WO2023038124A1 - Dispositif et procédé pour la fabrication d'une préforme en verre pour fibre optique - Google Patents

Dispositif et procédé pour la fabrication d'une préforme en verre pour fibre optique Download PDF

Info

Publication number
WO2023038124A1
WO2023038124A1 PCT/JP2022/033929 JP2022033929W WO2023038124A1 WO 2023038124 A1 WO2023038124 A1 WO 2023038124A1 JP 2022033929 W JP2022033929 W JP 2022033929W WO 2023038124 A1 WO2023038124 A1 WO 2023038124A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply pipe
raw material
optical fiber
vaporizer
degasser
Prior art date
Application number
PCT/JP2022/033929
Other languages
English (en)
Japanese (ja)
Inventor
盛司 荒川
正敏 早川
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2023038124A1 publication Critical patent/WO2023038124A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present disclosure relates to an optical fiber glass preform manufacturing apparatus and an optical fiber glass preform manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2021-147769 filed on September 10, 2021, and incorporates all the descriptions described in the Japanese Patent Application.
  • Patent Document 1 discloses a manufacturing apparatus that implements a method for manufacturing a glass particulate deposit.
  • the manufacturing apparatus includes a reaction vessel, a gas supply device, and a burner for producing glass microparticles.
  • the apparatus for manufacturing an optical fiber glass preform includes: A tank for pressurizing a liquid raw material with gas, a vaporizer for vaporizing the pressurized raw material, a burner for ejecting the raw material vaporized by the vaporizer to form glass fine particles, and pressurized by the tank. and a supply pipe for supplying the vaporized raw material to the vaporizer, wherein the supply pipe is provided with a degasser for removing gas accumulated in the supply pipe.
  • the manufacturing method of the glass preform for optical fiber of the present disclosure includes: A tank for pressurizing a liquid raw material with gas, a vaporizer for vaporizing the pressurized raw material, a burner for ejecting the raw material vaporized by the vaporizer to form glass fine particles, and pressurized by the tank. a supply pipe for supplying the vaporized raw material to the vaporizer, wherein the supply pipe is provided with a degasser for removing gas accumulated in the supply pipe. It is a manufacturing method of the glass base material for optical fibers to be used.
  • FIG. 1 is a diagram showing an apparatus for manufacturing an optical fiber glass preform according to an embodiment.
  • An apparatus for manufacturing an optical fiber glass preform ejects a raw material from a burner, oxidizes it in a flame to form glass particles, and deposits the glass particles to produce an optical fiber glass preform. If the raw material is liquid, the raw material is pressurized by gas in the tank and supplied to the vaporizer. However, if the supply amount of the raw material fluctuates, the amount of the formed glass particles also fluctuates, which may cause molding defects in the optical fiber glass preform.
  • An object of the present disclosure is to provide an apparatus for manufacturing an optical fiber glass preform and a method for manufacturing an optical fiber glass preform that can suppress the occurrence of molding defects in the optical fiber glass preform.
  • An apparatus for manufacturing an optical fiber glass preform includes: A tank for pressurizing a liquid raw material with gas, a vaporizer for vaporizing the pressurized raw material, a burner for ejecting the raw material vaporized by the vaporizer to form glass fine particles, and pressurized by the tank. and a supply pipe for supplying the vaporized raw material to the vaporizer, wherein the supply pipe is provided with a degasser for removing gas accumulated in the supply pipe.
  • the gas dissolved in the liquid raw material sometimes spouts out as bubbles and stays in the supply pipe.
  • the degasser is provided in the supply pipe, it is possible to remove the gas inside the supply pipe, and it is possible to suppress the instability of the raw material supply due to the stagnant gas flowing into the vaporizer at once in a short period of time. As a result, the occurrence of molding defects in the optical fiber glass preform can be suppressed.
  • the supply pipe may extend vertically upward and then vertically downward from upstream to downstream.
  • gas tends to stay at the top in the vertical direction of the supply pipe.
  • At least one degasser may be provided at the top in the vertical direction of the supply pipe or at a portion downstream of the top in the raw material supply channel.
  • the gas inside the supply pipe can be preferably removed.
  • a method for manufacturing an optical fiber glass preform includes: A tank for pressurizing a liquid raw material with gas, a vaporizer for vaporizing the pressurized raw material, a burner for ejecting the raw material vaporized by the vaporizer to form glass fine particles, and pressurized by the tank. a supply pipe for supplying the vaporized raw material to the vaporizer, wherein the supply pipe is provided with a degasser for removing gas accumulated in the supply pipe. It is a manufacturing method of the glass base material for optical fibers to be used. The gas dissolved in the liquid raw material sometimes spouts out as bubbles and stays in the supply pipe.
