WO2023038181A1 - 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법 - Google Patents

분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법 Download PDF

Info

Publication number
WO2023038181A1
WO2023038181A1 PCT/KR2021/013048 KR2021013048W WO2023038181A1 WO 2023038181 A1 WO2023038181 A1 WO 2023038181A1 KR 2021013048 W KR2021013048 W KR 2021013048W WO 2023038181 A1 WO2023038181 A1 WO 2023038181A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
hexagonal boron
dispersant
concentration
dispersion solution
Prior art date
Application number
PCT/KR2021/013048
Other languages
English (en)
French (fr)
Inventor
노진환
김민기
오항덕
이훈희
Original Assignee
(주)알킨스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)알킨스 filed Critical (주)알킨스
Publication of WO2023038181A1 publication Critical patent/WO2023038181A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a high-concentration hexagonal boron nitride dispersion solution using a dispersant and a method for producing a hexagonal boron nitride nanosheet-polymer composite, and more particularly, to a high-concentration hexagonal boron nitride nanosheet dispersion solution having excellent dispersion efficiency. It relates to a method of manufacturing and manufacturing a polymer composite using the same.
  • Two-dimensional nanostructure materials are materials with a certain plane shape and a thickness of one atom or several layers, and research in the fields of chemistry and materials is considered one of the most active research fields, and is grafted into the fields of electronics, machinery, and biotechnology. This is a field in which research topics are diversifying.
  • Representative two-dimensional nanostructure materials include graphene and boron nitride.
  • boron nitride has a chemical formula of BN, and boron atoms and nitrogen atoms form a planar two-dimensional hexagonal structure, and a hexagonal structure similar to graphite. It has chemical and physical properties similar to graphite, so it is a material with high physical and chemical stability.
  • Hexagonal boron nitride is stable up to 3000°C in an inert atmosphere, has high thermal conductivity as high as stainless steel, and has high thermal shock resistance. No cracks or breaks either. In addition, it has excellent lubricity and corrosion resistance at high temperatures. In addition, it has a very high electrical resistance value, and in particular, it can be used as an electrical insulating material in a wide temperature range because the change in electrical resistance value is small at high temperatures, and has a characteristic of emitting ultraviolet rays when an electric field is applied.
  • h-BN like graphene, is impervious to all gases and liquids, is transparent, and has excellent elasticity due to the spatial margin of the hexagonal honeycomb structure in which boron atoms and nitrogen atoms are connected like a net.
  • h-BNNS hexagonal boron nitride nanosheets
  • the mechanical method is a method in which multiple layers of h-BN are separated through ultrasonic treatment in a solvent, and is the simplest method for preparing h-BNNS.
  • this method has disadvantages in that it is difficult to mass-produce, and it is difficult to manufacture h-BNNS having a thickness of several nm because it is difficult to exfoliate into a few layers.
  • the CVD method deposits a catalytic metal on a substrate to form a thin metal film, flows a gas containing boron and nitrogen at a high temperature, and then cools it to obtain h-BNNS formed on the metal film. Since the process temperature is very high, , there are disadvantages in terms of large area and price.
  • boron nitride interlayer compound method a method of preparing a single layer of boron nitride by preparing a dispersion solution in which a functional group such as a hydroxyl group is bonded to h-BN to relieve the interlayer attraction and improving the affinity between the functional group and the solvent,
  • a functional group such as a hydroxyl group
  • h-BNNS is used as a heat dissipation pad because the thermal conductivity in the horizontal direction is several tens of times higher than that in the vertical direction.
  • a large amount of large-area h-BNNS must be added to the polymer resin.
  • problems such as uneven pad thickness and generation of air bubbles occur.
  • Patent Document 1 Korea Patent Registration No. 10-1878746
  • Patent Document 2 Korean Patent Registration No. 10-1634160
  • Patent Document 3 Korea Patent Registration No. 10-1637220
  • an object of the present invention is to provide a method for producing a high concentration hexagonal boron nitride nanosheet dispersion solution having excellent dispersion efficiency and not high viscosity.
  • Another object of the present invention is to provide a method for producing a high-concentration hexagonal boron nitride nanosheet dispersion solution and a polymer resin to produce a high-quality heat dissipation product.
  • the method for preparing a high-concentration hexagonal boron nitride dispersion solution using a dispersant of the present invention includes the steps of mixing h-BN and a solvent and mixing the dispersant thereto to prepare a mixed solution, and the mixed solution preparing an h-BNNS dispersion solution by exfoliating the h-BN by supplying external energy to the dispersant, wherein the head group of the dispersant is an amine group and a phosphoric acid group It is characterized in that it contains one or more kinds of functional groups.
  • the tail group of the dispersant is characterized in that it includes a Si-O bond.
  • the dispersant is characterized in that bis (3-aminopropyl) terminated Poly (dimethylsiloxane).
  • the solvent is isopropyl alcohol (IPA), methyl ethyl ketone (MEK), dichloromethane (DCM), tetrahydrofuran (THE), benzene, hexane and toluene, chloroform It is characterized in that it is one or more of them.
  • the h-BN and the solvent are mixed to a concentration of 250 to 500 mg/ml.
  • the dispersant is characterized in that it is mixed in 1 ⁇ 2wt% based on 100wt% of the mixed solution.
  • the manufacturing method of the hexagonal boron nitride nanosheet-polymer composite according to the present invention is characterized in that it includes mixing a polymer resin with the h-BNNS dispersion solution prepared by the above manufacturing method.
  • the polymer resin is characterized in that the Si-O-based polymer.
  • the dispersion efficiency is excellent, and the preparation of a high-concentration hexagonal boron nitride dispersion solution without an increase in viscosity is possible.
  • FIG. 1 is a conceptual diagram showing a method for manufacturing a high-concentration h-BNNS-polymer composite according to the present invention.
  • FIG. 2 is a graph showing the viscosity of the high-concentration h-BNNS dispersion solution according to the present invention depending on the content of the dispersant.
  • Figure 3 is a view showing the dispersion results through SEM analysis of Example 1 and Comparative Example 1 according to the present invention.
  • Example 4 is a view showing dispersion results through AFM analysis of Example 1 and Comparative Example 1 according to the present invention.
  • Example 5 is a photograph of a heat dissipation pad manufactured using the dispersion solution of Example 1 according to the present invention.
  • FIG. 6 is a photograph of a heat dissipation pad manufactured using the dispersion solution of Comparative Example 1 according to the present invention.
  • the biggest feature of the present invention is to apply a dispersant suitable for hexagonal boron nitride (h-BN) and a dispersion solvent to produce a high-concentration hexagonal boron nitride nanosheet (h-BNNS) dispersion solution with low viscosity.
  • h-BNNS-polymer high-quality hexagonal boron nitride nanosheet-polymer
  • the method for producing a high-concentration hexagonal boron nitride dispersion solution using the dispersant of the present invention includes the steps of mixing h-BN and a solvent and mixing the dispersant to prepare a mixed solution, and supplying external energy to the mixed solution to h -A step of preparing an h-BNNS dispersion solution by exfoliating BN, wherein the head group of the dispersant contains at least one functional group selected from an amine group and a phosphoric acid group. It is characterized by doing.
  • the h-BN means bulk type h-BN power.
  • solvent examples include isopropyl alcohol (IPA), methyl ethyl ketone (MEK), dichloromethane (DCM), tetrahydrofuran (THE), benzene, hexane, toluene, and chloroform. ) It is preferable to use one or more of them. This takes into account not only the efficient dispersion of h-BN, but also the dissolution of the dispersant used in the subsequent process and the dispersion with the polymer resin used in the manufacture of the composite material.
  • a dispersing agent is added to the mixed solution and stirred and mixed for 20 to 40 hours.
  • the dispersing agent is effectively adsorbed on h-BN to enable dispersion of h-BN at a high concentration of 250 mg/ml or more, to enable separation between layers with a larger area of h-BNNS, and between the sheets of h-BN. It gives a steric hinderance effect.
  • the dispersant should be capable of effectively adsorbing the head group to the surface of the h-BN through a Lewis acid-base reaction, so that an amine group and a phosphoric acid group group) includes one or more functional groups.
  • the tail group of the dispersant should be able to give a steric hinderance effect between the h-BN sheets, it includes a Si-O bond.
  • this tail group improves the compatibility between h-BNNS and the polymer matrix by having a structure similar to that of the polymer matrix even when mixed with the Si-O-based polymer resin in the preparation of the composite.
  • bis(3-aminopropyl) terminated poly(dimethylsiloxane) of Formula 1 may be used, and commercially available products such as DisperBYK-180, DisperBYK-182, and DisperBYK-2001 may be used.
  • the dispersant is preferably mixed with 1 ⁇ 2wt% based on 100wt% of the mixed solution. This is because if the amount used is too small, the effect of lowering the viscosity is not sufficient, and even if the amount is excessive, it is not economical because there is no further enhanced action effect.
  • the external energy may be selected from the group consisting of magnetic agitation, physical agitation, ultrasonic waves, mixers, high-pressure injection, ball mills, three-roll mills, and combinations thereof, but most preferably using one or more of ball mills and ultrasonic waves. will be.
  • the conditions of the ball mill and ultrasonic dispersion are sufficient if carried out to a degree known in the field to which this technology belongs, and the dispersion process proceeds for 1 to 6 hours.
  • the h-BNNS dispersion solution prepared through the manufacturing process as described above does not damage the surface of h-BNNS or the inherent properties of h-BNNS, contains high-concentration large-area h-BNNS, does not have a high viscosity, and is compatible with polymer resin and It has the advantage of being excellent in its dispersibility when complexed.
  • the manufacturing method of the hexagonal boron nitride nanosheet-polymer composite according to the present invention is characterized in that it includes mixing a polymer resin with the h-BNNS dispersion solution prepared by the above manufacturing method.
  • the prepared h-BNNS dispersion solution has high concentration without high viscosity and contains a dispersant having a structure similar to that of the polymer matrix, it has excellent dispersibility with the polymer resin.
  • the polymer resin can be used without limitation as long as it is applied to conventional heat dissipation products, but it is most preferable to use a Si-O-based polymer resin having a similar structure to the tail group of the dispersant, that is, a silicone resin. .
  • a silicone resin having a similar structure to the tail group of the dispersant.
  • the type of silicone resin is not limited, and all of the various types previously posted can be applied.
  • the mixing ratio is also not limited, as previously posted.
  • 10 to 90 wt% of the polymer resin may be mixed with 10 to 90 wt% of the h-BNNS dispersion solution, and appropriately added or subtracted according to the required product characteristics.
  • this composite material has a significantly lower viscosity than conventional manufacturing methods, there is an advantage in that it is possible to manufacture high-quality heat dissipation products, in particular, heat dissipation pads.
  • h-BN power (average particle diameter of 10 ⁇ m) and solvent IPA were put into the reactor. At this time, the concentration was 250 mg/ml. Then, 1.5wt%, 0.3wt%, 0.7wt%, 1.0wt%, and 1.1wt% of the dispersant were added thereto, and stirred at 400 rpm for 1 day.
  • the dispersant bis(3-aminopropyl) terminated Poly(dimethylsiloxane) was used.
  • this solution was dispersed through a process of sonication (sonication frequency: 68 kHz, sonication time: 6 hours).
  • h-BN power (average particle diameter of 10 ⁇ m) and solvent IPA were put into the reactor. At this time, the concentration was 250 mg/ml. And it was stirred for 1 day at 400 rpm.
  • this solution was dispersed through a process of sonication (sonication frequency: 68 kHz, sonication time: 6 hours).
  • the addition amount of the dispersant is preferably 1 to 2 wt%.
  • Example 1 The dispersion results of Example 1 and Comparative Example 1 were compared.
  • the dispersion results were carried out through scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis. And the results are shown in Figures 3 and 4.
  • Example 1 of the present invention had a much larger lateral size of h-BNNS than the dispersion solution of Comparative Example 1.
  • Example 1 The dispersion solution of Example 1 and Comparative Example 1 was mixed with a silicone resin (polydimethylsiloxane) at a weight ratio of 1:1, and subjected to a heating and pressing process at 150°C and 100 kgf/cm 2 to dissipate heat having an average thickness of 0.5 mm. A pad was made. And hardened it.
  • silicone resin polydimethylsiloxane
  • FIGS. 5 and 6 pictures of the manufactured heat dissipation pad are shown in FIGS. 5 (Example 1) and 6 (Comparative Example 1).
  • Comparative Example 1 is not easy to process due to an increase in viscosity, does not have a uniform thickness, and air bubbles appear, but Example 1 has a viscosity reduction effect It was confirmed that the pad shape was uniform and no air bubble phenomenon appeared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Colloid Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

본 발명은 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법에 관한 것으로, 더욱 상세하게는 h-BN과 용매를 혼합하고, 이에 분산제를 혼합하여 혼합용액을 제조하는 단계와, 상기 혼합용액에 외부 에너지를 공급하여 h-BN을 박리함으로써, h-BNNS 분산용액을 제조하는 단계를 포함하여 분산용액을 제조하고, 이를 고분자 수지와 복합하여 복합재를 제조하는 방법으로, 분산 효율이 우수하고, 점도의 상승없이 고농도의 육방정계 질화붕소 분산용액의 제조가 가능함으로써, 이를 고분자 수지와 복합하여 다양한 고품질의 방열 제품을 제조할 수 있고, 특히, 고품질의 방열 패드의 제조가 가능하다는 장점이 있다.

Description

분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법
본 발명은 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법에 관한 것으로, 더욱 상세하게는 분산 효율이 우수하고, 고농도인 육방정계 질화붕소 나노시트 분산용액을 제조하고, 이를 이용하여 고분자 복합재를 제조하는 방법에 관한 것이다.
2차원 나노구조 재료는 일정한 평면형태를 가지며 두께가 원자 한층 또는 몇 층으로 이루어진 소재로, 화학, 재료 분야의 연구가 가장 활발한 연구 분야 중 하나로 손꼽히고 있으며, 전자, 기계 및 생명공학 분야로의 접목을 통하여 연구 주제가 다변화되고 있는 분야이다.
대표적인 2차원 나노구조 재료로는 그래핀, 질화붕소 등을 들 수 있는데, 이중에서 질화붕소는 BN의 화학식을 가지고, 보론 원자와 질소 원자가 평면 2차원 육각형 구조를 이루고 있으며, 흑연과 비슷한 육방정계 구조를 갖고 있어 화학적, 물리적 성질이 흑연과 비슷하여, 물리적, 화학적 안정성이 높은 물질이다.
이러한 육방정계 질화붕소(hexagonal boron nitride : h-BN)는 불활성 분위기에서는 최대 3000℃까지 안정하며, 스테인레스 스틸 정도의 높은 열전도율이 있어 열충격 저항성이 크고, 1500℃ 정도의 급가열, 급냉각을 반복하여도 균열이나 파손이 없다. 그리고 고온 윤활성 및 내식성이 대단히 우수하다. 또한, 전기 저항값이 월등히 높은데, 특히 고온에서의 전기 저항값의 변화가 적어 넓은 온도 범위에서 전기절연재료로 사용할 수 있으며 전계를 가하면 자외선을 방출하는 특성이 있다. 뿐만 아니라, h-BN은 그래핀과 마찬가지로 모든 가스와 액체에 대해서 불침투성을 보이며, 투명하며 보론 원자와 질소 원자가 그물처럼 연결된 육각형 벌집 구조의 공간적 여유로 인해 신축성이 뛰어나다. 이러한 h-BN의 특이한 구조와 물성은 반도체 재료의 절연체 및 자외선 발생장치, 배리어 필름으로 응용될 수 있다.
최근 나노 기술에 대한 수요와 관심이 증대되면서 h-BN도 나노시트, 나노튜브와 같은 형태로 얻기 연구가 진행되고 있다. 현재 육방정계 질화붕소 나노시트(hexagonal boron nitride nanosheet : h-BNNS)를 제조하는 방법으로는 기계적 박리, 화학기상증착(Chemical Vapor Deposition : CVD), 질화붕소 층간 화합물 방법 등이 있다.
먼저, 기계적 방법은 다층의 h-BN를 용매 내에서 초음파 처리를 통해 떼어내는 방법으로, 가장 간단하게 h-BNNS를 제조할 수 있는 방법이다. 그러나 이러한 방법은 대량 생산에 어려움이 있으며, 소수층으로의 박리가 어려워 수 nm의 두께를 갖는 h-BNNS를 제조할 수 없다는 단점이 있다.
CVD 방법은 기판 위에 촉매 금속을 증착하여 얇은 금속 막을 형성한 후 고온에서 보론과 질소가 포함된 기체를 흘려준 뒤, 냉각시켜 금속 막 위에 형성된 h-BNNS를 얻는 방법으로, 공정 온도가 매우 높으므로, 대면적 및 가격면에서 불리한 단점이 있다.
질화붕소 층간 화합물 방법으로는, h-BN에 히드록시기와 같은 작용기를 결합시켜 층간 인력을 완화하고, 작용기와 용매와의 친화성을 향상시킨 분산액을 제조하여 단일층의 질화붕소를 제조하는 방법이나, 제조된 단일층 질화붕소의 수율이 낮은 단점이 있다.
한편, h-BNNS는 수직방향보다 수평방향의 열전도도가 수십배에 다달할 정도로 높아 방열 패드 등으로 활용되고 있다. 하지만, 방열 패드 등의 복합소재로 적용하기 위해서는 고분자 수지 내에 많은 양의 대면적 h-BNNS를 첨가해야 하는데, 분산된 h-BN의 농도가 높아질수록 분산 효율이 낮아지게 되며, 점도가 급격히 증가하는 문제가 있다. 즉, 이러한 고점도의 h-BNNS 분산용액을 이용하여 고분자 복합재를 제조하고, 이를 이용하여 방열 패드 등을 제조할 경우, 패드 두께가 불균일해지는 것은 물론, 에어 버블(air bubble)이 발생하는 등의 문제가 있다.
따라서, h-BNNS-polymer 복합용액을 이용하여 고품질의 방열 패드를 제조하기 위해서는 고농도의 h-BNNS 분산용액을 점도의 상승없이 제조해야 하는바, 종래 이러한 기술은 게시된 바 없었다.
[선행기술문헌]
(특허문헌 1) 한국등록특허 제10-1878746호
(특허문헌 2) 한국등록특허 제10-1634160호
(특허문헌 3) 한국등록특허 제10-1637220호
따라서, 본 발명의 목적은 분산 효율이 우수하고, 점도가 높지 않은 고농도의 육방정계 질화붕소 나노시트 분산용액의 제조방법을 제공하는 데 있다.
본 발명의 다른 목적은 고농도 육방정계 질화붕소 나노시트 분산용액을 고분자 수지와 복합하여 고품질의 방열 제품을 제조할 수 있도록 하는 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법을 제공하는 데 있다.
상기한 목적을 달성하기 위한 본 발명의 분산제를 이용한 고농도 육방정계 질화붕소 분산용액의 제조방법은, h-BN과 용매를 혼합하고, 이에 분산제를 혼합하여 혼합용액을 제조하는 단계와, 상기 혼합용액에 외부 에너지를 공급하여 h-BN을 박리함으로써, h-BNNS 분산용액을 제조하는 단계를 포함하되, 상기 분산제는 헤드 그룹(head group)이 아민 그룹(amine group) 및 인산 그룹(phosphoric acid group)중 1종 이상의 기능기를 포함하는 것을 특징으로 한다.
상기 분산제의 테일 그룹(tail group)은 Si-O bond를 포함하는 것을 특징으로 한다.
상기 분산제는 bis(3-aminopropyl) terminated Poly(dimethylsiloxane)인 것을 특징으로 한다.
상기 용매는 아이소프로필 알코올(IPA), 메틸에틸케톤(MEK), 다이클로로메테인(DCM), 테트라히드로퓨란(THE), 벤젠(Benzene) 헥산(Hexane) 및 톨루엔(toluene), 클로로포름(Chloroform) 중 1종 이상의 것임을 특징으로 한다.
상기 혼합용액을 제조하는 단계에서, 상기 h-BN과 용매를 농도가 250~500mg/ml가 되도록 혼합하는 것임을 특징으로 한다.
상기 분산제는 상기 혼합용액 100wt%를 기준으로 1~2wt%로 혼합되는 것을 특징으로 한다.
본 발명에 의한 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법은, 상기한 제조방법으로 제조된 h-BNNS 분산용액에 고분자 수지를 혼합하는 단계를 포함하는 것을 특징으로 한다.
상기 고분자 수지는 Si-O계 고분자인 것을 특징으로 한다.
본 발명의 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법에 의하면, 분산 효율이 우수하고, 점도의 상승없이 고농도의 육방정계 질화붕소 분산용액의 제조가 가능함으로써, 이를 고분자 수지와 복합하여 다양한 고품질의 방열 제품을 제조할 수 있다는 장점이 있다. 특히, 고품질의 방열 패드의 제조가 가능하다는 장점이 있다.
도 1은 본 발명에 의한 고농도 h-BNNS-polymer 복합재의 제조방법을 나타낸 개념도.
도 2는 본 발명에 의한 고농도 h-BNNS 분산용액의 분산제 함량에 다른 점도를 나타낸 그래프.
도 3은 본 발명에 의한 실시예 1과 비교예 1의 SEM 분석을 통한 분산 결과를 나타낸 도면.
도 4는 본 발명에 의한 실시예 1과 비교예 1의 AFM 분석을 통한 분산 결과를 나타낸 도면.
도 5는 본 발명에 의한 실시예 1의 분산용액을 이용하여 제조된 방열 패드의 사진.
도 6은 본 발명에 의한 비교예 1의 분산용액을 이용하여 제조된 방열 패드의 사진.
이하, 본 발명을 상세히 설명한다.
본 발명의 가장 큰 특징은 도 1과 같이, 육방정계 질화붕소(h-BN)와 분산용매에 적합한 분산제를 적용하여 점도가 높지 않은 고농도의 육방정계 질화붕소 나노시트(h-BNNS) 분산용액을 제조하고, 이를 고분자 수지에 분산하여 고품질의 육방정계 질화붕소 나노시트-고분자(h-BNNS-polymer) 복합재를 제조하는 데 있다.
즉, 종래의 제조방법에 의하면, 점도의 상승으로 인하여 고농도의 h-BNNS 분산용액을 복합재에 적용하는 데 어려움이 있어, 고품질의 방열 제품, 특히 방열 패드의 제조에 어려움이 있었으나, 본원발명은 점도의 상승없이 고농도의 h-BNNS 분산용액을 제조할 수 있어 산업 전반에 걸처 그 활용도를 높일 수 있다는 데 특징이 있는 것이다.
이러한 본 발명의 분산제를 이용한 고농도 육방정계 질화붕소 분산용액의 제조방법은 h-BN과 용매를 혼합하고, 이에 분산제를 혼합하여 혼합용액을 제조하는 단계와, 상기 혼합용액에 외부 에너지를 공급하여 h-BN을 박리함으로써, h-BNNS 분산용액을 제조하는 단계를 포함하되, 상기 분산제는 헤드 그룹(head group)이 아민 그룹(amine group) 및 인산 그룹(phosphoric acid group) 중 1종 이상의 기능기를 포함하는 것을 특징으로 한다.
먼저, h-BN과 용매를 혼합한다.
이때, 상기 h-BN은 벌크형의 h-BN power을 의미한다.
상기 용매로는 아이소프로필 알코올(IPA), 메틸에틸케톤(MEK), 다이클로로메테인(DCM), 테트라히드로퓨란(THE), 벤젠(Benzene) 헥산(Hexane) 및 톨루엔(toluene), 클로로포름(Chloroform) 중 1종 이상의 것을 사용함이 바람직하다. 이는 h-BN의 효율적인 분산은 물론, 후공정에서 사용된 분산제의 용해, 복합재로의 제조시 사용되는 고분자 수지와의 분산을 고려한 것이다.
이때, 상기 h-BN과 용매는 그 농도가 250~500mg/ml로 혼합되는 것인바, 분산 효율이 우수하고, 고농도인 h-BNNS 분산용액을 제조하기 위함이다.
다음으로, 상기 혼합액에 분산제를 투입하여 20~40시간 교반, 혼합한다.
상기 분산제는 h-BN에 효과적으로 흡착되어 250mg/ml 이상의 고농도로 h-BN의 분산이 가능토록 하며, 보다 대면적의 h-BNNS로 층간을 박리할 수 있도록 하고, 상기 h-BN의 시트 사이에서 steric ahinderance 효과를 주는 것이다.
구체적으로, 상기 분산제는 헤드 그룹(head group)이 루이스(lewis) 산-염기 반응을 통해 상기 h-BN의 표면에 효과적으로 흡착될 수 있어야 하는바, 아민 그룹(amine group) 및 인산 그룹(phosphoric acid group)중 1종 이상의 기능기를 포함한다.
또한, 상기 분산제의 테일 그룹(tail group)은 h-BN의 시트 사이에서 steric hinderance 효과를 줄 수 있어야 하므로, Si-O bond를 포함한다. 또한, 이러한 테일 그룹은 복합재의 제조시 Si-O계 고분자 수지와의 혼합시에도 고분자 매트릭스와 유사한 구조를 가져 h-BNNS와 고분자 매트릭스의 compatibility를 향상시킨다.
더욱 구체적으로 상기 분산제로는 하기 화학식 1의 bis(3-aminopropyl) terminated Poly(dimethylsiloxane)를 사용할 수 있으며, 시판제품으로 DisperBYK-180, DisperBYK-182, DisperBYK-2001 등을 사용할 수 있다.
Figure PCTKR2021013048-appb-C000001
그리고 상기 분산제는 상기 혼합용액 100wt%를 기준으로 1~2wt%로 혼합되는 것이 바람직한데. 이는 그 사용량이 너무 적으면 점도를 낮추는 효과가 충분하지 못하고, 과량이 되더라도 더 이상의 증진된 작용효과가 없어 경제적이지 못하기 때문이다.
다음으로, 이 혼합용액에 외부 에너지를 공급하여 h-BN의 층간 결합을 분리시킴으로써, 고농도 대면적의 h-BNNS 분산용액을 제조한다.
이때, 상기 외부 에너지는 자력교반, 물리교반, 초음파, 믹서, 고압분사, 볼밀, 쓰리롤밀 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있으나, 가장 바람직하게는 볼밀 및 초음파 중 1종 이상을 이용하는 것이다.
상기 볼밀 및 초음파 분산의 조건은 이 기술이 속하는 분야에서 공지된 정도로 실시하면 족한바, 분산 과정을 1~6시간 진행한다.
상기와 같은 제조과정을 통해 제조된 h-BNNS 분산용액은 h-BNNS의 표면 손상이나 고유 물성의 손상이 없으며, 고농도 대면적의 h-BNNS를 포함하며, 점도가 높지 않은 것은 물론, 고분자 수지와의 복합시 그 분산성이 우수하다는 장점이 있다.
본 발명에 의한 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법은, 상기한 제조방법으로 제조된 h-BNNS 분산용액에 고분자 수지를 혼합하는 단계를 포함하는 것을 특징으로 한다.
앞서 제조된 h-BNNS 분산용액은 점도가 높지 않으면서도 고농도이고, 고분자 매트릭스와 유사한 구조를 갖는 분산제가 포함되므로, 고분자 수지와의 분산성이 우수하다.
이때, 상기 고분자 수지로는 종래 방열 제품에 적용되는 것이라면 그 종류를 제한하지 않고 사용 가능하지만, 상기 분산제의 테일 그룹과 유사한 구조의 Si-O계 고분자 수지, 즉 실리콘 수지 등을 사용함이 가장 바람직하다. 이때, 실리콘 수지의 종류는 제한하지 않는바, 종래 게시된 다양한 종류를 모두 적용 가능하다.
또한, 그 혼합비 역시 제한하지 않는바, 종래 게시된 바에 따른다. 예시적으로 상기 h-BNNS 분산용액 10~90wt%에 고분자 수지 10~90wt%를 혼합할 수 있는바, 요구되는 제품의 특성에 따라 적절히 가감한다.
이러한 복합재는 종래 제조방법에 비하여 점도가 현저히 낮으므로, 고품질의 방열 제품, 특히 방열 패드의 제작이 가능하다는 장점이 있다.
이하, 본 발명을 구체적인 실시예를 통해 상세히 설명한다.
(실시예 1)
h-BN power(평균입경 10㎛)와 용매인 IPA를 반응기에 투입하였다. 이때, 그 농도는 250mg/ml였다. 그리고 이에 분산제를 각각 1.5wt%, 0.3wt%, 0.7wt%, 1.0wt%, 1.1wt%로 투입하고, 400rpm에서 1일간 교반하였다. 상기 분산제로는 bis(3-aminopropyl) terminated Poly(dimethylsiloxane)를 사용하였다.
다음으로, 이 용액을 sonication((sonication 주파수: 68 kHz, sonication 시간: 6시간) 공정을 통해 분산을 진행하였다.
(비교예 1)
h-BN power(평균입경 10㎛)와 용매인 IPA를 반응기에 투입하였다. 이때, 그 농도는 250mg/ml였다. 그리고 이를 400rpm에서 1일간 교반하였다.
다음으로, 이 용액을 sonication((sonication 주파수: 68 kHz, sonication 시간: 6시간) 공정을 통해 분산을 진행하였다.
(시험예 1)
비교예 1 및 실시예 1에 의한 h-BNNS 분산용액의 분산제의 함량에 따른 점도를 점도측정기를 통해 테스트하였다. 이때, 상기 분산용액은 h-BNNS의 함량이 10wt%가 되도록 조절한 후, 점도를 측정하였으며, 그 결과는 도 2에 나타내었다.
도 2에서 확인할 수 있는 바와 같이, 분산제를 1wt% 이상 첨가시 점도가 85.4% 이상 감소함을 확인할 수 있었는바, 고농도의 h-BNNS 분산용액의 제조가 가능함을 확인할 수 있었다.
또한, 분산제의 첨가량을 1wt%, 2wt%, 3wt%로 하여 추가실험을 실시하였는바, 그 결과 1wt% 이상 첨가하더라도 더 이상의 점도 감소는 없었다. 따라서, 그 경제성을 고려할 때 분산제의 첨가량은 1~2wt%이 바람직한 것을 확인할 수 있었다.
(시험예 2)
실시예 1 및 비교예 1의 분산결과를 비교하였다. 상기 분산 결과는 주사전자현미경(SEM) 및 원자간력현미경(AFM) 분석을 통해 실시하였다. 그리고 그 결과는 도 3 및 도 4에 나타내었다.
도 3에서와 같이 본 발명의 실시예 1의 분산용액은 비교예 1의 분산용액에 비하여 h-BNNS의 면방향 크기(lateral size)가 월등히 큰 것을 확인할 수 있었다.
또한, 도 4에서와 같이, 본 발명의 실시예 1의 분산용액은 비교예 1의 분산용액에 비하여 h-BNNS의 두께 역시 현저히 얇은 것을 확인할 수 있었다.
따라서, 본 발명에 의하면 보다 대면적의 h-BNNS 분산용액을 제조할 수 있음을 알 수 있었다.
(시험예 3)
상기 실시예 1 및 비교예 1의 분산용액을 이용하여 실리콘 수지(폴리디메틸실록산)와 1:1 중량비로 혼합하고, 150℃ 및 100kgf/cm2 의 가열 가압 공정을 거쳐 평균두께가 0.5mm인 방열 패드를 제조하였다. 그리고 이를 경화하였다.
그리고 제조된 방열 패드의 사진을 도 5(실시예 1) 및 도 6(비교예 1)에 나타내었다.
도 5 및 도 6에서 확인할 수 있는 바와 같이, 비교예 1은 점도가 상승하여 가공이 용이하지 못하고, 균일한 두께를 갖지 못하며, air bubble 현상이 나타났으나, 실시예 1은 점도 감소 효과로 인해 패드 형태가 균일하고, air bubble 현상 역시 나타나지 않음을 확인하였다.
상기한 시험예들에서 확인할 수 있는 바와 같이, 본 발명에 의하면 분산 효율이 우수하고, 고농도의 비교적 대면적을 갖는 h-BNNS 분산용액의 제조가 가능함을 확인할 수 있었다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당 업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.

Claims (8)

  1. 육방정계 질화붕소와 용매를 혼합하고, 이에 분산제를 혼합하여 혼합용액을 제조하는 단계와,
    상기 혼합용액에 외부 에너지를 공급하여 육방정계 질화붕소를 박리함으로써, 육방정계 질화붕소 나노시트 분산용액을 제조하는 단계를 포함하되,
    상기 분산제는 헤드 그룹(head group)이 아민 그룹(amine group) 및 인산 그룹(phosphoric acid group)중 1종 이상의 기능기를 포함하는 것을 특징으로 하는 분산제를 이용한 고농도 육방정계 질화붕소 분산용액의 제조방법.
  2. 제1항에 있어서,
    상기 분산제의 테일 그룹(tail group)은 Si-O bond를 포함하는 것을 특징으로 하는 분산제를 이용한 고농도 육방정계 질화붕소 분산용액의 제조방법.
  3. 제1항에 있어서,
    상기 분산제는 bis(3-aminopropyl) terminated Poly(dimethylsiloxane)인 것을 특징으로 하는 분산제를 이용한 고농도 육방정계 질화붕소 분산용액의 제조방법.
  4. 제1항에 있어서,
    상기 용매는 아이소프로필 알코올(IPA), 메틸에틸케톤(MEK), 다이클로로메테인(DCM), 테트라히드로퓨란(THE), 벤젠(Benzene) 헥산(Hexane) 및 톨루엔(toluene), 클로로포름(Chloroform) 중 1종 이상의 것임을 특징으로 하는 분산제를 이용한 고농도 육방정계 질화붕소 분산용액의 제조방법.
  5. 제1항에 있어서,
    상기 혼합용액을 제조하는 단계에서,
    상기 육방정계 질화붕소와 용매를 그 농도가 250~500mg/ml로 혼합하는 것임을 특징으로 하는 분산제를 이용한 고농도 육방정계 질화붕소 분산용액의 제조방법.
  6. 제1항에 있어서,
    상기 분산제는 상기 혼합용액 100wt%를 기준으로 1~2wt%로 혼합되는 것을 특징으로 하는 분산제를 이용한 고농도 육방정계 질화붕소 분산용액의 제조방법.
  7. 제1항 내지 제6항 중 어느 한 항의 방법으로 제조된 h-BNNS 분산용액에 고분자 수지를 혼합하는 단계를 포함하여 제조되는 것을 특징으로 하는 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법.
  8. 제7항에 있어서,
    상기 고분자 수지는 Si-O계 고분자 수지인 것을 특징으로 하는 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법.
PCT/KR2021/013048 2021-09-10 2021-09-24 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법 WO2023038181A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0121015 2021-09-10
KR1020210121015A KR102662089B1 (ko) 2021-09-10 2021-09-10 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법

Publications (1)

Publication Number Publication Date
WO2023038181A1 true WO2023038181A1 (ko) 2023-03-16

Family

ID=85507647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013048 WO2023038181A1 (ko) 2021-09-10 2021-09-24 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법

Country Status (2)

Country Link
KR (1) KR102662089B1 (ko)
WO (1) WO2023038181A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187057A (ja) * 2014-03-13 2015-10-29 株式会社豊田中央研究所 窒化ホウ素ナノシート含有分散液、窒化ホウ素ナノシート複合体及びその製造方法
KR20160125711A (ko) * 2015-04-22 2016-11-01 한국과학기술원 고품질 육방정 질화붕소 나노시트 제조 방법 및 이를 이용하여 제조된 육방정 질화붕소 나노시트
JP6747061B2 (ja) * 2016-05-31 2020-08-26 大日本印刷株式会社 無機層状材料、無機層状材料積層体、及び無機層状材料分散液

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878746B1 (ko) 2011-12-06 2018-07-17 삼성전자주식회사 육방정계 질화붕소 시트, 그의 제조방법 및 이를 구비하는 전기소자
KR101634160B1 (ko) 2013-09-06 2016-06-28 한국과학기술원 육방정 질화붕소 나노시트/세라믹 나노 복합 분말 및 그의 제조 방법, 및 육방정 질화붕소/세라믹 나노 복합 소재 및 그의 제조 방법
KR101637220B1 (ko) 2014-10-20 2016-07-08 한국원자력연구원 질화붕소 나노시트 제조방법 및 이에 따라 제조되는 질화붕소 나노시트

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187057A (ja) * 2014-03-13 2015-10-29 株式会社豊田中央研究所 窒化ホウ素ナノシート含有分散液、窒化ホウ素ナノシート複合体及びその製造方法
KR20160125711A (ko) * 2015-04-22 2016-11-01 한국과학기술원 고품질 육방정 질화붕소 나노시트 제조 방법 및 이를 이용하여 제조된 육방정 질화붕소 나노시트
JP6747061B2 (ja) * 2016-05-31 2020-08-26 大日本印刷株式会社 無機層状材料、無機層状材料積層体、及び無機層状材料分散液

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUN CHANGJIU, ZHAO JIAN, ZHANG DELI, GUO HONGGE, WANG XIN, HU HAIQING: "Covalent functionalization of boron nitride nanosheets via reductive activation", NANOSCALE, ROYAL SOCIETY OF CHEMISTRY, UNITED KINGDOM, vol. 12, no. 35, 17 September 2020 (2020-09-17), United Kingdom , pages 18379 - 18389, XP093046577, ISSN: 2040-3364, DOI: 10.1039/D0NR02850A *
ZHANG HONGXING, HUANG XINGYI, JIANG PINGKAI: "Enhanced Thermal Conductivity of Dielectric Polydimethylsiloxane Composites by Size-Controllable Boron Nitride Nanosheets", 2020 IEEE INTERNATIONAL CONFERENCE ON HIGH VOLTAGE ENGINEERING AND APPLICATION (ICHVE), IEEE, 6 September 2020 (2020-09-06) - 10 September 2020 (2020-09-10), pages 1 - 4, XP093046578, ISBN: 978-1-7281-5511-1, DOI: 10.1109/ICHVE49031.2020.9279678 *

Also Published As

Publication number Publication date
KR102662089B1 (ko) 2024-05-03
KR20230037896A (ko) 2023-03-17

Similar Documents

Publication Publication Date Title
Zhang et al. Large improvement of thermal transport and mechanical performance of polyvinyl alcohol composites based on interface enhanced by SiO2 nanoparticle-modified-hexagonal boron nitride
Liu et al. Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties
Joy et al. An overview of boron nitride based polymer nanocomposites
Wang et al. Highly thermally conductive polymer composite originated from assembly of boron nitride at an oil–water interface
Zhan et al. Multifunctional cellulose-based fireproof thermal conductive nanocomposite films assembled by in-situ grown SiO2 nanoparticle onto MXene
Akhtar et al. Hybridization of hexagonal boron nitride nanosheets and multilayer graphene: Enhanced thermal properties of epoxy composites
US20060025515A1 (en) Nanotube composites and methods for producing
Fan et al. Constructing fibrillated skeleton with highly aligned boron nitride nanosheets confined in alumina fiber via electrospinning and sintering for thermally conductive composite
WO2014163236A1 (ko) 다중수소결합에 의해 고차구조를 지니는 탄소나노소재와 금속나노소재를 하이브리드하여 형성된 고전도성 소재 및 그 제조방법
WO2017150748A1 (ko) 자동차 조명 하우징 적용을 위한 고열전도성 복합조성물 및 그 제조방법
Shen et al. Highly in-plane thermally conductive composite films from hexagonal boron nitride microplatelets assembled with graphene oxide
Gao et al. Polyhedral oligomeric silsesquioxane modified carbon nanotube hybrid material with a bump structure via polydopamine transition layer
WO2014148705A1 (ko) 탄소나노튜브 복합체의 제조방법
Xia et al. Improved dispersion of attapulgite in polypropylene by grap oxide and the enhanced mechanical properties
CN110760189A (zh) 一种不同层型Ti3C2填充的高导热硅脂热界面材料及其制备方法
WO2023038181A1 (ko) 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법
Mekuria et al. Synthesis and characterization of high strength polyimide/silicon nitride nanocomposites with enhanced thermal and hydrophobic properties
WO2017188527A1 (ko) 스프레이 분사를 이용한 3차원 그래핀 구조체의 합성방법
WO2014003251A1 (en) Apparatus for manufacturing nano-size graphene-structured material
CN109535581A (zh) 具有核壳结构的碳纳米管掺杂聚苯乙烯基复合材料及其制备方法
CN108545709B (zh) 一种脲基改性氮化硼二维纳米材料及其制备方法
WO2021015580A1 (ko) 방열복합소재 및 그 제조 방법
WO2023038182A1 (ko) 용매열 방법을 이용한 대면적 육방정계 질화붕소 나노시트 분산용액의 제조방법
Zhao et al. Processing and structure of carbon nanofiber paper
Ni et al. A novel poly (p-phenylene benzobisoxazole)(PBO)-based three-phase silk-cocoon network structure nanocomposites with enhanced dielectric properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE