WO2023040511A1 - 一种用于碱性溶液的锂提取方法 - Google Patents

一种用于碱性溶液的锂提取方法 Download PDF

Info

Publication number
WO2023040511A1
WO2023040511A1 PCT/CN2022/111010 CN2022111010W WO2023040511A1 WO 2023040511 A1 WO2023040511 A1 WO 2023040511A1 CN 2022111010 W CN2022111010 W CN 2022111010W WO 2023040511 A1 WO2023040511 A1 WO 2023040511A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
solution
resin
alkaline
concentration
Prior art date
Application number
PCT/CN2022/111010
Other languages
English (en)
French (fr)
Inventor
李岁党
寇晓康
郭福民
余佳
高文晋
范丽莉
褚凯乐
边维娜
王瑶
向鹏
刘琼
Original Assignee
西安蓝晓科技新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安蓝晓科技新材料股份有限公司 filed Critical 西安蓝晓科技新材料股份有限公司
Priority to CA3216448A priority Critical patent/CA3216448A1/en
Priority to AU2022345112A priority patent/AU2022345112A1/en
Priority to EP22868888.3A priority patent/EP4321639A1/en
Publication of WO2023040511A1 publication Critical patent/WO2023040511A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the application relates to the technical field of extraction and recovery of lithium resources, which belongs to the field of hydrometallurgy, and specifically relates to an alkaline solution lithium extraction technology.
  • lithium carbonate is becoming more and more important in new energy materials and has become the most widely used lithium product in the lithium industry.
  • one of the key processes of preparing lithium carbonate from salt lake brine and ore is to use sodium carbonate to precipitate lithium chloride solution to prepare lithium carbonate, and obtain lithium carbonate product and precipitated lithium carbonate mother liquor.
  • the lithium sinking mother liquor contains about 2-3 g/L lithium and about 50 g/L sodium.
  • the lithium recovery method in the lithium precipitation mother liquor mainly adopts the neutralization-evaporation-crystallization method, that is, the residual carbonate ions in the lithium precipitation mother liquor are neutralized with sulfuric acid, so that all of them are converted into a mixture of sodium sulfate and lithium sulfate.
  • this application mainly adopts a lithium extraction method of alkaline solution, relying on the special weak acid functional group on the lithium adsorption material, extracting lithium in an alkaline environment Lithium ions are captured on the lithium adsorption material, and then the acid solution flows through the lithium adsorption material during desorption, and the lithium captured on the lithium adsorption material is decomposed.
  • the lithium adsorption material due to the special functional groups on the lithium adsorption material, when the hydrogen ions provided by the acid solution come into contact with the lithium adsorption material that absorbs lithium ions, the lithium ions will be resolved, and the hydrogen ions will occupy the original position of the lithium ions, but the resolved Lithium ions will be retained by the lithium adsorption material that has adsorbed lithium in the inner layer and will not flow out of the resin layer, forming a state of multi-layer adsorption of lithium, while other impurities such as sodium and potassium will be continuously squeezed out by lithium and transferred to the outer layer to achieve The purpose of impurity removal; under the continuous promotion of hydrogen ions, after the lithium adsorbed by the lithium adsorption material is occupied by hydrogen, the lithium adsorbed by the multi-layer will continue to transfer to the outer layer.
  • the lithium concentration is continuously accumulated in the resin layer.
  • the lithium ions flow out of the lithium adsorption material, and the lithium concentration is greatly increased to achieve the purpose of concentration.
  • the resin used is a resin with a weak acid functional group, which can be the resin provided by the patent CN108421539A.
  • This resin is a kind of organic polymer cross-linked polymer grafted with a special functional group. It has a stable structure, and some contain the following structure:
  • the resin of this patent is used, also can use the resin of weak acidity, the resin that separation degree is arranged to lithium sodium such as weak acid phenolic resin, the weak acid cation exchange resin with carboxyl group, the weak acid cation exchange resin with carbonyl group, the resin with phosphorus oxygen double bond 1.
  • the resin with sulfur-oxygen double bond can selectively adsorb lithium ions in an alkaline environment, so as to achieve the effect of lithium-sodium separation.
  • the resin also includes another type of functional group that is an inorganic material with a spinel structure Li x My O z , wherein M represents a metal; the matrix of the material is styrene; the material is according to Prepared as follows:
  • A using divinylbenzene as a cross-linking agent to copolymerize with styrene to obtain a polymer, or using tripropylene isocyanurate and diethylene glycol divinyl ether as a cross-linking agent to copolymerize to obtain a polymer;
  • the polymer obtained in A is subjected to a chloromethylation reaction to obtain a chloromethylated sphere, and then aminated; or the polymer is directly aminomethylated;
  • the product obtained in B is subjected to carboxylation, phosphorylation or sulfonation, and an exchange group is introduced into the material to obtain the material.
  • the resin also includes another type of inorganic material having a spinel structure Li x My O z as a functional group, wherein M represents a metal; wherein the matrix of the material is silica gel particles, grafted by modification
  • the material is obtained by coupling; the material is prepared according to the following method: using coupling agent aminopropyltrimethoxysilane or aminopropyltriethoxysilane or chloropropyltrimethoxysilane or chloropropyltriethoxy After modifying the hydroxyl group on the surface of silica gel, the active group at the other end will react further, graft, and cure the functional group on the surface.
  • the precursor of the inorganic material having a spinel structure Li x My O z is in the form of powder, which is granulated before use.
  • the metal represented by M is manganese, titanium, zirconium, cobalt or aluminum.
  • the range of x is 1-3
  • the range of y is 1-3
  • the range of z is 1-4.
  • the lithium adsorption material can also be the adsorbent provided by the patent CN102631897B, especially the lithium adsorbent prepared by using the ion sieve type lithium adsorbent precursor, specifically using titanium dioxide, manganese dioxide, titanium hydroxide, manganese hydroxide, nitric acid Manganese, titanium nitrate or other inorganic or organic compounds containing manganese, titanium and lithium compounds are roasted to prepare precursors, and then the ion sieve lithium adsorbent prepared by the method provided by the patent CN102631897B or the same type of ion sieve commercially available Lithium sorbent.
  • it can be implemented in the following preferred ways:
  • the compound of the lithium adsorbent precursor used in the preparation of the present invention can be selected from aluminum oxide, iron oxide, manganese oxide, titanium dioxide, aluminum hydroxide, iron hydroxide, manganese hydroxide, titanium hydroxide, aluminum nitrate, iron nitrate, manganese nitrate , titanium nitrate, aluminum carbonate, iron carbonate, manganese carbonate or other inorganic compounds or organic compounds containing aluminum, iron, manganese, titanium or a mixture of one or more of them.
  • the metal hydroxide precipitate is prepared by reaction, that is, the precursor of molecular sieve lithium adsorbent is obtained; or the compound of acid metal salt or metal oxide or hydroxide and lithium is roasted at high temperature to prepare an ion sieve precursor .
  • the molar ratio of lithium to other metals is generally 1:1 to 5:1; more preferably, the molar ratio of lithium to other metals is 1:1 to 2 : 1.
  • the preparation method of the molecular sieve lithium adsorbent precursor is to first prepare the metal oxygen-containing compound into spherical particles, and then use the activation process to make it have the function of adsorbing lithium ions.
  • the lithium adsorbent formed after activation contains lithium and other substances.
  • the molar ratio of metals is generally between 1 and 5:1.
  • the lithium adsorbent precursor is a combination of metal oxygen-containing compounds and lithium ions or lithium halides or other lithium compounds to form a stable structure, and lithium ions can be resolved from the precursor to the solution, and can also be adsorbed from the solution to the precursor.
  • the condition for lithium ions to be resolved from the precursor to the solution is that the precursor has adsorbed lithium, and the solution contains a low concentration of lithium ions; the condition for lithium ions to be adsorbed from the solution to the precursor is that the solution contains lithium ions, and the precursor The body is in the state of lithium desorption.
  • the lithium adsorbent precursor can be mixed with an oil-soluble or water-soluble adhesive to form a dispersed phase, and the amount of the adhesive added accounts for 10-80% of the total weight of the dispersed phase, more preferably 20-60%.
  • the adhesive is a polymerizable monomer, an initiator, porogen, thickener, etc. should be added at the same time.
  • the initiator accounts for 0.1-5% of the total weight of the monomer, preferably 1-3%; the porogen accounts for 10%-200% of the total weight of the monomer, preferably 50%-100%; the thickener can help lithium adsorption
  • the agent precursor is uniformly dispersed in the dispersed phase, and the amount of the thickener is generally 1-10%, more preferably 1-5%, in the total weight of the dispersed phase.
  • the adhesive is a high-molecular-weight polymer, a curing agent is required or the temperature is controlled to make it solidified, and the amount of the curing agent added accounts for 0.001% to 2% of the weight of the adhesive.
  • the adhesive is a small molecular substance with two self-condensing functional groups or a combination of two small molecular substances with mutual condensation functional groups, it is also necessary to add a catalyst, and the amount of the catalyst added accounts for 0.001-50% of the weight of the adhesive.
  • the adhesive described in the present invention can be a high molecular polymer, such as polyacrylamide, polyacrylic acid, polyacrylate, polyurethane, polyester, polyether, polystyrene, polyenol, phenolic resin, epoxy resin, inorganic Adhesives, etc., or a mixture of one or more of them; it can also be a double bond-containing polymerizable monomer or a mixture thereof, or a monomer with two condensable functional groups itself, or a single condensable functional group combination of bodies.
  • a high molecular polymer such as polyacrylamide, polyacrylic acid, polyacrylate, polyurethane, polyester, polyether, polystyrene, polyenol, phenolic resin, epoxy resin, inorganic Adhesives, etc., or a mixture of one or more of them; it can also be a double bond-containing polymerizable monomer or a mixture thereof, or a monomer with two condensable functional groups itself, or a single
  • the double bond-containing polymerizable monomer described in the present invention can be acrylic acid, methacrylic acid, acrylamide, N-isopropylacrylamide, N-vinylpyrrolidone, N,N-methylene bis Acrylamide, acrylonitrile, methacrylonitrile, ethacrylonitrile, methyl acrylate, methyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate, butyl methacrylate, n-octyl acrylate , n-octyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, hydroxyethyl methacrylate, vinyl acetate, glycidyl methacrylate, allyl acrylate, methyl Allyl acrylate, diallyl phthalate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, 1,3-butan
  • the substance with two condensable functional groups in the present invention is 4-hydroxybutyric acid, 5-hydroxyvaleric acid, 6-hydroxycaproic acid, 1-hydroxycyclopropanecarboxylic acid or ⁇ -hydroxycarboxylic acid and the like.
  • the combination of monomers with condensable functional groups in the present invention is phenol and formaldehyde, 2,4-disulfonic acid benzaldehyde, resorcinol and formaldehyde, 3,5-dihydroxybenzoic acid and formaldehyde, aromatic amine With formaldehyde, polyamine and epichlorohydrin or toluene diisocyanate and polyether polyol, etc.
  • the initiators, porogens, thickeners and the like are commonly used by those skilled in the art when preparing resin particles.
  • a system that is incompatible with the dispersed phase is selected as the continuous phase.
  • Add a dispersant according to the nature of the continuous phase If the continuous phase is an aqueous solution, the dispersant can choose water-soluble substances such as hydroxyethyl cellulose, gelatin, polyvinyl alcohol, carboxymethyl cellulose; if the continuous phase is an oil solution, then dispersant The agent can choose one or a mixture of spans and tweens.
  • the volume of the continuous phase is 1-10 times the volume of the dispersed phase, more preferably 2-5 times; wherein the added weight of the dispersant accounts for 0.01-10% of the total weight of the continuous phase.
  • step (2) Add the dispersed phase in step (2) to the continuous phase prepared in step (3), adjust the stirring speed, so that the dispersed phase is "suspended" in the continuous phase and dispersed into balls of suitable particle size.
  • the stirring speed is constant, and the spherical particles are solidified by adjusting the temperature or adding a curing agent or a catalyst; the particle size of the particles is preferably 0.3-2.0 mm.
  • the solidified spherical particles are filtered, and the dispersant, porogen and other substances in the spherical particles are washed with a suitable solvent (such as acetone, ethanol, toluene, gasoline, etc.); the washed spherical particles containing metal hydroxide are placed in Activation treatment is carried out at 60-120°C in a lithium halide solution with a pH of 1.5-10, preferably in a lithium halide solution with a pH of 2-8, and reacted at 80-110°C for 2-8 hours to obtain LiCl-containing mM(OH) 3 nH 2 O-based lithium adsorbent resin; or resin containing ion sieve precursors such as manganese dioxide, iron oxide, titanium oxide, etc., through a column with a solution of pH 0-5 Finally, and then washed to neutrality to obtain the resin of the ion sieve type lithium adsorbent.
  • a suitable solvent such as acetone, ethanol
  • the lithium sorbent resin is prepared by the following method:
  • the preparation method of the molecular sieve lithium adsorbent precursor is to first prepare the metal oxygen-containing compound into spherical particles, and then use the activation process to make it have the function of adsorbing lithium ions.
  • the lithium adsorbent formed after activation contains lithium and other substances.
  • the molar ratio of metal is between 1 ⁇ 5:1;
  • the adhesive is a polymerizable monomer
  • an initiator, a thickener, and a porogen are added at the same time, and the added initiator accounts for 0.1 to 5% of the total weight of the monomer; the ratio of the thickener to the total weight of the dispersed phase is 1 to 5%. 10%; the porogen accounts for 10% to 200% of the total weight of the monomer;
  • the adhesive is a high-molecular-weight polymer
  • a curing agent or temperature control is required to cure it, and the amount of the curing agent added accounts for 0.001% to 2% of the weight of the adhesive;
  • a catalyst needs to be added, and the amount of the catalyst added accounts for 0.001-50% of the weight of the adhesive;
  • the volume of the continuous phase is 1 to 10 times the volume of the dispersed phase, and the added weight of the dispersant accounts for 0.01 to 10% of the total weight of the continuous phase;
  • step (2) Add the dispersed phase in step (2) to the continuous phase prepared in step (3), adjust the stirring speed, so that the dispersed phase is "suspended" in the continuous phase and dispersed into balls of suitable particle size.
  • the stirring speed is constant, and solidified into spherical particles by adjusting the temperature or adding a curing agent or catalyst; the particle size of the particles is 0.3-2.0 mm;
  • the lithium extraction method for alkaline solution includes the following steps:
  • Adsorption the lithium adsorption material (resin or lithium adsorbent) is loaded into the resin exchange column, and the alkaline solution containing lithium ions flows through the resin column at a certain flow rate for adsorption;
  • Replacement adsorption by resin or lithium adsorbent After saturation, use an alkaline high-lithium and low-impurity solution for replacement; the alkaline high-lithium and low-impurity solution pushes out impurities other than lithium ions adsorbed by the lithium adsorption material, such as sodium ions and potassium ions, and becomes sodium hydroxide, hydroxide Potassium solution, this part of the solution can be returned to the raw material to remove divalent ions such as calcium and magnesium ions, so as to reduce the impact of divalent ions on the adsorption of lithium by the lithium adsorption material.
  • the alkaline high lithium and low impurity solution means that the concentration of lithium ions in the solution is higher than the concentration of other ions, and the concentration of lithium ions is not limited, and the alkaline high lithium and low impurity solution only means that the solution must be alkaline and the concentration of lithium ions must be alkaline.
  • the lithium ion concentration can be 0.1g/L, 20g/L, or a saturated lithium salt solution, but the impurity concentration should not be higher than the lithium ion concentration; 3.
  • the lithium ion content can reach 10g/L, Even more than 15g/L, when the acid concentration is greater than 3mol/L, the lithium concentration in the resulting analysis solution can reach more than 25g/L; then the resin is washed with water to wash out the residual acid on the resin; 4. After the analysis is completed, the Can enter the first step of the next cycle for re-adsorption.
  • the inventor combined the continuous ion exchange device to more easily realize the concentration of lithium.
  • the solution is prepared by bipolar membrane equipment, which reduces the purchase of raw materials; the raw material of the bipolar membrane comes from a part of the high-concentration lithium solution decomposed by the acid of the continuous ion exchange device, and its main components are lithium salt and a small amount of Monovalent salts such as sodium and potassium.
  • the characteristic of the bipolar membrane is to obtain the corresponding acid and alkali according to the type of anions and cations in the input salt.
  • the raw material of the bipolar membrane is determined by the raw material entering the adsorption system-alkaline solution, such as entering the alkaline solution Containing a large amount of chloride ions, hydrochloric acid is generally used to analyze the lithium adsorption material. If there are a large amount of sulfate ions entering the raw material, sulfuric acid is generally used to analyze the lithium adsorption material to obtain the corresponding lithium chloride and lithium sulfate. Then the bipolar membrane electrolysis The acid solutions obtained are hydrochloric acid and sulfuric acid respectively, and the alkali is the same.
  • the main process of this application is to use a continuous ion exchange device plus bipolar membrane equipment.
  • the continuous ion exchange device can realize the adsorption, separation and concentration of lithium, and concentrate the lithium concentration to above 15g/L, while the bipolar
  • the main function of the membrane is to provide the raw material acid and alkaline high lithium-sodium ratio solution used in the continuous ion exchange device.
  • the concentration of lithium ions can only be increased to about 20g/L by the adsorption of lithium by the front-end adsorption equipment, the removal of magnesium by nanofiltration membrane, the concentration of reverse osmosis, the concentration of electrodialysis, and the concentration of MVR.
  • the process only needs two stages of process to realize the concentration of lithium-containing solution, and the energy consumption and cost are low, and the advantages are obvious.
  • the assembly mode of the continuous ion exchange device in the present application is as follows: 1.
  • the continuous ion exchange device is divided into four regions, each region contains at least one resin column, and the resin
  • the columns are connected sequentially through series or parallel pipelines, and form the adsorption area, replacement area, analysis area, and water washing acid area that move in sequence and circulate;
  • Resin columns can be connected in series with different numbers of resin columns, the number of parallel connection can be 1, 2, 3, 4..., the number of resin columns in series can be 1, 2, 3, 4....
  • Lithium-containing alkaline solution passes through the resin column in the adsorption area at a certain flow rate, absorbs lithium ions onto the resin, and discharges the tail liquid of the adsorption to the salt pan.
  • the feeding direction of the adsorption area can be forward or countercurrent; 3.
  • Replacement area multiple groups In the parallel operation mode, each group of resin columns can have different numbers of resin columns to be connected in series. The number of parallel connections can be 1, 2, 3, 4..., and the number of resin columns connected in series can be 1, 2, 3, 4....
  • the alkaline high lithium-sodium ratio solution passes through the resin column in the replacement area at a certain flow rate, and the mother liquor in the resin column is ejected to the alkaline brine pool.
  • the feeding direction of the replacement area can be forward flow or reverse flow; 4.
  • Analysis area multiple Group parallel operation mode, each group of resin columns can be connected in series with different numbers of resin columns, the number of parallel connections can be 1, 2, 3, 4..., the number of resin columns in series can be 1, 2 , 3, 4.
  • the effluent from the front section enters the feeding tank in the replacement area, and the high-concentration lithium solution is collected from the analysis solution in the rear section.
  • the feeding direction of the analysis area can be adjusted. It is forward flow or reverse flow; 5.
  • Water washing acid area adopts multiple groups of parallel operation mode, each group of resin columns can have different numbers of resin columns to be connected in series, and the number of parallel connections can be 1, 2, 3, 4...
  • the number of resin columns connected in series can be 1, 2, 3, 4.... Use pure water to clean the acid in the resin column, and the cleaned acid enters the acid distribution tank in the analysis area for recovery.
  • the feeding direction of the washing acid can be forward or countercurrent; 6.
  • the device for realizing the above continuous ion exchange method includes: But not limited to valve array type, rotary disc type, multi-way valve type, etc.;
  • the main advantage of this application is that the lithium in the alkaline solution will be adsorbed by the resin, and the preliminary separation of lithium, sodium and potassium will be realized, and then the sodium and potassium will be separated from the resin according to the difference in the retention characteristics of lithium, sodium and potassium on the resin. gradually removed to achieve the function of purifying lithium while providing protection for lithium concentration.
  • a titanium-based lithium adsorption material that is, a lithium adsorption material prepared from titanium dioxide, titanium hydroxide, titanium nitrate or other titanium salts.
  • the lithium prepared in Example 8 of CN102631897B is specifically used.
  • Adsorbent material
  • the resin used in this embodiment is the lithium adsorption material 11 prepared in Example 11 of CN108421539A;
  • the resin used in this embodiment is the lithium adsorption material 9 prepared in Example 9 of CN108421539A;
  • the resin used in this embodiment is the lithium adsorption material 4 prepared in Example 4 of CN108421539A;
  • the resin used in this embodiment is the lithium adsorption material 5 prepared in Example 5 of CN108421539A;
  • the resin used in this embodiment is the lithium adsorption material 3 prepared in Example 3 of CN108421539A;
  • a manganese-based lithium adsorbent that is, a lithium adsorbent prepared from manganese dioxide, manganese hydroxide, manganese nitrate or other manganese salts, specifically corresponding to the lithium adsorbent prepared in Example 12 of CN102631897B;
  • the lithium heavy mother liquor in the production process of lithium carbonate is filtered to obtain the filtrate whose main components are lithium chloride, lithium carbonate, sodium carbonate and sodium chloride, wherein the lithium ion content is 1.6g/L, the sodium ion content is 45g/L, and the carbonic acid The root content is about 20g/L.
  • Sample 4BV feed liquid make adsorption saturated , calculate the lithium adsorption capacity of each resin or lithium adsorbent; g/L) carry out replacement operation to above-mentioned saturated resin or lithium adsorbent respectively, calculate the corresponding lithium consumption in lithium hydroxide solution consumed by lithium adsorbent material per unit volume; 3, use the hydrochloric acid solution of 3mol/L of 3BV to The above-mentioned replaced resin is regenerated, and the high concentration of lithium in the regeneration solution is detected, as shown in the following table:
  • the above-mentioned brine in a certain lake area of China is simply filtered, and the following experiments are carried out: 1.
  • the above-mentioned feed liquid is respectively fed to 200 ml of 1#, 2#, 3#, 4#, 5#, 6#,
  • the resin column of 7# loads sample 4BV feed liquid quantitatively, makes resin adsorption saturation, calculates the lithium adsorption capacity of each resin;
  • the lithium hydroxide solution (wherein Na content is 10g/L, K + content is 0.1g/L) to replace the above-mentioned saturated resin or lithium adsorbent respectively, and calculate the corresponding lithium consumption in the lithium hydroxide solution consumed by the lithium adsorbent material per unit volume;
  • Use 2.3mol/L of 4BV L of hydrochloric acid solution to regenerate the above-mentioned replaced resin, and detect the high concentration of lithium in the regeneration solution, as shown in the following table:
  • the above table shows that for alkaline salt lakes such as China, the concentration of lithium can be increased by resin adsorption and concentration, and the concentration of lithium ions can be increased by acid desorption.
  • the operating process parameters are as follows:
  • Adsorption zone Lithium precipitation mother liquor single column feed volume 2BV, feed flow rate 4BV/h;
  • Washing acid zone feed rate 1.5BV, washing flow rate 3BV/h;
  • lithium sinking mother liquor to test the combination of different resin columns in the adsorption zone, replacement zone, analysis zone, and water-washing acid zone in the continuous separation and separation process, except for the poor operation effect of a single group, other combinations can get lithium ions Qualified liquid with high concentration; compared with the salt lake lithium extraction process, qualified liquid with high concentration can be obtained without membrane concentration and evaporation concentration.
  • the operating process parameters are as follows:
  • Adsorption zone brine feed rate 4BV, feed flow rate 8BV/h;
  • Replacement zone 1mol/L lithium hydroxide solution (in which Na + content is 2.5g/L, K + content is 3.6g/L) feed rate 2.2BV, feed flow rate 4BV/h, the first 1BV returns to the raw material area;
  • Washing acid zone feed rate 1.5BV, washing flow rate 3BV/h;
  • the operating process parameters are as follows:
  • Adsorption zone mother liquid feed volume 3BV, feed flow rate 6BV/h;
  • Replacement zone 0.7mol/L lithium hydroxide solution (in which Na + content is 1.3g/L, K + content is 2.2g/L) feed rate is 2BV, feed flow rate is 4BV/h, and the effluent is returned to the raw material area for adjustment
  • the pH of the raw material is about 10, which is used to further remove divalent ions such as nickel and cobalt, and reduce the influence of nickel and cobalt on lithium adsorption;
  • Washing acid zone feed rate 1.5BV, washing flow rate 3BV/h;
  • the qualified solution enters the bipolar membrane for electrolysis, prepares 1mol/L hydrochloric acid for reuse, prepares 1.5mol/L lithium hydroxide solution (in which the sodium ion content is 2.04g/L, and the potassium ion content is 0.1g/L), and enters the replacement area for recycling. use;
  • Resin used 4# resin;
  • the raffinate after extraction and removal of nickel and cobalt was used to test the combination of different resin columns in the adsorption area, replacement area, analysis area, and water washing acid area in the above continuous separation process, and the qualified liquid was put into
  • the acid and alkaline lithium-containing solution used in the preparation of the bipolar membrane are reused in the analysis zone and replacement zone of the continuous separation and exchange process, so that no external acid and alkali are used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

本申请公开了一种用于碱性溶液的锂提取方法,在碱性环境下采用锂吸附材料,将碱性溶液中的锂离子吸附,然后用碱性高锂低杂质溶液对锂吸附材料进行置换,再采用酸溶液进行解析,从而可以得到锂含量更高的高锂盐溶液,锂浓度可以达到5g/L以上,高锂盐溶液可以进入双极膜系统进行电解,从而制备碱性高锂低杂质溶液以及酸溶液,用于锂吸附材料的置换及解析。本申请提供的方法,碱性溶液中的锂会被树脂吸附,并实现锂与钠、钾的初步分离,再根据锂、钠、钾在树脂上滞留特性的差别,将钠、钾从树脂上逐步移除,达到净化锂的功能同时为锂浓缩提供保障。

Description

一种用于碱性溶液的锂提取方法
交叉引用
本申请要求在2021年9月14日提交中国国家知识产权局、申请号为202111076775.3、发明名称为“一种用于碱性溶液的锂提取方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及锂资源的提取回收技术领域,属于湿法冶金领域,具体来讲,涉及一种碱性溶液的锂提取技术。
背景技术
近年来,随着新能源产业和锂电池技术的发展,锂的需求量日益增大。作为生产二次锂盐和金属锂制品的碳酸锂,在新能源材料中的重要性也日益增加,成为了锂行业中应用最大的锂产品。
目前,以盐湖卤水和矿石为原料制备碳酸锂,其关键工艺之一就是利用碳酸钠对氯化锂溶液进行沉淀来制备碳酸锂,得到碳酸锂产品和沉淀后的碳酸锂母液。此沉锂母液含有大约2~3g/L的锂以及约50g/L的钠。现有技术中沉锂母液中锂的回收方法主要采用中和—蒸发—结晶法,即用硫酸中和该沉锂母液中残余的碳酸根离子,使之全部转化为硫酸钠和硫酸锂的混合溶液后,再经蒸发浓缩、冷却结晶析出硫酸钠固体,过滤得到富锂(硫酸锂)滤液,再加入碳酸钠进行二次沉锂。蒸发结晶法处理沉锂母液的缺点是能耗大且耗酸量大,成本高,锂的回收率低。
此外,我国西藏北部、东非、亚洲蒙古东部、美国加尼福尼亚等地还存在着 大量碳酸盐型盐湖,现有技术中对碳酸盐型盐湖卤水主要采用自然蒸发结晶法浓缩卤水,但由于碳酸根离子的共存,导致卤水蒸发浓缩过程中锂盐分段结晶,析出比较分散,品位低,不利于锂盐的提取加工。同时,富锂卤水浓缩程度受限,难以实现较大规模产能的释放,碳酸盐型盐湖卤水锂富集难,成为亟待解决的关键技术难题。
另外,在电池回收、化工催化等领域中,因为工艺需要,也会产生含有钠的氢氧体系的溶液,其中的锂多以氢氧化锂形式存在,溶液显强碱性,工业中一般的方式是通过浓缩,依靠氢氧化锂与氢氧化钠在水中溶解度的差异,分步结晶来净化得到氢氧化锂产品,其过程也需要大量的能耗用于蒸发浓缩。
发明内容
为了克服现有技术中能耗高、回收率低、产业化困难的难题,本申请主要采用一种碱性溶液的锂提取方法,依靠锂吸附材料上特殊的弱酸官能团,在碱性环境下将锂离子捕捉到锂吸附材料上,然后解析时酸溶液流经锂吸附材料,将锂吸附材料上捕捉的锂解析下来。在解析的过程中,因锂吸附材料上的特殊官能团,酸溶液提供的氢离子接触到吸附锂离子的锂吸附材料会将锂离子解析下来,氢离子占据原来锂离子的位置,但解析下来的锂离子会被内层已经吸附锂的锂吸附材料滞留而不流出树脂层,形成多层吸附锂的状态,而其它杂质如钠、钾等则会被锂不断排挤而向外层转移排出,达到杂质去除的目的;在氢离子不断推动下,锂吸附材料原来吸附的锂被氢占据后,多层吸附的锂会继续向外层转移,由于锂吸附材料上特殊弱酸官能团的这种滞留作用,使锂浓度不断在树脂层中累计,当氢离子置换完成时,锂离子即流出锂吸附材料,同时锂浓度得到大幅提升,达到浓缩的目的。
为了达到本申请的目的,本申请采用的技术方案:
所使用的树脂为带有弱酸官能团的树脂,可以是专利CN108421539A所提供的树脂,该树脂是一种接枝特殊官能团的有机高分子交联聚合物,具有稳定的结构,一些含有如下结构:
Figure PCTCN2022111010-appb-000001
的树脂被本专利使用,也可以使用弱酸性、对锂钠有分离度的树脂如弱酸酚醛树脂、带羧基的弱酸阳离子交换树脂、带有羰基的弱酸阳离子交换树脂、具有磷氧双键的树脂、具有硫氧双键的树脂,能够在碱性环境中选择性地吸附锂离子,从而达到锂钠分离的效果。
可选地,所述树脂还包括另一类官能团为具有尖晶石结构Li xM yO z的无机材料,其中M表示一种金属;所述材料的基体为苯乙烯系;所述材料按照以下方法制备:
A、以二乙烯苯为交联剂与苯乙烯共聚得到聚合体,或者以三丙烯基异氰脲酸酯、二乙二醇二乙烯基醚为交联剂共聚得到聚合体;
B、将A中所得到的聚合体经过氯甲基化反应,得到氯甲基化基球,之后进行胺化;或聚合体直接进行氨甲基化;
C、将B所得产物经过羧酸化或磷酸化或磺酸化,将交换基团引入到材料中得到所述材料。
可选地,所述树脂还包括另一类官能团为具有尖晶石结构Li xM yO z的无机材 料,其中M表示一种金属;其中所述材料的基体为硅胶颗粒,通过修饰接枝偶联得到所述材料;所述材料按照以下方法制备:采用偶联剂氨丙基三甲氧基硅烷或氨丙基三乙氧基硅烷或氯丙基三甲氧基硅烷或氯丙基三乙氧基硅烷,将硅胶表面羟基修饰后,其另一端的活性基团将进一步进行反应,接枝,将官能团固化在其表面。
可选地,所述具有尖晶石结构Li xM yO z的无机材料,其前驱体为粉体状,使用前先进行造粒。
可选地,其中M代表的金属为锰、钛、锆、钴或铝。
可选地,其中所述的x范围为1~3,y的范围为1~3,z的范围为1~4。
锂吸附材料也可以是专利CN102631897B所提供的吸附剂,尤其是采用离子筛型锂吸附剂前驱体制备的锂吸附剂,具体的是采用二氧化钛、二氧化锰、氢氧化钛、氢氧化锰、硝酸锰、硝酸钛或其它含有锰、钛的无机或有机化合物与锂的化合物焙烧制备前驱体,然后采用专利CN102631897B所提供的方法制备的离子筛型锂吸附剂或市售的同类型的离子筛型锂吸附剂。可选地,可通过如下优选方式实现:
(1)前驱体的制备。
本发明用来制备的锂吸附剂前驱体的化合物可选择氧化铝、氧化铁、氧化锰、二氧化钛、氢氧化铝、氢氧化铁、氢氧化锰、氢氧化钛、硝酸铝、硝酸铁、硝酸锰、硝酸钛、碳酸铝、碳酸铁、碳酸锰或其它含有铝、铁、锰、钛的无机化合物或有机化合物中的一种或几种的混合。可直接购买市售商品;或通过酸碱中和得到,如:采用硫酸铝、三氯化铁、硫酸锰等酸式盐与碱性物质如氢氧化钠、氨水、碳酸钠、氢氧化锂等反应制备出金属氢氧化物沉淀物,即得到分子筛型锂吸附剂 前驱体;或将酸式金属盐或金属氧化物或氢氧化物与锂的化合物在高温下焙烧后制备出离子筛型前驱体。
本发明中,在制备离子筛型锂吸附剂前驱体时,锂与其他金属的摩尔比一般为1∶1~5∶1;更优的,锂与其他金属的摩尔比为1∶1~2∶1。分子筛型锂吸附剂前驱体的制备方法是先将金属含氧化合物制备成球珠状颗粒,再采用活化的工艺使其具有吸附锂离子的功能,活化后所形成的锂吸附剂中锂与其他金属的摩尔比一般为1~5∶1之间。
锂吸附剂前驱体是金属含氧化合物与锂离子或卤化锂或其它锂化合物形成稳定结构的结合体,且锂离子可从前驱体中解析到溶液,也能从溶液中吸附到前驱体上。锂离子从前驱体上解析到溶液中的条件是前驱体已吸附锂,且溶液中含有低浓度的锂离子;锂离子从溶液中吸附到前驱体上的条件是溶液中含锂离子,且前驱体处于锂解析的状态。
(2)分散相的制备。
锂吸附剂前驱体可与油溶性或水溶性胶粘剂混合制备成分散相,胶粘剂的加入量占分散相总重量的10~80%,更优选的为20~60%。当胶粘剂为可聚合单体时,同时应加入引发剂、致孔剂、增稠剂等。引发剂占单体总重量的0.1~5%,优选为1~3%;致孔剂占单体总重量的10%~200%,优选为50%~100%;增稠剂可帮助锂吸附剂前驱体在分散相中分散均匀,增稠剂的加入量占分散相总重量的比例一般为1~10%,更优选的为1~5%。当胶粘剂为高分子量聚合物时,需要固化剂或控制温度使其固化,固化剂加入量占胶粘剂重量的0.001%~2%。当胶粘剂为具有两个可自身缩合官能团的小分子物质或具有相互缩合官能团的两种小分子物质的组合时,则还需要加入催化剂,催化剂的加入量占胶粘剂重量 的0.001~50%。
本发明中所述的胶粘剂可以是高分子聚合物,如聚丙烯酰胺、聚丙烯酸、聚丙烯酸酯、聚氨酯、聚酯、聚醚、聚苯乙烯、聚烯醇、酚醛树脂、环氧树脂、无机胶粘剂等中的一种或几种的混合物;也可以是含双键的可聚合单体或其混合物,或是自身带有两个可缩合官能团的单体,或是带有可缩合官能团的单体的组合。
进一步地,本发明中所述的含双键的可聚合单体可以是丙烯酸、甲基丙烯酸、丙烯酰胺、N-异丙基丙烯酰胺、N-乙烯基吡咯烷酮、N,N-亚甲基双丙烯酰胺、丙烯腈、甲基丙烯腈、乙基丙烯腈、丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸丙酯、甲基丙烯酸丙酯、丙烯酸丁酯、甲基丙烯酸丁酯、丙烯酸正辛酯、甲基丙烯酸正辛酯、丙烯酸2-乙基己酯、甲基丙烯酸2-乙基己酯、甲基丙烯酸羟乙酯、乙酸乙烯酯、甲基丙烯酸缩水甘油酯、丙烯酸烯丙酯、甲基丙烯酸烯丙酯、苯二甲酸二烯丙酯、二丙烯酸乙二醇酯、二甲基丙烯酸乙二醇酯、1,3-丁二醇二丙烯酸酯、1,3-丁二醇二甲基丙烯酸酯、衣康酸二烯丙酯、三烯丙基异氰尿酸酯、三甲基丙烯酸甘油酯、苯乙烯、α-甲基苯乙烯、氯代苯乙烯、氯甲基苯乙烯或二乙烯苯。而本发明所述的自身带有两个可缩合官能团的物质是4-羟基丁酸、5-羟基戊酸、6-羟基己酸、1-羟基环丙烷羧酸或ω-羟基羧酸等。本发明所述的带有可缩合官能团的单体组合是苯酚与甲醛,2,4-二磺酸基苯甲醛、间苯二酚与甲醛,3,5-二羟基苯甲酸与甲醛,芳香胺与甲醛,多胺与环氧氯丙烷或甲苯二异氰酸酯与聚醚多元醇等。所述的引发剂、致孔剂、增稠剂等为本领域技术人员在制备树脂颗粒时常用的物质。
(3)连续相的制备。
选择与分散相不相容的体系作为连续相。根据连续相的性质加入分散剂,连续相如果为水溶液,分散剂可选择羟乙基纤维素、明胶、聚乙烯醇、羧甲基纤维素等水溶性物质;如果连续相为油溶液,则分散剂可选择span类、tween类中的一种或几种的混合物。连续相的体积为分散相体积的1~10倍,更优选的为2-5倍;其中分散剂的加入重量占连续相总重量的0.01~10%。
(4)锂吸附剂树脂的制备与固化。
将步骤(2)中的分散相加入到步骤(3)中配制好的连续相中,调节搅拌速度,使分散相在连续相中“悬浮”分散成合适粒度的球珠,待稳定后,固定搅拌速度不变,通过调节温度或加入固化剂或催化剂的方式使固化为球形颗粒;颗粒的粒度优选0.3-2.0毫米。
(5)洗涤与处理。
将固化的球形颗粒过滤,采用合适的溶剂(如丙酮、乙醇、甲苯、汽油等)洗涤球形颗粒中的分散剂、致孔剂等物质;将洗涤干净的含有金属氢氧化物的球形颗粒置于pH为1.5-10的卤化锂溶液中、在60-120℃下进行活化处理,优选为在pH 2-8的卤化锂溶液中,在80-110℃下反应2-8小时,即得到含有LiCl·mM(OH) 3·nH 2O基体的锂吸附剂的树脂;或将含有二氧化锰、氧化铁、氧化钛等的离子筛型前驱体的树脂经pH为0-5的溶液过柱处理后,然后水洗至中性即可得到离子筛型锂吸附剂的树脂。
可选地,锂吸附剂树脂通过如下方法制备:
①前驱体的制备:制备锂吸附剂树脂的前驱体——分子筛型或离子筛型锂吸附剂前驱体;
分子筛型锂吸附剂前驱体的制备方法是先将金属含氧化合物制备成球珠状 颗粒,再采用活化的工艺使其具有吸附锂离子的功能,活化后所形成的锂吸附剂中锂与其他金属的摩尔比为1~5∶1之间;
②分散相的制备:将上述制备的前驱体与胶粘剂及致孔剂混合均匀制备成分散相;胶粘剂的加入量占分散相总重量的10~80%;致孔剂占单体总重量的10%~200%;
当胶粘剂为可聚合单体时,同时加入引发剂、增稠剂、致孔剂,加入的引发剂占单体总重量的0.1~5%;增稠剂占分散相总重量的比例为1~10%;致孔剂占单体总重量的10%~200%;
当胶粘剂为高分子量聚合物时,需要固化剂或控制温度使其固化,固化剂加入量占胶粘剂重量的0.001%~2%;当胶粘剂为具有两个可自身缩合官能团的小分子物质或具有相互缩合官能团的两种小分子物质的组合时,则还需要加入催化剂,催化剂的加入量占胶粘剂重量的0.001~50%;
③连续相的制备:配制与分散相不相容的连续相;
连续相的体积为分散相体积的1~10倍,其中分散剂的加入重量占连续相总重量的0.01~10%;
④锂吸附剂树脂的制备与固化:
将步骤(2)中的分散相加入到步骤(3)中配制好的连续相中,调节搅拌速度,使分散相在连续相中“悬浮”分散成合适粒度的球珠,待稳定后,固定搅拌速度不变,通过调节温度或加入固化剂或催化剂的方式使固化为球形颗粒;颗粒的粒度为0.3-2.0毫米;
⑤洗涤与处理:
将固化的球形颗粒过滤,采用溶剂,丙酮、乙醇、甲苯或汽油洗涤球形颗粒 中的分散剂、致孔剂;将洗涤干净的含有金属氢氧化物的球形颗粒置于pH为1.5-10的卤化锂溶液中、在60-120℃下进行活化处理,即得到含有LiCl·mM(OH) 3·nH 2O基体的锂吸附剂的树脂;或将含有二氧化锰、氧化铁、氧化钛的离子筛型前驱体的树脂经pH为0-5的溶液过柱处理后,然后水洗至中性即可得到离子筛型锂吸附剂的树脂。
更具体地,用于碱性溶液的锂提取方法包括如下步骤:
1、吸附:将锂吸附材料(树脂或锂吸附剂)装入树脂交换柱中,含锂离子的碱性溶液以一定流速,流经树脂柱进行吸附;2、置换:树脂或锂吸附剂吸附饱和后,采用碱性高锂低杂质溶液进行置换;碱性高锂低杂质溶液将锂吸附材料吸附的除锂离子之外的杂质如钠离子、钾离子顶出,成为氢氧化钠、氢氧化钾溶液,该部分溶液可以返回原料用于去除二价离子如钙镁离子,以减少二价离子对锂吸附材料吸附锂的影响。其中,碱性高锂低杂质溶液是指溶液中锂离子的浓度高于其它离子浓度,其中锂离子浓度不做限制,其中碱性高锂低杂只是表述溶液必须呈碱性,且锂离子浓度高于其它离子浓度,锂离子浓度可以是0.1g/L,也可以20g/L,也可以是饱和的锂盐溶液,但杂质浓度不得高于锂离子浓度;3、解析:采用一定浓度的酸溶液,对锂吸附材料进行解析,控制进酸量,同时分段取解析液,前段流出液进入上一步,中间解析液收集高浓度锂溶液,达到浓缩目的,锂离子含量可以达到10g/L、甚至15g/L以上,当酸浓度大于3mol/L时,所得的解析液中锂浓度可以达到25g/L以上;然后对树脂进行水洗,洗涤出树脂上残留的酸;4、解析完成后,即可进入下一周期的第一步骤,进行再次吸附。
为了更好地实现从碱性溶液中提锂,发明人结合连续离子交换装置,更容易实现锂的浓缩,同时为了能够节约成本,发明人使用的碱性高锂低杂溶液及解析 使用的酸溶液均采用双极膜设备进行制备,减少了原料的采购环节;而双极膜的原料来自于连续离子交换装置酸解析下来的的高浓度锂溶液的一部分,其主要成分是锂盐及少量的钠、钾等一价盐。双极膜特点是根据输入的盐中的阴阳离子类型得到相应的酸及碱,在本申请中,双极膜的原料由进入吸附系统的原料——碱性溶液决定,如进入碱性溶液中含有大量氯离子,一般采用盐酸对锂吸附材料进行解析,如进入原料有大量硫酸根离子,一般采用硫酸对锂吸附材料进行解析,从而得到相应的氯化锂、硫酸锂,则双极膜电解得到的酸溶液分别是盐酸、硫酸,碱则是一样的。
综上所说,本申请的主体工艺是采用连续离子交换装置加双极膜设备,连续离子交换装置可以实现锂的吸附分离及浓缩的作用,将锂浓度浓缩到15g/L以上,而双极膜主要作用是提供连续离子交换装置使用的原料酸及碱性高锂钠比溶液。相比于盐湖提锂工艺,锂离子浓度的提高需要经过前段吸附设备吸附锂、解析合格液经过纳滤膜除镁、反渗透浓缩、电渗析浓缩、MVR浓缩过程才能达到20g/L左右,本工艺仅需要两段工艺即可实现含锂溶液的浓缩,而且能耗及成本较低,优势明显。
为了更好地理解本申请,本申请中连续离子交换装置的组配方式,具体如下:1、连续离交子交换装置分为四个区域,每个区域至少包含一根树脂柱,所述树脂柱之间通过串联或者并联管路依次连接,并形成顺序移动、循环运转的吸附区、置换区、解析区、水洗酸区;2、吸附区:采用多组并联的运行方式,每一组的树脂柱可以有不同的树脂柱个数进行串联,其中并联的数量可以是1,2,3,4……,树脂柱串联的个数可以是1,2,3,4……。含锂的碱性溶液以一定流速通过吸附区的树脂柱,将锂离子吸附到树脂上,吸附尾液排放至盐田,吸附区进料方向可以是正流或者逆流;3、置换区:采用多组并联的运行方式,每一组的树脂柱可以有不同的树脂柱个数进行串联,其中并联的数量可以是1,2,3, 4……,树脂柱串联的个数可以是1,2,3,4……。碱性高锂钠比溶液以一定的流速通过置换区的树脂柱,将树脂柱中的母液顶出至碱性卤水池,置换区进料方向可以是正流或者逆流;4、解析区:采用多组并联的运行方式,每一组的树脂柱可以有不同的树脂柱个数进行串联,其中并联的数量可以是1,2,3,4……,树脂柱串联的个数可以是1,2,3,4……。采用一定浓度的酸溶液,对树脂进行解析,控制进酸量,同时分段取解析液,前段流出液进入置换区进料罐,后段解析液收集高浓锂溶液,解析区进料方向可以是正流或者逆流;5、水洗酸区:采用多组并联的运行方式,每一组的树脂柱可以有不同的树脂柱个数进行串联,其中并联的数量可以是1,2,3,4……,树脂柱串联的个数可以是1,2,3,4……。采用纯水对树脂柱中的酸进行清洗,清洗出来的酸进入到解析区的配酸罐进行回收,水洗酸的进料方向可以是正流或者逆流;6、实现以上连续离子交换方式的装置包括但不限于阀阵式、转盘式、多路阀式等;
本申请的主要优点是,碱性溶液中的锂会被树脂吸附,并实现锂与钠、钾的初步分离,再根据锂、钠、钾在树脂上滞留特性的差别,将钠、钾从树脂上逐步移除,达到净化锂的功能同时为锂浓缩提供保障。
具体实施例
以下结合实施例对本申请作进一步描述,实施方式中所述并不限于本申请的保护范围。
为了更清晰地描述实施例,实施例中将树脂和锂吸附材料进行编号,其中对应关系如下:
1#为钛系锂吸附材料,即以二氧化钛、氢氧化钛、硝酸钛或其它钛盐类为原料制备的锂吸附材料,在本实施例中具体采用的是CN102631897B中实施例8所制备的锂吸附材料;
2#为具有官能团
Figure PCTCN2022111010-appb-000002
的树脂,在本实施例中具体采用的是CN108421539A中实施例11制备的锂吸附材料11;
3#对应具有官能团
Figure PCTCN2022111010-appb-000003
的树脂,在本实施例中具体采用的是CN108421539A中实施例9制备的锂吸附材料9;
4#对应具有官能团
Figure PCTCN2022111010-appb-000004
的树脂,在本实施例中具体采用的是CN108421539A中实施例4制备的锂吸附材料4;
5#对应具有官能团
Figure PCTCN2022111010-appb-000005
的树脂,在本实施例中具体采用的是CN108421539A中实施例5制备的锂吸附材料5;
6#对应具有官能团
Figure PCTCN2022111010-appb-000006
的树脂,在本实施例中具体采用的是CN108421539A中实施例3制备的锂吸附材料3;
7#为锰系锂吸附剂,即以二氧化锰、氢氧化锰、硝酸锰或其它锰盐类为原料制备的锂吸附剂,具体对应CN102631897B中实施例12所制备的锂吸附材料;
实施例1
将碳酸锂生产过程中的沉锂母液过滤处理,得到主要成分是氯化锂、碳酸锂、碳酸钠、氯化钠的滤液,其中锂离子含量1.6g/L,钠离子含量45g/L,碳酸根含量在20g/L左右。进行如下实验:1、将上述料液以3BV/h的流速分别给装有200毫升1#、2#、3#、4#、5#、6#、7#锂吸附材料的树脂柱定量上样4BV料液,使吸附饱和,计算各树脂或锂吸附剂的锂吸附量;2、用1BV的1.8mol/L的氢氧化锂溶液(其中Na +含量为4g/L,K +含量为0.3g/L)分别对上述吸附饱和的树脂或锂吸附剂进行置换操作,计算单位体积锂吸附材料所消耗氢氧化锂溶液中对应的锂消耗量;3、使用3BV的3mol/L的盐酸溶液对上述置换好的树脂进行再生,检测再生液中锂浓度高点,如下表所示:
序号 锂吸附量(g/L) 锂消耗量(g/L) 再生液锂浓度高点(g/L)
1# 2.057 12.12 10.81
2# 2.652 7.42 25.67
3# 3.135 2.52 27.40
4# 2.875 4.44 23.21
5# 1.642 3.23 9.75
6# 1.528 9.86 12.99
7# 2.241 7.47 17.07
从数据可以看出,2#、3#、4#与7#树脂浓缩锂浓度程度较好。
实施例2
下表是西藏某湖区卤水指标
原料 K + Na + Mg 2+ Ca 2+ Li + Cl - SO 4 2- 密度 pH
含量(g/L) 3.6 30.3 4.15 0.75 0.62 59.3 15.54 1.07 8.2
将上述西藏某湖区卤水进行简单过滤,进行如下实验:1、将上述料液以5BV/h的流速分别给装有200毫升1#、2#、3#、4#、5#、6#、7#的树脂柱定量上样4BV料液,使树脂吸附饱和,计算各树脂的锂吸附量;2、用0.9BV的2mol/L的氢氧化锂溶液(其中Na +含量为10g/L,K +含量为0.1g/L)分别对上述吸附饱和的树脂或锂吸附剂进行置换操作,计算单位体积锂吸附材料所消耗氢氧化锂溶液中对应的锂消耗量;3、使用4BV的2.3mol/L的盐酸溶液对上述置换好的树脂进行再生,检测再生液中锂浓度高点,如下表所示:
序号 锂吸附量(g/L) 锂消耗量(g/L) 再生液锂浓度高点(g/L)
1# 1.97 13.53 8.42
2# 1.82 8.28 15.73
3# 1.02 4.72 16.32
4# 1.25 6.13 13.6
5# 0.93 6.24 8.31
6# 0.62 11.47 9.74
7# 1.92 8.21 12.31
上表说明,对西藏等碱性盐湖,采用树脂吸附加浓缩方式可以提高锂浓度,使用酸解析可以将锂离子浓度提升。
实施例3
将碳酸锂生产过程中的沉锂母液过滤处理,得到主要成分是氯化锂、碳酸锂、碳酸钠、氯化钠的滤液,其中锂离子含量1.6g/L,钠离子含量45g/L,pH=11.5;
运行工艺参数如下:
吸附区:沉锂母液单柱进料量2BV,进料流速4BV/h;
置换区:0.6mol/L的氢氧化锂溶液(其中Na +含量为1.5g/L,K +含量为1.6g/L)进料量2BV,进料流速4BV/h,前1BV回原料区;
解析区:3mol/L的盐酸溶液进料量1.5BV,进料流速3BV/h,出口前1.2BV去置换区回收,后0.3BV去合格液罐;
水洗酸区:进料量1.5BV,水洗流速3BV/h;
切换时间:0.5h
树脂采用:3#树脂
采用上述原料及工艺,对连续离交不同组配工艺进一步验证,得到解析液中锂离子含量如下表:
Figure PCTCN2022111010-appb-000007
使用沉锂母液上述对连续离交工艺中吸附区、置换区、解析区、水洗酸区不同树脂柱的组配进行测试,除单组运行效果不佳外,其他组配方式均能得到锂离子浓度高的合格液;与盐湖提锂工艺比较,不采用膜浓缩及蒸发浓缩即可得到浓度高的合格液。
实施例4
下表是西藏某湖区卤水指标
原料 K + Na + Mg 2+ Ca 2+ Li + Cl - SO 4 2- 密度 pH
含量(g/L) 3.6 30.3 4.15 0.75 0.62 59.3 15.54 1.07 8.2
运行工艺参数如下:
吸附区:卤水进料量4BV,进料流速8BV/h;
置换区:1mol/L的氢氧化锂溶液(其中Na +含量为2.5g/L,K +含量为3.6g/L)进料量2.2BV,进料流速4BV/h,前1BV回原料区;
解析区:3.5mol/L的盐酸溶液进料量1.5BV,进料流速3BV/h,出口前1.2BV去置换区回收,后0.3BV去合格液罐;
水洗酸区:进料量1.5BV,水洗流速3BV/h;
切换时间:0.5h
树脂采用:2#树脂
采用上述原料及工艺,对连续离交不同组配工艺进一步验证,得到解析液中锂离子含量如下表:
Figure PCTCN2022111010-appb-000008
采用2#树脂,使用西藏某湖区卤水对上述连续离交工艺中吸附区、置换区、解析区、水洗酸区不同树脂柱的组配进行测试,均能起到锂离子浓度提升的目的,同时较高浓度可以达到20g/L以上,直接可以进入沉锂工艺,与青海盐湖提锂工艺对比,本专利方法具有减少浓缩步序,节省能耗的作用;
实施例5
下表是某公司电池回收液指标:
原料 Ni 2+ Na + Co 2+ Li + SO 4 2- 密度 pH
含量(g/L) 0.001 50.3 0.002 1.32 15.54 1.07 7.95
运行工艺参数如下:
吸附区:母液进料量3BV,进料流速6BV/h;
置换区:0.7mol/L的氢氧化锂溶液(其中Na +含量为1.3g/L,K +含量为2.2g/L)进料量2BV,进料流速4BV/h,流出液回原料区调节原料pH到10左右,用于进一步去除二价离子如镍、钴,降低镍钴对锂吸附的影响;
解析区:1mol/L的盐酸溶液进料量2BV,进料流速4BV/h,出口前1.5BV去置换液罐,后0.5BV去合格液罐;
水洗酸区:进料量1.5BV,水洗流速3BV/h;
合格液进入双极膜进行电解,制备盐酸1mol/L回用,制备氢氧化锂溶液1.5mol/L(其中钠离子含量在2.04g/L,钾离子在0.1g/L),进入置换区回用;
切换时间:0.5h;
树脂采用:4#树脂;
采用上述原料及工艺,对连续离交不同组配工艺进一步验证,得到解析液中锂离子含量如下表:
Figure PCTCN2022111010-appb-000009
Figure PCTCN2022111010-appb-000010
使用某公司电池回收液,经萃取除镍钴之后的萃余液对上述连续离交工艺中吸附区、置换区、解析区、水洗酸区不同树脂柱的组配进行测试,并将合格液进入双极膜制备所使用的酸及碱性含锂溶液,再回用到连续离交工艺的解析区及置换区,即可不使用外引入酸碱,数据结果表明:采用双极膜产生的酸浓度不会太高,故受酸浓度限制,锂解析浓度不会太高,但优点是酸碱均可自产自用,不引入外来原料,且双极膜制备酸碱具有成本优势,更适合原料采购不方便的区域,如偏僻的盐湖。另外如果能外加浓酸调节酸浓度到2mol/L,则合格液锂含量会达到20g/L,直接起到浓缩作用。
以上实施例是为了能够更好地理解本专利而对本申请专利的进一步说明,不作为限制本申请专利的实施。

Claims (17)

  1. 一种用于碱性溶液的锂提取方法,其特征在于,在碱性环境下采用锂吸附材料,将碱性溶液中的锂离子吸附,然后用碱性高锂低杂质溶液对锂吸附材料进行置换,再采用酸溶液进行解析,从而可以得到锂含量更高的高锂盐溶液。
  2. 根据权利要求1所述的一种用于碱性溶液的锂提取方法,其特征在于,锂浓度可以达到5g/L以上。
  3. 根据权利要求1所述的一种用于碱性溶液的锂提取方法,其特征在于,高锂盐溶液可以进入双极膜系统进行电解,从而制备碱性高锂低杂质溶液以及酸溶液,用于锂吸附材料的置换及解析。
  4. 根据权利要求1所述的一种用于碱性溶液的锂提取方法,其特征在于,其中的锂吸附材料可以是来源于专利CN108421539A所提供的树脂。
  5. 根据权利要求4所述的一种用于碱性溶液的锂提取方法,其特征在于,专利CN108421539A所提供的树脂是一种接枝特殊官能团的有机高分子交联聚合物,具有稳定的结构。
  6. 根据权利要求5所述的一种用于碱性溶液的锂提取方法,其特征在于,专利CN108421539A所提供的树脂是含有如下结构:
    Figure PCTCN2022111010-appb-100001
    的树脂。
  7. 根据权利要求5所述的一种用于碱性溶液的锂提取方法,其特征在于,可以使用弱酸性、对锂钠有分离度的树脂如弱酸酚醛树脂、带羧基的弱酸阳离子交换树脂、带有羰基的弱酸阳离子交换树脂、具有磷氧双键的树脂、具有硫氧双键的树脂,能够在碱性环境中选择性地吸附锂离子,从而达到锂钠分离的效果。
  8. 根据权利要求4所述的一种用于碱性溶液的锂提取方法,其特征在于,也可以是专利CN102631897B所提供的吸附剂,尤其适合离子筛型锂吸附剂前驱体制备的锂吸附剂。
  9. 权利要求8所述的一种用于碱性溶液的锂提取方法,其特征在于,具体的是采用二氧化钛、二氧化锰、氢氧化钛、氢氧化锰、硝酸锰、硝酸钛或其它含有锰、钛的无机或有机化合物材料与锂的化合物焙烧制备前驱体,然后采用专利CN102631897B所提供的方法制备的离子筛型锂吸附剂或市售的同类型的离子筛型锂吸附剂。
  10. 根据权利要求1所述的一种用于碱性溶液的锂提取方法,其特征在于,其中的碱性溶液是指该溶液中pH大于7的碱性含锂溶液。
  11. 根据权利要求1所述的一种用于碱性溶液的锂提取方法,其特征在于,其中的解析液中锂浓度可以达到5g/L以上,根据解析用酸浓度的不同,其锂离子浓度也会有所不同,当酸浓度达到2-3mol/L时,所得的解析液中锂浓度可以达到10g/L以上,甚至15g/L以上;当酸浓度大于3mol/L时,所得的解析液中锂浓度可以达到25g/L以上。
  12. 根据权利要求1所述的一种用于碱性溶液的锂提取方法,其特征在于,其中的碱性溶液是指该溶液中pH大于8的碱性含锂溶液。
  13. 权利要求1所述的一种用于碱性溶液的锂提取方法,其特征在于,其中的碱性高锂低杂质溶液是指该溶液pH大于7,同时该溶液中的锂离子浓度高于其它离子浓度。
  14. 根据权利要求1所述的一种用于碱性溶液的锂提取方法,其特征在于,其中双极膜是为了给系统提供酸及碱性高锂低杂溶液而配置的设备。
  15. 权利要求1所述的一种用于碱性溶液的锂提取方法,其特征在于,用于碱性溶液的锂提取方法包括如下步骤:
    (1)吸附:将锂吸附材料装入树脂交换柱中,含锂离子的碱性溶液以一定流速,流经树脂柱进行吸附;
    (2)置换:树脂或锂吸附剂吸附饱和后,采用碱性高锂低杂质溶液进行置换;碱性高锂低杂质溶液将锂吸附材料吸附的除锂离子之外的杂质如钠离子、钾离子顶出,成为氢氧化钠、氢氧化钾溶液,该部分溶液可以返回原料用于去除二价离子如钙镁离子,以减少二价离子对锂吸附材料吸附锂的影响;其中,碱性高锂低杂质溶液是指溶液中锂离子的浓度高于其它离子浓度,其中锂离子浓度不做限制,其中碱性高锂低杂只是表述溶液必须呈碱性,且锂离子浓度高于其它离子浓度,锂离子浓度可以是0.1g/L,也可以20g/L,也可以是饱和的锂盐溶液,但杂质浓度不得高于锂离子浓度;
    (3)解析:采用一定浓度的酸溶液,对锂吸附材料进行解析,控制进酸量,同时分段取解析液,前段流出液进入上一步,中间解析液收集高浓度锂溶液,达到浓缩目的,锂离子含量可以达到10g/L、甚至15g/L以上,当酸浓度大于3mol/L时,所得的解析液中锂浓度可以达到25g/L以上;然后对树脂进行水洗,洗涤出树脂上残留的酸;
    (4)解析完成后,即可进入下一周期的第一步骤,进行再次吸附。
  16. 权利要求1所述的一种用于碱性溶液的锂提取方法,其特征在于,用于碱性溶液的锂提取方法包括如下步骤:
    采用连续离子交换装置加双极膜设备,连续离子交换装置可以实现锂的吸附分离及浓缩的作用,将锂浓度浓缩到15g/L以上。
  17. 权利要求1所述的一种用于碱性溶液的锂提取方法的系统,其特征在于:
    (1)连续离交子交换装置分为四个区域,每个区域至少包含一根树脂柱,所述树脂柱之间通过串联或者并联管路依次连接,并形成顺序移动、循环运转的吸附区、置换区、解析区、水洗酸区;
    (2)吸附区:采用多组并联的运行方式,每一组的树脂柱可以有不同的树脂柱个数进行串联,其中并联的数量可以是1,2,3,4……,树脂柱串联的个数可以是1,2,3,4……;含锂的碱性溶液以一定流速通过吸附区的树脂柱,将锂离子吸附到树脂上,吸附尾液排放至盐田,吸附区进料方向可以是正流或者逆流;
    (3)置换区:采用多组并联的运行方式,每一组的树脂柱可以有不同的树脂柱个数进行串联,其中并联的数量可以是1,2,3,4……,树脂柱串联的个数可以是1,2,3,4……;碱性高锂钠比溶液以一定的流速通过置换区的树脂柱,将树脂柱中的母液顶出至碱性卤水池,置换区进料方向可以是正流或者逆流;
    (4)解析区:采用多组并联的运行方式,每一组的树脂柱可以有不同的树脂柱个数进行串联,其中并联的数量可以是1,2,3,4……,树脂柱串联的个数可以是1,2,3,4……;采用一定浓度的酸溶液,对树脂进行解析,控制进酸量,同时分段取解析液,前段流出液进入置换区进料罐,后段解析液收集高浓锂溶液,解析区进料方向可以是正流或者逆流;
    (5)水洗酸区:采用多组并联的运行方式,每一组的树脂柱可以有不同的树脂柱个数进行串联,其中并联的数量可以是1,2,3,4……,树脂柱串联的个数可以是1,2,3,4……;采用纯水对树脂柱中的酸进行清洗,清洗出来的 酸进入到解析区的配酸罐进行回收,水洗酸的进料方向可以是正流或者逆流;
    (6)实现以上连续离子交换方式的装置包括但不限于阀阵式、转盘式、多路阀式。
PCT/CN2022/111010 2021-09-14 2022-08-09 一种用于碱性溶液的锂提取方法 WO2023040511A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3216448A CA3216448A1 (en) 2021-09-14 2022-08-09 Lithium extraction method for alkaline solution
AU2022345112A AU2022345112A1 (en) 2021-09-14 2022-08-09 Lithium extraction method for alkaline solution
EP22868888.3A EP4321639A1 (en) 2021-09-14 2022-08-09 Lithium extraction method for alkaline solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111076775.3A CN115807169A (zh) 2021-09-14 2021-09-14 一种用于碱性溶液的锂提取方法
CN202111076775.3 2021-09-14

Publications (1)

Publication Number Publication Date
WO2023040511A1 true WO2023040511A1 (zh) 2023-03-23

Family

ID=85481569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111010 WO2023040511A1 (zh) 2021-09-14 2022-08-09 一种用于碱性溶液的锂提取方法

Country Status (5)

Country Link
EP (1) EP4321639A1 (zh)
CN (1) CN115807169A (zh)
AU (1) AU2022345112A1 (zh)
CA (1) CA3216448A1 (zh)
WO (1) WO2023040511A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117106216A (zh) * 2023-07-18 2023-11-24 同济大学 一种层状双金属氢氧化物基水凝胶双极膜及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167626A (ja) * 2000-11-28 2002-06-11 National Institute Of Advanced Industrial & Technology リチウム回収装置および方法
CN1511964A (zh) * 2002-12-27 2004-07-14 中国科学院青海盐湖研究所 吸附法从盐湖卤水中提取锂的方法
JP2009161794A (ja) * 2007-12-28 2009-07-23 Kumamoto Technology & Industry Foundation リチウムを回収する方法、および該方法を用いたリチウム回収装置
CN102631897A (zh) * 2012-02-14 2012-08-15 西安蓝晓科技新材料股份有限公司 一种制备锂吸附剂树脂的方法
CN108421539A (zh) 2018-04-25 2018-08-21 西安蓝晓科技新材料股份有限公司 一种吸附锂的材料的制备方法
CN111826524A (zh) * 2020-07-13 2020-10-27 礼思(上海)材料科技有限公司 一种利用吸附剂从盐湖卤水中提锂的方法
CN112501455A (zh) * 2020-11-30 2021-03-16 五矿盐湖有限公司 一种从盐湖原卤卤水中分离锂的方法
CN112593094A (zh) * 2020-07-23 2021-04-02 江苏久吾高科技股份有限公司 一种盐湖提锂的工艺及装置
CN113106268A (zh) * 2021-03-12 2021-07-13 华东理工大学 一种离子筛和碱性树脂协同提取高镁锂比卤水中锂的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167626A (ja) * 2000-11-28 2002-06-11 National Institute Of Advanced Industrial & Technology リチウム回収装置および方法
CN1511964A (zh) * 2002-12-27 2004-07-14 中国科学院青海盐湖研究所 吸附法从盐湖卤水中提取锂的方法
JP2009161794A (ja) * 2007-12-28 2009-07-23 Kumamoto Technology & Industry Foundation リチウムを回収する方法、および該方法を用いたリチウム回収装置
CN102631897A (zh) * 2012-02-14 2012-08-15 西安蓝晓科技新材料股份有限公司 一种制备锂吸附剂树脂的方法
CN102631897B (zh) 2012-02-14 2015-03-25 西安蓝晓科技新材料股份有限公司 一种制备锂吸附剂树脂的方法
CN108421539A (zh) 2018-04-25 2018-08-21 西安蓝晓科技新材料股份有限公司 一种吸附锂的材料的制备方法
CN111826524A (zh) * 2020-07-13 2020-10-27 礼思(上海)材料科技有限公司 一种利用吸附剂从盐湖卤水中提锂的方法
CN112593094A (zh) * 2020-07-23 2021-04-02 江苏久吾高科技股份有限公司 一种盐湖提锂的工艺及装置
CN112501455A (zh) * 2020-11-30 2021-03-16 五矿盐湖有限公司 一种从盐湖原卤卤水中分离锂的方法
CN113106268A (zh) * 2021-03-12 2021-07-13 华东理工大学 一种离子筛和碱性树脂协同提取高镁锂比卤水中锂的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117106216A (zh) * 2023-07-18 2023-11-24 同济大学 一种层状双金属氢氧化物基水凝胶双极膜及其制备方法
CN117106216B (zh) * 2023-07-18 2024-05-24 同济大学 一种层状双金属氢氧化物基水凝胶双极膜及其制备方法

Also Published As

Publication number Publication date
CN115807169A (zh) 2023-03-17
EP4321639A1 (en) 2024-02-14
AU2022345112A1 (en) 2023-11-09
CA3216448A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
Naidu et al. Rubidium extraction using an organic polymer encapsulated potassium copper hexacyanoferrate sorbent
CN101570372B (zh) 一种电镀废水净化、资源综合利用的方法
JP7156322B2 (ja) 水酸化リチウムの製造方法
CN104313348B (zh) 一种吸附法提取盐湖卤水中锂的方法
CN108421539B (zh) 一种吸附锂的材料的制备方法
CN105174556B (zh) 一种高酸高铁重金属废水分质资源回收的方法
RU2417267C1 (ru) СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ СКАНДИЙСОДЕРЖАЩИХ РАСТВОРОВ, ТВЕРДЫЙ ЭКСТРАГЕНТ (ТВЭКС) ДЛЯ ЕГО ИЗВЛЕЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ТВЭКСа
WO2022121989A1 (zh) 一种用于沉锂母液中锂回收的方法
CN113073194B (zh) 一种废旧锂电池回收利用的除氟工艺
WO2022106660A1 (en) Process for the removal of fluoride from alkaline hydroxide solutions
WO2023040511A1 (zh) 一种用于碱性溶液的锂提取方法
CN108298570A (zh) 吸附法卤水提锂淋洗液中除镁的方法
CN104229859A (zh) 一种去除硫酸铜溶液中的铁杂质并富集铜离子的方法
CN114014341A (zh) 一种从原卤中制取高锂溶液的装置及方法
CN114538482B (zh) 一种吸附-加压脱附法提纯含锂溶液制备碳酸锂的方法
JP7124508B2 (ja) リチウムの吸着方法
CN110106356B (zh) 一种粉末型钛系离子交换剂分离盐湖卤水中锂的方法
CN101648972B (zh) 一种从草甘膦母液回收草甘膦的方法
CN114752785B (zh) 一种无机吸附剂与连续流体分离组合工艺在卤水提锂中的应用
CN113578252B (zh) 一种锂提取吸附剂的制备方法
CN114797171A (zh) 一种高效吸附法卤水提锂的生产装置和生产工艺
CN111270087B (zh) 一种用于从红土镍矿浸提液中提取金属镍的新方法
EP2292561A2 (en) Removal of oxo anions from silicate-containing water
CN106732832A (zh) 利用金属盐溶液回收edta金属络合物及再生氯型阴离子交换树脂的方法
WO2023040534A1 (zh) 一种含碳酸根或/和硫酸根溶液中锂吸附的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868888

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18556060

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: AU2022345112

Country of ref document: AU

Ref document number: 3216448

Country of ref document: CA

Ref document number: 2022345112

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2023/014163

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 2022868888

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022345112

Country of ref document: AU

Date of ref document: 20220809

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022868888

Country of ref document: EP

Effective date: 20231106

NENP Non-entry into the national phase

Ref country code: DE