WO2023037948A1 - 気化器 - Google Patents

気化器 Download PDF

Info

Publication number
WO2023037948A1
WO2023037948A1 PCT/JP2022/032835 JP2022032835W WO2023037948A1 WO 2023037948 A1 WO2023037948 A1 WO 2023037948A1 JP 2022032835 W JP2022032835 W JP 2022032835W WO 2023037948 A1 WO2023037948 A1 WO 2023037948A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
vaporizer
flow path
gas flow
temperature
Prior art date
Application number
PCT/JP2022/032835
Other languages
English (en)
French (fr)
Inventor
章 佐々木
Original Assignee
株式会社プロテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロテリアル filed Critical 株式会社プロテリアル
Priority to CN202280060593.3A priority Critical patent/CN117916864A/zh
Priority to KR1020247007608A priority patent/KR20240052767A/ko
Priority to JP2023546907A priority patent/JPWO2023037948A1/ja
Publication of WO2023037948A1 publication Critical patent/WO2023037948A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/02Feed or outlet devices; Feed or outlet control devices for feeding measured, i.e. prescribed quantities of reagents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Definitions

  • This invention relates to a vaporizer used in semiconductor manufacturing.
  • material gases In the semiconductor manufacturing process, various types of semiconductor material gases (hereinafter referred to as "material gases”) are used depending on the purpose of the process. Material gases that are stored in a liquid state are supplied to a semiconductor manufacturing apparatus after being changed to a gaseous state by evaporating the liquid using a vaporizer. Means for generating the material gas in the vaporizer include, for example, a method of heating liquid stored in a tank to generate vapor. 2. Description of the Related Art With the advancement of semiconductor manufacturing technology, there are increasing opportunities to use material gases that have a lower equilibrium vapor pressure than conventional material gases and are therefore difficult to vaporize (see Patent Document 1).
  • Non-Patent Document 1 In order to efficiently supply a material gas with a low equilibrium vapor pressure in a vaporizer that heats a liquid, it is effective to increase the vapor pressure of the material gas by increasing the tank heating temperature. (See Non-Patent Document 1). If the material gas generated in the tank by this method is supplied to the semiconductor manufacturing apparatus and the temperature of the material gas drops, the material gas tends to condense and return to liquid form. Therefore, various means for preventing the material gas from condensing inside the piping have been investigated.
  • Patent Document 2 the circumference of a tank containing a liquid, the piping through which vaporized gas flows, the circumference of a mass flow controller and a valve are each surrounded by separate air thermostats, and the insides of the two air thermostats are enclosed.
  • a means of maintaining a constant temperature is disclosed.
  • Patent Document 3 discloses means for providing a heating device for exclusively heating each of the tank, the flow meter, and the flow control valve.
  • Patent Literature 4 discloses means for winding a tape-shaped heater for heating the piping around the piping through which the material gas flows.
  • the present disclosure has been made in view of the above problems, and aims to realize a compact vaporizer with excellent heat uniformity.
  • the present disclosure is a vaporizer that supplies a material gas to a semiconductor manufacturing apparatus, comprising: a vaporization unit that vaporizes a precursor to generate the material gas; a first heater that heats the vaporization section but not the gas flow path; and a second heater that heats both the vaporization section and the gas flow path.
  • the vaporization section can be heated by two heaters, the first heater and the second heater, the temperature distribution of the vaporization section becomes more uniform than in the prior art.
  • the second heater is also used for heating both the vaporizing section and the gas flow path, it is possible to reduce the total number of heaters and design a more compact vaporizer than in the prior art.
  • the present disclosure relates to a vaporizer having the above configuration, in which at least one of the first heater and the second heater further has a portion with high power consumption per unit area and a portion with low power consumption.
  • the present disclosure relates to a method of supplying material gas using a vaporizer.
  • FIG. 1 is a partial cross-sectional view showing a first embodiment of a vaporizer according to the invention
  • FIG. FIG. 4 is a partial cross-sectional view showing a second embodiment of a vaporizer according to the invention
  • FIG. 5 is a piping diagram showing a third embodiment of the vaporizer according to the present invention
  • FIG. 5 is a top view of a third embodiment of a vaporizer according to the invention
  • FIG. 3 is a partial cross-sectional side view showing a third embodiment of a vaporizer according to the invention
  • FIG. 4 is a plan view showing an example of a first heater according to the present invention
  • FIG. 4 is a plan view showing an example of a second heater according to the present invention
  • FIG. 4 is a plan view showing an example of a third heater according to the present invention
  • the present invention provides a vaporizer that supplies a material gas to a semiconductor manufacturing apparatus, comprising: a vaporizing unit that vaporizes a precursor to generate a material gas; Invention of a vaporizer comprising a gas flow path for guiding gas from the vaporization section to the outside, a first heater that heats the vaporization section but does not heat the gas flow path, and a second heater that heats both the vaporization section and the gas flow path is.
  • the term "vaporizer” refers to a device that supplies a material gas produced by vaporizing a precursor to a semiconductor manufacturing apparatus. Methods such as a baking method, a bubbling method, and a direct vaporization method are generally known as means for vaporizing the precursor in the vaporizer.
  • the vaporizer according to the present invention only needs to have a means for vaporizing the precursor into a gaseous state, and the means may be any of the known means described above. Also, the means may be a new means that does not belong to any of the above means.
  • the term "material gas” refers to a gas used in a semiconductor manufacturing process, which is stored in the form of a liquid or solid precursor, and which is changed into a gas by vaporizing or sublimating the precursor during use. A gas that requires manipulation.
  • the material gas is not only a gas used as a material for patterned elements, conductive wires, or insulating layers that constitute a semiconductor device, but also a gas used in the semiconductor manufacturing process, such as a gas used for etching processing of a semiconductor device. It is a concept that includes any gas that can be
  • the term "precursor” refers to a substance at a stage prior to generation of a material gas.
  • a vaporizer according to the present invention includes a vaporization section that vaporizes a precursor to generate a material gas.
  • the vaporization section may have any structure as long as it has a function of heating and vaporizing the precursor.
  • the vaporization section can be configured by a tank containing the liquid or solid precursor. The shape of the tank is not limited as long as it has a closed space defined by partition walls.
  • the precursor when the precursor is liquid, the precursor can be charged into the tank using a pipe connected to the tank. Further, when the precursor is solid, after charging the precursor into the tank through an opening provided in a part of the partition wall of the tank, the opening can be sealed with a lid.
  • the tank may be provided with sensors for detecting the remaining amount of precursor, temperature, pressure, and the like.
  • the vaporization section can be configured by a tank containing the liquid precursor and a pipe for introducing the carrier gas into the tank.
  • the vaporization unit is composed of a pipe for continuously introducing the liquid precursor and the gaseous carrier gas, and a means for continuously heating them. can do.
  • the precursor is vaporized inside the vaporizer to generate the material gas.
  • the generated gas accumulates in the space above the liquid surface of the precursor stored in the tank in the baking method and the bubbling method.
  • the tank may have a large volume that can accommodate a sufficient amount of precursor required for supplying the material gas, or the tank itself that constitutes the vaporization section may have a small volume,
  • the vaporization section may be replenished from time to time with a precursor contained in a separate storage container having a large volume.
  • a liquid precursor stored in a container separate from the vaporization section is continuously supplied to the vaporization section for vaporization.
  • the vaporizer according to the present invention includes a gas flow path that guides the generated material gas from the vaporization section to the outside.
  • gas flow path refers to a path through which the material gas generated in the vaporization unit flows. It is a concept that includes all members provided.
  • a baking method is employed as a method of vaporizing the precursor
  • the vaporized material gas flows through the gas flow path.
  • a bubbling method or a direct vaporization method is employed as a method for vaporizing the precursor, a mixed gas of material gas and carrier gas flows through the gas flow path.
  • the starting point of the gas flow path is the outflow part of the material gas provided in the vaporization part.
  • the end point of the gas flow path is a supply port for supplying the material gas from the vaporizer to the outside, and may protrude from the case of the vaporizer as described later. Specifically, it corresponds to a joint for connecting a pipe for conveying a material gas from a vaporizer to a semiconductor manufacturing apparatus.
  • the gas flow path having the above configuration can guide the material gas generated in the vaporization section from the vaporization section to the outside of the vaporizer.
  • a second heater which will be described later, is used to heat the gas flow path to prevent condensation of the material gas.
  • the phenomenon in which the temperature of the material gas generated from a solid precursor decreases and returns to a solid state is sometimes called solidification.
  • the phenomenon of reverting to either a liquid or a solid is collectively referred to hereinafter as "condensation" without distinction.
  • the gas flow path is provided in the vicinity of the vaporization section in terms of power efficiency of the second heater, which will be described later.
  • power efficiency refers to the proportion of power that contributes to heating of the evaporator and the gas flow path in the power supplied to the heater.
  • the material gas generated in the vaporization section has a low density and tends to rise.
  • the gas flow path is provided at a position above the vaporization section in order to make the flow of the material gas smooth.
  • the position where the gas flow path is provided is not limited to the position above the vaporization section.
  • the gas flow path may be provided, for example, on the side surface of the vaporization section.
  • the vaporizer according to the present invention includes a first heater that heats the vaporizing section and does not heat the gas flow path.
  • the first heater is a separate and independent member from the second heater, which will be described later.
  • the first heater has a function of heating the evaporator and does not have a function of heating the gas flow path, or if it has a function of heating the gas flow path, its effect is limited. More specifically, the first heater is provided at a position separate from the gas flow path, or provided in a state where there is no effective heat transfer path between it and the gas flow path.
  • the first heater has a function of heating the vaporization section together with a second heater which will be described later. Most of the power consumed by the first heater is used to heat the vaporizer.
  • the first heater has no effect of heating the gas flow path.
  • the gas flow path adjacent to the heated vaporization section is heated as a result of the vaporization section being heated by a first heater and a second heater, which will be described later.
  • part of the electric power consumed by the first heater is used for heating other members other than the vaporization section and the gas flow path.
  • the first heater is provided at a position different from the position at which the second heater, which will be described later, is provided.
  • the first heater can be provided below the vaporization section or at the same height as the vaporization section. Providing multiple primary heaters for special effects is permissible in the present invention.
  • the specific structure of the first heater may be any structure as long as it is a structure capable of heating the vaporizing section by supplying electric power.
  • the first heater may include a heating resistor and a wire that supplies power to the heating resistor.
  • the heating resistor may be divided into a plurality of parts depending on the configuration (for example, size, shape, structure, etc.) of the vaporization section, and the heating resistor divided into a plurality of parts may be connected in parallel or in series. may be configured to be connected to and powered by a
  • a known temperature control technique can be used as means for controlling the power supplied to the first heater.
  • a temperature sensor can be provided inside the first heater, and feedback control can be performed so that the temperature of the first heater measured by the temperature sensor matches a preset temperature.
  • a temperature sensor may be provided to measure the temperature of the precursor to be heated by the first heater, and feedback control may be performed so that the temperature of the precursor measured by the temperature sensor matches a preset temperature. can be done.
  • the number of temperature sensors used for controlling the power supplied to the first heater may be one, or two or more.
  • a vaporizer according to the present invention includes a second heater that heats both the vaporization section and the gas flow path.
  • a 2nd heater is a separate independent member from the 1st heater mentioned above.
  • the second heater has both the function of heating the vaporization section and the function of heating the gas flow path. Part of the power consumed by the second heater is used to heat the gas flow path, and the remaining part is used to heat the vaporizer. However, as in the case of the first heater, it is permissible in the present invention that part of the power consumed by the second heater is used to heat other members other than the vaporizing section and the gas flow path. If there is one system of gas passages, one second heater is usually sufficient. However, it is permissible in the present invention to provide a plurality of second heaters for special purposes.
  • the function of heating the vaporizing section is mainly performed by the first heater.
  • the second heater only plays an auxiliary role.
  • the first heater hardly contributes to the heating of the gas flow path, and the second heater is the only one.
  • the heaters used in the vaporizer are composed of the first heater and the second heater, and the heaters have different functions. have an effect.
  • the vaporizer according to the present invention when compared with the conventional technology in which the vaporization section and the gas flow path are each heated by one dedicated heater, the vaporizer according to the present invention has the same two heaters, but the vaporization section is heated by one.
  • the temperature distribution in the vaporizing section is more uniform than in the prior art because the heating can be performed by two heaters, the first heater and the second heater, which are provided at different positions, instead of individual heaters.
  • the present invention when compared with the conventional technology in which the vaporizing section is heated by two dedicated heaters and the gas flow path is heated by a third heater, and a total of three heaters are used, the present invention has a temperature distribution of the vaporizing section.
  • the ability to reduce the number of heaters from three to two without compromising the uniformity of the vaporizer allows for a more compact vaporizer design than in the prior art.
  • the purpose is to prevent the material gas generated in the vaporizer from condensing inside the gas passage
  • the above purpose can be achieved by sufficiently increasing the temperature of the gas passage. be able to.
  • operating only a part of the vaporizer at a higher temperature than necessary leads to deterioration of parts in the high temperature part, deterioration of flow accuracy and reliability.
  • excessive temperature rise may cause material gases to degrade or thermally decompose, causing foreign matter derived from the material gases to adhere to the inside of the gas flow path, or clogging flow sensors, valves, etc. be.
  • the specific configuration of the second heater is any configuration as long as it can heat the vaporizing section by supplying electric power as in the case of the first heater.
  • the second heater may include a heating resistor and a wire that supplies power to the heating resistor.
  • the heating resistor may be divided into a plurality of parts according to the configuration (for example, size, shape, structure, etc.) of the vaporization part and the gas flow path, and the heating resistor divided into a plurality of parts may be configured to be powered in parallel or in series.
  • a known temperature control technique can be used as means for controlling the power supplied to the second heater.
  • a temperature sensor may be provided inside the second heater, and feedback control may be performed so that the temperature of the second heater measured by the temperature sensor matches a preset temperature.
  • a temperature sensor is provided to measure the temperature of the gas flow path, which is one of the targets to be heated by the second heater, and feedback is provided so that the temperature of the gas flow path measured by the temperature sensor matches the preset temperature. may be controlled.
  • the number of temperature sensors used to control the power supplied to the second heater may be one, or two or more. The temperature measured by one temperature sensor may be used in common for both the control of the power supplied to the first heater and the control of the power supplied to the second heater.
  • the second heater in the first embodiment has a planar shape
  • the vaporization section is positioned on one surface side of the second heater
  • the gas flow path is a second heater.
  • 2 is a vaporizer invention located on the other side of the heater.
  • the second heater "has a planar shape" means that the shape of the second heater itself is thin and flat.
  • the shape of the second heater may be a planar shape, and the shape of the contour of the plane is not particularly limited, and may be any shape.
  • the thickness of the second heater may be uniform over the entire plane, or conversely, there may be portions with different thicknesses.
  • a second heater having a planar shape must be able to supply heat to both one surface and the other surface.
  • the heat supply capability to the other surfaces may be equal to or different from the heat supply capability to the one surface. It shouldn't be.
  • the heater having a planar shape does not change in shape unlike the tape-shaped heater according to the prior art. For this reason, the distance between the heater and the object to be heated by the heater and other mutual positional relationships are fixed at the design stage. In terms of distribution, individual differences between vaporizer devices can be reduced. In other words, anyone can produce a carburetor with the same performance. In addition, compared with a tape-shaped heater, there is little change over time due to long-term use.
  • the vaporizing section does not come into contact with one surface of the planar second heater, and the gas flow path does not come into contact with the other surface of the second heater. It is an invention of a vaporizer in contact with.
  • the plane surface of the heater and another member "contact” means that the surface of the heater and the other member are in physical contact, and the heater and the other member are in contact with each other. A state in which the heat transfer between the two is primarily due to heat conduction.
  • contact refers not only to direct contact between the heater and another member, but also to indirect contact between the heater and another member via an intermediate member. It is a concept that includes
  • the term “in contact” is used herein. ” does not apply.
  • the above-mentioned "the vaporization part does not come into contact with one surface of the second heater” means such a state.
  • heat transfer by convection or thermal radiation is slower than heat transfer by heat conduction when the temperature difference and other conditions are the same.
  • the vaporization part does not come into contact with one surface of the second heater, and the vaporization part and the second heater are arranged and fixed in a spaced-apart manner.
  • the distance between the vaporization part and the second heater may be a fixed distance, or the distance may vary depending on the position, but there is no part where the distance between the two is zero.
  • Air or ambient gas exists in the gap between the vaporizing section and the second heater.
  • the thermal conductivity of these gases is orders of magnitude lower than that of solids.
  • the gap is not too large, convection is less likely to occur. Therefore, the heat generated in the second heater is hardly transmitted to the vaporization section by heat conduction or convection, and is transmitted to the vaporization section mainly by thermal radiation.
  • indirect contact between the second heater and the evaporating section by means of a support member having a small cross-sectional area is permitted as long as heat conduction by the support member does not significantly affect the effects of the present invention. be.
  • the gas flow path is arranged and fixed in contact with the other surface of the second heater.
  • the gas flow path and the second heater may be in direct contact with each other, or may be in indirect contact with each other via an intermediate member provided between them.
  • the contact is surface-to-surface contact and that the intermediate member is made of a material that conducts heat easily.
  • a portion of the heat generated in the second heater is transferred to at least a portion of the gas flow path primarily through heat conduction.
  • At least a portion of the gas channel may be in contact with the second heater, and the number of contacting portions may be one or two or more.
  • At least a portion of the gas flow path is in contact with the second heater, thereby heating that portion and preventing condensation of the material gas flowing through the gas flow path.
  • the heat transfer from the second heater to the vaporizing section that is not in contact with it is slower than the heat transfer from the second heater to the gas flow path that is in contact with it. .
  • the heat generated in the second heater is distributed less to the vaporizer and more to the gas flow path.
  • the second heater which is a common heat source, is used to heat the gas flow path in contact with it to a high temperature, the temperature of the vaporizer not in contact with it becomes too high. can be prevented.
  • the contact between the surface of the heater and the other member is surface contact between the outer surfaces provided on both sides. It is permissible in the present invention that a slight gap of, for example, 0.50 mm or less exists between the heater and other members that are in surface contact with each other due to processing accuracy, surface irregularities, and the like.
  • the surface of the second heater and the portion of the gas flow path to be preferentially heated may be designed so that they are in direct contact with each other, or both the surface of the second heater and the portion may be heated.
  • An intermediate member may be provided to contact the .
  • part of the heat generated in the second heater is transmitted to the gas flow path by thermal radiation or convection in the portion of the gas flow path that is not in contact with the second heater. This is of course acceptable as a secondary effect of the heater.
  • the heat transfer from the second heater to the vaporizing section not in contact with the second heater is mainly performed by thermal radiation, and the gas flow path from the second heater at least partially in contact with the second heater is performed.
  • Heat transfer to is primarily by thermal conduction.
  • heat transfer by thermal radiation transfers less heat than heat transfer by thermal conduction, and is not local.
  • the heat generated in the second heater is distributed more and more locally to heating the gas flow path and less and more globally to heat the vaporizer section.
  • the portion of the vaporization section near the second heater is not excessively heated.
  • the second heater which is a common heat source, while reducing the problems caused by the heating of the vaporization section.
  • the vaporizer can be made compact.
  • the vaporizing section has highly efficient heat transfer by heat conduction from the first heater in contact with itself, It is heated by two types of heat transfer means, non-local heat transfer by heat radiation from a non-contacting second heater.
  • the temperature distribution of the entire vaporization section can be made more uniform compared to the conventional configuration in which the vaporization section is heated by one or more heaters in contact with the vaporization section, for example.
  • the supply amount is stable and the total power consumption can be reduced.
  • the first heater has a planar shape, and the vaporizing section is in contact with one surface of the first heater. be.
  • the first heater "has a planar shape" means that the first heater itself has a thin and flat shape, as in the case of the second heater.
  • the shape of the first heater may be a planar shape, and the contour shape of the plane is not particularly limited, and may be any shape. Also, the thickness of the first heater may be uniform over the entire plane, or there may be portions with different thicknesses.
  • the vaporization section is arranged and fixed in contact with one surface of the first heater.
  • the portion of the vaporizing portion that is in contact with the first heater may be any portion excluding the portion where the second heater is provided, and the number of contacting portions may be 1 or 2 or more. good. At least a portion of the vaporizing section is in contact with the first heater, thereby heating that portion and promoting vaporization of the precursor inside the vaporizing section.
  • the power efficiency of the first heater can be improved.
  • the means for vaporizing the precursor is a baking method or a bubbling method
  • heat of vaporization is lost at the liquid surface of the precursor charged in the tank.
  • the precursor is a liquid
  • the vaporization section is a tank containing the precursor
  • the first heater and the second heater are arranged at positions facing each other with the tank interposed therebetween.
  • the precursor is liquid at room temperature
  • the vaporization section is configured by a tank containing the liquid precursor.
  • the first heater and the second heater are arranged at positions opposed to each other with the tank constituting the vaporization section interposed therebetween. That is, the first heater is arranged in contact with one surface of the tank, and the second heater is arranged on the side of the other surface facing the one surface without contacting the tank. The surface of the second heater having a planar shape that does not come into contact with the tank comes into contact with the gas flow path.
  • the second heater is arranged on the farthest plane from the first heater across the tank.
  • This surface is also the surface that is least likely to be heated by the first heater, so if the liquid precursor is heated only by the first heater, the vaporized material gas may be cooled and condensed near this surface. be.
  • the second heater By arranging the second heater on the side of this surface and heating to an appropriate temperature, the temperature distribution in the tank can be made uniform.
  • the second heater can also heat the gas flow path to an appropriate temperature, there is no place where the temperature is extremely high or low in the vaporizer as a whole, including the vaporizing part and the gas flow path. It also improves efficiency.
  • the present invention is the vaporizer invention in which the first heater is positioned at the bottom of the tank and the second heater is positioned at the top of the tank in the preferred embodiment described above.
  • the first heater heats the vaporization section (tank)
  • the portion that is always in contact with the liquid precursor is heated. 1 Heater power efficiency is improved.
  • the convection of the liquid precursor in the tank reduces the difference between the temperature of the precursor near the bottom of the tank and the temperature of the precursor near the vaporization surface.
  • the material gas vaporized on the vaporizing surface can convect in the space between the vaporizing surface and the ceiling of the tank, the upper part of the tank is also heated to some extent by the material gas. As a result, the amount of heating of the tank by the second heater is reduced, so that the total power efficiency of the first heater and the second heater is improved.
  • the gas flow path includes valves and mass flow controllers.
  • the valve may have any structure as long as it has the function of closing the gas flow path. By operating the valve, it is possible to instantaneously stop or start the supply of the material gas from the vaporizer to the semiconductor manufacturing apparatus even when the material gas continues to be generated in the vaporization unit.
  • the mass flow controller may have any structure as long as it has a function of controlling the flow rate of the material gas flowing through the gas flow path. By using the mass flow controller, it is possible to control the flow rate of the material gas supplied from the vaporizer to the semiconductor manufacturing apparatus to an arbitrary amount.
  • a flow control valve included in the mass flow controller may be substituted for the valve that closes the gas flow path.
  • valves and mass flow controllers themselves are equipped with individual gas flow paths.
  • the piping for guiding the material gas from the vaporization section to the outside and the individual gas flow paths provided individually for the valves and the mass flow controllers are harmoniously integrated to constitute the gas flow path in the present invention.
  • the gas passages provided individually by the valve and the mass flow controller are in contact with the second heater, and the heat generated in the second heater is transferred to these separate gas passages by thermal conduction. As a result, at least part of the gas flow path comes into contact with the second heater and is heated by the second heater.
  • the temperature of the material gas tends to decrease due to adiabatic expansion in the downstream area of the closing surface of the valve. This tendency is also seen in the downstream region of the closing surface of the flow control valve provided in the mass flow controller. By preferentially heating these regions of the valves and mass flow controllers, it is possible to effectively prevent the material gas from dropping in temperature and condensing due to adiabatic expansion.
  • Specific means for heating the gas flow path of the valve by means of the second heater in contact with the valve include, for example, means for bringing the surface of the second heater into contact with the surface of a member constituting the main body (valve box) of the valve. , means for interposing an intermediate member made of a material with high thermal conductivity between the second heater and the main body of the valve, or the like can be employed.
  • a specific means for heating the gas flow path provided in the mass flow controller by the second heater in contact with the mass flow controller for example, the surface of the second heater is brought into contact with the surface of a member constituting the main body (base) of the mass flow controller.
  • Means or means for interposing an intermediate member made of a material with high thermal conductivity between the second heater and the main body of the mass flow controller can be employed.
  • the number of gas passages for guiding the material gas from the vaporization section to the outside may be one, two or more.
  • the flow rate can be increased without increasing the pressure of the material gas as the number of gas flow paths increases.
  • each gas passage may have a valve and a mass flow controller, or a single valve or mass flow controller may open and close the plurality of gas passages. Or you may perform flow control simultaneously.
  • a manifold for branching or joining the gas flow path may be provided in the middle of the gas flow path extending from the vaporization section to the outside.
  • the vaporizer further includes a case that houses the vaporizer, the gas flow path, the first heater, and the second heater.
  • the case is a container that houses the entire constituent members of the vaporizer according to the present invention.
  • Vaporizers with a case are less susceptible to changes in the surrounding environment, such as temperature, humidity, wind speed, corrosive gases, static electricity, and dust, compared to vaporizers without a case, so the material gas is more stable. can be supplied to In addition, even if the vaporizer breaks down and the material gas leaks from the vaporizer to the outside, if there is a case, the range of damage caused by the leakage can be limited.
  • the case in the preferred embodiment described above does not have to have the function of agitating the internal air like the constant temperature air bath disclosed in Patent Document 2, and does not have to be a completely sealed container.
  • a material for forming the case for example, a plate material made of metal or alloy is preferable because it has sufficient strength even if it is thin, so that the size of the entire evaporator can be made compact.
  • the case in the preferred embodiment described above further comprises heat insulating means. Since the case is provided with the heat insulating means, the heat generated in the first heater and the second heater is suppressed from being released to the outside of the vaporizer, and most of the generated heat is efficiently used for heating the vaporization section and the gas flow path. can be used.
  • the heat insulating means may be provided either on the inner surface side or the outer surface side of the container constituting the case.
  • the heat insulating means may be provided on the entire surface of the container that constitutes the case, or may be provided partially only on places where heat insulation is particularly required.
  • heat insulating means means such as pasting a porous sheet made of a material such as silicone rubber or ethylene propylene diene rubber (EPDM) to the inside of the case can be used.
  • a material having high heat insulating performance may be adopted for the container itself that constitutes the case.
  • At least one of the first heater and the second heater is composed of a planar heating element, and the heating element has a portion that consumes a large amount of power per unit area and a portion that consumes a small amount of power per unit area.
  • power consumption per unit area is also referred to as watt density, and refers to a value obtained by dividing the power consumed in an area of a planar heating element by the area of the area.
  • the power consumption per unit area is nothing but the amount of heat generated in that area of the heating element. If the movement of heat in the in-plane direction of the heating element is ignored, the amount of heat generated is the sum of the amounts of heat generated from the front and back surfaces of the heating element.
  • a portion where the power consumption per unit area is large and a portion where the power consumption per unit area is small in the planar heating element for example, a portion where the density of the heating resistance wires per unit area is dense and a portion where the density of the heating resistance wires per unit area is provided in the heating element are provided. This can be achieved by means such as providing a portion with a high resistance value and a portion with a low resistance value per unit length of the heating resistance wire.
  • the heater is It is possible to preferentially heat the necessary parts while suppressing the total power consumption.
  • the vaporizer includes a third heater that heats the gas flow path and does not heat the vaporizer.
  • the third heater is an independent member separate from the first and second heaters described above.
  • the third heater is used exclusively for the purpose of heating the gas flow path. It is preferable that the third heater is located in the gas flow path farthest from the vaporizing section and the second heater and close to the outside of the vaporizer, so that the temperature of the material gas is most likely to drop. As a result, condensation of the material gas can be prevented with less power consumption than when the entire interior of the vaporizer is heated.
  • a specific configuration of the third heater can include a heating resistor, an electric wire, and a temperature sensor, similar to the first heater and the second heater. If there is one system of gas passages, one third heater is usually sufficient. However, it is permissible in the present invention to provide a plurality of third heaters for special purposes.
  • the present invention includes a vaporizing section for vaporizing a precursor to generate a material gas, a gas flow path for guiding the generated material gas from the vaporizing section to the outside, and a vaporizing section.
  • a method of supplying a material gas to a semiconductor manufacturing apparatus using a vaporizer comprising a first heater that heats the gas flow path and does not heat the gas flow path, and a second heater that heats both the vaporization section and the gas flow path, It is an invention of a method for controlling the power supplied to the first heater and the power supplied to the second heater so that the temperature of the gas flow path is higher than the temperature of the precursor in the vaporization section.
  • the configuration of the vaporizer used in this method invention is the same as the configuration of the vaporizer in the above-described first embodiment, so the description is omitted here.
  • the power supplied to the first heater and the power supplied to the second heater are controlled so that the temperature of the gas flow path is higher than the temperature of the precursor in the vaporization section.
  • the precursor in the vaporization section is heated by the first heater and the second heater, but the heating by the first heater is the main heating, and the heating by the second heater is auxiliary. Therefore, for example, the temperature of the precursor in the vaporization section can be measured by means such as a temperature sensor, and the power supplied to the first heater can be controlled so that the temperature is within a predetermined range.
  • the gas flow path is heated by the second heater.
  • the temperature of the gas flow path can be measured by means such as a temperature sensor, and the power supplied to the second heater can be controlled so that the temperature becomes higher than the temperature of the precursor.
  • the specific means for controlling the temperature of the gas flow path to be higher than the temperature of the precursor in the vaporization section is not limited to the means described above.
  • the temperature of the precursor in the vaporization section serves as an indicator of the temperature of the material gas vaporized in the vaporization section.
  • the actual temperature of the material gas immediately after being vaporized in the vaporization section is considered to be slightly lower than the temperature of the precursor because the latent heat of vaporization is taken away by the vaporization. Also, it is generally more difficult to accurately measure the temperature of the material gas compared to liquid or solid precursors. Therefore, in the method according to the present invention, instead of directly measuring the temperature of the material gas, the temperature of the precursor in the vaporization section is measured with higher reliability.
  • the temperature of the precursor can be measured, for example, by a temperature sensor or the like provided inside the vaporizer.
  • the "temperature of the gas flow path” refers to the temperature of the pipes that make up the gas flow path, the main body of the valve (valve box), or the main body (base) of the mass flow controller.
  • the temperature of the gas channel it is ideal to measure the temperature of the inner surface of the gas channel that is in contact with the material gas.
  • this involves technical difficulties, so the temperature of the exposed part of the piping, valve body (valve box), or mass flow controller body (base) is measured, and that temperature is measured in the gas flow path.
  • a hole for inserting a temperature sensor may be provided in some of these parts, and the temperature inside the hole may be measured.
  • the temperature of the gas flow path can be made higher than the temperature of the precursor in the vaporization section.
  • the temperature of the material gas flowing into the gas flow path from the vaporization section is considered to be lower than the temperature of the precursor in the vaporization section. Therefore, if the temperature of the gas channel is kept higher than the temperature of the precursor in the vaporization section by the temperature control described above, the temperature of the gas channel can be made higher than the temperature of the material gas flowing therethrough. , it is possible to reliably prevent the material gas from condensing in the gas flow path.
  • FIG. 1 is a partial cross-sectional view showing an example of a vaporizer according to the invention.
  • This vaporizer 1 employs a baking method as a means for vaporizing the precursor P, and includes a vaporizing section 2 composed of a tank 2a for storing and vaporizing the liquid precursor P.
  • FIG. A liquid precursor P is injected into the vaporization unit 2 from the outside through a pipe (not shown).
  • a temperature sensor (not shown) for measuring the temperature of the precursor P is provided inside the vaporization unit 2 .
  • a gas flow path 3 is provided above the vaporization section 2 .
  • the gas flow path 3 can be configured by, for example, piping.
  • the gas flow path 3 starts at an outflow portion 3a provided on the upper surface of the tank 2a that constitutes the vaporization portion 2, and ends at a supply port 3b.
  • a temperature sensor (not shown) is provided in the gas flow path 3 .
  • a first heater 4 is provided outside the bottom of the vaporization section 2 .
  • the first heater 4 in this embodiment is a planar heater composed of a rubber heater in which a heating resistance wire is molded from rubber.
  • the first heater 4 is provided in contact with the bottom surface, which is part of the vaporization section 2 , and is not in contact with the gas flow path 3 .
  • the heat generated in the first heater 4 is transferred to the precursor P through the bottom surface of the vaporizing section 2 by thermal conduction.
  • the material gas generated from the liquid surface of the heated precursor P stays in the upper part of the vaporization part 2, passes through the gas flow path 3 from the outflow part 3a, reaches the supply port 3b, and passes through an external pipe (not shown) from there. and supplied to the semiconductor manufacturing equipment.
  • a second heater 5 is provided outside the upper surface of the vaporization section 2 .
  • the second heater 5 in this embodiment is also a planar heater composed of a rubber heater in which the heating resistance wire is formed of rubber.
  • the second heater 5 is provided so as not to contact the vaporization section 2 . That is, there is a constant gap d between the bottom surface of the second heater 5 and the top surface of the vaporizing section 2 .
  • the size of this gap d is adjusted to 2.0 mm or more and 5.0 mm or less. Due to this gap d, the heat generated in the second heater 5 is not transferred to the vaporizing section 2 by heat conduction, but is transferred to the vaporizing section 2 mainly by thermal radiation.
  • a spacer (not shown) is interposed between the second heater 5 and the vaporizing section 2 to keep the gap d between them at a constant value. Since the cross-sectional area of the spacer is small, the amount of heat transferred from the second heater 5 to the vaporizer 2 by heat conduction via the spacer is sufficiently small to be negligible compared to the amount of heat transferred by thermal radiation. .
  • the second heater 5 is provided in contact with the gas flow path 3. Specifically, the upper surface of the second heater 5 is in contact with the lower portion of the gas flow path 3 . As a result, part of the heat generated in the second heater 5 is transferred to the gas flow path 3 by thermal conduction. In FIG. 1, a gap is shown between the upper surface of the second heater 5 and the lower part of the gas flow path 3, but this gap is simply made so that the two can be visually recognized as separate members. It was established with the intention of In practice, the upper surface of the second heater 5 and the lower portion of the gas channel 3 are in contact in the sense defined herein.
  • the tank 2a constituting the vaporization section 2 is sandwiched between the first heater 4 provided on the bottom surface and the second heater 5 positioned above.
  • the power supplied to the first heater 4 and the power supplied to the second heater 5 are controlled to control the gas flow path.
  • the temperature of 3 is made higher than the temperature of the precursor P in the vaporization section 2 . Thereby, condensation of the material gas in the gas flow path 3 can be prevented.
  • a power supply and control circuit (not shown) may be operated based on the temperature of the precursor P and the temperature of the gas flow path measured by the temperature sensor.
  • the power supply and control circuit may be built in the vaporizer 1 or may be configured as a separate unit from the vaporizer 1 .
  • FIG. 2 is a partial cross-sectional view showing another example of the vaporizer according to the invention.
  • a valve 3c and a mass flow controller 3d are connected in the middle of the gas flow path 3.
  • the valve 3c and the mass flow controller 3d themselves have separate gas flow paths.
  • the gas flow path 3 of the evaporator 1 is formed by the pipes forming the gas flow path 3 and the individual gas flow paths provided by the valve 3c and the mass flow controller 3d.
  • the upper surface of the second heater 5 is attached to the heater plate 5a, and the valve 3c and the mass flow controller 3d are fixed to the upper surface of the heater plate 5a via an intermediate member 5b.
  • the heater plate 5a and the intermediate member 5b in this embodiment are made of an aluminum alloy with high thermal conductivity.
  • the thickness of the heater plate 5a is adjusted to 5.0 mm or more and 10 mm or less. As a result, the temperature distribution in the in-plane direction of the second heater 5 and the heater plate 5a becomes uniform.
  • a part of the heat generated in the second heater 5 is transmitted to the valve 3c and the mass flow controller 3d by thermal conduction through the heater plate 5a and the intermediate member 5b.
  • the vaporization part 2, the gas flow path 3, the first heater 4 and the second heater 5 are all housed in a case 7 made of a metal plate.
  • a sheet made of silicone rubber is attached to the entire inside surface of the case 7 as a heat insulating means 7a.
  • FIG. 3 is a piping diagram of an embodiment of the vaporizer according to the present invention, which is close to the actual product.
  • two systems of gas flow paths 3 are provided instead of one system. That is, there are two outflow portions 3a through which the material gas flows out from the tank 2a, and one valve 3c is provided in each gas flow path. At the outlet of the valve 3c, the gas flow paths once merge and then branch into two mass flow controllers 3d. At the outlet of the mass flow controller 3d, the gas flow paths merge again and the material gas is supplied to the outside from the supply port 3b. In this way, even a large flow rate can be handled.
  • a precursor P is supplied to the vaporization section 2 from a precursor supply valve 2 b and stored in the vaporization section 2 .
  • the purge gas is introduced into the gas passage 3 from the purge gas valve 3g.
  • FIG. 4 is a top view of the carburetor according to the third embodiment. Here, the arrangement of members and piping on the upper surface of the tank 2a is shown.
  • the material gas generated in the tank 2a flows out from two outlets 3a (not shown), passes through two valves 3c, and then joins at the first manifold 3e.
  • This first manifold 3e is in contact with the upper surface of the second heater 5 via an intermediate member 5b connected to the second heater 5 positioned above the tank 2a.
  • the bottoms of the two valves 3c are also in contact with the upper surface of the second heater 5 via the intermediate member 5b.
  • the vaporizer 1 further includes a third heater 6 that heats the gas flow path 3. As shown in FIG. Details of the third heater 6 will be described later.
  • FIG. 5 is a partial cross-sectional side view of the carburetor according to the third embodiment.
  • the mass flow controller 3d is shown, and the valve 3c located at the same position in the side view is hidden behind the mass flow controller 3d and cannot be seen.
  • the intermediate member 5b that supports the first manifold 3e has an L-shape and is screwed to the upper surface of the second heater 5.
  • the intermediate member 5b is made of an aluminum alloy plate that easily conducts heat.
  • the entire evaporator 1 is surrounded by a case 7, and a portion of the inside of the case 7 is provided with heat insulating means 7a. Further, a purge gas pipe 7b for supplying purge gas to the inside of the case 7 is provided.
  • the gap d between the upper surface of the tank 2a and the lower surface of the second heater 5 is 3.0 mm.
  • FIG. 6 is a plan view showing the first heater 4 according to the third embodiment.
  • the first heater 4 is composed of a planar rubber heater having substantially the same shape as the bottom surface of the tank 2a. Of the bottom surface of the tank 2a, the central portion radiates less heat than the peripheral portion, and the temperature is less likely to drop. Therefore, in the first heater 4 shown in FIG. 6, the power consumption per unit area in the portion of the peripheral portion 4a that contacts the peripheral portion of the tank 2a is the unit The power efficiency of the first heater 4 is enhanced by making it larger than the power consumption per area.
  • a temperature fuse 4d is provided at one corner of the first heater 4 shown in FIG. 6 for the purpose of preventing the first heater 4 from being excessively heated.
  • the sensitivity of the thermal fuse 4d is enhanced by making the power consumption per unit area at the position of the portion 4c where the thermal fuse 4d is provided smaller than that at the central portion 4b.
  • the power consumption per square centimeter of each part in this embodiment of the first heater 4 is 0.9 watts in the peripheral part 4a, 0.6 watts in the central part 4b, and 0.4 watts in the part 4c.
  • FIG. 7 is a plan view showing the second heater 5 according to the third embodiment.
  • FIG. 7 is drawn to the same scale and orientation as the top view of FIG.
  • the second heater 5 is composed of a planar rubber heater whose maximum lengthwise and widthwise dimensions are substantially the same as the upper surface of the tank 2a.
  • a portion 5c in FIG. 7 is a position where the outer mass flow controller 3d of the two mass flow controllers 3d shown in FIG. 4 is arranged, and the power consumption per unit area is the largest. This is because the amount of heat that escapes to the outside of the case 7 is greater than the position where the mass flow controller 3d located inside is arranged.
  • the portion 5d is a position where the valve 3c is arranged, and since the temperature drop is less than that of the mass flow controller 3d, the power consumption per unit area is kept low. Thereby, the power efficiency of the second heater 5 is enhanced.
  • a portion 5e where the second heater 5 is cut into a rectangle in FIG. 7 is a missing portion where the second heater 5 is not provided because there is no member to be heated as shown in FIG.
  • the heat generated in the second heater 5 is transmitted to the vaporizing section 2 side by heat radiation, and is transmitted to the gas flow path 3 side by heat conduction via the heater plate 5a and the intermediate member 5b.
  • a part of the second heater 5 shown in FIG. 4 is provided with a temperature fuse 5f for the purpose of preventing the second heater 5 from being overheated.
  • the part 5c is 1.0 watts
  • the part 5d is 0.7 watts
  • the missing part 5e is zero.
  • FIG. 8 is a plan view showing the third heater 6 according to the third embodiment.
  • the third heater 6 has a structure in which a rubber heater 6b is attached to a portion of a heater plate 6a.
  • the heater plate 6a is made of an aluminum plate having a thickness of 20 mm, and is processed into a shape that exactly fits the gas flow path 3 including the manifold 3e. With this configuration, the heat generated by the rubber heater 6b reaches the gas flow path 3 through the heater plate 6a.
  • the power consumption per square centimeter of the rubber heater 6b in this embodiment of the third heater 6 is 0.8 watts.
  • the vaporizer 1 includes a first sensor that measures a first temperature, which is the temperature of the precursor P stored in the tank 2a, and a main body ( a second sensor that measures a second temperature that is the temperature of a member that constitutes the base. Neither of these sensors are shown, but are platinum resistance thermometers or thermocouples.
  • the first heater 4 is feedback controlled so that the first temperature matches the preset temperature
  • the second heater 5 is feedback controlled so that the second temperature matches the preset temperature.
  • the third heater 6 is configured such that the temperature of the portion of the gas flow path 3 heated by the third heater 6 is higher than the temperature of the portion of the gas flow path 3 heated by the second heater 5 .
  • a temperature sensor is also provided in the portion of the gas flow path 3 heated by the third heater 6 so that the temperature detected by the temperature sensor is higher than the second temperature. can be realized by feedback-controlling the third heater 6.
  • the third heater 6 is positioned farthest from the vaporizer 2 and the second heater 5 in the gas flow path 3 and close to the outside of the vaporizer 1, where the temperature of the material gas is most likely to drop.
  • a portion of the gas flow path 3 at such a position is generally just piping that does not include the valve 3c and the mass flow controller 3d. That is, with regard to this part, there is relatively little need to worry about problems such as deterioration of parts constituting the valve 3c and/or mass flow controller 3d due to high temperature, deterioration of flow rate accuracy, and deterioration of reliability. Therefore, the temperature of this part only needs to be maintained at a sufficiently high temperature to ensure that condensation of the material gas can be avoided.
  • the third heater 6 is connected to the power source in parallel with the second heater 5, and is configured to be controlled based on the second temperature.
  • the third heater 6 is used so that the temperature of the portion of the gas flow path 3 heated by the third heater 6 is higher than the temperature of the portion of the gas flow path 3 heated by the second heater 5.
  • 6 is configured.
  • Such a configuration is, for example, a measure such as appropriately designing the watt density (power consumption per unit area) of the third heater 6 with respect to the heat capacity of the portion of the gas flow path 3 heated by the third heater 6. can be achieved by As a result, the temperature of the portion of the gas flow path 3 heated by the third heater 6 can be maintained somewhat higher than the temperature of the portion of the gas flow path 3 heated by the second heater 5 .
  • the first The first heater 4 and the second heater 5 are feedback-controlled so that the temperature and the second temperature match 89.0° C. and 91.0° C., respectively, and this control state is maintained for 180 minutes to increase the temperature of each part. stabilized.
  • the third heater 6 is connected to the power supply in parallel with the second heater 5 and is configured to be controlled based on the second temperature. After that, the temperature of each part of the vaporizer 1 was measured using a platinum resistance thermometer or a thermocouple.
  • the temperature of the side of the elbow of the pipe from the outflow portion 3a at the top of the tank 2a to the valve 3c was 88.6°C
  • the temperature of the first manifold 3e on the outlet side of the valve 3c was 88.6°C.
  • the temperature of the side of the mass flow controller 3d is 93.1° C.
  • the temperature of the joint at the inlet of the mass flow controller 3d located outside in FIG. 4 among the two mass flow controllers 3d is 91.2° C.
  • the temperature on the sides of the base of the mass flow controller 3d located inside in FIG. 4 is 93.5° C. and 94.0° C.
  • the temperature of the pipe at the position of the supply port 3b above the 3-heater 6 was 100.9°C.
  • the temperature at all positions in the gas flow path 3 is maintained at a temperature equal to or higher than the set temperature of the tank 2a. This prevents the material gas from condensing inside the gas flow path 3 .
  • the variation in the temperature of the side surfaces of the bases of the two mass flow controllers 3d is within 3.0°C. Thereby, the accuracy of the material gas flow rate control by the mass flow controller 3d is maintained.
  • the variation in the temperature of the gas channel 3 except for the position of the supply port 3b, which is the most downstream of the gas channel 3, is within 10.degree. As a result, the parts forming each member are not excessively heated, so that the reliability of the entire vaporizer can be ensured.
  • the holding temperature of the precursor was set at 89°C, but as the use of vaporizers expands in the future, it is expected that there will be more opportunities to use a material gas that should hold the precursor at a higher temperature. .
  • the higher the holding temperature of the precursor the greater the temperature difference between parts of the vaporizer. Even in such a case, according to the vaporizer and the material gas supply method according to the present invention, the temperature distribution inside the vaporizer can be brought close to a uniform state. It is economical because there is no need to use high-temperature parts or waste power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

前駆体を気化させて材料ガスを生成する気化部と、生成された材料ガスを気化部から外部に導くガス流路と、気化部を加熱しガス流路を加熱しない第1ヒータと、気化部及びガス流路の両方を加熱する第2ヒータとによって気化器を構成する。好ましくは、第1ヒータ及び第2ヒータの少なくとも1が平面形状を有し、単位面積当たりの消費電力が大きい部分と小さい部分とを有する。これにより、恒温槽を使用しないコンパクトな構成によって気化器全体の温度バランスに優れ、電力消費量を低減することができる気化器を実現する。

Description

気化器
 この発明は、半導体の製造に用いられる気化器に関する。
 半導体の製造工程においては、工程の目的に応じてさまざまな種類の半導体材料ガス(以下「材料ガス」という。)が使用される。材料ガスのうち液体の状態で貯蔵されるものについては、気化器を用いて液体を蒸発させて気体の状態に変化させた後、半導体製造装置に供給される。気化器において材料ガスを発生させる手段には、例えば、タンクに貯蔵された液体を加熱して蒸気を発生させる方法などがある。半導体製造技術の進歩に伴い、従来の材料ガスに比べて平衡蒸気圧が低く、したがって気化されにくい材料ガスが使用される機会が増えている(特許文献1参照)。
 液体を加熱する方式の気化器において平衡蒸気圧の低い材料ガスを効率よく供給するためには、タンクを加熱する温度を従来よりも高くして、材料ガスの蒸気圧を高めることが有効である(非特許文献1参照)。この方法によってタンク内において発生させた材料ガスを半導体製造装置に供給する過程で材料ガスの温度が低下すると、材料ガスが凝縮して液体に戻りやすい。そこで、材料ガスが配管の内部で凝縮することを防止するためのさまざまな手段が検討されている。
 例えば、特許文献2には、液体を入れたタンクの周囲と、気化したガスが流れる配管、マスフローコントローラ及びバルブの周囲とをそれぞれ個別の空気恒温槽で囲い、2個の空気恒温槽の内部を一定温度に保持する手段が開示されている。また、例えば、特許文献3には、タンク、流量計及び流量制御弁のそれぞれを専用に加熱する加熱装置を設ける手段が開示されている。さらに、例えば、特許文献4には、材料ガスが流れる配管の回りに配管を加熱するためのテープ状のヒータを巻き付ける手段が開示されている。
特開2009-74108号公報 特開平2-255595号公報 特開2003-273026号公報 特開平11-63400号公報
佐々木章、「適用上限温度を拡大した液体材料気化器」、日立金属技報、2012年、第28巻、p.26-29
 特許文献2に開示された空気恒温槽を用いて気化器の内部の温度を制御しようとする場合は、タンクや配管のまわりに空気を循環させるためのスペースを広く設けて熱交換の効率を高めないと、空気恒温槽の内部の温度分布を均一に保つことが難しい。また、空気を循環させるためのファンのためのスペースも必要となる。このため、気化器のサイズが大きくなり、コンパクトな気化器を設計することができないという課題がある。また、ファンは可動部を有するため故障するリスクがある。
 特許文献3に記載された専用の装置を設ける場合は、恒温槽を欠いているため、材料ガスが通過する経路の位置によって温度差が生じやすいという課題がある。この課題は、保持温度が高いほど顕著となる。特許文献4に記載されたテープ状のヒータを設ける場合は、ヒータが貼付される位置や配管との接触面積について、機器間の個体差が生じたり、長期間使用する間に位置がずれたりすることが避けられない。このため、気化器の性能が安定しないという課題がある。
 本開示は、上記の課題に鑑みてなされたものであり、コンパクトで均熱性に優れた気化器を実現することを目的としている。
 ある実施の形態において、本開示は、半導体製造装置に材料ガスを供給する気化器であって、前駆体を気化させて材料ガスを生成する気化部と、生成された材料ガスを気化部から外部に導くガス流路と、気化部を加熱しガス流路を加熱しない第1ヒータと、気化部及びガス流路の両方を加熱する第2ヒータとを備える気化器に関する。
 上記の構成において、気化部の加熱を第1ヒータ及び第2ヒータの2個のヒータによって行うことができるので、従来技術よりも気化部の温度分布が均一になる。また、第2ヒータを気化部及びガス流路の両方の加熱に兼用するので、従来技術に比べてヒータの合計の数を削減してよりコンパクトな気化器を設計することが可能となる。
 他の実施の形態において、本開示は、上記の構成において、さらに第1ヒータ及び第2ヒータの少なくとも1が、単位面積当たりの消費電力が大きい部分と小さい部分とを有する気化器に関する。この実施の形態においては、ヒータによって加熱される部材のうち材料ガスの気化及び流動に伴う温度の低下が著しい部分を優先的に加熱することができる。さらに他の実施の形態において、本開示は、気化器を用いて材料ガスを供給する方法に関する。
 本開示によれば、恒温槽を使用しないコンパクトな構成によって気化器全体の温度バランスを改善することができると共に、気化器の電力消費量を低減することができる。
本発明に係る気化器の第1の実施例を示す部分断面図である。 本発明に係る気化器の第2の実施例を示す部分断面図である。 本発明に係る気化器の第3の実施例を示す配管図である。 本発明に係る気化器の第3の実施例を示す上面図である。 本発明に係る気化器の第3の実施例を示す部分断面側面図である。 本発明に係る第1ヒータの例を示す平面図である。 本発明に係る第2ヒータの例を示す平面図である。 本発明に係る第3ヒータの例を示す平面図である。
 本発明を実施するための形態について、以下詳細に説明する。以下の説明及び図面は本発明を実施するための形態の例を示したものであり、本発明を実施するための形態は、以下の説明及び図面に示された形態に限定されない。なお、本明細書において、「上」及び「下」という用語は、気化器が半導体の製造ラインにインストールされ使用される状態における重力の方向を基準として定義されるものとする。
1.第1の実施形態
 第1の実施形態において、本発明は、半導体製造装置に材料ガスを供給する気化器であって、前駆体を気化させて材料ガスを生成する気化部と、生成された材料ガスを気化部から外部に導くガス流路と、気化部を加熱しガス流路を加熱しない第1ヒータと、気化部及びガス流路の両方を加熱する第2ヒータとを備える気化器の発明である。
<気化器>
 本明細書において「気化器」とは、前駆体を気化させて生成した材料ガスを半導体製造装置に供給する装置をいう。気化器において前駆体を気化させる手段として、一般に、ベーキング方式、バブリング方式及び直接気化方式などの手段が知られている。本発明に係る気化器は、前駆体を気化させて気体の状態とする手段を備えるものであればよく、当該手段は上記の公知の手段のうちいずれの手段であってもよい。また、当該手段は、上記のいずれの手段にも属さない新規な手段であってもよい。
<材料ガス>
 本明細書において「材料ガス」とは、半導体の製造工程で使用されるガスであって、液体又は固体の前駆体の形態で貯蔵され、使用に際して前駆体を蒸発又は昇華させて気体に変化させる操作が必要なガスをいう。本明細書における材料ガスは、半導体デバイスを構成するパターン化された素子、導線又は絶縁層などの材料となるガスだけでなく、半導体デバイスのエッチング処理に使われるガスなど、半導体の製造工程において使われるあらゆるガスを含む概念である。本明細書において「前駆体」(precursor)とは、材料ガスが生成する前の段階の物質をいう。
<気化部>
 本発明に係る気化器は、前駆体を気化させて材料ガスを生成する気化部を備える。気化部は、前駆体を加熱して気化させる機能を有するものであれば、どのような構造であってもよい。前駆体を気化させる手段としてベーキング方式を採用する場合、気化部は、液体又は固体の前駆体を収容するタンクによって構成することができる。タンクは、隔壁によって構成された閉じた空間を有するものであれば、形状は限定されない。
 前駆体をタンクに収容する手段について、前駆体が液体の場合は、タンクに接続して設けられた配管を用いて前駆体をタンク内にチャージすることができる。また、前駆体が固体の場合は、タンクの隔壁の一部に設けられた開口部から前駆体をタンク内にチャージした後、開口部を蓋により密閉して行うことができる。タンクには、前駆体の残量、温度、圧力などを検知するためのセンサを設けることができる。
 前駆体を気化させる方法としてバブリング方式を採用する場合、気化部は、液体の前駆体を収容するタンクと、タンク内にキャリアガスを導入するための配管とによって構成することができる。前駆体を気化させる方法として直接気化方式を採用する場合、気化部は、液体の前駆体と気体のキャリアガスとをそれぞれ連続的に導入する配管と、これらを連続的に加熱する手段とによって構成することができる。上記のいずれの手段を採用する場合も、前駆体が気化部の内部で気化されて材料ガスが生成される。
 前駆体が液体の場合、ベーキング方式とバブリング方式においては、発生したガスは、タンクに貯蔵された前駆体の液面よりも上の空間に溜まる。この場合において、タンクは材料ガスの供給に必要な十分な量の前駆体を収容できる大きな容積のものであってもよく、あるいは、気化部を構成するタンク自体は小さな容積のものによって構成し、それとは別の大きな容積を持つ貯蔵容器に収容された前駆体を気化部に随時補充してもよい。直接気化方式においては、気化部とは別の容器に貯蔵された液体の前駆体を気化部に連続的に供給して気化を行う。
<ガス流路>
 本発明に係る気化器は、生成した材料ガスを気化部から外部に導くガス流路を備える。本明細書において「ガス流路」とは、気化部で生成された材料ガスが流れる経路をいい、配管のほか、後述するバルブ、マスフローコントローラ及びこれらに付属する部材などの材料ガスが流れる経路を備えるあらゆる部材を含む概念である。前駆体を気化させる方法としてベーキング方式を採用する場合は、ガス流路には気化された材料ガスが流れる。前駆体を気化させる方法としてバブリング方式又は直接気化方式を採用する場合は、ガス流路には材料ガスとキャリアガスとの混合ガスが流れる。
 ガス流路の起点は、気化部に設けられた材料ガスの流出部である。上述のとおり、材料ガスが気化部の上部に溜まる場合には、材料ガスの流出部を気化部の上部に設けることが好ましい。ガス流路の終点は、気化器から外部へと材料ガスを供給する供給口であり、後述するように気化器のケースから突出していてもよい。具体的には気化器から半導体製造装置まで材料ガスを搬送する配管を接続するための継手などがこれに相当する。上記の構成を備えるガス流路は、気化部で生成した材料ガスを気化部から気化器の外部に導くことができる。ガス流路の起点から終点までの間に材料ガスの温度が低下すると、材料ガスが凝縮するおそれがある。このため、本発明では、後述する第2ヒータを用いてガス流路を加熱し、材料ガスの凝縮を防止する。なお、固体の前駆体から発生した材料ガスの温度が低下して固体に戻る現象は凝固(solidification)と呼ばれることがあるが、本明細書では煩雑さを避けるため、材料ガスが温度の低下によって液体又は固体のいずれかに戻る現象を区別せずに一括して以下「凝縮」(condensation)という。
 本発明に係る気化器において、ガス流路が、気化部の近傍に設けられることは、後述する第2ヒータの電力効率の点で好ましい。本明細書において「電力効率」とは、ヒータに供給される電力のうち気化部及びガス流路の加熱に寄与する電力の割合をいう。気化部において生成された材料ガスは、密度が低くて上昇しやすい性質がある。このため、ガス流路が、気化部よりも上の位置に設けられることが、材料ガスの流れをスムーズにするうえで好ましい。しかし、本発明において、ガス流路を設ける位置は気化部よりも上の位置に限定されない。ガス流路は、例えば、気化部の側面に設けられてもよい。
<第1ヒータ>
 本発明に係る気化器は、気化部を加熱しガス流路を加熱しない第1ヒータを備える。第1ヒータは、後述する第2ヒータとは別個の独立した部材である。第1ヒータは、気化部を加熱する機能を備え、ガス流路を加熱する機能を備えないか、備えるとしてもその効果は限定的である。より具体的には、第1ヒータは、ガス流路と離れた位置に設けられるか、ガス流路との間に有効な熱の伝達経路が存在しない状態で設けられる。第1ヒータは、後述する第2ヒータと共に気化部を加熱する機能を有する。第1ヒータによって消費される電力の大部分は気化部を加熱するのに使われる。
 ただし、第1ヒータにガス流路を加熱する作用が全くない訳ではない。例えば、気化部が第1ヒータ及び後述する第2ヒータによって加熱された結果として、加熱された気化部に隣接するガス流路が加熱されることは、本発明において許容される。第1ヒータによって消費される電力の一部が気化部でもガス流路でもない他の部材の加熱に使われることは、本発明において許容される。
 本発明に係る気化器において、第1ヒータは、後述する第2ヒータが設けられている位置とは異なる位置に設けられる。例えば、第2ヒータが気化部よりも上の位置に設けられている場合、第1ヒータは気化部よりも下の位置か、気化部と同じ高さの位置に設けることができる。特別な効果のために複数の第1ヒータを設けることは、本発明において許容される。
 本発明に係る気化器において、第1ヒータの具体的な構成は、電力を供給することによって気化部を加熱することができる構成であれば、どのような構成であってもよい。例えば、第1ヒータは、発熱抵抗体と、発熱抵抗体に電力を供給する電線を含むことができる。また、気化部の構成(例えば、大きさ、形状及び構造など)に応じて、発熱抵抗体が複数の部分に分割されていてもよく、複数の部分に分割された発熱抵抗体が並列又は直列に接続されて電力を供給されるように構成されていてもよい。
 第1ヒータに供給する電力を制御する手段としては、公知の温度制御技術を用いることができる。例えば、第1ヒータの内部に温度センサを設けておき、その温度センサが計測する第1ヒータの温度が予め設定した温度と一致するようにフィードバック制御を行うことができる。あるいは、第1ヒータが加熱する対象である前駆体の温度を計測する温度センサを設けておき、その温度センサが計測する前駆体の温度が予め設定した温度と一致するようにフィードバック制御を行うことができる。第1ヒータに供給される電力の制御に用いられる温度センサの数は1個であってもよく、2個以上であってもよい。
<第2ヒータ>
 本発明に係る気化器は、気化部及びガス流路の両方を加熱する第2ヒータを備える。第2ヒータは、上述した第1ヒータとは別個の独立した部材である。第2ヒータは、気化部を加熱する機能とガス流路を加熱する機能とを兼ね備える。第2ヒータによって消費される電力の一部はガス流路の加熱に使われ、残りの部分が気化部の加熱に使われる。ただし、第1ヒータの場合と同様に、第2ヒータによって消費される電力の一部が気化部でもガス流路でもない他の部材の加熱に使われることは、本発明において許容される。ガス流路が1系統である場合、第2ヒータの数は通常1個で足りる。しかし、特別な目的のために複数の第2ヒータを設けることは、本発明において許容される。
 上述のとおり、本発明において、気化部を加熱する機能は主として第1ヒータが担っている。気化部の加熱に関して、第2ヒータは補助的な役割を担っているに過ぎない。一方、ガス流路の加熱に関しては第1ヒータからの寄与はほとんどなく、もっぱら第2ヒータに拠っている。このように、気化器に用いるヒータを第1ヒータと第2ヒータとによって構成し、それぞれのヒータに異なる機能を担わせることによって、本発明には以下に述べるような従来技術にはない特有の効果が生じる。
 まず、気化部とガス流路とをそれぞれ1個ずつの専用ヒータによって加熱する従来技術と比較すると、本発明に係る気化器ではヒータの数は同じく2個であるものの、気化部の加熱を1個の専用ヒータではなく、互いに異なる位置に設けられた第1ヒータと第2ヒータの2個のヒータによって行うことができるので、従来技術よりも気化部の温度分布がより均一になる。
 また、気化部の加熱を2個の専用ヒータによって行い、ガス流路の加熱を第3のヒータによって行い、合計で3個のヒータを用いる従来技術と比較すると、本発明では気化部の温度分布の均一を損なわずにヒータの数を3個から2個に削減することができるので、従来技術に比べてよりコンパクトな気化器の設計が可能となる。
 ところで、気化器において発生した材料ガスがガス流路の内部で凝縮しないようにするという目的にのみ特化するのであれば、ガス流路の温度を十分に高くすることによって、上記目的を達成することができる。しかし、気化器の一部のみを必要以上の高温で動作させることは、その高温部分における部品の劣化、流量精度の低下及び信頼性の低下などにつながる。また、過剰な昇温によって材料ガスが変質したり熱分解したりして、ガス流路の内部に材料ガスに由来する異物が付着したり、流量センサやバルブなどに閉塞が生じたりするおそれもある。
 したがって、理想的な気化器においては、気化部の流出部から供給口までのガス流路全体を必要最低限の温度に均一に加熱することによって、材料ガスの行き過ぎた加熱によってもたらされる上述した障害を回避することが望ましい。気化器における加熱手段として本発明に係る第1ヒータ及び第2ヒータを採用することは、ガス流路全体の温度を均一に加熱するのに有効である。これにより、気化器が発生する材料ガスの流量精度や信頼性の向上、故障の発生頻度の低減、パーティクルの抑制による半導体製造プロセスの信頼性の向上、メンテナンスの頻度の低減などの効果が生じる。
 本発明に係る気化器において、第2ヒータの具体的な構成は、第1ヒータの場合と同様に、電力を供給することによって気化部を加熱することができる構成であれば、どのような構成であってもよい。例えば、第2ヒータは、発熱抵抗体と、発熱抵抗体に電力を供給する電線を含むことができる。また、気化部及びガス流路の構成(例えば、大きさ、形状及び構造など)に応じて、発熱抵抗体が複数の部分に分割されていてもよく、複数の部分に分割された発熱抵抗体が並列又は直列に接続されて電力を供給されるように構成されていてもよい。
 第1ヒータの場合と同様に、第2ヒータに供給する電力を制御する手段としては、公知の温度制御技術を用いることができる。例えば、第2ヒータの内部に温度センサを設けておき、その温度センサが計測する第2ヒータの温度が予め設定した温度と一致するようにフィードバック制御を行うことができる。あるいは、第2ヒータが加熱する対象のひとつであるガス流路の温度を計測する温度センサを設けておき、その温度センサが計測するガス流路の温度が予め設定した温度と一致するようにフィードバック制御を行ってもよい。第2ヒータに供給される電力の制御に用いられる温度センサの数は1個であってもよく、2個以上であってもよい。1の温度センサが計測する温度が、第1ヒータに供給される電力の制御と、第2ヒータに供給される電力の制御の双方に共通に用いられてもよい。
<平面形状を有する第2ヒータ>
 好ましい実施の形態において、本発明は、第1の実施形態における第2ヒータが、平面形状を有し、気化部が、第2ヒータの一の面の側に位置し、ガス流路が、第2ヒータの他の面の側に位置する気化器の発明である。本明細書において第2ヒータが「平面形状を有する」とは、第2ヒータ自体の形状が薄く平たい形状をなすことをいう。第2ヒータの形状は平面形状であればよく、その平面の輪郭の形は特に限定されず、どのような形であってもよい。また、第2ヒータの厚さは全平面にわたって均一であってもよく、逆に、厚さが異なる部分があってもよい。
 平面形状を有する第2ヒータは、一の面と他の面の両方に熱を供給することができることを要する。この場合において、他の面への熱の供給能力は、一の面への熱の供給能力と等しくてもよく、あるいは異なっていてもよいが、いずれの面においても熱の供給能力がゼロであってはならない。第2ヒータの一の面の側に気化部が位置するようにし、第2ヒータの他の面の側にガス流路が位置するようにすることによって、第2ヒータにおいて発生する熱が、一の面の側に位置する気化部と他の面の側に位置するガス流路とに同時に分配される。言い換えると、第2ヒータは、気化部とガス流路との間に位置し、これらの両方に熱を供給する。この好ましい実施の形態においては、第2ヒータにおいて発生した熱のほとんどが気化部とガス流路のいずれかを加熱することになるので、第2ヒータの電力効率が向上する。
 また、上記の好ましい実施の形態において、平面形状を有するヒータは、従来技術に係るテープ状のヒータと異なり、ヒータの形状が変化しない。このため、ヒータと、ヒータが加熱しようとする対象との距離その他の相互の位置関係は設計段階で固定され、同一設計の気化器を繰り返し生産しても位置関係の再現性が高いので、温度分布に関して気化器の機器間の個体差を小さくすることができる。つまり、誰が作っても同じ性能の気化器を生産することができる。また、テープ状のヒータと比べて長期間の使用による経時的な変化も少ない。
<平面形状の第2ヒータとの接触>
 より好ましい実施の形態において、本発明は、上記の好ましい実施の形態において、気化部が、平面形状の第2ヒータの一の面と接触しないで、ガス流路が、第2ヒータの他の面と接触する気化器の発明である。本明細書において平面形状を有するヒータのある面と他の部材とが「接触する」とは、ヒータのある面と他の部材とが物理的に触れあっていて、ヒータと他の部材との間でなされる熱の移動が主として熱伝導に起因する状態をいう。本明細書における「接触」とは、ヒータと他の部材とが直接触れあっている場合をいうだけでなく、ヒータと他の部材とが中間部材を介して間接的に触れあっている場合を含む概念である。
 ヒータと他の部材との間に無視することができないすき間があり、両者の間でなされる熱の移動が熱伝導ではなく主として対流又は熱放射に起因する場合は、本明細書における「接触する」という状態に該当しない。上記の「気化部が、第2ヒータの一の面と接触しない」とは、このような状態を意味する。一般に、温度差その他の条件が同一の場合、対流又は熱放射による熱の移動は、熱伝導による熱の移動に比べて緩慢になる。
 この実施の形態において、気化部は、第2ヒータの一の面と接触せず、気化部と第2ヒータとは互いに間隔を保った状態に配置され、固定される。気化部と第2ヒータとの間隔は、一定の距離であってもよく、距離が位置によって変化してもよいが、両者の距離がゼロとなる部分はない。気化部と第2ヒータとの空隙には空気又は雰囲気ガスが存在する。これらの気体の熱伝導率は固体の熱伝導率に比べて桁違いに小さい。また、空隙があまり大きくない場合は、対流も起こりにくい。このため、第2ヒータにおいて発生した熱は、熱伝導や対流によって気化部に伝達されることはほとんどなく、主として熱放射によって気化部に伝達される。なお、本発明において、第2ヒータと気化部とが断面積の小さな支持部材などによって間接的に接触することは、その支持部材などによる熱伝導が本発明の効果に大きく影響しない限度において許容される。
 これに対し、ガス流路は、第2ヒータの他の面と接触した状態に配置され、固定される。ガス流路と第2ヒータとの接触は、両者が互いに直接触れあっていてもよいし、両者の間に設けられた中間部材を介して両者が間接的に触れあっていてもよい。また、接触が面同士の接触であり、中間部材が熱を伝導しやすい材料で構成されていることは、第2ヒータの電力効率の点で好ましい。いずれの構成においても、第2ヒータにおいて発生した熱の一部は、主として熱伝導によってガス流路の少なくとも一部に伝達される。ガス流路のうち、第2ヒータと接触している部分は少なくとも一部であればよく、接触している部分の数は1又は2以上であってもよい。ガス流路の少なくとも一部が第2ヒータと接触していることにより、その部分が加熱され、ガス流路を流れる材料ガスの凝縮が防止される。
 より好ましい実施の形態における上記の構成によれば、第2ヒータからそれと接触しない気化部への熱の移動は、第2ヒータからそれと接触するガス流路への熱の移動と比べて緩慢になる。その結果、第2ヒータにおいて発生した熱は、気化部に対しては少なく分配され、ガス流路に対してはそれよりも多く分配される。このより好ましい実施の形態においては、共通の熱源である第2ヒータを使用してそれと接触するガス流路を高温に加熱した場合であっても、それと接触しない気化部の温度があまり高くなり過ぎないようにすることができる。その結果、気化器における局所的で過剰な温度上昇を回避しつつ必要な部位のみを加熱することが可能となる。つまり、上述した気化器の理想的な温度分布に近づけることができる。
 ヒータのある面と他の部材との接触が、双方が備える外面同士の面接触であることは、ヒータの電力効率の点で好ましい。互いに面接触しているヒータと他の部材との間に、加工精度や表面の凹凸などに起因する例えば0.50mm以下のわずかなすき間が存在することは、本発明において許容される。
 ガス流路のうち材料ガスの温度の低下による凝縮が特に懸念される部分を優先的に第2ヒータと接触させることによって、当該部分における材料ガスの凝縮を防止することは、第2ヒータの電力効率の点で好ましい。具体的には、第2ヒータの表面と、ガス流路のうち優先的に加熱したい部分とが直接接触するように両者の形状を設計したり、あるいは、第2ヒータの表面と当該部分の双方と接触する中間部材を設けたりすることができる。なお、本発明において、ガス流路のうち第2ヒータと接触していない部分について、第2ヒータにおいて発生した熱の一部が熱放射又は対流によってガス流路に伝達されることは、第2ヒータの有する副次的な作用として当然に許容される。
 上述のとおり、本発明に係る気化器の構成において、第2ヒータからそれと接触しない気化部への熱の伝達は主として熱放射によって行われ、第2ヒータからそれと少なくとも一部が接触するガス流路への熱の伝達は主として熱伝導によって行われる。温度差や断面積などの条件が同じ場合、熱放射による熱の伝達は、熱伝導による熱の伝達に比べて移動する熱量が少なく、かつ、局所的でない。したがって、第2ヒータにおいて発生する熱は、ガス流路の加熱に多くかつ局所的に分配され、気化部の加熱にはそれよりも少なくかつ全体的に分配される。これにより、ガス流路を材料ガスの凝縮を防止できる温度まで加熱した場合であっても、気化部のうち第2ヒータに近い位置が過剰に加熱されることがない。その結果、気化部の加熱に起因する問題を低減しつつ、共通の熱源である第2ヒータを使用して気化部とガス流路とを同時に加熱することが可能となり、ヒータの個数の削減と気化器のコンパクト化を図ることができる。
 また、気化部全体の加熱に着目すると、上述のとおり、本発明に係る気化器の構成において、気化部は、自身と接触する第1ヒータからの熱伝導による高効率な熱伝達と、自身と接触しない第2ヒータからの熱放射による非局所的な熱伝達の2種類の熱伝達手段により加熱される。これにより、例えば、気化部と接触する1又は2以上のヒータで気化部を加熱する従来の構成と比べて気化部全体の温度分布をより均一にすることができるので、気化される材料ガスの供給量が安定し、トータルの消費電力を削減することができる。
<平面形状の第1ヒータとの接触>
 さらに好ましい実施の形態において、本発明は、上記のより好ましい実施の形態において、第1ヒータが、平面形状を有し、気化部が、第1ヒータの一の面と接触する気化器の発明である。本明細書において第1ヒータが「平面形状を有する」とは、第2ヒータの場合と同様に、第1ヒータ自身の形状が薄く平たい形状をなすことをいう。第1ヒータの形状は平面形状であればよく、その平面の輪郭の形は特に限定されず、どのような形であってもよい。また、第1ヒータの厚さは全平面にわたって均一であってもよく、厚さが異なる部分があってもよい。
 この実施の形態において、気化部は、第1ヒータの一の面と接触した状態に配置され、固定される。気化部のうち、第1ヒータと接触している部分は、第2ヒータが設けられている部分を除く一部であればよく、接触している部分の数は1又は2以上であってもよい。気化部の少なくとも一部が第1ヒータと接触していることにより、その部分が加熱され、気化部の内部における前駆体の気化が促進される。
 気化部のうち、前駆体の気化による温度の低下が特に懸念される部分を優先的に第1ヒータと接触させることによって、当該部分における気化を促進することは、第1ヒータの電力効率の点で好ましい。例えば、前駆体が液体で、前駆体を気化させる手段がベーキング方式又はバブリング方式である場合、タンクにチャージされた前駆体の液面において気化熱が奪われる。このような場合には、タンクの側面又は底面に第1ヒータを設けて、前駆体の温度が低下しないように制御することが好ましい。なお、第1ヒータをタンクの底面に設けた場合には、前駆体の対流によって前駆体全体の温度が均一化される傾向があるので、第1ヒータを必ずしも液面に近いタンクの側面に設けなくてもよい。
<タンクの均熱>
 好ましい実施の形態において、本発明は、前駆体が、液体であり、気化部が、前駆体を収容するタンクであり、第1ヒータ及び第2ヒータが、タンクを挟んで対向する位置に配置される気化器の発明である。この実施の形態では、前駆体が常温で液体であり、液体の前駆体を収容するタンクによって気化部が構成される。また、第1ヒータ及び第2ヒータが、気化部を構成するタンクを挟んで対向する位置に配置される。すなわち、タンクの一の面に接して第1ヒータが配置されるとともに、その一の面に対向する位置にある他の面の側にタンクと接触しないで第2ヒータが配置される。平面形状を有する第2ヒータのタンクと接触しない方の面は、ガス流路と接触する。
 このような配置において、第2ヒータは、タンクを挟んで第1ヒータから最も遠い面に配置される。この面は第1ヒータによって最も加熱されにくい面でもあるから、液体の前駆体の加熱を第1ヒータのみによって行う場合は、気化された材料ガスがこの面の近くで冷却されて凝縮するおそれがある。この面の側に第2ヒータを配置して適度な温度に加熱することによって、タンク内の温度分布を均一にすることができる。それと同時に、第2ヒータによってガス流路も適度な温度に加熱することができるので、気化部及びガス流路を含む気化器全体として温度が極端に高かったり低かったりする場所がなく、ヒータの電力効率も向上する。
 より好ましい実施の形態において、本発明は、上記の好ましい実施の形態において、第1ヒータが、タンクの底部に位置し、第2ヒータが、タンクの上部に位置する気化器の発明である。上述のとおり、第1ヒータは気化部(タンク)を加熱するものであるから、タンクの底部に配置することによって、液体である前駆体が常に接している部分を加熱することになるので、第1ヒータの電力効率が向上する。また、液体である前駆体がタンク内で対流することにより、タンクの底部付近の前駆体の温度と、気化表面付近の前駆体の温度との差は小さくなる。さらに、気化表面で気化された材料ガスは気化表面とタンクの天井との間の空間で対流することが可能なので、タンクの上部も材料ガスによってある程度加熱されることになる。そうすると、第2ヒータによるタンクの加熱は少なくて済むので、第1ヒータ及び第2ヒータを総合した電力効率が向上する。
<バルブ及びマスフローコントローラ>
 本発明の好ましい実施の形態においては、ガス流路が、バルブ及びマスフローコントローラを含む。バルブは、ガス流路を閉じる機能を有するものであれば、どのような構造のバルブであってもよい。バルブを操作することによって、気化部における材料ガスの発生が継続している場合であっても、気化器から半導体製造装置への材料ガスの供給を瞬時に停止したり開始したりすることができる。マスフローコントローラは、ガス流路を流れる材料ガスの流量を制御する機能を有するものであれば、どのような構造のマスフローコントローラであってもよい。マスフローコントローラを使用することによって、気化器から半導体製造装置に供給される材料ガスの流量を任意の量に制御することができる。上記のガス流路を閉じるバルブは、マスフローコントローラが備える流量制御バルブで代用してもよい。
 バルブ及びマスフローコントローラは、それ自体が個別のガス流路を備えている。上述した好ましい実施の形態においては、材料ガスを気化部から外部に導く配管と、バルブ及びマスフローコントローラが個別に備える個別のガス流路とが渾然一体となって本発明におけるガス流路を構成する。バルブ及びマスフローコントローラが個別に備えるガス流路は第2ヒータと接触しており、第2ヒータにおいて発生した熱が熱伝導によってこれらの個別のガス流路に伝達される。その結果、ガス流路の少なくとも一部が第2ヒータと接触し、第2ヒータによって加熱されることとなる。
 バルブの閉鎖面の下流域においては、断熱膨張によって材料ガスの温度が低下しやすい傾向がある。この傾向は、マスフローコントローラが備える流量制御弁の閉鎖面の下流域においても同様に見られる。バルブ及びマスフローコントローラが有するこれらの領域を優先的に加熱することによって、断熱膨張に伴う材料ガスの温度の低下と凝縮を効果的に防止することができる。
 バルブと接触する第2ヒータによってバルブが備えるガス流路を加熱する具体的な手段としては、例えば、バルブの本体(弁箱)を構成する部材の表面に第2ヒータの表面を接触させる手段や、第2ヒータとバルブの本体との間に熱伝導率の高い材料でなる中間部材を介在させる手段などを採用することができる。マスフローコントローラと接触する第2ヒータによってマスフローコントローラが備えるガス流路を加熱する具体的な手段としては、例えば、マスフローコントローラの本体(ベース)を構成する部材の表面に第2ヒータの表面を接触させる手段や、第2ヒータとマスフローコントローラの本体との間に熱伝導率の高い材料でなる中間部材を介在させる手段などを採用することができる。
 本発明の好ましい実施の形態において、気化部から外部に材料ガスを導くガス流路の数は1系統であってもよく、2系統又はそれよりも多系統であってもよい。気化部における単位時間あたりの材料ガスの発生量が十分に大きい場合には、ガス流路の数が多ければ多いほど、材料ガスの圧力を高めることなく流量を大きくすることができる。本発明に係る気化器が複数のガス流路を備える場合、ガス流路のそれぞれがバルブ及びマスフローコントローラを備えていてもよく、あるいは、1個のバルブ又はマスフローコントローラによって複数のガス流路の開閉又は流量制御を同時に行ってもよい。気化部から外部に至るガス流路の途中に、ガス流路を分岐または合流させるためのマニホールドを設けてもよい。
<ケース>
 本発明の好ましい実施の形態においては、気化器が、気化部、ガス流路、第1ヒータ及び第2ヒータを収容するケースをさらに備える。ケースは、本発明に係る気化器の構成部材の全体を収容する容器である。ケースを備える気化器は、そうでない気化器に比べて周囲の環境、すなわち、温度、湿度、風速、腐食性ガス、静電気、粉塵など、の変化による影響を受けにくくなるので、材料ガスをより安定に供給することができる。また、万一気化器が故障して材料ガスが気化器から外部に漏洩したような場合でも、ケースがあればその漏洩による被害が及ぶ範囲を限定的なものにすることができる。
 上述した好ましい実施の形態におけるケースは、例えば特許文献2に開示された空気恒温槽のような内部の空気を撹拌する機能を有するものでなくてもよく、完全に密閉された容器で構成されなくてもよい。ケースを構成する材料としては、例えば金属又は合金でなる板材であれば薄くても十分な強度を備えるので、気化器全体のサイズをコンパクトにすることができて好ましい。
 上述した好ましい実施の形態におけるケースが、断熱手段をさらに備えることが好ましい。ケースが断熱手段を備えることにより、第1ヒータ及び第2ヒータにおいて発生した熱の気化器の外部への放出が抑制され、発生した熱の大部分を気化部及びガス流路の加熱に無駄なく利用することができる。断熱手段は、ケースを構成する容器の内面側と外面側のいずれに備えられてもよいが、気化器のハンドリング及び美感の点では容器の内面側に備えられるのが好ましい。断熱手段は、ケースを構成する容器の全面に備えられてもよく、あるいは断熱が特に必要な箇所にのみ部分的に備えられてもよい。
 断熱手段の具体例としては、例えば、シリコーンゴムやエチレンプロピレンジエンゴム(EPDM)などの材料によって形成された多孔質性シートをケースの内側に貼り付けるなどの手段を用いることができる。ケースを構成する容器自体に断熱性能の高い材料を採用してもよい。
<単位面積あたりの消費電力>
 本発明の好ましい実施の形態においては、第1ヒータ及び第2ヒータの少なくとも1が平面状の発熱体で構成され、発熱体が、単位面積当たりの消費電力が大きい部分と小さい部分を有する。本明細書において「単位面積あたりの消費電力」とは、ワット密度ともいい、平面状の発熱体のある領域について、その領域で消費される電力をその領域の面積で除した値をいう。単位面積あたりの消費電力は、発熱体のその領域における発熱量にほかならない。発熱体の面内方向の熱の移動を無視すれば、この発熱量は、発熱体の表の面及び裏の面から発生する熱量の合計となる。
 平面状の発熱体において、単位面積あたりの消費電力が大きい部分と小さい部分を設けるには、例えば、発熱体における単位面積あたりの発熱抵抗線の密度が密な部分と疎な部分を設けたり、発熱抵抗線の単位長さあたりの抵抗値が高い部分と低い部分とを設けたりするなどの手段により実現することができる。単位面積あたりの消費電力が大きい部分を前駆体又は材料ガスの温度の低下が著しい箇所に配置し、単位面積あたりの消費電力が小さい部分を温度があまり低下しない箇所に配置することにより、ヒータが消費する電力量の総計を抑えつつ、必要な箇所を優先的に加熱することができる。
<第3ヒータ>
 本発明の好ましい実施の形態においては、気化器が、ガス流路を加熱し気化部を加熱しない第3ヒータを備える。第3ヒータは、上述した第1ヒータ及び第2ヒータとは別個の独立した部材である。第3ヒータは、もっぱらガス流路を加熱する目的で使用されるものである。第3ヒータは、ガス流路のうち気化部及び第2ヒータから最も遠く、気化器の外部に近く、したがって材料ガスの温度が最も低下しやすい位置に設けることが好ましい。これにより、気化器の内部全体を加熱する場合に比べてより少ない消費電力で材料ガスの凝縮を防止することができる。第3ヒータの具体的な構成は、第1ヒータ及び第2ヒータと同様に、発熱抵抗体、電線及び温度センサを含むことができる。ガス流路が1系統である場合、第3ヒータの数は通常1個で足りる。しかし、特別な目的のために複数の第3ヒータを設けることは、本発明において許容される。
2.第2の実施形態
 第2の実施形態において、本発明は、前駆体を気化させて材料ガスを生成する気化部と、生成された材料ガスを気化部から外部に導くガス流路と、気化部を加熱しガス流路を加熱しない第1ヒータと、気化部及びガス流路の両方を加熱する第2ヒータとを備える気化器を用いて半導体製造装置に材料ガスを供給する方法であって、第1ヒータに供給する電力及び第2ヒータに供給する電力を制御して、ガス流路の温度が気化部における前駆体の温度よりも高くなるようにする方法の発明である。この方法の発明に用いられる気化器の構成は、上述した第1の実施形態における気化器の構成と同じであるから、ここでは説明を省略する。
 本発明に係る方法では、第1ヒータに供給する電力及び第2ヒータに供給する電力を制御して、ガス流路の温度が気化部における前駆体の温度よりも高くなるようにする。上述のとおり、気化部における前駆体は第1ヒータ及び第2ヒータによって加熱されるが、第1ヒータによる加熱が主で、第2ヒータによる加熱は補助的なものである。したがって、例えば、気化部における前駆体の温度を温度センサ等の手段により計測し、その温度が所定の範囲内となるように第1ヒータに供給する電力を制御することができる。一方、ガス流路は第2ヒータによって加熱される。したがって、例えば、ガス流路の温度を温度センサ等の手段により計測し、その温度が前駆体の温度よりも高くなるように第2ヒータに供給する電力を制御することができる。ただし、ガス流路の温度が気化部における前駆体の温度よりも高くなるように制御する具体的な手段は、上述した手段に限定されない。
 気化部における前駆体の温度は、気化部において気化された材料ガスの温度の指標となる。気化部において気化された直後の材料ガスの実際の温度は、気化によって気化潜熱が奪われるために前駆体の温度よりもやや低いと考えられる。また、液体又は固体の前駆体に比べて、材料ガスの温度を正確に計測することは、一般に困難である。そこで、本発明に係る方法では、材料ガスの温度を直接計測することに代えて、より信頼性の高い気化部における前駆体の温度を計測する。前駆体の温度の計測は、例えば、気化部の内部に設けられた温度センサなどによって行うことができる。
 本発明において「ガス流路の温度」とは、ガス流路を構成する配管、バルブの本体(弁箱)又はマスフローコントローラの本体(ベース)の温度をいう。ガス流路の温度の計測に際しては、ガス流路のうち材料ガスが接する内側の面の温度を計測することが理想的である。しかし、これには技術的な困難を伴うので、配管、バルブの本体(弁箱)又はマスフローコントローラの本体(ベース)が外気に露出している部分の温度を計測し、その温度をガス流路の温度とみなしてもよい。あるいは、これらの部分の一部に温度センサを挿入するための孔を設けて、その孔の内部の温度を計測するようにしてもよい。
 本発明に係る方法においては、第1ヒータに供給する電力及び第2ヒータに供給する電力を制御する結果、ガス流路の温度を気化部における前駆体の温度よりも高くすることができる。上述のとおり、気化部からガス流路に流入する材料ガスの温度は、気化部における前駆体の温度よりも低いと考えられる。したがって、上記の温度制御によってガス流路の温度を気化部における前駆体の温度よりも高い温度に保てば、ガス流路の温度を、そこを流れる材料ガスの温度よりも高くすることができ、ガス流路において材料ガスが凝縮することを確実に防止することができる。
<第1の実施例>
 本発明を実施するための形態について、以下図面を用いてより具体的に説明する。図1は、本発明に係る気化器の例を示す部分断面図である。この気化器1は前駆体Pを気化させる手段としてベーキング方式を採用しており、液体の前駆体Pを貯蔵し気化させるためのタンク2aによって構成された気化部2を備える。気化部2には、図示しない配管によって外部から液体の前駆体Pが注入される。気化部2の内部には、前駆体Pの温度を計測するための図示しない温度センサが設けられている。
 気化部2の上にはガス流路3が設けられている。ガス流路3は、例えば配管などで構成することができる。ガス流路3は、気化部2を構成するタンク2aの上面に設けられた流出部3aに始まり、供給口3bで終わっている。ガス流路3には、図示しない温度センサが設けられている。
 気化部2の底部の外側には第1ヒータ4が設けられている。本実施例における第1ヒータ4は、発熱抵抗線をゴムで成形したラバーヒータで構成された平面状のヒータである。第1ヒータ4は気化部2の一部である底面と接触して設けられており、ガス流路3とは接触していない。第1ヒータ4において発生した熱は熱伝導によって気化部2の底面を介して前駆体Pに伝達される。加熱された前駆体Pの液面から発生した材料ガスは、気化部2の上部に滞留し、流出部3aからガス流路3を通って供給口3bに達し、そこから図示しない外部配管を通って半導体製造装置に供給される。
 気化部2の上面の外側には第2ヒータ5が設けられている。第1ヒータ4の場合と同様に、本実施例における第2ヒータ5も、発熱抵抗線をゴムで成形したラバーヒータで構成された平面状のヒータである。第2ヒータ5は気化部2と接触しないで設けられている。すなわち、第2ヒータ5の底面と気化部2の上面との間には一定の距離のギャップdがある。このギャップdの大きさは2.0mm以上、5.0mm以下に調整されている。このギャップdがあるために、第2ヒータ5において発生した熱は熱伝導によって気化部2に伝達されることはなく、主として熱放射によって気化部2に伝達される。
 第2ヒータ5と気化部2との間には図示しないスペーサが介在し、両者のギャップdを一定の値に保持している。スペーサの断面積は小さいので、スペーサを介した熱伝導によって第2ヒータ5から気化部2に伝達される熱量は、熱放射によって伝達される熱量に比べて無視することができる程度に十分に小さい。
 一方、第2ヒータ5はガス流路3に接触して設けられている。具体的には、第2ヒータ5の上面がガス流路3の下部と接触している。これにより、第2ヒータ5において発生した熱の一部は、熱伝導によりガス流路3に伝達される。なお、図1においては、第2ヒータ5の上面とガス流路3の下部との間にすき間が存在するように描かれているが、このすき間は単に両者を別個の部材として視認できるようにとの意図で設けられたものである。実際には、第2ヒータ5の上面とガス流路3の下部とは、本明細書で定義された意味において接触している。
 本実施例に係る気化器1において、気化部2を構成するタンク2aは、その下面に設けられた第1ヒータ4と上方に位置する第2ヒータ5によって挟まれている。この構成により、気化部2に貯蔵された前駆体Pの液位が変動しても、気化部2の内部の温度分布を均一な状態に維持することができる。また、気化部2の側面にはヒータが設けられていないので、気化器1の設置面積のほとんど全てを気化部2に充てることができる。
 本実施例に係る気化器1を用いて半導体製造装置に材料ガスを供給するには、第1ヒータ4に供給される電力及び第2ヒータ5に供給される電力を制御して、ガス流路3の温度が気化部2における前駆体Pの温度よりも高くなるようにする。これにより、ガス流路3における材料ガスの凝縮を防止することができる。2つのヒータに供給される電力を制御するには、例えば、温度センサによって計測された前駆体Pの温度及びガス流路の温度に基づいて、図示しない電源及び制御回路を作動させればよい。電源及び制御回路は、気化器1に内蔵されてもよいし、気化器1とは別のユニットとして構成してもよい。
<第2の実施例>
 図2は、本発明に係る気化器の他の例を示す部分断面図である。この実施例においては、ガス流路3の中間にバルブ3c及びマスフローコントローラ3dが接続されている。バルブ3c及びマスフローコントローラ3dは、それ自体が個別のガス流路を備えている。ガス流路3を構成する配管と、バルブ3c及びマスフローコントローラ3dが備える個別のガス流路とが渾然一体となって、気化器1のガス流路3を構成する。
 第2ヒータ5は、その上面側がヒータプレート5aに貼り付けられており、ヒータプレート5aの上面にバルブ3cとマスフローコントローラ3dとが中間部材5bを介して固定されている。本実施例におけるヒータプレート5a及び中間部材5bは、熱伝導率の高いアルミニウム合金で構成されている。ヒータプレート5aの厚さは5.0mm以上、10mm以下に調整されている。これにより、第2ヒータ5及びヒータプレート5aの面内方向の温度分布が均一になる。第2ヒータ5において発生した熱の一部は、ヒータプレート5a及び中間部材5bを通って熱伝導によりバルブ3cとマスフローコントローラ3dに伝達される。図1に示した例の場合と同様に、図2に示した例においても、第2ヒータ5は気化部2と接触しないで設けられている。すなわち、第2ヒータ5の底面と気化部2の上面との間には一定の距離のギャップdがある。
 気化部2、ガス流路3、第1ヒータ4及び第2ヒータ5の全体は、金属板で構成されたケース7に収容されている。ケース7の内側には、断熱手段7aとしてシリコーンゴムでなるシートが全面に貼られている。これにより、気化部2の底面及び側面並びにガス流路3の上の空間から気化器1の外部に熱が放出されるのを防ぐことができるので、第1ヒータ4及び第2ヒータ5の電力効率を高めることができる。
<第3の実施例>
 図3は、本発明に係る気化器のうち実際の製品に近い実施例の配管図である。この第3の実施例では、第1及び第2の実施例と異なり、ガス流路3が1系統ではなく2系統設けられている。すなわち、タンク2aから材料ガスが流れ出る流出部3aが2箇所あり、それぞれのガス流路にバルブ3cが1個ずつ設けられている。バルブ3cの出口でガス流路は一旦合流した後、2台のマスフローコントローラ3dに分岐する。マスフローコントローラ3dの出口でガス流路は再び合流して供給口3bから外部に材料ガスが供給される。このようにして大流量にも対応することができる。気化部2には前駆体供給バルブ2bから前駆体Pが供給され、気化部2に貯蔵される。ガス流路3から材料ガスを排出したいときは、パージガスバルブ3gからガス流路3にパージガスが導入される。
 図4は、第3の実施例に係る気化器の上面図である。ここには、タンク2aの上面における部材及び配管の配置が示されている。タンク2aで発生した材料ガスは、図示しない2箇所の流出部3aから流出し、2個のバルブ3cを通過した後、第1マニホールド3eに至って合流する。この第1マニホールド3eは、タンク2aの上部に位置する第2ヒータ5につながる中間部材5bを介して第2ヒータ5の上面と接触している。また、2個のバルブ3cも、その底部が中間部材5bを介して第2ヒータ5の上面と接触している。次に、材料ガスは第1マニホールド3eから2個のマスフローコントローラ3dの配管に分岐し、マスフローコントローラ3dを通過した後に第2マニホールド3fに至って合流し、1箇所の供給口3bから外部に供給される。尚、第3の実施例に係る気化器1は、ガス流路3を加熱する第3ヒータ6を更に備える。第3ヒータ6の詳細については後述する。
 図5は、第3の実施例に係る気化器の部分断面側面図である。ここではマスフローコントローラ3dが記載されており、側面視において同じ位置にあるバルブ3cはマスフローコントローラ3dの陰に隠れて見えない。図示されるように、第1マニホールド3eを支える中間部材5bは、L字型の形状をしており、第2ヒータ5の上面にねじ止めされている。この中間部材5bは熱を伝えやすいアルミニウム合金板で構成されている。気化器1の全体はケース7で囲まれており、ケース7の内側の一部には断熱手段7aが設けられている。また、ケース7の内部にパージガスを供給するためのパージガス配管7bが設けられている。図5に示す第3の実施例に係る気化器1において、タンク2aの上面と第2ヒータ5の下面との間のギャップdの距離は3.0mmである。
 図6は、第3の実施例に係る第1ヒータ4を示す平面図である。第1ヒータ4は、タンク2aの底面とほぼ同じ形状の平面状のラバーヒータで構成されている。タンク2aの底面のうち、中央部は周辺部に比べて放熱が少なく、温度が下がりにくい。このため、図6に示す第1ヒータ4では、タンク2aの周辺部と接触する周辺部4aの部分における単位面積あたりの消費電力が、タンク2aの中央部と接触する中央部4bの部分における単位面積あたりの消費電力よりも大きくなるようにして、第1ヒータ4の電力効率を高めている。
 図6に示した第1ヒータ4の一角には、第1ヒータ4が過剰に加熱されることを防止する目的で温度ヒューズ4dが設けられている。温度ヒューズ4dが設けられている部分4cの位置における単位面積あたりの消費電力が中央部4bよりもさらに小さくなるようにして、温度ヒューズ4dの感度を高めている。この第1ヒータ4の実施例における各部の1平方センチメートルあたりの消費電力を例示すると、周辺部4aが0.9ワット、中央部4bが0.6ワット、部分4cが0.4ワットである。
 図7は、第3の実施例に係る第2ヒータ5を示す平面図である。図7は、図4の上面図と同じスケール及び向きで描かれている。第2ヒータ5は、縦横の最大寸法がタンク2aの上面とほぼ同じ寸法である平面状のラバーヒータで構成されている。図7の部分5cは、図4に示す2個のマスフローコントローラ3dのうち外側に位置するマスフローコントローラ3dが配置される位置であり、単位面積あたりの消費電力が最も大きくなっている。これは、内側に位置するマスフローコントローラ3dが配置される位置に比べてケース7の外側に逃げる熱量が大きいからである。部分5dは、バルブ3cが配置される位置であり、マスフローコントローラ3dに比べて温度低下が少ないため、単位面積あたりの消費電力が低く抑えられている。これにより、第2ヒータ5の電力効率が高められる。
 図7において第2ヒータ5が矩形に切り取られている部分5eは、図4に示すとおり加熱すべき部材が存在しないために第2ヒータ5が設けられていない欠損部である。第2ヒータ5において発生した熱は、気化部2の側には熱放射によって伝達され、ガス流路3の側にはヒータプレート5a及び中間部材5bを介して熱伝導によって伝達される。第1ヒータ4の場合と同様に、図4に示した第2ヒータ5の一部には、第2ヒータ5が過剰に加熱されることを防止する目的で温度ヒューズ5fが設けられている。この第2ヒータ5の実施例における各部の1平方センチメートルあたりの消費電力を例示すると、部分5cが1.0ワット、部分5dが0.7ワットであり、欠損部の5eはゼロである。
 図8は、第3の実施例に係る第3ヒータ6を示す平面図である。第3ヒータ6は、ヒータプレート6aの一部にラバーヒータ6bを貼り付けた構造となっている。ヒータプレート6aは厚さが20mmのアルミニウム板で構成されており、マニホールド3eを含むガス流路3がちょうど嵌る形に加工されている。この構成により、ラバーヒータ6bで発生した熱はヒータプレート6aを通ってガス流路3に到達する。第1ヒータ4及び第2ヒータ5の場合と同様に、図8に示した第3ヒータ6の一部には、第3ヒータ6が過剰に加熱されることを防止する目的で温度ヒューズ6cが設けられている。この第3ヒータ6の実施例におけるラバーヒータ6bの1平方センチメートルあたりの消費電力は0.8ワットである。
 次に、上述した第3の実施例に係る気化器1を用いて材料ガスの一種であるテトラエトキシシラン(TEOS)を気化させる際の気化器1の各部の設定温度の例を示して、本発明の効果を具体的に説明する。気化器1は、タンク2aに貯蔵された前駆体Pの温度である第1温度を測定する第1センサと、2台のマスフローコントローラ3dのうち図4の外側に位置するマスフローコントローラ3dの本体(ベース)を構成する部材の温度である第2温度を測定する第2センサとを備える。これらのセンサは何れも図示しないが、白金測温抵抗体又は熱電対である。第1ヒータ4は第1温度が予め設定した温度と一致するようにフィードバック制御され、第2ヒータ5は第2温度が予め設定した温度と一致するようにフィードバック制御される。第3ヒータ6は、第3ヒータ6によって加熱されるガス流路3の部分の温度が第2ヒータ5によって加熱されるガス流路3の部分の温度よりも高くなるように構成されている。
 上記のような構成は、例えば、第3ヒータ6によって加熱されるガス流路3の部分にも温度センサを配設して、当該温度センサによって検出される温度が第2温度よりも高くなるように第3ヒータ6をフィードバック制御することによって実現することができる。しかしながら、この場合、気化器1の構成要素が増え、全体としての制御が複雑化し、結果として気化器1のコストの増大などの問題につながる虞がある。また、前述したように、第3ヒータ6は、ガス流路3のうち気化部2及び第2ヒータ5から最も遠く、気化器1の外部に近く、材料ガスの温度が最も低下しやすい位置に設けることが好ましい。このような位置におけるガス流路3の部分は、一般的には、バルブ3c及びマスフローコントローラ3dを含まない単なる配管である。すなわち、この部分については、高温によるバルブ3c及び/又はマスフローコントローラ3dを構成する部品の劣化、流量精度の低下及び信頼性の低下などの問題を懸念する必要性は相対的に低い。したがって、この部分の温度は、材料ガスの凝縮を確実に回避することができるように十分に高い温度に維持することができればよい。
 そこで、第3の実施例に係る気化器1においては、第3ヒータ6が電源に対して第2ヒータ5と並列に接続されており、第2温度に基づいて制御されるように構成されている。しかしながら、気化器1においては、第3ヒータ6によって加熱されるガス流路3の部分の温度が第2ヒータ5によって加熱されるガス流路3の部分の温度よりも高くなるように第3ヒータ6が構成されている。このような構成は、例えば、第3ヒータ6によって加熱されるガス流路3の部分の熱容量に対して第3ヒータ6のワット密度(単位面積あたりの消費電力)を適切に設計する等の方策により達成することができる。その結果、第3ヒータ6によって加熱されるガス流路3の部分の温度を、第2ヒータ5によって加熱されるガス流路3の部分の温度よりも、ある程度高く維持することができる。
 上記のような構成を有する第3の実施例に係る気化器1において、前駆体供給バルブ2bを経由してタンク2aの内部にテトラエトキシシランを貯蔵した後、バルブ3cを閉じた状態で第1温度および第2温度がそれぞれ89.0℃および91.0℃に一致するように第1ヒータ4及び第2ヒータ5をそれぞれフィードバック制御し、斯かる制御状態を180分間保持して各部の温度を安定させた。第3ヒータ6については、上述したように、電源に対して第2ヒータ5と並列に接続されており、第2温度に基づいて制御されるように構成されている。その後、気化器1の各部の温度を白金測温抵抗体又は熱電対を用いて測定した。
 測定の結果、ガス流路3の上流側から順に、タンク2aの上部の流出部3aからバルブ3cに至る配管のエルボの側面の温度は88.6℃、バルブ3cの出口側の第1マニホールド3eの側面の温度は93.1℃、2台のマスフローコントローラ3dのうち図4の外側に位置するマスフローコントローラ3dの入口部分の継手の温度は91.2℃、同じマスフローコントローラ3dのベースの側面のうち外側の温度は96.1℃、2台のマスフローコントローラ3dのうち図4の内側に位置するマスフローコントローラ3dのベースの側面の温度は両サイドでそれぞれ93.5℃及び94.0℃、第3ヒータ6の上部の供給口3bの位置における配管の温度は100.9℃であった。
 上記の結果から、第3の実施例に係る気化器1では、ガス流路3の全ての位置においてタンク2aの設定温度と同等かそれよりも高温に維持されていることが分かる。これにより、ガス流路3の内部で材料ガスが凝縮することが防止される。また、2台のマスフローコントローラ3dのベースの側面の温度のバラツキが3.0℃以内となっていることが分かる。これにより、マスフローコントローラ3dによる材料ガスの流量制御の精度が維持される。さらに、ガス流路3の最も下流に当たる供給口3bの位置を除くガス流路3の温度のバラツキが10℃以内であることが分かる。これにより、各部材を構成する部品が過剰に加熱されることがないので、気化器全体の信頼性を確保することができる。
 上述した例では前駆体の保持温度を89℃としたが、今後気化器の用途が拡大するにつれて、より高い温度にて前駆体を保持すべき材料ガスを使用する機会が増えることが予想される。前駆体の保持温度が高ければ高いほど、気化器の各部の温度差は大きくなる傾向がある。そのような場合でも、本発明に係る気化器及び材料ガスを供給する方法によれば、気化器の内部の温度分布を均一な状態に近づけることができるので、過剰に高温になる部分にわざわざ耐熱温度の高い部品を採用したり、無駄な電力を消費したりする必要がなく、経済的である。
 1 気化器
 2 気化部
  2a タンク
  2b 前駆体供給バルブ
 3 ガス流路
  3a 流出部
  3b 供給口
  3c バルブ
  3d マスフローコントローラ
  3e 第1マニホールド
  3f 第2マニホールド
  3g パージガスバルブ
 4 第1ヒータ
  4a 消費電力が大きい部分
  4b 消費電力が中くらいの部分
  4c 消費電力が小さい部分
  4d 温度ヒューズ
 5 第2ヒータ
  5a ヒータプレート
  5b 中間部材
  5c 消費電力が大きい部分
  5d 消費電力が小さい部分
  5e 消費電力がゼロの部分(欠損部)
  5f 温度ヒューズ
 6 第3ヒータ
  6a ヒータプレート
  6b ラバーヒータ
  6c 温度ヒューズ
 7 ケース
  7a 断熱手段
  7b パージガス配管
 P 前駆体(precursor)
 d ギャップ

Claims (13)

  1.  半導体製造装置に材料ガスを供給する気化器であって、
     前駆体を気化させて材料ガスを生成する気化部と、
     生成された材料ガスを前記気化部から外部に導くガス流路と、
     前記気化部を加熱し前記ガス流路を加熱しない第1ヒータと、
     前記気化部及び前記ガス流路の両方を加熱する第2ヒータと
    を備える気化器。
  2.  前記第2ヒータが、平面形状を有し、
     前記気化部が、前記第2ヒータの一の面の側に位置し、
     前記ガス流路が、前記第2ヒータの他の面の側に位置する
    請求項1に記載の気化器。
  3.  前記気化部が、前記第2ヒータの一の面と接触しないで、
     前記ガス流路が、前記第2ヒータの他の面と接触する
    請求項2に記載の気化器。
  4.  前記第1ヒータが、平面形状を有し、
     前記気化部が、前記第1ヒータの一の面と接触する
    請求項3に記載の気化器。
  5.  前記前駆体が、液体であり、
     前記気化部が、前記前駆体を収容するタンクであり、
     前記第1ヒータ及び前記第2ヒータが、前記タンクを挟んで対向する位置に配置される
    請求項4に記載の気化器。
  6.  前記第1ヒータが、前記タンクの底部に位置し、
     前記第2ヒータが、前記タンクの上部に位置する
    請求項5に記載の気化器。
  7.  前記ガス流路が、バルブ及びマスフローコントローラを含む
    請求項1から6までのいずれかに記載の気化器。
  8.  前記気化器が、前記気化部、前記ガス流路、前記第1ヒータ及び前記第2ヒータを収容するケースを備える
    請求項1から7までのいずれかに記載の気化器。
  9.  前記ケースが、断熱手段を備える
    請求項8に記載の気化器。
  10.  前記第1ヒータ及び前記第2ヒータの少なくとも1が、単位面積当たりの消費電力が大きい部分と小さい部分とを有する
    請求項2から6までのいずれかに記載の気化器。
  11.  前記ガス流路を加熱し前記気化部を加熱しない第3ヒータを更に備える
    請求項1から10までのいずれかに記載の気化器。
  12.  前駆体を気化させて材料ガスを生成する気化部と、
     生成された材料ガスを前記気化部から外部に導くガス流路と、
     前記気化部を加熱し前記ガス流路を加熱しない第1ヒータと、
     前記気化部及び前記ガス流路の両方を加熱する第2ヒータと
    を備える気化器を用いて半導体製造装置に材料ガスを供給する方法であって、
     前記第1ヒータに供給される電力及び前記第2ヒータに供給される電力を制御して、前記ガス流路の温度が前記気化部における前記前駆体の温度よりも高くなるようにする
    方法。
  13.  前記気化器が、前記ガス流路を加熱し前記気化部を加熱しない第3ヒータを更に備え、
     前記第3ヒータによって加熱される前記ガス流路の部分の温度が前記第2ヒータによって加熱される前記ガス流路の部分の温度よりも高くなるように前記第3ヒータが構成されている
    請求項12に記載の方法。
PCT/JP2022/032835 2021-09-09 2022-08-31 気化器 WO2023037948A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280060593.3A CN117916864A (zh) 2021-09-09 2022-08-31 气化器
KR1020247007608A KR20240052767A (ko) 2021-09-09 2022-08-31 기화기
JP2023546907A JPWO2023037948A1 (ja) 2021-09-09 2022-08-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021147115 2021-09-09
JP2021-147115 2021-09-09

Publications (1)

Publication Number Publication Date
WO2023037948A1 true WO2023037948A1 (ja) 2023-03-16

Family

ID=85506656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032835 WO2023037948A1 (ja) 2021-09-09 2022-08-31 気化器

Country Status (4)

Country Link
JP (1) JPWO2023037948A1 (ja)
KR (1) KR20240052767A (ja)
CN (1) CN117916864A (ja)
WO (1) WO2023037948A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10500733A (ja) * 1994-05-11 1998-01-20 マテリアルズ リサーチ コーポレーション 反応チャンバへのガス供給装置及び方法
JP2010506429A (ja) * 2006-10-10 2010-02-25 エーエスエム アメリカ インコーポレイテッド 前駆体送出システム
JP2011054789A (ja) * 2009-09-02 2011-03-17 Hitachi Kokusai Electric Inc 基板処理装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163400A (ja) 1987-12-17 1989-06-27 Toshiba Corp トンネルの換気制御装置
JP2538042B2 (ja) 1989-03-29 1996-09-25 株式会社エステック 有機金属化合物の気化供給方法とその装置
JP3828821B2 (ja) 2002-03-13 2006-10-04 株式会社堀場エステック 液体材料気化供給装置
JP5104151B2 (ja) 2007-09-18 2012-12-19 東京エレクトロン株式会社 気化装置、成膜装置、成膜方法及び記憶媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10500733A (ja) * 1994-05-11 1998-01-20 マテリアルズ リサーチ コーポレーション 反応チャンバへのガス供給装置及び方法
JP2010506429A (ja) * 2006-10-10 2010-02-25 エーエスエム アメリカ インコーポレイテッド 前駆体送出システム
JP2011054789A (ja) * 2009-09-02 2011-03-17 Hitachi Kokusai Electric Inc 基板処理装置

Also Published As

Publication number Publication date
JPWO2023037948A1 (ja) 2023-03-16
KR20240052767A (ko) 2024-04-23
CN117916864A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
US5451258A (en) Apparatus and method for improved delivery of vaporized reactant gases to a reaction chamber
JP6639580B2 (ja) 蒸発器、堆積アレンジメント、堆積装置及びこれらを操作する方法
US20050000427A1 (en) Gas supplying apparatus for atomic layer deposition
KR102527688B1 (ko) 연료 전지 유닛 및 시스템의 열 관리
US20130133703A1 (en) Vaporized material supply apparatus, substrate processing apparatus having same and vaporized material supply method
TWI628717B (zh) 加熱汽化系統和加熱汽化方法
KR20190140002A (ko) 유체 제어 장치
KR20160095091A (ko) 증착 배열체, 증착 장치 및 그의 동작 방법들
JP5090031B2 (ja) 液化ガス供給装置および供給方法
WO2023037948A1 (ja) 気化器
US11976356B2 (en) Vaporized feed device
JP3745547B2 (ja) 集積弁
KR100322411B1 (ko) 액체원료 기화장치
JP2009194006A (ja) ガス輸送路およびこれを利用した半導体処理装置
KR20140078284A (ko) 증착원 및 이를 포함하는 증착 장치
JP3665708B2 (ja) 集積弁
KR20070006460A (ko) 가스 공급 라인
CN214736043U (zh) 一种镀膜设备的通水蒸气装置
TW202230470A (zh) 氣化裝置、氣體供給裝置及氣體供給裝置之控制方法
KR100311672B1 (ko) 반응가스송출장치및방법
KR101016042B1 (ko) 캐니스터
KR20150048447A (ko) 기화기 및 원료 공급 장치
CN117568782A (zh) 化学反应源供应系统及半导体加工装置
TW201510488A (zh) 用於測定由載氣運送之蒸汽之質量流量的裝置
EP1118051B1 (en) Component heater system for use in manufacturing process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867270

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546907

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247007608

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280060593.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE