WO2020105984A1 - 공구 마모를 고려한 공구 위치 가변 가공 장치 및 이를 이용한 공구 위치 제어 방법 - Google Patents

공구 마모를 고려한 공구 위치 가변 가공 장치 및 이를 이용한 공구 위치 제어 방법

Info

Publication number
WO2020105984A1
WO2020105984A1 PCT/KR2019/015743 KR2019015743W WO2020105984A1 WO 2020105984 A1 WO2020105984 A1 WO 2020105984A1 KR 2019015743 W KR2019015743 W KR 2019015743W WO 2020105984 A1 WO2020105984 A1 WO 2020105984A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
processing
unit
machining
wear
Prior art date
Application number
PCT/KR2019/015743
Other languages
English (en)
French (fr)
Inventor
김태곤
김효영
이석우
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to US17/295,430 priority Critical patent/US12017315B2/en
Publication of WO2020105984A1 publication Critical patent/WO2020105984A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/16Compensation for wear of the tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4163Adaptive control of feed or cutting velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0961Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring power, current or torque of a motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0985Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/2452Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring features or for detecting a condition of machine parts, tools or workpieces
    • B23Q17/2471Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring features or for detecting a condition of machine parts, tools or workpieces of workpieces
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2717/00Arrangements for indicating or measuring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37258Calculate wear from workpiece and tool material, machining operations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49109Control cutting speed as function of tool wire wear, measure diameter of wire

Definitions

  • the present invention relates to a tool position variable processing apparatus in consideration of tool wear and a tool position control method using the same, and more particularly, when the amount of wear on a part of the tool increases and the machining performance of the tool decreases, the rest of the tool By allowing the furnace to proceed, the wear amount of the tool is managed to extend the life of the tool and to a machining system capable of improving the machining quality for the object to be processed.
  • the cutting process it may be important to automatically measure the degree of wear of the tool and perform control on a system that performs the cutting process according to the degree of wear of the tool.
  • the defect rate of the object to be processed is increased by performing a cutting process while checking the degree of wear of the tool by an imaging device or the naked eye.
  • An object of the present invention for solving the above problems is to manage the amount of wear of the tool.
  • an object of the present invention is to perform the process while automatically controlling the processing load to decrease when the processing load of the processing portion increases.
  • the configuration of the present invention for achieving the above object, in a processing system for performing a processing for a processing object using a tool provided in the processing unit, coupled to the processing unit, the tool for the processing object
  • a tool moving unit moving the machining unit so that the position of the tool is changed
  • a support unit supporting the processing target and moving the processing target so that a position of the processing target with respect to the tool is changed
  • a sensor unit provided in the machining unit and measuring an amount of current supplied to a machining motor operating the tool or an operating force of the tool
  • a control unit receiving a measurement signal from the sensor unit and transmitting a control signal to the tool movement unit and the support unit, wherein the control unit includes: when the processing load value of the processing unit exceeds a reference processing load value; It is characterized in that the tool moving portion or the support portion is controlled to change the contact portion of the tool in contact with the object to be processed.
  • the sensor unit may measure a distance between the end of the tool moving unit and the processing object coupled to the processing unit.
  • control unit may control the tool moving part or the support part so that the relative moving speed of the processing part and the processing object decreases when the processing load value of the processing part exceeds a reference processing load value.
  • the machining part may perform drilling, milling, routing or grinding on the object to be processed.
  • control unit may derive a processing load value of the processing unit by using an amount of current supplied to the processing motor.
  • control unit stores the three-dimensional shape data of the object to be processed, calculates a relative position of the tool and the object to be processed, and a position calculation unit derived by the position calculation unit It may be provided with an operation control unit for controlling the operation of the tool moving portion and the operation of the support according to the position value or the position value of the object to be processed.
  • it may further include an imaging unit coupled to the processing unit and acquiring an image of the processing target.
  • it may further include a dust removal unit coupled to the processing unit, and removes dust on the surface of the processing target.
  • the support portion In an embodiment of the present invention, the support portion,
  • a jig part for contacting the object to be processed, supporting the object to be processed, adjusting a position angle of the object with respect to the tool, and a jig driving part for engaging with the jig part and moving and tilting the jig part. can do.
  • the machining part may include a temperature measuring part for measuring the temperature of the surface of the object to be processed in contact with the tool.
  • it may further include a wear amount measuring unit for measuring the wear amount of the tool.
  • the sensor unit measures the amount of current supplied to the machining motor, measuring the distance between the end of the tool moving part and the object to be processed; ii) the control unit receiving a measurement signal from the sensor unit; iii) the control unit deriving a processing load value of the processing part using an amount of current supplied to the processing motor, and comparing the processing load value of the processing part with the reference processing load value; iv) when the machining load value of the machining part exceeds the reference machining load value, the control part transmitting a control signal to the tool moving part or the support part; And v) changing the position of the machining part with respect to the object to be processed by controlling the operation of the tool moving part or the support part.
  • the tool moving part and the support part may perform relative motion with each other.
  • the effect of the present invention according to the above configuration is that when the amount of wear on one part of the tool increases and the machining performance of the tool decreases, the machining proceeds to the remaining part of the tool, so that the amount of wear of the tool is managed and the life of the tool This means that the processing quality of the object to be processed can be improved.
  • the effect of the present invention is that the moving speed of the machining portion is controlled so that the machining load value of the machining portion is kept below the reference machining load value, thereby reducing the defect rate of the machining object and improving the stability of the tool.
  • FIG. 1 is a schematic diagram of a tool control technique according to the prior art.
  • FIG. 2 is a schematic diagram of tool control of a machining system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a processing system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a tool moving part according to an embodiment of the present invention.
  • FIG. 5 is a schematic view of a support according to an embodiment of the present invention.
  • the tool position variable machining apparatus in consideration of the tool wear of the present inventor, in a processing system for processing a processing target using a tool provided in the processing section, is coupled to the processing section, and the tool for the processing target A tool moving part moving the machining part so that the position is changed; A support unit supporting the processing target and moving the processing target so that a position of the processing target with respect to the tool is changed; A sensor unit provided in the machining unit and measuring an amount of current supplied to a machining motor operating the tool or an operating force of the tool; And a control unit receiving a measurement signal from the sensor unit and transmitting a control signal to the tool movement unit and the support unit, wherein the control unit includes: when the processing load value of the processing unit exceeds a reference processing load value; It is characterized in that the tool moving portion or the support portion is controlled to change the contact portion of the tool in contact with the object to be processed.
  • FIG. 1 is a schematic diagram of a tool control technique according to the prior art. As shown in FIG. 1, in the case of using the tool control technology according to the prior art, during processing of the object to be processed 10, one part of the tool 1 is mainly used, and the remaining parts have a low frequency of use. ) There is a problem in that wear is concentrated on a part of the part and the life of the tool 1 is shortened.
  • Figure 2 is a schematic diagram of the tool control of the machining system according to an embodiment of the present invention
  • Figure 3 is a schematic diagram of a machining system according to an embodiment of the present invention
  • Figure 4 is a tool according to an embodiment of the present invention This is a schematic diagram of the eastern 200.
  • Figure 5 is a schematic view of the support 300 according to an embodiment of the present invention.
  • the machining apparatus of the present invention is a processing system that performs processing on a processing target 10 using a tool 110 provided in the processing unit 100, a processing unit ( 100), the tool moving unit 200 for moving the machining unit 100 to change the position of the tool 110 relative to the object to be processed (10); A support unit 300 that supports the processing target 10 and moves the processing target 10 so that the position of the processing target 10 with respect to the tool 110 is changed; A sensor unit 120 provided in the processing unit 100 and measuring an amount of current supplied to a processing motor operating the tool 110 or an operating force of the tool 110; And a control unit 400 receiving a measurement signal from the sensor unit 120 and transmitting a control signal to the tool moving unit 200 and the support unit 300.
  • control unit when the processing load value of the processing unit 100 exceeds the reference processing load value, the tool moving unit 200 or the support unit (so as to change the contact portion of the tool 110 in contact with the processing object 10) 300) can be controlled.
  • control unit 400, the tool moving unit 200 or the support unit to reduce the relative movement speed of the processing unit 100 and the processing target 10 when the processing load value of the processing unit 100 exceeds the reference processing load value 300 can be controlled.
  • the processing unit 100 may move up and down, left, and right in the front-rear direction by the tool moving unit 200, and may also have a tilting motion in the entire direction.
  • the tilting motion may mean a tilting motion for the entire direction in 3D coordinates.
  • the tool moving part 200 may be formed of a robot having a plurality of joints.
  • the processing unit 100 may perform drilling, milling, routing, or grinding on the object 10 to be processed.
  • the tool 110 may be in contact with a predetermined area of the surface of the object to be processed 10, and the machining unit 100 rotates or linearly reciprocates the tool 110, thereby drilling, milling, routing or grinding.
  • the same processing process can be performed.
  • the tool 110 wears, and when a machining process is performed using the worn tool 110, the object to be processed is processed using the tool 110 that has not undergone wear To implement the same effect as when performing the machining process for (10), it is possible to increase the contact force between the tool 110 and the object 10 or increase the number of movements per hour of the tool 110 .
  • the frictional force between the tool 110 and the object to be processed 10 is increased, so that the value of the machining load of the tool 110 can be increased and supplied to the machining motor.
  • the amount of current can also be increased.
  • the number of movements per hour of the tool 110 increases, the number of revolutions per hour (rpm) of the machining motor may increase, and the amount of current supplied to the machining motor may also increase.
  • the value of the processed load of the tool 110 can be derived by measuring the amount of current supplied to the movable motor.
  • the sensor unit 120 may measure a distance between the end of the tool moving unit 200 and the object 10 to be processed, which are combined with the processing unit 100. To this end, the sensor unit 120 may include a distance sensor that measures the distance between the end of the tool moving unit 200 and the object to be processed 10. In addition, the sensor unit 120 may include an ammeter measuring sensor, which is a sensor for measuring the amount of current supplied to the processing motor, and a force measuring sensor, which is a sensor for measuring the operating force of the tool 110.
  • the force measurement sensor may measure the force of the rotational motion of the tool 110 or the force of the linear reciprocating motion, and the force of the rotational motion of the tool 110 or the force of the linear reciprocating motion. In addition, when the value of the operating force of the tool 110 increases, the processing load of the processing unit 100 may increase.
  • the machining load value can be derived using the value of the amount of current supplied to the machining motor or the operating force of the tool 110, and the average value of both machining load values is the machining load value of the machining portion 100 Can be confirmed.
  • the present invention is not limited thereto, and derives the processing load value of the processing part 100 using only the value of the current supplied to the processing motor, or uses only the operating force of the tool 110 to process the processing load of the processing part 100 The value can be derived.
  • the correlation between the value of the amount of current supplied to the machining motor and the value of the machining load of the machining part 100 or the correlation between the operating force of the tool 110 and the machining load value of the machining part 100 can be obtained experimentally, Data for this may be stored in the control unit 400.
  • control unit 400 may derive the processing load value of the processing unit 100 using the amount of current supplied to the processing motor.
  • the reference processing load value may be stored in the control unit 400 in advance.
  • the machining load value of the machining part 100 exceeds the reference machining load value, the number of motions per hour of the operating tool 110 is greater than the number of motions per hour of the tool 110 that matches the existing machining load value. In this case, if the machining process is performed while maintaining the moving speed of the tool 110 before the tool 110 wears, the object 10 may be damaged.
  • machining load value of the machining section 100 exceeds the reference machining load value means that the operating force of the tool 110 in operation is greater than the operating force of the tool 110 matching the existing machining load value.
  • the object to be processed 10 may be damaged if the machining process is performed while maintaining the moving speed of the tool 110 before wear of the tool 110.
  • the control unit 400 uses the distance between the end of the tool moving part 200 measured by the distance sensor and the machining object 10 Measure the position of a part of the tool 110 that the tool 110 and the object to be processed 10 are in contact with, and the control unit 400 transmits a control signal to the tool moving unit 200, so that the end of the tool moving unit 200 By adjusting the distance between the objects to be processed 10, the rest of the tool 110, not a part of the tool 110, can be used for processing by contacting the object 10 to be processed.
  • the amount of wear on one portion of the tool 110 increases and the machining performance of the tool 110 decreases, the amount of wear of the tool 110 is managed by allowing the machining to proceed to the remaining portion of the tool 110
  • the life of the tool 110 is extended, and the machining quality of the object to be processed 10 can also be improved.
  • the value of the machining load of the machining part 100 exceeds the reference machining load value, stability of the tool moving part 200 may be lowered and the object to be processed 10 may be defective. The relative moving speed of the object 10 can be reduced.
  • the position adjustment of the tool 110 and the movement speed of the tool 110 can be used simultaneously in one machining process. Specifically, when the machining load value of the machining part 100 exceeds the reference machining load value, first, the movement speed of the tool 110 is adjusted to reduce the machining load value of the machining part 100, and then the tool The position adjustment of 110 is performed so that the movement speed of the tool 110 is adjusted again to the speed before the movement speed adjustment of the tool 110 so that processing can proceed.
  • the control unit 400 stores the three-dimensional shape data of the object to be processed 10 and calculates the relative positions of the tool 110 and the object 10 to be processed, and a tool 110 derived by the position calculator
  • the operation control unit 400 may be provided to control the operation of the tool moving unit 200 and the operation of the support unit 300 according to the position value of or the position value of the object to be processed 10.
  • the processing unit 100 is provided with a first position sensor to measure the position of the tool 110, and the support unit 300 is provided with a second position sensor to measure the position of the processing object 10.
  • the position calculator receives the position information of the tool 110 and the position information of the processing target 10 from the first position sensor and the second position sensor, and uses the tool 110 to process the tool 110 to be suitable for an ongoing process.
  • the relative position of the object 10 can be calculated.
  • the operation control unit 400 may control the operation of the tool moving unit 200 and the support unit 300 by receiving a calculation value derived from the position calculation unit and transmitting a control signal to the tool moving unit 200 and the support unit 300.
  • the processing apparatus of the present invention may further include an imaging unit 500 that combines with the processing unit 100 and acquires an image of the processing target 10.
  • the imaging unit 500 may transmit an image of the object to be processed 10 to the control unit 400, and the control unit 400 may transmit the image of the object to be processed 10 to the processing object 10 stored in the position calculation unit. It can be compared with 3D shape data.
  • control unit 400 compares the image with respect to the object to be processed 10 and the three-dimensional shape data of the object 10, so that the object to be processed 10 is derived from the three-dimensional shape data of the object 10 By comparing the image of the work area and the work object 10 among the surfaces, the relative positions of the tool 110 and the work object 10 can be corrected.
  • the relative positions of the tool 110 and the object 10 are not only the relative three-dimensional positions of the tool 110 and the object 10, but also the central axis of the tool 110 and the surface of the object 10. It may include an angle formed by the normal of the region.
  • the processing apparatus of the present invention may further include a dust removal unit 600 that is combined with the processing unit 100 and removes dust on the surface of the processing target 10.
  • the dust removal unit 600 is coupled to the processing unit 100 in the shape of a duct, and the dust removal unit 600 is installed inside the tool moving unit 200 and may be connected to a suction hose for sucking air. And, the suction hose can be connected to a suction pump that provides the power to suck air.
  • the dust removal part 600 connected to the suction hose by the operation of the suction pump can suck dust, and the position of the dust removal part 600 changes as the processing part 100 moves, so that the Dust on the surface can be removed by suction.
  • the support part 300 is in contact with the processing object 10, supports the processing object 10 and adjusts the position angle of the processing object 10 with respect to the tool 110, the jig unit 310, and the jig unit 310 ) And a jig driving unit 320 for moving and tilting the jig unit 310.
  • the position angle may be an angle formed by the normal axis of the working area among the central axis of the tool 110 and the surface of the object to be processed 10.
  • a plurality of jig parts 310 may be provided on the support part 300.
  • the jig driving unit 320 moves the jig unit 310 in the up, down, left, right, front and rear directions, and thus the jig unit 310 moves the object to be processed 10 in the up, down, left, and right directions, or the jig driving unit 320 is jig It is possible to tilt the part 310 in the entire direction, thereby forming a slope on the object 10 to be processed.
  • the jig part 310 is an adsorption part 311 that performs vacuum adsorption on one surface of the processing object 10 rather than on the surface of the processing object 10 in contact with the tool 110 at the end of the jig part 310. It may be provided. In addition, the jig unit 310 may be provided with an adsorption unit support 312 that is engaged with the adsorption unit 311 and moves in the vertical direction.
  • the adsorption section 311 fixes the processing target 10 by vacuum adsorption, and the angle of the adsorption section 311 itself can be adjusted, so that the adsorption section 311 is adsorbed on one surface of the processing target 10 that is a curved surface. It can be easy.
  • the adsorption unit 311 is formed of a flexible material to increase the vacuum adsorption power.
  • the processing unit 100 may include a temperature measuring unit for measuring the temperature of the surface of the processing target 10 in contact with the tool 110. Depending on the material of the object to be processed 10, deterioration or deformation of the object to be processed 10 may occur due to temperature rise. Therefore, the temperature measuring unit can measure the temperature of the surface of the object 10 to be processed in real time, and the surface temperature of the object 10 measured by the temperature measuring unit exceeds the reference temperature previously stored in the control unit 400 , It is possible to reduce the processing load value of the processing unit 100.
  • the temperature measurement unit may include a non-contact temperature measurement sensor that measures temperature by irradiating infrared rays on the surface of the object to be processed 10.
  • the machining apparatus of the present invention may further include a wear amount measuring unit 700 for measuring the wear amount of the tool 110.
  • the wear amount measurement unit 700 may be combined with the support unit 300.
  • the tool 110 provided in the processing unit 100 may be detachable from the processing unit 100.
  • the separated tool 110 may be placed on the wear amount measuring unit 700.
  • the wear amount measuring unit 700 may measure the weight of the separated tool 110.
  • the wear amount measurement unit 700 compares the weight of the tool 110 before the wear proceeds and the weight of the separated tool 110, and the tool 110 decreases due to the wear progressing on the tool 110 before the wear progresses
  • the weight of the tool can be measured, and the wear amount of the tool 110 can be calculated using the reduced weight of the tool 110. That is, the weight reduction amount of the tool 110 and the wear amount of the tool 110 may be proportional.
  • a cutting process system including the processing apparatus of the present invention can be constructed. Then, a carbon fiber reinforced plastic (CFRP) product production system including the processing apparatus of the present invention can be constructed.
  • CFRP carbon fiber reinforced plastic
  • CFRP carbon fiber reinforced plastic
  • various types of products can be produced, so products made of carbon fiber reinforced plastic (CFRP) materials may include complex shapes.
  • carbon fiber reinforced plastic (CFRP) materials are often made in the form of large products. Accordingly, when the processing of the carbon fiber reinforced plastic (CFRP) is performed using the processing apparatus of the present invention, the quality of the carbon fiber reinforced plastic (CFRP) product can be improved.
  • the sensor unit 120 may measure the amount of current supplied to the machining motor and measure the distance between the end of the tool moving unit 200 and the object to be processed 10.
  • control unit 400 may receive a measurement signal from the sensor unit 120.
  • control unit 400 may derive the processing load value of the processing unit 100 using the amount of current supplied to the processing motor, and compare the processing load value and the reference processing load value of the processing unit 100. .
  • the control unit 400 may transmit a control signal to the tool moving part 200 or the support part 300.
  • the position of the machining part 100 with respect to the machining object 10 may be varied by controlling the operation of the tool moving part 200 or the support part 300.
  • the tool moving part 200 and the support part 300 may perform relative motion with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

본 발명의 일 실시 예는, 공구의 일 부위의 마모량이 증가하여 공구의 가공 성능이 저하되는 경우, 공구의 나머지 부위로 가공이 진행되도록 함으로써, 공구의 마모량이 관리되어 공구의 수명이 연장되고, 가공대상에 대한 가공품질도 향상시킬 수 있는 가공 시스템을 제공한다. 본 발명의 실시 예에 따른 공구 마모를 고려한 공구 위치 가변 가공 장치는, 상기 가공부와 결합하고, 상기 가공대상에 대한 상기 공구의 위치가 변경되도록 상기 가공부를 이동시키는 공구이동부; 상기 가공대상을 지지하고, 상기 공구에 대한 상기 가공대상의 위치가 변경되도록 상기 가공대상을 이동시키는 지지부; 상기 가공부에 구비되고, 상기 공구를 작동시키는 가공모터에 공급되는 전류량 또는 상기 공구의 작동 힘을 측정하는 센서부; 및 상기 센서부로부터 측정신호를 전달 받고, 상기 공구이동부와 상기 지지부에 제어신호를 전달하는 제어부;를 포함한다.

Description

공구 마모를 고려한 공구 위치 가변 가공 장치 및 이를 이용한 공구 위치 제어 방법
본 발명은 공구 마모를 고려한 공구 위치 가변 가공 장치 및 이를 이용한 공구 위치 제어 방법에 관한 것으로, 더욱 상세하게는, 공구의 일 부위의 마모량이 증가하여 공구의 가공 성능이 저하되는 경우, 공구의 나머지 부위로 가공이 진행되도록 함으로써, 공구의 마모량이 관리되어 공구의 수명이 연장되고, 가공대상에 대한 가공품질도 향상시킬 수 있는 가공 시스템에 관한 것이다.
최근 산업 현장에서는 공장 자동화로 인하여 자동으로 가공을 수행하는 가공 시스템이 다양하게 사용되며 그 사용량도 지속적으로 증가하고 있다. 그리고, 이와 같은 가공 시스템은 복수 개의 부품을 조립하는 조립 공정 뿐만 아니라, 가공대상에 대한 가공 공정, 연마 공정, 도색 공정 등 다양한 공정을 수행할 수 있도록 발전하고 있다.
그 중 절삭 공정에서는, 공구의 마모 정도를 자동으로 측정하고, 공구의 마모 정도에 따라 절삭 공정을 수행하는 시스템에 대한 제어를 수행하는 것이 중요할 수 있다. 그런데, 종래에는 촬상 장치나 육안에 의해 공구의 마모 정도를 확인하면서 절삭 공정을 수행하여 가공대상의 불량률이 증가하는 문제가 있다.
대한민국 등록특허 제1996-0003211호에서는, NC 선반 및 밀링의 절삭가공시 공구마모 감시에 사용될 C.C.D. 카메라를 적절한 위치에 놓기 위하여, 공작물과 지그를 설치하거나 완성된 공작물을 컨베이어 벨트나 무인자동운송 차량에 옮기는 역할을 하는 로봇 팔의 끝에 카메라를 설치하여 가공중 한 공정이 끝나고 다음 공정으로 넘어갈 때 또는 공작물의 가공이 완전히 끝난 이후 N.C. 컨트롤러와 로봇 컨트롤러의 연계 제어에 의하여 범용 로봇 팔을 적당한 위치까지 움직여 공구마모를 화상으로 자동 측정하는 것을 특징으로 하는 공구마모 N.C. 절삭시스템의 모니터링 방법이 개시되어 있다.
(선행특허문헌)
대한민국 등록특허 제1996-0003211호
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 공구의 마모량을 관리하도록 하는 것이다.
그리고, 본 발명의 목적은, 가공부의 가공부하가 증가하는 경우 자동으로 가공부의 가공부하가 감소하도록 제어하면서 공정을 수행하도록 하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 가공부에 구비된 공구를 이용하여 가공대상에 대한 가공을 수행하는 가공 시스템에 있어서, 상기 가공부와 결합하고, 상기 가공대상에 대한 상기 공구의 위치가 변경되도록 상기 가공부를 이동시키는 공구이동부; 상기 가공대상을 지지하고, 상기 공구에 대한 상기 가공대상의 위치가 변경되도록 상기 가공대상을 이동시키는 지지부; 상기 가공부에 구비되고, 상기 공구를 작동시키는 가공모터에 공급되는 전류량 또는 상기 공구의 작동 힘을 측정하는 센서부; 및 상기 센서부로부터 측정신호를 전달 받고, 상기 공구이동부와 상기 지지부에 제어신호를 전달하는 제어부;를 포함하고, 상기 제어부는, 상기 가공부의 가공부하 값이 기준 가공부하 값을 초과하는 경우, 상기 가공대상과 접촉하는 상기 공구의 접촉 부위가 변경되도록 상기 공구이동부 또는 상기 지지부를 제어하는 것을 특징으로 한다.
본 발명의 실시 예에 있어서, 상기 센서부는, 상기 가공부와 결합하는 상기 공구이동부의 말단과 상기 가공대상 간 거리를 측정할 수 있다.
본 발명의 실시 예에 있어서, 상기 제어부는 상기 가공부의 가공부하 값이 기준 가공부하 값을 초과하는 경우 상기 가공부와 상기 가공대상의 상대적 이동속도가 감소하도록 상기 공구이동부 또는 상기 지지부를 제어할 수 있다.
본 발명의 실시 예에 있어서, 상기 가공부는 상기 가공대상에 대해 드릴링, 밀링, 라우팅 또는 그라인딩을 수행할 수 있다.
본 발명의 실시 예에 있어서, 상기 제어부는 상기 가공모터에 공급되는 전류량을 이용하여 상기 가공부의 가공부하 값을 도출할 수 있다.
본 발명의 실시 예에 있어서, 상기 제어부는, 상기 가공대상의 3차원 형상 데이터를 저장하고, 상기 공구와 상기 가공대상의 상대적 위치를 연산하는 위치연산부, 및 상기 위치연산부에 의해 도출된 상기 공구의 위치 값 또는 상기 가공대상의 위치 값에 따라 상기 공구이동부의 작동과 상기 지지부의 작동을 제어하는 작동제어부,를 구비할 수 있다.
본 발명의 실시 예에 있어서, 상기 가공부와 결합하고, 상기 가공대상에 대한 이미지를 획득하는 촬상부를 더 포함할 수 있다.
본 발명의 실시 예에 있어서, 상기 가공부에 결합하고, 상기 가공대상의 표면에 있는 분진을 제거하는 분진제거부를 더 포함할 수 있다.
본 발명의 실시 예에 있어서, 상기 지지부는,
상기 가공대상과 접촉하여 상기 가공대상을 지지하고, 상기 공구에 대한 상기 가공대상의 위치각을 조절하는 지그부, 및 상기 지그부와 결합하고, 상기 지그부를 이동 및 틸팅운동시키는 지그구동부,를 구비할 수 있다.
본 발명의 실시 예에 있어서, 상기 가공부는 상기 공구와 접촉하는 상기 가공대상의 표면에 대한 온도를 측정하는 온도측정부를 구비할 수 있다.
본 발명의 실시 예에 있어서, 상기 공구의 마모량을 측정하는 마모량측정부를 더 포함할 수 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, i) 상기 센서부가 상기 가공모터에 공급되는 전류량을 측정하고, 상기 공구이동부의 말단과 상기 가공대상 간 거리를 측정하는 단계; ii) 상기 제어부가 상기 센서부로부터 측정신호를 전달 받는 단계; iii) 상기 제어부가, 상기 가공모터에 공급되는 전류량을 이용하여 상기 가공부의 가공부하 값을 도출하고, 상기 가공부의 가공부하 값과 상기 기준 가공부하 값과 비교하는 단계; iv) 상기 가공부의 가공부하 값이 상기 기준 가공부하 값을 초과하는 경우, 상기 제어부가 상기 공구이동부 또는 상기 지지부로 제어신호를 전달하는 단계; 및 v) 상기 공구이동부 또는 상기 지지부의 작동 제어에 의해 상기 가공대상에 대한 상기 가공부의 위치가 가변하는 단계;를 포함한다.
본 발명의 실시 예에 있어서, 상기 v) 단계에서, 상기 공구이동부와 상기 지지부는 서로 상대적인 운동을 수행할 수 있다.
상기와 같은 구성에 따른 본 발명의 효과는, 공구의 일 부위의 마모량이 증가하여 공구의 가공 성능이 저하되는 경우, 공구의 나머지 부위로 가공이 진행되도록 함으로써, 공구의 마모량이 관리되어 공구의 수명이 연장되고, 가공대상에 대한 가공품질도 향상시킬 수 있다는 것이다.
그리고, 본 발명의 효과는, 가공부의 가공부하 값이 기준 가공부하 값의 이하로 유지되도록 가공부의 이동속도를 제어하므로, 가공대상의 불량률을 저하시키고, 공구의 안정성을 향상시킬 수 있다는 것이다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 종래기술에 따른 공구 제어기술에 대한 개략도이다.
도 2는 본 발명의 일 실시 예에 따른 가공 시스템의 공구 제어에 대한 개략도이다.
도 3은 본 발명의 일 실시 예에 따른 가공 시스템의 모식도이다.
도 4는 본 발명의 일 실시 예에 따른 공구이동부의 모식도이다.
도 5는 본 발명의 일 실시 예에 따른 지지부의 모식도이다.
본 발명인 공구 마모를 고려한 공구 위치 가변 가공 장치는, 가공부에 구비된 공구를 이용하여 가공대상에 대한 가공을 수행하는 가공 시스템에 있어서, 상기 가공부와 결합하고, 상기 가공대상에 대한 상기 공구의 위치가 변경되도록 상기 가공부를 이동시키는 공구이동부; 상기 가공대상을 지지하고, 상기 공구에 대한 상기 가공대상의 위치가 변경되도록 상기 가공대상을 이동시키는 지지부; 상기 가공부에 구비되고, 상기 공구를 작동시키는 가공모터에 공급되는 전류량 또는 상기 공구의 작동 힘을 측정하는 센서부; 및 상기 센서부로부터 측정신호를 전달 받고, 상기 공구이동부와 상기 지지부에 제어신호를 전달하는 제어부;를 포함하고, 상기 제어부는, 상기 가공부의 가공부하 값이 기준 가공부하 값을 초과하는 경우, 상기 가공대상과 접촉하는 상기 공구의 접촉 부위가 변경되도록 상기 공구이동부 또는 상기 지지부를 제어하는 것을 특징으로 한다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시 예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하 첨부된 도면을 참고하여 본 발명에 대하여 상세히 설명하기로 한다.
도 1은 종래기술에 따른 공구 제어기술에 대한 개략도이다. 도 1에서 보는 바와 같이, 종래기술에 따른 공구 제어기술을 이용하는 경우, 가공대상(10)에 대한 가공 중, 공구(1)의 일 부위가 주로 이용되고 나머지 부위는 이용 빈도가 낮아, 공구(1)의 일 부위에 마모가 집중되어 공구(1)의 수명이 단축되는 문제가 있을 수 있다.
도 2는 본 발명의 일 실시 예에 따른 가공 시스템의 공구 제어에 대한 개략도이고, 도 3은 본 발명의 일 실시 예에 따른 가공 시스템의 모식도이며, 도 4는 본 발명의 일 실시 예에 따른 공구이동부(200)의 모식도이다. 그리고, 도 5는 본 발명의 일 실시 예에 따른 지지부(300)의 모식도이다.
도 2 내지 도 5에서 보는 바와 같이, 본 발명의 가공 장치는, 가공부(100)에 구비된 공구(110)를 이용하여 가공대상(10)에 대한 가공을 수행하는 가공 시스템으로써, 가공부(100)와 결합하고, 가공대상(10)에 대한 공구(110)의 위치가 변경되도록 가공부(100)를 이동시키는 공구이동부(200); 가공대상(10)을 지지하고, 공구(110)에 대한 가공대상(10)의 위치가 변경되도록 가공대상(10)을 이동시키는 지지부(300); 가공부(100)에 구비되고, 공구(110)를 작동시키는 가공모터에 공급되는 전류량 또는 공구(110)의 작동 힘을 측정하는 센서부(120); 및 센서부(120)로부터 측정신호를 전달 받고, 공구이동부(200)와 지지부(300)에 제어신호를 전달하는 제어부(400);를 포함한다.
그리고, 제어부는, 가공부(100)의 가공부하 값이 기준 가공부하 값을 초과하는 경우, 가공대상(10)과 접촉하는 공구(110)의 접촉 부위가 변경되도록 공구이동부(200) 또는 지지부(300)를 제어할 수 있다. 또한, 제어부(400)는 가공부(100)의 가공부하 값이 기준 가공부하 값을 초과하는 경우 가공부(100)와 가공대상(10)의 상대적 이동속도가 감소하도록 공구이동부(200) 또는 지지부(300)를 제어할 수 있다.
가공부(100)는 공구이동부(200)에 의해 상하 좌우 전후 방향으로 이동할 수 있고, 또한, 전체 방향으로 틸팅운동이 가능할 수 있다. (본 발명의 실시 예에서 틸팅운동은 3차원 좌표 상 전체 방향에 대한 틸팅운동을 의미할 수 있다.) 그리고, 공구이동부(200)는, 복수 개의 관절을 구비하는 로봇으로 형성될 수 있다.
가공부(100)는 가공대상(10)에 대해 드릴링, 밀링, 라우팅 또는 그라인딩을 수행할 수 있다. 여기서, 공구(110)는 가공대상(10) 표면의 소정의 면적과 접촉될 수 있고, 가공부(100)가 공구(110)를 회전운동 또는 직선 왕복운동시킴으로써, 드릴링, 밀링, 라우팅 또는 그라인딩과 같은 가공 공정이 수행될 수 있다.
공구(110)에 의한 가공 공정이 진행될수록 공구(110)는 마모되며, 마모가 진행된 공구(110)를 이용하여 가공 공정을 수행하는 경우, 마모가 진행되지 않은 공구(110)를 이용하여 가공대상(10)에 대한 가공 공정을 수행하는 경우와 동일한 효과를 구현하기 위해, 공구(110)와 가공대상(10) 간 접촉 힘을 증가시키거나 공구(110)의 시간 당 운동 횟수를 증가킬 수 있다.
공구(110)와 가공대상(10) 간 접촉 힘이 증가되면 공구(110)와 가공대상(10) 간 마찰력이 증가하여 공구(110)의 가공부하 값이 증가할 수 있고, 가공모터에 공급되는 전류량 또한 증가할 수 있다.
그리고, 공구(110)의 시간 당 운동 횟수가 증가하면 가공모터의 시간 당 회전수(rpm)가 증가할 수 있고, 가공모터에 공급되는 전류량 또한 증가할 수 있다.
상기와 같이, 가공부하 증가 시 공구(110)를 가동시키는 가동모터에 공급되는 전류량이 증가하므로, 가동모터에 공급되는 전류량을 측정하여 공구(110)의 가공부하 값을 도출할 수 있다.
센서부(120)는, 가공부(100)와 결합하는 공구이동부(200)의 말단과 가공대상(10) 간 거리를 측정할 수 있다. 이를 위해, 센서부(120)는 공구이동부(200)의 말단과 가공대상(10) 간 거리를 측정하는 거리센서를 구비할 수 있다. 그리고, 센서부(120)는, 가공모터에 공급되는 전류량을 측정하는 센서인 전류량측정센서, 및 공구(110)의 작동 힘을 측정하는 센서인 힘측정센서를 구비할 수 있다.
힘측정센서는 공구(110)의 회전운동의 힘 또는 직선 왕복운동의 힘을 측정할 수 있으며, 공구(110)의 회전운동의 힘 또는 직선 왕복운동의 힘을 측정할 수 있다. 그리고, 이와 같은 공구(110)의 작동 힘의 값이 증가하면 가공부(100)의 가공부하가 증가할 수 있다.
즉, 가공모터에 공급되는 전류량의 값 또는 공구(110)의 작동 힘의 값을 이용하여 가공부하 값을 도출할 수 있으며, 양 가공부하 값의 평균 값을 가공부(100)의 가공부하 값으로 확정할 수 있다.
이에 따라, 가공부(100)의 가공부하 값의 정확도를 향상시킬 수 있다. 다만, 이에 한정되는 것은 아니고, 가공모터에 공급되는 전류량의 값만을 이용하여 가공부(100)의 가공부하 값을 도출하거나, 공구(110)의 작동 힘만을 이용하여 가공부(100)의 가공부하 값을 도출할 수 있다.
가공모터에 공급되는 전류량의 값과 가공부(100)의 가공부하 값의 상관 관계 또는 공구(110)의 작동 힘과 가공부(100)의 가공부하 값의 상관 관계는 실험적으로 획득될 수 있으며, 이에 대한 데이터는 제어부(400)에 저장될 수 있다.
이에 따라, 제어부(400)는 가공모터에 공급되는 전류량을 이용하여 가공부(100)의 가공부하 값을 도출할 수 있다.
기준 가공부하 값은 사전에 제어부(400)에 저장될 수 있다.
가공부(100)의 가공부하 값이 기준 가공부하 값을 초과한다는 것은, 기존 가공부하 값과 매칭되는 공구(110)의 시간 당 운동 횟수 보다 작동 중인 공구(110)의 시간 당 운동 횟수가 크다는 것이고, 이와 같은 경우 공구(110)의 마모 전 공구(110)의 이동속도를 유지하면서 가공 공정을 수행하면 가공대상(10)이 손상될 수 있다.
마찬가지로, 가공부(100)의 가공부하 값이 기준 가공부하 값을 초과한다는 것은, 기존 가공부하 값과 매칭되는 공구(110)의 작동 힘 보다 작동 중인 공구(110)의 작동 힘이 크다는 것이고, 이와 같은 경우 공구(110)의 마모 전 공구(110)의 이동속도를 유지하면서 가공 공정을 수행하면 가공대상(10)이 손상될 수 있다.
따라서, 가공부(100)의 가공부하 값이 기준 가공부하 값을 초과하는 경우, 제어부(400)는 거리센서에 의해 측정된 공구이동부(200)의 말단과 가공대상(10) 간 거리를 이용하여 공구(110)와 가공대상(10)이 접촉되는 공구(110)의 일 부위 위치를 측정하고, 제어부(400)가 공구이동부(200)로 제어신호를 전달하여, 공구이동부(200)의 말단과 가공대상(10) 간 거리를 조절함으로써, 공구(110)의 일 부위가 아닌 공구(110)의 나머지 부위가 가공대상(10)과 접촉하여 가공에 이용되도록 할 수 있다. 이에 따라, 공구(110)의 일 부위의 마모량이 증가하여 공구(110)의 가공 성능이 저하되는 경우, 공구(110)의 나머지 부위로 가공이 진행되도록 함으로써, 공구(110)의 마모량이 관리되어 공구(110)의 수명이 연장되고, 가공대상(10)에 대한 가공품질도 향상시킬 수 있다.
또는, 가공부(100)의 가공부하 값이 기준 가공부하 값을 초과하는 경우, 공구이동부(200)의 안정성이 저하되고 가공대상(10)이 불량해질 수 있으므로, , 가공부(100)와 가공대상(10)의 상대적 이동속도를 감소시킬 수 있다.
상기와 같은 공구(110)의 위치 조절과 공구(110)의 이동속도 조절은 하나의 가공공정에서 동시에 이용될 수 있다. 구체적으로, 가공부(100)의 가공부하 값이 기준 가공부하 값을 초과하는 경우, 먼저, 공구(110)의 이동속도 조절이 수행되어 가공부(100)의 가공부하 값을 감소시킨 다음, 공구(110)의 위치 조절이 수행되어 공구(110)의 이동속도가 다시 공구(110)의 이동속도 조절 전 속도로 조절되어 가공이 진행되도록 할 수 있다.
제어부(400)는, 가공대상(10)의 3차원 형상 데이터를 저장하고, 공구(110)와 가공대상(10)의 상대적 위치를 연산하는 위치연산부, 및 위치연산부에 의해 도출된 공구(110)의 위치 값 또는 가공대상(10)의 위치 값에 따라 공구이동부(200)의 작동과 지지부(300)의 작동을 제어하는 작동제어부(400),를 구비할 수 있다.
가공부(100)에는 제1위치센서가 구비되어 공구(110)의 위치를 측정할 수 있고, 지지부(300)에는 제2위치센서가 구비되어 가공대상(10)의 위치를 측정할 수 있다. 그리고, 위치연산부는 제1위치센서와 제2위치센서로부터 공구(110)의 위치 정보와 가공대상(10)의 위치 정보를 전달 받으며, 이를 이용하여 진행 중인 공정에 적합하도록 공구(110)와 가공대상(10)의 상대적 위치를 연산할 수 있다.
작동제어부(400)는 위치연산부로부터 도출된 연산 값을 전달 받고 공구이동부(200)와 지지부(300)에 제어신호를 전달하여 공구이동부(200)와 지지부(300)의 작동을 제어할 수 있다.
도 3 및 도 4에서 보는 바와 같이, 본 발명의 가공 장치는, 가공부(100)와 결합하고, 가공대상(10)에 대한 이미지를 획득하는 촬상부(500)를 더 포함할 수 있다. 촬상부(500)는 가공대상(10)에 대한 이미지를 제어부(400)로 전달할 수 있고, 제어부(400)는 전달 받은 가공대상(10)에 대한 이미지를 위치연산부에 저장된 가공대상(10)의 3차원 형상 데이터와 비교할 수 있다.
그리고, 제어부(400)는 가공대상(10)에 대한 이미지와 가공대상(10)의 3차원 형상 데이터를 비교함으로써, 가공대상(10)의 3차원 형상 데이터에 의해 도출되는 가공대상(10)의 표면 중 작업 영역과, 가공대상(10)에 대한 이미지를 비교하여, 공구(110)와 가공대상(10)의 상대적 위치를 수정할 수 있다.
공구(110)와 가공대상(10)의 상대적인 위치는, 공구(110)와 가공대상(10)의 상대적인 3차원 위치 뿐만 아니라, 공구(110)의 중심축과 가공대상(10)의 표면 중 작업 영역의 법선이 형성하는 각도를 포함할 수 있다.
도 3 및 도 5에서 보는 바와 같이, 본 발명의 가공 장치는, 가공부(100)와 결합하고, 가공대상(10)의 표면에 있는 분진을 제거하는 분진제거부(600)를 더 포함할 수 있다. 분진제거부(600)는 덕트의 형상으로 가공부(100)에 결합되며, 분진제거부(600)는 공구이동부(200)의 내부에 설치되어 공기를 흡입하는 흡입 호스와 연결될 수 있다. 그리고, 흡입 호스는 공기를 흡입하는 힘을 제공하는 흡입 펌프와 연결될 수 있다.
흡입 펌프의 가동에 의해 흡입 호스와 연결된 분진제거부(600)는 분진을 흡입할 수 있으며, 가공부(100)의 이동에 따라 분진제거부(600)의 위치가 변경되면서 가공대상(10)의 표면에 있는 분진을 흡입하여 제거할 수 있다.
지지부(300)는, 가공대상(10)과 접촉하여 가공대상(10)을 지지하고 공구(110)에 대한 가공대상(10)의 위치각을 조절하는 지그부(310), 및 지그부(310)와 결합하고 지그부(310)를 이동 및 틸팅운동시키는 지그구동부(320),를 구비할 수 있다. 여기서, 위치각은, 공구(110)의 중심축과 가공대상(10)의 표면 중 작업 영역의 법선이 형성하는 각도일 수 있다.
지그부(310)는 지지부(300)에 복수 개 구비될 수 있다. 그리고, 지그구동부(320)가 지그부(310)를 상하 좌우 전후 방향으로 이동시킴으로써 지그부(310)가 가공대상(10)을 상하 좌우 전후의 방향으로 이동시키거나, 지그구동부(320)가 지그부(310)를 전체 방향으로 틸팅(tilting)운동시키는 것이 가능하여 가공대상(10)에 기울기를 형성할 수 있다.
지그부(310)는, 지그부(310)의 말단에, 공구(110)와 접촉하는 가공대상(10)의 표면이 아닌 가공대상(10)의 일면에 진공 흡착을 수행하는 흡착부(311)를 구비할 수 있다. 그리고, 지그부(310)는, 흡착부(311)와 결합하고 상하 좌우 전후 방향으로 이동하는 흡착부지지대(312)를 구비할 수 있다.
흡착부(311)는 진공 흡착에 의해 가공대상(10)을 고정하며, 흡착부(311) 자체의 각도 조절이 가능하여 곡면인 가공대상(10)의 일면에 대한 흡착부(311)의 흡착이 용이할 수 있다. 그리고, 흡착부(311)는 유연한 소재로 형성되어 진공 흡착력을 증대시킬 수 있다.
가공부(100)는 공구(110)과 접촉하는 가공대상(10)의 표면에 대한 온도를 측정하는 온도측정부를 구비할 수 있다. 가공대상(10)의 재질에 따라 온도 상승에 의해 가공대상(10)의 변질 또는 변형이 발생할 수 있다. 그러므로, 온도측정부는 실시간으로 가공대상(10)의 표면에 대한 온도를 측정할 수 있고, 온도측정부가 측정한 가공대상(10)의 표면 온도가 제어부(400)에 미리 저장된 기준 온도를 초과하는 경우, 가공부(100)의 가공부하 값을 감소시킬 수 있다. 온도측정부는 가공대상(10)의 표면에 적외선을 조사하여 온도를 측정하는 비접촉식 온도 측정 센서를 구비할 수 있다.
본 발명의 가공 장치는, 공구(110)의 마모량을 측정하는 마모량측정부(700)를 더 포함할 수 있다. 도 5에서 보는 바와 같이, 마모량측정부(700)는 지지부(300)와 결합할 수 있다. 가공부(100)에 구비된 공구(110)는 가공부(100)로부터 분리 가능할 수 있다. 그리고, 분리된 공구(110)는 마모량측정부(700) 상에 올려질 수 있다. 여기서, 마모량측정부(700)는 분리된 공구(110)의 무게를 측정할 수 있다. 마모량측정부(700)는 마모가 진행되기 전의 공구(110)의 무게와 분리된 공구(110)의 무게를 비교하여, 마모가 진행되기 전의 공구(110)에 마모가 진행되어 감소한 공구(110)의 무게를 측정할 수 있으며, 감소한 공구(110)의 무게를 이용하여 공구(110)의 마모량을 연산할 수 있다. 즉, 공구(110)의 무게 감소량과 공구(110)의 마모량은 비례할 수 있다.
본 발명의 가공 장치를 포함하는 절삭 공정 시스템을 구축할 수 있다. 그리고, 본 발명의 가공 장치를 포함하는 탄소섬유강화플라스틱(CFRP) 제품 생산 시스템을 구축할 수 있다.
탄소섬유강화플라스틱(CFRP) 소재의 특성으로 인해 다양한 형태의 제품을 생산할 수 있기 때문에, 탄소섬유강화플라스틱(CFRP) 소재로 이루어진 제품은 복잡한 형상을 포함하기도 한다. 그리고 탄소섬유강화플라스틱(CFRP) 소재가 대형 제품의 형태로 이루어지는 경우가 많아지고 있다. 따라서, 본 발명의 가공 장치를 이용하여 탄소섬유강화플라스틱(CFRP)에 대한 가공을 수행하는 경우, 탄소섬유강화플라스틱(CFRP) 제품의 품질을 향상시킬 수 있다.
이하, 본 발명의 가공 장치를 이용한 공구 위치 제어 방법에 대해 설명하기로 한다.
첫째 단계에서, 센서부(120)가 가공모터에 공급되는 전류량을 측정하고, 공구이동부(200)의 말단과 가공대상(10) 간 거리를 측정할 수 있다.
둘째 단계에서, 제어부(400)가 센서부(120)로부터 측정신호를 전달 받을 수 있다.
셋째 단계에서, 제어부(400)가, 가공모터에 공급되는 전류량을 이용하여 가공부(100)의 가공부하 값을 도출하고, 가공부(100)의 가공부하 값과 기준 가공부하 값과 비교할 수 있다.
넷째 단계에서, 가공부(100)의 가공부하 값이 기준 가공부하 값을 초과하는 경우, 제어부(400)가 공구이동부(200) 또는 지지부(300)로 제어신호를 전달할 수 있다.
다섯째 단계에서, 공구이동부(200) 또는 지지부(300)의 작동 제어에 의해 가공대상(10)에 대한 가공부(100)의 위치가 가변할 수 있다. 여기서, 공구이동부(200)와 지지부(300)는 서로 상대적인 운동을 수행할 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
(부호의 설명)
1 : 공구
10 : 가공대상
100 : 가공부
110 : 공구
120 : 센서부
200 : 공구이동부
300 : 지지부
310 : 지그부
311 : 흡착부
312 : 흡착부지지대
320 : 지그구동부
400 : 제어부
500 : 촬상부
600 : 분진제거부
700 : 마모량측정부

Claims (15)

  1. 가공부에 구비된 공구를 이용하여 가공대상에 대한 가공을 수행하는 가공 장치에 있어서,
    상기 가공부와 결합하고, 상기 가공대상에 대한 상기 공구의 위치가 변경되도록 상기 가공부를 이동시키는 공구이동부;
    상기 가공대상을 지지하고, 상기 공구에 대한 상기 가공대상의 위치가 변경되도록 상기 가공대상을 이동시키는 지지부;
    상기 가공부에 구비되고, 상기 공구를 작동시키는 가공모터에 공급되는 전류량 또는 상기 공구의 작동 힘을 측정하는 센서부; 및
    상기 센서부로부터 측정신호를 전달 받고, 상기 공구이동부와 상기 지지부에 제어신호를 전달하는 제어부;를 포함하고,
    상기 제어부는, 상기 가공부의 가공부하 값이 기준 가공부하 값을 초과하는 경우, 상기 가공대상과 접촉하는 상기 공구의 접촉 부위가 변경되도록 상기 공구이동부 또는 상기 지지부를 제어하는 것을 특징으로 하는 공구 마모를 고려한 공구 위치 가변 가공 장치.
  2. 청구항 1에 있어서,
    상기 센서부는, 상기 가공부와 결합하는 상기 공구이동부의 말단과 상기 가공대상 간 거리를 측정하는 것을 특징으로 하는 공구 마모를 고려한 공구 위치 가변 가공 장치.
  3. 청구항 1에 있어서,
    상기 제어부는 상기 가공부의 가공부하 값이 기준 가공부하 값을 초과하는 경우 상기 가공부와 상기 가공대상의 상대적 이동속도가 감소하도록 상기 공구이동부 또는 상기 지지부를 제어하는 것을 특징으로 하는 공구 마모를 고려한 공구 위치 가변 가공 장치.
  4. 청구항 1에 있어서,
    상기 가공부는 상기 가공대상에 대해 드릴링, 밀링, 라우팅 또는 그라인딩을 수행하는 것을 특징으로 하는 공구 마모를 고려한 공구 위치 가변 가공 장치.
  5. 청구항 1에 있어서,
    상기 제어부는 상기 가공모터에 공급되는 전류량을 이용하여 상기 가공부의 가공부하 값을 도출하는 것을 특징으로 하는 공구 마모를 고려한 공구 위치 가변 가공 장치.
  6. 청구항 1에 있어서,
    상기 제어부는,
    상기 가공대상의 3차원 형상 데이터를 저장하고, 상기 공구와 상기 가공대상의 상대적 위치를 연산하는 위치연산부, 및
    상기 위치연산부에 의해 도출된 상기 공구의 위치 값 또는 상기 가공대상의 위치 값에 따라 상기 공구이동부의 작동과 상기 지지부의 작동을 제어하는 작동제어부,를 구비하는 것을 특징으로 하는 공구 마모를 고려한 공구 위치 가변 가공 장치.
  7. 청구항 1에 있어서,
    상기 가공부와 결합하고, 상기 가공대상에 대한 이미지를 획득하는 촬상부를 더 포함하는 것을 특징으로 하는 공구 마모를 고려한 공구 위치 가변 가공 장치.
  8. 청구항 1에 있어서,
    상기 가공부에 결합하고, 상기 가공대상의 표면에 있는 분진을 제거하는 분진제거부를 더 포함하는 것을 특징으로 하는 공구 마모를 고려한 공구 위치 가변 가공 장치.
  9. 청구항 1에 있어서,
    상기 지지부는,
    상기 가공대상과 접촉하여 상기 가공대상을 지지하고, 상기 공구에 대한 상기 가공대상의 위치각을 조절하는 지그부, 및
    상기 지그부와 결합하고, 상기 지그부를 이동 및 틸팅운동시키는 지그구동부,를 구비하는 것을 특징으로 하는 공구 마모를 고려한 공구 위치 가변 가공 장치.
  10. 청구항 1에 있어서,
    상기 가공부는 상기 공구와 접촉하는 상기 가공대상의 표면에 대한 온도를 측정하는 온도측정부를 구비하는 것을 특징으로 하는 공구 마모를 고려한 공구 위치 가변 가공 장치.
  11. 청구항 1에 있어서,
    상기 공구의 마모량을 측정하는 마모량측정부를 더 포함하는 것을 특징으로 하는 공구 마모를 고려한 공구 위치 가변 가공 장치.
  12. 청구항 1에 있어서,
    청구항 1 내지 청구항 11 중 선택되는 어느 하나의 항에 의한 공구 마모를 고려한 공구 위치 가변 가공 장치를 포함하는 것을 특징으로 하는 절삭 공정 시스템.
  13. 청구항 1에 있어서,
    청구항 1 내지 청구항 11 중 선택되는 어느 하나의 항에 의한 공구 마모를 고려한 공구 위치 가변 가공 장치를 포함하는 것을 특징으로 하는 탄소섬유강화플라스틱(CFRP) 제품 생산 시스템.
  14. 청구항 1의 공구 마모를 고려한 공구 위치 가변 가공 장치를 이용한 공구 위치 제어 방법에 있어서,
    i) 상기 센서부가 상기 가공모터에 공급되는 전류량을 측정하고, 상기 공구이동부의 말단과 상기 가공대상 간 거리를 측정하는 단계;
    ii) 상기 제어부가 상기 센서부로부터 측정신호를 전달 받는 단계;
    iii) 상기 제어부가, 상기 가공모터에 공급되는 전류량을 이용하여 상기 가공부의 가공부하 값을 도출하고, 상기 가공부의 가공부하 값과 상기 기준 가공부하 값과 비교하는 단계;
    iv) 상기 가공부의 가공부하 값이 상기 기준 가공부하 값을 초과하는 경우, 상기 제어부가 상기 공구이동부 또는 상기 지지부로 제어신호를 전달하는 단계; 및
    v) 상기 공구이동부 또는 상기 지지부의 작동 제어에 의해 상기 가공대상에 대한 상기 가공부의 위치가 가변하는 단계;를 포함하는 것을 특징으로 하는 공구 마모를 고려한 공구 위치 가변 가공 장치를 이용한 공구 위치 제어 방법.
  15. 청구항 14에 있어서,
    상기 v) 단계에서, 상기 공구이동부와 상기 지지부는 서로 상대적인 운동을 수행하는 것을 특징으로 하는 공구 마모를 고려한 공구 위치 가변 가공 장치를 이용한 공구 위치 제어 방법.
PCT/KR2019/015743 2018-11-20 2019-11-18 공구 마모를 고려한 공구 위치 가변 가공 장치 및 이를 이용한 공구 위치 제어 방법 WO2020105984A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/295,430 US12017315B2 (en) 2018-11-20 2019-11-18 Machining device for controlling tool position considering tool wear and method for controlling tool position using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180143647A KR102201173B1 (ko) 2018-11-20 2018-11-20 공구 마모를 고려한 공구 위치 가변 가공 장치 및 이를 이용한 공구 위치 제어 방법
KR10-2018-0143647 2018-11-20

Publications (1)

Publication Number Publication Date
WO2020105984A1 true WO2020105984A1 (ko) 2020-05-28

Family

ID=70773548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015743 WO2020105984A1 (ko) 2018-11-20 2019-11-18 공구 마모를 고려한 공구 위치 가변 가공 장치 및 이를 이용한 공구 위치 제어 방법

Country Status (2)

Country Link
KR (1) KR102201173B1 (ko)
WO (1) WO2020105984A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112276676A (zh) * 2020-10-19 2021-01-29 厦门市计量检定测试院 一种基于cnc机床在线检测系统的检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102352969B1 (ko) * 2020-11-11 2022-01-21 한국생산기술연구원 가공부의 온도와 가공물의 온도를 고려한 탄소섬유복합재 가공장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070016325A1 (en) * 2005-07-12 2007-01-18 Esterling Donald M Sensor-based measurement of tool forces and machining process model parameters
JP2010073846A (ja) * 2008-09-18 2010-04-02 Fujitsu Ltd 基板加工装置及び基板加工方法
JP2010079471A (ja) * 2008-09-25 2010-04-08 Nippon Shoryoku Kikai Kk ロボットシステム
JP2016132067A (ja) * 2015-01-19 2016-07-25 株式会社不二越 樹脂部品の穴あけロボットシステム
KR101668765B1 (ko) * 2015-06-04 2016-10-25 한국생산기술연구원 가공 대상물의 가공 기준점 검출방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960003211A (ko) 1994-06-21 1996-01-26 구자홍 전화기에서의 호출 음성경고 방법 및 그 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070016325A1 (en) * 2005-07-12 2007-01-18 Esterling Donald M Sensor-based measurement of tool forces and machining process model parameters
JP2010073846A (ja) * 2008-09-18 2010-04-02 Fujitsu Ltd 基板加工装置及び基板加工方法
JP2010079471A (ja) * 2008-09-25 2010-04-08 Nippon Shoryoku Kikai Kk ロボットシステム
JP2016132067A (ja) * 2015-01-19 2016-07-25 株式会社不二越 樹脂部品の穴あけロボットシステム
KR101668765B1 (ko) * 2015-06-04 2016-10-25 한국생산기술연구원 가공 대상물의 가공 기준점 검출방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112276676A (zh) * 2020-10-19 2021-01-29 厦门市计量检定测试院 一种基于cnc机床在线检测系统的检测方法
CN112276676B (zh) * 2020-10-19 2021-11-09 厦门市计量检定测试院 一种基于cnc机床在线检测系统的检测方法

Also Published As

Publication number Publication date
KR102201173B1 (ko) 2021-01-13
US20210402542A1 (en) 2021-12-30
KR20200059358A (ko) 2020-05-29

Similar Documents

Publication Publication Date Title
WO2019088649A1 (ko) 공구의 마모에 따라 가공부하를 조절하는 로봇 시스템 및 이를 이용한 가공부하 조절 방법
WO2020105984A1 (ko) 공구 마모를 고려한 공구 위치 가변 가공 장치 및 이를 이용한 공구 위치 제어 방법
US11407115B2 (en) Work robot system
KR20030015303A (ko) 공구 위치 결정 시스템
US20120265344A1 (en) Robot system and method for operating robot system
CN111470309B (zh) 跟随机器人及作业机器人系统
US20140143991A1 (en) Method and device for machining robot-guided components
JP6120710B2 (ja) 切削装置
WO2013042906A2 (ko) Fpc에 부재플레이트를 부착하기 위한 부재플레이트 부착장치 및 이에 이용되는 부재플레이트 분리 유닛과 프레스 유닛
KR101496426B1 (ko) 로터리 테이블 장치
US20190121326A1 (en) Method for operating at least one machining apparatus and machining system
WO2020246808A1 (ko) 피니싱 작업을 위한 매니퓰레이터 및 그의 제어 방법
WO2017039082A1 (en) Cleaning apparatus and cleaning method using same
US5201145A (en) Monocrystal ingot attitude-adjusting/surface-grinding/conveying apparatus
US11161239B2 (en) Work robot system and work robot
KR20180065609A (ko) 로봇을 이용한 가공상태 검사장치 및 이에 의한 검사방법
WO2023017918A1 (ko) 레이저 시트 재단 장치 및 방법
WO2018226061A1 (ko) 자동 어태치먼트 교환기 및 이를 구비하는 보링머신
WO2020105983A1 (ko) 로봇팔을 이용한 정밀 가공장치 및 이의 작동방법
WO2020105985A1 (ko) 지그 배치를 고려한 가공 경로와 가공 순서를 이용한 cfrp 가공 방법 및 유연지그변형 방지구조가 적용된 가공장비
US12017315B2 (en) Machining device for controlling tool position considering tool wear and method for controlling tool position using the same
WO2023054748A1 (ko) 로봇의 후가공 경로 최적화 가공 장치 및 이를 이용한 로봇의 후가공 경로 최적화 가공 방법
CN111347332A (zh) 一种全自动打磨加工线
JP3500443B2 (ja) 多自由度加工システム
KR960003211B1 (ko) 범용로봇과 비전장치를 이용한 엔.시(nc) 절삭시스템의 공구마모 모니터링 및 진단방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886503

Country of ref document: EP

Kind code of ref document: A1