KR20230037896A - 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법 - Google Patents

분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법 Download PDF

Info

Publication number
KR20230037896A
KR20230037896A KR1020210121015A KR20210121015A KR20230037896A KR 20230037896 A KR20230037896 A KR 20230037896A KR 1020210121015 A KR1020210121015 A KR 1020210121015A KR 20210121015 A KR20210121015 A KR 20210121015A KR 20230037896 A KR20230037896 A KR 20230037896A
Authority
KR
South Korea
Prior art keywords
dispersant
boron nitride
hexagonal boron
dispersion solution
concentration
Prior art date
Application number
KR1020210121015A
Other languages
English (en)
Other versions
KR102662089B1 (ko
Inventor
노진환
김민기
오항덕
이훈희
Original Assignee
(주)알킨스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)알킨스 filed Critical (주)알킨스
Priority to KR1020210121015A priority Critical patent/KR102662089B1/ko
Priority to PCT/KR2021/013048 priority patent/WO2023038181A1/ko
Publication of KR20230037896A publication Critical patent/KR20230037896A/ko
Application granted granted Critical
Publication of KR102662089B1 publication Critical patent/KR102662089B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Colloid Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

본 발명은 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법에 관한 것으로, 더욱 상세하게는 h-BN과 용매를 혼합하고, 이에 분산제를 혼합하여 혼합용액을 제조하는 단계와, 상기 혼합용액에 외부 에너지를 공급하여 h-BN을 박리함으로써, h-BNNS 분산용액을 제조하는 단계를 포함하여 분산용액을 제조하고, 이를 고분자 수지와 복합하여 복합재를 제조하는 방법으로, 분산 효율이 우수하고, 점도의 상승없이 고농도의 육방정계 질화붕소 분산용액의 제조가 가능함으로써, 이를 고분자 수지와 복합하여 다양한 고품질의 방열 제품을 제조할 수 있고, 특히, 고품질의 방열 패드의 제조가 가능하다는 장점이 있다.

Description

분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법{Manufacturing method of high concentrated h-BN nanosheet dispersion and h-BNNS-polymer composite}
본 발명은 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법에 관한 것으로, 더욱 상세하게는 분산 효율이 우수하고, 고농도인 육방정계 질화붕소 나노시트 분산용액을 제조하고, 이를 이용하여 고분자 복합재를 제조하는 방법에 관한 것이다.
2차원 나노구조 재료는 일정한 평면형태를 가지며 두께가 원자 한층 또는 몇 층으로 이루어진 소재로, 화학, 재료 분야의 연구가 가장 활발한 연구 분야 중 하나로 손꼽히고 있으며, 전자, 기계 및 생명공학 분야로의 접목을 통하여 연구 주제가 다변화되고 있는 분야이다.
대표적인 2차원 나노구조 재료로는 그래핀, 질화붕소 등을 들 수 있는데, 이중에서 질화붕소는 BN의 화학식을 가지고, 보론 원자와 질소 원자가 평면 2차원 육각형 구조를 이루고 있으며, 흑연과 비슷한 육방정계 구조를 갖고 있어 화학적, 물리적 성질이 흑연과 비슷하여, 물리적, 화학적 안정성이 높은 물질이다.
이러한 육방정계 질화붕소(hexagonal boron nitride : h-BN)는 불활성 분위기에서는 최대 3000℃까지 안정하며, 스테인레스 스틸 정도의 높은 열전도율이 있어 열충격 저항성이 크고, 1500℃ 정도의 급가열, 급냉각을 반복하여도 균열이나 파손이 없다. 그리고 고온 윤활성 및 내식성이 대단히 우수하다. 또한, 전기 저항값이 월등히 높은데, 특히 고온에서의 전기 저항값의 변화가 적어 넓은 온도 범위에서 전기절연재료로 사용할 수 있으며 전계를 가하면 자외선을 방출하는 특성이 있다. 뿐만 아니라, h-BN은 그래핀과 마찬가지로 모든 가스와 액체에 대해서 불침투성을 보이며, 투명하며 보론 원자와 질소 원자가 그물처럼 연결된 육각형 벌집 구조의 공간적 여유로 인해 신축성이 뛰어나다. 이러한 h-BN의 특이한 구조와 물성은 반도체 재료의 절연체 및 자외선 발생장치, 배리어 필름으로 응용될 수 있다.
최근 나노 기술에 대한 수요와 관심이 증대되면서 h-BN도 나노시트, 나노튜브와 같은 형태로 얻기 연구가 진행되고 있다. 현재 육방정계 질화붕소 나노시트(hexagonal boron nitride nanosheet : h-BNNS)를 제조하는 방법으로는 기계적 박리, 화학기상증착(Chemical Vapor Deposition : CVD), 질화붕소 층간 화합물 방법 등이 있다.
먼저, 기계적 방법은 다층의 h-BN를 용매 내에서 초음파 처리를 통해 떼어내는 방법으로, 가장 간단하게 h-BNNS를 제조할 수 있는 방법이다. 그러나 이러한 방법은 대량 생산에 어려움이 있으며, 소수층으로의 박리가 어려워 수 nm의 두께를 갖는 h-BNNS를 제조할 수 없다는 단점이 있다.
CVD 방법은 기판 위에 촉매 금속을 증착하여 얇은 금속 막을 형성한 후 고온에서 보론과 질소가 포함된 기체를 흘려준 뒤, 냉각시켜 금속 막 위에 형성된 h-BNNS를 얻는 방법으로, 공정 온도가 매우 높으므로, 대면적 및 가격면에서 불리한 단점이 있다.
질화붕소 층간 화합물 방법으로는, h-BN에 히드록시기와 같은 작용기를 결합시켜 층간 인력을 완화하고, 작용기와 용매와의 친화성을 향상시킨 분산액을 제조하여 단일층의 질화붕소를 제조하는 방법이나, 제조된 단일층 질화붕소의 수율이 낮은 단점이 있다.
한편, h-BNNS는 수직방향보다 수평방향의 열전도도가 수십배에 다달할 정도로 높아 방열 패드 등으로 활용되고 있다. 하지만, 방열 패드 등의 복합소재로 적용하기 위해서는 고분자 수지 내에 많은 양의 대면적 h-BNNS를 첨가해야 하는데, 분산된 h-BN의 농도가 높아질수록 분산 효율이 낮아지게 되며, 점도가 급격히 증가하는 문제가 있다. 즉, 이러한 고점도의 h-BNNS 분산용액을 이용하여 고분자 복합재를 제조하고, 이를 이용하여 방열 패드 등을 제조할 경우, 패드 두께가 불균일해지는 것은 물론, 에어 버블(air bubble)이 발생하는 등의 문제가 있다.
따라서, h-BNNS-polymer 복합용액을 이용하여 고품질의 방열 패드를 제조하기 위해서는 고농도의 h-BNNS 분산용액을 점도의 상승없이 제조해야 하는바, 종래 이러한 기술은 게시된 바 없었다.
KR 10-1878746 B1 KR 10-1634160 B1 KR 10-1637220 B1
따라서, 본 발명의 목적은 분산 효율이 우수하고, 점도가 높지 않은 고농도의 육방정계 질화붕소 나노시트 분산용액의 제조방법을 제공하는 데 있다.
본 발명의 다른 목적은 고농도 육방정계 질화붕소 나노시트 분산용액을 고분자 수지와 복합하여 고품질의 방열 제품을 제조할 수 있도록 하는 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법을 제공하는 데 있다.
상기한 목적을 달성하기 위한 본 발명의 분산제를 이용한 고농도 육방정계 질화붕소 분산용액의 제조방법은, h-BN과 용매를 혼합하고, 이에 분산제를 혼합하여 혼합용액을 제조하는 단계와, 상기 혼합용액에 외부 에너지를 공급하여 h-BN을 박리함으로써, h-BNNS 분산용액을 제조하는 단계를 포함하되, 상기 분산제는 헤드 그룹(head group)이 아민 그룹(amine group) 및 인산 그룹(phosphoric acid group)중 1종 이상의 기능기를 포함하는 것을 특징으로 한다.
상기 분산제의 테일 그룹(tail group)은 Si-O bond를 포함하는 것을 특징으로 한다.
상기 분산제는 bis(3-aminopropyl) terminated Poly(dimethylsiloxane)인 것을 특징으로 한다.
상기 용매는 아이소프로필 알코올(IPA), 메틸에틸케톤(MEK), 다이클로로메테인(DCM), 테트라히드로퓨란(THE), 벤젠(Benzene) 헥산(Hexane) 및 톨루엔(toluene), 클로로포름(Chloroform) 중 1종 이상의 것임을 특징으로 한다.
상기 혼합용액을 제조하는 단계에서, 상기 h-BN과 용매를 농도가 250~500mg/ml가 되도록 혼합하는 것임을 특징으로 한다.
상기 분산제는 상기 혼합용액 100wt%를 기준으로 1~2wt%로 혼합되는 것을 특징으로 한다.
본 발명에 의한 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법은, 상기한 제조방법으로 제조된 h-BNNS 분산용액에 고분자 수지를 혼합하는 단계를 포함하는 것을 특징으로 한다.
상기 고분자 수지는 Si-O계 고분자인 것을 특징으로 한다.
본 발명의 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법에 의하면, 분산 효율이 우수하고, 점도의 상승없이 고농도의 육방정계 질화붕소 분산용액의 제조가 가능함으로써, 이를 고분자 수지와 복합하여 다양한 고품질의 방열 제품을 제조할 수 있다는 장점이 있다. 특히, 고품질의 방열 패드의 제조가 가능하다는 장점이 있다.
도 1은 본 발명에 의한 고농도 h-BNNS-polymer 복합재의 제조방법을 나타낸 개념도.
도 2는 본 발명에 의한 고농도 h-BNNS 분산용액의 분산제 함량에 다른 점도를 나타낸 그래프.
도 3은 본 발명에 의한 실시예 1과 비교예 1의 SEM 분석을 통한 분산 결과를 나타낸 도면.
도 4는 본 발명에 의한 실시예 1과 비교예 1의 AFM 분석을 통한 분산 결과를 나타낸 도면.
도 5는 본 발명에 의한 실시예 1의 분산용액을 이용하여 제조된 방열 패드의 사진.
도 6은 본 발명에 의한 비교예 1의 분산용액을 이용하여 제조된 방열 패드의 사진.
이하, 본 발명을 상세히 설명한다.
본 발명의 가장 큰 특징은 도 1과 같이, 육방정계 질화붕소(h-BN)와 분산용매에 적합한 분산제를 적용하여 점도가 높지 않은 고농도의 육방정계 질화붕소 나노시트(h-BNNS) 분산용액을 제조하고, 이를 고분자 수지에 분산하여 고품질의 육방정계 질화붕소 나노시트-고분자(h-BNNS-polymer) 복합재를 제조하는 데 있다.
즉, 종래의 제조방법에 의하면, 점도의 상승으로 인하여 고농도의 h-BNNS 분산용액을 복합재에 적용하는 데 어려움이 있어, 고품질의 방열 제품, 특히 방열 패드의 제조에 어려움이 있었으나, 본원발명은 점도의 상승없이 고농도의 h-BNNS 분산용액을 제조할 수 있어 산업 전반에 걸처 그 활용도를 높일 수 있다는 데 특징이 있는 것이다.
이러한 본 발명의 분산제를 이용한 고농도 육방정계 질화붕소 분산용액의 제조방법은 h-BN과 용매를 혼합하고, 이에 분산제를 혼합하여 혼합용액을 제조하는 단계와, 상기 혼합용액에 외부 에너지를 공급하여 h-BN을 박리함으로써, h-BNNS 분산용액을 제조하는 단계를 포함하되, 상기 분산제는 헤드 그룹(head group)이 아민 그룹(amine group) 및 인산 그룹(phosphoric acid group) 중 1종 이상의 기능기를 포함하는 것을 특징으로 한다.
먼저, h-BN과 용매를 혼합한다.
이때, 상기 h-BN은 벌크형의 h-BN power을 의미한다.
상기 용매로는 아이소프로필 알코올(IPA), 메틸에틸케톤(MEK), 다이클로로메테인(DCM), 테트라히드로퓨란(THE), 벤젠(Benzene) 헥산(Hexane) 및 톨루엔(toluene), 클로로포름(Chloroform) 중 1종 이상의 것을 사용함이 바람직하다. 이는 h-BN의 효율적인 분산은 물론, 후공정에서 사용된 분산제의 용해, 복합재로의 제조시 사용되는 고분자 수지와의 분산을 고려한 것이다.
이때, 상기 h-BN과 용매는 그 농도가 250~500mg/ml로 혼합되는 것인바, 분산 효율이 우수하고, 고농도인 h-BNNS 분산용액을 제조하기 위함이다.
다음으로, 상기 혼합액에 분산제를 투입하여 20~40시간 교반, 혼합한다.
상기 분산제는 h-BN에 효과적으로 흡착되어 250mg/ml 이상의 고농도로 h-BN의 분산이 가능토록 하며, 보다 대면적의 h-BNNS로 층간을 박리할 수 있도록 하고, 상기 h-BN의 시트 사이에서 steric ahinderance 효과를 주는 것이다.
구체적으로, 상기 분산제는 헤드 그룹(head group)이 루이스(lewis) 산-염기 반응을 통해 상기 h-BN의 표면에 효과적으로 흡착될 수 있어야 하는바, 아민 그룹(amine group) 및 인산 그룹(phosphoric acid group)중 1종 이상의 기능기를 포함한다.
또한, 상기 분산제의 테일 그룹(tail group)은 h-BN의 시트 사이에서 steric hinderance 효과를 줄 수 있어야 하므로, Si-O bond를 포함한다. 또한, 이러한 테일 그룹은 복합재의 제조시 Si-O계 고분자 수지와의 혼합시에도 고분자 매트릭스와 유사한 구조를 가져 h-BNNS와 고분자 매트릭스의 compatibility를 향상시킨다.
더욱 구체적으로 상기 분산제로는 하기 화학식 1의 bis(3-aminopropyl) terminated Poly(dimethylsiloxane)를 사용할 수 있으며, 시판제품으로 DisperBYK-180, DisperBYK-182, DisperBYK-2001 등을 사용할 수 있다.
Figure pat00001
그리고 상기 분산제는 상기 혼합용액 100wt%를 기준으로 1~2wt%로 혼합되는 것이 바람직한데. 이는 그 사용량이 너무 적으면 점도를 낮추는 효과가 충분하지 못하고, 과량이 되더라도 더 이상의 증진된 작용효과가 없어 경제적이지 못하기 때문이다.
다음으로, 이 혼합용액에 외부 에너지를 공급하여 h-BN의 층간 결합을 분리시킴으로써, 고농도 대면적의 h-BNNS 분산용액을 제조한다.
이때, 상기 외부 에너지는 자력교반, 물리교반, 초음파, 믹서, 고압분사, 볼밀, 쓰리롤밀 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있으나, 가장 바람직하게는 볼밀 및 초음파 중 1종 이상을 이용하는 것이다.
상기 볼밀 및 초음파 분산의 조건은 이 기술이 속하는 분야에서 공지된 정도로 실시하면 족한바, 분산 과정을 1~6시간 진행한다.
상기와 같은 제조과정을 통해 제조된 h-BNNS 분산용액은 h-BNNS의 표면 손상이나 고유 물성의 손상이 없으며, 고농도 대면적의 h-BNNS를 포함하며, 점도가 높지 않은 것은 물론, 고분자 수지와의 복합시 그 분산성이 우수하다는 장점이 있다.
본 발명에 의한 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법은, 상기한 제조방법으로 제조된 h-BNNS 분산용액에 고분자 수지를 혼합하는 단계를 포함하는 것을 특징으로 한다.
앞서 제조된 h-BNNS 분산용액은 점도가 높지 않으면서도 고농도이고, 고분자 매트릭스와 유사한 구조를 갖는 분산제가 포함되므로, 고분자 수지와의 분산성이 우수하다.
이때, 상기 고분자 수지로는 종래 방열 제품에 적용되는 것이라면 그 종류를 제한하지 않고 사용 가능하지만, 상기 분산제의 테일 그룹과 유사한 구조의 Si-O계 고분자 수지, 즉 실리콘 수지 등을 사용함이 가장 바람직하다. 이때, 실리콘 수지의 종류는 제한하지 않는바, 종래 게시된 다양한 종류를 모두 적용 가능하다.
또한, 그 혼합비 역시 제한하지 않는바, 종래 게시된 바에 따른다. 예시적으로 상기 h-BNNS 분산용액 10~90wt%에 고분자 수지 10~90wt%를 혼합할 수 있는바, 요구되는 제품의 특성에 따라 적절히 가감한다.
이러한 복합재는 종래 제조방법에 비하여 점도가 현저히 낮으므로, 고품질의 방열 제품, 특히 방열 패드의 제작이 가능하다는 장점이 있다.
이하, 본 발명을 구체적인 실시예를 통해 상세히 설명한다.
(실시예 1)
h-BN power(평균입경 10㎛)와 용매인 IPA를 반응기에 투입하였다. 이때, 그 농도는 250mg/ml였다. 그리고 이에 분산제를 각각 1.5wt%, 0.3wt%, 0.7wt%, 1.0wt%, 1.1wt%로 투입하고, 400rpm에서 1일간 교반하였다. 상기 분산제로는 bis(3-aminopropyl) terminated Poly(dimethylsiloxane)를 사용하였다.
다음으로, 이 용액을 sonication((sonication 주파수: 68 kHz, sonication 시간: 6시간) 공정을 통해 분산을 진행하였다.
(비교예 1)
h-BN power(평균입경 10㎛)와 용매인 IPA를 반응기에 투입하였다. 이때, 그 농도는 250mg/ml였다. 그리고 이를 400rpm에서 1일간 교반하였다.
다음으로, 이 용액을 sonication((sonication 주파수: 68 kHz, sonication 시간: 6시간) 공정을 통해 분산을 진행하였다.
(시험예 1)
비교예 1 및 실시예 1에 의한 h-BNNS 분산용액의 분산제의 함량에 따른 점도를 점도측정기를 통해 테스트하였다. 이때, 상기 분산용액은 h-BNNS의 함량이 10wt%가 되도록 조절한 후, 점도를 측정하였으며, 그 결과는 도 2에 나타내었다..
도 2에서 확인할 수 있는 바와 같이, 분산제를 1wt% 이상 첨가시 점도가 85.4% 이상 감소함을 확인할 수 있었는바, 고농도의 h-BNNS 분산용액의 제조가 가능함을 확인할 수 있었다.
또한, 분산제의 첨가량을 1wt%, 2wt%, 3wt%로 하여 추가실험을 실시하였는바, 그 결과 1wt% 이상 첨가하더라도 더 이상의 점도 감소는 없었다. 따라서, 그 경제성을 고려할 때 분산제의 첨가량은 1~2wt%이 바람직한 것을 확인할 수 있었다.
(시험예 2)
실시예 1 및 비교예 1의 분산결과를 비교하였다. 상기 분산 결과는 주사전자현미경(SEM) 및 원자간력현미경(AFM) 분석을 통해 실시하였다. 그리고 그 결과는 도 3 및 도 4에 나타내었다.
도 3에서와 같이 본 발명의 실시예 1의 분산용액은 비교예 1의 분산용액에 비하여 h-BNNS의 면방향 크기(lateral size)가 월등히 큰 것을 확인할 수 있었다.
또한, 도 4에서와 같이, 본 발명의 실시예 1의 분산용액은 비교예 1의 분산용액에 비하여 h-BNNS의 두께 역시 현저히 얇은 것을 확인할 수 있었다.
따라서, 본 발명에 의하면 보다 대면적의 h-BNNS 분산용액을 제조할 수 있음을 알 수 있었다.
(시험예 3)
상기 실시예 1 및 비교예 1의 분산용액을 이용하여 실리콘 수지(폴리디메틸실록산)와 1:1 중량비로 혼합하고, 150℃ 및 100kgf/cm2 의 가열 가압 공정을 거쳐 평균두께가 0.5mm인 방열 패드를 제조하였다. 그리고 이를 경화하였다.
그리고 제조된 방열 패드의 사진을 도 5(실시예 1) 및 도 6(비교예 1)에 나타내었다.
도 5 및 도 6에서 확인할 수 있는 바와 같이, 비교예 1은 점도가 상승하여 가공이 용이하지 못하고, 균일한 두께를 갖지 못하며, air bubble 현상이 나타났으나, 실시예 1은 점도 감소 효과로 인해 패드 형태가 균일하고, air bubble 현상 역시 나타나지 않음을 확인하였다.
상기한 시험예들에서 확인할 수 있는 바와 같이, 본 발명에 의하면 분산 효율이 우수하고, 고농도의 비교적 대면적을 갖는 h-BNNS 분산용액의 제조가 가능함을 확인할 수 있었다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당 업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.

Claims (8)

  1. 육방정계 질화붕소와 용매를 혼합하고, 이에 분산제를 혼합하여 혼합용액을 제조하는 단계와,
    상기 혼합용액에 외부 에너지를 공급하여 육방정계 질화붕소를 박리함으로써, 육방정계 질화붕소 나노시트 분산용액을 제조하는 단계를 포함하되,
    상기 분산제는 헤드 그룹(head group)이 아민 그룹(amine group) 및 인산 그룹(phosphoric acid group)중 1종 이상의 기능기를 포함하는 것을 특징으로 하는 분산제를 이용한 고농도 육방정계 질화붕소 분산용액의 제조방법.
  2. 제1항에 있어서,
    상기 분산제의 테일 그룹(tail group)은 Si-O bond를 포함하는 것을 특징으로 하는 분산제를 이용한 고농도 육방정계 질화붕소 분산용액의 제조방법.
  3. 제1항에 있어서,
    상기 분산제는 bis(3-aminopropyl) terminated Poly(dimethylsiloxane)인 것을 특징으로 하는 분산제를 이용한 고농도 육방정계 질화붕소 분산용액의 제조방법.
  4. 제1항에 있어서,
    상기 용매는 아이소프로필 알코올(IPA), 메틸에틸케톤(MEK), 다이클로로메테인(DCM), 테트라히드로퓨란(THE), 벤젠(Benzene) 헥산(Hexane) 및 톨루엔(toluene), 클로로포름(Chloroform) 중 1종 이상의 것임을 특징으로 하는 분산제를 이용한 고농도 육방정계 질화붕소 분산용액의 제조방법.
  5. 제1항에 있어서,
    상기 혼합용액을 제조하는 단계에서,
    상기 육방정계 질화붕소와 용매를 그 농도가 250~500mg/ml로 혼합하는 것임을 특징으로 하는 분산제를 이용한 고농도 육방정계 질화붕소 분산용액의 제조방법.
  6. 제1항에 있어서,
    상기 분산제는 상기 혼합용액 100wt%를 기준으로 1~2wt%로 혼합되는 것을 특징으로 하는 분산제를 이용한 고농도 육방정계 질화붕소 분산용액의 제조방법.
  7. 제1항 내지 제6항 중 어느 한 항의 방법으로 제조된 h-BNNS 분산용액에 고분자 수지를 혼합하는 단계를 포함하여 제조되는 것을 특징으로 하는 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법.
  8. 제7항에 있어서,
    상기 고분자 수지는 Si-O계 고분자 수지인 것을 특징으로 하는 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법.
KR1020210121015A 2021-09-10 2021-09-10 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법 KR102662089B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210121015A KR102662089B1 (ko) 2021-09-10 2021-09-10 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법
PCT/KR2021/013048 WO2023038181A1 (ko) 2021-09-10 2021-09-24 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210121015A KR102662089B1 (ko) 2021-09-10 2021-09-10 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법

Publications (2)

Publication Number Publication Date
KR20230037896A true KR20230037896A (ko) 2023-03-17
KR102662089B1 KR102662089B1 (ko) 2024-05-03

Family

ID=85507647

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210121015A KR102662089B1 (ko) 2021-09-10 2021-09-10 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법

Country Status (2)

Country Link
KR (1) KR102662089B1 (ko)
WO (1) WO2023038181A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187057A (ja) * 2014-03-13 2015-10-29 株式会社豊田中央研究所 窒化ホウ素ナノシート含有分散液、窒化ホウ素ナノシート複合体及びその製造方法
KR20160016982A (ko) * 2016-01-21 2016-02-15 에스엠에스주식회사 폴리아믹산을 분산제로 사용하는 방열용 질화붕소 분산액 조성물
KR101634160B1 (ko) 2013-09-06 2016-06-28 한국과학기술원 육방정 질화붕소 나노시트/세라믹 나노 복합 분말 및 그의 제조 방법, 및 육방정 질화붕소/세라믹 나노 복합 소재 및 그의 제조 방법
KR101637220B1 (ko) 2014-10-20 2016-07-08 한국원자력연구원 질화붕소 나노시트 제조방법 및 이에 따라 제조되는 질화붕소 나노시트
KR20160125711A (ko) * 2015-04-22 2016-11-01 한국과학기술원 고품질 육방정 질화붕소 나노시트 제조 방법 및 이를 이용하여 제조된 육방정 질화붕소 나노시트
KR101878746B1 (ko) 2011-12-06 2018-07-17 삼성전자주식회사 육방정계 질화붕소 시트, 그의 제조방법 및 이를 구비하는 전기소자
JP6747061B2 (ja) * 2016-05-31 2020-08-26 大日本印刷株式会社 無機層状材料、無機層状材料積層体、及び無機層状材料分散液

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878746B1 (ko) 2011-12-06 2018-07-17 삼성전자주식회사 육방정계 질화붕소 시트, 그의 제조방법 및 이를 구비하는 전기소자
KR101634160B1 (ko) 2013-09-06 2016-06-28 한국과학기술원 육방정 질화붕소 나노시트/세라믹 나노 복합 분말 및 그의 제조 방법, 및 육방정 질화붕소/세라믹 나노 복합 소재 및 그의 제조 방법
JP2015187057A (ja) * 2014-03-13 2015-10-29 株式会社豊田中央研究所 窒化ホウ素ナノシート含有分散液、窒化ホウ素ナノシート複合体及びその製造方法
KR101637220B1 (ko) 2014-10-20 2016-07-08 한국원자력연구원 질화붕소 나노시트 제조방법 및 이에 따라 제조되는 질화붕소 나노시트
KR20160125711A (ko) * 2015-04-22 2016-11-01 한국과학기술원 고품질 육방정 질화붕소 나노시트 제조 방법 및 이를 이용하여 제조된 육방정 질화붕소 나노시트
KR20160016982A (ko) * 2016-01-21 2016-02-15 에스엠에스주식회사 폴리아믹산을 분산제로 사용하는 방열용 질화붕소 분산액 조성물
JP6747061B2 (ja) * 2016-05-31 2020-08-26 大日本印刷株式会社 無機層状材料、無機層状材料積層体、及び無機層状材料分散液

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Changjui Sun et al., Nanoscale, 2020, 12(35), pages 18379-18389* *
Hongxing Zhang et al., 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2020 (2020.12.15), pages 1-4* *

Also Published As

Publication number Publication date
KR102662089B1 (ko) 2024-05-03
WO2023038181A1 (ko) 2023-03-16

Similar Documents

Publication Publication Date Title
Joy et al. An overview of boron nitride based polymer nanocomposites
Meziani et al. Boron nitride nanomaterials for thermal management applications
Xu et al. Thermal conductive composites reinforced via advanced boron nitride nanomaterials
Liu et al. Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties
Wang et al. Highly thermally conductive polymer composite originated from assembly of boron nitride at an oil–water interface
Meng et al. Polymer composites of boron nitride nanotubes and nanosheets
Liang et al. Epoxy nanocomposites with reduced graphene oxide-constructed three-dimensional networks of single wall carbon nanotube for enhanced thermal management capability with low filler loading
Yuan et al. Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation
Lee et al. Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes
Xu et al. A facile assembly of polyimide/graphene core–shell structured nanocomposites with both high electrical and thermal conductivities
Choi et al. Synthesis of silica-coated graphite by enolization of polyvinylpyrrolidone and its thermal and electrical conductivity in polymer composites
Akhtar et al. Hybridization of hexagonal boron nitride nanosheets and multilayer graphene: Enhanced thermal properties of epoxy composites
US20060025515A1 (en) Nanotube composites and methods for producing
Wang et al. Green production of covalently functionalized boron nitride nanosheets via saccharide-assisted mechanochemical exfoliation
Akram et al. Review on polymer/carbon nanotube composite focusing polystyrene microsphere and polystyrene microsphere/modified CNT composite: preparation, properties, and significance
Shen et al. Highly in-plane thermally conductive composite films from hexagonal boron nitride microplatelets assembled with graphene oxide
Wu et al. Green preparation of high-yield and large-size hydrophilic boron nitride nanosheets by tannic acid-assisted aqueous ball milling for thermal management
Wu et al. Amino acid functionalized boron nitride nanosheets towards enhanced thermal and mechanical performance of epoxy composite
Liu et al. 2D nanosheet-constructed hybrid nanofillers for polymer nanocomposites with synergistic dispersion and function
KR101413996B1 (ko) 카본 하이브리드 필러를 포함하는 방열 복합체 및 그 제조방법
US20220098463A1 (en) Thermal dissipation composite material and manufacturing method thereof
Li et al. Hybrid filler with nanoparticles grown in situ on the surface for the modification of thermal conductive and insulating silicone rubber
WO2018230638A1 (ja) カーボン修飾窒化ホウ素、その製造方法および高熱伝導性樹脂組成物
CN114054762A (zh) 基于石墨烯缺陷调控的石墨烯/金属基复合材料制备方法
KR102662089B1 (ko) 분산제를 이용한 고농도 육방정계 질화붕소 분산용액 및 육방정계 질화붕소 나노시트-고분자 복합재의 제조방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right