WO2023040175A1 - 垂直腔面发射激光器 - Google Patents

垂直腔面发射激光器 Download PDF

Info

Publication number
WO2023040175A1
WO2023040175A1 PCT/CN2022/076275 CN2022076275W WO2023040175A1 WO 2023040175 A1 WO2023040175 A1 WO 2023040175A1 CN 2022076275 W CN2022076275 W CN 2022076275W WO 2023040175 A1 WO2023040175 A1 WO 2023040175A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sub
pad
vertical cavity
cavity surface
Prior art date
Application number
PCT/CN2022/076275
Other languages
English (en)
French (fr)
Inventor
翁玮呈
梁栋
刘嵩
Original Assignee
常州纵慧芯光半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州纵慧芯光半导体科技有限公司 filed Critical 常州纵慧芯光半导体科技有限公司
Priority to JP2022545140A priority Critical patent/JP7440128B2/ja
Priority to EP22868555.8A priority patent/EP4340143A1/en
Priority to GB2318961.6A priority patent/GB2622175A/en
Priority to KR1020227033862A priority patent/KR20230042207A/ko
Publication of WO2023040175A1 publication Critical patent/WO2023040175A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation

Definitions

  • the present application relates to the technical field of semiconductors, for example, to a vertical cavity surface emitting laser.
  • Vertical cavity surface emitting laser (Vertical Cavity Surface Emitting Laser, VCSEL) is a new type of laser that emits light vertically, because of its small size, circular output spot, low threshold current, high modulation frequency, easy fiber coupling, easy to become a large area Arrays and other advantages are becoming more and more widely used in the fields of optical communication, optical interconnection, optical information processing, mobile phones, and laser radar for unmanned vehicles.
  • VCSEL Vertical cavity surface emitting laser
  • the vertical cavity surface emitting laser includes a substrate and a plurality of light emitting units arranged in an array on the surface of the substrate, limited by the structural settings, among the light emitting units arranged in an array, the same end of the multiple light emitting units shares a common pad, and the common
  • the pad is located on the side of the light-emitting unit away from the substrate, and there is a minimum distance between different common pads, and the common pad covers the plurality of light-emitting units corresponding to the common pad and the space between the plurality of light-emitting units, As a result, the spacing between light-emitting units corresponding to different common pads cannot be further reduced, resulting in a relatively sparse density of light-emitting units.
  • the present application provides a vertical cavity surface emitting laser to increase the density between light emitting units in the vertical cavity surface emitting laser.
  • the application provides a vertical cavity surface emitting laser, including: a substrate;
  • Light-emitting units arranged in an array are located on the surface of the substrate;
  • a first passivation layer is located on the surface of the light-emitting units arranged in the array away from the substrate, and the first passivation layer is provided with a first via hole;
  • the second passivation layer is provided with a second via hole
  • the first pad includes a plurality of first sub-pads and at least one second sub-pad, the number of the plurality of first sub-pads and the number of light-emitting units arranged in an array equal, the first sub-pad is located on the side of the first passivation layer away from the substrate, and is connected to the light-emitting unit through the first via hole, and the second passivation layer covers the A plurality of first sub-pads and the first passivation layer, the second sub-pads are connected to the first sub-pads through the second via holes.
  • FIG. 1 is a top view of a vertical cavity surface emitting laser in the related art
  • Fig. 2 is the sectional structure schematic diagram of A1-A2 in Fig. 1;
  • Fig. 3 is a top view of a vertical cavity surface emitting laser provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a cross-sectional structure in the B1-B2 direction in Fig. 3;
  • Fig. 5 is another kind of sectional structure schematic diagram of B1-B2 direction in Fig. 3;
  • Fig. 6 is a top view of another vertical cavity surface emitting laser provided by an embodiment of the present application.
  • Fig. 7 is a top view of another vertical cavity surface emitting laser provided by an embodiment of the present application.
  • Fig. 8 is a top view of another vertical cavity surface emitting laser provided by an embodiment of the present application.
  • Fig. 9 is a schematic diagram of a cross-sectional structure in the B1-B2 direction in Fig. 8;
  • Fig. 10 is a schematic cross-sectional structure diagram in the direction of C1-C2 in Fig. 8;
  • FIG. 11 is a schematic diagram of a cross-sectional structure in the D1-D2 direction in FIG. 8;
  • Fig. 12 is a top view of another vertical cavity surface emitting laser provided by an embodiment of the present application.
  • Fig. 13 is a top view of another vertical cavity surface emitting laser provided by an embodiment of the present application.
  • Fig. 14 is a top view of another vertical cavity surface emitting laser provided by an embodiment of the present application.
  • Fig. 15 is a top view of another vertical cavity surface emitting laser provided by an embodiment of the present application.
  • a vertical cavity surface emitting laser includes a plurality of light emitting units arranged in an array, and the density of the light emitting units is relatively sparse.
  • FIG. 1 is a top view of a vertical cavity surface emitting laser in the related art.
  • FIG. 2 is a schematic cross-sectional structure diagram of A1-A2 in FIG. 1 .
  • FIG. 1 shows a substrate 10 and two rows of light-emitting units 20 on the surface of the substrate 10. The first end of each row of light-emitting units 20 shares a first pad 30, and the first pad 30 is located on the surface of the light-emitting unit.
  • the first pad 30 serves as a common pad, covering the corresponding plurality of light emitting units 20 and the area between the plurality of light emitting units 20 . If the distance between the first pads 30 of the light-emitting units 20 of the first row and the first pads 30 of the light-emitting units 20 of the second row is too small, the process of forming the independent first pads 30 through photolithography and etching processes During the process, the ratio of the length to width of the photoresist distributed between the first pads 30 of the light-emitting units 20 in the first row and the first pads 30 of the light-emitting units 20 in the second row is too large, resulting in a photolithographic
  • the glue is easy to tilt, so a minimum distance L01 greater than or equal to the theoretical distance needs to be maintained between the first pads 30 corresponding to the light emitting units 20 in the first row and the first pads 30 corresponding to the light emitting units 20 in the second row.
  • the light-emitting units 20 of the second row cannot be arranged in the interval area of the light-emitting units 20 of the first row, or arranged close to the interval area, so as to avoid the problem that the photoresist between the light-emitting units 20 of different rows is easy to tilt. Therefore, the minimum distance between different rows of light-emitting units 20 in the related art cannot be further reduced, resulting in a relatively sparse density of light-emitting units 20 .
  • Fig. 3 is a top view of a vertical cavity surface emitting laser provided by an embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional structure view along the B1-B2 direction in FIG. 3 . 3 and 4, the vertical cavity surface emitting laser comprises: a substrate 10; light emitting units 20 arranged in an array, the light emitting units 20 arranged in an array are located on the surface of the substrate 10; a first passivation layer 40, the first The passivation layer 40 is located on the surface of the light emitting units 20 arranged in an array away from the substrate 10, the first passivation layer 40 is provided with a first via hole 40a; the second passivation layer 41 is provided with a second passivation layer 41 Vias 41a; the first pad 30, the first pad 30 includes a plurality of first sub-pads 31 and at least one second sub-pad 32, the number of the multiple first sub-pads 31 and the luminescence of the array arrangement The number of units 20 is equal, the first sub-pad 31 is located on the
  • Fig. 3 exemplarily shows a technical solution in which two first sub-pads 31 share one second sub-pad 32, the embodiment of the present application is for the first sub-pad 31 sharing one second sub-pad 32 Quantity is not limited.
  • the top view of the vertical cavity surface emitting laser shown in FIG. 3 only shows the substrate 10, the light emitting unit 20, the first pad 30 and the second via hole 41a.
  • the substrate of the light-emitting unit 20 can retain the desired epitaxial layer according to the design, which is not limited in this application.
  • the light-emitting unit 20 includes a first reflector 21, an active layer 22, and a second reflector 23, the first reflector 21 and the second reflector 23 have different refractive indices, and both have a quarter-wavelength optical thickness. Odd multiples of semiconductor materials are grown periodically, and the active layer 22 is a quantum well luminescent material.
  • the VCSEL further includes an ohmic metal layer 24 on the light-emitting unit, and the ohmic metal layer 24 on the light-emitting unit is located between the first sub-pad 31 and the light-emitting unit 20, so that the ohmic metal layer on the light-emitting unit Layer 24 has a good ohmic contact with the surface of light-emitting unit 20 .
  • a confining oxide layer 90 is further disposed in the first reflector 21 , and the confining oxide layer 90 is configured to define an oxidation hole, that is, to define a light emitting hole of the light emitting unit 20 .
  • the dotted line in FIG. 3 can indicate the position of the light emitting hole.
  • the VCSEL further includes a negative electrode (not shown in the drawings), which is disposed on the side of the substrate 10 away from the light-emitting unit 20 .
  • each light-emitting unit 20 is provided with an independent first sub-pad 31 on the side away from the substrate 10.
  • the photoresist can be distributed in the interval area of the adjacent light-emitting unit 20 or arranged in the adjacent interval area, so as to avoid the excessive ratio of the length and width of the photoresist.
  • the light-emitting unit 20 can be arranged in the interval area of the adjacent light-emitting unit 20 or in the adjacent interval area, thereby reducing the minimum distance between the light-emitting units 20 and increasing the substrate. 10 The number and density of light emitting units 20 that can be provided on the surface.
  • the second passivation layer 41 between the second sub-pad 32 and the first sub-pad 31, and the second sub-pad 32 is connected to the first sub-pad 31 through the second via hole 41a, and the second sub-pad
  • the plate 32 does not need to cover the light-emitting unit 20 , and on the basis of ensuring that no short circuit occurs between different second sub-pads 32 , the number and position of the second sub-pads 32 can be flexibly set.
  • the setting of the second sub-pad 32 can realize the technical solution that some or all of the first sub-pads 31 share one second sub-pad 32, and then can realize that part or all of the light-emitting units 20 share one second sub-pad 32.
  • the larger the area of the second sub-pad 32 is, the smaller the resistance of the first pad 30 is. When the first pad 30 bears a larger current, damage to the circuit components of the VCSEL can be avoided.
  • FIG. 5 is a schematic diagram of another cross-sectional structure along the B1-B2 direction in FIG. 3 .
  • the vertical cavity surface emitting laser further includes an epitaxial layer 11, and the epitaxial layer 11 is located between the substrate 10 and the light emitting unit 20; the vertical cavity surface emitting laser is provided with oxidation trenches 10a arranged in an array, The oxidation trench 10 a is arranged around the light emitting unit 20 , and the oxidation trench 10 a exposes the surface of the epitaxial layer 11 away from the substrate 10 .
  • the film layer where the limiting oxide layer 90 is located is oxidized by an oxidation process to define oxidation holes.
  • the surface quality and ion doping uniformity of the epitaxial layer 11 are better than those of the substrate 10 , which facilitates the formation of a light-emitting unit 20 with a higher yield.
  • the material of the epitaxial layer 11 is the same as that of the second mirror 23 .
  • the epitaxial layer 11 may include the second mirror 23 and/or an ohmic metal contact layer.
  • Fig. 6 is a top view of another vertical cavity surface emitting laser provided by an embodiment of the present application.
  • the projection of the second sub-pad 32 on the substrate 10 overlaps with the projection of the first sub-pad 31 on the substrate 10 .
  • the projection of the second sub-pad 32 on the substrate 10 overlaps with the projection of the first sub-pad 31 on the substrate 10, which increases the area of the second sub-pad 32 and reduces the resistance of the first pad 30.
  • the first bonding pad 30 bears a larger current, damage to the circuit components of the vertical cavity surface emitting laser can be avoided.
  • Fig. 7 is a top view of another vertical cavity surface emitting laser provided by an embodiment of the present application.
  • the vertical cavity surface emitting laser also includes a plurality of first pad signal connection terminals 70 (that is, positive electrodes); The two first pad signal connection terminals 70 are connected, and the value of i is greater than or equal to 1; the two first sub-pads 31 located at both ends of the light-emitting unit 20 in the (i+1)th row are respectively connected to the two first pad signals Terminal 70 is connected.
  • the second sub-pad 32 in the i-th row of light-emitting units 20 is connected to the first sub-pad 31 through the second via hole 41a, and the second sub-pad 32 passes the first current signal of the first pad signal connection terminal 70 through The first sub-pad 31 is transferred to the light emitting unit 20 .
  • the first sub-pad 31 in the light-emitting unit 20 of the i+1th row is connected to the second sub-pad 32 through the first via hole 41a, and the first sub-pad 31 connects the first current of the first pad signal connection terminal 70 The signal is transmitted to the lighting unit 20 .
  • the interconnected second sub-pads 32 are located on the same layer as the first pad signal connection end 70 and are of the same material; the interconnected first sub-pads 31 are connected to the first pad signal Ends 70 are on the same layer and are of the same material.
  • the interconnected second sub-pads 32 are located on the same layer as the first pad signal connection end 70 and are made of the same material. When preparing the second sub-pad 32, the fabrication of the first pad signal connection end 70 can be completed at the same time. The preparation process of the vertical cavity surface emitting laser is simplified. The interconnected first sub-pad 31 and the first pad signal connection end 70 are located on the same layer, and are made of the same material. When the first sub-pad 31 is completed, the fabrication of the first pad signal connection end 70 can be completed at the same time. The preparation process of the vertical cavity surface emitting laser is simplified.
  • FIG. 8 is a top view of another vertical cavity surface emitting laser provided by an embodiment of the present application.
  • FIG. 9 is a schematic cross-sectional structure view along the B1-B2 direction in FIG. 8 .
  • FIG. 10 is a schematic cross-sectional structure diagram in the direction C1-C2 in FIG. 8 .
  • FIG. 11 is a schematic diagram of a cross-sectional structure along the direction D1-D2 in FIG. 8 .
  • an ohmic metal layer 50 on the epitaxial layer is also included.
  • the ohmic metal layer 50 on the epitaxial layer is disposed on the epitaxial layer 11 and connected to the light emitting unit 20; the first passivation layer 40
  • An ohmic metal layer opening structure 40b is also provided; the ohmic metal layer 50 on the epitaxial layer is located in the ohmic metal layer opening structure 40b and is arranged around the light emitting unit 20 .
  • FIGS. 8-11 it also includes an ohmic metal layer connection end 80 (that is, a negative electrode), and the ohmic metal layer connection end 80 is insulated from the first pad 30; the second passivation layer 41 is provided with a third The via hole 41b; the ohmic metal layer connection end 80 is located on the same layer as the second sub-pad 32, and is connected to the ohmic metal layer 50 on the epitaxial layer through the third via hole 41b.
  • ohmic metal layer connection end 80 that is, a negative electrode
  • the ohmic metal layer connection end 80 is insulated from the first pad 30
  • the second passivation layer 41 is provided with a third The via hole 41b
  • the ohmic metal layer connection end 80 is located on the same layer as the second sub-pad 32, and is connected to the ohmic metal layer 50 on the epitaxial layer through the third via hole 41b.
  • the ohmic metal layer connection terminal 80 is configured to transmit the second current signal to the ohmic metal layer 50 on the epitaxial layer.
  • the first pad 30 applies the first current signal to the first mirror 21 .
  • Part or all of the light emitting units 20 may share the first pad 30 , and the second mirror 23 of each light emitting unit 20 obtains the second current signal through the ohmic metal layer 50 on the epitaxial layer.
  • the active layer 22 emits light under the action of the current signal, and the emitted light is reflected between the first reflector 21 and the second reflector 23 and then exits the first reflector 21 .
  • the light emitting unit 20 includes an emission window 20a and an edge region 20b surrounding the emission window 20a; the first subpad 31 is provided with a light emission window 31a, and the light emission window 31a is on the The projection of the base 10 coincides with the projection of the emission window 20a on the substrate 10 .
  • the first sub-pad 31 is provided with a light-emitting window 31a, and the projection of the light-emitting window 31a on the substrate 10 coincides with the projection of the emission window 20a on the substrate 10, which can prevent the first sub-pad 31 from being carried out by the light emitted from the emission window 20a. Blocking, thereby improving the light extraction efficiency of the vertical cavity surface emitting laser.
  • the projection of the second sub-pad 32 on the substrate 10 and the projection of the emission window 20a on the substrate 10 do not overlap.
  • the projection of the second sub-pad 32 on the substrate 10 and the projection of the emission window 20a on the substrate 10 do not overlap, which can prevent the second sub-pad 32 from blocking the light emitted from the emission window 20a, thereby improving the vertical cavity. Efficiency of surface emitting lasers.
  • the first sub-pads 31 are arranged around the light emitting unit 20 , and the first sub-pads 31 are arranged symmetrically about the center of the light emitting unit 20 .
  • the first sub-pad 31 is arranged around the light emitting unit 20 , and the first sub-pad 31 is arranged symmetrically with respect to the center of the light-emitting unit 20 , which can simplify the layout difficulty of the first sub-pad 31 .
  • the cross-sectional figure of the first sub-pad 31 on the plane where the substrate 10 is located includes any one of a circle, a regular polygon, a rectangle, and a rhombus, and the above-mentioned figures are centrosymmetric
  • the pattern can reduce the manufacturing difficulty of the first sub-pad 31 on the basis of simplifying the layout difficulty of the first sub-pad 31 .
  • Fig. 12 is a top view of another vertical cavity surface emitting laser provided by an embodiment of the present application.
  • FIG. 12 is improved by taking the top view of the vertical cavity surface emitting laser shown in FIG. 3 as an example.
  • the distance L1 between the centers of the light emitting units 20 in two adjacent rows is smaller than the distance L2 between the centers of the light emitting units 20 in the same row.
  • the spacing L1 between the centers of the light emitting units 20 in two adjacent rows is smaller than the spacing L2 between the centers of the adjacent light emitting units 20 in the same row, so that the light emitting units 20 can be arranged in opposite directions.
  • Adjacent light-emitting units 20 are arranged in the interval area or adjacent to the interval area, thereby reducing the minimum distance between the light-emitting units 20 and increasing the number and density of the light-emitting units 20 that can be arranged on the surface of the substrate 10 .
  • FIG. 13 is a top view of another vertical cavity surface emitting laser provided by an embodiment of the present application.
  • FIG. 13 is improved by taking the top view of the vertical cavity surface emitting laser shown in FIG. 3 as an example.
  • the distance between the connecting lines L3 between the centers of the light-emitting units 20 in two adjacent columns is smaller than the distance L4 between the centers of the adjacent light-emitting units 20 in the same column.
  • the distance between the connecting lines L3 between the centers of the light-emitting units 20 in two adjacent columns is smaller than the distance L4 between the centers of the adjacent light-emitting units 20 in the same column.
  • the minimum distance L02 between the pads 31 satisfies the preset range, and on the basis of ensuring that different first sub-pads 31 do not short-circuit, in the process of forming independent first sub-pads 31 through photolithography and etching processes, photo The resist can be distributed in the interval area of the adjacent light-emitting unit 20 or arranged in the adjacent interval area, avoiding the problem that the ratio of the length to the width of the photoresist is too large, resulting in the problem that the photoresist is easy to tilt, and can make the light-emitting unit 20 Arranged in the interval area of adjacent light-emitting units 20 or adjacent to the interval area, thereby reducing the minimum distance between the light-emitting units 20 and increasing the number and density of the light-
  • Fig. 14 is a top view of another vertical cavity surface emitting laser provided by an embodiment of the present application.
  • FIG. 14 is improved by taking the top view of the vertical cavity surface emitting laser shown in FIG. 3 as an example.
  • the product of the distance L1 and 2 between the centers of the light-emitting units 20 in two adjacent rows is equal to the distance between the centers of the adjacent light-emitting units 20 in the same row.
  • the distance L5 from the center of the A (i+1)(j+1) light-emitting unit 20 to the center of the A ij- th light-emitting unit 20 is equal to the A (i+1)(j+1) -th
  • Fig. 14 exemplarily shows four light emitting units 20 whose circle centers are O1, O2, O3 and O4 respectively.
  • the four light emitting units 20 are arranged in an array of 2 rows and 4 columns.
  • the distance L5 from the center O2 of the A (i+1)(j+1) light-emitting unit 20 to the center O1 of the A ij- th light-emitting unit 20 is equal to The distance L5 from the center O2 of the A (i+1)(j+1) th light emitting unit 20 to the center O3 of the A (i)(j+2) th light emitting unit 20 .
  • the product of the spacing L1 and 2 between the centers of the light emitting units 20 in two adjacent rows is equal to the spacing L2 between the centers of the adjacent lighting units 20 in the same row.
  • the distance between O2-C is the high line of the triangle formed by O2, O3 and O4, which is equal to the distance L1 between the connecting lines of the centers of the light emitting units 20 in two adjacent rows.
  • the A (i+1) th The center of the (j+1) light-emitting unit 20 can be arranged on the A (i+1)(j+1) -th light-emitting unit 20 and A (i)(j+2) -th light-emitting unit 20 adjacent to the same line
  • the center line O1-O3 perpendicular to the central line on the basis of satisfying the minimum distance L02 between the adjacent first sub-pads 31 to meet the preset range, ensuring that different first sub-pads 31 do not short-circuit, passing
  • the photoresist can be distributed in the interval area of the adjacent light-emitting unit 20 or arranged in the adjacent interval area, avoiding the length and width of the photores
  • Fig. 15 is a top view of another vertical cavity surface emitting laser provided by an embodiment of the present application.
  • FIG. 15 is improved by taking the top view of the vertical cavity surface emitting laser shown in FIG. 3 as an example.
  • the product of the distance L3 and 2 between the centers of the light-emitting units 20 in two adjacent columns is equal to the distance between the centers of the adjacent light-emitting units 20 in the same column.
  • the distance L6 from the center O6 of the A (i+1)(j+1) light-emitting unit 20 to the center O5 of the A ij- th light-emitting unit 20 is equal to the A (i+1)(j+1)
  • Fig. 15 exemplarily shows four light emitting units 20 whose circle centers are respectively O5, O6, O7 and O8.
  • the four light emitting units 20 are arranged in an array of 3 rows and 3 columns.
  • the value of i is 1, the value of j is 2, and the distance L5 from the center O2 of the A (i+1)(j+1) light-emitting unit 20 to the center O1 of the A ij- th light-emitting unit 20 is equal to the A-th
  • the distance L5 from the center O2 of the (i+1)(j+1) light-emitting unit 20 to the center O3 of the A (i+2)(j) -th light-emitting unit 20 is equal to the A-th.
  • the product of the distance L3 between the centers of the light emitting units 20 in two adjacent columns and the product of 2 is equal to the distance L4 between the centers of the adjacent light emitting units 20 in the same column.
  • the distance between O2-C is the high line of the triangle formed by O2, O3 and O4, which is equal to the distance L3 between the connecting lines of the centers of the light emitting units 20 in two adjacent columns. That is, the product of the distance L3 and 2 between the centers of the centers of the light-emitting units 20 in two adjacent columns is equal to the distance L4 between the centers of the adjacent light-emitting units 20 in the same column.
  • the center O6 of the +1) light-emitting unit 20 can be arranged on the center line perpendicular to the center line O5-O7 of the A ij- th light-emitting unit 20 and the A (i+2)(j) -th light-emitting unit 20 adjacent to the same column
  • the minimum distance L02 between adjacent first sub-pads 31 satisfies the preset range and ensures that no short circuit occurs in different first sub-pads 31, the independent first sub-pads 31 are formed by photolithography and etching processes.
  • the photoresist can be distributed in the interval area of the adjacent light-emitting unit 20 or arranged in the adjacent interval area, so as to avoid the excessive ratio of the length and width of the photoresist, resulting in the photoresist being easy to
  • the problem of inclination is eliminated, and the minimum distance between two adjacent light-emitting units 20 is reduced, increasing the number and density of light-emitting units 20 that can be arranged on the surface of the substrate 10 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)

Abstract

一种垂直腔面发射激光器,包括:阵列排布的发光单元(20),阵列排布的发光单元位于衬底(10)的表面;第一钝化层(40),第一钝化层(40)位于阵列排布的发光单元远离衬底(10)的表面,第一钝化层(40)设置有第一过孔(40a);第二钝化层(41),第二钝化层(41)设置有第二过孔(41a);第一焊盘(30),第一焊盘(30)包括多个第一子焊盘(31)和至少一个第二子焊盘(32),多个第一子焊盘(31)的数量和阵列排布的发光单元(20)的数量相等,第一子焊盘(31)位于第一钝化层(40)远离衬底(10)的一侧,通过第一过孔(40a)与发光单元连接,第二钝化层(41)覆盖多个第一子焊盘(31)和第一钝化层(40),第二子焊盘(32)通过第二过孔(41a)与第一子焊盘(31)连接。

Description

垂直腔面发射激光器
本申请要求在2021年09月18日提交中国专利局、申请号为202111098107.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体技术领域,例如涉及一种垂直腔面发射激光器。
背景技术
垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL)是一种垂直表面出光的新型激光器,因具有体积小、圆形输出光斑、阈值电流低、高调制频率、易于光纤耦合、易于成为大面积阵列等优点,在光通信、光互联、光信息处理、手机以及无人驾驶汽的激光雷达等领域的应用越来越广泛。
垂直腔面发射激光器包括衬底和在衬底表面阵列排布的多个发光单元,受限于结构设置,阵列排布的发光单元中,多个发光单元的同一端共用一个公共焊盘,公共焊盘位于发光单元远离衬底的一侧,不同公共焊盘之间设置有最小间距,且公共焊盘覆盖该公共焊盘对应的多个发光单元以及该多个发光单元之间的间隔区域,导致不同公共焊盘对应的发光单元之间的间距无法继续缩小,导致发光单元的密度较稀疏。
发明内容
本申请提供了一种垂直腔面发射激光器,以提高垂直腔面发射激光器中发光单元之间的密度。
本申请提供了一种垂直腔面发射激光器,包括:衬底;
阵列排布的发光单元,所述阵列排布的发光单元位于所述衬底的表面;
第一钝化层,所述第一钝化层位于所述阵列排布的发光单元远离所述衬底的表面,所述第一钝化层设置有第一过孔;
第二钝化层,所述第二钝化层设置有第二过孔;
第一焊盘,所述第一焊盘包括多个第一子焊盘和至少一个第二子焊盘,所述多个第一子焊盘的数量和所述阵列排布的发光单元的数量相等,所述第一子焊盘位于所述第一钝化层远离所述衬底的一侧,通过所述第一过孔与所述发光单元连接,所述第二钝化层覆盖所述多个第一子焊盘和所述第一钝化层,所述 第二子焊盘通过所述第二过孔与所述第一子焊盘连接。
附图说明
图1为相关技术中的一种垂直腔面发射激光器的俯视图;
图2为图1中A1-A2的剖面结构示意图;
图3为本申请实施例提供的一种垂直腔面发射激光器的俯视图;
图4为图3中B1-B2方向的一种剖面结构示意图;
图5为图3中B1-B2方向的另一种剖面结构示意图;
图6为本申请实施例提供的又一种垂直腔面发射激光器的俯视图;
图7为本申请实施例提供的又一种垂直腔面发射激光器的俯视图;
图8为本申请实施例提供的又一种垂直腔面发射激光器的俯视图;
图9为图8中B1-B2方向的剖面结构示意图;
图10为图8中C1-C2方向的剖面结构示意图;
图11为图8中D1-D2方向的剖面结构示意图;
图12为本申请实施例提供的又一种垂直腔面发射激光器的俯视图;
图13为本申请实施例提供的又一种垂直腔面发射激光器的俯视图;
图14为本申请实施例提供的又一种垂直腔面发射激光器的俯视图;
图15为本申请实施例提供的又一种垂直腔面发射激光器的俯视图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
垂直腔面发射激光器包括阵列排布的多个发光单元,发光单元的密度较稀疏。图1为相关技术中的一种垂直腔面发射激光器的俯视图。图2为图1中A1-A2的剖面结构示意图。示例性的,图1中示出了衬底10以及衬底10表面的2行发光单元20,每一行发光单元20的第一端共用一个第一焊盘30,第一焊盘30位于发光单元20远离衬底10的一侧,第一焊盘30作为公共焊盘,覆盖对应的多个发光单元20以及该多个发光单元20之间的区域。如果第一行的发光单元20的第一焊盘30和第二行的发光单元20的第一焊盘30的间距太小,在通过光刻和刻蚀工艺形成独立的第一焊盘30的过程中,分布在第一行的发光单元20的第一焊盘30和第二行的发光单元20的第一焊盘30的间距的光刻胶的长度与 宽度的比值过大,导致光刻胶容易倾斜,因此第一行发光单元20对应的第一焊盘30和第二行发光单元20对应的第一焊盘30之间需要保持最小间距L01大于或等于理论距离。综上,第二行的发光单元20无法设置在第一行的发光单元20的间隔区域内,或者靠近间隔区域设置,以避免不同行的发光单元20之间的光刻胶容易倾斜的问题。因此,相关技术中不同行发光单元20之间的最小间距无法继续缩小,导致发光单元20的密度较稀疏。
针对上述技术问题,本申请实施例提供了如下技术方案:
图3为本申请实施例提供的一种垂直腔面发射激光器的俯视图。图4为图3中B1-B2方向的一种剖面结构示意图。参见图3和图4,该垂直腔面发射激光器包括:衬底10;阵列排布的发光单元20,阵列排布的发光单元20位于衬底10的表面;第一钝化层40,第一钝化层40位于阵列排布的发光单元20远离衬底10的表面,第一钝化层40设置有第一过孔40a;第二钝化层41,第二钝化层41设置有第二过孔41a;第一焊盘30,第一焊盘30包括多个第一子焊盘31和至少一个第二子焊盘32,多个第一子焊盘31的数量和阵列排布的发光单元20的数量相等,第一子焊盘31位于第一钝化层40远离衬底10的一侧,通过第一过孔40a与发光单元20连接,第二钝化层41覆盖多个第一子焊盘31和第一钝化层40,第二子焊盘32通过第二过孔41a与第一子焊盘31连接。
图3中示例性的示出了2个第一子焊盘31共用一个第二子焊盘32的技术方案,本申请实施例对于共用一个第二子焊盘32的第一子焊盘31的数量不作限定。
图3中示出的垂直腔面发射激光器的俯视图仅仅示出了衬底10、发光单元20、第一焊盘30和第二过孔41a。发光单元20的衬底上可依设计同时保留所需的外延层级,本申请并不做相关限制。
可选的,发光单元20包括第一反射镜21、有源层22和第二反射镜23,第一反射镜21和第二反射镜23的折射率不同,光学厚度均为四分之一波长奇数倍的半导体材料周期性生长而成,有源层22为量子阱发光材料。
可选的,该垂直腔面发射激光器还包括发光单元上的欧姆金属层24,发光单元上的欧姆金属层24位于第一子焊盘31和发光单元20之间,使得发光单元上的欧姆金属层24和发光单元20的表面具有良好的欧姆接触。
可选的,第一反射镜21内还设置有限制氧化层90,限制氧化层90设置为定义氧化孔,即设置为限定发光单元20的发光孔。图3中的虚线可示意发光孔的位置。
可选的,该垂直腔面发射激光器还包括一负极(附图未显示),设置于衬底10 远离发光单元20的一面。
本申请实施例提供的技术方案,每一个发光单元20远离衬底10的一侧设置有一个独立的第一子焊盘31,第一子焊盘31位于发光单元20的表面,无需全部覆盖相邻的发光单元20的间隔区域,在满足相邻第一子焊盘31之间的最小间距L02满足预设范围,保证不同第一子焊盘31不发生短路的基础上,在通过光刻和刻蚀工艺形成独立的第一子焊盘31的过程中,光刻胶可以分布在相邻的发光单元20的间隔区域或者在邻近间隔区域设置,避免了光刻胶的长度与宽度的比值过大,导致光刻胶容易倾斜的问题,且发光单元20可以设置在相邻的发光单元20的间隔区域或者在邻近间隔区域设置,进而降低了发光单元20之间的最小间距,增加了衬底10表面可以设置的发光单元20的数量和密度。第二子焊盘32和第一子焊盘31之间间隔有第二钝化层41,且第二子焊盘32通过第二过孔41a与第一子焊盘31连接,第二子焊盘32无需覆盖发光单元20,在保证不同第二子焊盘32之间不发生短路的基础上,可以灵活设置第二子焊盘32的数量和位置。且第二子焊盘32的设置可以实现部分或者全部第一子焊盘31共用一个第二子焊盘32的技术方案,进而可以实现部分或者全部发光单元20共用一个第二子焊盘32的技术方案。且第二子焊盘32的面积越大,第一焊盘30的电阻越小,第一焊盘30承受更大的电流时,可以避免损伤到垂直腔面发射激光器的电路元件。
图5为图3中B1-B2方向的另一种剖面结构示意图。可选的,参见图5,该垂直腔面发射激光器还包括外延层11,外延层11位于衬底10和发光单元20之间;垂直腔面发射激光器设置有阵列排布的氧化沟槽10a,氧化沟槽10a围绕发光单元设置20,氧化沟槽10a露出外延层11远离衬底10的表面。
氧化沟槽10a制作完成后,通过氧化工艺,对限制氧化层90所在的膜层进行氧化,以定义出氧化孔。外延层11的表面质量和离子掺杂均匀度优于衬底10,便于形成良率更高的发光单元20。
可选的,外延层11的材料和第二反射镜23的材料相同。根据设计,外延层11可以包括第二反射镜23和/或欧姆金属接触层。
图6为本申请实施例提供的又一种垂直腔面发射激光器的俯视图。可选的,参见图6,第二子焊盘32在衬底10的投影和第一子焊盘31在衬底10的投影有交叠。
第二子焊盘32在衬底10的投影和第一子焊盘31在衬底10的投影有交叠,增大了第二子焊盘32的面积,使得第一焊盘30的电阻减小,第一焊盘30承受更大的电流时,可以避免损伤到垂直腔面发射激光器的电路元件。
图7为本申请实施例提供的又一种垂直腔面发射激光器的俯视图。可选的,参见图7,垂直腔面发射激光器还包括多个第一焊盘信号连接端70(亦即正极);位于第i行发光单元20两端的两个第二子焊盘32分别与两个第一焊盘信号连接端70连接,i的取值大于或等于1;位于第i+1行发光单元20两端的两个第一子焊盘31分别与两个第一焊盘信号连接端70连接。
示例性的,图7中仅仅示出了2行发光单元,位于第1行发光单元20两端的两个第二子焊盘32分别与两个第一焊盘信号连接端70连接;位于第2行发光单元20两端的两个第一子焊盘31分别与两个第一焊盘信号连接端70连接。本申请实施例对于i的取值不作限定。
第i行发光单元20中的第二子焊盘32通过第二过孔41a与第一子焊盘31连接,第二子焊盘32将第一焊盘信号连接端70的第一电流信号通过第一子焊盘31传递至发光单元20。第i+1行发光单元20中的第一子焊盘31通过第一过孔41a与第二子焊盘32连接,第一子焊盘31将第一焊盘信号连接端70的第一电流信号传递至发光单元20。
可选的,参见图7,相互连接的第二子焊盘32与第一焊盘信号连接端70位于同一层,且材料相同;相互连接的第一子焊盘31与第一焊盘信号连接端70位于同一层,且材料相同。
相互连接的第二子焊盘32与第一焊盘信号连接端70位于同一层,且材料相同,可以在制备第二子焊盘32时,同时完成第一焊盘信号连接端70的制作,简化了垂直腔面发射激光器的制备工艺。相互连接的第一子焊盘31与第一焊盘信号连接端70位于同一层,且材料相同,可以在完成第一子焊盘31时,同时完成第一焊盘信号连接端70的制作,简化了垂直腔面发射激光器的制备工艺。
图8为本申请实施例提供的又一种垂直腔面发射激光器的俯视图。图9为图8中B1-B2方向的剖面结构示意图。图10为图8中C1-C2方向的剖面结构示意图。图11为图8中D1-D2方向的剖面结构示意图。
可选的,参见图8-图11,还包括外延层上的欧姆金属层50,外延层上的欧姆金属层50设置于外延层11上,并且与发光单元20连接;第一钝化层40还设置有欧姆金属层开口结构40b;外延层上的欧姆金属层50位于欧姆金属层开口结构40b内,围绕发光单元20设置。
可选的,参见图8-图11,还包括欧姆金属层连接端80(亦即负极),欧姆金属层连接端80与第一焊盘30绝缘设置;第二钝化层41设置有第三过孔41b;欧姆金属层连接端80与第二子焊盘32位于同一层,通过第三过孔41b与外延层上的欧姆金属层50连接。
欧姆金属层连接端80设置为将第二电流信号传递给外延层上的欧姆金属层50。第一焊盘30将第一电流信号施加在第一反射镜21上。部分或者全部发光单元20可以共用第一焊盘30,每一个发光单元20的第二反射镜23通过外延层上的欧姆金属层50来获得第二电流信号。在电流信号的作用下有源层22发光,发出的光在第一反射镜21和第二反射镜23之间进行反射后从第一反射镜21出射。
可选的,在上述技术方案的基础上,参见图5,发光单元20包括发射窗口20a和围绕发射窗口20a的边缘区域20b;第一子焊盘31设置有发光窗口31a,发光窗口31a在衬底10的投影和发射窗口20a在衬底10的投影重合。
第一子焊盘31设置有发光窗口31a,发光窗口31a在衬底10的投影和发射窗口20a在衬底10的投影重合,可以避免第一子焊盘31对于从发射窗口20a出射的光进行阻挡,从而提高了垂直腔面发射激光器的出光效率。
可选的,在上述技术方案的基础上,参见图5,第二子焊盘32在衬底10的投影和发射窗口20a在衬底10的投影无交叠。
第二子焊盘32在衬底10的投影和发射窗口20a在衬底10的投影无交叠,可以避免第二子焊盘32对于从发射窗口20a出射的光进行阻挡,从而提高了垂直腔面发射激光器的出光效率。
可选的,在上述技术方案的基础上,参见图3,第一子焊盘31围绕发光单元20设置,第一子焊盘31关于发光单元20的中心对称设置。
第一子焊盘31围绕发光单元20设置,第一子焊盘31关于发光单元20的中心对称设置,可以简化第一子焊盘31的布局难度。
可选的,在上述技术方案的基础上,第一子焊盘31在衬底10所在平面的截面图形包括圆形、正多边形、矩形、以及菱形中的任一一种,上述图形属于中心对称图形,可以在简化第一子焊盘31的布局难度的基础上,降低了第一子焊盘31的制作难度。
图12为本申请实施例提供的又一种垂直腔面发射激光器的俯视图。示例性的,图12是以图3示出的垂直腔面发射激光器的俯视图为例进行改进的。可选的,在上述技术方案的基础上,参见图12,相邻两行的发光单元20的中心的连线之间的间距L1小于同一行相邻发光单元20的中心之间的间距L2。
在上述技术方案的基础上,相邻两行的发光单元20的中心的连线之间的间距L1小于同一行相邻发光单元20的中心之间的间距L2,可以使得发光单元20设置在相邻的发光单元20的间隔区域或者在邻近间隔区域设置,进而降低了发光单元20之间的最小间距,增加了衬底10表面可以设置的发光单元20的数量 和密度。
图13为本申请实施例提供的又一种垂直腔面发射激光器的俯视图。示例性的,图13是以图3示出的垂直腔面发射激光器的俯视图为例进行改进的。可选的,在上述技术方案的基础上,参见图13,相邻两列的发光单元20的中心的连线L3之间的间距小于同一列相邻发光单元20的中心之间的间距L4。
在上述技术方案的基础上,相邻两列的发光单元20的中心的连线L3之间的间距小于同一列相邻发光单元20的中心之间的间距L4,在满足相邻第一子焊盘31之间的最小间距L02满足预设范围,保证不同第一子焊盘31不发生短路的基础上,在通过光刻和刻蚀工艺形成独立的第一子焊盘31的过程中,光刻胶可以分布在相邻的发光单元20的间隔区域或者在邻近间隔区域设置,避免了光刻胶的长度与宽度的比值过大,导致光刻胶容易倾斜的问题,且可以使得发光单元20设置在相邻的发光单元20的间隔区域或者在邻近间隔区域设置,进而降低了发光单元20之间的最小间距,增加了衬底10表面可以设置的发光单元20的数量和密度。
图14为本申请实施例提供的又一种垂直腔面发射激光器的俯视图。示例性的,图14是以图3示出的垂直腔面发射激光器的俯视图为例进行改进的。可选的,在上述技术方案的基础上,参见图14,相邻两行的发光单元20的中心的连线之间的间距L1与2的乘积等于同一行相邻发光单元20的中心之间的间距L2,且第A (i+1)(j+1)个发光单元20的中心到第A ij个发光单元20的中心的距离L5等于第A (i+1)(j+1)个发光单元20的中心到第A (i)(j+2)个发光单元20的中心的距离L5,i的取值包括大于或等于1的整数,j的取值包括大于或等于1的整数。
图14示例性的示出了圆心分别为O1、O2、O3和O4的4个发光单元20。4个发光单元20呈2行4列的阵列排布。当i的取值为1,j的取值为2时,第A (i+1)(j+1)个发光单元20的中心O2到第A ij个发光单元20的中心O1的距离L5等于第A (i+1)(j+1)个发光单元20的中心O2到第A (i)(j+2)个发光单元20的中心O3的距离L5。且相邻两行的发光单元20的中心的连线之间的间距L1与2的乘积等于同一行相邻发光单元20的中心之间的间距L2。其中,O2-C之间的距离为O2、O3和O4构成的三角形的高线,等于相邻两行的发光单元20的中心的连线之间的间距L1。即在相邻两行的发光单元20的中心的连线之间的间距L1与2的乘积等于同一行相邻发光单元20的中心之间的间距L2的基础上,第A (i+1)(j+1)个发光单元20的中心可以设置在与同行相邻的第A (i+1)(j+1)个发光单元20和第A (i)(j+2)个发光单元20的中心连线O1-O3垂直的中线上,在满足相邻第一子焊盘31之间的最小间距L02满足预设范围,保证不同第一子焊盘31不发生短路的基础上,在通过光刻和刻蚀工艺形成独立的第一子焊盘31的过程中,光刻胶可以 分布在相邻的发光单元20的间隔区域或者在邻近间隔区域设置,避免了光刻胶的长度与宽度的比值过大,导致光刻胶容易倾斜的问题,且降低了相邻两个发光单元20之间的最小间距,增加了衬底10表面可以设置的发光单元20的数量和密度。
图15为本申请实施例提供的又一种垂直腔面发射激光器的俯视图。示例性的,图15是以图3示出的垂直腔面发射激光器的俯视图为例进行改进的。可选的,在上述技术方案的基础上,参见图15,相邻两列的发光单元20的中心的连线之间的间距L3与2的乘积等于同一列相邻发光单元20的中心之间的间距L4,且第A (i+1)(j+1)个发光单元20的中心O6到第A ij个发光单元20的中心O5的距离L6等于第A (i+1)(j+1)个发光单元20的中心O6到第A (i+2)(j)个发光单元20的中心O7的距离L6,i的取值包括大于或等于1的整数,j的取值包括大于或等于1的整数。
图15示例性的示出了圆心分别为O5、O6、O7和O8的4个发光单元20。4个发光单元20呈3行3列的阵列排布。i的取值为1,j的取值为2,第A (i+1)(j+1)个发光单元20的中心O2到第A ij个发光单元20的中心O1的距离L5等于第A (i+1)(j+1)个发光单元20的中心O2到第A (i+2)(j)个发光单元20的中心O3的距离L5。且相邻两列的发光单元20的中心的连线之间的间距L3与2的乘积等于同一列相邻发光单元20的中心之间的间距L4。其中,O2-C之间的距离为O2、O3和O4构成的三角形的高线,等于相邻两列的发光单元20的中心的连线之间的间距L3。即相邻两列的发光单元20的中心的连线之间的间距L3与2的乘积等于同一列相邻发光单元20的中心之间的间距L4基础上,第A (i+1)(j+1)个发光单元20的中心O6可以设置在与同列相邻的第A ij个发光单元20和第A (i+2)(j)个发光单元20的中心连线O5-O7垂直的中线上,在满足相邻第一子焊盘31之间的最小间距L02满足预设范围,保证不同第一子焊盘31不发生短路的基础上,在通过光刻和刻蚀工艺形成独立的第一子焊盘31的过程中,光刻胶可以分布在相邻的发光单元20的间隔区域或者在邻近间隔区域设置,避免了光刻胶的长度与宽度的比值过大,导致光刻胶容易倾斜的问题,且降低了相邻两个发光单元20之间的最小间距,增加了衬底10表面可以设置的发光单元20的数量和密度。

Claims (15)

  1. 一种垂直腔面发射激光器,包括:
    衬底;
    阵列排布的发光单元,所述阵列排布的发光单元位于所述衬底的表面;
    第一钝化层,所述第一钝化层位于所述阵列排布的发光单元远离所述衬底的表面,所述第一钝化层设置有第一过孔;
    第二钝化层,所述第二钝化层设置有第二过孔;
    第一焊盘,所述第一焊盘包括多个第一子焊盘和至少一个第二子焊盘,所述多个第一子焊盘的数量和所述阵列排布的发光单元的数量相等,所述第一子焊盘位于所述第一钝化层远离所述衬底的一侧,通过所述第一过孔与所述发光单元连接,所述第二钝化层覆盖所述多个第一子焊盘和所述第一钝化层,所述第二子焊盘通过所述第二过孔与所述第一子焊盘连接。
  2. 根据权利要求1所述的垂直腔面发射激光器,还包括外延层,所述外延层位于所述衬底和所述阵列排布的发光单元之间;
    所述垂直腔面发射激光器设置有阵列排布的氧化沟槽,所述氧化沟槽围绕所述发光单元设置,所述氧化沟槽露出所述外延层远离所述衬底的表面。
  3. 根据权利要求1所述的垂直腔面发射激光器,其中,所述第二子焊盘在所述衬底的投影和所述第一子焊盘在所述衬底的投影有交叠。
  4. 根据权利要求1所述的垂直腔面发射激光器,还包括多个第一焊盘信号连接端;
    位于第i行发光单元两端的两个第二子焊盘分别与两个第一焊盘信号连接端连接,i的取值大于或等于1;
    位于第i+1行发光单元两端的两个第一子焊盘两个与两个第一焊盘信号连接端连接。
  5. 根据权利要求4所述的垂直腔面发射激光器,其中,相互连接的第二子焊盘与第一焊盘信号连接端位于同一层,且材料相同;
    相互连接的第一子焊盘与第一焊盘信号连接端位于同一层,且材料相同。
  6. 根据权利要求1所述的垂直腔面发射激光器,还包括外延层上的欧姆金属层,所述外延层上的欧姆金属层与所述发光单元连接;
    所述第一钝化层还设置有欧姆金属层开口结构;
    所述外延层上的欧姆金属层位于所述欧姆金属层开口结构内,围绕所述发光单元设置。
  7. 根据权利要求6所述的垂直腔面发射激光器,还包括欧姆金属层连接端,所述欧姆金属层连接端与所述第一焊盘绝缘设置;
    所述第二钝化层设置有第三过孔;
    所述欧姆金属层连接端与所述第二子焊盘位于同一层,通过所述第三过孔与所述外延层上的欧姆金属层连接。
  8. 根据权利要求1所述的垂直腔面发射激光器,其中,所述发光单元包括发射窗口和围绕所述发射窗口的边缘区域;
    所述第一子焊盘设置有发光窗口,所述发光窗口在所述衬底的投影和所述发射窗口在所述衬底的投影重合。
  9. 根据权利要求8所述的垂直腔面发射激光器,其中,所述第二子焊盘在所述衬底的投影和所述发射窗口在所述衬底的投影无交叠。
  10. 根据权利要求8所述的垂直腔面发射激光器,其中,所述第一子焊盘围绕所述发光单元设置,所述第一子焊盘关于所述发光单元的中心对称设置。
  11. 根据权利要求10所述的垂直腔面发射激光器,其中,所述第一子焊盘在所述衬底所在平面的截面图形包括圆形、正多边形、矩形、以及菱形中的一种。
  12. 根据权利要求1-11任一项所述的垂直腔面发射激光器,其中,相邻两行的发光单元的中心的连线之间的间距小于同一行相邻发光单元的中心之间的间距。
  13. 根据权利要求1-11任一项所述的垂直腔面发射激光器,其中,相邻两列的发光单元的中心的连线之间的间距小于同一列相邻发光单元的中心之间的间距。
  14. 根据权利要求12所述的垂直腔面发射激光器,其中,相邻两行的发光单元的中心的连线之间的间距与2的乘积等于同一行相邻发光单元的中心之间的间距,且第A (i+1)(j+1)个发光单元的中心到第A ij个发光单元的中心的距离等于第A (i+1)(j+1)个发光单元的中心到第A (i)(j+2)个发光单元的中心的距离,i的取值包括大于或等于1的整数,j的取值包括大于或等于1的整数。
  15. 根据权利要求13所述的垂直腔面发射激光器,其中,相邻两列的发光单元的中心的连线之间的间距与2的乘积等于同一列相邻发光单元的中心之间的间距,且第A (i+1)(j+1)个发光单元的中心到第A ij个发光单元的中心的距离等于第A (i+1)(j+1)个发光单元的中心到第A (i+2)(j)个发光单元的中心的距离,i的取值包括大于或等于1的整数,j的取值包括大于或等于1的整数。
PCT/CN2022/076275 2021-09-18 2022-02-15 垂直腔面发射激光器 WO2023040175A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022545140A JP7440128B2 (ja) 2021-09-18 2022-02-15 垂直共振器面発光レーザ
EP22868555.8A EP4340143A1 (en) 2021-09-18 2022-02-15 Vertical cavity surface emitting laser
GB2318961.6A GB2622175A (en) 2021-09-18 2022-02-15 Vertical cavity surface emitting laser
KR1020227033862A KR20230042207A (ko) 2021-09-18 2022-02-15 수직 공동 표면 발광 레이저

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111098107.0 2021-09-18
CN202111098107.0A CN113851933A (zh) 2021-09-18 2021-09-18 一种垂直腔面发射激光器

Publications (1)

Publication Number Publication Date
WO2023040175A1 true WO2023040175A1 (zh) 2023-03-23

Family

ID=78974475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076275 WO2023040175A1 (zh) 2021-09-18 2022-02-15 垂直腔面发射激光器

Country Status (7)

Country Link
EP (1) EP4340143A1 (zh)
JP (1) JP7440128B2 (zh)
KR (1) KR20230042207A (zh)
CN (1) CN113851933A (zh)
GB (1) GB2622175A (zh)
TW (1) TWI809872B (zh)
WO (1) WO2023040175A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851933A (zh) * 2021-09-18 2021-12-28 常州纵慧芯光半导体科技有限公司 一种垂直腔面发射激光器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030194168A1 (en) * 1999-08-27 2003-10-16 Canon Kabushiki Kaisha Surface optical device apparatus, method of fabricating the same, and apparatus using the same
JP2010199395A (ja) * 2009-02-26 2010-09-09 Nichia Corp 半導体発光素子
JP2012028412A (ja) * 2010-07-20 2012-02-09 Furukawa Electric Co Ltd:The 2次元面発光レーザアレイ素子、面発光レーザ装置および光源
JP2013065692A (ja) * 2011-09-16 2013-04-11 Fuji Xerox Co Ltd 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
CN111129953A (zh) * 2020-03-27 2020-05-08 常州纵慧芯光半导体科技有限公司 一种激光器及其制造方法及激光器阵列
CN111313235A (zh) * 2020-03-04 2020-06-19 常州纵慧芯光半导体科技有限公司 一种垂直腔面发射激光器及其制造方法
CN111431031A (zh) * 2020-04-15 2020-07-17 常州纵慧芯光半导体科技有限公司 一种激光器芯片及其制造方法
CN113851933A (zh) * 2021-09-18 2021-12-28 常州纵慧芯光半导体科技有限公司 一种垂直腔面发射激光器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239033B1 (en) * 1998-05-28 2001-05-29 Sony Corporation Manufacturing method of semiconductor device
US6680964B2 (en) 2001-12-07 2004-01-20 Agilent Technologies, Inc. Moisture passivated planar index-guided VCSEL
US6853007B2 (en) * 2001-12-28 2005-02-08 Finisar Corporation Submount for vertical cavity surface emitting lasers and detectors
US7011979B2 (en) 2003-03-12 2006-03-14 Debrabander Gregory N Detecting pinholes in vertical cavity surface-emitting laser passivation
US7058106B2 (en) 2003-12-10 2006-06-06 Widjaja Wilson H Screenable moisture-passivated planar index-guided VCSEL
JP4892940B2 (ja) * 2005-11-29 2012-03-07 富士ゼロックス株式会社 面発光型半導体レーザ装置およびその製造方法
US8537874B2 (en) 2010-10-28 2013-09-17 Flir Systems, Inc. High fill-factor efficient vertical-cavity surface emitting laser arrays
JP6662013B2 (ja) 2015-12-11 2020-03-11 株式会社リコー 面発光レーザ、面発光レーザアレイ、レーザ装置、点火装置、内燃機関、光走査装置、画像形成装置、光伝送モジュール、及び光伝送システム
KR102209647B1 (ko) 2016-09-28 2021-01-29 피니사 코포레이숀 다른 vcsel 타입의 이종 결합을 갖는 주입 재성장 vcsel 및 vcsel 어레이
JP2021009897A (ja) * 2019-06-28 2021-01-28 住友電気工業株式会社 面発光レーザ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030194168A1 (en) * 1999-08-27 2003-10-16 Canon Kabushiki Kaisha Surface optical device apparatus, method of fabricating the same, and apparatus using the same
JP2010199395A (ja) * 2009-02-26 2010-09-09 Nichia Corp 半導体発光素子
JP2012028412A (ja) * 2010-07-20 2012-02-09 Furukawa Electric Co Ltd:The 2次元面発光レーザアレイ素子、面発光レーザ装置および光源
JP2013065692A (ja) * 2011-09-16 2013-04-11 Fuji Xerox Co Ltd 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
CN111313235A (zh) * 2020-03-04 2020-06-19 常州纵慧芯光半导体科技有限公司 一种垂直腔面发射激光器及其制造方法
CN111129953A (zh) * 2020-03-27 2020-05-08 常州纵慧芯光半导体科技有限公司 一种激光器及其制造方法及激光器阵列
CN111431031A (zh) * 2020-04-15 2020-07-17 常州纵慧芯光半导体科技有限公司 一种激光器芯片及其制造方法
CN113851933A (zh) * 2021-09-18 2021-12-28 常州纵慧芯光半导体科技有限公司 一种垂直腔面发射激光器

Also Published As

Publication number Publication date
GB202318961D0 (en) 2024-01-24
JP7440128B2 (ja) 2024-02-28
CN113851933A (zh) 2021-12-28
GB2622175A (en) 2024-03-06
TWI809872B (zh) 2023-07-21
KR20230042207A (ko) 2023-03-28
EP4340143A1 (en) 2024-03-20
TW202315255A (zh) 2023-04-01
JP2023544661A (ja) 2023-10-25

Similar Documents

Publication Publication Date Title
KR102314308B1 (ko) 단일 칩 직렬 연결의 vcsel 어레이
EP1357648B1 (en) High speed vertical cavity surface emitting laser device (VCSEL) with low parasitic capacitance
CN110416874B (zh) 一种小间距垂直腔面发射激光器阵列的制备方法
EP4311044A1 (en) Vertical cavity surface emitting laser and preparation method therefor
CN111799653A (zh) 具有密集外延侧接触部的vcsel
JPH0278280A (ja) 半導体発光装置
WO2023040175A1 (zh) 垂直腔面发射激光器
JPH11150340A (ja) 垂直キャビティを有する表面発光型半導体レーザ
KR20190140435A (ko) 반도체 소자 및 그 제조 방법
CN113711450A (zh) 具有紧密节距和高效率的vcsel阵列
CN109473528B (zh) 具有共背面电极的面光源vcsel及其制备方法
CN217607196U (zh) 一种垂直腔面发射激光器
CN217607198U (zh) 一种垂直腔面发射激光器器件
TWI813360B (zh) 垂直腔面發射雷射器以及製備方法
CN111313230A (zh) 底发射结构的垂直腔面发射激光器、数组及其制作方法
KR20180097979A (ko) 광 차단층을 가지는 발광 다이오드
US20220102940A1 (en) Trench Process for Dense VCSEL Design
CN111431032B (zh) 一种激光器及其制造方法
CN117595062A (zh) 一种垂直腔面发射激光器阵列结构
CN116780338A (zh) 一种具有多角度激光输出的垂直腔面激光器及其制备方法
CN117691459A (zh) 可寻址vcsel芯片及其制备方法和激光雷达
CN114709715A (zh) 一种垂直腔面发射激光器及其制备方法
JP2023099397A (ja) 半導体発光素子、発光装置、及び測距装置
JP2023537169A (ja) 垂直共振器面発光レーザ
CN117477347A (zh) 一种垂直腔面发射激光器及其制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022545140

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202318961

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220215

WWE Wipo information: entry into national phase

Ref document number: 2022868555

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022868555

Country of ref document: EP

Effective date: 20231212

NENP Non-entry into the national phase

Ref country code: DE