sensor in the pitch direction and the expected position is within the allowable range.
  • the target position controller obtains the position of the image sensor in the deflection (yaw) direction fed back by the position sensor 1, by comparing the position of the current feedback image sensor in the deflection (yaw) direction with the image sensor in the deflection (yaw) direction The position that should be reached in the yaw) direction, judge whether the error between the current position of the image sensor in the deflection (yaw) direction and the position that should be reached is within the allowable range; if it is, then end the closed-loop drive control of the Y-axis translation direction , if not, the driver chip will obtain the displacement of the image sensor in the deflection (yaw) direction according to the current position of the image sensor in the deflection (yaw) direction and the position it should reach, and transmit the displacement to the driver chip.
  • the driver chip applies a current of corresponding size and direction to the coil 2, so that the coil 2 generates Lorentz force under the action of the magnetic field to push the mover part of the image sensor 3 Translate along the X axis.
  • the position sensor 1 and the magnet 9 cooperate to detect the position of the image sensor in the deflection (yaw) direction, and feed back the position to the target position controller. This cycle is repeated until the error between the current position of the image sensor in the yaw direction and the expected position is within the allowable range.
  • the target position controller After the target position controller obtains the position of the image sensor fed back by the position sensor 4 in the direction of rotation (roll), by comparing the position of the image sensor currently fed back in the direction of rotation (roll) with the position of the image sensor in the direction of rotation (roll) The position that should be reached, judge whether the error between the current position of the image sensor in the direction of rotation (roll) and the position that should be reached is within the allowable range; if it is, then end the closed-loop drive control of the R-axis rotation direction, if not,
  • the driver chip obtains the displacement of the image sensor in the direction of rotation (roll) according to the current position of the image sensor in the direction of rotation (roll) and the expected position, and transmits the displacement to the driver chip.
  • the drive chip applies a current of corresponding size and direction to the coil 5, so that the coil 5 generates a rotational torque under the action of a magnetic field, and pushes the image sensor mover part 3 in the Rotate a certain angle in the XY plane.
  • the position sensor 4 is matched with the magnet 8 to detect the position of the image sensor in the direction of rotation (roll), and the position is fed back to the target position controller . This cycle continues until the error between the current position of the image sensor in the direction of rotation (roll) and the expected position is within the allowable range.
  • the image sensor only needs to translate along the X-axis direction to perform shake compensation in the X-axis direction.
  • the driver chip can apply a current with a corresponding direction and a corresponding magnitude to the coil 6 through the PWM drive structure according to the displacement direction and displacement amount of the image sensor on the X-axis, so that the coil 6 can act on the image sensor under the magnetic field.
  • the active force F x of the mover part 3 drives the mover part 3 of the image sensor to translate along the X-axis direction, and then drives the image sensor to translate along the X-axis direction.
  • the driver chip does not need to apply current to coil 2 and coil 6 .
  • the position sensor 7 obtains the position signal of the image sensor in the X-axis direction through the induction magnet 10
  • the position sensor 1 obtains the position signal of the image sensor in the X-axis direction through the induction magnet 9.
  • the position signal of the image sensor in the direction of the Y axis is obtained, and the position sensor 4 obtains the position signal of the image sensor in the direction of the R axis through the induction magnet 8, and these position signals are fed back to the target position controller.
  • the target position controller performs closed-loop negative feedback control of the drive according to the feedback position signal.
  • the driving chip drives the mover part of the image sensor according to the shake displacement compensation amount of the image sensor in the X-axis direction, so as to drive the image sensor to translate along the X-axis direction. Then, it enters the driving closed-loop negative feedback control mode.
  • the target position controller obtains the real-time position of the image sensor fed back by the position sensor in the X-axis direction, the real-time position in the Y-axis direction, and the real-time position in the R-axis direction.
  • the drive chip searches the crosstalk calibration data to obtain the crosstalk compensation amount on each axis, and uses the crosstalk compensation amount on each axis to perform crosstalk compensation on the displacement amount to obtain the displacement amount after crosstalk on each axis; finally, according to the crosstalk compensation amount on each axis
  • the displacement of the corresponding coil is applied to the corresponding direction and the corresponding magnitude of the current.
  • the image sensor only needs to translate along the Y-axis to perform shake compensation in the Y-axis direction.
  • the driver chip can apply a current with a corresponding direction and a corresponding magnitude to the coil 2 through the PWM drive structure according to the displacement direction and displacement amount of the image sensor on the Y axis, so that the coil 2 can act on the image sensor under the magnetic field.
  • the active force of the mover part 3 drives the mover part 3 of the image sensor to translate along the Y-axis direction, and then drives the image sensor to translate along the X-axis direction.
  • the driver chip can use the crosstalk compensation amount to perform crosstalk compensation on the displacement in each axis direction, and then give the corresponding The coil applies a current of corresponding magnitude and corresponding direction.
  • the image sensor needs to translate along the X-axis direction and the Y-axis direction to perform shake compensation in the X-axis direction and the Y-axis direction respectively.
  • the driver chip can apply a current of corresponding size and direction to the coil 6 according to the displacement direction and displacement amount of the image sensor in the X-axis direction; apply a corresponding current to the coil 2 according to the displacement direction and displacement amount in the Y-axis direction. Find and the current in the corresponding direction.
  • the image sensor needs to rotate clockwise or counterclockwise in the XY plane to perform shake compensation in the R-axis direction.
  • the drive chip applies a current in a corresponding direction and a corresponding magnitude to the coil 5 through the PWM drive structure to generate a torque acting on the image sensor mover part 3 to drive the image sensor mover.
  • the subsection 3 is rotated clockwise or counterclockwise by a certain angle in the XY plane.
  • crosstalk compensation may not be performed, or if the amount of crosstalk compensation is considered to be zero, no current is applied to coil 2 and coil 6 .
  • the image sensor In the X-axis direction translation + in-plane rotation mode, the image sensor needs to be rotated at a certain angle in the XY plane, and needs to be translated in the X-axis direction to perform shake compensation on the X-axis direction and the R-axis direction.
  • the driver chip can respectively apply current signals of corresponding directions and sizes to the coil 5 and coil 6 according to the displacement amount and displacement direction of the image sensor in the X-axis direction and the R-axis direction, so as to drive the image sensor mover part 3 Translate along the X-axis, and rotate along the R-axis in the XY plane.
  • the image sensor does not generate crosstalk to the Y axis when the image sensor is translated in the X-axis direction and rotated in the R-axis direction, then no crosstalk compensation is performed or the amount of crosstalk compensation is considered to be zero, so no current is applied to the coil 2 .
  • the center of gravity and the geometric center of the mover part of the image sensor coincide with the mechanical center between F x in the X-axis direction and F y in the Y-axis direction to ensure "three centers in one" , which can reduce the crosstalk compensation done by the control algorithm.
  • the three-coil electromagnetic drive scheme in Figure 9 can not only be applied to three-axis optical image stabilization to achieve shake suppression in pitch, yaw, and roll directions; It can be applied to a dual-axis optical anti-shake solution, and at this time, the coil 5 can be used to perform crosstalk compensation for the extra rotation in the R-axis direction.
  • the additional torque causes the image sensor to rotate + ⁇ clockwise when it is translated in the XY plane, and the compensation torque is generated through the coil 5 to drive the image sensor to rotate + ⁇ counterclockwise in the XY plane, thereby offsetting the additional torque.
  • the coil on one side can be replaced by two or more coils to obtain different electromagnetic drive schemes.
  • both the first coil and the second coil can be replaced by two coils, and the third coil remains unchanged, so a five-coil electromagnetic driving scheme can be obtained.
  • the first coil is replaced by the fourth coil and the fifth coil
  • the second coil is replaced by the sixth coil and the seventh coil.
  • Both the fourth coil and the fifth coil are arranged on the first side of the mover part of the image sensor
  • the sixth coil and the seventh coil are arranged on the second side of the mover part of the image sensor
  • the third coil is arranged on the third side.
  • the fourth coil and the sixth coil are arranged opposite to each other, and both belong to one channel of control, and the magnitude and direction of the current of the fourth coil and the sixth coil are the same. Therefore, the Lorentz force generated under the magnetic field after the fourth coil is energized is the same as the Lorentz force generated under the magnetic field after the sixth coil is energized.
  • the fifth coil and the seventh coil are arranged opposite to each other, and both belong to one control channel, and the magnitude and direction of the current of the fifth coil and the seventh coil are the same. Therefore, the Lorentz force generated under the magnetic field after the fifth coil is energized is the same as the Lorentz force generated under the magnetic field after the seventh coil is energized.
  • the fourth coil and the sixth coil can be connected in series.
  • the fifth coil and the seventh coil can be connected in series.
  • the fourth coil and the sixth coil may not be connected in series.
  • the normal line passing through the center of the fourth coil, the normal line passing through the center of the sixth coil, the normal line passing through the center of the fifth coil, and the normal line passing through the center of the seventh coil may not pass through the image sensor.
  • the center of the subsection For example, refer to FIG. 10 , which is a schematic diagram of a five-coil electromagnetic driving scheme provided by the embodiment of the present application.
  • the image sensor can generate The Lorentz force of the mover part 13 is used to push the mover part 13 of the image sensor to move in the X-axis, Y-axis and R-axis directions.
  • coil 12 corresponds to the third coil above
  • coil 14-2 corresponds to the fourth coil above
  • coil 14-1 corresponds to the sixth coil above
  • coil 16-2 corresponds to the fifth coil above
  • coil 16 -1 corresponds to the seventh coil above.
  • the Lorentz force F y along the Y-axis direction can be generated under the action of the magnetic field of the magnet 19 .
  • the coil 14-2 is energized, under the action of the magnetic field of the magnet 20, a Lorentz force F x1 along the X-axis direction can be generated; Zili F x3 .
  • a Lorentz force F x2 along the X-axis direction is generated.
  • a Lorentz force F x4 along the X-axis direction is generated.
  • the coil 14-1, the coil 14-2, the coil 16-1, and the coil 16-2 can generate a Lorentz force that contributes to the translation in the X-axis direction, and a rotational moment MR that contributes to the rotation in the R-axis direction.
  • the magnitude and direction of Fx1 , Fx2 , Fx3 , and Fx4 are controlled by the magnitude and direction of the current applied to each coil, thereby controlling the magnitude and direction of the rotational moment MR , and the movement of the image sensor mover part 13 in the X-axis direction
  • the magnitude and direction of the force on the In this way, the displacement control of the image sensor in the X-axis direction and the R-axis direction is realized.
  • the position sensor 11 is placed in the middle area of the coil 12
  • the position sensor 15 is placed in the middle area of the coil 16-1
  • the position sensor 17 is placed in the middle area of the coil 16-2.
  • the position sensor 11 is matched with the magnet 19, the position sensor 15 is matched with the magnet 18, and the position sensor 17 is matched with the magnet 20 to realize the position detection of the image sensor in the pitch (pitch) direction, the deflection (yaw) direction and the rotation (roll) direction, And the detected position is fed back to the target position controller.
  • the rotation angle in the XY plane can be realized by controlling the coil 14-1, the coil 14-2, the coil 16-1 and the current of the coil 16-1.
  • Rotational moment M R 2d*(F x1 -F x3 ).
  • the driver chip can control the magnitude and direction of the Lorentz force and the direction and magnitude of the rotational torque by controlling the magnitude and direction of the coil current, and then control the image sensor on each axis direction and amount of displacement.
  • the image sensor needs to be rotated at a certain angle in the XY plane, and needs to be translated in the X-axis direction to perform shake compensation on the X-axis direction and the R-axis direction.
  • the driver chip can apply corresponding directions and directions to the coil 14-1, coil 14-2, coil 16-1, and coil 16-2 according to the displacement and displacement direction of the image sensor in the X-axis direction and the R-axis direction, respectively.
  • a current signal of a corresponding magnitude is used to drive the mover part 13 of the image sensor to translate along the X-axis direction and to rotate along the R-axis direction in the XY plane.
  • the drive control process in other modes will not be repeated here.
  • the driving process in different modes and the driving closed-loop negative feedback control process are similar to the three-coil electromagnetic driving scheme above, and will not be repeated here.
  • the size and relative position of the coils in Figure 10 can be adaptively adjusted according to the electromagnetic thrust size and structural requirements of the mechanical design. That is to say, the embodiment of the present application does not limit the installation position of the coil and the size of the coil, which can be set according to actual needs.
  • a Lorentz force acting on the image sensor mover part 23 can be generated to push the image sensor mover part 23 to move in the X-axis, Y-axis and R-axis directions.
  • the coil 22 corresponds to the third coil above
  • the coil 24-2 corresponds to the fourth coil above
  • the coil 24-1 corresponds to the sixth coil above
  • the coil 26-2 corresponds to the fifth coil above
  • the coil 26 -1 corresponds to the seventh coil above.
  • the coil 22 after the coil 22 is energized, it can generate a Lorentz force along the Y-axis direction under the action of the magnetic field of the magnet 29 .
  • the coil 24-2 After the coil 24-2 is electrified, under the action of the magnetic field of the magnet 30, a Lorentz force along the X-axis direction can be generated; after the coil 26-2 is electrified, under the action of the magnetic field of the magnet 20, a Lorentz force along the X-axis direction can be generated. .
  • the coil 24 - 1 is energized, under the action of the magnetic field of the magnet 28 , a Lorentz force along the X-axis direction is generated.
  • the coil 26-1 After the coil 26-1 is energized, under the action of the magnetic field of the magnet, a Lorentz force along the X-axis direction is generated.
  • the position sensor 21, the position sensor 25, and the position sensor 27 are also shown in FIG.
  • the position sensor 21 is placed in the middle area of the coil 22
  • the position sensor 25 is placed in the middle area of the coil 26-1
  • the position sensor 27 is placed in the middle area of the coil 26-2.
  • the position sensor 21 is matched with the magnet 29, the position sensor 25 is matched with the magnet 28, and the position sensor 27 is matched with the magnet 30 to realize the position detection of the image sensor in the pitch (pitch) direction, the deflection (yaw) direction and the rotation (roll) direction, And the detected position is fed back to the target position controller.
  • the size of the coil 14-2 and the coil 16-2 are different, and the size of the coil 14-2 is larger than that of the coil 16-2.
  • the coil 14-1 and the coil 14-2 have the same size, and the coil 16-1 and the coil 16-2 have the same size.
  • the coil 24-1 and the coil 24-2 belong to the same control channel, and the magnitude and direction of the current are the same.
  • the coil 26-1 and the coil 26-2 belong to one control circuit, and the magnitude and direction of the current are the same.
  • the coil on one side can be replaced by two or more coils to obtain different electromagnetic drive schemes.
  • FIG. 12 it is a schematic diagram of a six-coil electromagnetic driving scheme provided by the embodiment of the present application, coil 32-1, coil 32-2, coil 34-1, coil 34-2, coil 36-1 and After the coil 36-2 is energized, under the action of the magnet 38, the magnet 39 and the magnet 40, a Lorentz force acting on the image sensor mover part 33 can be generated to push the image sensor mover part 33 on the X-axis and Y-axis And move in the R-axis direction.
  • a Lorentz force along the Y-axis direction can be generated under the action of the magnetic field of the magnet 39 .
  • the Lorentz force along the X-axis direction can be generated under the magnetic field of the magnet 38, and the coil 34-2 and the coil 36-2 are energized, and then the magnetic field of the magnet 40 Next, a Lorentz force along the X-axis direction is generated.
  • the position sensor 31, the position sensor 35, and the position sensor 37 are also shown in FIG.
  • the position sensor 31 is placed in the middle area of the coil 32-2, the position sensor 35 is placed in the middle area of the coil 36-1, and the position sensor 37 is placed in the middle area of the coil 36-2.
  • the position sensor 31 is matched with the magnet 39, the position sensor 35 is matched with the magnet 38, and the position sensor 37 is matched with the magnet 40 to realize the position detection of the image sensor in the pitch (pitch) direction, the deflection (yaw) direction and the rotation (roll) direction, And the detected position is fed back to the target position controller.
  • the center of gravity and the geometric center of the image sensor mover part 33 be the same as the Lorentzian axis along the Y-axis direction.
  • the mechanical center of the force and the Lorentz force along the X-axis direction coincide to ensure that the three centers are in one.
  • the coil 34-1 and the coil 34-2 are controlled by the same channel, and the magnitude and direction of the current are the same.
  • the coil 36-1 and the coil 36-2 belong to one control channel, and the magnitude and direction of the current are the same.
  • the Lorentz force generated by the coil 32-1 and the Lorentz force generated by the coil 32-2 have the same magnitude and the same direction. There is a moment arm between the Lorentz force generated by the coil 32-1 and the mechanical center O, generating a rotational moment. Similarly, there is a moment arm between the Lorentz force generated by the coil 32-2 and the mechanical center O, generating a rotational moment. These two rotational moments cancel each other out, so that the image sensor mover part 33 does not rotate in the XY plane when it translates along the Y axis. That is, the Lorentz force generated by the coil 32 - 1 and the coil 32 - 2 only contributes to the Y-axis translation of the mover part of the image sensor.
  • the current direction and magnitude of the coil 34-2 and coil 34-1 are the same, that is, the two coils belong to one control channel, and the magnitude and direction of the generated Lorentz force are the same.
  • the current direction and magnitude of the coil 36-1 and the coil 36-2 are the same, that is, the two coils belong to the same control channel, and the magnitude and direction of the generated Lorentz force are the same.
  • FIG. 12 shows the driving control process of the six-coil electromagnetic driving scheme, which can be referred to the corresponding content above, and will not be repeated here.
  • the electromagnetic driving scheme of the embodiment of the present application is not limited to the three-coil, five-coil and six-coil electromagnetic driving schemes mentioned above, and other deformation schemes can also be obtained according to the above-mentioned content.
  • three coils can be used to replace coil 6 and three coils can be used to replace coil 5 to obtain a seven-coil electromagnetic driving scheme.
  • three coils can be used to replace coil 6
  • three coils can be used to replace coil 5
  • three coils can be used to replace coil 2 to obtain a nine-coil electromagnetic drive scheme.
  • different electromagnetic drive schemes can be obtained if the coil size, number of coils, and positions of the coils are different.
  • the drive control logic of different electromagnetic drive schemes is similar.
  • the drive chip applies a current of corresponding magnitude and direction to the corresponding coil according to the displacement and displacement direction of the image sensor on each axis, thereby generating an effect on the mover part of the image sensor.
  • the Lorentz force is used to drive the image sensor to move in all directions for shake compensation.
  • the difference lies in the electromagnetic driving scheme with more coils, the electromagnetic driving force will be greater, and the driving stability will be better.
  • the driving method in the embodiment of the present application is not limited to the electromagnetic driving method mentioned above.
  • the driver chip may not perform crosstalk compensation, or may perform crosstalk compensation.
  • the drive chip receives the control signal from the target position controller, it analyzes the control signal to obtain the displacement of the image sensor in the X-axis direction and the displacement in the Y-axis direction. amount, and the displacement in the R-axis direction; then according to the displacement and displacement direction in the X-axis direction, apply current to the coil 6 through the PWM drive structure, and according to the displacement and displacement direction in the Y-axis direction, give the coil 2 Apply current, and apply current to the coil 5 according to the displacement amount and displacement direction in the R-axis direction.
  • the driver chip obtains the control signal of the target position controller to obtain The displacement in the X-axis direction, the displacement in the Y-axis direction, and the displacement in the R-axis direction, and according to the displacement of the image sensor on each axis, search for crosstalk calibration data to obtain The amount of crosstalk compensation above; then use the amount of crosstalk compensation to perform crosstalk compensation on the displacement in each axis direction; finally apply corresponding currents to coil 2, coil 5 and coil 6 according to the displacement after crosstalk compensation.
  • the three-axis optical anti-shake system based on image sensor displacement provided by the embodiment of the present application can not only reduce the influence of crosstalk to improve the control precision of anti-shake drive, but also solve problems such as image rotation and optical image instability.
  • the three-axis optical anti-shake system based on image sensor displacement in the embodiment of the present application has less hysteresis.
  • Hysteresis-free means that the time it takes to drive the image sensor back and forth on a certain axis is the same. For example, the time to drive the image sensor to move +100um and -100um along the X-axis direction is the same.
  • the optical anti-shake effect can be reflected in the image clarity of the camera module and electronic equipment including the camera module.
  • the anti-shake compression ratio can be used to measure the optical anti-shake effect.
  • the anti-shake compression ratio is an important performance index for evaluating the anti-shake device, which can be calculated by comparing the blurred pixels before and after the optical anti-shake system is turned on. Specifically, it can be expressed as:
  • D0, D1, and D2 represent the camera module corresponding to the optical image stabilization system, the corresponding actual number of pixels under static conditions, the actual number of pixels corresponding to when the OIS function is turned off, and the actual number of pixels corresponding to when the OIS function is turned on .
  • the embodiments of the present application provide a variety of different electromagnetic driving schemes to achieve three-axis optical image stabilization. Moreover, in a variety of electromagnetic drive schemes, by allowing the image sensor mover part to realize "multi-center integration", the crosstalk generated during the drive process is reduced, the crosstalk compensation control of the control algorithm is reduced, and the real-time performance of drive control is improved. .
  • the various electromagnetic drive schemes provided above can also be applied to dual-axis optical image stabilization.
  • additional rotation compensation of the image sensor in the XY plane can be realized through crosstalk compensation, so that the optical image has high stability and no image rotation.
  • the position detection sensor 4 detects the additional rotation of the image sensor in the R-axis Angle, and then the coil 5 is used to drive the image sensor to reversely rotate a certain angle on the R axis to compensate for the amount of rotation caused by crosstalk.
  • the embodiment of the present application also provides an optical image stabilization method based on image sensor displacement, which can be applied to a driver chip.
  • the method first obtains the shaking data, and determines the target position that the image sensor should reach according to the shaking data; then, determines the displacement amount of the image sensor on each axis according to the current position of the image sensor and the target position that should be reached; then , according to the displacement of the image sensor on each axis, the image sensor is driven to move along each axis; after the target position controller generates a new control signal according to the position signal of the image sensor fed back by the position detection sensor, the drive chip acquires the new The control signal, and according to the new control signal, obtain the displacement of the image sensor on each axis, and based on the displacement of the image sensor on each axis, perform a crosstalk calibration data search to find the corresponding crosstalk compensation, and The displacement of each axis is compensated by using the crosstalk compensation amount to obtain the displacement amount after crosstalk compensation; finally, the image sensor is driven to
  • crosstalk compensation is performed on the displacements in each direction according to the pre-calibrated crosstalk compensation amount, so as to reduce the influence of crosstalk and improve the anti-shake driving control accuracy.
  • FIG. 13 it is a schematic flow diagram of an image sensor displacement-based optical image stabilization method provided by an embodiment of the present application.
  • the method may include the following steps:
  • Step S1301 the driver chip acquires the shake displacement compensation amount of the image sensor in each axis direction.
  • the driver chip can obtain the shake displacement compensation amount and the target position of the image sensor in each axis direction by receiving the control signal of the target position controller.
  • the target position controller can obtain the target position that the image sensor should reach in order to suppress the shaking according to the shaking frequency and shaking amplitude in each direction, and through the feedback function of the comparator, according to the target position and the initial position of the image sensor, obtain Shake displacement compensation amount of the image sensor in each axis direction; and then generate a control signal according to the shake displacement compensation amount in each direction, and transmit the control signal to the driver chip.
  • the driver chip can obtain the amount of shake displacement compensation in the X-axis direction and the Y-axis direction.
  • the driver chip can obtain the shake displacement compensation amount in the X-axis direction, Y-axis direction and R-axis direction.
  • Step S1302 the driver chip drives the image sensor to move along each axis according to the shake displacement compensation amount of the image sensor in each axis direction.
  • the driver chip can determine the current signal applied to each coil according to the vibration displacement compensation amount of each axis, and the current signal includes the current magnitude and current direction. That is, by controlling the magnitude and direction of the coil current, the displacement amount and displacement direction of the image sensor are controlled to realize the control decoupling of the three-axis motion.
  • the driver chip applies a current signal of a corresponding size and direction to the coil 6 according to the compensation amount of the jitter displacement in the X-axis direction;
  • For the compensation amount apply a current signal of a corresponding magnitude and direction to the coil 2; apply a current signal of a corresponding magnitude and direction to the coil 5 according to the vibration displacement compensation amount in the R-axis direction.
  • Step S1303 the drive chip obtains the displacement of the image sensor in each axis direction.
  • the position detection sensor can feed back the current position of the image sensor to the target position controller, and the target position controller can compare The difference between the current position of the image sensor and the target position determines whether to end this driving control. If the current driving control is not ended, the displacement of the image sensor in each axis direction is obtained according to the difference between the current position and the target position, and the displacement of the image sensor in each axis direction is transmitted to the driver chip.
  • Step S1304 the driver chip searches the crosstalk calibration data according to the displacement of the image sensor in each axis direction, so as to obtain the crosstalk compensation amount on each axis.
  • the crosstalk calibration data may be obtained through a crosstalk calibration process in advance.
  • the crosstalk compensation amount of the axis can be found from the crosstalk calibration data.
  • Step S1305 for each axis, the driver chip uses the crosstalk compensation amount to perform crosstalk compensation on the displacement to obtain the crosstalk compensated displacement.
  • Step S1306 the driving chip drives the image sensor to move on each axis according to the displacement amount after crosstalk compensation.
  • the driver chip after obtaining the displacement amount of the image sensor in each axis direction after crosstalk compensation, applies a current signal of a corresponding direction and a corresponding magnitude to the coil to drive the image sensor to move on the X-axis, Y-axis and R-axis .
  • step S1303 to step S1306 may be executed repeatedly until the controller determines that the error between the current position of the image sensor and the target position is within a certain range.
  • the crosstalk compensation is performed on the displacement of the image sensor in each axis direction, thereby reducing the influence of the crosstalk.
  • the generation of crosstalk may be caused by mechanical design defects, or may be caused by the assembly process, and the cause of crosstalk is not limited here.
  • the driver chip may not perform crosstalk compensation.
  • the driver chip receives the control signal from the controller, it analyzes the control signal to obtain the displacement of the image sensor in the direction of each axis, and then it can obtain the displacement of the image sensor in each axis direction according to the The amount of displacement, apply a current of the corresponding size and direction to the corresponding coil. This process is executed in a loop until the controller judges that the error between the current position of the image sensor and the target position is within a certain range.
  • the embodiment of the present application proposes a crosstalk compensation process and an electromagnetic driving scheme.
  • the embodiment of the present application may only include an electromagnetic driving scheme, that is, without crosstalk compensation, but based on the above-mentioned electromagnetic driving scheme, a three-axis optical image stabilization based on image sensor displacement can be realized; only Including the crosstalk compensation process, that is, the driver chip performs crosstalk compensation according to the pre-calibrated crosstalk compensation amount, and the electromagnetic drive scheme in the optical anti-shake motor is not the scheme mentioned above.
  • the embodiment of the present application can also include crosstalk compensation and electromagnetic drive schemes at the same time, that is, the embodiment of the present application is not only based on the electromagnetic drive scheme mentioned above, but also realizes three-axis optical image stabilization based on image sensor displacement. Based on the optical image stabilization of the optical axis, the driver chip uses the amount of crosstalk compensation to perform crosstalk compensation.
  • An embodiment of the present application provides a camera module, which may include a lens group, an image sensor, and all or part of the optical anti-shake system shown in FIG. 5 or FIG. 6 .
  • the camera module may include a lens group, an image sensor, an optical anti-shake motor and a drive chip
  • the optical anti-shake motor includes a PWM driving structure, a coil, a magnet, a position sensor, and an image sensor mover part.
  • the mover part of the image sensor is connected with the image sensor, and the image sensor can move along with the movement of the mover part of the image sensor.
  • the distribution and arrangement position of the coils may be as shown in the above-mentioned electromagnetic driving scheme of three coils, five coils or six coils.
  • the optical image stabilization drive control process can be referred to above, and will not be repeated here.
  • the electronic device may include a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program, the method in any one of the above method embodiments is implemented.
  • the electronic device includes the system in any one of the foregoing system embodiments.
  • the embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the steps in the foregoing method embodiments can be realized.
  • An embodiment of the present application provides a computer program product.
  • the computer program product runs on an electronic device, the electronic device can implement the steps in the foregoing method embodiments when executed.
  • the embodiment of the present application also provides a chip system, the chip system includes a processor, the processor is coupled with the memory, and the processor executes the computer program stored in the memory, so as to realize the above-mentioned method embodiments. method.
  • the chip system may be a single chip, or a chip module composed of multiple chips.
  • references to "one embodiment” or “some embodiments” or the like in the specification of the present application means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.

Abstract

本申请实施例公开了一种基于图像传感器位移式的三轴光学防抖系统、方法和装置,通过传感器采集第一方向的第一抖动数据、第二方向的第二抖动数据、以及第三方向的第三抖动数据;控制器再根据第一抖动数据、第二抖动数据以及第三抖动数据,获得图像传感器在第一轴向上的位移量、第二轴向上的位移量以及第三轴向上的位移量;驱动芯片最后分别根据图像传感器在第一轴向上的位移量、第二轴向上的位移量以及第三轴向上的位移量,通过光学防抖马达驱动图像传感器在第一轴向、第二轴向以及第三轴向上位移,从而实现了俯仰、偏转以及旋转三个方向上的光学防抖。

Description

基于图像传感器位移式的三轴光学防抖系统、方法和装置
本申请要求于2021年09月18日提交国家知识产权局、申请号为202111112550.9、申请名称为“基于图像传感器位移式的三轴光学防抖系统、方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及影像技术领域,尤其涉及一种基于图像传感器位移式的三轴光学防抖系统、方法、摄像模组、电子设备以及计算机可读存储介质。
背景技术
在影像技术领域,防抖方式可以分为电子防抖(Electric Image Stabilization,EIS)和光学防抖(Optical Image Stabilization,OIS)。OIS是通过驱动透镜或者感光元件等可移动部件的运动来补偿机身抖动。
根据可移动部件的不同,OIS可以包括镜头平移式光学防抖(Lens-shift Optical Image Stabilization,LS OIS)和图像传感器平移式OIS(Sensor-shift Optical Image Stabilization,SS OIS)。其中,图像传感器平移式OIS的过程包括:通过陀螺仪采集偏转(yaw)方向以及俯仰(pitch)方向的抖动数据;驱动芯片根据抖动数据,通过OIS马达驱动图像传感器进行X轴和/或Y轴方向的平移,以对偏转方向和/或俯仰方向进行抖动补偿。
但是,目前的图像传感器平移式OIS方案中,一般只能实现双轴光学防抖。
发明内容
本申请提供一种基于图像传感器位移式的三轴光学防抖系统、方法、摄像模组、电子设备和计算机可读存储介质,可以实现基于图像传感器位移式的三轴光学防抖。
本申请实施例提供一种基于图像传感器位移式的三轴光学防抖系统、方法、摄像模组、电子设备和计算机可读存储介质,可以实现基于图像传感器位移式的三轴光学防抖。
第一方面,本申请实施例提供一种基于图像传感器位移式的三轴光学防抖系统,该系统包括传感器、控制器、驱动芯片以及光学防抖马达。
其中,传感器用于采集第一方向的第一抖动数据、第二方向的第二抖动数据、以及第三方向的第三抖动数据。
控制器用于根据第一抖动数据、第二抖动数据以及第三抖动数据,获得图像传感器在第一轴向上的位移量、第二轴向上的位移量以及第三轴向上的位移量。
驱动芯片用于分别根据图像传感器在第一轴向上的位移量、第二轴向上的位移量以及第三轴向上的位移量,通过光学防抖马达驱动图像传感器在各轴向上位移。
其中,光学防抖马达包括图像传感器动子部分、磁石、第一线圈、第二线圈和第三线圈;第一线圈设置于图像传感器动子部分的第一侧,第二线圈设置于图像传感器动子部分的第二侧,第三线圈设置于图像传感器动子部分的第三侧,第一侧和第二侧是相对侧,第三侧与第一侧是相邻侧;磁石用于产生磁场。
第一线圈、第二线圈以及第三线圈通电后,在磁场作用下产生作用于图像传感器动 子部分的作用力,以推动图像传感器动子部分在各轴向上位移。图像传感器动子部分与图像传感器连接,且图像传感器随着图像传感器动子部分的运动而运动。
由上可见,通过光学防抖马达中的第一侧线圈、第二侧线圈以及第三侧线圈,产生推动图像传感器沿第一轴向、第二轴向以及第三轴向运动,以进行第一轴向、第二轴向以及第三轴向上的抖动补偿,从而实现了三轴光学防抖。
示例性地,上述第一方向、第二方向、第三方向可以分别为俯仰(pitch)方向、偏转(yaw)方向以及旋转(roll)方向。
在第一方面的一些可能的实现方式中,上述驱动芯片具体用于:
根据第一轴向上的位移量,通过给第一线圈施加第一电流信号,以让第一线圈在磁场作用下产生作用于图像传感器动子部分的第一洛伦兹力,第一洛伦兹力用于驱动图像传感器动子部分沿第一轴向平移。
根据第二轴向上的位移量,通过给第二线圈施加第二电流信号,以让第二线圈在磁场作用下产生作用于图像传感器动子部分的第二洛伦兹力,第二洛伦兹力用于产生转动力矩,以驱动图像传感器动子部分沿第二轴向旋转。
根据第三轴向上的位移量,通过给第三线圈施加第三电流信号,以让第三线圈在磁场作用下产生作用于图像传感器动子部分的第三洛伦兹力,第三洛伦兹力用于驱动图像传感器动子部分沿第三轴向平移。
其中,第一线圈的第一中心线经过图像传感器动子部分的中心点,第一中心线经过第一线圈的中心且与第一轴向平行。
第二线圈的第二中心线不经过图像传感器动子部分的中心点,第二中心线经过第二线圈的中心且与第一轴向平行。
第三线圈的第三中心线经过图像传感器动子部分的中心点,第三中心线经过第三线圈的中心且与第三轴向平行。
在该实现方式中,通过三线圈电磁驱动方案,实现了三轴光学防抖。进一步地,通过设置第一线圈、第二线圈、第三线圈位置,以实现图像传感器动子部分的“多心合一”。进而减少串扰的产生,提高了驱动控制精度。而如果需要进行串扰补偿,则减少了驱动控制过程中所作的串扰补偿,提高了驱动控制的实时性。
示例性地,第一轴向为X轴,第二轴向为Y轴,第三轴向为R轴。
在第一方面的一些可能的实现方式中,第一线圈包括第四线圈和第五线圈,第二线圈包括第六线圈和第七线圈;第四线圈和第六线圈相对设置,第五线圈和第七线圈相对设置。上述驱动芯片具体用于:
根据第一轴向上的位移量和第二轴向上的位移量,通过给第四线圈和第六线圈施加第四电流信号,以让第四线圈在磁场作用下产生作用于图像传感器动子部分的第四洛伦兹力,以及第六线圈在磁场作用下产生作用于图像传感器动子部分的第五洛伦兹力。
根据第一轴向上的位移量和第二轴向上的位移量,通过给第五线圈和第七线圈施加第五电流信号,以让第五线圈在磁场作用下产生作用于图像传感器动子部分的第六洛伦兹力,以及第七线圈在磁场作用下产生作用于图像传感器动子部分的第七洛伦兹力。
根据第三轴向上的位移量,通过给第三线圈施加第六电流信号,以让第三线圈在磁场作用下产生作用于图像传感器动子部分的洛伦兹力,驱动图像传感器动子部分在第三 轴向上位移;
图像传感器动子部分在第四洛伦兹力、第五洛伦兹力、第六洛伦兹力、以及第七洛伦兹力作用下,沿第一轴向和/或第二轴向上位移。
在该实现方式中,通过五线圈电磁驱动方案,实现了三轴光学防抖。相较于三线圈电磁驱动方案,线圈数量更多,能提供的驱动力更大,驱动稳定性更好。
在第一方面的一些可能的实现方式中,第四线圈的第四中心线、第五线圈的第五中心线、第六线圈的第六中心线、以及第七线圈的第七中心线均不经过图像传感器动子部分的中心点;
第四中心线经过第四线圈的中心且与第一轴向平行,第五中心线经过第五线圈的中心且与第一轴向平行,第六中心线经过第六线圈且与第一轴向平行,第七中心线经过第七线圈的中心且第一轴向平行。
第三线圈的第三中心线可以经过图像传感器动子部分的中心点,第三中心线经过第三线圈的中心且与第三轴向平行。
在该实现方式中,可以通过设置各个线圈的位置,实现图像传感器动子部分的“多心合一”,减少了串扰的产生,提高了驱动控制精度。如果需要进行串扰补偿,则可以减少了驱动控制过程中所作的串扰补偿,提高了驱动控制的实时性。
在第一方面的一些可能的实现方式中,第四线圈、第五线圈、第六线圈以及第七线圈的线圈均相同;或者,第四线圈和第六线圈的线圈大小相同,第五线圈和第七线圈的线圈大小相同,且第四线圈的线圈大小和第五线圈的线圈大小不相同。
在第一方面的一些可能的实现方式中,第三线圈包括第八线圈和第九线圈;上述驱动芯片具体用于:
根据第三轴向上的位移量,通过给第八线圈和第九线圈施加第六电流信号,以让第八线圈在磁场作用下产生作用于图像传感器动子部分的第八洛伦兹力,以及第九线圈在磁场作用下产生作用于图像传感器动子部分的第九洛伦兹力;
其中,图像传感器动子部分在第八洛伦兹力和第九洛伦兹力的共同作用下沿第三轴向平移。
在第一方面的一些可能的实现方式中,图像传感器动子部分的中心点与第八线圈的中心之间的距离等于图像传感器动子部分的中心点与第九线圈的中心之间的距离。
在第一方面的一些可能的实现方式中,图像传感器动子部分的重心和图像传感器动子部分的几何中心重合。
示例性地,图像传感器动子部分的重心、几何中心以及力学中心重合,力学中心为沿第一轴向的洛伦兹力和沿第三轴向的洛伦兹力的中心。
在第一方面的一些可能的实现方式中,该系统包括位置检测模块,用于检测图像传感器的位置。
在第一方面的一些可能的实现方式中,位置检测模块包括第一位置传感器、第二位置传感器和第三位置传感器;
第一位置传感器用于与第一磁石搭配,获取图像传感器在第一轴向上的位置信号;
第二位置传感器用于与第二磁石搭配,获取图像传感器在第二轴向上的位置信号;
第三位置传感器用于与第三磁石搭配,获取图像传感器在第三轴向上的位置信号;
第一位置传感器设置于第一线圈的中间区域;第二位置传感器设置于第二线圈的中间区域;第三位置传感器设置于第三线圈的中间区域;
当第一线圈包括第四线圈和第五线圈,第二线圈包括第六线圈和第七线圈时,第一磁石设置于第五线圈的中间区域,第二磁石设置于第七线圈的中间区域,第三磁石设置于第三线圈的中间区域;
当第一线圈包括第四线圈和第五线圈,第二线圈包括第六线圈和第七线圈,第三线圈包括第八线圈和第九线圈时,第一磁石设置于第五线圈的中间区域,第二磁石设置于第七线圈的中间区域,第三磁石设置于第八线圈的中间区域;
磁石包括第一磁石、第二磁石以及第三磁石。
通过该实现方式中提供的位置检测系统,可以实现图像传感器的三轴负反馈,进而实现了三轴光学防抖中的闭环负反馈控制过程,提高了驱动控制的精度。
在第一方面的一些可能的实现方式中,控制器具体用于:根据第一抖动数据、第二抖动数据以及第三抖动数据,获得图像传感器的目标位置;根据目标位置和图像传感器的起始位置,获得图像传感器在第一轴向上的位移量、第二轴向上的位移量以及第三轴向上的位移量;图像传感器的起始位置为通过位置检测模块检测的。
在第一方面的一些可能的实现方式中,控制器具体用于:获取位置检测模块反馈的图像传感器位置信号,图像传感器位置信号用于描述图像传感器的当前位置;根据图像传感器位置信号,判断图像传感器的当前位置和目标位置之间的误差是否在预设范围内;当图像传感器的当前位置和目标位置之间的误差不在预设范围,根据图像传感器的当前位置和目标位置,获得图像传感器在第一轴向上的位移量、第二轴向上的位移量以及第三轴向上的位移量;
驱动器具体用于:读取光学防抖马达中预先存储的串扰标定数据;从串扰标定数据中查找第一轴向的串扰补偿量、第二轴向的串扰补偿量以及第三轴向的串扰补偿量;使用第一轴向的串扰补偿量对第一轴向的位移量进行串扰补偿,得到第一轴向上的串扰补偿后的位移量,使用第二轴向的串扰补偿量对第二轴向的位移量进行串扰补偿,得到第二轴向上的串扰补偿后的位移量,使用第三轴向的串扰补偿量对第三轴向的位移量进行串扰补偿,得到第三轴向上的串扰补偿后的位移量;根据第一轴向上的串扰补偿后的位移量,通过光学防抖马达驱动图像传感器沿第一轴向运动;根据第二轴向上的串扰补偿后的位移量,通过光学防抖马达驱动图像传感器沿第二轴向运动;根据第三轴向上的串扰补偿后的位移量,通过光学防抖马达驱动图像传感器沿第二轴向运动;
其中,第一轴向的串扰补偿量包括图像传感器沿第二轴向位移对沿第一轴向位移的串扰补偿量,以及图像传感器沿第三轴向位移对沿第一轴向位移的串扰补偿量;第二轴向的串扰补偿量包括图像传感器沿第一轴向位移对沿第二轴向位移的串扰补偿量,以及图像传感器沿第三轴向位移对沿第二轴向位移的串扰补偿量;第三轴向的串扰补偿量包括图像传感器沿第一轴向位移对沿第三轴向位移的串扰补偿量,以及图像传感器沿第二轴向位移对沿第三轴向位移的串扰补偿量。
在该实现方式中,驱动芯片在闭环负反馈过程中,使用预先标定的串扰补偿量,对图像传感器在各轴方向上的位移量进行串扰补偿,减少了串扰的影响,提高了防抖驱动控制的精度,使得光学图像稳定性较高,无像旋或像旋较小。
在第一方面的一些可能的实现方式中,传感器包括陀螺仪和加速度计。
第二方面,本申请实施例提供一种基于图像传感器位移式的三轴光学防抖方法,应用于驱动芯片,该方法包括:获取图像传感器在第一轴向上的位移量、第二轴向上的位移量、以及第三轴向上的位移量;根据第一轴向上的位移量、第二轴向上的位移量以及第三轴向上的位移量,通过光学防抖马达驱动图像传感器在各轴向上位移。
其中,光学防抖马达包括图像传感器动子部分、磁石、第一线圈、第二线圈和第三线圈;第一线圈设置于图像传感器动子部分的第一侧,第二线圈设置于图像传感器动子部分的第二侧,第三线圈设置于图像传感器动子部分的第三侧,第一侧和第二侧是相对侧,第三侧与第一侧是相邻侧;图像传感器动子部分与图像传感器连接,且图像传感器随着图像传感器动子部分的运动而运动,磁石用于产生磁场;第一线圈、第二线圈以及第三线圈通电后,在磁场作用下产生作用于图像传感器动子部分的作用力,以推动图像传感器动子部分在各轴向上位移。
在第二方面的一些可能的实现方式中,根据第一轴向上的位移量、第二轴向上的位移量以及第三轴向上的位移量,通过光学防抖马达驱动图像传感器在各轴向上位移,包括:
根据第一轴向上的位移量,通过给第一线圈施加第一电流信号,以让第一线圈在磁场作用下产生作用于图像传感器动子部分的第一洛伦兹力,第一洛伦兹力用于驱动图像传感器动子部分沿第一轴向平移;
根据第二轴向上的位移量,通过给第二线圈施加第二电流信号,以让第二线圈在磁场作用下产生作用于图像传感器动子部分的第二洛伦兹力,第二洛伦兹力用于产生转动力矩,以驱动图像传感器动子部分沿第二轴向旋转;
根据第三轴向上的位移量,通过给第三线圈施加第三电流信号,以让第三线圈在磁场作用下产生作用于图像传感器动子部分的第三洛伦兹力,第三洛伦兹力用于驱动图像传感器动子部分沿第三轴向平移;
其中,第一线圈的第一中心线经过图像传感器动子部分的中心点,第一中心线经过第一线圈的中心且与第一轴向平行;
第二线圈的第二中心线不经过图像传感器动子部分的中心点,第二中心线经过第二线圈的中心且与第一轴向平行;
第三线圈的第三中心线经过图像传感器动子部分的中心点,第三中心线经过第三线圈的中心且与第三轴向平行。
在第二方面的一些可能的实现方式中,第一线圈包括第四线圈和第五线圈,第二线圈包括第六线圈和第七线圈;第四线圈和第六线圈相对设置,五线圈和第七线圈相对设置;
根据第一轴向上的位移量、第二轴向上的位移量以及第三轴向上的位移量,通过光学防抖马达驱动图像传感器在各轴向上位移,包括:
根据第一轴向上的位移量和第二轴向上的位移量,通过给第四线圈和第六线圈施加第四电流信号,以让第四线圈在磁场作用下产生作用于图像传感器动子部分的第四洛伦兹力,以及第六线圈在磁场作用下产生作用于图像传感器动子部分的第五洛伦兹力;
根据第一轴向上的位移量和第二轴向上的位移量,通过给第五线圈和第七线圈施加 第五电流信号,以让第五线圈在磁场作用下产生作用于图像传感器动子部分的第六洛伦兹力,以及第七线圈在磁场作用下产生作用于图像传感器动子部分的第七洛伦兹力;
根据第三轴向上的位移量,通过给第三线圈施加第六电流信号,以让第三线圈在磁场作用下产生作用于图像传感器动子部分的洛伦兹力,驱动图像传感器动子部分在第三轴向上位移;
图像传感器动子部分在第四洛伦兹力、第五洛伦兹力、第六洛伦兹力、以及第七洛伦兹力作用下,沿第一轴向和/或第二轴向上位移。
在第二方面的一些可能的实现方式中,第四线圈的第四中心线、第五线圈的第五中心线、第六线圈的第六中心线、以及第七线圈的第七中心线均不经过图像传感器动子部分的中心点;第三线圈的第三中心线经过图像传感器动子部分的中心点,第三中心线经过第三线圈的中心且与第三轴向平行。
第四中心线经过第四线圈的中心且与第一轴向平行,第五中心线经过第五线圈的中心且与第一轴向平行,第六中心线经过第六线圈且与第一轴向平行,第七中心线经过第七线圈的中心且第一轴向平行。
在第二方面的一些可能的实现方式中,第四线圈、第五线圈、第六线圈以及第七线圈的线圈均相同;
或者,第四线圈和第六线圈的线圈大小相同,第五线圈和第七线圈的线圈大小相同,且第四线圈的线圈大小和第五线圈的线圈大小不相同。
在第二方面的一些可能的实现方式中,第三线圈包括第八线圈和第九线圈;
根据第三轴向上的位移量,通过给第三线圈施加第六电流信号,以让第三线圈在磁场作用下产生作用于图像传感器动子部分的洛伦兹力,包括:
根据第三轴向上的位移量,通过给第八线圈和第九线圈施加第六电流信号,以让第八线圈在磁场作用下产生作用于图像传感器动子部分的第八洛伦兹力,以及第九线圈在磁场作用下产生作用于图像传感器动子部分的第九洛伦兹力;
其中,图像传感器动子部分在第八洛伦兹力和第九洛伦兹力的共同作用下沿第三轴向平移。
在第二方面的一些可能的实现方式中,图像传感器动子部分的中心点与第八线圈的中心之间的距离等于图像传感器动子部分的中心点与第九线圈的中心之间的距离。
在第二方面的一些可能的实现方式中,图像传感器动子部分的重心和图像传感器动子部分的几何中心重合。
在第二方面的一些可能的实现方式中,在根据第一轴向上的位移量、第二轴向上的位移量以及第三轴向上的位移量,通过光学防抖马达驱动图像传感器在各轴向上位移之前,该方法还包括:
读取光学防抖马达中预先存储的串扰标定数据;
从串扰标定数据中查找第一轴向的串扰补偿量、第二轴向的串扰补偿量以及第三轴向的串扰补偿量;
使用第一轴向的串扰补偿量对第一轴向的位移量进行串扰补偿,得到第一轴向上的串扰补偿后的位移量,使用第二轴向的串扰补偿量对第二轴向的位移量进行串扰补偿,得到第二轴向上的串扰补偿后的位移量,使用第三轴向的串扰补偿量对第三轴向的位移 量进行串扰补偿,得到第三轴向上的串扰补偿后的位移量;
其中,第一轴向的串扰补偿量包括图像传感器沿第二轴向位移对沿第一轴向位移的串扰补偿量,以及图像传感器沿第三轴向位移对沿第一轴向位移的串扰补偿量;
第二轴向的串扰补偿量包括图像传感器沿第一轴向位移对沿第二轴向位移的串扰补偿量,以及图像传感器沿第三轴向位移对沿第二轴向位移的串扰补偿量;
第三轴向的串扰补偿量包括图像传感器沿第一轴向位移对沿第三轴向位移的串扰补偿量,以及图像传感器沿第二轴向位移对沿第三轴向位移的串扰补偿量。
第三方面,本申请实施例提供一种摄像模组,包括如上述第一方面任一项的基于图像传感器位移式的三轴光学防抖系统。
第四方面,本申请实施例提供一种电子设备,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上述第一方面任一项的系统。
第五方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现如上述第二方面任一项的方法。
第六方面,本申请实施例提供一种芯片系统,该芯片系统包括处理器,处理器与存储器耦合,处理器执行存储器中存储的计算机程序,以实现如上述第二方面任一项所述的方法。该芯片系统可以为单个芯片,或者多个芯片组成的芯片模组。
第七方面,本申请实施例提供一种计算机程序产品,当计算机程序产品在电子设备上运行时,使得电子设备执行上述第二方面任一项所述的方法。
可以理解的是,上述第二方面至第七方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。
附图说明
图1为本申请实施例提供的双轴光学防抖示意图;
图2为本申请实施例提供的一种应用场景示意图;
图3为本申请实施例提供的摄像模组210的一种示意图;
图4为本申请实施例提供的视频拍摄场景示意图;
图5为本申请实施例提供的基于图像传感器位移式的光学防抖系统的一种示意框图;
图6为本申请实施例提供的基于图像传感器位移式的三轴光学防抖系统一种示意图;
图7为本申请实施例提供的基于图像传感器位移式的三轴光学防抖驱动控制示意框图;
图8为本申请实施例提供的三轴光学防抖驱动过程示意图;
图9为本申请实施例提供的三线圈电磁驱动方案示意图;
图10为本申请实施例提供的五线圈电磁驱动方案的一种示意图;
图11为本申请实施例提供的五线圈电磁驱动方案的另一种示意图;
图12为本申请实施例提供的六线圈电磁驱动方案的一种示意图;
图13为本申请实施例提供的基于图像传感器位移式的光学防抖方法的一种流程示意框图。
具体实施方式
目前,基于图像传感器平移式的光学防抖方式中,由于电磁驱动方案的限制,电磁 线圈在通电之后只能产生两轴方向的电流推力,只能推动图像传感器沿两轴方向上运动,只能实现俯仰(pitch)方向和偏转(yaw)方向的双轴光学防抖。
例如,参见图1示出的本申请实施例提供的双轴光学防抖示意图,在XY平面内,图像传感器100可以沿X轴方向平移和/或沿Y轴方向平移,以对俯仰(pitch)方向和/或偏转(yaw)方向进行抖动位移补偿。
也就是说,现有电磁驱动方案只能推动图像传感器沿X轴方向平移,和/或Y轴方向平移,不能推动图像传感器在XY平面旋转,进而不能对旋转(roll)方向进行抖动补偿。
进一步地,在现有的图像传感器平移式的双轴光学防抖中,由于机械结构的设计缺陷和/或组装工艺等原因,通常会存在串扰(crosstalk)问题,进而产生像旋和图像不稳定等问题。
本申请实施例中的串扰是指在驱动图像传感器沿任意一个方向位移时,图像传感器在其它方向上会产生额外的位移量。
例如,在图1的场景,在一些情况下,假设图像传感器100的起始位置坐标为(0,0)。根据抖动数据,确定图像传感器100应当到达的目标位置为(Δx 1,0)。即在当前的抖动数据下,为了抑制抖动,图像传感器100在X轴方向上应当移动的位移量为Δx 1,在Y轴方向上应当移动的位移量为0;确定出图像传感器100应当到达的目标位置之后,驱动芯片则可以通过图像传感器致动结构(图1中未示出),以驱动图像传感器100沿X轴方向平移Δx 1。其中,图像传感器致动结构用于驱动图像传感器沿X轴和/或Y轴方向移动。
假设由于机械结构设计缺陷或者组装工艺等原因,导致图像传感器致动结构的几何中心以及重心,与力学中心不重合。力学中心是指沿X轴方向的作用力和Y轴方向的作用力的力学中心。
为驱动图像传感器100沿X轴方向平移,需要向图像传感器致动结构或图像传感器致动结构内的部件施加沿X轴方向的作用力。此时,由于图像传感器致动结构的几何中心、重心和该作用力的作用点不重合,施加沿X轴方向的作用力后,会产生一个转动力矩。该转动力矩会使得图像传感器100在XY平面内旋转额外的角度。并且,还会产生一个沿Y轴方向的作用力,使得图像传感器100在Y轴方向产生额外的平移量。
也就是说,由于串扰问题,图像传感器100在沿X轴方向平移Δx 1时,图像传感器100在Y轴方向会产生相应的平移量y 1,在XY平面内也会产生一个旋转角度。因此,图像传感器100实际可能到达的位置为(Δx 1,y 1)。
同理,当图像传感器100应当到达的目标位置为(0,Δy 1)时,驱动芯片驱动图像传感器100沿Y轴方向平移Δy 1。此时,由于串扰问题,图像传感器100沿Y轴方向平移Δy 1时,图像传感器100在X轴方向会产生额外的平移量x 1,在XY平面内也会产生一个旋转角度。因此,图像传感器100实际可能到达的位置为(x 1,Δy 1)。
当图像传感器100应当到达的目标位置为(Δx 1,Δy 1)时,驱动芯片则驱动图像传感器100同时沿X轴方向平移Δx 1,沿Y轴方向平移Δy 1。由于串扰问题,图像传感器100在X轴方向产生了额外平移量为x 2,在Y轴方向上产生了额外平移量为y 2,在XY平面内也会产生一个旋转角度Δθ 1。因此,图像传感器100实际可能到达的位置为 (Δx 1+x 2,Δy 1+y 2)。
由上可见,由于串扰问题,图像传感器100实际到达的位置和应当到达的目标位置不一致。即串扰问题会使得防抖驱动控制的精度较低。另外,驱动图像传感器在X轴方向和/或Y轴方向平移时,图像传感器会在XY平面内产生一个额外的旋转角度,进而产生像旋和光学图像不稳定等问题。也即,串扰可以导致防抖驱动控制的精度较低、像旋以及光学图像不稳定等问题。需要说明的是,上文例子中的坐标系以及数值等均是一种示例。
针对上文提及的相关问题,本申请实施例提供基于图像传感器位移式的三轴光学防抖方案,实现俯仰(pitch)方向、偏转(yaw)方向和旋转(roll)方向的三轴光学防抖。
进一步地,通过使用串扰补偿量对图像传感器在各轴上的移动量进行串扰补偿,以减少串扰的影响,防抖驱动控制的精度较高,光学图像稳定性较高,无像旋或像旋较小。
进一步地,通过机械设计,实现光学防抖马达的“多心合一”,以减少控制算法所做的串扰补偿。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。
下面对本申请实施例可能涉及的应用场景进行示例性介绍。
本申请实施例中,基于图像传感器位移式的光学防抖方案可以应用于电子设备的摄像模组中,以在通过摄像模组进行拍摄时,实现相应方向的抖动抑制。
示例性地,参见图2,为本申请实施例提供的一种应用场景示意图。如图2所示,电子设备200包括摄像模组210。摄像模组210可以为长焦摄像模组或潜望式长焦摄像模组,可以为广角摄像模组,也可以为其它类型的摄像模组,在此不作限定。
摄像模组210包括透镜和图像传感器等器件。例如,参见图3示出的摄像模组210的一种示意图,摄像模组210可以包括透镜组2101和图像传感器2102。透镜组2101包括多个透镜,用于将成像光束传递至图像传感器2102,图像传感器2102用于将成像光束转换成电信号,以得到图像数据。
其中,图3中还示出了摄像模组内的坐标系。与透镜组2101的光轴平行的为Z轴,垂直于Z轴的分别为Y轴和X轴。绕Y轴旋转称为偏转(yaw),绕X轴旋转称为俯仰(pitch),绕Z轴旋转称为旋转(roll)。
在一些实施例中,本申请实施例提供的光学防抖方案,可以实现偏转(yaw)、俯仰(pitch)以及旋转(roll)三个方向的抖动抑制。
可以理解的是,摄像模组210除了包括透镜组和图像传感器,还可以包括其它用于光学防抖的器件,例如,还可以包括光学防抖马达、以及用于检测图像传感器位置的位置传感器等。
在图2中,电子设备200示例性为手机。在其他实施例中,电子设备200还可以为笔记本电脑、平板电脑、行车记录仪、相机、或者监控设备等,在此不作限定。
例如,以电子设备200为手机为例,参见图4示出的视频拍摄场景示意图,用户手持手机400进行视频拍摄的过程中,手机400的机身会由于手抖动而抖动。手机400通过集成的陀螺仪和加速度计等采集得到偏转(yaw)、俯仰(pitch)以及旋转(roll)三 个方向的角速度信号,基于这三个方向的角速度信号,通过光学防抖马达驱动图像传感器在偏转(yaw)、俯仰(pitch)以及旋转(roll)三个方向上进行抖动位移补偿,实现三轴光学防抖。
又例如,当电子设备200为行车记录仪时,该行车记录仪设置于车辆上,并且在车辆行驶过程中,其会由于车辆抖动而抖动。行车记录仪通过集成的陀螺仪和加速度计等采集三个方向的抖动数据,基于三个方向的抖动数据,实现三个方向的抖动位移补偿。
在介绍完本申请实施例可能涉及的应用场景之外,下面结合附图对本申请实施例提供的基于图像传感器位移式的光学防抖方案进行介绍。
下面首先对光学防抖系统进行介绍,并在介绍光学防抖系统的过程中,示例性介绍串扰补偿过程。在介绍完光学防抖系统之后,再对光学防抖马达的电磁驱动方案进行介绍。
参见图5,为本申请实施例提供的基于图像传感器位移式的光学防抖系统的一种示意框图。如图5所示,光学防抖系统500可以包括信号采集模块51、信号处理模块52、位置获取模块53、图像传感器驱动模块54以及位置检测模块55。
其中,信号采集模块51用于采集各个方向的原始角速度信号。原始角速度信号为模拟信号。
上述信号采集模块51可以根据实际防抖需要,采集相应方向的原始角速度信号。例如,当需要实现三轴光学防抖时,信号采集模块51则采集偏转(yaw)、俯仰(pitch)以及旋转(roll)三个方向的原始角速度信号,以实现偏转(yaw)、俯仰(pitch)以及旋转(roll)三个方向的抖动抑制。又例如,当需要实现双轴光学防抖时,信号采集模块51则采集偏转(yaw)和俯仰(pitch)两个方向的原始角速度信号,以实现偏转(yaw)和俯仰(pitch)两个方向的抖动抑制。
当然,信号采集模块51也可以只采集一个方向的原始角速度信号。在此不作限定。
在一些实施例中,信号采集模块51可以包括惯性测量单元,该惯性测量单元示例性包括陀螺仪和加速度计等。
信号处理模块52用于对信号采集模块51采集的角速度模拟信号进行处理,得到处理后的角速度信号。处理后的角速度信号为数字信号。
示例性地,对角速度模拟信号的处理过程可以包括但不限于:模数转换、滤波、积分、以及傅里叶变换等。即通过模数转换器(analoguetodigital conversion,ADC)将信号采集模块51采集的角速度模拟信号进行模数转换,得到角速度数字信号;再使用低通滤波器(Lowpass filter,LPF)对角速度数字信号进行滤波,以滤除角速度数字信号中的高频信号和环境噪音等,保留低频角速度数字信号;最后对滤波得到的低频角速度数字信号进行积分和傅里叶变换,得到频率谱和角度信号等。其中,通过傅里叶变换可以得到频率谱,通过积分可以得到角度信号。
在一些实施例中,针对每个方向的角速度模拟信号均进行模数转换、滤波、积分以及傅里叶变换等过程。
例如,信号采集模块51分别采集偏转(yaw)、俯仰(pitch)以及旋转(roll)三个方向的原始角速度信号。针对俯仰(pitch)方向的原始角速度信号,依次经过模数转换器、低通滤波器、积分电路和傅里叶变换电路,得到俯仰(pitch)方向对应的频 率谱和角度信号等。
位置获取模块53用于根据信号处理模块52的输出,确定图像传感器应当到达的目标位置。
在一些实施例中,位置获取模块53可以对信号处理模块52的输出进行处理,得到各个方向的抖动频率和抖动幅值;再根据各个方向的抖动频率和抖动幅值,获得为了抑制抖动图像传感器应当到达的目标位置。
例如,信号处理模块52的输出包括俯仰(pitch)方向对应的频率谱和角度信号、偏转(yaw)方向对应的频率谱和角度信号、以及旋转(roll)方向对应的频率谱和角度信号。位置获取模块53从俯仰(pitch)方向对应的频率谱和角度信号中,提取得到俯仰(pitch)方向的抖动频率和抖动幅值;从偏转(yaw)方向对应的频率谱和角度信号,提取得到偏转(yaw)方向的抖动频率和抖动幅值;从旋转(roll)方向对应的频率谱和角度信号,提取得到旋转(roll)方向的抖动频率和抖动幅值。
位置获取模块53还用于根据图像传感器应当到达的目标位置和图像传感器的起始位置,确定图像传感器在各个方向上应当移动的位移量。应当移动的位移量为抖动位移补偿量。
其中,图像传感器的起始位置可以由位置检测模块55检测得到。图像传感器的起始位置是指图像传感器当前所处位置。通过图像传感器的起始位置,可以快速准确地判断出图像传感器上的基准点和光路中心之间的初始相对位置关系。
位置获取模块53在确定出图像传感器在各个方向的抖动位移补偿量之后,将该抖动位移补偿量传递至图像传感器驱动模块54。并根据抖动位移补偿量和位置检测模块55反馈的图像传感器位置,进行闭环负反馈控制。
在一些实施例中,位置获取模块53可以通过控制信号将各个方向的抖动位移补偿量传递至图像传感器驱动模块54,该控制信号携带有各个方向的抖动位移补偿量。
图像传感器驱动模块54用于获取到图像传感器在各个方向上的位移量之后,则根据各个方向上的位移量,驱动图像传感器沿各个方向运动,以进行光学抖动补偿。
位置检测模块55除了用于检测图像传感器的基准点和光路中心之间的相对位置关系之外,还可以用于检测抖动补偿后的图像传感器位置,并抖动补偿后的图像传感器位置反馈至位置获取模块53。以使位置获取模块53根据位置检测模块55反馈的图像传感器位置,进行闭环负反馈控制。
其中,位置检测模块55可以包括位置检测传感器,该位置检测传感器用于检测图像传感器的位置。
示例性地,闭环负反馈控制过程如下:
位置获取模块53根据各个方向的抖动频率和抖动幅值,获取到图像传感器在各个方向的抖动位移补偿量,并根据抖动位移补偿量生成第一控制信号。该第一控制信号携带有图像传感器在各个方向上的位移量。
图像传感器驱动模块54接收到来自位置获取模块53的控制信号之后,对控制信号进行解析,得到图像传感器各个方向上的位移量。
针对每个方向,图像传感器驱动模块54根据该方向上的位移量,驱动图像传感器沿相应方向位移。例如,针对俯仰(pitch)方向,根据俯仰(pitch)方向对应的位移 量,图像传感器驱动模块54根据图像传感器沿X轴方向平移;针对偏转(yaw)方向,根据偏转(yaw)方向对应的位移量,图像传感器驱动模块54根据图像传感器沿Y轴方向平移;针对旋转(roll)方向,根据旋转(roll)方向对应的位移量,图像传感器驱动模块54根据图像传感器沿R轴方向旋转。
本申请实施例中,针对每个方向,根据该方向对应的位移量,驱动图像传感器沿相应方向位移。各个方向的驱动控制是不耦合的,即驱动图像传感器沿各个方向的运动控制是相互解耦的。例如,图像传感器沿X轴方向的运动控制、图像传感器沿Y轴方向的运动控制、以及图像传感器沿R轴方向的运动控制是解耦。
图像传感器驱动模块54根据控制信号,驱动图像传感器沿各个方向运动,以进行光学抖动补偿之后,位置检测模块55可以检测图像传感器在各个方向上的位置,并将重新检测的图像传感器位置和上述目标位置对比,当重新检测的图像传感器位置和上述目标位置之间的偏差在允许范围内,则向位置获取模块53输出所检测的图像传感器位置信号。
在一些实施例中,位置检测模块55可以实现各个方向上的解耦负反馈,即位置检测模块55可以分别检测到图像传感器在各个方向上的位置。
位置获取模块53获取到位置检测模块55反馈的图像传感器位置信号,则根据重新检测的图像传感器位置信号,判断图像传感器的当前位置和目标位置之间的误差是否在预设范围内,如果在,则结束本次驱动控制过程;如果不在,则继续进行驱动控制。
位置获取模块53根据重新检测的图像传感器位置信号,继续进行驱动控制的过程可以如下:
位置获取模块53根据图像传感器的当前位置和目标位置之间的差异,确定图像传感器在各个方向上的位移量,并根据各个方向上的位移量,生成控制信号后,将该控制信号传递至图像传感器驱动模块54。
需要说明的是,图像传感器驱动模块54可以包括图像传感器致动结构,图像传感器致动结构可以用于驱动图像传感器在各个方向上移动。
示例性地,图像传感器致动结构可以包括可动载台、基底和致动件。基底固定设置,可动载台与基底连接,且可动载台可以相对于基底运动。可动载台与致动件固定连接。
可动载台用于承载图像传感器。致动件用于驱动可动载台相对于基底运动。当可动载台运动时,图像传感器可随着可动载台的运动而运动。
在一些实施例中,致动件可以为电磁致动件,可动载台为图像传感器的动子部分。在其它实施例中,致动件也可以为其它类型的致动件。
也就是说,在本申请实施例中,图像传感器驱动模块54在获得各轴的位移量之后,可以通过电磁驱动方式驱动图像传感器在各轴上位移,也可以通过其它驱动方式驱动图像传感器在各轴上位移。在此不对驱动方式作限定。
在一些实施例中,图像传感器驱动模块54根据控制信号,获得图像传感器在各个方向上的位移量之后,继续根据各个方向上的位移量,驱动图像传感器沿各轴方向位移。依此循环,直到位置获取模块53根据位置检测模块55反馈的图像传感器位置信号,判断出图像传感器的当前位置和目标位置之间的误差在预设范围内。此时,会存在串扰问题。
在另一些实施例中,为了降低串扰问题的影响,可以在闭环负反馈控制过程中,使用预先标定的串扰补偿量,对图像传感器在各个方向上的位移量进行补偿。
示例性地,图像传感器驱动模块54根据控制信号,获得图像传感器在各个方向上的位移量之后,从串扰标定数据中获取到各个方向的串扰补偿量。针对各个方向,使用串扰补偿量对位移量进行串扰补偿,得到串扰补偿后的位移量。最后根据各个方向上串扰补偿后的位移量,分别驱动图像传感器沿相应方向运动。
具体应用中,预先通过串扰标定过程,以得到串扰标定数据;基于该串扰标定数据,可以查找到不同方向不同位置下的串扰补偿量;根据串扰补偿量,对位移量进行串扰补偿。例如,假设位置获取模块53根据重新检测的图像传感器位置信号和目标位置,确定出图像传感器在X轴方向上应当移动的位移量为Δx 2,在Y轴方向上应当移动的位移量为Δy 2,在R轴方向上应当移动的位移量为Δθ 2
基于X轴方向上的位移量Δx 2和目标位置,从串扰标定数据中查找得到:X轴平移Δx 2对Y轴平移的串扰补偿量为y 3,X轴平移Δx 2对R轴旋转的串扰补偿量为θ 1
基于Y轴方向上的位移量Δy 2和目标位置,从串扰标定数据中查找得到:Y轴平移Δy 2对X轴平移的串扰补偿量为x 3,Y轴平移Δy 2对R轴平移的串扰补偿量为θ 2
基于R轴方向上的位移量Δθ 2和目标位置,从串扰标定数据中查找得到:R轴旋转Δθ 2对X轴平移的串扰补偿量为x 4,R轴旋转Δθ 2对Y轴平移的串扰补偿量为y 4
此时,针对X轴方向,串扰补偿后的位移量=Δx 2+x 3+x 4
针对Y轴方向,串扰补偿后的位移量=Δy 2+y 3+y 4
针对R轴方向,串扰补偿后的位移量=Δθ 212
同理,当图像传感器在X轴方向上应当移动的位移量为Δx 2,在Y轴方向上应当移动的位移量为0,在R轴方向上应当移动的位移量为0。
基于X轴方向上的位移量Δx 2和目标位置,从串扰标定数据中查找得到:X轴平移Δx 2对Y轴平移的串扰补偿量为y 3,X轴平移Δx 2对R轴旋转的串扰补偿量为θ 1
此时,针对X轴方向,串扰补偿后的位移量=Δx 2
针对Y轴方向,串扰补偿后的位移量=y 3
针对R轴方向,串扰补偿后的位移量=θ 1
当图像传感器在X轴方向上应当移动的位移量为Δx 2,在Y轴方向上应当移动的位移量为Δy 2,在R轴方向上应当移动的位移量为0。
基于X轴方向上的位移量Δx 2和目标位置,从串扰标定数据中查找得到:X轴平移Δx 2对Y轴平移的串扰补偿量为y 3,X轴平移Δx 2对R轴旋转的串扰补偿量为θ 1
基于Y轴方向上的位移量Δy 2和目标位置,从串扰标定数据中查找得到:Y轴平移Δy 2对X轴平移的串扰补偿量为x 3,Y轴平移Δy 2对R轴平移的串扰补偿量为θ 2
此时,针对X轴方向,串扰补偿后的位移量=Δx 2+x 3
针对Y轴方向,串扰补偿后的位移量=Δy 2+y 3
针对R轴方向,串扰补偿后的位移量=θ 12
其它情况下的串扰补偿与上文类似,在此不再一一列举。
又例如,参见图1示出的偏转(yaw)方向和俯仰(pitch)方向的双轴光学防抖场景,在一种场景下,为了抑制抖动,图像传感器在X轴方向上应当移动的位移量为Δx 3, 在Y轴方向上应当移动的位移量为Δy 3
基于X轴方向上的位移量Δx 3和目标位置,从串扰标定数据中查找得到:X轴平移Δx 3对Y轴平移的串扰补偿量为y 5
基于Y轴方向上的位移量Δy 3和目标位置,从串扰标定数据中查找得到:Y轴平移Δy 3对X轴平移的串扰补偿量为x 5
此时,针对X轴方向,串扰补偿后的位移量=Δx 3+Δx 3。针对Y轴方向,串扰补偿后的位移量=Δy 3+y 5
本申请实施例的串扰补偿方式可以应用于三轴光学防抖,可以应用双轴光学抖动,也可以应用于其他轴数的光学防抖,在此不作限定。
图像传感器驱动模块54在使用串扰补偿量对图像传感器在各轴上的位移量进行补偿,得到各轴上串扰补偿后的位移量之后,则根据各轴上串扰补偿后的位移量,驱动图像传感器沿各个方向移动相应的位移量,以使得图像传感器到达目标位置,实现抖动位移补偿。
例如,X轴串扰补偿后的位移量=Δx 2;Y轴串扰补偿后的位移量=y 3;R轴串扰补偿后的位移量=θ 1。此时,图像传感器驱动模块54分别驱动图像传感器沿X轴方向平移Δx 2、沿Y轴方向平移y 3、以及沿R轴方向旋转θ 1
图像传感器驱动模块54根据各个方向上的串扰补偿后的位移量,驱动图像传感器沿相应方向运动之后,位置检测模块55重新检测图像传感器在各个方向上位置信号,并根据重新检测的位置信号,判断图像传感器的当前位置和目标位置之间的误差是否在允许范围内,如果在,则向位置获取模块53输出图像传感器位置信号。位置获取模块53根据获取到的图像传感器位置信号,判断图像传感器的当前位置和目标位置之间误差是否在预设范围内,如果在则结束本次驱动控制,如果不在,则继续进行驱动负反馈控制。即位置获取模块53根据图像传感器的当前位置和目标位置,确定图像传感器在各个方向应当移动的位移量,再将该位移量传递至图像传感器驱动模块54,图像传感器驱动模块54继续进行串扰标定数据搜索,以获取到串扰补偿量,使用串扰补偿量对位移量进行补偿,得到串扰补偿后的位移量,最后根据串扰补偿后的位移量,驱动图像传感器在各个方向运动。依此循环,直到位置检测模块55反馈的图像传感器的当前位置和目标位置之间的误差在预设范围之内。
由上可见,相较于没有进行串扰补偿,本申请实施例在驱动负反馈控制过程中,通过使用串扰补偿量,对图像传感器在各个方向上的位移量进行串扰补偿,再基于各个方向上的串扰补偿后的位移量,驱动图像传感器沿各个方向移动相应的位移量,从而降低了串扰的影响,提高了防抖驱动控制的精度,使得光学图像稳定性较高,无像旋。
如上文所示,上文提及基于图像传感器位移式的光学防抖系统不仅可以应用双轴光学防抖,还可以应用于三轴光学防抖。并且,在闭环负反馈控制过程中,可以进行串扰补偿,也可以不进行串扰补偿。
示例性地,当应用于双轴光学防抖,且进行串扰补偿时,则采集偏转(yaw)和俯仰(pitch)两个方向的原始角速度信号,并分别对这两个方向的原始角速度信号进行处理,得到这两个方向的抖动频率和抖动幅值;根据这两个方向的抖动频率和抖动幅值,得到图像传感器应当到达的目标位置,再根据图像传感器应当到达的目标位置和起始位 置,得到图像传感器在X轴方向和Y轴方向的抖动位移补偿量;并根据图像传感器在X轴方向上的抖动位移补偿量,驱动图像传感器沿X轴方向运动,根据图像传感器在Y轴方向上的抖动位移补偿量,驱动图像传感器沿Y轴方向运动;并且,通过位置传感器实现图像传感器位置信号的闭环负反馈控制。在闭环负反馈控制过程中,如果根据反馈的图像传感器位置信号,确定图像传感器的当前位置和目标位置之间的误差不在预设范围内,则根据图像传感器的当前位置和目标位置,再次确定图像传感器在X轴方向的位移量和在Y轴方向的位移量,并进行串扰标定数据搜索,得到在X轴方向的串扰补偿量和Y轴方向的串扰补偿量、以及R轴方向的串扰补偿量,再根据各轴的串扰补偿量和位移量,驱动图像传感器沿各轴方向运动。例如,在闭环负反馈过程中,可以根据图像传感器在XY平面内额外转动的角度,驱动图像传感器反方向运动,以抵消该额外转动的角度。这样,通过串扰补偿,减少了双轴光学防抖的串扰,进而提高了光学防抖驱动控制精度,提高了光学图像稳定性,无像旋。
当应用于三轴光学防抖时,则采集偏转(yaw)、俯仰(pitch)和旋转(roll)三个方向的原始角速度信号,并根据这三个方向的原始角速度信号,实现三个方向的抖动抑制。此时,可以进行串扰补偿,也可以不进行串扰补偿。
示例性地,下面结合图6示出的基于图像传感器位移式的三轴光学防抖系统示意图,对三轴光学防抖系统进行示例性介绍。
如图6所示,信号采集模块51包括陀螺仪和加速度计。信号处理模块52可以包括模数转换器、低通滤波器、积分电路以及傅里叶变换电路。位置获取模块53可以包括目标位置控制器和比较器。图像传感器驱动模块54包括驱动芯片、PWM驱动电流、图像传感器移动式光学防抖马达、以及图像传感器动子部分。而位置检测模块55包括起始位置检测传感器和位置检测传感器。起始位置检测传感器和位置检测传感器可以示例性包括霍尔传感器、隧道磁电阻(Tunneling Magneto Resistance,TMR)传感器、以及巨磁电阻(Giant Magneto Resistance,GMR)传感器等中的一种或多种。
示例性地,该系统的工作流程可以如下:
在用户手持电子设备进行摄像的过程中,电子设备的机身会由于手抖而产生不可避免的抖动。此时,通过集成在该电子设备上的陀螺仪和加速度计,侦测由于手抖动造成的机身抖动,即通过陀螺仪和加速度计采集手抖动信号,以获得偏转(yaw)、俯仰(pitch)以及旋转(roll)三个方向的原始角速度信号。其中,该电子设备可以包括图6所示的三轴光学防抖系统,进一步地,图6所示的三轴光学防抖系统的全部或者部分集成在电子设备的摄像模组中。
陀螺仪和加速度计采集得到三个方向的原始角速度信号之后,将采集的原始角速度信号传递至模数转换器,以将原始的角速度模拟信号转换为角速度数字信号;再将角速度数字信号传递至低通滤波器,以滤除高频干扰信号和噪音,保留较低频率下的手抖动信号;最后,将较低频率下的手抖动信号经过傅里叶变换电路和积分电路,得到频率谱和角度信号。
目标位置控制器在获取到频率谱和角度信号之后,基于频率谱和角度信号,提取出偏转(yaw)方向的抖动幅值和抖动频率、俯仰(pitch)方向的抖动幅值和抖动频率、以及旋转(roll)方向的抖动幅值和抖动频率,即目标位置控制器根据信号处理模块的输 出,对手抖动信号作进一步的分解解耦,得到各个方向的抖动幅值和抖动频率。接着,目标位置控制器根据各个方向的抖动幅值和抖动频率,获得在该抖动场景下图像传感器应当到达的目标位置。
目标位置控制器获得图像传感器的目标位置之后,将目标位置和图像传感器的起始位置传递至比较器,通过比较器的反馈作用获取图像传感器在俯仰(pitch)方向的抖动补偿位移量、偏转(yaw)方向的抖动位移补偿量、以及旋转(roll)方向的抖动位移补偿量。抖动位移补偿量是指为了补偿抖动应当移动的位移量。
其中,图像传感器的起始位置可以通过起始位置传感器检测得到。起始位置传感器检测到图像传感器的起始位置信号之后,将起始位置信号传递至模数转换器,以通过模数转换器将采集的起始位置信号转换成数字信号,再将数字信号形式的起始位置信号传递至比较器。
目标位置控制器通过比较器的反馈作用,获得各个方向上的抖动位移补偿量之后,根据各个方向上的抖动位移补偿量,生成控制信号,并将该控制信号传输至驱动芯片。该控制信号携带有图像传感器在各个方向上的抖动位移补偿量。
驱动芯片接收到来自目标位置控制器的控制信号之后,可以通过解析该控制信号,得到图像传感器在俯仰(pitch)方向上的抖动位移补偿量,在偏转(yaw)方向上的抖动位移补偿量,以及在旋转(roll)方向上的抖动位移补偿量。
驱动芯片得到各个方向的抖动位移补偿量后,则分别根据各个方向的抖动位移补偿量和位移方向,控制PWM驱动结构产生相应大小和相应方向的PWM电流信号,并将该PWM电流信号施加至图像传感器移动式光学防抖马达,以让光学防抖马达驱动图像传感器动子部分沿各个方向位移,从而带动使得图像传感器沿各轴运动,实现根据图像传感器在各个方向的抖动位移补偿量,驱动图像传感器沿各轴方向运动。
可以理解的是,图像传感器动子部分可以看作是光学防抖马达的动子,动子部分可以在驱动力的作用下运动。图像传感器动子部分与图像传感器连接,当图像传感器动子部分运动时,图像传感器也随之运动。因此,可以通过驱动图像传感器动子部分在各个方向位移量,以让图像传感器在各个方向上位移,以对抖动进行补偿。
图像传感器在各个方向的驱动控制是相互解耦的。具体地,驱动芯片根据俯仰(pitch)方向上的抖动位移补偿量,得到图像传感器沿X轴方向的位移量和位移方向,再根据沿X轴方向的位移量和位移方向,生成相应大小和相应方向的电流信号,并将该电流信号施加给光学防抖马达,以让光学防抖马达驱动图像传感器沿X轴方向位移一定的位移量。
同理,驱动芯片根据偏转(yaw)方向上的抖动位移补偿量,得到图像传感器沿Y轴方向的位移量和位移方向,再根据沿Y轴方向的位移量和位移方向,生成相应大小和相应方向的电流信号,并将该电流信号施加给光学防抖马达,以让光学防抖马达驱动图像传感器沿Y轴方向位移一定的位移量。
驱动芯片根据旋转(roll)方向上的抖动位移补偿量,得到图像传感器沿R轴方向的旋转角度和旋转方向,再根据沿R轴方向的旋转角度和旋转方向,生成相应大小和相应方向的电流信号,并将该电流信号施加给光学防抖马达,以让光学防抖马达驱动图像传感器沿R轴方向旋转一定角度。
如图6所示,驱动芯片通过电流信号,驱动图像传感器动子部分在各个方向上运动,以进行光学抖动补偿之后,位置检测传感器可以重新检测图像传感器位置信号,并将该图像传感器位置信号反馈至目标位置控制器。该图像传感器位置信号用于描述图像传感器所处位置。
位置检测传感器可以实现三轴解耦负反馈。具体地,位置检测传感器可以单独检测图像传感器在X轴上的位置、在Y轴上的位置、以及在R轴上的位置,并将图像传感器在各轴上的位置反馈至目标位置控制器。
目标位置控制器接收到反馈的图像传感器位置信号之后,通过比较图像传感器的当前位置和目标位置,获得两者之间的误差,再判断误差是否在预设范围内。如果误差在预设范围内,目标位置控制器则结束本次驱动控制过程;如果误差不在预设范围内,目标位置控制器则位置检测传感器反馈的图像传感器位置信号,获得图像传感器的当前位置,将图像传感器的当前位置和目标位置传递至比较器,通过比较器的反馈作用,获得图像传感器在各个方向上应当移动的位移量。此时,各个方向上应当移动的位移量包括X轴方向上的位移量、Y轴方向上的位移量和R轴方向上的位移量。根据图像传感器在各个方向上应当移动的位移量,生成控制信号,最后将该控制信号传递至驱动芯片。
在一些实施例中,驱动芯片在闭环负反馈控制过程中,可以不进行串扰补偿。此时,驱动芯片在接收来自目标位置控制器的控制信号之后,通过解析该控制信号获得图像传感器在各个方向上的位移量;再根据图像传感器在各个方向上的位移量和位移方向,产生相应大小和相应方向的PWM电流信号,并将所产生的PWM电流信号施加至光学防抖马达中的线圈,以通过光学防抖马达带动图像传感器动子部分沿各轴方向运动。依此循环,直到驱动芯片根据位置检测传感器检测的图像传感器位置信号,判断出图像传感器的当前位置和目标位置之间的误差在预设范围内。
在另一些实施例中,为了降低串扰问题的影响,可以使用串扰标定数据进行串扰补偿。此时,驱动芯片在接收来自目标位置控制器的控制信号之后,通过解析该控制信号获得图像传感器在各个方向上的位移量;再针对每个方向,进行标定数据的搜索,以获得各个方向的串扰补偿量;针对每个方向,使用串扰补偿量对抖动位移补偿量进行串扰补偿,得到串扰补偿后的位移量。
示例性地,针对X轴方向,驱动芯片根据Y轴方向的位移量和R轴方向的位移量,进行串扰标定数据搜索,获得X轴方向的串扰补偿量,再将X轴方向的串扰补偿量和X轴方向的位移量相加,得到X轴方向上串扰补偿后的位移量。
同理,针对Y轴方向,驱动芯片根据X轴方向的位移量和R轴方向的位移量,进行串扰标定数据搜索,获得Y轴方向的串扰补偿量,再将Y轴方向的串扰补偿量和Y轴方向的位移量相加,得到Y轴方向上串扰补偿后的位移量。
针对R轴方向,驱动芯片根据X轴方向的位移量和Y轴方向的位移量,进行串扰标定数据搜索,获得R轴方向的串扰补偿量,再将R轴方向的串扰补偿量和R轴方向的位移量相加,得到R轴方向上串扰补偿后的位移量。
在得到串扰补偿后的位移量之后,驱动芯片分别根据每一轴串扰补偿后的位移量,通过PWM驱动结构输出相应方向和相应大小的电流信号,以驱动图像传感器动子部分沿各轴运动。并且,位置检测传感器也会将图像传感器位置信号反馈至目标位置控制器。 如果目标位置控制器判断出重新检测的图像传感器位置和目标位置之间的误差不在预设范围,则继续确定图像传感器在各个方向上应当移动的位移量,驱动芯片继续根据各个方向上应当移动的位移量,进行串扰标定数据搜索,以获得各个方向的串扰补偿量,并使用串扰补偿量对位移量进行串扰补偿,得到串扰补偿的位移量,最后根据串扰补偿后的位移量驱动图像传感器沿各轴方向运动。依此循环,直到目标位置控制器根据图像传感器位置信号,判断出图像传感器的当前位置和目标位置之间的误差在允许的范围内,则结束本次驱动闭环负反馈控制过程。
其中,光学防抖马达标定数据是预先通过对光学防抖马达进行串扰标定得到的标定数据。在串扰标定过程中,根据位置检测传感器和感应磁石在不同方向上的位移量,以得到的磁感感度矩阵,进行串扰标定,得到串扰标定数据。再标定数据存储至光学防抖马达的存储器中。
串扰标定过程可以示例性如下:
首先,在开环模式下,驱动芯片给光学防抖马达施加X轴方向、Y轴方向、以及R轴方向三个不同方向的电流信号,并获取X轴方向、Y轴方向、R轴方向三个不同方向下电流Code与行程stroke之间的关系、以及位置传感器位置反馈的图像传感器位置Code与行程stroke之间的关系。行程stroke信息可以通过高精度镭射仪获取。
接着,通过理论上电流Code与行程stroke之间的关系,与光学防抖马达在开环条件下测试得到的电流Code与行程stroke之间的关系进行对比,获得不同方向下不同位置下的串扰补偿量,并将该串扰补偿量写入光学防抖马达的寄存器中。
使用串扰补偿对位移量串扰补偿,使得图像传感器的实际位移量发生变化,实际位移量发生变化,电流大小也随着变化。
例如,假设在某一抖动场景下,驱动芯片通过解析目标位置控制器的控制信号,得到各个方向的位移量,并根据俯仰(pitch)方向的位移量,确定X轴方向上的驱动电流大小为90mA;根据偏转(yaw)方向上的位移量,确定Y轴方向上的驱动电流大小为90mA;根据旋转(roll)方向上的位移量,确定R轴方向上的驱动电流为90mA。
而经过串扰补偿之后,根据俯仰(pitch)方向上串扰补偿后的位移量,确定X轴方向上的驱动电流大小为90mA;根据偏转(yaw)方向上串扰补偿后的位移量,确定Y轴方向上的驱动电流大小为80mA;根据旋转(roll)方向上串扰补偿后的位移量,确定R轴方向上的驱动电流为90mA。通过对比可知,未进行串扰补偿之前,Y轴方向的驱动电流大小为90mA,串扰补偿之后,Y轴方向的驱动电流大小为80mA。
驱动芯片通过向作用于X轴平移方向的线圈施加90mA的电流,以产生X轴平移方向上的电磁推力,作用于图像传感器动子部分。图像传感器动子部分在该电磁推力的作用下,沿X轴方向平移一定的位移量。该电磁推力的大小和方向由施加给线圈的电流的大小和方向决定。
同理,驱动芯片通过向作用于Y轴平移方向的线圈施加80mA的电流,以产生Y轴平移方向上的电磁推力,作用于图像传感器动子部分。图像传感器动子部分在该电磁推力的作用下,沿Y轴方向平移一定的位移量。该电磁推力的大小和方向由施加给线圈的电流的大小和方向决定。
驱动芯片通过向作用于R轴方向的线圈施加90mA的电流,以产生R轴平移方向 上的电磁推力,作用于图像传感器动子部分。图像传感器动子部分在该电磁推力的作用下,产生一定大小的方向的转矩,以让图像传感器动子部分在XY平面内旋转一定的角度。该转矩的大小和方向由施加给线圈的电流的大小和方向决定。
这样,驱动芯片根据不同方向的位移量,通过给各个方向的线圈施加相应方向和相应大小的电流,以驱动图像传感器动子部分分别沿X轴方向、Y轴方向、以及R轴方向运动,并且这三个方向的运动和控制相互解耦。
为了更好地介绍三轴光学防抖场景下的串扰补偿,下面结合图7示出的基于图像传感器位移式的三轴光学防抖驱动控制示意框图进行示例性介绍。
如图7所示,通过陀螺仪和加速度计分别采集俯仰(pitch)方向、偏转(yaw)方向以及旋转(roll)方向的原始角速度信号,原始角度速度信号依次经过ADC、滤波、积分和傅里叶变换等,得到各个方向的抖动幅值和抖动频率;控制驱动芯片获取到各个方向的抖动幅值和抖动频率之后,根据该各个方向的抖动幅值和抖动频率,得到图像传感器理应到达的目标位置,再通过位置检测传感系统,获取图像传感器的起始位置信号;基于图像传感器的起始位置信号和目标位置,确定图像传感器在X轴上的抖动位移补偿量、Y轴上的抖动位移补偿量、以及R轴上的抖动位移补偿量。控制驱动芯片根据各轴上的抖动位移补偿量,驱动图像传感器沿各轴方向位移,并通过位置检测传感系统获取抖动补偿后的图像传感器位置;再根据位置检测传感器系统反馈的图像传感器位置和目标位置,确定出图像传感器在各轴方向的位移量,再从光学防抖马达的存储器中读取光学防抖马达标定数据,再基于光学防抖马达标定数据,进行标定数据搜索,以获得X轴的串扰补偿量、Y轴的串扰补偿量、以及R轴的串扰补偿量。
如图7所示,X轴的串扰补偿量包括Y轴平移对X轴平移的串扰补偿和R轴旋转对X轴平移的串扰补偿。
Y轴的串扰补偿量包括X轴平移对Y轴平移的串扰补偿和R轴旋转对Y轴平移的串扰补偿。
R轴的串扰补偿量包括X轴平移对R轴旋转的串扰补偿和Y轴平移对R轴旋转的串扰补偿。
控制驱动芯片使用X轴的串扰补偿量对X轴方向的抖动位移补偿量进行补偿,得到图像传感器在X轴方向上的串扰补偿后的位移量。同理,使用Y轴的串扰补偿量对Y轴方向的抖动位移补偿量进行补偿,得到图像传感器在Y轴方向上的串扰补偿后的位移量。使用R轴的串扰补偿量对R轴方向的抖动位移补偿量进行补偿,得到图像传感器在R轴方向上的串扰补偿后的位移量。
控制驱动芯片根据各轴串扰补偿后的位移量,通过光学防抖马达驱动图像传感器进行X轴平移、Y轴平移、以及R轴旋转。
在驱动图像传感器沿各轴运动时,位移检测传感系统可以实时检测图像传感器的实时位置,并将图像传感器的位置反馈至控制驱动芯片。控制驱动芯片根据反馈的图像传感器位置和目标位置,继续进行驱动闭环负反馈控制。
在一些实施例中,图7中的控制驱动芯片可以包括图6中的目标位置控制器、比较器和驱动芯片。位置检测传感系统包括起始位置检测传感器和位置检测传感器。
示例性地,参见图8示出的三轴光学防抖驱动过程示意图,图像传感器81所处的 位置为起始位置,图像传感器82所处的位置为目标位置。图像传感器81和图像传感器82为同一个图像传感器,通过标号不同以区分同一个传感器所处的两个不同位置。起始位置的图像传感器上的中心点为O’,目标位置的图像传感器上的中心点为O。起始位置的图像传感器上的像素单元所处位置为A’,目标位置的图像传感器上的像素单元所处位置为A。
为了抑制抖动,需要驱动图像传感器从起始位置运动至目标位置。在图8中,可以通过让图像传感器中的像素单元从A’点运动至A点,进而使得图像传感器从起始位置运动至目标位置。
如图8所示,从A’点运动至A点,X轴方向上应当移动的位移量为Δx,在Y轴方向上应当移动的位移量为Δy,在R轴方向上应当移动的位移量为Δθ。
需要说明的是,在驱动图像传感器沿X轴、Y轴和R轴运动时,驱动顺序可以是任意的。例如,可以先驱动图像传感器沿X轴方向运动,再驱动图像传感器沿Y轴方向运动,最后驱动图像传感器沿R轴方向运动。又例如,可以同时驱动图像传感器分别沿X轴、Y轴和R轴运动。
可以看出,本申请实施例提供的基于图像传感器位移式的三轴光学防抖系统,串扰较小,光学图像稳定性较高,无像旋,防抖驱动控制的精度较高,且实现了俯仰(pitch)、偏转(yaw)以及旋转(roll)三个方向的抖动抑制。
如上文所示,驱动芯片可以通过光学防抖马达驱动图像传感器动子部分,以驱动图像传感器沿各个方向运动,进行光学抖动补偿。
在一些实施例中,光学防抖马达可以包括但不限于线圈和磁石。线圈通电后在磁石的作用下会产生洛伦兹力,洛伦兹力可以作用图像传感器动子部分,以推动图像传感器动子部分运动。在磁场一定时,可以通过控制线圈的电流大小和电流方向,从而控制洛伦兹力的大小和方向,以控制图像传感器在各轴上的位移量和位移方向。
具体地,在图像传感器动子部分的第一侧、第二侧和第三侧均设置有线圈,通过第一侧、第二侧和第三侧的线圈,推动图像传感器沿X轴、Y轴以及R轴方向上的位移,以实现三轴光学防抖。
在光学防抖马达中,每一侧的线圈数量、每一侧的线圈设置位置、以及线圈大小等均可以根据实际需要设定,在此不作限定。
示例性地,下面结合附图,分别介绍不同线圈数量下的电磁驱动方案。
(1)三线圈电磁驱动方案。
在三线圈电磁驱动方案下,光学防抖马达可以包括第一线圈、第二线圈和第三线圈。
在一些实施例中,第一线圈设置于图像传感器动子部分的第一侧,第二线圈设置于图像传感器动子部分的第二侧。第一侧和第二侧为相对侧,即第一线圈位于第二线圈的相对侧。第三线圈设置于图像传感器动子部分的第三侧,第三侧和第一侧和第二侧均相邻。
驱动芯片根据图像传感器在X轴方向上的位移量和位移方向,通过电流产生结构(例如PWM驱动结构),输出第一电流信号;将第一电流信号施加给第一线圈,以让第一线圈在磁场作用下产生作用于图像传感器动子部分的作用力,以给图像传感器动子 部分施加一个沿X轴方向的作用力,进而驱动图像传感器动子部分沿X轴方向平移。
驱动芯片根据图像传感器在R轴方向上的位移量和位移方向,通过电流产生结构(例如PWM驱动结构),输出第二电流信号;将第二电流信号施加给第二线圈,以让第二线圈在磁场作用下产生作用于图像传感器动子部分的作用力,以给图像传感器动子部分施加一个沿R轴的转矩,进而驱动图像传感器动子部分沿R轴旋转。
驱动芯片根据图像传感器在Y轴方向上的位移量和位移方向,通过电流产生结构(例如PWM驱动结构),输出第三电流信号;将第三电流信号施加给第三线圈,以让第三线圈在磁场作用下产生作用于图像传感器动子部分的作用力,以给图像传感器动子部分施加一个沿Y轴方向的作用力,进而驱动图像传感器动子部分沿Y轴平移。
在一些实施例中,为了进一步减少串扰,以减少驱动控制中的串扰补偿,在机械结构设计中,可以让力学中心与图像传感器动子部分的几何中心、以及图像传感器动子部分的重心重合,从而实现“多心合一”。力学中心为沿X轴方向的作用力和通过第三线圈产生的沿Y轴方向的作用力的力学中心。
此时,经过第一线圈中心的法线通过图像传感器动子部分的几何中心,经过第二线圈中心的法线不通过图像传感器动子部分的几何中心,经过第三线圈中心的法线通过图像传感器动子部分的几何中心。并且,图像传感器动子部分的重心和几何中心重合。
当然,在另一些实施例中,假如不考虑“多心合一”,经过第一线圈中心的法线和经过第二线圈中心的法线均可以不通过图像传感器动子部分的中心。但是,这种情况下,在推动图像传感器动子部分沿各轴运动时,会产生更多的串扰,需要控制算法做更多的串扰补偿。控制算法需要进行更多的串扰补偿,会降低光学防抖补偿控制的实时性。
例如,参见图9示出的三线圈电磁驱动方案示意图,线圈2、线圈5和线圈6通电后,可以在磁石8、磁石9以及磁石10的作用下,产生作用于图像传感器动子部分3的洛伦兹力,以推动图像传感器动子部分3在X轴、Y轴以及R轴上运动。
其中,线圈6对应上文的第一线圈,线圈5对应上文的第二线圈,线圈2对应上文的第三线圈。因此,在图9中,第一侧为图像传感器动子部分3的左侧,第二侧为图像传感器动子部分3的右侧,第三侧为图像传感器动子部分3的上侧。本申请实施例中,磁石的充磁方向可以为一块磁石四极均匀充磁,也可以是两块相同的磁石双极充磁后连接在一起。如图9中所示,将包括N极和S级的两块磁石连接在一起,线圈通电后,在这两个磁石的磁场产生向左的洛伦兹力F。
当然,磁石充磁方向也可以与图9所示的相反,在此不作限定。
如图9所示,根据洛伦兹力和左手定则,线圈2通电后可以在磁石9的磁场作用下,产生沿Y轴方向的洛伦兹力F y,线圈5通电后可以在磁石8的磁场作用下,产生沿Y轴方向的洛伦兹力F yr,线圈6通电后在磁石10的磁场作用下,产生沿X轴方向的洛伦兹力F x
其中,为了实现“多心合一”,通过设置线圈6和线圈2的位置,以让通过线圈6中心的法线通过中心点O,让通过线圈2中心的法线通过中心点O。这样,线圈2产生的F y和线圈6产生的F x的力学中心与图像传感器动子部分3的中心点O重合,故F y和F x不会对O点产生额外的转矩,不会让图像传感器动子部分3产生额外的旋转。这样,可以减少串扰,进而减少驱动控制中的串扰补偿,提高驱动控制的实时性。
也就是说,F x只对图像传感器动子部分3沿X轴方向平移起贡献作用,不会对O点产生额外转矩,进而不会让图像传感器动子部分3在XY平面内产生额外转动,也不会让图像传感器动子部分在Y轴方向产生额外平移量。同理,F y只对图像传感器动子部分3沿Y轴方向平移起贡献作用,不会对O点产生额外转矩,进而不会让图像传感器动子部分3在XY平面内产生额外转动,也不会让图像传感器动子部分在X轴方向产生额外平移量。这样,驱动图像传感器动子部分3在X轴方向和/或Y轴方向平移时,不会产生转动串扰和平移串扰,进而不用对额外转动量和额外平移量进行串扰补偿,减少了控制算法的串扰补偿控制。在具体应用中,驱动芯片可以根据图像传感器在X轴方向上的位移量和位移方向,确定施加给线圈6的电流大小和方向;根据图像传感器在Y轴方向上位移量和位移方向,确定施加给线圈2的电流大小和方向。
需要说明的是,通过理论机械设计,可以让图像传感器动子部分可以实现“多心合一”,这样在驱动图像传感器动子部分沿X轴、Y轴、以及R轴方向位移时,不会产生串扰。但实际应用中,由于组装工艺的原因,使得按照理论机械设计进行组装得到产品,仍然不能实现完全的“多心合一”,存在一定的误差。因此,在驱动图像传感器动子部分沿X轴、Y轴、以及R轴方向位移时,仍然会产生串扰。针对由于组装工艺产生的串扰,可以在闭环负反馈控制过程中,使用预先标定的串扰补偿量,对各轴方向上的位移量进行补偿;也可以不进行串扰补偿,即不在闭环负反馈控制过程中进行串扰补偿。
在图9中,图像传感器动子部分在F x的作用下,沿X轴正方向运动,在F y的作用下,沿Y轴负方向运动。
线圈5通电后在磁场下产生的洛伦兹力F yr,由于其与图像传感器动子部分3的中心O不重合,存在力臂d,因此F yr对图像传感器动子部分3产生转矩M R。图像传感器动子部分3在转矩M R的作用下,可以在XY平面内沿着R轴方向旋转。在图9中,图像传感器动子部分3在转矩M R的作用,在XY平面内逆时针转动。
另外,图9中还示出了高精度的位置传感器1、位置传感器4以及位置传感器7。位置传感器1放置于线圈2的中间区域,位置传感器4放置于线圈5的中间区域,位置传感器7放置于线圈6的中间区域。
位置传感器1与磁石9搭配,实现图像传感器的位置检测。位置传感器4与磁石8搭配,实现图像传感器的位置检测。位置传感器7与磁石10搭配,实现图像传感器的位置检测。具体应用中,位置传感器1可以实时检测图像传感器在偏转(yaw)方向上的位置,并将检测到的位置反馈至目标位置控制器。位置传感器4可以实时检测图像传感器在旋转(roll)方向上的位置,并将检测到的位置反馈至目标位置控制器。位置传感器7可以实时检测图像传感器在俯仰(pitch)方向上的位置,并将检测到的位置反馈至目标位置控制器。
需要说明的是,图9中包括位置传感器1、线圈2、图像传感器动子部分3、位置传感器4、线圈5、线圈6和位置传感器7的图示为俯视图。而磁石8、磁石9和磁石10的图示为从Y轴负方向向Y轴正方向看得到的正视图。而包括N极和S极的磁石图示为从X轴正方向向X轴负方向看得到的侧视图。
可以看出,通过位置传感器1、位置传感器4以及位置传感器7,实现俯仰(pitch)、偏转(yaw)以及旋转(roll)三轴解耦负反馈。
基于俯仰(pitch)、偏转(yaw)以及旋转(roll)三轴解耦负反馈,实现三轴驱动控制的相互解耦。
示例性地,结合图6和图9,目标位置控制器获取位置传感器7反馈的图像传感器在俯仰(pitch)方向上的位置之后,通过对比当前反馈的图像传感器在俯仰(pitch)方向上的位置,以及图像传感器在俯仰(pitch)方向上理应到达的位置,判断图像传感器在偏转(yaw)方向上的当前位置和理应到达的位置之间的误差是否在允许范围内;如果在,则结束X轴平移方向的闭环驱动控制,如果不在,驱动芯片则根据图像传感器在俯仰(pitch)方向上的当前位置和理应到达的位置,得到图像传感器在俯仰(pitch)方向上应当移动的位移量,并将该位移量传输至驱动芯片。驱动芯片根据图像传感器在俯仰(pitch)方向上应当移动的位移量,给线圈6施加相应大小和相应方向的电流,以让线圈6在磁场作用下产生洛伦兹力,推动图像传感器动子部分3沿X轴平移。在通过线圈6驱动图像传感器动子部分3沿X平移时,位置传感器7和磁石10搭配,检测得到图像传感器在俯仰(pitch)方向上的位置,并将该位置反馈至目标位置控制器。依此循环,直到图像传感器在俯仰(pitch)方向上的当前位置和理应到达的位置之间的误差在允许范围内。
同理,目标位置控制器在获取位置传感器1反馈的图像传感器在偏转(yaw)方向上的位置之后,通过对比当前反馈的图像传感器在偏转(yaw)方向上的位置,以及图像传感器在偏转(yaw)方向上理应到达的位置,判断图像传感器在偏转(yaw)方向上的当前位置和理应到达的位置之间的误差是否在允许范围内;如果在,则结束Y轴平移方向的闭环驱动控制,如果不在,驱动芯片则根据图像传感器在偏转(yaw)方向上的当前位置和理应到达的位置,得到图像传感器在偏转(yaw)方向上应当移动的位移量,并将该位移量传输至驱动芯片。驱动芯片根据图像传感器在偏转(yaw)方向上应当移动的位移量,给线圈2施加相应大小和相应方向的电流,以让线圈2在磁场作用下产生洛伦兹力,推动图像传感器动子部分3沿X轴平移。在通过线圈2驱动图像传感器动子部分3沿Y平移时,位置传感器1和磁石9搭配,检测得到图像传感器在偏转(yaw)方向上的位置,并将该位置反馈至目标位置控制器。依此循环,直到图像传感器在偏转(yaw)方向上的当前位置和理应到达的位置之间的误差在允许范围内。
目标位置控制器获取位置传感器4反馈的图像传感器在旋转(roll)方向上的位置之后,通过对比当前反馈的图像传感器在旋转(roll)方向上的位置,以及图像传感器在旋转(roll)方向上理应到达的位置,判断图像传感器在旋转(roll)方向上的当前位置和理应到达的位置之间的误差是否在允许范围内;如果在,则结束R轴旋转方向的闭环驱动控制,如果不在,驱动芯片则根据图像传感器在旋转(roll)方向上的当前位置和理应到达的位置,得到图像传感器在旋转(roll)方向上应当移动的位移量,并将该位移量传输至驱动芯片。驱动芯片根据图像传感器在旋转(roll)方向上应当移动的位移量,给线圈5施加相应大小和相应方向的电流,以让线圈5在磁场作用下产生转动力矩,推动图像传感器动子部分3在XY平面内旋转一定角度。在通过线圈5驱动图像传感器动子部分3在XY平面内旋转时,位置传感器4和磁石8搭配,检测得到图像传感器在旋转(roll)方向上的位置,并将该位置反馈至目标位置控制器。依此循环,直到图像传感器在旋转(roll)方向上的当前位置和理应到达的位置之间的误差在允许范 围内。
为了更好地介绍基于图9示出的三线圈电磁驱动方案的抖动补偿控制,下面示例性介绍几种典型的图像传感器运动模式。
1.1、图像传感器平移模式。
其中,X轴方向平移模式:F x≠0,F y=0,F yr=0。
Y轴方向平移模式:F x=0,F y≠0,F yr=0。
X轴和Y轴双轴方向平移模式:F x≠0,F y≠0,F yr=0。
具体应用中,在X轴方向平移模式下,图像传感器只需要沿X轴方向进行平移,以进行X轴方向的抖动补偿。此时,驱动芯片可以根据图像传感器在X轴上的位移方向和位移量,通过PWM驱动结构,给线圈6施加一个相应方向和相应大小的电流,以让线圈6在磁场下产生作用于图像传感器动子部分3的作用力F x,驱动图像传感器动子部分3沿X轴方向平移,进而驱动图像传感器沿X轴方向平移。如果图像传感器动子部分在X轴方向平移时,对Y轴和R轴没有产生串扰,则不用进行串扰补偿或者认为串扰补偿量为零,故驱动芯片可以不用给线圈2和线圈6施加电流。驱动芯片通过给线圈6施加相应方向和相应大小的电流,驱动图像传感器沿X轴方向平移时,位置传感器7通过感应磁石10获取图像传感器在X轴方向的位置信号,位置传感器1通过感应磁石9获取图像传感器在Y轴方向的位置信号,位置传感器4通过感应磁石8获取图像传感器在R轴方向的位置信号,并将这些位置信号反馈至目标位置控制器。目标位置控制器根据反馈的位置信号,进行驱动闭环负反馈控制。
需要说明的是,上文以及下文中示出的各种运动模式下的方案,均是基于理论机械设计下图像传感器动子部分“多心合一”得到的。但实际应用中,由于组装工艺的原因,使得按照理论机械设计进行组装得到的产品,仍然不能实现完全的“多心合一”,存在一定的误差。因此,在驱动图像传感器动子部分沿X轴、Y轴、以及R轴方向位移时,仍然会产生串扰。
此时,为了保证防抖驱动控制精度,可以进行驱动控制串扰补偿。示例性地,在X轴方向平移模式下,驱动芯片根据图像传感器在X轴方向上的抖动位移补偿量,驱动图像传感器动子部分,以驱动图像传感器在沿X轴方向平移。然后,则进入驱动闭环负反馈控制模式,在该模式下,目标位置控制器获取位置传感器反馈的图像传感器在X轴方向上的实时位置、在Y轴方向上的实时位置、以及在R轴方向上的实时位置,并将获取的反馈位置与目标位置比较,得到图像传感器在X轴方向上的位移量、Y轴方向上的位移量以及R轴方向上的位移量。驱动芯片再进行串扰标定数据的搜索,获得各轴上的串扰补偿量,并使用各轴上的串扰补偿量对位移量进行串扰补偿,得到各轴串扰后的位移量;最后根据各轴串扰后的位移量,给相应线圈施加相应方向和相应大小的电流。
同理,在Y轴方向平移模式下,图像传感器只需要沿Y轴方向进行平移,以进行Y轴方向的抖动补偿。此时,驱动芯片可以根据图像传感器在Y轴上的位移方向和位移量,通过PWM驱动结构,给线圈2施加一个相应方向和相应大小的电流,以让线圈2在磁场下产生作用于图像传感器动子部分3的作用力,驱动图像传感器动子部分3沿Y轴方向平移,进而带动图像传感器沿X轴方向平移。如果图像传感器动子部分在Y 轴方向平移时,对X轴和R轴没有产生串扰,则不用进行串扰补偿,驱动芯片可以不用给线圈6和线圈5施加电流。
与上文的X轴方向平移模式类似,在驱动闭环负反馈过程,驱动芯片可以使用串扰补偿量对各轴方向上的位移量进行串扰补偿,再根据各轴串扰补偿后的位移量,给相应线圈施加相应大小和相应方向的电流。
在X轴和Y轴双轴方向平移模式下,图像传感器需要沿X轴方向平移以及沿Y轴方向平移,以分别进行X轴方向和Y轴方向的抖动补偿。此时,驱动芯片可以根据图像传感器在X轴方向上的位移方向和位移量,给线圈6施加相应大小和相应方向的电流;根据Y轴方向上的位移方向和位移量,给线圈2施加相应发现和相应方向的电流。如果X轴方向平移和Y轴方向平移时,没有对R轴产生串扰,则不用进行R轴方向上的串扰补偿或者认为串扰补偿量为零,则不用给线圈5施加电流信号。
1.2、图像传感器面内旋转模式:F x=0,F y=0,F yr≠0。
在该模式下,图像传感器需要在XY平面内进行顺时针或逆时针旋转,以进行R轴方向的抖动补偿。
此时,驱动芯片根据图像传感器根据旋转角度大小和旋转方向,通过PWM驱动结构给线圈5施加相应方向和相应大小的电流,产生作用于图像传感器动子部分3的转矩,以驱动图像传感器动子部分3在XY平面内顺时针或逆时针旋转一定角度。
如果驱动图像传感器在XY平面内旋转时,对X轴和Y轴没有产生串扰,则可以不用进行串扰补偿,或者认为串扰补偿量为零,则不用给线圈2和线圈6施加电流。
1.3、图像传感器平移和面内旋转模式。
其中,X轴方向平移+面内旋转模式:F x≠0,F y=0,F yr≠0。
Y轴方向平移+面内旋转模式:F x=0,F y≠0,F yr≠0。
X轴和Y轴双轴方向平移+面内旋转模式:F x≠0,F y≠0,F yr≠0。
在X轴方向平移+面内旋转模式下,图像传感器需要在XY平面内旋转一定角度,并且需要在X轴方向上平移,以对X轴方向和R轴方向进行抖动补偿。此时,驱动芯片可以分别根据图像传感器在X轴方向和R轴方向的位移量和位移方向,分别给线圈5和线圈6施加相应方向和相应大小的电流信号,以驱动图像传感器动子部分3沿X轴方向平移,并在XY平面内沿R轴方向旋转。如果图像传感器在进行X轴方向平移以及R轴方向旋转时,对Y轴没有产生串扰,则不用进行串扰补偿或者认为串扰补偿量为零,故不用给线圈2施加电流。
同理,Y轴方向+面内旋转模式、以及X轴和Y轴双轴方向平移+面内旋转模式下的驱动过程可以参见上文,在此不再赘述。
值得指出的是,本申请实施例通过让图像传感器动子部分的重心以及几何中心,与X轴方向的F x和Y轴方向的F y之间的力学中心重合,保证“三心合一”,可以减少控制算法所做的串扰补偿。
例如,图9中,X轴方向的F x和Y轴方向的F y的力学中心与O点重合,这两个力不会对O点产生额外的转矩。因此在驱动图像传感器进行X轴平移和Y轴平移时,不用对额外的转矩进行串扰补偿。
假设F x和F y的力学中心与O点不重合,这两个力会对O点产生额外的转矩,为了 保证驱动控制精度,需要在驱动图像传感器在进行X轴平移和/或Y轴平移时,对额外的转矩进行串扰补偿,即需要进行额外的串扰补偿控制。
还值得指出的是,图9中的三线圈电磁驱动方案不仅可以应用于三轴光学防抖,以实现俯仰(pitch)方向、偏转(yaw)方向以及旋转(roll)方向上的抖动抑制;还可以应用于双轴光学防抖方案,此时可以通过线圈5对R轴方向的额外转动进行串扰补偿。例如,基于图9的机械设计进行组装时,由于组装工艺的原因,导致X轴方向的F x和Y轴方向的F y的力学中心与O点不重合,会对O点产生额外的转矩,进而使得在驱动图像传感器在X轴方向平移和/或Y轴方向平移时,图像传感器会产生额外的转动效果,产生像旋和光学图像不稳定等问题。为了消除图像传感器在XY平面内的额外转矩,可以通过线圈5产生一个反方向的转矩,以抵消额外转矩。比如,额外转矩使得图像传感器在XY平面内平移时顺时针旋转+θ,则通过线圈5产生补偿转矩,以驱动图像传感器在XY平面内逆时针旋转+θ,从而抵消额外转矩。
(2)五线圈电磁驱动方案。
基于上述三线圈电磁驱动方案,可以将某一侧的线圈替换成两个或多个线圈,以得到不同的电磁驱动方案。
例如,可以将第一线圈和第二线圈均替换成两个线圈,第三线圈不变,则可以得到一种五线圈电磁驱动方案。此时,第一线圈替换为第四线圈和第五线圈,第二线圈替换为第六线圈和第七线圈。第四线圈和第五线圈均设置在图像传感器动子部分的第一侧,第六线圈和第七线圈均设置于图像传感器动子部分的第二侧,第三线圈设置于第三侧。
第四线圈和第六线圈相对设置,且同属于一路控制,第四线圈和第六线圈的电流大小和方向均相同。因此,第四线圈通电后在磁场下产生的洛伦兹力和第六线圈通电后在磁场下产生的洛伦兹力相同。同理,第五线圈和第七线圈相对设置,且同属于一路控制,第五线圈和第七线圈的电流大小和方向均相同。因此,第五线圈通电后在磁场下产生的洛伦兹力和第七线圈通电后在磁场下产生的洛伦兹力相同。
具体应用中,为了实现第四线圈和第六线圈同属于一路控制,可以将第四线圈和第六线圈串联。同理,可以将第五线圈和第七线圈串联。当然,也可以不将第四线圈和第六线圈串联。
在五线圈电磁方案中,经过第四线圈中心的法线、经过第六线圈中心的法线、经过第五线圈中心的法线、以及经过第七线圈中心的法线可以均不通过图像传感器动子部分的中心。示例性地,参见图10,为本申请实施例提供的五线圈电磁驱动方案的一种示意图。如图10所示,线圈12、线圈14-1、线圈14-2、线圈16-1和线圈16-2通电后,可以在磁石18、磁石19以及磁石20的作用下,产生作用于图像传感器动子部分13的洛伦兹力,以推动图像传感器动子部分13在X轴、Y轴以及R轴方向上运动。
其中,线圈12对应上文的第三线圈,线圈14-2对应上文的第四线圈,线圈14-1对应上文的第六线圈,线圈16-2对应上文的第五线圈,线圈16-1对应上文的第七线圈。
如图10所示,根据洛伦兹力和左手定则,线圈12通电后可以在磁石19的磁场作用下,产生沿Y轴方向的洛伦兹力F y。线圈14-2通电后可以在磁石20的磁场作用下,产生沿X轴方向的洛伦兹力F x1,线圈16-2通电后在磁石20的磁场作用下,产生沿X轴方向的洛伦兹力F x3。线圈14-1通电后在磁石18的磁场作用下,产生沿X轴方向的洛伦兹力F x2。线圈16-1通电后在磁石的磁场作用下,产生沿X轴方向的洛伦兹力F x4
与上文的三线圈驱动方案类似,为了减少驱动控制中的串扰补偿,让图像传感器动 子部分13的重心以及几何中心,与沿Y轴方向的洛伦兹力和沿X轴方向的洛伦兹力的力学中心重合,保证三心合一。
经过线圈14-1中心的法线、经过线圈14-2中心的法线、经过线圈16-1中心的法线以及经过线圈16-2中心的法线均没有通过中心O,因此,线圈14-1产生的F x2,线圈14-2产生的F x1,线圈16-1产生的F x4,线圈16-2产生的F x3,均没有经过中心点O。
线圈14-1、线圈14-2、线圈16-1以及线圈16-2可以产生对X轴方向平移起贡献作用的洛伦兹力,以及对R轴方向旋转起贡献作用的转动力矩M R。通过施加给各个线圈的电流大小和方向,控制F x1、F x2、F x3、以及F x4的大小和方向,进而控制转动力矩M R大小和方向,以及图像传感器动子部分13在X轴方向上的作用力大小和方向。这样,实现了图像传感器在X轴方向和R轴方向的位移控制。
线圈14-1和线圈14-2同属一路控制,电流大小和方向均相同,即F x1=F x2
线圈16-1和线圈16-2同属一路控制,电流大小和方向均相同,即F x3=F x4
另外,与上文的三线圈电磁驱动方案类似,图10中还示出了位置传感器11、位置传感器15以及位置传感器17。位置传感器11放置于线圈12的中间区域,位置传感器15放置于线圈16-1的中间区域,位置传感器17放置于线圈16-2的中间区域。
位置传感器11与磁石19搭配,位置传感器15与磁石18搭配,位置传感器17与磁石20搭配,实现图像传感器在俯仰(pitch)方向、偏转(yaw)方向以及旋转(roll)方向上的位置检测,并将检测到的位置反馈至目标位置控制器。
为了更好地介绍基于图10示出的五线圈电磁驱动方案的抖动补偿控制,下面示例性介绍几种典型的图像传感器运动模式。
2.1、图像传感器平移模式。
其中,X轴方向平移模式:F x1=F x3≠0,F y=0。
Y轴方向平移模式:F x1=F x3=0,F y≠0。
X轴和Y轴双轴方向平移模式:F x1=F x2=F x3=F x4≠0,F y≠0。
2.2、图像传感器面内旋转模式:F x1=-F x3≠0,F y=0。其中,F x1=F x2,F x3=F x4
当F x1>0,图像传感器在XY平面内顺时针旋转;当F x1<0,图像传感器在XY平面内逆时针旋转。在XY平面的旋转角度大小可以通过控制线圈14-1、线圈14-2、线圈16-1以及线圈16-1的电流大小实现。
2.3、图像传感器平移和面内旋转模式。
其中,X轴方向平移+面内旋转模式:F x1≠F x3≠0,F y=0。
当F x1>F x3,图像传感器在XY平面内顺时针旋转;当F x1<F x3,图像传感器在XY平面内逆时针旋转。F x1=F x2,F x3=F x4
转动力矩M R=2d*(F x1-F x3)。
Y轴方向平移+面内旋转模式:F x1=-F x3≠0,F y≠0。通过控制F x1的方向,以控制转动力矩M R的方向,从而控制旋转方向。
X轴和Y轴双轴方向平移+面内旋转模式:F x1≠F x3≠0,F y≠0。
在上文示出的各种模式下,驱动芯片可以通过控制线圈电流的大小和方向,以控制洛伦兹力的大小和方向,以及转动力矩的方向和大小,进而控制图像传感器在各轴上的位移方向和位移量。
例如,在X轴方向平移+面内旋转模式下,图像传感器需要在XY平面内旋转一定角度,并且需要在X轴方向上平移,以对X轴方向和R轴方向进行抖动补偿。此时,驱动芯片可以分别根据图像传感器在X轴方向和R轴方向的位移量和位移方向,分别给线圈14-1、线圈14-2、线圈16-1和线圈16-2施加相应方向和相应大小的电流信号,以驱动图像传感器动子部分13沿X轴方向平移,并在XY平面内沿R轴方向旋转。如果图像传感器在进行X轴方向平移以及R轴方向旋转时,对Y轴没有产生串扰,则不用进行串扰补偿或者认为串扰补偿量为零,故不用给线圈12施加电流。
其它模式下的驱动控制过程,在此不再赘述。不同模式下的驱动过程、驱动闭环负反馈控制过程,与上文的三线圈电磁驱动方案的类似,在此不再赘述。
值得指出的是,可根据机械设计的电磁推力大小和结构需求,对图10中的线圈大小和相对位置进行适应性调整。也即本申请实施例对线圈的设置位置和线圈大小等不作限定,其均可以根据实际需要设定。
例如,参见图11示出的本申请实施例提供的五线圈电磁驱动方案的另一种示意图,线圈22、线圈24-1、线圈24-2、线圈26-1和线圈26-2通电后,可以在磁石28、磁石29以及磁石30的作用下,产生作用于图像传感器动子部分23的洛伦兹力,以推动图像传感器动子部分23在X轴、Y轴以及R轴方向上运动。
其中,线圈22对应上文的第三线圈,线圈24-2对应上文的第四线圈,线圈24-1对应上文的第六线圈,线圈26-2对应上文的第五线圈,线圈26-1对应上文的第七线圈。
与图10类似,根据洛伦兹力和左手定则,线圈22通电后可以在磁石29的磁场作用下,产生沿Y轴方向的洛伦兹力。线圈24-2通电后可以在磁石30的磁场作用下,产生沿X轴方向的洛伦兹力,线圈26-2通电后在磁石20的磁场作用下,产生沿X轴方向的洛伦兹力。线圈24-1通电后在磁石28的磁场作用下,产生沿X轴方向的洛伦兹力。线圈26-1通电后在磁石的磁场作用下,产生沿X轴方向的洛伦兹力。
另外,图11中还示出了位置传感器21、位置传感器25以及位置传感器27。位置传感器21放置于线圈22的中间区域,位置传感器25放置于线圈26-1的中间区域,位置传感器27放置于线圈26-2的中间区域。
位置传感器21与磁石29搭配,位置传感器25与磁石28搭配,位置传感器27与磁石30搭配,实现图像传感器在俯仰(pitch)方向、偏转(yaw)方向以及旋转(roll)方向上的位置检测,并将检测到的位置反馈至目标位置控制器。
通过对比图10和图11可知,图10中的线圈14-2和线圈16-2的尺寸大小相同,线圈14-1和线圈14-2的尺寸大小相同,线圈16-1和线圈16-2的尺寸大小相同。
而图11中,线圈14-2和线圈16-2的尺寸大小不相同,且线圈14-2的尺寸大于线圈16-2的尺寸。线圈14-1和线圈14-2的尺寸大小相同,线圈16-1和线圈16-2的尺寸大小相同。
相较而言,图11通过让线圈14-2的尺寸大于线圈16-2的尺寸,可以保证相同尺寸下图像传感器X轴方向的光学防抖角度更大。
与图10类似,为了减少驱动控制中的串扰补偿,让图像传感器动子部分23的重心以及几何中心,与沿Y轴方向的洛伦兹力和沿X轴方向的洛伦兹力的力学中心重合,保证三心合一。
线圈24-1和线圈24-2同属一路控制,电流大小和方向均相同。线圈26-1和线圈 26-2同属一路控制,电流大小和方向均相同。
图11示出的五线圈电磁驱动方案下的驱动控制过程可以参见上文对应内容,在此不再赘述。
(3)六线圈电磁驱动方案。
基于上述三线圈或五线圈电磁驱动方案,可以将某一侧的线圈替换成两个或多个线圈,以得到不同的电磁驱动方案。
例如,以上述图10示出五线圈电磁驱动方案为基础,将线圈12替换成两个线圈,则可以得到一种六线圈电磁驱动方案。又例如,以上述图11示出的五线圈电磁驱动方案为基础,将线圈22替换成两个线圈,又可以得到一种六线圈电磁驱动方案。
示例性地,参见图12,为本申请实施例提供的六线圈电磁驱动方案的一种示意图,线圈32-1、线圈32-2、线圈34-1、线圈34-2、线圈36-1和线圈36-2通电后,可以在磁石38、磁石39以及磁石40的作用下,产生作用于图像传感器动子部分33的洛伦兹力,以推动图像传感器动子部分33在X轴、Y轴以及R轴方向上运动。
与图10类似,根据洛伦兹力和左手定则,线圈32-1以及线圈32-2通电后,可以在磁石39的磁场作用下,产生沿Y轴方向的洛伦兹力。线圈34-1和线圈36-1通电后,可以在磁石38的磁场作用下,产生沿X轴方向的洛伦兹力,线圈34-2和线圈36-2通电,后在磁石40的磁场作用下,产生沿X轴方向的洛伦兹力。
另外,图12中还示出了位置传感器31、位置传感器35以及位置传感器37。位置传感器31放置于线圈32-2的中间区域,位置传感器35放置于线圈36-1的中间区域,位置传感器37放置于线圈36-2的中间区域。
位置传感器31与磁石39搭配,位置传感器35与磁石38搭配,位置传感器37与磁石40搭配,实现图像传感器在俯仰(pitch)方向、偏转(yaw)方向以及旋转(roll)方向上的位置检测,并将检测到的位置反馈至目标位置控制器。
与上文提及的三线圈电磁驱动方案和五线圈电磁驱动方案类似,为了减少驱动控制中的串扰补偿,让图像传感器动子部分33的重心以及几何中心,与沿Y轴方向的洛伦兹力和沿X轴方向的洛伦兹力的力学中心重合,保证三心合一。线圈34-1和线圈34-2同属一路控制,电流大小和方向均相同。线圈36-1和线圈36-2同属一路控制,电流大小和方向均相同。
可以理解的是,线圈32-1产生的洛伦兹力和线圈32-2产生的洛伦兹力大小相同,且方向相同。线圈32-1产生的洛伦兹力和力学中心O之间存在力臂,产生一个转动力矩。同理,线圈32-2产生的洛伦兹力和力学中心O之间存在力臂,产生一个转动力矩。这两个转动力矩相互抵消,使得图像传感器动子部分33在沿Y轴平移时,不会在XY平面内旋转。即线圈32-1和线圈32-2产生的洛伦兹力只对图像传感器动子部分的Y轴平移起贡献作用。
与上文的五线圈电磁驱动方案类似,线圈34-2和线圈34-1的电流方向和电流大小相同,即这两个线圈同属一路控制,产生的洛伦兹力的大小和方向相同。线圈36-1和线圈36-2的电流方向和电流大小相同,即这两个线圈同属一路控制,产生的洛伦兹力的大小和方向相同。关于基于线圈34-1、线圈34-1、线圈36-1、以及线圈36-2,驱动图像传感器动子部分33在R轴旋转以及在X轴平移的介绍可以参见上文五线圈电磁驱动方案,在此不再赘述。
图12示出六线圈电磁驱动方案的驱动控制过程可以参见上文相应内容,在此不再赘述。
需要说明的是,本申请实施例的电磁驱动方案不限于上文提及的三线圈、五线圈以及六线圈电磁驱动方案,还可以根据上文提及的内容,得到其它变形方案。例如,基于图9示出的三线圈电磁驱动方案,可以使用三个线圈替换线圈6,使用三个线圈替换线圈5,以得到一种七线圈电磁驱动方案。又例如,基于图9示出的三线圈电磁驱动方案,可以使用三个线圈替换线圈6,使用三个线圈替换线圈5,使用三个线圈替换线圈2,以得到一种九线圈电磁驱动方案。
本申请实施例中,线圈大小、线圈数量以及线圈位置不同,则可以得到不同的电磁驱动方案。不同的电磁驱动方案的驱动控制逻辑类似,均是驱动芯片根据图像传感器在各轴上的位移量和位移方向,给相应线圈施加相应大小和相应方向的电流,从而产生作用图像传感器动子部分的洛伦兹力,以驱动图像传感器沿各个方向运动,进行抖动补偿。差异在于线圈数量较多的电磁驱动方案,电磁驱动力会更大,驱动稳定性更好。
可以理解的是,为了减少驱动控制过程中的串扰补偿,让图像传感器动子部分的重心以及几何中心,与沿Y轴方向的洛伦兹力和沿X轴方向的洛伦兹力的力学中心重合,保证三心合一。
需要说明的是,本申请实施例中的驱动方式不限于上文提及的电磁驱动方式。另外,在上文提及的电磁驱动方案中,驱动芯片可以不进行串扰补偿,也可以进行串扰补偿。
例如,基于图9示出的电磁驱动方案,驱动芯片接收到目标位置控制器的控制信号之后,通过解析该控制信号,得到图像传感器在X轴方向上的位移量、在Y轴方向上的位移量、以及在R轴方向上的位移量;再根据在X轴方向上的位移量和位移方向,通过PWM驱动结构给线圈6施加电流,根据Y轴方向上的位移量和位移方向,给线圈2施加电流,根据R轴方向上的位移量和位移方向,给线圈5施加电流。
或者,在驱动闭环负反馈过程中,目标位置控制器根据位置传感器反馈的图像传感器位置,得到图像传感器在各轴上的位移量之后,驱动芯片则通过获取目标位置控制器的控制信号,以获得X轴方向上的位移量、在Y轴方向上的位移量、以及在R轴方向上的位移量,并且,根据图像传感器在各轴上的位移量,进行串扰标定数据搜索,以获得各轴上的串扰补偿量;再使用串扰补偿量,对各轴方向上的位移量进行串扰补偿;最后根据串扰补偿后的位移量,给线圈2、线圈5以及线圈6施加相应的电流。
本申请实施例提供的基于图像传感器位移式的三轴光学防抖系统,不仅可以减少串扰的影响,以提高防抖驱动控制精度,还可以解决像旋和光学图像不稳定等问题。另外,本申请实施例的基于图像传感器位移式的三轴光学防抖系统,迟滞较小。无迟滞是指驱动图像传感器在某一轴上来回运动的时间是相同的。例如,驱动图像传感器沿X轴方向运动+100μm和-100um的时间是相同。
在本申请实施例中,光学防抖效果可以体现在摄像模组及包括该摄像模组的电子设备的图像清晰情况。具体应用中,可以用防抖压缩比进行衡量光学防抖效果。
其中,防抖压缩比是评价防抖器件的重要性能指标,其可以通过光学防抖系统开启前后的模糊像素对比值计算得到。具体可以表示为:
示例性地,防抖压缩比(dB)=-20Log((OIS ON像素数量-Static像素数量)/(OIS  OFF像素数量-Static像素数量))=-20Log((D2-D0)/(D1-D0))。
其中,D0、D1、D2分别表示光学防抖系统对应的摄像模组,在静止条件下对应的实际像素数量、OIS功能关闭时所对应的实际像素数量、OIS功能开启时所对应的实际像素数量。防抖压缩比(dB)数值越大,表示该光学防抖系统的防抖效果越好;如果防抖压缩比数值为0或者负值,则表明该光学防抖系统没有正常工作。
在三轴光学防抖场景下,先测量摄像模组端三个方向的防抖压缩比,再根据测试的数值综合评价三轴光学防抖效果。
由上可见,本申请实施例提供了多种不同的电磁驱动方案,以实现三轴光学防抖。并且,在多种电磁驱动方案中,通过让图像传感器动子部分实现“多心合一”,进而减少驱动过程中产生的串扰,减少了控制算法的串扰补偿控制,提高了驱动控制的实时性。
当然,上述提供的多种不同电磁驱动方案,也可以应用双轴光学防抖。此时,可以通过串扰补偿,实现图像传感器在XY平面内的额外转动补偿,这样光学图像稳定性较高,无像旋。例如,在图9所示的三线圈电磁驱动方案中,在通过线圈6和线圈2推动图像传感器在X轴方向和Y轴方向位移时,通过位置检测传感器4检测图像传感器在R轴额外旋转的角度,再通过线圈5推动图像传感器在R轴反向旋转一定角度,以对串扰产生的转动量进行补偿。
本申请实施例还提供了一种基于图像传感器位移式的光学防抖方法,该方法可以应用于驱动芯片。该方法首先获取抖动数据,并根据抖动数据,确定图像传感器应当到达的目标位置;然后,根据图像传感器当前的位置和应当到达的目标位置,确定图像传感器在各轴上应当位移的位移量;接着,根据图像传感器在各轴上应当位移的位移量,驱动图像传感器沿各轴方向运动;在目标位置控制器根据位置检测传感器反馈的图像传感器位置信号,生成新的控制信号之后,驱动芯片获取新的控制信号,并根据新的控制信号,获得图像传感器在各轴上的位移量,并基于图像传感器在各轴上的位移量,进行串扰标定数据搜索,以查找出对应的串扰补偿量,并使用串扰补偿量对各轴的位移量进行补偿,以得到串扰补偿后的位移量;最后,根据串扰补偿后的位移量,驱动图像传感器在各轴方向运动。
这样,在得到各个方向上应当移动的位移量之后,根据预先标定的串扰补偿量,对各个方向的位移量进行串扰补偿,降低串扰的影响,提高了防抖驱动控制精度。
示例性地,参见图13,为本申请实施例提供的基于图像传感器位移式的光学防抖方法的一种流程示意框图,该方法可以包括以下步骤:
步骤S1301、驱动芯片获取图像传感器在各轴方向上的抖动位移补偿量。
在一些实施例中,驱动芯片可以通过接收目标位置控制器的控制信号,以获得图像传感器在各轴方向上的抖动位移补偿量和目标位置。
其中,目标位置控制器可以根据各个方向的抖动频率和抖动幅值,获取为了抑制抖动图像传感器应当到达的目标位置,并通过比较器的反馈作用,根据目标位置和图像传感器的起始位置,得到图像传感器在各轴方向上的抖动位移补偿量;再根据各个方向上的抖动位移补偿量,生成控制信号,并将该控制信号传输至驱动芯片。
在双轴光学防抖场景下,驱动芯片可以获取X轴方向和Y轴方向的抖动位移补偿量。在三轴光学防抖场景下,驱动芯片可以获取X轴方向、Y轴方向以及R轴方向的 抖动位移补偿量。
步骤S1302、驱动芯片根据图像传感器在各轴方向上的抖动位移补偿量,驱动图像传感器沿各轴方向运动。
可以理解的是,驱动方式不同,具体驱动过程可能也有所不同。例如,在一些实施例中,当驱动方式为上文提及的电磁驱动方式时,驱动芯片可以根据各轴的抖动位移补偿量,确定施加给各线圈的电流信号,该电流信号包括电流大小和电流方向。即通过控制线圈电流大小和方向,以控制图像传感器的位移量和位移方向,以实现三轴运动的控制解耦。
电磁驱动方案可以参见上文的三线圈电磁驱动方案、五线圈电磁驱动方案等内容,在此不作限定。
例如,以图9示出的三线圈电磁驱动方案为例,驱动芯片根据X轴方向上的抖动位移补偿量,给线圈6施加相应大小和相应方向的电流信号;根据Y轴方向上的抖动位移补偿量,给线圈2施加相应大小和相应方向的电流信号;根据R轴方向上的抖动位移补偿量,给线圈5施加相应大小和相应方向的电流信号。
步骤S1303、驱动芯片获取图像传感器在各轴方向上的位移量。
在一些实施例中,驱动芯片在根据各轴上的抖动位移补偿量,驱动图像传感器沿轴方向运动之后,位置检测传感器可以向目标位置控制器反馈图像传感器的当前位置,目标位置控制器通过比较图像传感器的当前位置和目标位置之间的差异,确定是否结束本次驱动控制。如果不结束本次驱动控制,则根据当前位置和目标位置之间的差异,获得图像传感器在各轴方向上的位移量,并将图像传感器在各轴方向上的位移量传输至驱动芯片。
步骤S1304、驱动芯片根据图像传感器在各轴方向上的位移量,进行串扰标定数据搜索,以得到各轴上的串扰补偿量。
其中,串扰标定数据可以预先通过串扰标定过程得到。
针对每一轴,根据该轴方向上的位移量,可以从串扰标定数据中查找到该轴的串扰补偿量。
步骤S1305、针对每一轴,驱动芯片使用串扰补偿量对位移量进行串扰补偿,得到串扰补偿后的位移量。
步骤S1306、驱动芯片根据串扰补偿后的位移量,驱动图像传感器在各轴上运动。
示例性地,驱动芯片在得到图像传感器在各轴方向上的串扰补偿后位移量,则给线圈施加相应方向和相应大小的电流信号,以驱动图像传感器在X轴、Y轴以及R轴上运动。
可以理解的是,在闭环负反馈控制过程中,可能需要进行多次驱动控制。对于驱动芯片一侧来说,可能会多次循环执行步骤S1303~步骤S1306,直到控制器判断出图像传感器的当前位置和目标位置之间的误差在一定范围内。
可以看出,本实施例通过使用标定的串扰补偿量,对图像传感器在各轴方向上的位移量进行串扰补偿,降低了串扰的影响。串扰的产生可能是机械设计缺陷导致的,也可能是装配工艺导致,在此不对串扰产生的原因进行限定。
需要说明的是,在另一些实施例中,驱动芯片可以不进行串扰补偿。此时,在进入 闭环负反馈控制过程中,驱动芯片接收到来自控制器的控制信号之后,通过解析该控制信号,获得图像传感器在各轴方向上的位移量之后,则可以根据各轴方向上的位移量,给相应的线圈施加相应大小和相应方向的电流。循环执行该过程,直到控制器判断出图像传感器的当前位置和目标位置之间的误差在一定范围内。
由上文可见,本申请实施例提出了串扰补偿过程以及电磁驱动方案。在一些实施例中,本申请实施例可以只包括电磁驱动方案,即不进行串扰补偿,而是基于上文提及的电磁驱动方案,实现基于图像传感器位移式的三轴光学防抖;可以只包括串扰补偿过程,即驱动芯片根据预先标定的串扰补偿量进行串扰补偿,而光学防抖马达中的电磁驱动方案并不是上文提及的方案。当然,本申请实施例也可以同时包括串扰补偿和电磁驱动方案,即本申请实施例不仅基于上文提及的电磁驱动方案,实现基于图像传感器位移式的三轴光学防抖,还在实现三轴光学防抖的基础上,驱动芯片使用串扰补偿量进行串扰补偿。
本申请实施例提供了一种摄像模组,该摄像模组可以包括透镜组、图像传感器、以及图5或图6示出的光学防抖系统的全部或部分。
示例性地,该摄像模组可以包括透镜组、图像传感器、光学防抖马达以及驱动芯片,光学防抖马达包括PWM驱动结构、线圈、磁石、位置传感器、以及图像传感器动子部分。图像传感器动子部分与图像传感器连接,图像传感器可随着图像传感器动子部分的运动而与运动。进一步地,线圈的分布情况和设置位置可以如上文提及的三线圈、五线圈或六线圈的电磁驱动方案所示。光学防抖驱动控制过程可以参见上文,在此不再赘述。
本申请实施例提供的电子设备,可以包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上述方法实施例中任一项的方法。或者该电子设备,包括上述系统实施例中任一项的系统。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现可实现上述各个方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在电子设备上运行时,使得电子设备执行时实现可实现上述各个方法实施例中的步骤。
本申请实施例还提供一种芯片系统,所述芯片系统包括处理器,所述处理器与存储器耦合,所述处理器执行存储器中存储的计算机程序,以实现如上述各个方法实施例所述的方法。所述芯片系统可以为单个芯片,或者多个芯片组成的芯片模组。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种基于图像传感器位移式的三轴光学防抖系统,其特征在于,所述系统包括传感器、控制器、驱动芯片以及光学防抖马达:
    所述传感器用于采集第一方向的第一抖动数据、第二方向的第二抖动数据、以及第三方向的第三抖动数据;
    所述控制器用于根据所述第一抖动数据、所述第二抖动数据以及所述第三抖动数据,获得图像传感器在第一轴向上的位移量、第二轴向上的位移量以及第三轴向上的位移量;
    所述驱动芯片用于分别根据所述图像传感器在第一轴向上的位移量、第二轴向上的位移量以及第三轴向上的位移量,通过所述光学防抖马达所述驱动图像传感器在各轴向上位移;
    其中,所述光学防抖马达包括图像传感器动子部分、磁石、第一线圈、第二线圈和第三线圈;所述第一线圈设置于所述图像传感器动子部分的第一侧,所述第二线圈设置于所述图像传感器动子部分的第二侧,所述第三线圈设置于所述图像传感器动子部分的第三侧,所述第一侧和所述第二侧是相对侧,所述第三侧与所述第一侧是相邻侧;所述磁石用于产生磁场;
    所述第一线圈、所述第二线圈以及所述第三线圈通电后,在所述磁场作用下产生作用于所述图像传感器动子部分的作用力,以推动所述图像传感器动子部分在各轴向上位移;
    所述图像传感器动子部分与所述图像传感器连接,且所述图像传感器随着所述图像传感器动子部分的运动而运动。
  2. 根据权利要求1所述的系统,其特征在于,所述驱动芯片具体用于:
    根据所述第一轴向上的位移量,通过给所述第一线圈施加第一电流信号,以让所述第一线圈在磁场作用下产生所述作用于所述图像传感器动子部分的第一洛伦兹力,所述第一洛伦兹力用于驱动所述图像传感器动子部分沿第一轴向平移;
    根据所述第二轴向上的位移量,通过给所述第二线圈施加第二电流信号,以让所述第二线圈在磁场作用下产生所述作用于所述图像传感器动子部分的第二洛伦兹力,所述第二洛伦兹力用于产生转动力矩,以驱动所述图像传感器动子部分沿所述第二轴向旋转;
    根据所述第三轴向上的位移量,通过给所述第三线圈施加第三电流信号,以让所述第三线圈在磁场作用下产生作用于所述图像传感器动子部分的第三洛伦兹力,所述第三洛伦兹力用于驱动所述图像传感器动子部分沿所述第三轴向平移;
    其中,所述第一线圈的第一中心线经过所述图像传感器动子部分的中心点,所述第一中心线经过所述第一线圈的中心且与所述第一轴向平行;
    所述第二线圈的第二中心线不经过所述图像传感器动子部分的中心点,所述第二中心线经过所述第二线圈的中心且与所述第一轴向平行;
    所述第三线圈的第三中心线经过所述图像传感器动子部分的中心点,所述第三中心线经过所述第三线圈的中心且与所述第三轴向平行。
  3. 根据权利要求1所述的系统,其特征在于,所述第一线圈包括第四线圈和第五线圈,所述第二线圈包括第六线圈和第七线圈;所述第四线圈和所述第六线圈相对设置,所述第五线圈和第七线圈相对设置;
    所述驱动芯片具体用于:
    根据所述第一轴向上的位移量和所述第二轴向上的位移量,通过给所述第四线圈和所述第六线圈施加第四电流信号,以让所述第四线圈在磁场作用下产生作用于所述图像传感器动子部分的第四洛伦兹力,以及所述第六线圈在磁场作用下产生作用于所述图像传感器动子部分的第五洛伦兹力;
    根据所述第一轴向上的位移量和所述第二轴向上的位移量,通过给所述第五线圈和所述第七线圈施加第五电流信号,以让所述第五线圈在磁场作用下产生作用于所述图像传感器动子部分的第六洛伦兹力,以及所述第七线圈在磁场作用下产生作用于所述图像传感器动子部分的第七洛伦兹力;
    根据所述第三轴向上的位移量,通过给第三线圈施加第六电流信号,以让所述第三线圈在磁场作用下产生作用于所述图像传感器动子部分的洛伦兹力,驱动所述图像传感器动子部分在所述第三轴向上位移;
    所述图像传感器动子部分在所述第四洛伦兹力、所述第五洛伦兹力、第六洛伦兹力、以及第七洛伦兹力作用下,沿所述第一轴向和/或所述第二轴向上位移。
  4. 根据权利要求3所述的系统,其特征在于,所述第四线圈的第四中心线、所述第五线圈的第五中心线、所述第六线圈的第六中心线、以及所述第七线圈的第七中心线均不经过所述图像传感器动子部分的中心点,所述第三线圈的第三中心线经过所述图像传感器动子部分的中心点;
    所述第三中心线经过第三线圈的中心且与第三轴向平行;所述第四中心线经过所述第四线圈的中心且与所述第一轴向平行,所述第五中心线经过所述第五线圈的中心且与所述第一轴向平行,所述第六中心线经过所述第六线圈且与所述第一轴向平行,所述第七中心线经过所述第七线圈的中心且所述第一轴向平行。
  5. 根据权利要求3或4所述的系统,其特征在于,所述第四线圈、所述第五线圈、所述第六线圈以及所述第七线圈的线圈均相同;
    或者,所述第四线圈和所述第六线圈的线圈大小相同,所述第五线圈和所述第七线圈的线圈大小相同,且所述第四线圈的线圈大小和所述第五线圈的线圈大小不相同。
  6. 根据权利要求3至5任一项所述的系统,其特征在于,所述第三线圈包括第八线圈和第九线圈;
    所述驱动芯片具体用于:
    根据所述第三轴向上的位移量,通过给所述第八线圈和所述第九线圈施加所述第六电流信号,以让所述第八线圈在磁场作用下产生作用于所述图像传感器动子部分的第八洛伦兹力,以及所述第九线圈在磁场作用下产生作用于所述图像传感器动子部分的第九洛伦兹力;
    其中,所述图像传感器动子部分在所述第八洛伦兹力和所述第九洛伦兹力的共同作用下沿所述第三轴向平移。
  7. 根据权利要求6所述的系统,其特征在于,所述图像传感器动子部分的中心点与所述第八线圈的中心之间的距离等于所述图像传感器动子部分的中心点与所述第九线圈的中心之间的距离。
  8. 根据权利要求1至7任一项所述的系统,其特征在于,所述图像传感器动子部 分的重心和所述图像传感器动子部分的几何中心重合。
  9. 根据权利要求1至8任一项所述的系统,其特征在于,所述系统包括位置检测模块,用于检测所述图像传感器的位置。
  10. 根据权利要求9所述的系统,其特征在于,所述位置检测模块包括第一位置传感器、第二位置传感器和第三位置传感器;
    所述第一位置传感器用于与第一磁石搭配,获取所述图像传感器在所述第一轴向上的位置信号;
    所述第二位置传感器用于与第二磁石搭配,获取所述图像传感器在所述第二轴向上的位置信号;
    所述第三位置传感器用于与第三磁石搭配,获取所述图像传感器在所述第三轴向上的位置信号;
    所述第一位置传感器设置于所述第一线圈的中间区域;所述第二位置传感器设置于所述第二线圈的中间区域;所述第三位置传感器设置于所述第三线圈的中间区域;
    当所述第一线圈包括第四线圈和第五线圈,所述第二线圈包括第六线圈和第七线圈时,所述第一磁石设置于所述第五线圈的中间区域,所述第二磁石设置于所述第七线圈的中间区域,所述第三磁石设置于所述第三线圈的中间区域;
    当所述第一线圈包括第四线圈和第五线圈,所述第二线圈包括第六线圈和第七线圈,所述第三线圈包括所述第八线圈和所述第九线圈时,所述第一磁石设置于所述第五线圈的中间区域,所述第二磁石设置于所述第七线圈的中间区域,所述第三磁石设置于所述第八线圈的中间区域;
    所述磁石包括所述第一磁石、所述第二磁石以及所述第三磁石。
  11. 根据权利要求9或10所述的系统,其特征在于,所述控制器具体用于:
    根据所述第一抖动数据、所述第二抖动数据以及所述第三抖动数据,获得图像传感器的目标位置;根据所述目标位置和所述图像传感器的起始位置,获得图像传感器在第一轴向上的位移量、第二轴向上的位移量以及第三轴向上的位移量;
    所述图像传感器的起始位置是通过所述位置检测模块检测的。
  12. 根据权利要求11所述的系统,其特征在于,所述控制器具体用于:
    获取所述位置检测模块反馈的图像传感器位置信号,所述图像传感器位置信号用于描述所述图像传感器的当前位置;
    根据所述图像传感器位置信号,判断所述图像传感器的当前位置和所述目标位置之间的误差是否在预设范围内;
    当所述图像传感器的当前位置和所述目标位置之间的误差不在所述预设范围,根据所述图像传感器的当前位置和所述目标位置,获得所述图像传感器在所述第一轴向上的位移量、所述第二轴向上的位移量以及所述第三轴向上的位移量;
    所述驱动器具体用于:
    读取所述光学防抖马达中预先存储的串扰标定数据;
    从所述串扰标定数据中查找所述第一轴向的串扰补偿量、所述第二轴向的串扰补偿量以及所述第三轴向的串扰补偿量;
    使用所述第一轴向的串扰补偿量对所述第一轴向的位移量进行串扰补偿,得到所述 第一轴向上的串扰补偿后的位移量,使用所述第二轴向的串扰补偿量对所述第二轴向的位移量进行串扰补偿,得到所述第二轴向上的串扰补偿后的位移量,使用所述第三轴向的串扰补偿量对所述第三轴向的位移量进行串扰补偿,得到所述第三轴向上的串扰补偿后的位移量;
    根据所述第一轴向上的串扰补偿后的位移量,通过所述光学防抖马达驱动所述图像传感器沿第一轴向运动;根据所述第二轴向上的串扰补偿后的位移量,通过所述光学防抖马达驱动所述图像传感器沿第二轴向运动;根据所述第三轴向上的串扰补偿后的位移量,通过所述光学防抖马达驱动所述图像传感器沿第二轴向运动;
    其中,所述第一轴向的串扰补偿量包括所述图像传感器沿第二轴向位移对沿第一轴向位移的串扰补偿量,以及所述图像传感器沿第三轴向位移对沿第一轴向位移的串扰补偿量;
    所述第二轴向的串扰补偿量包括所述图像传感器沿第一轴向位移对沿第二轴向位移的串扰补偿量,以及所述图像传感器沿第三轴向位移对沿第二轴向位移的串扰补偿量;
    所述第三轴向的串扰补偿量包括所述图像传感器沿第一轴向位移对沿第三轴向位移的串扰补偿量,以及所述图像传感器沿第二轴向位移对沿第三轴向位移的串扰补偿量。
  13. 根据权利要求11所述的系统,其特征在于,所述传感器包括陀螺仪和加速度计。
  14. 一种基于图像传感器位移式的三轴光学防抖方法,其特征在于,应用于驱动芯片,所述方法包括:
    获取图像传感器在第一轴向上的位移量、第二轴向上的位移量、以及第三轴向上的位移量;
    根据所述第一轴向上的位移量、所述第二轴向上的位移量以及所述第三轴向上的位移量,通过所述光学防抖马达驱动图像传感器在各轴向上位移;
    其中,所述光学防抖马达包括图像传感器动子部分、磁石、第一线圈、第二线圈和第三线圈;所述第一线圈设置于所述图像传感器动子部分的第一侧,所述第二线圈设置于所述图像传感器动子部分的第二侧,所述第三线圈设置于所述图像传感器动子部分的第三侧,所述第一侧和所述第二侧是相对侧,所述第三侧与所述第一侧是相邻侧;所述图像传感器动子部分与所述图像传感器连接,且所述图像传感器随着所述图像传感器动子部分的运动而运动,所述磁石用于产生磁场;
    所述第一线圈、所述第二线圈以及所述第三线圈通电后,在所述磁场作用下产生作用于所述图像传感器动子部分的作用力,以推动所述图像传感器动子部分在各轴向上位移。
  15. 根据权利要求14所述的方法,其特征在于,根据所述第一轴向上的位移量、所述第二轴向上的位移量以及所述第三轴向上的位移量,通过所述光学防抖马达驱动图像传感器在各轴向上位移,包括:
    根据所述第一轴向上的位移量,通过给所述第一线圈施加第一电流信号,以让所述第一线圈在磁场作用下产生所述作用于所述图像传感器动子部分的第一洛伦兹力,所述第一洛伦兹力用于驱动所述图像传感器动子部分沿第一轴向平移;
    根据所述第二轴向上的位移量,通过给所述第二线圈施加第二电流信号,以让所述 第二线圈在磁场作用下产生所述作用于所述图像传感器动子部分的第二洛伦兹力,所述第二洛伦兹力用于产生转动力矩,以驱动所述图像传感器动子部分沿所述第二轴向旋转;
    根据所述第三轴向上的位移量,通过给所述第三线圈施加第三电流信号,以让所述第三线圈在磁场作用下产生作用于所述图像传感器动子部分的第三洛伦兹力,所述第三洛伦兹力用于驱动所述图像传感器动子部分沿所述第三轴向平移;
    其中,所述第一线圈的第一中心线经过所述图像传感器动子部分的中心点,所述第一中心线经过所述第一线圈的中心且与所述第一轴向平行;
    所述第二线圈的第二中心线不经过所述图像传感器动子部分的中心点,所述第二中心线经过所述第二线圈的中心且与所述第一轴向平行;
    所述第三线圈的第三中心线经过所述图像传感器动子部分的中心点,所述第三中心线经过所述第三线圈的中心且与所述第三轴向平行。
  16. 根据权利要求14所述的方法,其特征在于,所述第一线圈包括第四线圈和第五线圈,所述第二线圈包括第六线圈和第七线圈;所述第四线圈和所述第六线圈相对设置,所述五线圈和第七线圈相对设置;
    根据所述第一轴向上的位移量、所述第二轴向上的位移量以及所述第三轴向上的位移量,通过所述光学防抖马达驱动图像传感器在各轴向上位移,包括:
    根据所述第一轴向上的位移量和所述第二轴向上的位移量,通过给所述第四线圈和所述第六线圈施加第四电流信号,以让所述第四线圈在磁场作用下产生作用于所述图像传感器动子部分的第四洛伦兹力,以及所述第六线圈在磁场作用下产生作用于所述图像传感器动子部分的第五洛伦兹力;
    根据所述第一轴向上的位移量和所述第二轴向上的位移量,通过给所述第五线圈和所述第七线圈施加第五电流信号,以让所述第五线圈在磁场作用下产生作用于所述图像传感器动子部分的第六洛伦兹力,以及所述第七线圈在磁场作用下产生作用于所述图像传感器动子部分的第七洛伦兹力;
    根据所述第三轴向上的位移量,通过给第三线圈施加第六电流信号,以让所述第三线圈在磁场作用下产生作用于所述图像传感器动子部分的洛伦兹力,驱动所述图像传感器动子部分在所述第三轴向上位移;
    所述图像传感器动子部分在所述第四洛伦兹力、所述第五洛伦兹力、第六洛伦兹力、以及第七洛伦兹力作用下,沿所述第一轴向和/或所述第二轴向上位移。
  17. 根据权利要求16所述的方法,其特征在于,所述第四线圈的第四中心线、所述第五线圈的第五中心线、所述第六线圈的第六中心线、以及所述第七线圈的第七中心线均不经过所述图像传感器动子部分的中心点;所述第三线圈的第三中心线经过所述图像传感器动子部分的中心点;
    所述第三中心线经过所述第三线圈的中心且与所述第三轴向平行;所述第四中心线经过所述第四线圈的中心且与所述第一轴向平行,所述第五中心线经过所述第五线圈的中心且与所述第一轴向平行,所述第六中心线经过所述第六线圈且与所述第一轴向平行,所述第七中心线经过所述第七线圈的中心且所述第一轴向平行。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第四线圈、所述第五线圈、所述第六线圈以及所述第七线圈的线圈均相同;
    或者,所述第四线圈和所述第六线圈的线圈大小相同,所述第五线圈和所述第七线圈的线圈大小相同,且所述第四线圈的线圈大小和所述第五线圈的线圈大小不相同。
  19. 根据权利要求16至18任一项所述的方法,其特征在于,所述第三线圈包括第八线圈和第九线圈;
    根据所述第三轴向上的位移量,通过给第三线圈施加第六电流信号,以让所述第三线圈在磁场作用下产生作用于所述图像传感器动子部分的洛伦兹力,包括:
    根据所述第三轴向上的位移量,通过给所述第八线圈和所述第九线圈施加所述第六电流信号,以让所述第八线圈在磁场作用下产生作用于所述图像传感器动子部分的第八洛伦兹力,以及所述第九线圈在磁场作用下产生作用于所述图像传感器动子部分的第九洛伦兹力;
    其中,所述图像传感器动子部分在所述第八洛伦兹力和所述第九洛伦兹力的共同作用下沿所述第三轴向平移。
  20. 根据权利要求19所述的方法,其特征在于,所述图像传感器动子部分的中心点与所述第八线圈的中心之间的距离等于所述图像传感器动子部分的中心点与所述第九线圈的中心之间的距离。
  21. 根据权利要求14至20任一项所述的方法,其特征在于,所述图像传感器动子部分的重心和所述图像传感器动子部分的几何中心重合。
  22. 根据权利要求14至21任一项所述的方法,其特征在于,在根据所述第一轴向上的位移量、所述第二轴向上的位移量以及所述第三轴向上的位移量,通过所述光学防抖马达驱动图像传感器在各轴向上位移之前,所述方法还包括:
    读取所述光学防抖马达中预先存储的串扰标定数据;
    从所述串扰标定数据中查找所述第一轴向的串扰补偿量、所述第二轴向的串扰补偿量以及所述第三轴向的串扰补偿量;
    使用所述第一轴向的串扰补偿量对所述第一轴向的位移量进行串扰补偿,得到所述第一轴向上的串扰补偿后的位移量,使用所述第二轴向的串扰补偿量对所述第二轴向的位移量进行串扰补偿,得到所述第二轴向上的串扰补偿后的位移量,使用所述第三轴向的串扰补偿量对所述第三轴向的位移量进行串扰补偿,得到所述第三轴向上的串扰补偿后的位移量;
    其中,所述第一轴向的串扰补偿量包括所述图像传感器沿第二轴向位移对沿第一轴向位移的串扰补偿量,以及所述图像传感器沿第三轴向位移对沿第一轴向位移的串扰补偿量;
    所述第二轴向的串扰补偿量包括所述图像传感器沿第一轴向位移对沿第二轴向位移的串扰补偿量,以及所述图像传感器沿第三轴向位移对沿第二轴向位移的串扰补偿量;
    所述第三轴向的串扰补偿量包括所述图像传感器沿第一轴向位移对沿第三轴向位移的串扰补偿量,以及所述图像传感器沿第二轴向位移对沿第三轴向位移的串扰补偿量。
  23. 一种摄像模组,其特征在于,包括如权利要求1至13任一项所述的基于图像传感器位移式的三轴光学防抖系统。
  24. 一种电子设备,其特征在于,包括如权利要求1至13任一项所述的基于图像传感器位移式的三轴光学防抖系统。
  25. 一种芯片系统,其特征在于,所述芯片系统包括处理器,所述处理器与存储器耦合,所述处理器执行存储器中存储的计算机程序,以实现如权利要求14至22任一项所述的方法。
  26. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求14至22任一项所述的方法。
PCT/CN2022/117045 2021-09-18 2022-09-05 基于图像传感器位移式的三轴光学防抖系统、方法和装置 WO2023040689A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111112550.9 2021-09-18
CN202111112550.9A CN115842910A (zh) 2021-09-18 2021-09-18 基于图像传感器位移式的三轴光学防抖系统、方法和装置

Publications (1)

Publication Number Publication Date
WO2023040689A1 true WO2023040689A1 (zh) 2023-03-23

Family

ID=85574493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117045 WO2023040689A1 (zh) 2021-09-18 2022-09-05 基于图像传感器位移式的三轴光学防抖系统、方法和装置

Country Status (2)

Country Link
CN (1) CN115842910A (zh)
WO (1) WO2023040689A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117191357B (zh) * 2023-11-02 2024-04-05 南通蓬盛机械有限公司 一种光学镜头的性能评估方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003130A (ja) * 2006-06-20 2008-01-10 Fujifilm Corp 像振れ補正装置および撮影機器
US20170272657A1 (en) * 2016-03-16 2017-09-21 Ricoh Imaging Company, Ltd. Shake-correction device and shake-correction method for photographing apparatus
CN112073600A (zh) * 2019-06-11 2020-12-11 南昌欧菲光电技术有限公司 摄像头模组、电子设备及其光学防抖方法
CN112312000A (zh) * 2019-07-30 2021-02-02 格科微电子(上海)有限公司 光学防抖的实现方法
CN112534347A (zh) * 2018-08-22 2021-03-19 三美电机株式会社 摄像机模块及摄像机搭载装置
WO2021065679A1 (ja) * 2019-10-04 2021-04-08 ローム株式会社 クロストーク補正方法およびアクチュエータドライバ
CN112839176A (zh) * 2021-01-18 2021-05-25 深圳市汇顶科技股份有限公司 芯片防抖装置、芯片、摄像模组及电子设备
CN113259548A (zh) * 2020-02-13 2021-08-13 南昌欧菲光电技术有限公司 摄像头模组、摄像装置及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003130A (ja) * 2006-06-20 2008-01-10 Fujifilm Corp 像振れ補正装置および撮影機器
US20170272657A1 (en) * 2016-03-16 2017-09-21 Ricoh Imaging Company, Ltd. Shake-correction device and shake-correction method for photographing apparatus
CN112534347A (zh) * 2018-08-22 2021-03-19 三美电机株式会社 摄像机模块及摄像机搭载装置
CN112073600A (zh) * 2019-06-11 2020-12-11 南昌欧菲光电技术有限公司 摄像头模组、电子设备及其光学防抖方法
CN112312000A (zh) * 2019-07-30 2021-02-02 格科微电子(上海)有限公司 光学防抖的实现方法
WO2021065679A1 (ja) * 2019-10-04 2021-04-08 ローム株式会社 クロストーク補正方法およびアクチュエータドライバ
CN113259548A (zh) * 2020-02-13 2021-08-13 南昌欧菲光电技术有限公司 摄像头模组、摄像装置及电子设备
CN112839176A (zh) * 2021-01-18 2021-05-25 深圳市汇顶科技股份有限公司 芯片防抖装置、芯片、摄像模组及电子设备

Also Published As

Publication number Publication date
CN115842910A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
CN101840129B (zh) 手抖动校正装置
JP4647273B2 (ja) ステージ駆動機構
JP4899712B2 (ja) レンズ鏡筒
CN105814484A (zh) 抖动校正装置及其调整方法、抖动校正电路、抖动校正方法、以及照相机模块及其光学元件的位置控制方法
CN106990551A (zh) 摄像头及摄像头的防抖方法
CN102053451B (zh) 数字相机中的抖动校正设备
WO2023040689A1 (zh) 基于图像传感器位移式的三轴光学防抖系统、方法和装置
Rong et al. Improving attitude detection performance for spherical motors using a MEMS inertial measurement sensor
JP2008257106A (ja) ブレ補正装置及び光学機器
JP2007241254A (ja) 像振れ補正装置およびカメラ
US20240027724A1 (en) Optical system
CN109951640A (zh) 摄像头防抖方法和系统、电子设备、计算机可读存储介质
US11785341B2 (en) Crosstalk correction method and actuator driver
KR20200122013A (ko) 카메라 모듈 및 광학 기기
CN111488001A (zh) 一种快反镜复合稳定平台控制系统及其设计方法
CN110207723B (zh) 一种光电跟踪仪复合轴控制系统控制精度测试方法
JP5875012B2 (ja) 位置検出装置、駆動装置、レンズ鏡筒
US9529209B2 (en) Blur compensation device, lens barrel, and camera device
CN104204936B (zh) 可动部件控制装置和具有该可动部件控制装置的拍摄装置
WO2022042094A1 (zh) 具有对焦、防抖及矫正光轴功能的摄像模组
WO2019134427A1 (zh) 云台系统及其控制方法
CN116998162A (zh) 防抖马达、摄像模组和电子设备
JP2013038678A (ja) 撮像システム及びこれを用いた電子機器
CN115808164B (zh) 旋转平台下偏流机构角速度测量及偏流角实时调整方法
JPH075514A (ja) 補正光学装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022869060

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022869060

Country of ref document: EP

Effective date: 20240312

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024005217

Country of ref document: BR