  • the degasser is provided in the supply pipe, it is possible to remove the gas inside the supply pipe, and it is possible to suppress the instability of the raw material supply due to the stagnant gas flowing into the vaporizer at once in a short period of time. As a result, the occurrence of molding defects in the optical fiber glass preform can be suppressed.
  • the supply pipe may extend vertically upward and then vertically downward from upstream to downstream.
  • gas tends to stay at the top in the vertical direction of the supply pipe.
  • At least one degasser may be provided at the top in the vertical direction of the supply pipe or at a portion downstream of the top in the raw material supply channel.
  • the gas inside the supply pipe can be preferably removed.
  • FIG. 1 is a configuration diagram of an apparatus 100 for manufacturing an optical fiber glass preform 8 according to an embodiment.
  • the manufacturing apparatus 100 includes a tank 10 , a supply pipe 40 , a supply device 20 , a burner 30 and a reaction vessel 130 .
  • the arrow labeled A in FIG. 1 indicates the vertical direction.
  • the tank 10 is installed on the vertically lower floor 110
  • the feeder 20 , the burner 30 and the reaction vessel 130 are installed on the vertically upper floor 120 .
  • the supply pipe 40 is laid across the lower floor 110 and the upper floor 120 .
  • the tank 10 is a container that stores the liquid raw material 2 that forms the basis of the glass fine particles 6 .
  • the liquid raw material 2 include silicon tetrachloride and siloxane (eg, octamethylcyclotetrasiloxane).
  • liquid source 2 is pressurized with gas 4 and introduced into supply pipe 40 .
  • gas for pressurizing the liquid raw material 2 an inert gas such as He that is sparingly soluble in liquid at room temperature (20° C.) is used.
  • the supply pipe 40 is a pipe that guides the liquid raw material 2 to the burner 30 .
  • the supply pipe 40 is connected with the burner 30 .
  • the supply device 20 is provided on the supply pipe 40 at a position immediately before the portion connected to the burner 30 . In FIG. 1, five burners 30 and five feeders 20 are shown by way of example.
  • the supply pipe 40 branches into five between the tank 10 and the supply device 20 .
  • a supply device 20 is provided in each of the branched supply pipes 40 .
  • the supply pipe 40 extends vertically upward and then vertically downward from upstream to downstream. Specifically, the supply pipe 40 extends to the top of the upper floor 120 and then extends vertically downward in steps to the position of the supply device 20 .
  • a degasser 42 is provided at a vertical uppermost portion 44 of the supply pipe 40 .
  • a degasser 42 is a device that removes gas from a liquid using a degassing membrane. Specifically, the degasser 42 is connected between the supply pipes 40 to remove gas in the liquid source 2 on-line.
  • the aspect of the convex pipe in the present disclosure does not refer only to the aspect of the pipe that bends at a strictly right angle, but the aspect of the pipe that bends at an obtuse angle or an acute angle, or the aspect of the curved pipe that vertically extends the supply pipe 40 upward. Including those that protrude.
  • the aspect of convex piping in the present disclosure also includes the aspect of piping including a portion in which the supply pipe extends obliquely with respect to the vertical direction.
  • the degasser 42 may be provided at a portion 46 downstream of the uppermost portion 44 of the supply pipe 40 in the supply channel of the liquid raw material 2 , instead of the uppermost portion 44 .
  • the supply device 20 includes, for example, a supply section 22, a vaporization device 24, a control valve 26, and a mass flow meter (MFM) 28. These are arranged in the order of the MFM 28 , the control valve 26 , the vaporizer 24 and the supply section 22 from the upstream in the supply flow path of the liquid raw material 2 .
  • the MFM 28 is a device that measures the supply flow rate of the liquid raw material 2 .
  • the control valve 26 is a valve that controls the supply flow rate of the liquid raw material 2 to the vaporizer 24 .
  • the control valve 26 is configured to control the degree of opening of the valve based on the supply flow rate of the liquid raw material 2 detected by the MFM 28 .
  • the vaporizer 24 is a device that introduces a carrier gas such as nitrogen into the liquid raw material 2 to vaporize the liquid raw material 2 (into a mist state).
  • the supply part 22 is a part that supplies the liquid raw material 2 in a mist state to the burner 30 .
  • the burner 30 is a member that generates the glass microparticles 6 by thermally decomposing and oxidizing the vaporized raw material in a flame inside the reaction vessel 130 .
  • the burner 30 sprays and deposits the generated glass fine particles 6 on the starting rod 132 rotating about the axis, thereby manufacturing the optical fiber glass preform 8 .
  • the burner 30 is supplied with a flame forming gas such as H 2 and O 2 and an inert gas such as N 2 and Ar as a burner sealing gas.
  • the reaction vessel 130 includes, for example, a burner 30, an end heating burner 32, and an exhaust section 134.
  • a starting rod 132 is arranged at a predetermined position when manufacturing the optical fiber glass preform 8.
  • the exhaust part 134 is a part for discharging the glass particles 6 that have not adhered to the starting rod 132 and the optical fiber glass base material 8 to the outside of the reaction vessel 130 together with the gas inside the reaction vessel 130 .
  • the end heating burners 32 are burners for heating the upper and lower ends of the optical fiber glass preform 8 . In FIG. 1, two end heating burners 32 are shown by way of example. The two end heating burners 32 are arranged so as to sandwich the five burners 30 from above and below.
  • a method for manufacturing an optical fiber glass preform according to the present embodiment using the manufacturing apparatus 100 described above will be described.
  • a manufacturing apparatus 100 in which a degasser 42 is provided in a supply pipe 40 is used. Then, the vaporized raw material is supplied to the burner 30 via the supply device 20, and the glass microparticles 6 are generated by thermally decomposing and oxidizing the raw material in the flame. Then, the generated glass particles 6 are sprayed and deposited on the starting rod 132 rotating about the axis to manufacture the optical fiber glass preform 8 .
  • Gases such as He are generally poorly soluble in liquids. Melt into raw materials. When the pressure applied to the liquid raw material drops due to pressure loss in the supply pipe or the like, the dissolved gas gushes out as bubbles. If this bubbling gas stays in the supply pipe and the staying gas flows into the supply device at once in a short period of time, a hunting phenomenon may occur. For example, when an MFM is employed, if stagnant gas flows into the MFM at once in a short period of time, the flow rate detected by the MFM becomes 0, the opening of the control valve increases, and a hunting phenomenon occurs. As a result, the liquid raw material flows into the vaporizer at once in a short time, and a large amount of raw material gas is jetted out. If such a hunting phenomenon occurs, there is a possibility that the manufactured optical fiber glass preform may have a molding defect.
  • the degasser 42 is provided in the supply pipe 40, so that the gas inside the supply pipe 40 can be removed, and the stagnant gas is vaporized at once in a short time. It is possible to suppress the instability of the raw material supply due to the raw material flowing into 24 . As a result, the occurrence of molding defects in the optical fiber glass preform can be suppressed.
  • destabilization of raw material supply can also be suppressed by providing a degasser 42 in a supply pipe having a shape other than a convex shape.
  • the degasser 42 is provided in the supply pipe 40 to prevent the supply of the raw material from becoming unstable. can be suppressed.
  • At least the uppermost portion 44 in the vertical direction of the supply pipe 40 where gas tends to accumulate or the portion 46 downstream of the uppermost portion 44 in the supply channel of the liquid raw material 2 is at least
  • the gas inside the supply pipe 40 can be preferably removed, and the instability of the raw material supply due to the stagnant gas flowing into the vaporizer 24 in a short period of time can be suppressed. can.
  • the occurrence of poor molding of the optical fiber glass preform can be suitably suppressed.
  • siloxane has a higher boiling point than silicon tetrachloride and is difficult to vaporize, it is necessary to supply it in a liquid state for a longer period. Therefore, if the present disclosure is applied when siloxane is used as a raw material, the occurrence of the hunting phenomenon can be suppressed more appropriately.
  • a pipe having an outer diameter of 4 mm to 10 mm and an inner diameter of about 3 mm to 9 mm can be used as the pipe of the supply pipe 40.
  • the inner diameter of the pipe is smaller than 3 mm, the pressure loss increases, and when the inner diameter is larger than 9 mm, air bubbles tend to increase due to cavities in the pipe.
  • Table 1 shows the presence or absence of hunting when the supply pipe 40 having a convex shape is provided with the degasser 42 and when it is not provided.
  • the presence or absence of hunting was examined for the case where the degasser 42 was provided at the top of the supply pipe 40 and the case where the degasser 42 was provided at the inlet portion of the supply pipe 40 .
  • the supply pipe 40 was made of Teflon (registered trademark) and had an inner diameter of 4 mm and an outer diameter of 6 mm.
  • a liquid glass raw material was supplied to the supply pipe 40 at a set supply amount of 50 g/min.
  • “Top” is “the highest position in the pipe having a convex shape”
  • “introducing the degasser to the top” in Table 1 means that the degasser pipe is connected to the “top”
  • the results are shown when
  • the "inlet part” is “a position on the upstream side separated by a pipe length of 1 m or more from the uppermost position of the pipe having a convex shape”
  • "Introducing the degasser to the inlet part” in Table 1 shows the results when the degasser pipe is connected to the "inlet”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

La présente invention concerne un dispositif pour la fabrication d'une préforme en verre pour une fibre optique, ledit dispositif comprenant : un réservoir pour la mise sous pression d'une matière de départ liquide avec un gaz ; un vaporisateur pour la vaporisation de la matière de départ sous pression ; un brûleur pour le soufflage de la matière de départ vaporisée par le vaporisateur et la formation ainsi de fines particules de verre ; et un tuyau d'apport pour l'apport au vaporisateur de la matière de départ mise sous pression dans le réservoir, le tuyau d'apport étant pourvu d'un dégazeur pour l'élimination du gaz accumulé dans le tuyau d'apport.
PCT/JP2022/033929 2021-09-10 2022-09-09 Dispositif et procédé pour la fabrication d'une préforme en verre pour fibre optique WO2023038124A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-147769 2021-09-10
JP2021147769 2021-09-10

Publications (1)

Publication Number Publication Date
WO2023038124A1 true WO2023038124A1 (fr) 2023-03-16

Family

ID=85506460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033929 WO2023038124A1 (fr) 2021-09-10 2022-09-09 Dispositif et procédé pour la fabrication d'une préforme en verre pour fibre optique

Country Status (1)

Country Link
WO (1) WO2023038124A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110462A (ja) * 1989-12-22 1992-04-10 Corning Inc フラッシュ蒸発装置、フラッシュ蒸発器およびフラッシュ蒸発器によってプリフォームを形成する方法
JPH0781965A (ja) * 1993-07-22 1995-03-28 Sumitomo Electric Ind Ltd ガス生成装置並びに光導波路及び光ファイバ母材を製造する方法及び装置
JPH07284641A (ja) * 1994-04-14 1995-10-31 Mayekawa Mfg Co Ltd 水槽の水処理装置
JP2002052328A (ja) * 2000-08-10 2002-02-19 Mitsubishi Rayon Eng Co Ltd 炭酸水製造供給システム
WO2017187915A1 (fr) * 2016-04-27 2017-11-02 株式会社フジクラ Procédé et dispositif de fabrication d'une matrice de verre
WO2019240232A1 (fr) * 2018-06-15 2019-12-19 住友電気工業株式会社 Procédé de production d'un dépôt de particules de verre
WO2020039893A1 (fr) * 2018-08-23 2020-02-27 信越化学工業株式会社 Procédé et dispositif de production d'une préforme poreuse en verre pour fibre optique
WO2020116522A1 (fr) * 2018-12-04 2020-06-11 住友電気工業株式会社 Dispositif d'alimentation en matière première pour la production de dépôts de particules fines de verre et procédé d'alimentation en matière première
WO2020116523A1 (fr) * 2018-12-04 2020-06-11 住友電気工業株式会社 Dispositif et procédé de production d'un corps sur lequel sont déposées de fines particules de verre
JP2021074709A (ja) * 2019-10-31 2021-05-20 キヤノン株式会社 ウルトラファインバブル含有液製造装置及びウルトラファインバブル含有液製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110462A (ja) * 1989-12-22 1992-04-10 Corning Inc フラッシュ蒸発装置、フラッシュ蒸発器およびフラッシュ蒸発器によってプリフォームを形成する方法
JPH0781965A (ja) * 1993-07-22 1995-03-28 Sumitomo Electric Ind Ltd ガス生成装置並びに光導波路及び光ファイバ母材を製造する方法及び装置
JPH07284641A (ja) * 1994-04-14 1995-10-31 Mayekawa Mfg Co Ltd 水槽の水処理装置
JP2002052328A (ja) * 2000-08-10 2002-02-19 Mitsubishi Rayon Eng Co Ltd 炭酸水製造供給システム
WO2017187915A1 (fr) * 2016-04-27 2017-11-02 株式会社フジクラ Procédé et dispositif de fabrication d'une matrice de verre
WO2019240232A1 (fr) * 2018-06-15 2019-12-19 住友電気工業株式会社 Procédé de production d'un dépôt de particules de verre
WO2020039893A1 (fr) * 2018-08-23 2020-02-27 信越化学工業株式会社 Procédé et dispositif de production d'une préforme poreuse en verre pour fibre optique
WO2020116522A1 (fr) * 2018-12-04 2020-06-11 住友電気工業株式会社 Dispositif d'alimentation en matière première pour la production de dépôts de particules fines de verre et procédé d'alimentation en matière première
WO2020116523A1 (fr) * 2018-12-04 2020-06-11 住友電気工業株式会社 Dispositif et procédé de production d'un corps sur lequel sont déposées de fines particules de verre
JP2021074709A (ja) * 2019-10-31 2021-05-20 キヤノン株式会社 ウルトラファインバブル含有液製造装置及びウルトラファインバブル含有液製造方法

Similar Documents

Publication Publication Date Title
US10167543B2 (en) Method for manufacturing optical fiber preform
JPH08239226A (ja) 二酸化シリコンを含んだプリフォ−ムを作成するために反応物蒸気を与える方法および装置
US11897807B2 (en) Manufacturing apparatus and manufacturing method of porous glass base material for optical fiber
WO2023038124A1 (fr) Dispositif et procédé pour la fabrication d'une préforme en verre pour fibre optique
JP7409319B2 (ja) ガラス微粒子堆積体製造用の原料供給装置および原料供給方法
WO2022224804A1 (fr) Dispositif et procédé de fabrication d'une préforme en verre pour fibre optique
US20230227345A1 (en) Apparatus and method for producing porous glass preform
JP4460062B2 (ja) 光ファイバ母材の製造方法
US8001808B2 (en) Disassemblable burner for a vapor deposition process
TW460423B (en) Method and apparatus for producing a glass base material for an optical fiber
KR102484035B1 (ko) 유리 미립자의 합성 방법
JP4038866B2 (ja) 合成石英ガラス製造方法
JP4382477B2 (ja) 噴射装置並びにその使用方法
JP6438300B2 (ja) 成膜装置
JP7449842B2 (ja) 多孔質ガラス母材の製造方法及び製造装置
JP5598872B2 (ja) 光ファイバ母材の製造方法
JPH08131812A (ja) 液体の気化供給装置
US11878929B2 (en) Manufacturing apparatus and manufacturing method of porous glass base material
JP3437109B2 (ja) 光導波路成膜装置および光導波路成膜方法
WO2022224725A1 (fr) Brûleur, dispositif de production de dépôt de microparticules de verre et procédé de production de dépôt de microparticules de verre
JP3017724B1 (ja) シリカガラスの製造装置
US20210387106A1 (en) Method for cleaning vaporizer and vaporization apparatus
JP2023051076A (ja) ガラス微粒子堆積体の製造方法および製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE