WO2023036298A1 - 一种可检测led短断路的控制电路、充电座和电动车辆 - Google Patents

一种可检测led短断路的控制电路、充电座和电动车辆 Download PDF

Info

Publication number
WO2023036298A1
WO2023036298A1 PCT/CN2022/118132 CN2022118132W WO2023036298A1 WO 2023036298 A1 WO2023036298 A1 WO 2023036298A1 CN 2022118132 W CN2022118132 W CN 2022118132W WO 2023036298 A1 WO2023036298 A1 WO 2023036298A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
led
main control
control unit
transistor
Prior art date
Application number
PCT/CN2022/118132
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
长春捷翼汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春捷翼汽车零部件有限公司 filed Critical 长春捷翼汽车零部件有限公司
Publication of WO2023036298A1 publication Critical patent/WO2023036298A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/44Testing lamps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the disclosure relates to the technical field of electric vehicle charging, and in particular to a control circuit capable of detecting LED short circuit, a charging stand and an electric vehicle.
  • the battery life and charging safety of electric vehicles have become widespread concerns.
  • the charging and discharging status is usually displayed by LED lights. If there are over-temperature, over-current and other phenomena in the charge-discharge circuit, the LED will be short-circuited or open-circuited, and the charge-discharge process cannot be indicated, which may lead to false alarms or no protection of the system after a fault occurs.
  • Existing detection circuits need to be designed with complex circuit routing, and more circuit components are used, resulting in high power consumption.
  • Embodiments of the present disclosure provide a control circuit capable of detecting LED short-circuit, a charging stand and an electric vehicle, which are used to solve the problem that an additional detection circuit needs to be provided and the power consumption is high.
  • a control circuit for electrically detecting LED short circuit is proposed, which is applied to the charging stand, including:
  • the main control unit is used to set the pulse width modulation signal to the LED to control whether the LED emits light;
  • a signal processing unit is connected to the main control unit, and is used to generate a state feedback signal according to the output of the main control unit and feed back the state feedback signal to the main control unit;
  • the main control unit determines the state of the LED according to the state feedback signal.
  • a charging stand comprising the control circuit capable of detecting LED short circuit as described in any one of the above embodiments.
  • an electric vehicle including the above-mentioned charging stand.
  • the control circuit that can detect LED short circuit in the embodiment of the present disclosure includes LED, main control unit and signal processing unit, the main control unit is used to set the pulse width modulation signal to the LED to control whether the LED emits light;
  • the control unit is connected to at least generate a state feedback signal according to the output of the main control unit and feed back the state feedback signal to the main control unit; the main control unit determines the state of the LED according to the state feedback signal;
  • the control circuit capable of detecting LED short-circuit and open circuit in this embodiment does not need to set up an additional detection circuit, and the control of LED on-off and comprehensive detection of LED short-circuit, open-circuit, over-current, and over-temperature can be realized through the main control unit;
  • the short circuit can still be detected when the pulse width modulation signal has a small duty cycle; and the pulse width modulation signal can be directly converted into logic that can be recognized by the main control unit (Micro-controller Unit, MCU), and the LED
  • MCU Micro-controller Unit
  • FIG. 1 is a schematic circuit diagram of a control circuit capable of detecting LED short circuit according to an embodiment of the present disclosure.
  • embodiments of the present disclosure provide a control circuit capable of detecting LED short-circuit, a charging stand, and an electric vehicle.
  • FIG. 1 it is a schematic circuit diagram of a control circuit capable of detecting LED short circuit in an embodiment of the present disclosure.
  • the control circuit capable of detecting LED short circuit in this embodiment of the present disclosure will be described in detail below with reference to Fig. 1 .
  • the control circuit capable of detecting LED short circuit of this embodiment includes: LED, a main control unit and a signal processing unit.
  • the main control unit may be an MCU.
  • the main control unit is used to set the pulse width modulation (PWM) signal to the LED to control whether the LED emits light;
  • the signal processing unit is connected to the main control unit for at least generating a state feedback signal according to the output of the main control unit The feedback signal is fed back to the main control unit; the main control unit judges the state of the LED according to the state feedback signal.
  • PWM pulse width modulation
  • the control circuit capable of detecting LED short-circuit and open-circuit according to the present application does not need to install an additional detection circuit, and the control of LED on-off and comprehensive detection of LED short-circuit, open-circuit, over-current and over-temperature can be realized through the main control unit.
  • the signal processing unit of the control circuit capable of detecting LED short circuit in this embodiment includes a constant current source drive module, the input end of the constant current source drive module is connected to the signal output end of the main control unit, The output end of the constant current source driving module is connected with the LED, and is used to obtain a state input signal representing the state of the LED.
  • the constant current source driving module is a proportional constant current source circuit.
  • the signal processing unit also includes a comparator P (for example, an operational amplifier), a third resistor R3, a fourth resistor R4 and a voltage divider module, and the non-inverting input terminal of the comparator P is connected via the third resistor R3 is connected to the output terminal of the constant current source drive module, which is used to convert the state input signal into a state feedback signal.
  • the inverting input terminal of the comparator P is connected to the reference voltage through the fourth resistor R4, and the output terminal of the comparator P is connected to the main control unit.
  • the signal input terminal is used to feed back the state feedback signal to the main control unit (the I/O pin).
  • the signal processing unit at least obtains an input signal indicating the state of the LED according to the output of the main control unit, and then generates a state feedback signal through the comparator P, and feeds back the state feedback signal to the main control unit through the voltage divider module. That is to say, the signal processing unit compares and amplifies the state input signal through the comparator P, and converts it into a logic signal (for example, high and low level signals) directly recognizable by the MCU. Therefore, due to the setting of the comparator P, it can When the duty cycle of the PWM signal is small, the short circuit state of the LED can still be detected.
  • a logic signal for example, high and low level signals
  • the reference voltage connected to the inverting input terminal of the comparator P can be obtained by dividing the power supply (for example, a 12V supply voltage). Therefore, further, the control circuit capable of detecting LED short circuit in this embodiment may also include a second resistor R2 and an eighth resistor R8 connected in parallel, the common end of the second resistor R2 and the eighth resistor R8 is connected to the fourth resistor R4, The other end of the second resistor R2 is grounded, and the other end of the eighth resistor R8 is connected between the positive pole of the power supply DC and the LED.
  • the control circuit capable of detecting LED short circuit in this embodiment may also include a second resistor R2 and an eighth resistor R8 connected in parallel, the common end of the second resistor R2 and the eighth resistor R8 is connected to the fourth resistor R4, The other end of the second resistor R2 is grounded, and the other end of the eighth resistor R8 is connected between the positive pole of the power supply DC and the LED.
  • the turn-on voltage of the LED is generally 2V to 3V, so the second resistor R2 and the eighth resistor R8 should be selected to ensure that the voltage is divided to the inverting phase of the comparator P.
  • the voltage of the fourth resistor R4 at the input terminal is smaller than the voltage of the third resistor R3 at the non-inverting input terminal of the comparator P.
  • the resistance of the second resistor R2 needs to be set to be larger than 2M ⁇
  • the resistance of the eighth resistor R8 needs to be selected within the range of 100k ⁇ ⁇ 200k ⁇ (including the endpoint value).
  • the resistance of the fourth resistor R4 can be set to be greater than 10M ⁇ .
  • the resistance value of the third resistor R3 can also be set to be greater than 10M ⁇ .
  • the constant current source driving module includes a first transistor Q1, a third transistor Q3, a first resistor R1 and a ninth resistor R9.
  • the collector of the third transistor Q3 is connected to the signal output terminal of the main control unit, the emitter of the third transistor Q3 is grounded via the first resistor R1, the base of the third transistor Q3 is connected to the base of the first transistor Q1, and the first transistor Q1
  • the emitter of the first transistor Q1 is grounded via the ninth resistor R9, the collector of the first transistor Q1 is connected to the third resistor R3, and the common terminal of the base of the first transistor Q1 and the base of the third transistor Q3 is connected to the collector of the third transistor Q3.
  • the first transistor Q1 and the third transistor Q3 can be NPN transistors with the same characteristics.
  • the proportional constant current circuit source changes the relationship of IC1 ⁇ IR, making IC1 and IR proportional, thus overcoming the shortcomings of the mirror image constant current source circuit. It is the same as a typical static operating point stabilization circuit, the first resistor R1 and the ninth resistor R9 are current negative feedback resistors, so compared with the mirror constant current source circuit, the output current IC1 of the proportional constant current source circuit has higher stability sex.
  • the control circuit further includes a fifth resistor R5, and the signal output terminal of the main control unit is connected to the collector of the third transistor Q3 via the fifth resistor R5.
  • a current value I of 20 mA needs to be output.
  • the value formula of the output current value is:
  • V CC is the power supply voltage
  • U BE is the base-emitter voltage of the third transistor Q3.
  • a sixth resistor R6 and a seventh resistor R7 for voltage division can be provided.
  • the sixth resistor R6 and the seventh resistor R7 form a voltage divider module, one end of the sixth resistor R6 is connected to the signal input end of the main control unit, and the other end is grounded, one end of the seventh resistor R7 is connected to the signal input end of the main control unit, and the other end is connected to the signal input end of the main control unit. One end is connected to the output end of the comparator P.
  • a pull-up resistor R10 is also included. One end of the pull-up resistor R10 is connected to the output end of the comparator P, and the other end is connected to the positive pole of the power supply DC, so that the comparator P can output a stable high-level signal.
  • the non-inverting input terminal of the comparator P will get different voltages due to the on and off of the LED.
  • the voltage of the non-inverting input terminal of the comparator P is higher than the voltage of the inverting input terminal, and the comparator P outputs a high level;
  • the comparator P outputs low level.
  • the MCU After the excitation signal is given, the MCU outputs a 5V level or PWM signal. After passing through the constant current source drive module, the current of the LED branch is controlled to reach the normal working current. At this time, the level signal received by the MCU is detected. If it is always low, Then the LED is short-circuited; if it changes with the excitation signal, it means that the LED is working normally, and if it is always high, the LED is off.
  • the detection of the LED state is performed by the MCU in a cycle of 100 ms (for example, the level signal of the I/O port of the MCU is obtained periodically).
  • the control circuit can also detect various faults not limited to over-temperature and over-current in real time. state.
  • the types of the first transistor Q1, the third transistor Q3, and the comparator P so that the MCU receives a high-level signal indicating that the LED is short-circuited, and receives a low-level signal Indicates that the LED is broken.
  • the control circuit capable of detecting LED short-circuit and open-circuit according to this embodiment does not require an additional detection circuit, and the control of LED on-off and comprehensive detection of LED short-circuit, open-circuit, over-current, and over-temperature can be realized through the main control unit.
  • This embodiment provides a charging stand, including the control circuit capable of detecting LED short circuit as described in any one of the above embodiments. For the sake of brevity, no further details are given. According to the charging stand of the present application, the control of LED on and off and the comprehensive detection of LED short circuit, open circuit, overcurrent and overtemperature can be realized through the main control unit.
  • This embodiment provides an electric vehicle, including the above-mentioned charging stand.
  • the main control unit of the charging stand can realize the control of LED on and off and the comprehensive detection of LED short circuit, open circuit, overcurrent and overtemperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种可检测LED短断路的控制电路、充电座和电动车辆,控制电路包括LED、主控单元和信号处理单元,主控单元用于设置对LED的脉冲宽度调制信号来控制LED是否发光,信号处理单元与主控单元连接,用于根据主控单元的输出生成状态反馈信号并将状态反馈信号反馈给主控单元;主控单元根据状态反馈信号判定LED的状态。控制电路无需设置额外的检测单元,通过主控单元即可实现对LED亮灭的控制以及LED短路、断路、过流、过温的全面检测。

Description

一种可检测LED短断路的控制电路、充电座和电动车辆
本申请要求2021年9月10日递交的申请号为202122187759.3、发明名称为“一种可检测LED短断路的控制电路、充电座和电动车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及电动汽车充电技术领域,尤其涉及一种可检测LED短断路的控制电路、充电座和电动车辆。
背景技术
随着科学技术的发展以及能源问题的日益严峻,新能源将逐渐成长为资源提供的中坚力量,就汽车领域来说,电动汽车技术在国家对新能源技术的支持和倡导下飞速发展。
目前,随着电动汽车保有量的不断增加,电动汽车电池的寿命和充电安全成为了人们广泛关注的问题,现有技术中,通常通过将充电桩与充电座连接,将电力传输至电动汽车的动力电池组,在充放电过程中,通常由LED灯显示充放电状态。若充放电电路中出现过温、过流等现象,则会导致LED短路或断路,则无法指示充放电过程,进而可能导致出现故障后系统误报或没有进行保护。现有的检测电路需要设计较复杂的电路走线,且应用的电路元器件较多,功耗大。
因而,针对电动汽车的充电座充电领域,提出一种简便的、低功耗的、能够全面检测LED状态的电路十分必要。
发明内容
本公开实施例提供一种可检测LED短断路的控制电路、充电座和电动车辆,用于解决需要额外设置检测电路且功耗大的问题。
本公开实施例提供的具体技术方案如下:
第一方面,提出一种电可检测LED短断路的控制电路,应用于充电座,包括:
LED,
主控单元,用于设置对LED的脉冲宽度调制信号来控制LED是否发光;
信号处理单元,所述信号处理单元与所述主控单元连接,用于根据所述主控单元的 输出生成状态反馈信号并将所述状态反馈信号反馈给所述主控单元;
所述主控单元根据所述状态反馈信号判定LED的状态。
第二方面,提出一种充电座,包括如上述任一实施例所述的可检测LED短断路的控制电路。
第三方面,提出一种电动车辆,包括上述的充电座。
本公开有益效果如下:
本公开实施例中的可检测LED短断路的控制电路,包括LED、主控单元和信号处理单元,主控单元用于设置对LED的脉冲宽度调制信号来控制LED是否发光;信号处理单元与主控单元连接,用于至少根据主控单元的输出生成状态反馈信号并将状态反馈信号反馈给主控单元;主控单元根据状态反馈信号判定LED的状态;
本实施例的可检测LED短断路的控制电路无需设置额外的检测电路,通过主控单元即可实现对LED亮灭的控制以及LED短路、断路、过流、过温的全面检测;
通过设置信号处理单元,能够在脉冲宽度调制信号占空比较小时仍可以检测出短路;并且能够将脉冲宽度调制信号直接转换成主控单元(Micro-controller Unit,MCU)可识别的逻辑,进行LED状态的检测,因此,检测响应迅速,能够在LED工作出现故障后,通过提示装置或后级保护电路进行及时的报警以及保护。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的可检测LED短断路的控制电路的电路原理图。
具体实施方式
为了简便地、低功耗地、全面地检测LED状态,本公开实施例中提供了一种可检测LED短断路的控制电路、充电座和电动车辆。
以下结合说明书附图对本公开的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本公开,并不用于限定本公开,并且在不发生冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
第一实施例
参阅附图1,其为本公开实施例中可检测LED短断路的控制电路的电路原理图,下面结合附图1,对本公开实施例中的可检测LED短断路的控制电路进行详细说明。
如图1所示,本实施例的可检测LED短断路的控制电路,包括:LED、主控单元和信号处理单元。其中,主控单元可以是MCU。
具体地,主控单元用于设置对LED的脉冲宽度调制(PWM)信号来控制LED是否发光;信号处理单元与主控单元连接,用于至少根据主控单元的输出生成状态反馈信号并将状态反馈信号反馈给主控单元;主控单元根据状态反馈信号判定LED的状态。其中,可以理解,通过调整PWM信号的频率和占空比,可以调节LED的发光时长和熄灭时长。
根据本申请的可检测LED短断路的控制电路无需设置额外的检测电路,通过主控单元即可实现对LED亮灭的控制以及LED短路、断路、过流、过温的全面检测。
具体地,如图1所示,本实施例的可检测LED短断路的控制电路的信号处理单元包括恒流源驱动模块,恒流源驱动模块的输入端与主控单元的信号输出端连接,恒流源驱动模块的输出端与LED连接,用于获取表示LED状态的状态输入信号。优选地,恒流源驱动模块为比例恒流源电路。
更具体地,如图1所示,信号处理单元还包括比较器P(例如,运算放大器)、第三电阻R3、第四电阻R4和分压模块,比较器P的同相输入端经由第三电阻R3连接恒流源驱动模块的输出端,用于将状态输入信号转化成状态反馈信号,比较器P的反向输入端经由第四电阻R4连接基准电压,比较器P的输出端连接主控单元的信号输入端,用于将状态反馈信号反馈给主控单元(的I/O引脚)。由此,信号处理单元至少根据主控单元的输出,获取表示LED的状态输入信号,再经过比较器P,生成状态反馈信号,并将该状态反馈信号经由分压模块反馈给主控单元。也就是说,信号处理单元将状态输入信号经过比较器P进行比较、放大,转换成了MCU直接可识别的逻辑信号(例如,高低电平信号),因此,由于该比较器P的设置,能够在PWM信号占空比较小时,仍可以检测出LED的短路状态。
信号处理单元中,比较器P的反向输入端所连接的基准电压,可以通过对供电电源(例如,12V的供电电压)进行分压来获得。因此,进一步地,本实施例的可检测LED短断路的控制电路还可以包括并联的第二电阻R2和第八电阻R8,第二电阻R2和第八电阻R8的公共端连接第四电阻R4,第二电阻R2的另一端接地,第八电阻R8的另一端连接在供电电源DC的正极与LED之间。
在本实施方式中,以12V供电电压为例,LED的导通电压一般为2V~3V,因此要选择合适的第二电阻R2和第八电阻R8,以确保分压到比较器P的反相输入端的第四电阻R4的电压要小于比较器P的同相输入端的第三电阻R3的电压。具体地,以12V供电电压为例,第二电阻R2的阻值需设置为大于2MΩ,第八电阻R8的阻值需在100kΩ~200kΩ的范围内(包括端点值)选取。
优选地,第四电阻R4的阻值可以设置为大于10MΩ。第三电阻R3的阻值也可以设置为大于10MΩ。由此,可以减少整个系统的功耗。
接下来,继续参考图1,详细说明恒流源驱动模块的电路结构。
具体地,恒流源驱动模块包括第一晶体管Q1、第三晶体管Q3、第一电阻R1和第九电阻R9。第三晶体管Q3的集电极连接主控单元的信号输出端,第三晶体管Q3的发射极经由第一电阻R1接地,第三晶体管Q3的基极连接第一晶体管Q1的基极,第一晶体管Q1的发射极经由第九电阻R9接地,第一晶体管Q1的集电极连接第三电阻R3,第一晶体管Q1的基极和第三晶体管Q3的基极的公共端连接第三晶体管Q3的集电极。优选地,第一晶体管Q1和第三晶体管Q3可以选择特性相同的NPN三极管。
两支特性相同的NPN三极管构成比例恒流源电路,第一晶体管Q1的发射极串联第九电阻R9,第三晶体管Q3的发射极串联第一电阻R1。比例恒流电路源改变了IC1≈IR的关系,使IC1与IR呈比例关系,从而克服了镜像恒流源电路的缺点。其与典型的静态工作点稳定电路一样,第一电阻R1和第九电阻R9是电流负反馈电阻,因此与镜像恒流源电路相比,比例恒流源电路的输出电流IC1具有更高的稳定性。
由于第一电阻R1和第九电阻R9为比例恒流源电路的调节电阻,还需要搭配输入电阻,使比例恒流源电路稳定输出电流值I,因此,本实施例的可检测LED短断路的控制电路还包括第五电阻R5,主控单元的信号输出端经由第五电阻R5连接第三晶体管Q3的集电极。
在本实施例中,对应已选定的LED,需要输出20mA的电流值I。输出电流值的取值公式为:
I=(V CC-U BE)/(R5+R1)×R9/R1,其中,V CC为供电电压,U BE为第三晶体管Q3的基极-发射极电压。
接下来,为了使信号处理单元生成的状态反馈信号适合MCU的电气特性,可以设置用于分压的第六电阻R6和第七电阻R7。可以理解为第六电阻R6和第七电阻R7构成分压模块,第六电阻R6一端连接主控单元的信号输入端,另一端接地,第七电阻R7一 端连接主控单元的信号输入端,另一端连接比较器P的输出端。当然,还包括上拉电阻R10,上拉电阻R10一端连接比较器P的输出端,另一端连接供电电源DC的正极,以使比较器P可以输出稳定的高电平信号。
接下来,参照上述的可检测LED短断路的控制电路,详细说明应用于该控制电路的检测LED短路或断路的工作流程。
首先,比较器P的同相输入端由于LED的亮灭,会得到不同的电压。在LED熄灭时,比较器P的同相输入端的电压高于反相输入端的电压,比较器P输出高电平;在LED亮时,比较器P的同相输入端电压低于比较器P的反相输入端电压,比较器P输出低电平。
因此,可通过以下方式进行检测,具体地:
上电之后,在不给激励信号(5V或者PWM信号)的情况下,检测MCU接收的电平信号,若是低电平,说明LED断路;若是高电平,说明该控制电路可以正常工作,可进行下一步;
给激励信号后,MCU输出5V电平或者PWM信号,经过恒流源驱动模块后,控制LED支路的电流达到正常工作电流,此时检测MCU接收的电平信号,若恒为低电平,则LED短路;若随着激励信号变化,说明LED正常工作,若恒为高电平,则LED断路。
需要说明的是,LED状态的检测是MCU以100ms为周期循环检测(例如周期性获取MCU的I/O口的电平信号)。在控制电路正常工作状态下,若LED发生过温或者过流等异常情况,表现现象就会使LED短路或者断路,因此,此控制电路也可以实时检测不限于过温、过流的各种故障状态。
当然也可以理解,在其他实施方式中,也可以通过设置第一晶体管Q1、第三晶体管Q3以及比较器P的类型,令MCU接收到高电平信号表示LED短路,而接收到低电平信号表示LED断路。
根据本实施例的可检测LED短断路的控制电路无需设置额外的检测电路,通过主控单元即可实现对LED亮灭的控制以及LED短路、断路、过流、过温的全面检测。
第二实施例
本实施例提供了一种充电座,包括如上任一实施例所述的可检测LED短断路的控制电路。为行文简洁,不再赘述。根据本申请的充电座,通过主控单元即可实现对LED亮灭的控制以及LED短路、断路、过流、过温的全面检测。
第三实施例
本实施例提供了一种电动车辆,包括如上所述的充电座。为行文简洁,不再赘述。根据本申请的电动车辆,通过充电座的主控单元即可实现对LED亮灭的控制以及LED短路、断路、过流、过温的全面检测。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (14)

  1. 一种可检测LED短断路的控制电路,其特征在于,包括:
    LED,
    主控单元,用于设置对LED的脉冲宽度调制信号来控制LED是否发光;
    信号处理单元,所述信号处理单元与所述主控单元连接,用于根据所述主控单元的输出生成状态反馈信号并将所述状态反馈信号反馈给所述主控单元;
    所述主控单元根据所述状态反馈信号判定LED的状态。
  2. 如权利要求1所述的可检测LED短断路的控制电路,其特征在于,所述信号处理单元包括恒流源驱动模块,所述恒流源驱动模块的输入端与所述主控单元的信号输出端连接,所述恒流源驱动模块的输出端与LED连接,用于获取表示LED状态的状态输入信号。
  3. 如权利要求2所述的可检测LED短断路的控制电路,其特征在于,所述信号处理单元包括比较器、第三电阻、第四电阻和分压模块,所述比较器的同相输入端经由所述第三电阻连接所述恒流源驱动模块的输出端,用于将所述状态输入信号转化成所述状态反馈信号,所述比较器的反向输入端经由所述第四电阻连接基准电压,所述比较器的输出端经由所述分压模块连接所述主控单元的信号输入端。
  4. 如权利要求3所述的可检测LED短断路的控制电路,其特征在于,还包括并联的第二电阻和第八电阻,所述第二电阻和所述第八电阻的公共端连接所述第四电阻,所述第二电阻的另一端接地,所述第八电阻的另一端连接在供电电源的正极与LED之间。
  5. 如权利要求4所述的可检测LED短断路的控制电路,其特征在于,所述第二电阻的阻值大于2MΩ。
  6. 如权利要求4所述的可检测LED短断路的控制电路,其特征在于,所述第八电阻的阻值为100kΩ~200kΩ。
  7. 如权利要求3所述的可检测LED短断路的控制电路,其特征在于,所述第四电阻的阻值大于10MΩ;所述第三电阻的阻值大于10MΩ。
  8. 如权利要求3所述的可检测LED短断路的控制电路,其特征在于,所述恒流源驱动模块包括第一晶体管、第三晶体管、第一电阻和第九电阻,所述第三晶体管的集电极连接所述主控单元的信号输出端,所述第三晶体管的发射极经由所述第一电阻接地,所述第三晶体管的基极连接所述第一晶体管的基极,所述第一晶体管的发射极经由所述第九电阻接地,所述第一晶体管的集电极连接所述第三电阻,所述第一晶体管的基极和 所述第三晶体管的基极的公共端连接所述第三晶体管的集电极。
  9. 如权利要求8所述的可检测LED短断路的控制电路,其特征在于,LED一端连接供电电源的正极,另一端连接所述第一晶体管的集电极。
  10. 如权利要求9所述的可检测LED短断路的控制电路,其特征在于,还包括第五电阻,所述主控单元的信号输出端经由所述第五电阻连接所述第三晶体管的集电极。
  11. 如权利要求3所述的可检测LED短断路的控制电路,其特征在于,所述分压模块包括第六电阻和第七电阻,所述第六电阻一端连接所述主控单元的信号输入端,另一端接地,所述第七电阻一端连接所述主控单元的信号输入端,另一端连接所述比较器的输出端。
  12. 如权利要求3所述的可检测LED短断路的控制电路,其特征在于,还包括上拉电阻,所述上拉电阻一端连接所述比较器的输出端,另一端连接供电电源的正极。
  13. 一种充电座,其特征在于,包括如权利要求1至12任一项所述的可检测LED短断路的控制电路。
  14. 一种电动车辆,其特征在于,包括如权利要求13所述的充电座。
PCT/CN2022/118132 2021-09-10 2022-09-09 一种可检测led短断路的控制电路、充电座和电动车辆 WO2023036298A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122187759.3U CN215894889U (zh) 2021-09-10 2021-09-10 一种可检测led短断路的控制电路、充电座和电动车辆
CN202122187759.3 2021-09-10

Publications (1)

Publication Number Publication Date
WO2023036298A1 true WO2023036298A1 (zh) 2023-03-16

Family

ID=80337413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118132 WO2023036298A1 (zh) 2021-09-10 2022-09-09 一种可检测led短断路的控制电路、充电座和电动车辆

Country Status (2)

Country Link
CN (1) CN215894889U (zh)
WO (1) WO2023036298A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215894889U (zh) * 2021-09-10 2022-02-22 长春捷翼汽车零部件有限公司 一种可检测led短断路的控制电路、充电座和电动车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2156519A1 (es) * 1998-12-30 2001-06-16 Senalizacion Y Accesorios Del Sistema de deteccion de fallos en pilotos de señalizacion para vehiculos automoviles.
CN203814006U (zh) * 2014-03-26 2014-09-03 惠州市德赛西威汽车电子有限公司 一种led工作状态检测电路
CN107708272A (zh) * 2017-10-16 2018-02-16 湖州佳创自动化科技有限公司 一种远程智能路灯控制装置
CN108569212A (zh) * 2017-10-27 2018-09-25 常州星宇车灯股份有限公司 一种汽车led车灯的故障诊断反馈系统
CN210129024U (zh) * 2019-03-20 2020-03-06 日立汽车系统(苏州)有限公司 负载诊断装置
CN111736089A (zh) * 2019-03-20 2020-10-02 深圳市嘉力电气技术有限公司 一种uv-led灯珠能量补偿及灯珠故障检测装置及其方法
CN215894889U (zh) * 2021-09-10 2022-02-22 长春捷翼汽车零部件有限公司 一种可检测led短断路的控制电路、充电座和电动车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2156519A1 (es) * 1998-12-30 2001-06-16 Senalizacion Y Accesorios Del Sistema de deteccion de fallos en pilotos de señalizacion para vehiculos automoviles.
CN203814006U (zh) * 2014-03-26 2014-09-03 惠州市德赛西威汽车电子有限公司 一种led工作状态检测电路
CN107708272A (zh) * 2017-10-16 2018-02-16 湖州佳创自动化科技有限公司 一种远程智能路灯控制装置
CN108569212A (zh) * 2017-10-27 2018-09-25 常州星宇车灯股份有限公司 一种汽车led车灯的故障诊断反馈系统
CN210129024U (zh) * 2019-03-20 2020-03-06 日立汽车系统(苏州)有限公司 负载诊断装置
CN111736089A (zh) * 2019-03-20 2020-10-02 深圳市嘉力电气技术有限公司 一种uv-led灯珠能量补偿及灯珠故障检测装置及其方法
CN215894889U (zh) * 2021-09-10 2022-02-22 长春捷翼汽车零部件有限公司 一种可检测led短断路的控制电路、充电座和电动车辆

Also Published As

Publication number Publication date
CN215894889U (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
EP3468303B1 (en) A led lamp having an outage detection circuit
US20100181914A1 (en) Lighting control device of lighting device for vehicle
JP6151591B2 (ja) 車両用灯具
US11602177B2 (en) Voltage output circuit for electronic cigarette and electronic cigarette using circuit
JP5301976B2 (ja) 車両用灯具の制御装置
WO2015090186A1 (zh) 过压过流保护电路及电子装置
JP2007200610A (ja) 車両用灯具の点灯制御装置
CN107244252B (zh) 一种用于指示交直流充电枪状态的电路
WO2023036298A1 (zh) 一种可检测led短断路的控制电路、充电座和电动车辆
WO2014187018A1 (zh) 短路保护电路以及具有短路保护电路的电子装置
CN107926101B (zh) 发光元件驱动设备
US20090267520A1 (en) Lighting control device
CN204795685U (zh) 指示灯供电电路和配电系统
JPH0715886A (ja) 車両用発電機の出力電圧制御装置
JP2013139182A (ja) 車両用灯具
JP2020016778A (ja) バックライト保護回路
JPS60182358A (ja) エンジン点火装置の点火制御回路
WO2018147102A1 (ja) スイッチ制御装置
CN116634626B (zh) 一种用于led灯的恒流控制电路和led灯
KR101174237B1 (ko) Led 구동전압 조절회로 및 led 구동 시스템
JP2007022127A (ja) 車両用灯具の点灯制御装置
CN106351865B (zh) 一种基于单片机的直流风扇转速精准控制电路
KR910005208Y1 (ko) 교류발전기의 과부하 경보회로
JPS6245486Y2 (zh)
JP2881945B2 (ja) 車両用充電制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE