WO2023038183A1 - 로봇을 이용한 폴리싱 장치 및 이에 의한 폴리싱 방법 - Google Patents

로봇을 이용한 폴리싱 장치 및 이에 의한 폴리싱 방법 Download PDF

Info

Publication number
WO2023038183A1
WO2023038183A1 PCT/KR2021/013377 KR2021013377W WO2023038183A1 WO 2023038183 A1 WO2023038183 A1 WO 2023038183A1 KR 2021013377 W KR2021013377 W KR 2021013377W WO 2023038183 A1 WO2023038183 A1 WO 2023038183A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
unit
robot
target
surface roughness
Prior art date
Application number
PCT/KR2021/013377
Other languages
English (en)
French (fr)
Inventor
김성현
김태곤
남정수
이석우
신강우
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2023038183A1 publication Critical patent/WO2023038183A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/10Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces
    • B24B47/12Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces by mechanical gearing or electric power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • B25J11/0065Polishing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/081Touching devices, e.g. pressure-sensitive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/27Devices for sensing current, or actuated thereby

Definitions

  • the present invention relates to a polishing apparatus using a robot and a polishing method using the same, and more particularly, to automatically perform a polishing process using a robot and to control the polishing process in real time by monitoring a current value of a spintle in real time. It's about technology.
  • Korean Patent Publication No. 10-2020-0125928 (Title of Invention: Rotational Speed Control in Robot-Assisted Polishing), in a polishing device for machining a surface, coupled to the manipulator 1 and also a motor and the motor a polishing machine 10 having an abrasive tool 11 driven by; and a controller (4), which controls the abrasive tool (10) to adjust the rotational speed of the abrasive tool (11) while the abrasive tool is driven at a first rotational speed (n0).
  • abrasive machine 10 Positioning the abrasive machine 10 using the manipulator 1 to contact 11 with the surface, detecting contact between the abrasive tool 11 and the surface, and also responsive to detecting the contact, the abrasive An abrasive device is disclosed, configured to increase the rotational speed of a tool (11) from the first rotational speed (n0) to a second rotational speed (n1).
  • An object of the present invention to solve the above problems is to automatically perform a polishing process using a robot and to control the polishing process in real time by monitoring a current value of a spintle in real time.
  • the configuration of the present invention for achieving the above object is a polishing robot, which is a robot equipped with a plurality of links and driven with multiple degrees of freedom; a polishing unit coupled to an end of the polishing robot and polishing a surface of an object to be polished; a surface roughness measuring unit coupled to the polishing robot and measuring a surface roughness of a portion of the surface of the polishing target immediately before being polished by the polishing unit; and receiving change information of motor current, which is current supplied to the polishing unit, receiving surface roughness information of the polishing target from the surface roughness measurement unit, and using each information to the polishing unit to stop the operation of the polishing unit. It includes a control unit for transmitting a control signal.
  • the polishing unit includes a polishing pad for polishing the surface of the polishing target, a spindle connected to the polishing pad to rotate the polishing pad, and a motor coupled to the spindle to rotate the spindle.
  • the polishing unit may include a current sensor coupled to the motor unit and measuring the motor current.
  • control unit may embed a machine learning program, analyze a correlation between the motor current value and the surface roughness value of the polishing target, and then model it.
  • control unit is configured to generate a current threshold value, which is the motor current value, when polishing of the polishing target is finished by using correlation analysis between the motor current value and the surface roughness value of the polishing target.
  • control unit may transmit a control signal for stopping operation of the motor unit to the motor unit when the motor current value is less than or equal to the current threshold value.
  • a support robot having a plurality of links, driving with multiple degrees of freedom, and supporting the polishing target may be further included.
  • a support unit coupled to an end of the support robot, fixing the polishing target, and measuring a pressing force of the polishing unit on the polishing target may be further included.
  • control unit may transmit a control signal to the polishing robot and the support robot so that a constant pressing force of the polishing unit on the polishing target is formed.
  • the configuration of the present invention for achieving the above object is a first step of fixing and supporting the polishing target by a support robot; a second step of contacting the surface of the polishing target with the polishing pad and performing polishing on the surface of the polishing target; a third step of transmitting change information of the motor current from the polishing unit to the control unit, and transferring surface roughness information of the polishing target from the surface roughness measuring unit to the control unit; a fourth step in which a correlation between the motor current value and the surface roughness value of the polishing target is analyzed and modeled by the control unit, and a current threshold value, which is the motor current value, is generated when polishing of the polishing target is finished; and a fifth step of stopping the operation of the motor unit when the motor current value is equal to or less than the current threshold value.
  • a graph of the change value of the motor current over time and a numerical value of the progress rate of the polishing process may be displayed on the display device.
  • the effect of the present invention according to the configuration as described above is that the polishing end point of the polishing object is advanced, so that the polishing process can be optimized by shortening the polishing process time.
  • the effect of the present invention is that the driving time of the polishing apparatus of the present invention is also reduced as the polishing process time is shortened, so that the durability and life of the polishing apparatus can be increased.
  • FIG. 1 is a schematic diagram of a polishing unit according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a polishing apparatus according to an embodiment of the present invention.
  • FIG 3 is a graph in the case of using a conventional polishing apparatus and a graph in the case of using a polishing apparatus according to an embodiment of the present invention.
  • a polishing robot which is a robot equipped with a plurality of links and driven with multiple degrees of freedom; a polishing unit coupled to an end of the polishing robot and polishing a surface of an object to be polished; a surface roughness measuring unit coupled to the polishing robot and measuring a surface roughness of a portion of the surface of the polishing target immediately before being polished by the polishing unit; and receiving change information of motor current, which is current supplied to the polishing unit, receiving surface roughness information of the polishing target from the surface roughness measurement unit, and using each information to the polishing unit to stop the operation of the polishing unit. It is characterized in that it comprises a control unit for transmitting a control signal.
  • FIG. 1 is a schematic diagram of a polishing unit 110 according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a polishing apparatus according to an embodiment of the present invention.
  • the polishing apparatus of the present invention includes a polishing robot 140, which is a robot equipped with a plurality of links and driven with multiple degrees of freedom; A polishing unit 110 coupled to the end of the polishing robot 140 and performing polishing on the surface of the polishing target 10; a surface roughness measuring unit 120 coupled to the polishing robot 140 and measuring a surface roughness of a portion of the surface of the polishing target 10 immediately before being polished by the polishing unit 110; and receiving change information of motor current, which is current supplied to the polishing unit 110, receiving surface roughness information of the polishing target 10 from the surface roughness measurement unit 120, and using each information to the motor unit ( 112) includes a control unit 130 that transmits a control signal to the motor unit 112 to stop the operation.
  • a polishing robot 140 which is a robot equipped with a plurality of links and driven with multiple degrees of freedom
  • a polishing unit 110 coupled to the end of the polishing robot 140 and performing polishing on the surface of the polishing target 10
  • a surface roughness measuring unit 120
  • the polishing unit 110 includes a polishing pad 113 for polishing the surface of the polishing target 10, a spindle 111 connected to the polishing pad 113 to rotate the polishing pad 113, and the spindle 111 and It may be provided with a motor unit 112 that rotates the spindle 111 by coupling.
  • a holder 114 is formed to fix the polishing pad 113 to the spindle 111 by combining with the polishing pad 113, and the polishing pad 113 is moved by the rotation of the spindle 111. While rotating, the surface of the polishing target 10 may be polished by the polishing pad 113 .
  • the polishing unit 110 may include a current sensor 115 coupled to the motor unit 112 and measuring a motor current.
  • the current sensor 115 may be formed inside or outside the motor unit 112, and when the motor unit 112 operates and the spindle 111 rotates, the current sensor 115 is attached to the motor unit 112. The provided current value may be measured and transmitted to the controller 130 .
  • the surface roughness measuring unit 120 may include a stylus 121 (stylus) that contacts the surface of the polishing target 10 .
  • the surface roughness measurement unit 120 may generate signal information by measuring vibration generated by the movement of the stylus 121 moving together with the polishing unit 110 by the operation of the polishing robot 140, Surface roughness information based on such signal information may be transmitted to the controller 130 .
  • the surface roughness measurement unit 120 contacts the surface of the polishing target 10 and measures the surface roughness by vibration or the like, but is not limited thereto, and the surface roughness measurement unit 120 ) may measure the surface roughness of the polishing target 10 in a non-contact manner other than the above-described contact type.
  • the polishing unit 110 and the surface roughness measurement unit 120 may be formed in a form coupled to each other at the end of the polishing robot 140, and in this way, the polishing unit 110 and In the case of the surface roughness measuring unit 120, the surface roughness of a portion of the surface of the polishing target 10 can be measured just before polishing is performed, and the following motor current value and polishing target 10 Errors in the correlation of surface roughness values can be reduced.
  • the polishing apparatus of the present invention may further include a support robot 220 which is a robot equipped with a plurality of links, driven with multiple degrees of freedom, and supporting the polishing target 10 .
  • the polishing apparatus of the present invention further includes a support unit 210 coupled to the end of the support robot 220, fixing the polishing target 10, and measuring the pressing force of the polishing unit 110 on the polishing target 10.
  • the support part 210 may be coupled to a portion of the polishing target 10 other than the surface to be polished, and may be specifically coupled to a surface other than the polished surface by vacuum adsorption to fix and support the polishing target 10 .
  • a pressure sensor may be provided in the support unit 210, and when the polishing robot 140 and the polishing unit 110 pressurize the surface of the polishing target 10 by the operation of the polishing robot 140, the support robot The pressure between the polishing pad 113 and the surface of the polishing target 10 can be measured by measuring the pressure at which the polishing target 10 is supported by the support 220 and the support 210 .
  • the control unit 130 may transmit a control signal to the polishing robot 140 and the support robot 220 so that the pressing force of the polishing unit 110 on the polishing target 10 is uniformly formed.
  • the variation error of the motor current supplied to the motor unit 112 is reduced, and accordingly, the following motor current
  • an error in controlling the operation of the motor unit 112 may be reduced.
  • control unit 130 may transmit a control signal to the motor unit 112 so that the number of revolutions per minute (RPM) of the polishing pad 113 is within a predetermined range. Accordingly, even if the torque of the spindle 111 varies according to the roughness of the surface of the polishing target 10 and the frictional force between the polishing pad 113 and the surface of the polishing target 10 varies, the surface of the polishing target 10 Since polishing at a uniform speed is possible, the polishing quality of the surface of the polishing target 10 can be improved.
  • RPM revolutions per minute
  • the control unit 130 may embed a machine learning program, analyze the correlation between the motor current value and the surface roughness value of the polishing target 10, and then model it. In addition, the control unit 130 may generate a current threshold, which is a motor current value at the end of polishing the polishing target 10, by using correlation analysis between the motor current value and the surface roughness value of the polishing target 10. .
  • control unit 130 may transmit a control signal for stopping the operation of the motor unit 112 to the motor unit 112 when the motor current value is less than or equal to the current threshold value.
  • data may be input to the motor current value in real time in the machine learning program, and at the same time, surface roughness information on a part of the surface of the polishing target 10 immediately before being polished by the polishing unit 110 is provided in real time. can be entered.
  • modeling can be performed after correlation analysis between the motor current value and the surface roughness value of the polishing target 10 using a machine learning algorithm, and the motor current value and the surface of the polishing target 10
  • a motor current-surface roughness graph can be created for correlation analysis of roughness values.
  • the machine learning program may store learning information using data on the correlation between the motor current value and the surface roughness value of the polishing target 10 for other previous objects, and the machine learning program may store the learning information as described above. Correlation analysis and modeling of the motor current value of the polishing target 10 and the surface roughness value of the polishing target 10 may be performed using
  • the surface roughness target value which is the roughness value after the surface polishing of the polishing target 10 is completed using the polishing device of the present invention, may be stored in advance in the control unit 130, and the control unit 130 uses the motor current-surface roughness graph.
  • the current threshold value which is the motor current value corresponding to the target surface roughness value, can be derived.
  • the control unit 130 continuously compares the real-time motor current value and the current threshold value, and when the motor current value is below the current threshold value, the control unit 130 performs grinding.
  • the operation of the motor unit 112 may be stopped by determining that the process is completed and transmitting a control signal to the motor unit 112 .
  • the control unit 130 may derive a polishing process rate using a correlation analysis result between a motor current value and a surface roughness value of the polishing target 10, that is, data of a motor current-surface roughness graph.
  • control unit 130 may derive the surface roughness value of the polishing target 10 according to the motor current value in real time using the motor current-surface roughness graph as described above, and the surface of the polishing target 10 in real time.
  • the polishing process rate can be derived according to the ratio of the roughness value and the target surface roughness value.
  • FIG. 3 is a graph in the case of using the prior art and a graph in the case of using the polishing apparatus according to an embodiment of the present invention.
  • FIG. 3(a) is a graph in the case of using the prior art polishing apparatus
  • FIG. 3(b) is a graph in the case of using the polishing apparatus according to an embodiment of the present invention.
  • the horizontal axis is the axis for time (t) and the vertical axis is the axis for the motor current (a).
  • point E in (a) of FIG. 3 indicates the point at which the polishing process ends.
  • point E' is the point at which the polishing process ends, and L represents the current threshold.
  • the operating time of the polishing apparatus of the present invention is also reduced, so that durability and life of the polishing apparatus can be increased.
  • the polishing apparatus of the present invention an inspection device for receiving the polishing object 10 from the polishing device using a robot and measuring the surface roughness of the polishing object 10; and a display device receiving graph information on the change data of motor current from the polishing device using a robot and displaying the graph information on the screen, and displaying the surface roughness value of the polishing target 10 transmitted from the inspection device on the screen. system can be formed.
  • the polishing target 10 may be fixedly supported by the support robot 220 .
  • the surface of the polishing target 10 is brought into contact with the polishing pad 113, and polishing may be performed on the surface of the polishing target 10.
  • motor current change information is transmitted from the polishing unit 110 to the control unit 130, and the surface roughness information of the polishing target 10 is transmitted from the surface roughness measuring unit 120 to the control unit 130. can be delivered.
  • the correlation between the motor current value and the surface roughness value of the polishing target 10 is analyzed by the control unit 130 and then modeled, and the current, which is the motor current value at the end of polishing the polishing target 10 Thresholds can be created.
  • the operation of the motor unit 112 may be stopped.
  • a graph of a change in motor current over time and a numerical value of a progress rate of the polishing process may be displayed on the display device.
  • control unit 130 control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

본 발명의 일 실시 예는 로봇을 이용하여 폴리싱 공정을 자동으로 수행하고, 스핀틀의 전류 값을 실시간으로 모니터링하여 폴리싱 공정을 실시간으로 제어하는 기술을 제공한다. 본 발명의 실시 예에 따른 로봇을 이용한 폴리싱 장치는, 복수 개의 링크를 구비하고 다자유도로 구동하는 로봇인 연마로봇; 연마로봇의 말단과 결합하고 연마대상의 표면에 대한 연마를 수행하는 연마부; 연마로봇과 결합하고 연마부에 의해 연마되기 바로 전인 연마대상의 표면 일 부위에 대한 표면 조도를 측정하는 표면조도측정부; 및 연마부로 공급되는 전류인 모터전류의 변화 정보를 전달받고, 표면조도측정부로부터 연마대상의 표면 조도 정보를 전달받으며, 각각의 정보를 이용하여 연마부의 작동이 중단되도록 연마부로 제어신호를 전달하는 제어부를 포함한다.

Description

로봇을 이용한 폴리싱 장치 및 이에 의한 폴리싱 방법
본 발명은 로봇을 이용한 폴리싱 장치 및 이에 의한 폴리싱 방법에 관한 것으로, 더욱 상세하게는, 로봇을 이용하여 폴리싱 공정을 자동으로 수행하고, 스핀틀의 전류 값을 실시간으로 모니터링하여 폴리싱 공정을 실시간으로 제어하는 기술에 관한 것이다.
최근에는 복수 개의 로봇을 이용한 제조 시스템이 증가하고 있으며, 자동차와 항공기 등과 같은 제품의 생산에 있어서, 각각의 부품을 이용한 조립 외에 폴리싱(연마) 등과 같은 후속 공정에도 로봇을 이용하여 자동 제조의 효율을 향상시키고 있다.
상기와 같이 로봇을 이용한 제조 시스템에 있어서, 로봇 자체의 작동 효율을 증대시키는 외에, 하나의 로봇에서 수행되는 공정 작업의 최적화를 수행하는 것도 중요하며, 이를 위해서는 관련된 작업의 시작과 종료 시간에 대한 제어를 통해 최적의 시간 내에 해당 공정을 진행하고, 이를 위해, 해당 공정에 대한 모니터링을 실시간으로 수행하는 기술이 필요하다.
대한민국 공개특허 제10-2020-0125928호(발명의 명칭: 로봇-보조 연마에 있어서 회전 속도 제어)에서는, 표면을 기계가공하기 위한 연마 장치에 있어서, 조종기(1)에 결합되고 또한 모터 및 상기 모터에 의해 구동되는 연마도구(11)를 가지는 연마기(10); 컨트롤러(4)를 포함하고, 상기 컨트롤러는, 상기 연마도구(11)의 회전 속도를 조정하기 위해 연마기(10)를 제어하고, 상기 연마기가 제1 회전 속도(n0)에서 구동되는 동안 상기 연마도구(11)와 상기 표면을 접촉시키기 위해 상기 조종기(1)를 이용해 상기 연마기(10)를 위치시키고, 상기 연마도구(11)와 상기 표면 사이의 접촉을 검출하고, 또한 접촉 검출에 응답하여 상기 연마도구(11)의 회전 속도를 상기 제1 회전 속도(n0)로부터 제2 회전 속도(n1)까지 올리도록 구성되는, 연마 장치가 개시되어 있다.
상기와 같은 종래기술에서는, 연마 공정 자체의 공정 진행 정도를 실시간 파악하는데 한계가 있고, 연마 공정의 종료 시점을 파악하는데 용이하지 않다는 문제가 있다.
<선행기술문헌>
대한민국 공개특허 제10-2020-0125928호
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 로봇을 이용하여 폴리싱 공정을 자동으로 수행하고, 스핀틀의 전류 값을 실시간으로 모니터링하여 폴리싱 공정을 실시간으로 제어하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 복수 개의 링크를 구비하고 다자유도로 구동하는 로봇인 연마로봇; 상기 연마로봇의 말단과 결합하고 연마대상의 표면에 대한 연마를 수행하는 연마부; 상기 연마로봇과 결합하고 상기 연마부에 의해 연마되기 바로 전인 상기 연마대상의 표면 일 부위에 대한 표면 조도를 측정하는 표면조도측정부; 및 상기 연마부로 공급되는 전류인 모터전류의 변화 정보를 전달받고, 상기 표면조도측정부로부터 상기 연마대상의 표면 조도 정보를 전달받으며, 각각의 정보를 이용하여 상기 연마부의 작동이 중단되도록 상기 연마부로 제어신호를 전달하는 제어부를 포함한다.
본 발명의 실시 예에 있어서, 상기 연마부는, 상기 연마대상의 표면을 연마시키는 연마패드, 상기 연마패드에 연결되어 상기 연마패드를 회전시키는 스핀들, 및 상기 스핀들과 결합하여 상기 스핀들을 회전시키는 모터부를 구비할 수 있다.
본 발명의 실시 예에 있어서, 상기 연마부는, 상기 모터부와 결합하고 상기 모터전류를 측정하는 전류센서를 구비할 수 있다.
본 발명의 실시 예에 있어서, 상기 제어부는, 머신러닝 프로그램을 내장하고, 상기 모터전류 값과 상기 연마대상의 표면 조도 값의 상관 관계를 분석 후 모델화시킬 수 있다.
본 발명의 실시 예에 있어서, 상기 제어부는, 상기 모터전류 값과 상기 연마대상의 표면 조도 값의 상관 관계 분석을 이용하여, 상기 연마대상에 대한 연마 종료 시 상기 모터전류 값인 전류 임계값을 생성할 수 있다.
본 발명의 실시 예에 있어서, 상기 제어부는, 상기 모터전류 값이 상기 전류 임계값 이하인 경우, 상기 모터부의 작동을 중단시키는 제어신호를 상기 모터부로 전달할 수 있다.
본 발명의 실시 예에 있어서, 복수 개의 링크를 구비하고 다자유도로 구동하며 상기 연마대상을 지지하는 로봇인 지지로봇을 더 포함할 수 있다.
본 발명의 실시 예에 있어서, 상기 지지로봇의 말단과 결합하고 상기 연마대상을 고정시키며 상기 연마대상에 대한 상기 연마부의 가압력을 측정하는 지지부를 더 포함할 수 있다.
본 발명의 실시 예에 있어서, 상기 제어부는, 상기 연마대상에 대한 상기 연마부의 가압력이 일정하게 형성되도록 상기 연마로봇과 상기 지지로봇으로 제어신호를 전달할 수 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 지지로봇에 의해 상기 연마대상이 고정 지지되는 제1단계; 상기 연마대상의 표면과 상기 연마패드가 접촉되고 상기 연마대상의 표면에 대한 연마가 수행되는 제2단계; 상기 연마부로부터 상기 제어부로 상기 모터전류의 변화 정보가 전달되고, 상기 표면조도측정부로부터 상기 제어부로 상기 연마대상의 표면 조도 정보가 전달되는 제3단계; 상기 제어부에서 상기 모터전류 값과 상기 연마대상의 표면 조도 값의 상관 관계가 분석된 후 모델화되고, 상기 연마대상에 대한 연마 종료 시 상기 모터전류 값인 전류 임계값이 생성되는 제4단계; 및 상기 모터전류 값이 상기 전류 임계값 이하인 경우, 상기 모터부의 작동이 중단되는 제5단계를 포함한다.
본 발명의 실시 예에 있어서, 상기 제5단계에서, 시간 변화에 따른 상기 모터전류의 변화 값에 대한 그래프와 연마 공정 진행률의 수치가 디스플레이 장치에 표시될 수 있다.
상기와 같은 구성에 따른 본 발명의 효과는, 연마대상에 대한 연마 종료 시점이 앞당겨지는 효과가 구현되어, 연마 공정 시간을 단축시켜 연마 공정의 최적화를 수행할 수 있다는 것이다.
그리고, 본 발명의 효과는, 연마 공정 시간이 단축됨에 따라 본 발명의 폴리싱 장치의 구동 시간도 감소하여, 폴리싱 장치의 내구성 및 수명이 증대될 수 있다는 것이다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시 예에 따른 연마부에 대한 모식도이다.
도 2는 본 발명의 일 실시 예에 따른 폴리싱 장치에 대한 모식도이다.
도 3은 종래기술의 폴리싱 장치를 이용한 경우의 그래프와 본 발명의 일 실시 예에 따른 폴리싱 장치를 이용한 경우의 그래프이다.
본 발명에 따른 가장 바람직한 일 실시예는, 복수 개의 링크를 구비하고 다자유도로 구동하는 로봇인 연마로봇; 상기 연마로봇의 말단과 결합하고 연마대상의 표면에 대한 연마를 수행하는 연마부; 상기 연마로봇과 결합하고 상기 연마부에 의해 연마되기 바로 전인 상기 연마대상의 표면 일 부위에 대한 표면 조도를 측정하는 표면조도측정부; 및 상기 연마부로 공급되는 전류인 모터전류의 변화 정보를 전달받고, 상기 표면조도측정부로부터 상기 연마대상의 표면 조도 정보를 전달받으며, 각각의 정보를 이용하여 상기 연마부의 작동이 중단되도록 상기 연마부로 제어신호를 전달하는 제어부를 포함하는 것을 특징으로 한다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시 예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하 첨부된 도면을 참고하여 본 발명에 대하여 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시 예에 따른 연마부(110)에 대한 모식도이고, 도 2는 본 발명의 일 실시 예에 따른 폴리싱 장치에 대한 모식도이다.
도 1내지 도 3에서 보는 바와 같이, 본 발명의 폴리싱 장치는, 복수 개의 링크를 구비하고 다자유도로 구동하는 로봇인 연마로봇(140); 연마로봇(140)의 말단과 결합하고 연마대상(10)의 표면에 대한 연마를 수행하는 연마부(110); 상기 연마로봇(140)과 결합하고 연마부(110)에 의해 연마되기 바로 전인 연마대상(10)의 표면 일 부위에 대한 표면 조도(Roughness)를 측정하는 표면조도측정부(120); 및 연마부(110)로 공급되는 전류인 모터전류의 변화 정보를 전달받고, 표면조도측정부(120)로부터 연마대상(10)의 표면 조도 정보를 전달받으며, 각각의 정보를 이용하여 모터부(112)의 작동이 중단되도록 모터부(112)로 제어신호를 전달하는 제어부(130)를 포함한다.
연마부(110)는, 연마대상(10)의 표면을 연마시키는 연마패드(113), 연마패드(113)에 연결되어 연마패드(113)를 회전시키는 스핀들(111), 및 스핀들(111)과 결합하여 스핀들(111)을 회전시키는 모터부(112)를 구비할 수 있다.
스핀들(111)의 말단에는 연마패드(113)와 결합하여 연마패드(113)를 스핀들(111)에 고정시키는 홀더(114)가 형성되며, 스핀들(111)의 회전에 의해 연마패드(113)가 회전하면서, 연마패드(113)에 의한 연마대상(10) 표면의 폴리싱이 수행될 수 있다.
연마부(110)는, 모터부(112)와 결합하고 모터전류를 측정하는 전류센서(115)를 구비할 수 있다. 전류센서(115)는 모터부(112)의 내부 또는 외부에 형성될 수 있으며, 모터부(112)가 작동하여 스핀들(111)이 회전하는 경우, 전류센서(115)는 모터부(112)에 제공되는 전류 값을 측정하여 제어부(130)로 전달할 수 있다.
표면조도측정부(120)는, 연마대상(10)의 표면과 접촉하는 스타일러스(121)(촉침)을 구비할 수 있다. 그리고, 표면조도측정부(120)는 연마로봇(140)의 작동에 의해 연마부(110)와 함께 이동하는 스타일러스(121)의 이동에 의해 발생되는 진동을 측정하여 신호 정보를 생성할 수 있으며, 이와 같은 신호 정보에 의한 표면 조도 정보를 제어부(130)로 전달할 수 있다.
본 발명의 실시 예에서는, 표면조도측정부(120)가 연마대상(10)의 표면과 접촉하여 진동 등에 의해 표면 조도를 측정하는 것으로 설명하고 있으나, 이에 한정되는 것은 아니고, 표면조도측정부(120)는 상기와 같은 접촉식 외에 비접촉식으로 연마대상(10)의 표면 조도를 측정할 수도 있다.
도 1과 도 2에서 보는 바와 같이, 연마부(110)와 표면조도측정부(120)가 연마로봇(140)의 말단에서 서로 결합되는 형태로 형성될 수 있으며, 이와 같이 연마부(110)와 표면조도측정부(120)가 경우, 연마대상(10) 표면 일 부위에 대해서 연마가 수행되기 바로 전에 해당 부위의 표면 조도를 측정할 수 있어, 하기와 같은 모터전류 값과 연마대상(10)의 표면 조도 값의 상관 관계에 대한 오차가 감소할 수 있다.
도 2에서 보는 바와 같이, 본 발명의 폴리싱 장치는, 복수 개의 링크를 구비하고 다자유도로 구동하며 연마대상(10)을 지지하는 로봇인 지지로봇(220)을 더 포함할 수 있다. 그리고, 본 발명의 폴리싱 장치는, 지지로봇(220)의 말단과 결합하고 연마대상(10)을 고정시키며 연마대상(10)에 대한 연마부(110)의 가압력을 측정하는 지지부(210)를 더 포함할 수 있다.
지지부(210)는, 연마대상(10)에서 연마되는 표면 외의 부위에 결합될 수 있으며, 구체적으로 연마되는 표면 외의 다른 표면에 진공 흡착으로 결합되어 연마대상(10)을 고정 지지할 수 있다.
그리고, 지지부(210)에는 압력센서가 구비될 수 있으며, 연마로봇(140)과 연마부(110)의 작동에 의해 연마부(110)가 연마대상(10)의 표면을 가압하는 경우, 지지로봇(220)과 지지부(210)에 의해 연마대상(10)이 지지되는 압력을 측정하여, 연마패드(113)와 연마대상(10)의 표면 사이의 압력을 측정할 수 있다.
제어부(130)는, 연마대상(10)에 대한 연마부(110)의 가압력이 일정하게 형성되도록 연마로봇(140)과 지지로봇(220)으로 제어신호를 전달할 수 있다. 연마대상(10)의 표면에 대한 연마부(110)의 가압력이 일정한 범위 내로 형성되는 경우, 모터부(112)로 공급되는 모터전류의 변화 오차가 감소하며, 이에 따라, 하기와 같은 모터전류의 변화 데이터를 이용하여 모터부(112)의 작동 제어 시, 모터부(112)의 작동 제어에 대한 오차가 감소할 수 있다.
또한, 제어부(130)는 연마패드(113)의 분당 회전수(RPM)이 일정한 범위 내로 형성되도록 모터부(112)에 제어신호를 전달할 수 있다. 이에 따라, 연마대상(10) 표면의 조도(Roughness)에 따라 스핀들(111)의 토크가 가변하고 연마패드(113)와 연마대상(10) 표면 간 마찰력이 가변하더라도, 연마대상(10) 표면에 대한 균일한 속도의 폴리싱이 가능하여, 연마대상(10) 표면에 대한 폴리싱 품질이 향상될 수 있다.
제어부(130)는, 머신러닝 프로그램을 내장하고, 모터전류 값과 연마대상(10)의 표면 조도 값의 상관 관계를 분석 후 모델화시킬 수 있다. 또한, 제어부(130)는, 모터전류 값과 연마대상(10)의 표면 조도 값의 상관 관계 분석을 이용하여, 연마대상(10)에 대한 연마 종료 시 모터전류 값인 전류 임계값을 생성할 수 있다.
그리고, 제어부(130)는, 모터전류 값이 전류 임계값 이하인 경우, 모터부(112)의 작동을 중단시키는 제어신호를 모터부(112)로 전달할 수 있다.
구체적으로, 머신러닝 프로그램에는 실시간으로 모터전류 값에 데이터가 입력될 수 있으며, 동시에, 연마부(110)에 의해 연마되기 바로 전인 연마대상(10)의 표면 일 부위에 대한 표면 조도 정보가 실시간으로 입력될 수 있다.
이 때, 머신러닝 프로그램에서는, 머신러닝 알고리즘을 이용하여 모터전류 값과 연마대상(10)의 표면 조도 값의 상관 관계 분석 후 모델화를 수행할 수 있고, 모터전류 값과 연마대상(10)의 표면 조도 값의 상관 관계 분석에 대한 모터전류-표면 조도 그래프를 생성할 수 있다.
여기서, 머신러닝 프로그램에는 이 전의 다른 대상물에 대해서 모터전류 값과 연마대상(10)의 표면 조도 값의 상관 관계에 대한 데이터를 이용한 학습 정보가 저장될 수 있으며, 머신러닝 프로그램은 상기와 같은 학습 정보를 이용하여 연마대상(10)에 대한 모터전류 값과 연마대상(10)의 표면 조도 값의 상관 관계 분석 및 모델화를 수행할 수 있다.
이와 같은 머신러닝 프로그램에 의한 분석 및 모델화는 종래기술에 의한 것으로써, 분석 및 모델화에 대한 상세한 사항은 생략하기로 한다.
본 발명의 폴리싱 장치를 이용하여 연마대상(10)의 표면 연마 완료 후 조도 값인 표면 조도 목표 값은 제어부(130)에 사전에 저장될 수 있으며, 제어부(130)에서는 모터전류-표면 조도 그래프를 이용하여 표면 조도 목표 값에 대응되는 모터전류 값인 전류 임계값을 도출할 수 있다.
상기와 같이 전류 임계값이 도출되면, 제어부(130)는 실시간의 모터전류값과 전류 임계값을 지속적으로 비교하게 되고, 모터전류 값이 상기 전류 임계값 이하로 되면, 제어부(130)에서는 연마가 완료된 것으로 판단하고 제어신호를 모터부(112)로 전달하여 모터부(112)의 작동이 중단될 수 있다.
제어부(130)는 모터전류 값과 연마대상(10)의 표면 조도 값의 상관 관계 분석 결과, 즉, 모터전류-표면 조도 그래프의 데이터를 이용하여 연마 공정률을 도출할 수 있다.
구체적으로, 제어부(130)는 상기와 같은 모터전류-표면 조도 그래프를 이용하여 실시간의 모터전류 값에 따른 연마대상(10)의 표면 조도 값을 도출할 수 있으며, 실시간 연마대상(10)의 표면 조도 값과 표면 조도 목표 값의 비율에 따라 연마 공정률을 도출할 수 있다.
도 3은 종래기술을 이용한 경우의 그래프와 본 발명의 일 실시 예에 따른 폴리싱 장치를 이용한 경우의 그래프이다. 여기서, 도 3의 (a)의 종래기술의 폴리싱 장치을 이용한 경우의 그래프이고, 도 3의 (b)는 본 발명의 일 실시 예에 따른 폴리싱 장치를 이용한 경우의 그래프이다.
도 3의 (a)와 (b)에서, 가로축은 시간(t)에 대한 축이고 세로축은 모터전류(a)에 대한 축이다. 또한, 도 3의 (a)에서 E지점은 연마 공정이 종료되는 시점을 나타낸다. 그리고, 도 3의 (b)에서 E'지점은 연마 공정이 종료되는 시점이고, L은 전류 임계값을 나타낸다.
도 3의 (a)에서 보는 바와 같이, 종래기술의 폴리싱 장치를 이용하는 경우에는, 연마 진행 상황과 관계없이 고정된 연마 종료 시점(E)까지 연마 공정을 수행하였다. 그러나, 도 3의 (b)에서 보는 바와 같이, 본 발명의 폴리싱 장치를 이용하는 경우에는, 실시간 모터전류 값이 전류 임계값 이하인 경우 모터부(112)가 종료됨으로써 연마 공정이 종료됨으로써, 연마 종료 시점(E')이 앞당겨지는 효과가 구현되어, 연마 공정 시간을 단축시켜 연마 공정의 최적화를 수행할 수 있다.
또한, 상기와 같이 연마 공정 시간이 단축됨에 따라 본 발명의 폴리싱 장치의 구동 시간도 감소하여, 폴리싱 장치의 내구성 및 수명이 증대될 수 있다.
본 발명의 폴리싱 장치; 로봇을 이용한 폴리싱 장치로부터 연마대상(10)을 전달받아 연마대상(10)의 표면 조도를 측정하는 검사 장치; 및 로봇을 이용한 폴리싱 장치로부터 모터전류의 변화 데이터에 대한 그래프 정보를 전달받아 화면에 표시하고, 검사 장치로부터 전달된 연마대상(10)의 표면 조도 값을 화면에 표시하는 디스플레이 장치를 포함하는 자동 연마 시스템을 형성할 수 있다.
이하, 본 발명의 폴리싱 장치에 의한 폴리싱 방법에 대해서 설명하기로 한다.
먼저, 제1단계에서, 지지로봇(220)에 의해 연마대상(10)이 고정 지지될 수 있다. 그리고, 제2단계에서, 연마대상(10)의 표면과 연마패드(113)가 접촉되고 연마대상(10)의 표면에 대한 연마가 수행될 수 있다.
다음으로, 제3단계에서, 연마부(110)로부터 제어부(130)로 모터전류의 변화 정보가 전달되고, 표면조도측정부(120)로부터 제어부(130)로 연마대상(10)의 표면 조도 정보가 전달될 수 있다.
그 후, 제4단계에서, 제어부(130)에서 모터전류 값과 연마대상(10)의 표면 조도 값의 상관 관계가 분석된 후 모델화되고, 연마대상(10)에 대한 연마 종료 시 모터전류 값인 전류 임계값이 생성될 수 있다.
그리고, 제5단계에서, 모터전류 값이 전류 임계값 이하인 경우, 모터부(112)의 작동이 중단될 수 있다. 제5단계에서는, 시간 변화에 따른 모터전류의 변화 값에 대한 그래프와 연마 공정 진행률의 수치가 디스플레이 장치에 표시될 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
<부호의 설명>
10 : 연마대상
110 : 연마부
111 : 스핀들
112 : 모터부
113 : 연마패드
114 : 홀더
115 : 전류센서
120 : 표면조도측정부
121 : 스타일러스
130 : 제어부
140 : 연마로봇
210 : 지지부
220 : 지지로봇

Claims (12)

  1. 복수 개의 링크를 구비하고 다자유도로 구동하는 로봇인 연마로봇;
    상기 연마로봇의 말단과 결합하고 연마대상의 표면에 대한 연마를 수행하는 연마부;
    상기 연마로봇과 결합하고 상기 연마부에 의해 연마되기 바로 전인 상기 연마대상의 표면 일 부위에 대한 표면 조도를 측정하는 표면조도측정부; 및
    상기 연마부로 공급되는 전류인 모터전류의 변화 정보를 전달받고, 상기 표면조도측정부로부터 상기 연마대상의 표면 조도 정보를 전달받으며, 각각의 정보를 이용하여 상기 연마부의 작동이 중단되도록 상기 연마부로 제어신호를 전달하는 제어부를 포함하는 것을 특징으로 하는 로봇을 이용한 폴리싱 장치.
  2. 청구항 1에 있어서,
    상기 연마부는, 상기 연마대상의 표면을 연마시키는 연마패드, 상기 연마패드에 연결되어 상기 연마패드를 회전시키는 스핀들, 및 상기 스핀들과 결합하여 상기 스핀들을 회전시키는 모터부를 구비하는 것을 특징으로 하는 로봇을 이용한 폴리싱 장치.
  3. 청구항 2에 있어서,
    상기 연마부는, 상기 모터부와 결합하고 상기 모터전류를 측정하는 전류센서를 구비하는 것을 특징으로 하는 로봇을 이용한 폴리싱 장치.
  4. 청구항 2에 있어서,
    상기 제어부는, 머신러닝 프로그램을 내장하고, 상기 모터전류 값과 상기 연마대상의 표면 조도 값의 상관 관계를 분석 후 모델화시키는 것을 특징으로 하는 로봇을 이용한 폴리싱 장치.
  5. 청구항 4에 있어서,
    상기 제어부는, 상기 모터전류 값과 상기 연마대상의 표면 조도 값의 상관 관계 분석을 이용하여, 상기 연마대상에 대한 연마 종료 시 상기 모터전류 값인 전류 임계값을 생성하는 것을 특징으로 하는 로봇을 이용한 폴리싱 장치.
  6. 청구항 5에 있어서,
    상기 제어부는, 상기 모터전류 값이 상기 전류 임계값 이하인 경우, 상기 모터부의 작동을 중단시키는 제어신호를 상기 모터부로 전달하는 것을 특징으로 하는 로봇을 이용한 폴리싱 장치.
  7. 청구항 1에 있어서,
    복수 개의 링크를 구비하고 다자유도로 구동하며 상기 연마대상을 지지하는 로봇인 지지로봇을 더 포함하는 것을 특징으로 하는 로봇을 이용한 폴리싱 장치.
  8. 청구항 7에 있어서,
    상기 지지로봇의 말단과 결합하고 상기 연마대상을 고정시키며 상기 연마대상에 대한 상기 연마부의 가압력을 측정하는 지지부를 더 포함하는 것을 특징으로 하는 로봇을 이용한 폴리싱 장치.
  9. 청구항 7에 있어서,
    상기 제어부는, 상기 연마대상에 대한 상기 연마부의 가압력이 일정하게 형성되도록 상기 연마로봇과 상기 지지로봇으로 제어신호를 전달하는 것을 특징으로 하는 로봇을 이용한 폴리싱 장치.
  10. 청구항 1에 의한 로봇을 이용한 폴리싱 장치;
    상기 로봇을 이용한 폴리싱 장치로부터 상기 연마대상을 전달받아 상기 연마대상의 표면 조도를 측정하는 검사 장치; 및
    상기 로봇을 이용한 폴리싱 장치로부터 상기 모터전류의 변화 데이터에 대한 그래프 정보를 전달받아 화면에 표시하는 디스플레이 장치를 포함하는 것을 특징으로 하는 자동 연마 시스템.
  11. 청구항 2의 로봇을 이용한 폴리싱 장치에 의한 폴리싱 방법에 있어서,
    지지로봇에 의해 상기 연마대상이 고정 지지되는 제1단계;
    상기 연마대상의 표면과 상기 연마패드가 접촉되고 상기 연마대상의 표면에 대한 연마가 수행되는 제2단계;
    상기 연마부로부터 상기 제어부로 상기 모터전류의 변화 정보가 전달되고, 상기 표면조도측정부로부터 상기 제어부로 상기 연마대상의 표면 조도 정보가 전달되는 제3단계;
    상기 제어부에서 상기 모터전류 값과 상기 연마대상의 표면 조도 값의 상관 관계가 분석된 후 모델화되고, 상기 연마대상에 대한 연마 종료 시 상기 모터전류 값인 전류 임계값이 생성되는 제4단계; 및
    상기 모터전류 값이 상기 전류 임계값 이하인 경우, 상기 모터부의 작동이 중단되는 제5단계를 포함하는 것을 특징으로 하는 폴리싱 방법.
  12. 청구항 11에 있어서,
    상기 제5단계에서, 시간 변화에 따른 상기 모터전류의 변화 값에 대한 그래프와 연마 공정 진행률의 수치가 디스플레이 장치에 표시되는 것을 특징으로 하는 폴리싱 방법.
PCT/KR2021/013377 2021-09-07 2021-09-29 로봇을 이용한 폴리싱 장치 및 이에 의한 폴리싱 방법 WO2023038183A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0118794 2021-09-07
KR1020210118794A KR102618657B1 (ko) 2021-09-07 2021-09-07 로봇을 이용한 폴리싱 장치 및 이에 의한 폴리싱 방법

Publications (1)

Publication Number Publication Date
WO2023038183A1 true WO2023038183A1 (ko) 2023-03-16

Family

ID=85507660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013377 WO2023038183A1 (ko) 2021-09-07 2021-09-29 로봇을 이용한 폴리싱 장치 및 이에 의한 폴리싱 방법

Country Status (2)

Country Link
KR (1) KR102618657B1 (ko)
WO (1) WO2023038183A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104436A (ja) * 1991-10-17 1993-04-27 Fanuc Ltd 触覚センサ一体型研磨加工機
JPH113877A (ja) * 1997-06-10 1999-01-06 Canon Inc 研磨方法及びそれを用いた研磨装置
JPH11245164A (ja) * 1998-02-26 1999-09-14 Seiko Seiki Co Ltd 研磨装置
KR20170045111A (ko) * 2015-10-16 2017-04-26 가부시키가이샤 에바라 세이사꾸쇼 연마 장치 및 연마 방법
KR20210087398A (ko) * 2020-01-02 2021-07-12 주식회사 케이씨텍 기계학습을 이용한 기판 연마 장치 및 기판 연마 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018106086A1 (de) 2018-03-15 2019-09-19 Ferrobotics Compliant Robot Technology Gmbh Drehzahlsteuerung beim robotergestützten schleifen
JP7380107B2 (ja) 2019-11-12 2023-11-15 株式会社ジェイテクト 品質予測システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104436A (ja) * 1991-10-17 1993-04-27 Fanuc Ltd 触覚センサ一体型研磨加工機
JPH113877A (ja) * 1997-06-10 1999-01-06 Canon Inc 研磨方法及びそれを用いた研磨装置
JPH11245164A (ja) * 1998-02-26 1999-09-14 Seiko Seiki Co Ltd 研磨装置
KR20170045111A (ko) * 2015-10-16 2017-04-26 가부시키가이샤 에바라 세이사꾸쇼 연마 장치 및 연마 방법
KR20210087398A (ko) * 2020-01-02 2021-07-12 주식회사 케이씨텍 기계학습을 이용한 기판 연마 장치 및 기판 연마 방법

Also Published As

Publication number Publication date
KR102618657B1 (ko) 2023-12-29
KR20230036612A (ko) 2023-03-15

Similar Documents

Publication Publication Date Title
AU2018209865B2 (en) Moving robot and method of controlling the same
CN102128705B (zh) 全自动车轮动平衡、跳动一体在线检测系统
WO2016127838A1 (zh) 一种数控机床及其调试方法
WO2014073759A1 (ko) 구동기용 다목적 하중 모의 시험기 및 이를 이용한 모의 시험 시스템
WO2023038183A1 (ko) 로봇을 이용한 폴리싱 장치 및 이에 의한 폴리싱 방법
US7016799B2 (en) Apparatus and method for checking the machining process of a machine tool
WO2019088649A1 (ko) 공구의 마모에 따라 가공부하를 조절하는 로봇 시스템 및 이를 이용한 가공부하 조절 방법
WO2020105984A1 (ko) 공구 마모를 고려한 공구 위치 가변 가공 장치 및 이를 이용한 공구 위치 제어 방법
WO2019177273A1 (ko) 작업대상물 형상적응 능동압력제어 로봇 엔드이펙터
JP6668665B2 (ja) ロボット装置
KR101496426B1 (ko) 로터리 테이블 장치
WO2010053229A1 (en) Method and system of measuring motion error in precision linear stage
JPS61231406A (ja) 寸法測定装置
KR101189776B1 (ko) 고무 호스의 마킹 및 클램핑 장치 및 그 제조 방법
JP2008310402A (ja) 作業情報管理システム
CN114683276B (zh) 机器人系统
WO2020105983A1 (ko) 로봇팔을 이용한 정밀 가공장치 및 이의 작동방법
KR20000017205A (ko) 레일웨이부의 선반가공 파라미터들을 측정하기 위한 장치 및방법
WO2023054749A1 (ko) 로봇 강성 유지 자세를 구현하는 가공 장치 및 이를 이용한 로봇 강성 유지 자세를 구현하는 가공 방법
JP2002313765A (ja) ブラシ洗浄装置及びその制御方法
WO2023249260A1 (ko) 기판 이송장치 및 기판 이송장치의 운용방법
WO2023054748A1 (ko) 로봇의 후가공 경로 최적화 가공 장치 및 이를 이용한 로봇의 후가공 경로 최적화 가공 방법
WO2023163247A1 (ko) Ict 융합형 텐션풀리 제조 시스템
WO2017039544A1 (en) Instrumented tools for monitoring interaction dynamics during contact task
CN219244567U (zh) 一种排气歧管位置度检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE